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General Logarithmic Image Processing Convolution
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Abstract—The logarithmic image processing model (LIP) is a robust
mathematical framework, which, among other benefits, behaves invari-
antly to illumination changes. This paper presents, for the first time,
two general formulations of the 2-D convolution of separable kernels
under the LIP paradigm. Although both formulations are mathematically
equivalent, one of them has been designed avoiding the operations which
are computationally expensive in current computers. Therefore, this fast
LIP convolution method allows to obtain significant speedups and is more
adequate for real-time processing. In order to support these statements,
some experimental results are shown in Section V.

Index Terms—Convolution, logarithmic image processing (LIP) average,
LIP Gaussian Blur, LIP Sobel.

I. INTRODUCTION

Within the real world, the addition of two images produces a new
image which is also visible to the human eye; however, in the digital
world the addition of two images may produce “out-of-range” prob-
lems, because a value above the saturation threshold (for example, for
8 bits, the maximum value would be 255) is likely to be obtained when
two images are digitally added. This value has no meaning for the
human visual system, that is, we could not have a value brighter than
the absolute brightest or darker than the absolute darkest. In the context
of the human brightness perception, there exists a minimum light in-
tensity level, which corresponds to the complete darkness in the human
visual system. Another light intensity level, called “upper threshold” or
“glare limit,” is known [1] to represent the maximum value to which
the human visual system is not able to recognize any further increase in
the incident light intensity. Saturation of these values to the maximum
is often accomplished in digital image processing, but those extreme
values are actually never reached in natural images, since our retina,
which acts as a natural sensor, works in a logarithmic mode following
the Fechner’s Law [2].

The logarithmic image processing (LIP) is a technique initially
stated by Pinoli and Jourlin [3], [4] and further developed by
Deng et al. [5]. All these authors provided a robust mathematical
framework with highly desirable properties, such as, the result of the
operations is bounded to a specific range. Currently, this paradigm is
being expanded to deal with color and not only gray-level images [6],
also to use wavelet transforms [7], among other tasks. This framework
follows many laws of the human vision system, both physical and
psychophysical (among others, Fechner’s law [8], Weber’s law [1], [9],
psychophysical contrast notion [10], brightness scale inversion [11],
etc.). It is also consistent with the multiplicative transmitted/reflected
image formation model [5], sharing the same mathematical basis as
the multiplicative homomorphic image processing [12] in which the
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homomorphic filtering [13] is based; however, LIP provides operators
and a complete framework, at the cost of reformulating the usual image
processing techniques. According to [2], LIP has been demonstrated
to be a very appropriated model for many different tasks, because it is
at the same time mathematically well-justified, physically consistent,
psychophysically coherent with higher primates visual system, and
computationally affordable. Nowadays, LIP is a mature paradigm used
as a tool in applied tasks, such as, face features segmentation [14],
among others. Besides, it has become a referenced method to compare
with [15], [16].

The convolution is a mathematical tool, which makes use of the
neighborhood of each pixel, and, therefore, new images are obtained
taking into account context (causal) information. This operator is
highly time consuming and data dependant. Furthermore, most of the
time, its use becomes a bottleneck in the systems, degrading their data
throughput. Many techniques are based on the convolution operator:
specially those involving low-pass, band-pass, or high-pass (oriented or
not oriented) filtering and their applications such as contrast enhance-
ment [17], [18], both motion and spatial blurring [19]-[21], contrast
stretching [22], unsharp masking [22]-[24], smoothing filtering [22],
noise elimination [25], [26], scale-space filtering [27], [28], etc. Deng
and Pinoli [29] showed the effectiveness and applicability of LIP to
the edge detection field. They used LIP to state an operator called LIP
Sobel. Although they did not state explicitly the procedure to create
any generic filter but just that specific one, it is easy to extend this
methodology to the creation of other filters using the LIP paradigm.
This is the main contribution of this work. Our aim is to provide a
general formulation of a convolution under the LIP model for image
processing, which has not been stated so far. We will focus specifically
on the 2-D convolutions which make use of separable kernels because
these are the most widely used operators in the image processing field.

