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The acquisition of MRI and histology in the same post-mortem tissue sample enables direct correlation between 

MRI and histologically-derived parameters. However, there still lacks a standardised automated pipeline to pro- 

cess histology data, with most studies relying on manual intervention. Here, we introduce an automated pipeline 

to extract a quantitative histological measure for staining density (stain area fraction, SAF) from multiple immuno- 

histochemical (IHC) stains. The pipeline is designed to directly address key IHC artefacts related to tissue staining 

and slide digitisation. Here, the pipeline was applied to post-mortem human brain data from multiple subjects, 

relating MRI parameters (FA, MD, RD, AD, R2 ∗ , R1) to IHC slides stained for myelin, neurofilaments, microglia 

and activated microglia. Utilising high-quality MRI-histology co-registrations, we then performed whole-slide 

voxelwise comparisons (simple correlations, partial correlations and multiple regression analyses) between mul- 

timodal MRI- and IHC-derived parameters. The pipeline was found to be reproducible, robust to artefacts and 

generalisable across multiple IHC stains. Our partial correlation results suggest that some simple MRI-SAF cor- 

relations should be interpreted with caution, due to the co-localisation of other tissue features (e.g., myelin and 

neurofilaments). Further, we find activated microglia —a generic biomarker of inflammation —to consistently be 

the strongest predictor of high DTI FA and low RD, which may suggest sensitivity of diffusion MRI to aspects 

of neuroinflammation related to microglial activation, even after accounting for other microstructural changes 

(demyelination, axonal loss and general microglia infiltration). Together, these results show the utility of this ap- 

proach in carefully curating IHC data and performing multimodal analyses to better understand microstructural 

relationships with MRI. 
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. Introduction 

Magnetic resonance imaging (MRI) is a powerful tool that can be
sed to evaluate neurodegenerative disorders in-vivo. MRI techniques
ave produced quantitative parameters sensitive to macroscopic neu-
opathological changes ( Johnson et al., 2012 ; Geraldes et al., 2018 ;
rolez et al., 2016 ). However, MRI parameters are non-specific and

ensitive to multiple factors related to tissue microstructure. Coupled
ith millimetre resolution, this leads to difficulty in determining the
icrostructural underpinnings of a given MRI change (e.g., in disease).
✰ Submitted to NeuroImage 
∗ Corresponding author. 

E-mail address: daniel.kor@ndcn.ox.ac.uk (D.Z.L. Kor) . 
1 Contributed equally. 

J  

t  

r  

a  

o  

F  

ttps://doi.org/10.1016/j.neuroimage.2022.119726 . 

eceived 6 July 2022; Received in revised form 27 October 2022; Accepted 31 Octob

vailable online 9 November 2022. 

053-8119/© 2022 The Authors. Published by Elsevier Inc. This is an open access ar
Immunohistochemistry (IHC) is a histological staining technique that
an be used to address this difficulty. IHC uses primary antibodies to
tain target antigens (proteins related to microstructural features-of-
nterest) with high specificity. Antigens are then commonly visualised
sing the chromogen 3 ′ 3-diaminobenzidine (DAB) to stain the marked
roteins brown. To add contextual information and localise stained tis-
ue features, haematoxylin is often used as a counterstain to mark cell
uclei purple. The acquisition of IHC can aid neuropathological diag-
osis ( Nave and Werner, 2014 ; Barker et al., 2013 ; Ulfig et al., 1998 ;
tik et al., 2014 ; Schirmer et al., 2011 ; Korzhevskii and Kirik, 2016 ;
urga et al., 2020 ; Bagnato et al., 2011 ; Waller et al., 2019 ), with an-
ibodies targeting either common tissue features (e.g., myelin or neu-
ofilaments) or markers specific to pathology (e.g., activated microglia,
 marker of inflammation ( Bachiller et al., 2018 ; Geloso et al., 2017 ),
r aggregated pTDP-43 in ALS ( Pallebage-Gamarallage et al., 2018 )).
urther, the acquisition of IHC and MRI in the same post-mortem tissue
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ample enables direct correlation of MR and histologically-derived met-
ics. This methodology is used to validate MR parameters and improve
ur microstructural interpretation of MRI. Here, post-mortem MRI func-
ions as a crucial intermediary between IHC and in-vivo imaging. Post-
ortem MRI shares a common tissue state with IHC, while possessing

he same signal forming mechanisms with in-vivo MRI ( Tendler et al.,
022 ). 

While many studies relate IHC to MR parameters ( Goubran et al.,
015 ; Fjær et al., 2013 ; Fjær et al., 2015 ; Dusek et al., 2017 ; Yano et al.,
018 ; Wang et al., 2020 ; Abe et al., 2019 ; Mollink et al., 2019 ; Lazari and
ipp, 2021 ), there is still a lack of automated pipelines for extract-
ng quantitative metrics from IHC slides of neuronal tissue ( Lazari and
ipp, 2021 ). Most MRI-IHC analyses rely on heavy manual interven-
ion ( van der Weijden et al., 2021 ; Mancini et al., 2020 ; De Barros
t al., 2019 ; Seewann et al., 2009 ), with some using subjective met-
ics, such as staining intensity scores resembling low, moderate or strong

 Seewann et al., 2009 ; Bulk et al., 2018 ). Others directly use the DAB
hannel’s stain density to approximate the amount of targeted pro-
ein within the tissue ( Seewann et al., 2009 ; Wiggermann et al., 2017 ;
ametner et al., 2018 ; Bagnato et al., 2018 ). However, this interpreta-

ion is limited as the densities do not scale linearly with protein density
 De Barros et al., 2019 ; Hametner et al., 2018 ; van der Loos, 2008 ). To
ircumvent this, other pipelines extract the stain area fraction (SAF) i.e.,
he number of DAB-stained pixels within a given area. In most pipelines,
AF is quantified by manually setting a threshold for the DAB channel
o segment microstructural tissue compartments from non-specific back-
round staining in regions-of-interest (ROIs) ( Lazari and Lipp, 2021 ;
an der Weijden et al., 2021 ; Mancini et al., 2020 ; De Barros et al.,
019 ). 

The manual derivation of SAF has two main issues. First, the
anually-set threshold is dependant on the operator’s expertise and
 single threshold is often applied to all slides in a dataset or
 batch of slides which have been processed together ( Pallebage-
amarallage et al., 2018 ). Although this is time efficient and avoids

ntra-observer variability, it comes at the expense of optimising thresh-
lds for individual slides, resulting in decreased robustness to histo-
ogical artefacts, such as slide-to-slide and within-slide staining inten-
ity variation. Slide-to-slide staining intensity variation is introduced
ue to unintentional variations in tissue sample preparation and stain-
ng, which produce artificial (non-biological) differences in stain in-
ensity and colour information. Within-slide staining artefacts include
 gradual staining gradient, with stronger staining at one end of the
lide progressing to weaker staining at the other, and striping artefacts
rom slide digitisation. Staining gradients arise due to how the slide is
ositioned during staining, inconsistent fixation of the tissue sample,
nd/or uneven application of the reagent ( Suvarna et al., 2019 ). Strip-
ng artefacts describes sharp bands of intensity variation across whole
lide images, which arise from when stitching together multiple strips
f slide during digitization ( Farahani et al., 2015 ). Though these arte-
acts could be eliminated at source (e.g., through optimised staining
rotocols, or an improved slide scanner), they are frequently observed
n practice ( Suvarna et al., 2019 ; Farahani et al., 2015 ; Gurcan et al.,
009 ; McCann et al., 2015 ; Madabhushi and Lee, 2016 ). Further, the
mpact of these artefacts on the SAF may not always be obvious at the
oint of slide preparation. Once these impacts are observed, re-staining
ay be infeasible given the considerable time and manpower already in-

ested. When unaccounted for, these artefacts may impact the extracted
HC metrics. Second, these manual workflows are time intensive. This
estricts research studies to smaller sample sizes (i.e., less slides and/or
ubjects), and limits IHC analyses to hand-drawn ROIs, as opposed to
nalysing voxels from the whole slide. 

