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Abstract—This paper presents a hybrid evolutionary algorithm
(EA) to solve nonlinear-regression problems. Although EAs have
proven their ability to explore large search spaces, they are com-
paratively inefficient in fine tuning the solution. This drawback
is usually avoided by means of local optimization algorithms that
are applied to the individuals of the population. The algorithms
that use local optimization procedures are usually called hybrid
algorithms. On the other hand, it is well known that the clustering
process enables the creation of groups (clusters) with mutually
close points that hopefully correspond to relevant regions of at-
traction. Local-search procedures can then be started once in
every such region.

This paper proposes the combination of an EA, a clustering
process, and a local-search procedure to the evolutionary design
of product-units neural networks. In the methodology presented,
only a few individuals are subject to local optimization. Moreover,
the local optimization algorithm is only applied at specific stages
of the evolutionary process. Our results show a favorable perfor-
mance when the regression method proposed is compared to other
standard methods.

Index Terms—Clustering, evolutionary algorithms (EAs),
hybridization, product-units networks.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) are efficient at explor-
ing an entire search space; however, they are relatively

poor at finding the precise optimum solution in the region to
which the algorithm converges. Many researchers [1]–[3] have
shown that EAs perform well for global searching because they
are capable of quickly finding and exploring promising regions
in the search space, but they take a relatively long time to
converge to a local optimum. During the last few years, new
methods have been developed in order to improve the lack
of precision of the EAs using local optimization algorithms.
These new methodologies are based on the combination of local
optimization procedures, which are good at finding local optima
(local exploiter), and EAs (global explorer). These are com-
monly known as hybrid algorithms.
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On the other hand, clustering methods are a class of global
optimization methods of which an important part includes
a cluster-analysis technique. These methods create groups
(clusters) of mutually close points that could correspond to
relevant regions of attraction. Then, local-search procedures
can be started once in every such region, e.g., from its centroid.
In order to identify such clusters, different methods of cluster
analysis (also called pattern recognition or automatic classifi-
cation) are used [4].

Our approach proposes the combination of an EA, a cluster-
ing process, and a local-search procedure for the evolutionary
design of product-units neural networks for regression.

We incorporate a local-search method in the EA in order to
improve its performance, but if we want to efficiently use the
hybrid algorithm, we have to reduce the computation time spent
by the local search. In many problems, it is not efficient to carry
out a local optimization algorithm for every individual in the
population due to the size of the population and/or the dimen-
sion of the search space. So, our approach is to select a subset of
the best individuals, perform a cluster analysis to group them,
and optimize only the best individual of every group.

One of the main advantages of this method is that the com-
putational cost of applying the local optimization algorithm to
only a few individuals hardly affects the total time spent by the
algorithm. The use of a clustering algorithm allows the selec-
tion of individuals representing different regions in the search
space. In this way, the optimized individuals are more likely
to converge towards different local optima. If we apply the
optimization algorithm to every individual in the population,
we will obtain many similar solutions with a considerable waste
of time.

The developed model is applied to the evolution of the
structure and weights of product-unit-based neural networks.
This kind of network is a very interesting alternative to sigmoid-
based neural networks, but they have a major drawback, in
that the optimization algorithms usually employed for training
typical feedforward neural networks are quite inefficient for
training product-unit networks. So, an effective algorithm for
training these networks is of great practical interest.

In order to test the performance of the proposed algorithms,
the networks are applied to a benchmark regression problem
and a hard real-world problem of estimation of the parameters
of a second-order model in microbial growth.

This paper is organized as follows: Section II provides a
short review of related approaches; Section III describes our
model in depth; Section IV is dedicated to a short description of
product-unit-based networks; Section V states the most relevant
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aspects of the evolution of product-unit neural networks using
the proposed approach; Section VI explains the experiments
carried out; and finally, Section VII summarizes the conclusion
of our paper.

II. RELATED WORK

There are several ways to use local optimization algorithms
in an EA. The particular combination is extremely impor-
tant in terms of possible solution quality and computational
efficiency. We need to find the right balance between local
exploitation and global exploration. There are different combi-
nation strategies, for instance, multistart, Lamarckian learning,
Baldwinian learning, partial Lamarckianism, and random
linkage (RL) [5]–[7].