This paper is structured as follows. First, in Section II, we will state
the definitions used in the article. In Section III, the fundamentals of
the LIP paradigm are shown. The formulation of a 2-D convolution
with separable kernels under LIP paradigm is stated in Section IV. The
LIP convolution is applied to three different applications in Section V.
Some illustrative experiments are also described, emphasizing the re-
sults in terms of time consumption. Some future work and further ap-
plied systems are proposed in Section VI, and, finally, Section VII sum-
marizes the conclusions.

II. DEFINITIONS AND RANGES

First, we will specify the meaning and the range values of the
variables and functions used along this work. M stands for the (un-
reachable) maximum value allowed depending on the bit depth of the
palette used, while O is the (unreachable) minimum value allowed
for the images. In real-world images, the absolute darkness and the
absolute brightness do never occur. If any pixels are found with these
extreme values, they are likely to have been obtained by digital oper-
ations and/or quantization, and, thus, a shift to the nearest valid value
would be affordable without a lack of generality. Gray-level images
are notated as capitalized letters such as I, .J, etc. The gray-level
images used within this article are ranged I € (0, M) C N. General
gray-level functions are notated as lower case letters, such as f and
g, which are two gray-level functions valued f,g € (0,M) C R.
In general, anything stated for gray-level functions holds true for
gray-level images, so we use them indifferently. The gray tone of f
is notated as the respective letters with a hat, such as f=M-—Ff,
f € (0, M) C R. However, in order to be able to work in an algebraic
vector space, the range has been extended to f € (—oo, M) C R,
although just the positive gray fones physically correspond to bounded
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intensity images, while (—oo,0) has only a mathematical meaning.
For further details, see [29]. The LIP transformed gray-tone functions
are notated with the respective letters with a tilde, i.e., f €R. Any
scalar is notated as lower case Greek letters, such as, &« € R. Vectors
of real scalars are notated in lower case bold face letters, such as a, b.

III. BRIEF OUTLINE OF LIP

Although there are several logarithmic models for image processing
[2], [12], [30], we focus our work on LIP, which was developed to be
able to answer properly to the following question: “How is the addition
of two transmitted images done by the human vision system avoiding
the out-of-range problem?” The authors obtained an appropriate solu-
tion following many physical, psychophysical and human perception
system laws. There are two strategies to apply LIP philosophy to any
image processing technique:

* using the “original” images with some special operators;

¢ using “transformed” images with the usual operators.

In the following, we include a brief introduction to each of these two
methods.

A. First Method: “Original” Images and “Special” Operators

The first option is produced by means of an algebraic vectorial space
defined by the following.
e A set of image values (usually named, gray-fone functions or
simply gray tone) which are the “usual” images with an inversion
of the scale (I = M — I).
* A special sum operator, A defined as

~ o~ FG
Ag= — . 1
fAgG=F+9-; M
A special scalar multiplication operator A computed as
aaf=m—nm-[1-L) . @)
M

* Finally, in order to extend the algebraic structure provided by the
set of the gray-tone functions with the A and A operators to a
vector space, the negative of each gray rone is stated. The sub-
traction could be defined as in (3), although this operator would
produce a gray-tone function with no meaning in the real world!

YO
fAg=M M

3

w)

Further operators have been proposed, for example, a LIP Sum-
mation has been defined as

i%ﬁ:ﬁAﬁA...Aﬁ. )

B. Second Method: “Transformed” Images and “Usual” Operators

The second option is to transform the image, working with the
“usual” operators and finally, restoring the resulting image to the
original space by the inverse of the transforming function.

I A negative gray-tone function would mean a point in the filter which does not
reduce the amount of incident light but rather produces a point which is brighter
than the brightest value. This operator has been introduced just to obtain the
benefits of an algebraic vector space.
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The transform is carried out by using a function called isomorphic
transformation defined by

f=o(f)=-M-In <1 - %) . 5)

The inverse of the function above is called inverse isomorphic
transformation

T (e I

IV. LIP 2-D CONVOLUTION WITH SEPARABLE KERNELS

The convolution operator involves two operands: the signal to be
convolved (in our case, the image) and a mask or filter which is the
convolving element. If the filter can be expressed by a multiplication
of two vectors, it is called separable. The use of separable filters in the
convolution operator allows to apply two consecutive 1-D convolutions
instead of one 2-D convolution [31]. We will focus on a convolution
with a separable kernel; that is, given a 2-D filter, F', which is separable