Here, we propose an automated SAF pipeline, in the context of an
nd-to-end MRI-histology workflow, to address these challenges. The au-
omated pipeline is able to extract SAF maps from IHC-stained slides for
yelin, neurofilaments and microglia. The pipeline was first evaluated

n an IHC dataset designed to test the pipeline’s reliability. We then ap-
2 
lied the pipeline to a second dataset containing co-registered IHC and
RI to correlate SAF on a voxelwise basis with diffusion-weighted MRI

fractional anisotropy: FA; mean, radial, axial diffusivity: MD, RD, AD)
nd relaxometry (R2 ∗ , R1) maps. To account for covariance between
tains, we use partial correlation to identify the unique variance in MRI
arameters explained by each targeted protein. Finally, we perform mul-
iple regression with all stains to derive a predictive model of each MR
arameter, which may be driven by multiple microstructural sources. 

. Data acquisition 

We applied the SAF pipeline to two datasets: one with only IHC data,
nd a second previously published dataset that includes both IHC and co-
egistered MRI ( Pallebage-Gamarallage et al., 2018 ). Both datasets con-
ain tissue from the same 15 post-mortem brains of patients diagnosed
ith amyotrophic lateral sclerosis (ALS) and healthy controls (CTL) (12
 ALS, 3 x CTL). 

.1. Immunohistochemistry data 

After post-mortem MRI, tissue samples were extracted and stained,
s described in ( Pallebage-Gamarallage et al., 2018 ), using primary
ntibodies against PLP (myelin), SMI312 (neurofilaments), Iba1 (mi-
roglia) and CD68 (activated microglia, macrophages). These antibod-
es have applications in pathological and healthy tissue (( Nave and

erner, 2014 ; Barker et al., 2013 ) for PLP, ( Ulfig et al., 1998 ; Atik et al.,
014 ; Schirmer et al., 2011 ) for SMI312, ( Korzhevskii and Kirik, 2016 ;
urga et al., 2020 ; Bagnato et al., 2011 ; Waller et al., 2019 ) for CD68
nd Iba1) and are relevant to ALS neuropathology, which is charac-
erised by neuronal loss and microglial activation in motor neuron ar-
as ( Pallebage-Gamarallage et al., 2018 ). All antibodies were visualised
ith DAB and sections were counterstained with hematoxylin. Non-

pecific staining of endogenous peroxidase —an enzyme present in many
ells —was minimised through a peroxidise blocking step ( Bussolati and
adulescu, 2011 ; Del Cerro et al., 1981 ). Residual non-specific staining
as generally faint except for occasional darker stained vasculature that
as sparsely distributed across the slides. Slides were digitised with the
perio ScanScope R ○ AT Turbo (Leica Biosystems) at x20 object magnifi-
ation (0.5 μm/pixel). Prior to analysis, each slide was manually quality-
hecked (QC) where we excluded slides that would fail analysis due to
xcessive illumination, tears due to poor tissue sectioning or significant
mounts of inconsistent staining. Inconsistent staining refers to atyp-
cal staining patterns that are non-biological in origin e.g., extremely
trong staining gradients, inverted white/grey matter contrasts (oppo-
ite to what we neuroanatomically expect) and patchy or unstained tis-
ue. 

.1.1. Evaluation dataset 

The “evaluation dataset ” was acquired to evaluate our pipeline’s per-
ormance in terms of reproducibility and robustness to key histological
rtefacts. Ideally, this data can distinguish true biological variation from
ariance related to artefacts and analysis. Consequently, data was col-
ected from adjacent tissue slides, which are separated by the slide thick-
ess (6 𝜇m). We assume that adjacent slides have similar microstructure
nd that the true biological between-slide variance is low. This a pri-
ri assumption is reasonable as we aim to summarise microstructure
t MRI resolution (0.5–1 mm), which is considerably larger than the
lides’ separation. At the tissue boundaries and for proteins-of-interest
hat sparsely populate the tissue, this assumption may not always be
et. For each of the 15 brains, 12–15 adjacent slides were obtained from

he primary motor cortex (face region). These slides were separated into
roups of 4–5 slides. Each group was stained for CD68, PLP or SMI312.
uring QC, we removed 49% of the CD68 and 24% of the SMI312 slides.
o PLP slides were excluded. CD68 slides were mostly removed due to

taining artefacts. This is likely due to some difficulty with this batch’s
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taining, rather than a general issue with the CD68 stain, given that the
ultiple-region dataset’s CD68 slides all passed QC. 

.1.2. Multiple-region dataset 

We applied our SAF pipeline ( Section 3.1 ) on the "multiple-region
ataset" ( Pallebage-Gamarallage et al., 2018 ) to generate SAF maps. This
ataset includes IHC and co-registered MRI data from multiple brain re-
ions with varying levels of disease pathology. Both the dataset and
ts SAF maps will be available in a future release of the Digital Brain
ank ( Tendler et al., 2022 ). We consider data from the visual cortex
both hemispheres), anterior cingulate (cingulum bundle, corpus callo-
um) and hippocampus. Slides were stained to visualise CD68, Iba1, PLP
nd SMI312. All slides passed QC. 

.2. MRI data 

The data acquisition and pre-processing of the post-mortem MRI
ave been previously described (Pallebage-Gamarallage et al., 2018;
ang et al., 2020 ; Tendler et al., 2020 ). Whole brains were imaged

n a 7T human scanner (Siemens Healthcare, Erlangen, Germany) using
 1Tx/32Rx head coil. R2 ∗ maps were estimated from susceptibility-
eighted data acquired with a 3D multi-echo GRE sequence (param-

ters: TEs = 2, 8.6, 15.2, 21.8, 28.4, 35 ms with monopolar read-
ut and non-selective RF pulse, TR = 38 ms, flip angle = 15°, band-
idth = 650 Hz/pixel, and in-plane resolution = 0.5 × 0.5 mm 

2 (Wang
t al., 2020)). R1 maps were estimated from T1-weighted data collected
ith a multi-TI turbo spin-echo protocol (Subject 1,2: TE = 14.2 ms,
R = 1000 ms, TIs = 30, 60, 120, 240, 480, 935 ms, flip angles =
80°, bandwidth = 130 Hz/pixel, and in-plane resolution = 1.0 × 1.0
m 

2 ( Pallebage-Gamarallage et al., 2018 )). Other brains were imaged
ith slightly different parameters (Table S1). Diffusion tensor maps
f FA, MD, AD and RD ( Basser et al., 1994 ) were estimated from a
iffusion-weighted steady-state free precession sequence (parameters:
E = 21.0 ms, TR = 28.0 ms, flip angles = 24°, 94°, bandwidth =
93 Hz/pixel, q value = 300 cm 

− 1 , number of directions/flip angle =
20, and in-plane resolution = 0.85 × 0.85 mm 

2 ( Tendler et al., 2020 )).