In the multistart technique, several random starting points are
generated and used as inputs into the local search and the best
solution is recorded. This global optimization technique has
been used extensively but is a blind search since it does not take
into account past information [8]. The main disadvantage of the
multistart method is that the local search may be initiated from
points belonging to the same basin of attraction, leading to the
discovery of the same minimum over and over, wasting compu-
tational resources. The clustering approach aims to form clus-
ters of points that belong to the same region of attraction and
then start a local search from only one point of each cluster. To
form these clusters, one starts from a uniform sample and then
applies either a reduction [9], in which case a certain fraction
of points with the highest function values is removed, or a con-
centration [10], where a small number of steepest descent steps
are applied to every point in the sample, aiming to increase the
sample density around the minima. Such methods, devised in
[11] and [12], paved the way toward the more efficient methods
for multilevel single linkage (MLSL) [13] and topographical
MLSL [14], [15].

Incorporating an optimization algorithm into an evolution-
ary process gives rise to the concepts of Baldwin effect and
Lamarckian evolution. The Baldwin effect allows an individ-
ual’s fitness (phenotype) to be determined based on learn-
ing, that is, the application of local improvement [16], while
Lamarckian evolution, in addition to using learning to deter-
mine an individual’s fitness, changes the genetic structure of
an individual to reflect the result of the learning [17]. Hy-
brid EAs need not be restricted to operating in either a pure
Baldwinian or pure Lamarckian way. Instead, mixtures of both
strategies, such as partial Lamarckianism [2], [7], could be
employed.

In the context of recurrent neural networks, it is worth men-
tioning the work of Ku et al. [18]. The approach, named low fre-
quency of learning, is a Lamarckian-based evolutionary method
that combines local search and cellular GAs. In order to reduce
the computational cost, the local-search algorithm is applied
only at regular generation intervals.

From a different point of view, Kim and Cho [19] propose
a hybrid GA based on clustering to reduce the number of
evaluations without any harmful effect on the performance of
the algorithm. This approach does not employ any form of local
optimization, and there is no selection of the best individuals

before applying the clustering technique. The algorithm is
applied to the solution of optimization problems.

The RL algorithm [8] is a search strategy for solving global
optimization problems. The algorithm works by generating
uniform random starting search locations, and applying accept/
reject criteria to each of the generated locations. A combina-
tion of EAs with RL (EARL) is developed in an attempt to
produce an EA that does not repeat local searches by using the
accept/reject criteria of the RL [2]. The abovementioned hybrid
EAs have been used successfully to solve a wide variety of
problems [7], [1] and experimental studies show that EAs and
local-search hybrids not only often find better solutions than
simple EAs, but also may search more efficiently [20]–[23]. A
more detailed study of these hybrid methods and a comparison
among them can be found in [24] and [25].

III. HYBRID-EVOLUTIONARY-PROGRAMMING

(EP) ALGORITHMS

The proposed methodology is based on the combination of an
EA, a clustering process, and a local improvement procedure.1

Among the different paradigms of evolutionary computation,
we have chosen EP due to the fact that we are evolving artificial
neural networks. Although there is not a global consensus about
the issue, most of the researches in this area agree that EP
is the most suitable paradigm of evolutionary computation for
evolving neural networks.

We have two different versions of the hybrid EA, depending
on the stage when we carry out the local search and the cluster
partitioning. The EA without the clustering process and local
search is represented by EP. In the hybrid EP (HEP), we run
the EP without the local optimization algorithm and then apply
it to the final best solution obtained by the EP. This allows the
precise local optimum around the final solution to be found. The
HEP with the clustering (HEPC) algorithm applies the cluster-
ing process on a large enough subset of the best individuals of
the final population. In this method, it is very important to de-
termine the number of best individuals to consider as well as the
number of clusters. After that, we apply the L–M algorithm to
the best individual in each cluster. Finally, the algorithm named
dynamic HEP with clustering (HEPCD) carries out both the
clustering process and the L–M local search dynamically every
Go generations, where Go must be fixed by the user. The final
solution is the best individual among the local optima found
during the evolutionary process. These two methods, HEPC and
HEPCD, are the ones that implement the ideas proposed in this
paper. The other two methods (EP and HEP) are considered
for comparison purposes.