F = aT x b. Let a and b be two row vectors, then

conv2D(I, F)
= convlD (conle(LaT),b)

= Zb(n —i)- <Z alm—j)-IG+1,j+ 1)) )

j=0
We want to compute the LIP version of the 2-D convolution of (7)

n—1

conv2Da (I, F) = y;éo b(n—1i)
m—1 —~
A( 3 a(m - ) AT +1.5+ 1)) ®
5=

Let us define K = (27:01 a(m — j) - "' b(n — i)). Renaming
(M —T(i+1,j+1))as I(i + 1,j + 1) and using the isomorphic

transform shown in (5), we obtain
n—1

Z b(n—1)

m—1
- <Z a(m—j)-In(I(i+1.j+ 1))) —K-In M} )

j=0

@ (conv?DA(f, F)) =-M-

A. Direct General LIP Convolution: DGLIP-Conv

In the following, a new operator called DGLIP-Cony is presented.
It follows the first approach to LIP (which we have called the Direct
method): it works with the “original” images with special operators. It
can be easily followed from (9), which may be reformulated as

©® (conv?DA(T, F)) =M - |:K In M-

n—1 m—1 ) b(n,—i,)
In H(H I(i+1,j+1)“("‘”> . (10)

i=0 \ j=0

Finally, by applying the inverse isomorphic transformation to (10), we
obtain
conv2DA (I, F) = o (\,: (COHV?DA (I, F)))
n—1 m—1

I (IG+1.j+1)%)
=0 ;=0

ME

b(n—i)

7

=M. . (1)
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B. Fast General LIP Convolution: FGLIP-Cony

The computation of the LIP Convolution with real time constraints
is challenging and can highly benefit from this alternative strategy we
present in this section. The previously stated DGLIP-Conv makes use
of divisions and exponentiations, which are computationally expensive
operations. Therefore, a new formulation of the operator following the
other LIP approach (working with “transformed” images and usual op-
erators) has been developed. This formulation avoids these time-con-
suming instructions, while obtaining the same results than DGLIP-
Conv, and requiring much less computing resources. Using previously
stated K, (9) can be rewritten as

@ (conv?DA (I, F))
=M - (K -ln M — convlD (conle(ln I, alv),b)) . (12)
Finally, applying the inverse isomorphic transformation (6)—(12)

conv2DA (I, F) = ¢! (gp (COHV?DA(T, F)))

= M- (1 _ econvll_)(convll_)(ln 1,aT) b)—K In M ) (13)
It is worth remarking that in both (11) and (13), the original image, and
not the gray-tone function image, is processed. Therefore, we avoid one
preprocessing step (the subtraction to obtain the gray-tone function is,
hence, useless).

V. APPLICATION OF THE LIP CONVOLUTION

After having described two formulations of the convolution under
LIP paradigm, we evaluate their effectiveness in three different appli-
cations within the image processing field. This illustrates how easy the
customization of the 2-D LIP paradigm to concrete filters becomes.
In (13), the In I can be computed with a lookup table (LUT), because
only M — 2 integer values, ranging from 1 to M — 1, are involved. This
has not been applied in the following experiments, and, thus, the nat-
ural logarithm has been calculated for each pixel in the image. In this
way, we show that the FGLIP-Conv is faster, regardless of the imple-
mentation of the logarithmic operation. First, the Sobel edge detector
is redefined under the LIP paradigm. After that, two low-pass filtering
experiments, by means of the averaging within a neighborhood for two
different sizes of the neighborhood, are stated. And we finally include
experiments with Gaussian blurring. All the experiments are applied to
two sizes of images: 512 x 512 and 320 x 240.