.3. Co-registration of MRI and histology 

MRI and histology data were previously co-registered using
SL’s Tensor Image Registration Library (TIRL), which is a general-
urpose image registration framework designed for MRI-histology co-
egistration ( Huszar et al., 2019 ). We used TIRL to 1) register PLP
ith structural MRI (2D-3D) and 2) co-register other stains to PLP (2D-
D). PLP was chosen as the reference histology data due to its strong
hite/grey matter (WM/GM) contrast. All MR parameters maps were
rst aligned to structural MRI using FLIRT ( Jenkinson et al., 2002 ). The
enerated warps were combined using TIRL to map these MR param-
ters to the IHC SAF maps for voxelwise correlations. To investigate
elationships in WM voxels, WM masks were derived from maps of the
hird eigenvalue of the diffusion tensor using FSL-FAST ( Zhang et al.,
001 ). WM masks were similarly resampled into the 2D PLP space. 

. Methods 

We describe an end-to-end workflow for MRI-SAF comparisons. At
he centre of this workflow is our automated SAF pipeline, which is de-
cribed in Section 3.1 . The pipeline was designed to be generalisable to
ultiple IHC stains, reproducible and robust to common IHC artefacts,
hich we evaluate in Section 3.2 . The pipeline was then applied to the
ultiple-region dataset, which includes IHC and co-registered MRI, fa-

ilitating voxelwise MRI-SAF comparisons. We describe how we evalu-
ted the quality of the co-registration ( Section 3.3 ) and performed vox-
lwise MRI-SAF analyses ( Sections 3.4 , 3.5 ) to disentangle the contribu-
ions of multiple microstructural features stained with IHC to each MR
arameter. 
3 
.1. SAF pipeline 

The pipeline maps RGB intensity values of high-resolution IHC slides
0.5 μm/pixel) to SAF using three steps: 1) separation of the DAB and
aematoxylin stains using colour deconvolution, 2) segmentation of the
AB-stained proteins-of-interest from non-specific DAB using an inten-

ity threshold, and 3) calculation of the SAF map at a specified resolu-
ion. The pipeline is automated and data-driven, enabling rapid analysis
f many IHC slides across multiple subjects, regions, and stains. 

In practice, we found considerable impact of IHC artefacts in some
lides. This motivated the development of two “configurations ” of the
ipeline: the default ( Fig. 1 ) and artefact ( Fig. 2 ) configuration. The de-
ault configuration is designed to emulate an expert histologist when
eriving SAF (but with data-driven, slide-specific stain separation and
hresholding) for IHC slides with no prominent staining gradient and/or
triping artefacts. This improves upon a more manual approach, where
he adjustment of slide-specific thresholds would be extremely time-
onsuming. If these artefacts are present, we propose the artefact con-
guration, which automatically adjusts the local thresholds within-slide
o account for the impact of these artefacts. Both configurations are au-
omated, and differ based on whether local or whole-slide methods are
sed for Steps (1) and (2). We now describe each step of the pipeline in
etail. 

.1.1. Colour matrix derivation for stain separation 

Colourimetric analysis is based on colour deconvolution, a stain sep-
ration method using Beer-Lambert’s law ( Ruifrok and Johnston, 2001 ).
n Beer-Lambert’s law (c.f. Appendix A), the light absorbence ( A ) for
GB channels is linearly related to the stain density ( C ) via the atten-
ation coefficients ( 𝜺 ). The stain (i.e., DAB, hematoxylin) density in a
lide can be computed with a matrix inversion: 

 

 

 

 

𝐶 𝐷𝐴𝐵 

𝐶 ℎ𝑒𝑚𝑎𝑡𝑜𝑥𝑦𝑙𝑖𝑛 

𝐶 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝜖𝐷𝐴𝐵,𝑟𝑒𝑑 𝜖𝐷𝐴𝐵 ,𝑔 𝑟𝑒𝑒𝑛 𝜖𝐷𝐴𝐵,𝑏𝑙𝑢𝑒 

𝜖ℎ𝑒𝑚𝑎,𝑟𝑒𝑑 𝜖ℎ𝑒𝑚𝑎,𝑔𝑟𝑒𝑒𝑛 𝜖ℎ𝑒𝑚𝑎,𝑏𝑙𝑢𝑒 
𝜖𝑟𝑒𝑠,𝑟𝑒𝑑 𝜀 𝑟𝑒𝑠,𝑔𝑟𝑒𝑒𝑛 𝜖𝑟𝑒𝑠,𝑏𝑙𝑢𝑒 

⎤ ⎥ ⎥ ⎦ 
−1 ⎡ ⎢ ⎢ ⎣ 

𝐴 𝑟𝑒𝑑 

𝐴 𝑔𝑟𝑒𝑒𝑛 

𝐴 𝑏𝑙𝑢𝑒 

⎤ ⎥ ⎥ ⎦ 
= 𝑀 

−1 
⎡ ⎢ ⎢ ⎣ 
𝐴 𝑟𝑒𝑑 

𝐴 𝑔𝑟𝑒𝑒𝑛 

𝐴 𝑏𝑙𝑢𝑒 

⎤ ⎥ ⎥ ⎦ (1) 

here M, termed the colour matrix, is a 3 × 3 matrix with each element
iving the attenuation coefficient ( 𝜖𝑖,𝜆) for each stain (i) and colour ( 𝜆)
air. M can be defined from literature or empirically measured from
ingle-stained slides ( Ruifrok and Johnston, 2001 ; Landini et al., 2021 ).
sing an M that is non-specific to each slide leads to poor stain separa-

ion and consequently, inconsistent interpretation during slide-to-slide
omparison ( Gurcan et al., 2009 ; Madabhushi and Lee, 2016 ; Clarke and
reanor, 2017 ). We address this problem by employing a k -means clus-
ering approach to derive colour information directly from the IHC data.
his approach is tailored according to the different configurations. 

efault configuration 

To derive a single slide-specific M , we used the k -means clustering
trategy introduced in ( Geijs et al., 2018 ). We randomly sampled patches
0.5 × 0.5 mm 

2 ; n = 200) from the slide and performed k -means cluster-
ng ( k = 2) to produce 2 cluster centroids corresponding to the colour
ectors (i.e., rows in M ) of hematoxylin and DAB. We then performed
 second k -means clustering ( k = 2) on the 200 colour vectors output
rom the first k -means. This produced two centroids corresponding to
he slide-specific DAB and haematoxylin colour vectors of M . Stain sep-
ration was performed using this single M across the whole slide. 

rtefact configuration 

In slides with a staining gradient, a locally changing M is required
o account for colour differences from one end of the slide to the other.
onsequently, we apply k -means locally to derive M along the gradient
irection. In principle, M can be derived in windows of pixels of any
rbitrary shape (i.e., square patch) that are large enough to provide a
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Fig. 1. The automated SAF pipeline for stains with little or no intensity gradient and/or visible stitching artefacts (example: visual cortex). This usually includes 

stains specifying structures that sparsely populate the brain tissue, such as microglia (Iba1, CD68) and neurofilament (SMI312) in some cases. For each slide, the 

pipeline 1) derives a single, global colour matrix to separate DAB from haematoxylin, 2) performs stain separation to isolate the DAB channel, 3) automatically 

segments the DAB channel with a single median threshold, and 4) calculates the SAF at variable resolution. 
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ufficient number of pixels of each class (background versus stain-of-
nterest) for data-driven analysis. In our datasets, the staining gradient
as present along the horizontal axis of the slide. Hence, we applied
 -means on a column-wise basis (32-pixels width; height matching the
lide) to define M column that varies along the gradient direction. Stain
eparation was performed locally using M column . 