A. LIP Sobel

Deng and Pinoli proposed a reformulation of the well-known Sobel
method using the LIP paradigm [29]. In that case, the contents of filters
to be applied were known in advance, and, thus, authors could design
an adapted formula, which, however, was not general, but specific to
that concrete task. This new method detected edges either in well or
poorly lit areas of intensity images, allowing the detectors to be robust
and almost illumination invariant. A brief description of the method is
included here. Any given 3 X 3 area of a discrete gray-tone function is
notated as fi1, f2 ... fo, for each gray-tone function pixel from left to
right and from top to bottom. Using that neighborhood, authors stated
the LIP Sobel gray-tone vector, § = (g, Jy ), given by

7= (hacafaf)a(fiacafaf)
G=(fhacamafh)a(faeafaf). a9

(14)

These authors were able to define the LIP Sobel vector because they
knew, in advance, the values of the filter (a negative or positive value,
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Fig. 1. Original “peppers” image.
3 j - (
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4

i
=

Fig. 2. Darkened “peppers” image.

which was translated into the usage of Aor A, respectively). Using the
LIP isomorphism ¢(-) in (5)

—~_ fsfgfs) ~ MM <f1f3f3)
Go=M-—-M <—f1fff7 . gy=M-M —f7f§f9 . (16)

After that, a gradient map image can be calculated using

erad, (§) = M - (1 — exp (- ’*Q@)QJ w(@)Q)) a7

as it was done in [29]. As it can be easily deduced, (16) can be directly
obtained from (11), and, thus, DGLIP-Cony is a more general formula-
tion. It is obvious that, FGLIP-Conv, described in (13), shows a general
formulation as well. Both of them include Deng and Pinoli contribution
[29] as a particular case.

To test the LIP Sobel method, the well-known “peppers” image
(shown in Fig. 1) has been used. Fig. 2 shows the result of darkening
the original image (Fig. 1) with the darkening formula

D(z.y) = ’VI(w,y)- (0.1+ 5sin s wiam) (% W)ﬂ (18)

where “width” is the width of the image to be darkened and I(x, y) is
the value of the («, y) pixel of the original image. In the following, we
compare the results of the LIP Sobel by the three different methods
(Deng and Pinoli, DGLIP-Conv, and FGLIP-Conv). The results ob-
tained by the three methods are exactly the same.

1) LIP Sobel by Deng and Pinoli’s Method: The standard Sobel ap-
plied on the darkened image is shown in Fig. 3. The LIP Sobel method
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Fig. 4. LIP Sobel applied on darkened “peppers” image.

as proposed by Deng and Pinoli, stated in (16), is applied on Fig. 2 and
the resulting image is shown in Fig. 4. It is worth remarking that the
edges in the dark regions are not clearly detected in Fig. 3; however, in
Fig. 4, the edges in the dark regions are more homogenously detected.
This is a beneficial collateral feature which is a characteristic of the LIP

approach.
2) LIP Sobel by the LIP Convolution Methods: The standard Sobel
filter is separable. It can be obtained with two vectors, @ = [—1,0, 1]

and b = [1, 2, 1]. In order to obtain the FGLIP-Conv, we applied (13),
using @ and b as stated previously, to the darkened image (Fig. 2). In
a similar way, the same result is achieved using the DGLIP-Conv ap-
plying (11) with @ and b. The edges detected by both these methods
are the same as those computed by the method proposed by Deng and
Pinoli (see Fig. 4). We conclude that all three methods have obtained
the same results, since the mean squared error is negligible (less than
1071%).

B. Parameterized-Size LIP Filtering With a Constant Filter: LIP
Average

In the previous application, we have shown that our methods obtain
the same results as a specific algorithm. However, the presented gen-
eral methods provide a versatile and general framework. Following the
same procedure as in Deng and Pinoli’s LIP Sobel to obtain the for-
mulae, we can design (by means of Deng and Pinoli’s method) any
other filter. However, we should design specific formulae for every dif-
ferent size of the neighborhood. On the other hand, with our proposed
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general convolution LIP procedure, just by changing the input param-
eters (1-D filters), we are able to use the same code, resulting in a gain
of flexibility and also of robustness. This is one of the main advantages
of our general methods, but also their significant speedup, as it will be
illustrated in Section V-D.

We now issue the “best” case for the Deng and Pinoli’s method in
terms of speed, considering a filter in which all elements are constants,
for example, an average neighborhood filter (a low-pass filter). This is
the “best” case for the Deng and Pinoli’s method, because exponenti-
ation, which is a heavy computational operation, is done just once per
filter, as we will show in the following paragraph. Besides, we com-
pare that result with those obtained using the LIP Convolution methods
(both the DGLIP-Cony and the FGLIP-Cony ones). Again, the resulting
images are the same using the three methods.

1) nxn-Neighborhood LIP-Average Filtering by Deng and Pinoli’s
Method: Let us define an average filtering using LIP model on a n X
n-neighborhood. First of all, we should state the value of n in order to
be able to define a specific formula. With n = 3, and using the same
definition of a neighborhood as in the LIP Sobel, we obtain

avgiﬁf(f):((%&ﬁ)A(é&fg)&(éﬁ\ﬁ)

1 ~ 1 ~ 1 ~

A<§g\f4>a(§a\fs)$<§&fa>

N2 W AT W 2 T
A(gAfT)A<§£\fs>A(§&f9))- (19)

This leads us to the following formula:

avgin (f) = M — (fi 'f2'f3'f1'f5'f6'f7'f8'f9)%- (20)

This can be written shortly as

9
aver e (f) = M — (H f:)

=1

O

@n

We are able to take 1/9 as a common exponent, which reduces the com-
plexity of the formula to a great extent.

It has been tested also this experiment for a larger neighborhood:
5x 5. In this case, the formula applied is

aver o (f) = M - (H f> ,
=1

It is clear that for each value of n, that is, for each different size of the
neighborhood involved, a new formula is needed, and, thus, it would
be necessary to write a new code each time.

2) n x n-Neighborhood LIP Average Filtering by the LIP Convolu-
tion Methods: On the other hand, another formulation of the previously
stated 3 x 3-neighborhood, a LIP Average filtering can be obtained by
applying (13), or (11), with vectorsa = b = [1/3,1/3,1/3].

In order to compute the average in a 5 X 5-neighborhood, we can
apply (13), or (11), with vectorsa = b =1[1/5,1/5,1/5,1/5,1/5]. It
can be easily deduced that just by changing the filters that are used as
input parameters, we are able to obtain the computation of the average
filters with different sizes of the neighborhood, without rewriting any
line of code.

(22)

C. Parameterized-Size LIP Filtering: LIP Gaussian Blur

In the previous section, we showed a pair of examples of the “best”
case, in terms of computational load, for the Deng and Pinoli’s method.
We affirm that it is “best” case because a reduction of the exponen-
tiations involved could be achieved; as every pixel was raised to the
same value, a common exponent could be taken. Therefore, the “worst”
case is given by a filter in which we cannot optimize the Deng and
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Pinoli’s method and a common exponent cannot be taken. This is the
case of a filter in which every value is different, for example, a Gaussian
filter used in a blurring. We have also chosen this example because the
2-D Gaussian filter is separable. Thus, a usual way of obtaining a 2-D
Gaussian filter is by computing the product of a 1-D Gaussian with it-
self. As a specific example, we have developed a 7 x 7 2-D Gaussian
filter by approximation of the Gaussian (witho = 1.0)ina7 x 7 mesh.

We include in the next paragraphs the results obtained by the LIP
Gaussian Blur programmed using the three different methods under
consideration. Obviously, as expected, there are no differences between
the results obtained by any of the three methods.

1) LIP Gaussian Blur by Deng and Pinoli’s Method: We have ex-
tended the definition of the neighborhood commented in the LIP Sobel
section to a 7 X 7 neighborhood. In the following, we show the for-
mula used to apply a Gaussian blur under LIP paradigm (for the sake
of simplicity not all values are presented)

GBlurrie (f) =
((0.0001& F1)A(0.0015A f2) A (0.0067 A f3) A...
.. (0.1353 A fa3) A (0.6065 A f21) A (1.0000 A fo5) A. ..
... (0.0067 A fi7) A (0.0015 A f15) A (0.0001 A Eg)). (23)

Analogously to what is done to obtain (16), the same strategy can lead
to the following formula:

GBlurpip (f)

£0.0001 £0.6065 | £1.000
—W—<1 S fad s

0.0001
<" TJ49
)f0.0001-...-0.6065-1.0000-...-0.0001 ) : (24)

Opposite to (21) and (22), in this formula, we cannot take any common
exponent, and, therefore, every pixel of the image is exponentiated to
the value in correspondence in the Gaussian filter.