For stain separation in both configurations, an approach emulating
NLS (non-negative least squares) (c.f. Appendix A), was used to esti-
ate the DAB channel’s stain density ( C DAB ) according to Eq. (1) . C DAB 

as then converted to intensity values ( I ) using an equation analogous
o the inverse Beer-Lambert’s Law: I = 10 − C DAB . 

.1.2. Automatic thresholding for protein segmentation 

To segment the DAB-stained protein-of-interest from non-specific
AB, manual analyses require an expert to manually set a threshold.
e improve on this by deriving a data-driven threshold. An image seg-
entation approach is Otsu’s method ( Otsu, 1979 ), which computes a
4 
hreshold that maximises the image histogram’s inter-class variance. Our
lgorithm is based on the related weighted object variance algorithm
 Yuan et al., 2015 ), which includes a tunable parameter ( 𝜹) to separate
lasses of unequal count and variance. Here, we computed a threshold
 by maximizing: 

 = arg max 𝑡 
[
𝑃 0 ( 𝑡 ) 𝜇0 ( 𝑡 ) 2 + 𝑃 1 ( 𝑡 ) 1+ 𝛿𝜇1 ( 𝑡 ) 2 

]
(2)

ere, P j (t) and 𝝁j (t) are the cumulative probabilities and means of the
neven classes j = 0 (protein-of-interest) and j = 1 (DAB-stained back-
round). 𝜹 ranges from − 1 to 1 and weights the object variance to shift
 closer to the mean of the smaller ( 𝜹 > 0) or larger ( 𝜹 < 0) class 0. 𝜹
 0 was used for densely stained PLP or SMI312 and 𝜹 > 0 for sparsely
tained slides (CD68, Iba1). To achieve local thresholding, the algorithm
as performed on contiguous columns rather than the entire image.
ur slides possessed left-to-right gradients in stain density, with verti-
al bands of intensity (striping). Thresholds t i were thus calculated on
 column-wise basis (32-pixels width; height matching the slide), with
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Fig. 2. The automated SAF pipeline for stains confounded by staining gradient and/or visible striping artefacts (visual cortex). For each slide, the pipeline 1) derives 

multiple, columnar colour matrices from the data, 2) performs stain separation for each column, 3) automatically segments each column’s DAB channel and 4) 

forms an SAF map. Steps 3 and 4 are repeated for a range of hyperparameters 𝜷 and 𝜸, which are optimised via grid-search to account for within-slide artefacts 

(Section 3.1.2). 𝜷 modulates how much correction is needed to offset the impact of the striping artefact, while 𝜸 is a smoothing kernel required to prevent abrupt 

column-to-column correction. For each SAF map, we averaged the map over its height (y-axis) and chose the SAF map with the lowest standard deviation (i.e., least 

impacted by these artefacts). 

5 
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 representing the column index. Before calculating the threshold, the
AB channel was masked to remove the non-tissue pixels in the col-
mn (luminance < 0.75) to balance the two classes in the DAB channel
istogram. This prevented the large number of non-tissue pixels from
kewing the histogram and biasing the threshold. 

efault configuration 

A single threshold was sufficient to segment the entire slide without
isible striping artefacts. The fixed threshold was calculated as the me-
ian of all local thresholds computed column-wise. Consequently, our
ata-driven pipeline replaces expert determination of the threshold, t ,
ith determination of the hyperparameter, 𝜹. Ideally, this hyperparam-

ter is set once by an expert for a stain. Our pipeline will then enable
utomated, adaptive thresholding on new slides. In this work, we sam-
led 8–10 patches (0.5 × 0.5 mm 

2 ) spanning different brain regions,
issue types and subjects to choose a 𝜹 (per stain) that produced opti-
al segmentation. Segmentations were vetted with an expert histologist

MPG). 

rtefact configuration 

In slides with striping artefacts, a single whole-slide threshold is
nsufficient for optimal segmentation. Our artefact configuration uses
olumn-wise thresholds that adapt to these artefacts in a data-driven
ay. Columns affected by striping are characterised by DAB histograms
ith decreased median absolute deviation (MAD) compared to columns

ess affected by striping artefacts. This was found by empirically com-
aring histograms from striping and non-striping regions and associat-
ng it with an observed slight blurring of the image along the stitching
oundary of the slide scanner. Consequently, we use the MAD from each
olumn (indexed with i ) to weight the 𝜹 to account for how much strip-
ng artefact is present: 

= 𝛼(1 + Δ𝑖 ) 𝛽 (3)

here: 

𝑖 = 

𝑀 𝐴𝐷 𝑖 − 𝜎
(
𝑀 𝐴𝐷 𝑖 

)
𝜎
(
𝑀𝐴𝐷 𝑖 

) (4)

i is the overall exponent used in WOV equation (Equation 2); 𝜶 is
 stain-specific value chosen manually which depends on the relative
ositive stain and background staining (equivalent to 𝜹 in the default
ipeline); 𝜷 is chosen via grid search and depends on amount of striping
rtefact i.e., it modulates how much 𝜹 differs from 𝜶 due to striping; 𝝈 is
he kernel size of a 1D Gaussian filter applied to MAD i ( 𝝈= 16); 𝚫i repre-
ents the i t h column’s change in structure (MAD) relative to neighbour-
ng columns. After calculating the column-wise thresholds using Eqs.
-4, we performed a final smoothing operation: 

 𝑓𝑖𝑛𝑎𝑙 = 𝛾( 𝑡 𝑖 ) (5)

here 𝜸 is a 1D Gaussian filter that it optimised via grid search that
revents the thresholds ( t i ) from varying abruptly column-to-column. 

Figures S1 and S2 demonstrate how the hyperparameters 𝜶, 𝜷 and
affect the resultant SAF map. 𝜶 is chosen manually, 𝜷 and 𝜸 are opti-
ised for each slide via grid search to minimise the standard deviation

f highpass components (defined below) in the resulting SAF. In our
ultiple-region dataset, We observed stitching artefacts and/or staining

radients in the PLP slides only. Hence, we applied the artefact config-
ration on our PLP slides ( 𝜶= − 0.60) and the default configuration on
ur CD68 ( 𝜹= 0.05), Iba1 ( 𝜹= 0.05) and SMI312 ( 𝜹= − 0.30) slides. Figure
3 shows example segmentations. 

.1.3. Calculating the SAF map 

Following segmentation, we computed SAF maps at various reso-
utions. First, we extracted a tissue mask by applying Otsu’s method
 Otsu, 1979 ) on the hematoxylin channel followed by several morpho-
ogical operations. SAF was defined as the ratio of pixels with positive
AB to those in the tissue mask within a patch. We evaluate the robust-
ess of our pipeline by generating SAF maps at high resolution (16 × 16
6 
m 

2 /patch), which facilitates better identification of high-frequency
ariations in SAF, and at MRI resolution (0.5 × 0.5 mm 

2 /patch), to
valuate the reproducibility of SAF at the resolution used for MRI-SAF
nalyses. 

.2. Evaluation of SAF pipeline 

The pipeline was evaluated with two criteria: robustness to arte-
acts and reproducibility of SAF. These analyses used the evaluation
ataset (c.f. Section 2.1.1 ). We compared pipeline-derived SAF maps
ith expert-derived (MPG) SAF maps ( Pallebage-Gamarallage et al.,
018 ) that use a manually-derived dataset-specific colour matrix and
 stain-specific segmentation threshold. Each manual threshold was cal-
brated in at least 10 randomly selected, structurally distinct regions. 

obustness to within-slide artefacts 

To test the pipeline’s robustness to within-slide artefacts, we calcu-
ated the average column-wise SAF. This horizontal SAF profile was fil-
ered using three bandpass filters (modelled from a Butterworth filter
 Butterworth, 1930 ; Virtanen et al., 2020 ) applied twice) that are sensi-
ive to different artefacts’ effects: staining gradients (lowpass; < 3 Hz),
triping artefact (bandpass; 3–12 Hz) and bandpass plus all other high
requency noise (highpass; > 3 Hz). The frequency bands were qualita-
ively chosen based on the spatial variability of the artefacts, which may
iffer between datasets. Within each frequency band, we computed the
elative percent change in standard deviation between the manually-
nd automatically-derived SAF map ( diffstd ) to quantify the reduction
n impact from artefacts: 

𝑖𝑓 𝑓 𝑠𝑡𝑑 = 

𝑠𝑡𝑑 𝑚𝑎𝑛𝑢𝑎𝑙 − 𝑠𝑡𝑑 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 

𝑠𝑡𝑑 𝑚𝑎𝑛𝑢𝑎𝑙 
⋅ 100 (6)

iffstd was observed to be sensitive to artefacts that increase the vari-
nce of SAF across the slide: striping artefacts increase diffstd in the
igh frequency band, and staining gradients increase diffstd in the low
requency band. 

eproducibility of SAF 

Reproducibility was tested by registering all within-subject slides to
he subject’s first slide via TIRL ( Huszar et al., 2019 ). We compute an
AF difference map for each co-registered pair of slides (SAF 1,2 ) and
ake the median value across pixels: 

𝑖𝑓 𝑓 𝑠𝑎𝑓 = 𝑚𝑒𝑑𝑖𝑎𝑛 

[ 
𝑆 𝐴𝐹 1 − 𝑆 𝐴𝐹 2 

( 𝑆 𝐴𝐹 1 + 𝑆 𝐴𝐹 2 )∕2 
⋅ 100 

] 
(7)

.3. Co-registration of MRI and histology 

The pipeline was applied to data from the multiple-region dataset
c.f. Section 2.1.2 ) with co-registered MRI-histology. The quality of the
egistration was evaluated according to the alignment of contours repre-
enting tissue boundaries and WM/GM contrast. Contours were derived
rom the PLP SAF maps. 

.4. Voxelwise MRI-SAF analyses 

MR parameter maps (3D) were resampled into PLP (2D) space for
orrelation with SAF. As the MR voxels do not align with the 0.5 mm
istology grid, the SAF were recalculated for each MR voxel, minimising
nterpolation effects. Pixels in the SAF maps with values < 5th percentile
ere identified as non-tissue pixels and discarded. Other outliers were

dentified using a Huber influence function (tuning coefficient = 2.5),
xcluding data points with weights < 0.75 ( Huber, 2011 ). We pooled
oxelwise data across regions and brains for several linear model anal-
ses between MRI and SAF: 

• Simple correlation : We correlated each pair of MR (FA, MD, RD,
AD, R2 ∗ , R1) and SAF (PLP, SMI312, Iba1, CD68) parameters. 
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Fig. 3. Within-slide artefacts are reduced using the automated pipeline (bottom row). These include noticeable stitching artefacts (blue arrows) and staining gradients 

(green arrows) originally seen in manually-derived SAF maps (top row). Examples here show PLP slides processed with the pipeline configuration that corrects for 

staining gradient artefacts (artefact configuration), while SMI312, Iba1 and CD68 slides were processed with the pipeline’s default configuration. 
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• Partial correlation : We estimated the unique variance of each MR
parameter that is explained by a given stain’s SAF, accounting for
other stains. Subject ID was used as a covariate to account for
between-subject confounds. 

• Multiple linear regression : We model each MR parameter as a lin-
ear combination of all stains (explanatory variables) and the subject
ID (confounding variable). We computed each variable’s relative im-
portance measure ( Grömping, 2015 ) i.e., the averaged relative con-
tribution of each variable in explaining the variance of the MR pa-
rameter after it is added to the model. 

As a proof-of-concept, we performed voxelwise analyses on two sub-
ects from the multiple-region dataset (1 x CTL, subject 1; 1 x ALS, sub-
ect 2). Analyses were done using WM + GM or WM voxels, where the
atter demonstrates sensitivity to subtle microstructural changes rather
han gross WM/GM tissue differences 

.5. Application to multiple subjects for MRI-PLP 

This pipeline can be rapidly applied across many subjects. We
emonstrate this by applying the workflow ( Sections 3.1 , 3.3 , 3.4 ) to
1 PLP slides from ten additional subjects. We correlated MRI with PLP
nly, as co-registration between other stains and MR data was a work-
n-progress. We compared the ten subjects’ output with the two subjects
reviously analysed. Subject ID was modelled as a covariate. 

. Results 

.1. Evaluation of SAF pipeline 

obustness to within-slide artefacts 

The evaluation dataset slides were processed with either the default
CD68, Iba1) or artefact (PLP, SMI312) pipeline. Fig. 3 compares SAF
aps from both our automated and manual pipeline. Both configura-

ions of the automated pipeline reduce the impact of stitching artefacts.
n the default configuration, this can be attributed to the use of a slide-
pecific colour matrix, which results in better stain separation compared
o the non-specific colour matrices used in manual analyses. The artefact
7 
onfiguration also reduced staining gradient artefacts. In slides with less
oticeable artefacts (Iba1), the manual and automated pipelines produce
imilar results. 

In almost all PLP and SMI312 slides ( Fig. 4 ), the diffstd for each
requency band ( Eq. (6) ) was positive, suggesting a reduction in arte-
acts for the automated pipeline. There was high similarity in highpass
nd bandpass diffstd . This implies the striping artefact’s major contri-
ution to overall noise in these slides, and how its impact is especially
itigated with the automated pipeline. The results for CD68 are less

onclusive. The automated pipeline reduces the impact of the striping
rtefact (bandpass diffstd is mostly positive) but performs worse than
he manual pipeline for the highpass and lowpass filters. 

eproducibility of SAF 

Reproducibility of SAF maps ( Fig. 5 ) was quantified with diffsaf

 Eq. (7) ) between within-subject adjacent slides. Manual and automated
ipelines were found to have similar reproducibility with a median diff-

af of around 5% (PLP), 9% (SMI312) and 20% (CD68). As fewer slides
ere used when evaluating CD68 (9/15 subjects; 37/73 slides) than in
MI312 (13/15 subjects; 55/72 slides) and PLP (15/15 subjects; 73/73
lides) after manual quality control (c.f. Section 2.1.1 ), Figs. 4 , 5 have
ewer datapoints. 

.2. Co-registration of MRI and histology 

Fig. 6 shows good alignment of the tissue mask (green contour) and
M/GM interface (red contour) for subject 1. Subject 2 had similar re-

ults (Figure S4). Of the remaining subjects, 10 had good quality regis-
rations (Figure S5) and 3 were excluded from subsequent analysis due
o substantial misalignment. Additional quantitative evaluation of the
ataset registration can be found in ( Huszar et al., 2019 ). 