2) LIP Gaussian Blur by the LIP Convolution Methods: As it has
been stated above, a 2-D Gaussian matrix is a separable filter, built
up with a multiplication of a 1-D Gaussian with itself. The size of the
filter involved depends on the value of the o parameter: the larger the
o is, the larger the size of the filter. As a rule of thumb, the length of
the Gaussian filter that shall be taken, centered on a specific posi-
tion, is 3.5 x o2 values left and right of that position (rounding down
to the lower integer value is acceptable). For example, for ¢ = 1,
a Gaussian filter with length of 7 shall be taken. For that given o,
the following vectors have been used in the experiment a = b =
[0.011,0.135,0.606, 1, 0.606,0.135,0.011]. Of course, for a larger
value of o, a larger filter shall be taken. However, there is no need to
rewrite any line of code, just by changing the parameters, the desired
output will be produced.

D. Speedup Analysis

In this section, we focus on the computation time spent by each
method on each experiment. For this task, we have implemented all
the algorithms in MATLAB®©7 (R14) using the Image Processing
Toolbox. We tried to be as fair as possible; we used the functions
recommended by Matlab developers with the data types for which
optimizations were enabled—no further direct optimizations were
introduced. Using a Pentium Centrino M725 at 1.60 GHz (2-MB
L2-Cache) with 512-MB RAM, we produced a set of experiments
with two different sizes for the images (one of 512 X 512 and the
other using the standard CIF size of 320 x 240), for which several
executions were tried, taking the average of the time obtained for each
individual execution (see Table I).

The execution times cannot be compared for each experiment and
method, because the figures are considerably different. However, if we
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TABLE 1
COMPUTATION TIME AND SPEEDUP COMPARISON (TIME IN SECONDS)
Application Size Method Time  Speedup
LIP-Sobel 512 X 512 Deng & Pinoli  1.008 1.00
DGLIP—Conv 5.847 0.17
FGLIP-Conv 0.450 2.24
320 X 240 Deng & Pinoli  0.386  1.00
DGLIP—Conv 1.682 0.23
FGLIP—Conv 0.155 2.49
LIP—Average 512 x 512 Deng & Pinoli  0.456  1.00
B3 x3) DGLIP—Conv 3.448 0.13
FGLIP—Conv 0.192 2.38
320 X 240 Deng & Pinoli  0.227 1.00
DGLIP—Conv 1.017  0.22
FGLIP—Conv 0.076  2.99
LIP-Average 512 x 512 Deng & Pinoli  0.482  1.00
(5 % 5) DGLIP—Conv 4.056 0.12
FGLIP-Conv 0.198 243
320 X 240 Deng & Pinoli 0.246 1.00
DGLIP-Conv 1.189  0.21
FGLIP-Conv 0.077 3.20
LIP-Gaussian 512 X 512 Deng & Pinoli  9.629  1.00
Blur DGLIP—Conv 4.560 2.11
FGLIP—Conv 0.333 2892
320 X 240 Deng & Pinoli  2.855 1.00
DGLIP-Conv 1.421 2.01
FGLIP—Conv 0.175  16.31

consider the results of the experiments using the Deng and Pinoli’s
method as the base reference time, we can compute the gain of speed
of each method for every experiment compared to that base reference
time. This gain of speed, or “speedup,” describes the relative speed
of a new system in relation to another system, which is taken as the
reference one. If the speedup value is above one, it means that the new
system is faster than the reference one; while, if the speedup is lower
than one, it means that the new system is slower than the reference one.

The speedup of every method and application is shown in Table I.
After computing the speedup, we can infer that the FGLIP-Conv is
much faster than the Deng and Pinoli’s method in every application
and size of the image. The mean speedup of the FGLIP-Conv is ap-
proximately 2.5 faster? than the Deng and Pinoli’s method. One of the
reasons for this speedup is due to the use of separable kernels that
this new formulation allows, in opposition to the Deng and Pinoli’s
method, in which there does not exist a technique to make use of the
separability of the filters. Another reason for the speedup is that the
FGLIP-Conv makes use of additions and multiplications, opposed to
the Deng and Pinoli’s method, which is based on multiplications and
exponentiations, much slower and computationally more complex than
the first ones. On the other hand, the DGLIP-Convy is slower than the
Deng and Pinoli’s method almost in every experiment. This is because
although both the DGLIP-Conv and the Deng and Pinoli’s methods
use multiplications and exponentiations, the Deng and Pinoli’s method
is optimized, reducing the amount of exponentiations involved, while
DGLIP-Convy is general. However, there exists a set of experiments, the
LIP Gaussian Blur, for which even the DGLIP-Conv is twice faster. In
that case, the Deng and Pinoli’s method cannot make a reduction of
the exponentiations, one for each element in the filter (for that method,
it is a 2-D filter) in opposition to the DGLIP-Conv in which there is
also one exponentiation per element in the filter, but with two sepa-
rable 1-D filters. We can infer that the usage of separable kernels rises
the speed to twice faster; thus, we are able to affirm that any amount
above that number is due only to the lower complexity of the opera-
tions performed. Besides, for that set of experiments, the speedup of the