.3. Voxelwise MRI-SAF analyses 

Eight IHC slides from different regions ( Figs. 6 , S5) in subjects 1 and
 were mapped onto MRI data. For each MR parameter, up to 3% of
oxels were classified as outliers and removed. 
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Fig. 4. Quantitatively comparing the impact of within-slide artefacts in the manual and automated processing pipelines, as measured using the relative change in 

standard deviation (100 x (std manual - std automatic ) / std manual ). Standard deviation measures (box) are derived by 1) averaging the high-resolution (16 μm/pixel) SAF 

map along the y-axis, 2) filtering it to produce 3 components (bandpass, highpass and lowpass), and 3) computing the components’ standard deviation. The lowpass 

filter isolates the staining gradient artefact, whilst the stitching artefact only is captured with the bandpass filter. The highpass filter combines the same striping 

artefact with all high frequency noise. Each IHC slide is represented as a single datapoint, and slides from the same subject are grouped together and connected by 

lines. A positive (negative) value indicates that the automatically-derived SAF map is less (more) affected by the associated artefact than the manually-derived SAF 

map. 
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.3.1. Simple correlation 

Simple correlation was used to relate each MRI-SAF pair ( Fig. 7 ).
hile correlations with Iba1 appear low (|r| = 0.035–0.28), CD68 cor-

elated well with FA ( r = 0.56) and MD ( r = − 0.39). The scatterplots also
uggest nonlinear trends for FA with PLP and SMI312. Similar analysis
f WM only is shown in Figure S6, where FA shows a strong correlation
ith CD68 ( r = 0.33) and R2 ∗ with Iba1 ( r = − 0.30). Scatterplots with
D and RD are shown in Figure S7. In WM + GM, AD and RD correlated
egatively with all stains. When analysing the WM only, notable results
nclude the correlation of AD with Iba1 ( r = 0.27) and RD with CD68
 r = − 0.21). 

.3.2. Partial correlation 

For each stain, correlations were calculated after regressing out one
ther stain or all other stains as covariates. We show correlation co-
fficients when including all voxels (WM + GM) ( Fig. 8 A), or WM only
 Fig. 8 B). Similar data for AD and RD are shown in Figure S8. 

M and GM 

When accounting for all other stains ( Figs. 8 A and S8A, bottom
ows), FA is best explained by CD68 ( r = 0.38), MD/AD/RD/R2 ∗ by PLP
 r = − 0.42/ r = − 0.65/ r = − 0.68/ r = 0.30) and R1 by SMI312 ( r = 0.36).
e observed two main results: the shared explained variance between

LP (myelin) and SMI312 (neurofilaments), and between Iba1 (all mi-
roglia) and CD68 (activated microglia). 

First, the correlation coefficient between FA and SMI312 is greatly
educed after accounting for PLP ( r = 0.35 to 0.026), whilst the correla-
ion coefficient between FA and PLP is marginally reduced after account-
ng for SMI312 ( r = 0.54 to 0.44). Similar effects are observed between
D and PLP/SMI312, and between R2 ∗ and PLP/SMI312. The oppo-

ite effect is seen in R1: the correlation coefficient between R1 and PLP
8 
ecreases significantly when covarying for SMI312 ( r = 0.46 to 0.19),
ut the correlation coefficient between R1 and SMI312 is marginally re-
uced when accounting for PLP ( r = 0.54 to 0.36). Second, we saw that
he high correlations of FA/RD with CD68 marginally decrease after ac-
ounting for Iba1 (r FA = 0.56 to 0.5; r RD = − 0.50 to − 0.45). Conversely,
he apparent correlations with Iba1 are minimal after accounting for
D68 (r FA = 0.28 to 0.061; r RD = − 0.24 to − 0.029). We note similar
rends for correlations of MD with CD68/Iba1. 

M only 

Figs. 8 B and S8B show the same analysis for voxels found in the
M only. When accounting for all other stains, FA/MD/RD are best ex-

lained by CD68 ( r = 0.26/ r = − 0.18/ r = − 0.22), AD by PLP ( r = 0.10),
2 ∗ /R1 by Iba1 ( r = − 0.11/ r = − 0.23). When compared to our previous
esults for WM + GM voxels, the correlation coefficient between most MR
arameters and PLP/SMI312 are greatly reduced and/or close to zero.
his behaviour is not seen for CD68 and Iba1. In WM, CD68 explains
he most unique variance in FA and RD. Notably, these correlations re-
ain relatively unchanged when accounting for other stains (r FA = 0.33

o 0.26; r RD = − 0.29 to − 0.22). Similar behaviour is observed when
elating CD68 with MD, and Iba1 with R1/R2 ∗ . 

.3.3. Multiple linear regression 

We show the regression and fitted correlation coefficients (i.e.,
quare root of the coefficient of determination) when including voxels
rom WM + GM, or WM only (Tables 1A, S2A). Using multiple stains bet-
er explains the variance in MR parameters than individual stains. We
lso show the relative importance of each predictor (Tables 1B, S2B).
he subject predictor had the highest relative importance in predicting
1 in all voxels, and MD/R2 ∗ /R1 in WM voxels only. This implies that
etween-subject confounds substantially influence MR parameters. 



D.Z.L. Kor, S. Jbabdi, I.N. Huszar et al. NeuroImage 264 (2022) 119726 

Fig. 5. The reproducibility of SAF values across adjacent tissue sections, as measured by the median absolute difference. The median absolute difference (box) was 

computed by 1) taking the absolute difference of a pair of SAF maps produced from IHC slides extracted from the same region and subject, 2) normalising this 

difference map by the mean of both SAF maps, and 3) taking the median to represent one datapoint. We used this measure to compare reproducibility of both 

manually- (orange) and automatically-derived (blue) SAF maps for PLP, SMI312 and CD68. The median and median absolute variance of data points are also shown 

for each method (legends). Note the change in scale-bar for CD68, where the difference values were generally larger when compared to PLP and SMI312. 
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.4. Application to multiple subjects for MRI-PLP 

Similar regression coefficients were seen for the larger group ( n = 10,
igure S9 right) compared to the original analysis ( n = 2, Figure S9 left),
ith the estimated effect ( 𝜷) being highly consistent for FA, MD and R2 ∗ ,
ut less consistent for R1. 

. Discussion 

To facilitate high-throughput MRI-histology analyses, we introduce
n automated pipeline to extract stain area fraction (SAF) from immuno-
istochemical (IHC) stains. Using high-quality co-registration, we per-
ormed whole-slide voxelwise MRI-SAF comparisons. The pipeline was
pplied to post-mortem human brain data from multiple subjects, relat-
ng slides stained for myelin (PLP), neurofilaments (SMI312), microglia
Iba1) and activated microglia (CD68) to MR parameters (FA, MD, RD,
D, R2 ∗ , R1). 

Our approach has three advantages over previous studies. First,
hile most MRI-SAF studies use manually-derived SAF, our pipeline
eploys data-driven algorithms ( Geijs et al., 2018 ; Yuan et al., 2015 ).
his enables the pipeline to be applied rapidly to larger datasets with-
ut expert intervention. Second, our pipeline can handle key artefacts
non-biological sources of variation) which impact SAF maps. This is an
mprovement over previous automated pipelines ( Grussu et al., 2017 ;
hodanovich et al., 2019 ; Praet et al., 2018 ). Third, the pipeline is gen-
ralisable to multiple IHC stains, allowing for analysis spanning mul-
iple microstructural sources. Combined with recent advances in MRI-
istology co-registration ( Huszar et al., 2019 ), the pipeline may enable
9 
tandardised analyses for voxelwise MRI-SAF comparisons ( Lazari and
ipp, 2021 ). 

The pipeline facilitates voxelwise MRI-SAF analyses that inspire
ore confidence than ROI-based analyses, which are biased by the

hoice of ROI and/or dilute localised effects-of-interest. Further, most
tudies perform simple correlations with only a single or a few histologi-
al markers ( Yano et al., 2018 ; Seewann et al., 2009 ; Peters et al., 2019 ).
e extend this analysis to partial correlation and multiple linear regres-

ion relating multimodal MRI to multiple IHC stains. This presents two
ey benefits. First, partial correlations can demonstrate sensitivity to
pecific microstructural changes such as microglial activation (changes
n CD68 but not Iba1), demyelination (changes in PLP but not SMI312)
nd axonal loss (simultaneous changes in SMI312 and PLP). This may
id with disease diagnosis and/or staging. Here, our pipeline is applied
o a dataset that was specifically acquired for future investigation into
LS neuropathology, as motivated in our previous publication that pre-
ented the study design ( Pallebage-Gamarallage et al., 2018 ). Currently,
e refrain from making any strong conclusions with respect to ALS
athology since our MRI-SAF results are from only two subjects, where
o-registration for other subjects is still a work-in-progress. However,
uture work will draw on MRI-SAF results from the entire multi-subject
ataset to provide an in-depth evaluation of the cellular bases of MRI
n the context of ALS neuropathology. Second, both the partial correla-
ion and multiple linear regression analyses can account for confound
ariables, which may otherwise influence our results. Subject-specific
onfounds contributed to significant variation in R1/MD/R2 ∗ (relative
mportance in Table 1 B). This may be due to different post-mortem in-
ervals (3 versus 2 days) and/or fixation times (45 versus 139 days), both
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Fig. 6. Registration evaluation for all brain regions in subject 1. In each brain region, contours of the tissue mask (green dashed) are overlaid on the co-registered 

SAF maps at high resolution (first row, 1 pixel here represents SAF calculated in a 16 × 16 𝜇m 

2 patch), SAF maps matching MRI resolution (second row) and MR 

parameter maps (third row). The white and grey matter interface is shown in red. The tissue boundaries are closely aligned and the high registration accuracy enables 

us to perform meaningful voxelwise MRI-histology correlations. 
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f which are known to influence MR parameters (R1, R2 ∗ : ( Shatil et al.,
018 ; McNab et al., 2009 ; Foxley et al., 2014 ); MD: ( McNab et al., 2009 ;
oxley et al., 2014 )). Notably, FA-microstructure mappings were inde-
endent of subject confounds, given that post-mortem tissue exhibits
imilar patterns of FA when pooling voxels from WM + GM ( Sun et al.,
005 ; Sun et al., 2003 ; Roebroeck et al., 2019 ). A more in-depth anal-
sis of these confounds (e.g., whether post-mortem interval or fixation
ime is the primary driver of between-subject variance) is left for future
ork within the larger multiple-subject dataset. 

.1. Evaluation of SAF pipeline 

Our results show the pipeline’s robustness to common IHC arte-
acts, while maintaining similar reproducibility to manually-derived
AF values ( Figs. 3-5 ). This is especially in PLP slides, which typically
isplayed within-slide artefacts. Conversely, CD68 appears less repro-
ucible for both manual and automated processing. CD68 stains sparse,
mall, activated microglia (soma diameter ∼10 μm ( Kozlowski and
10 
eimer, 2012 )). Here, the diffstd metric may be unsuitable as the as-
umption of low biological variability across slides may not be met. In-
pection of the CD68 segmentation revealed that the automated pipeline
orrectly segmented more activated microglia relative to the manual
ethod. The inclusion of more sparsely distributed microglia may add

iological variability to the SAF, resulting in higher low- and high-
ass diffstd . Staining gradients were not visibly present in CD68 slides,
hough some striping was visible on the manually-derived SAF maps.
he automated pipeline reduced this striping, as reflected in the im-
roved bandpass diffstd . 

.2. Voxelwise MRI-SAF analyses 

Our correlation results agree with previous studies for myelin
 Lazari and Lipp, 2021 ; Mancini et al., 2020 ; Seewann et al., 2009 ;
agnato et al., 2018 ) and neurofilaments ( Grussu et al., 2017 ). Activated
icroglia correlates positively with FA and negatively with MD/RD,

imilar to that reported in the human spinal cord ( Grussu et al., 2017 ). 
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Fig. 7. Correlating MR parameters (DTI FA, MD, R2 ∗ and R1) with IHC SAF (WM + GM). The line of best fit (black line) and corresponding Pearson correlation 

coefficients, r, are overlaid. Confidence intervals (99%) are shown in blue shade. The visual cortex (blue), anterior cingulate (orange) and hippocampus (green) 

provide good dynamic range for the MR parameters and SAFs. 

Table 1 

Multiple linear regression predicting MR parameters using multiple IHC stains. Values are computed from WM + GM, or from WM only. A “subject ” variable was 

also included to account for confounds such as post-mortem interval and age effects. As the predictors are unitless, all offsets and regression slopes are given in 

units of MR parameters. A: The regression coefficients and correlation coefficients r fit . B: The relative importance of each stain describes the amount of variance it 

can explain in an MR parameter, averaged over all permutations of multiple regressions that include the specific stain. Values are normalised across stains to get 

a unit percentage. 

All voxels/WM only 

(A) Multiple regression offset and slopes 

Offset PLP SMI312 Iba1 CD68 Subject r fit 

FA − 0.00142 ∗ /0.255 0.173/ − 0.173 0.0429/0.144 0.252/0.410 ∗ 10.5/8.81 − 0.0112/ − 0.0247 0.645/0.353 

MD [μm 

2 /ms] 0.286/0.118 − 0.112/0.0610 − 0.070/ − 0.0323 − 0.0629 ∗ / − 0.0531 ∗ − 2.55/ − 1.40 0.0366/0.0310 0.745/0.429 

R2 ∗ [1/s] 39.2/61.2 16.5/ − 2.22 ∗ 9.04/ − 0.889 ∗ − 61.2/ − 55.2 80.7/19.6 ∗ − 3.73/ − 5.54 0.536/0.455 

R1 [1/s] 1.04/1.52 0.220/ − 0.217 0.382/0.0878 − 2.48/ − 2.71 1.34/1.89 0.234/0.268 0.710/0.637 

(B) Relative Importance [%] 

PLP SMI312 Iba1 CD68 Subject 

FA 36.0/4.32 11.9/8.75 7.04/15.1 44.5/69.2 0.55/2.66 

MD 45.0/6.43 25.7/2.40 1.69/4.99 14.5/16.2 13.1/70.0 

R2 ∗ 51.3/0.47 30.1/1.97 2.90/22.6 3.86/3.62 11.8/71.3 

R1 18.7/4.54 30.6/2.39 3.15/5.88 2.93/0.443 44.6/86.8 

∗ not significant ( p > 0.05) 

11 
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Fig. 8. Partial correlation analysis between MR parameters (FA, MD, R2 ∗ and R1) and IHC stains for (A) both WM + GM voxels and (B) for WM only. In each quadrant 

for either (A) or (B), the top row ( “None ”) gives the correlation coefficients when accounting for subject ID only. The middle rows give the partial correlation 

coefficient controlling for one of the other stains and subject ID (italicised labels in the second to fifth rows). The bottom row ( “All ”) gives the partial correlation 

coefficient controlling for all stains and subject ID. Note that correlations between FA/MD with CD68 remain relatively high, even after accounting for all other 

stains. PLP (myelin); SMI312 (neurofilaments); Iba1 (microglia); CD68 (activated microglia). 
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.2.1. Myelin and neurofilaments 