2In fact, the average speedup of the FGLIP-Conv is 7.62. However, if we
do not take into account a pair of extreme values (those obtained in the LIP
Gaussian Blur experiments), a speedup of 2.62 is computed.
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FGLIP-Convy is almost thirty times faster. This very significant speedup
is due to the use by the FGLIP-Conv of additions and multiplications
and a 1-D filter, against the use of multiplications and exponentiations
and a 2-D filter.

VI. FUTURE WORK

These two methods, particularly the FGLIP-Conv, open up a great
range of possibilities in the fields of image and video processing.
Currently, we are considering to design this operator making use
of the SIMD enhancement included in the Intel processors (that is,
MMX/SSEx) jointly with C/C++ coding. This is expected to make this
operator even faster on this family of processors. It will also allow us
to carry out a generic study on how to parallelize it, which will allow
us to port it easily to other SIMD architectures.

Using this general operator, other more elaborated techniques will
be easier to obtain. For example, the building up of a LIP Canny edge
detector operator would be very interesting, trying to make it almost
invariant to slow changes of illuminance, as the LIP Sobel does. This
operator represents another step towards the first stage of a complex
human-like visual understanding system: a robust and fast technique
which has all the LIP advantages and is also illumination invariant. This
beneficial property makes useless to perform a Homomorphic Filtering
on the images to obtain the reflectance images of each one, which will
be translated in a lower execution time.

VII. CONCLUSION

Taking into account that convolution is a very useful and widely used
tool in the fields of image and video processing, and that LIP is a very
robust mathematical framework with different interesting properties,
we have combined in this work these two techniques into a general
formulation of the convolution under the LIP paradigm. It is worth re-
marking that, up to the current article, the convolution operator had not
been stated using the LIP model. In the present work, two new formu-
lations of a 2-D convolution under the LIP paradigm, FGLIP-Cony and
DGLIP-Conv, have been described. These two formulations have been
designed generically: any 2-D separable kernel of any size can be ap-
plied. FGLIP-Conv and DGLIP-Conv represent a general framework
in which new 2-D convolution filters can be easily defined.

Three different applications have been chosen to evaluate the
scheme, using different values for the size of the images. It has been
shown that the new methods lead to the same results as the method
proposed by Deng and Pinoli. The original method (called here Deng
and Pinoli’s method) has been programmed using a matrix-based
processing, instead of an element by element iterative processing,
which means a significative speedup. However, the computation times
of the experiments show that the FGLIP-Conv, proposed in this work,
is the best choice for applications which are sensitive to the processing
time. The experiment which is considered to be the “best” case for
the Deng and Pinoli’s method is approximately 60% slower than the
FGLIP-Conv, while in the experiment which would be among the
“worst” cases, the Deng and Pinoli’s method is 96.5% slower than the
FGLIP-Conv. These results are due to the use of multiplications and
additions instead of multiplications and exponentiations, which are
much slower.
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Orthogonal Laplacianfaces for Face Recognition

Deng Cai, Xiaofei He, Jiawei Han, Senior Member, IEEE, and
Hong-Jiang Zhang, Fellow, IEEE

Abstract—Following the intuition that the naturally occurring face data
may be generated by sampling a probability distribution that has support
on or near a submanifold of ambient space, we propose an appearance-
based face recognition method, called orthogonal Laplacianface. Our algo-
rithm is based on the locality preserving projection (LPP) algorithm, which
aims at finding a linear approximation to the eigenfunctions of the Laplace
Beltrami operator on the face manifold. However, LPP is nonorthogonal,
and this makes it difficult to reconstruct the data. The orthogonal locality
preserving projection (OLPP) method produces orthogonal basis functions
and can have more locality preserving power than LPP. Since the locality
preserving power is potentially related to the discriminating power, the
OLPP is expected to have more discriminating power than LPP. Experi-
mental results on three face databases demonstrate the effectiveness of our
proposed algorithm.