Our partial correlations for PLP (myelin) and SMI312 (neurofila-
ents) demonstrate pitfalls in performing pairwise MRI-histology corre-

ations without controlling for other tissue features. Our simple correla-
ions from WM + GM voxels reveal an apparent relationship between neu-
ofilaments and FA, MD, R2 ∗ ; however, our partial correlation results
hat account for myelin find no such relationship. Thus, one may erro-
eously conclude from simple correlations that anisotropy is affected by
yelin and neurofilament (axons, dendrites) load, whereas our partial

orrelations show that anisotropy is primarily related to myelin den-
ity, with no unique variance attributed to dendritic load. As we do
ot account for microstructure orientation dispersion —where the ori-
ntational coherence of axons and dendrites may drive variations in
iffusion anisotropy ( Beaulieu, 2002 ) —we cannot determine whether
he FA-PLP correlation reflects a direct relationship with myelin density
r an indirect relationship with microstructure dispersion. These results
mply that the portion of microstructure dispersion that affects FA is
nrelated to dendritic load; if it were, we expect a high correlation be-
ween FA and dendritic load, with microstructure dispersion being the
ain confound in driving this relationship. This is something we hope

o investigate further in the future. MD and R2 ∗ are similarly affected
y myelin load, though some specificity to unmyelinated axons and/or
endrites remains. 

Conversely, SMI312 explains unique variance in R1, even after ac-
ounting for PLP. This implies that R1 is sensitive to neurites in general,
ather than myelin alone. This is noteworthy, given the studies corre-
ating myelin with R1 ( Stüber et al., 2014 ; Hakkarainen et al., 2016 ;

arntjes et al., 2017 ) without considering the impact of unmyelinated
xons and/or dendrites. 

Finally, in WM only, all PLP/SMI312 associations are reduced, sug-
esting WM/GM contrast as the primary driver. Taken together, our re-
ults may explain the wide range of MRI-myelin correlation coefficients
eported in two reviews ( Figs. 4 , 5 in ( Lazari and Lipp, 2021 ); Fig. 4 in
 Mancini et al., 2020 )). 
b

12 
.2.2. Microglia 

Our results suggest a relationship between CD68 (activated mi-
roglia, a biomarker for neuroinflammation ( Bachiller et al., 2018 ;
eloso et al., 2017 )) and FA/MD/RD, after accounting for all other stains

e.g., demyelination, axonal loss or general microglia infiltration). This
elationship is present when considering all voxels (WM + GM) and WM
nly, demonstrating MR sensitivity to subtle microstructural changes
ather than gross WM/GM differences. This result may be linked to mi-
rostructural changes in response to neuroinflammation that are unac-
ounted for in our histology metrics, or non-trivial changes in “acti-
ated ” versus “non-activated ” microglia morphology. For example, ac-
ivated microglia often have more retracted, thicker processes and dif-
erent soma sizes and shapes compared to their non-activated counter-
arts ( Davis et al., 2017 ). This may contribute to increased restriction
nd/or hinderance of diffusion in the extra-axonal space, leading to an
bserved reduction in RD and a resultant increase in diffusion anisotropy
FA). While some report decreased FA in diseases associated with neu-
oinflammation ( Chiang et al., 2017 ; Samara et al., 2020 ), they do not
easure microglial activation and generally attribute the changes in FA

o WM damage. Future research into measuring microglial activation
sing MRI will benefit from the development of advanced biophysical
odels ( Taquet et al., 2019 ; Garcia-Hernandez et al., 2022 ; Zhang et al.,
012 ; Rafipoor et al., 2022 ) that can simultaneously account for multi-
le changes in the microstructure (demyelination, axonal damage, mi-
roglial infiltration, exchange effects etc.) and provide superior speci-
city to the DTI metrics. 

Activated microglia is known to colocalise with iron ( Kwan et al.,
012 ; Kaunzner et al., 2019 ) and correlate positively with R1/R2 ∗ 

 Wiggermann et al., 2017 ; Hametner et al., 2018 ; Roebroeck et al.,
019 ; Langkammer et al., 2010 ). However, CD68 is found to weakly
orrelate with R1/R2 ∗ after accounting for subject-specific confounds
 Fig. 8 , Table 1 ). Our results also suggest a negative correlation between
on-activated microglia (Iba1 after accounting for CD68) and R1/R2 ∗ .
uture studies may incorporate iron-stained IHC to elucidate the contri-
utions of iron to relaxometry measures. 
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.3. Limitations 

There are limitations to this study. First, we use SAF —a semi-
uantitative metric defined via a segmentation threshold —to quantify
RI-histology relationships. Depending on how the SAF threshold is de-

ived, this may result in subtly different SAF maps. Further, SAF may not
cale linearly with protein density, as anything above the stain threshold
s considered positive stain. While our results show key trends between
R parameters and proteins, the exact MRI-SAF slopes may not be di-

ectly comparable to other studies using different thresholding methods
r stain densities. Here, a key advantage of our data-driven SAF is that
t is less sensitive to non-biological staining variations both within and
etween slides, which if unaccounted for, can bias stain density metrics.
hird, we do not incorporate other histological metrics that may relate
o MRI. For example, we do not include the fibre orientation dispersion
nd microglial cell morphology, which may explain variance in FA or
ther MR parameters. Finally, our pipeline does not address smaller-
cale within-slide artefacts, such as artefactual staining of vasculature
nd folding artefacts at tissue edges ( Suvarna et al., 2019 ). These might
ias estimated SAF. Since our analysis occurs at the slide-level, manu-
lly excluding all smaller-scale artefacts would be very time-intensive.
ollowing a qualitative check of the slides, we observed the staining
f vasculature and folding artefacts to be relatively sparse, with a ten-
ency to appear on the tissue edges. We do not anticipate the effect size
f these artefacts to be significant. 

. Conclusion 

We introduce an automated pipeline that extracts SAF maps from
HC slides. By design, the pipeline is generalisable to multiple IHC stains
nd found to be robust to artefacts from tissue staining and/or slide
igitisation. Pipeline-derived SAF values were found to be as repro-
ucible as expert-derived SAF estimates. The pipeline was applied to
o-registered MRI and IHC data from post-mortem human brains, where
e perform multiple linear analyses (simple correlation, partial corre-

ation and multiple linear regression) to investigate voxelwise relation-
hips between MRI- and IHC-derived parameters. Our results emphasise
he need to simultaneously analyse multiple stains when validating MRI,
s to avoid misleading inference due to the spatial covariance of mul-
iple microstructural features. Interestingly, we found several diffusion-
eighted metrics’ sensitivity to activated microglia–a biomarker of neu-

oinflammation. This result held after accounting for spatial covariance
f other stains (myelin, neurofilaments and non-activated microglia),
uggesting MR specificity to aspects of neuroinflammation related to mi-
roglial activation, irrespective of other microstructural changes (axonal
oss, demyelination or general microglia infiltration). Finally, subject ID
as found to be the strongest predictor of some MR parameters, high-

ighting the need to consider tissue processing confounds when compar-
ng post-mortem MRI across subjects. Together, our results demonstrate
he pipeline as a valuable tool for IHC analyses and future investigations
elating MRI to disease pathology. 
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