Index Terms—Appearance-based vision, face recognition, locality
preserving projection (LPP), orthogonal locality preserving projection
(OLPP).

I. INTRODUCTION

Recently, appearance-based face recognition has received a lot of
attention [20], [14]. In general, a face image of size n1 X na is rep-
resented as a vector in the image space R™**"2. We denote by face
space the set of all the face images. Though the image space is very
high dimensional, the face space is usually a submanifold of very low
dimensionality which is embedded in the ambient space. A common
way to attempt to resolve this problem is to use dimensionality reduc-
tion techniques [1], [2], [8], [11], [12], [17]. The most popular methods
discovering the face manifold structure include Eigenface [20], Fisher-
face [2], and Laplacianface [9].

Face representation is fundamentally related to the problem of man-
ifold learning [3], [16], [19] which is an emerging research area. Given
a set of high-dimensional data points, manifold learning techniques
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aim at discovering the geometric properties of the data space, such as
its Euclidean embedding, intrinsic dimensionality, connected compo-
nents, homology, etc. Particularly, learning representation is closely re-
lated to the embedding problem, while clustering can be thought of as
finding connected components. Finding a Euclidean embedding of the
face space for recognition is the primary focus of our work in this paper.
Manifold learning techniques can be classified into linear and nonlinear
techniques. For face processing, we are especially interested in linear
techniques due to the consideration of computational complexity.

The Eigenface and Fisherface methods are two of the most pop-
ular linear techniques for face recognition. Eigenface applies Principal
Component Analysis (PCA) [6] to project the data points along the di-
rections of maximal variances. The Eigenface method is guaranteed to
discover the intrinsic geometry of the face manifold when it is linear.
Unlike the Eigenface method which is unsupervised, the Fisherface
method is supervised. Fisherface applies Linear Discriminant Anal-
ysis (LDA) to project the data points along the directions optimal for
discrimination. Both Eigenface and Fisherface see only the global Eu-
clidean structure. The Laplacianface method [9] is recently proposed
to model the local manifold structure. The Laplacianfaces are the linear
approximations to the eigenfunctions of the Laplace Beltrami oper-
ator on the face manifold. However, the basis functions obtained by
the Laplacianface method are nonorthogonal. This makes it difficult to
reconstruct the data.

In this paper, we propose a new algorithm called orthogonal
Laplacianface. O-Laplacianface is fundamentally based on the Lapla-
cianface method. It builds an adjacency graph which can best reflect
the geometry of the face manifold and the class relationship between
the sample points. The projections are then obtained by preserving
such a graph structure. It shares the same locality preserving character
as Laplacianface, but at the same time it requires the basis functions to
be orthogonal. Orthogonal basis functions preserve the metric struc-
ture of the face space. In fact, if we use all the dimensions obtained
by O-Laplacianface, the projective map is simply a rotation map
which does not distort the metric structure. Moreover, our empirical
study shows that O-Laplacianface can have more locality preserving
power than Laplacianface. Since it has been shown that the locality
preserving power is directly related to the discriminating power [9],
the O-Laplacianface is expected to have more discriminating power
than Laplacianface.

The rest of the paper is organized as follows. In Section II, we give
a brief review of the Laplacianface algorithm. Section III introduces
our O-Laplacianface algorithm. We provide a theoretical justification
of our algorithm in Section IV. Extensive experimental results on face
recognition are presented in Section V. Finally, we provide some con-
cluding remarks and suggestions for future work in Section VI.

II. BRIEF REVIEW OF LAPLACIANFACE

Laplacianface is a recently proposed linear method for face repre-
sentation and recognition. It is based on locality preserving projection
[10] and explicitly considers the manifold structure of the face space.

Given a set of face images {xi,...,xn} C R™, let X =
[X1,X2,...,Xn]. Let S be a similarity matrix defined on the data
points. Laplacianface can be obtained by solving the following mini-
mization problem:
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