The basic objective of our methodology is a reduction in
the number of times a local optimization algorithm is applied.
This is especially important when the local-search algorithm
is of a high computational cost. However, removing the local
optimization procedure usually yields a worse performance. So,

1The local optimization algorithm used in our paper is the Levenberg–
Marquardt (L–M) optimization method [26], [27]. This algorithm is designed
specifically for minimizing a sum-of-squares error [28]. Anyway, any other
local optimization algorithm can be used in a particular problem.
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Fig. 1. Model of a product-unit-based neural network.

our approach is a good compromise, as we apply the optimiza-
tion algorithm to a reduced number of individuals. Moreover,
the clustering process avails us of the possibility of selecting
a subset of individuals with different features. In this way, the
optimization algorithm has a lower computational cost.

Another feature of our approach is that the optimized individ-
uals are not included in the new population. Once the optimiza-
tion algorithm is applied, we think that any further modification
of the individual will be counterproductive.2 So, these individ-
uals are stored in a separate population till the end of the EA.

As we have said, we have used an L–M algorithm as the
local optimization method. As in any gradient-based algorithm,
the major drawback of L–M is that it can be trapped in a local
optimum. In the evolution of product-unit neural networks,
where small changes in weights can have a great impact on the
output of the network, the error surface is extremely complex,
and there is a high probability of being trapped in a local
optimum. That is the reason why we apply the L–M algorithm
after, at least, a partial evolution of the population.

IV. PRODUCT-UNIT NEURAL NETWORKS

In order to test the validity of our model, we have chosen
a difficult problem, hard enough to justify the use of complex
approaches. The problem is the automatic determination of the
structure and weights of product-unit neural networks [29].
Product units enable a neural network to form higher order
combinations of inputs, having the advantages of increased
information capacity and smaller network architectures when
we have interaction between the input variables. Neurons with
multiplicative responses can act as powerful computational
elements in real neural networks [30]. Product-unit-based net-
works are universal approximators [31].

2Observe that we use the EP paradigm instead of GAs or genetic program-
ming (GP). In GAs or GP, the inclusion of these optimized individuals would
be advisable, as they may mate with other individuals to obtain even better
offspring.

Product-unit-based neural networks have a major drawback,
since their training is more difficult than the training of stan-
dard sigmoid-based networks. The backpropagation learning
algorithm, which is the most common algorithm for training
multilayer neural networks, works best when the error surface
is relatively smooth, with few local minima and plateaus. Un-
fortunately, the error surface for product units can be extremely
convoluted, with numerous minima that trap backpropagation.
This is because small changes in the exponents can cause large
changes in the total error. Several efforts have been made to
develop learning methods for product units [32]–[38].

Let us consider the family of real functions F defined by

F =

{
f : A ⊂ Rk → R : f(x,θ)

= β0 +
m∑

j=1

βj

(
k∏

i=1

x
wji

i

)}
(1)

where x = (x1, x2, . . . , xk) is the input vector, θ = (β,w1,
w2, . . . ,wm), β = (β0, β1, . . . , βm), wj = (wj1, wj2, . . . ,
wjk), βj ∈ [−M,M ] ⊂ R, wji ∈ [−L,L] ⊂ R, i = 1, 2, . . . ,
k, j = 1, 2, . . . ,m; k,m ∈ N . The domain of definition of
f is the subset A of Rk given by A = {(x1, x2, . . . , xk) ∈
Rk : 0 < xi ≤ K0}. Each function of the family can be seen
as a polynomial expression of several variables, where the
exponents of each variable are real numbers.

Every function of the family can be represented as a neural
network. The network must have the following structure: an
input layer with a node for every input variable, a hidden layer
with several nodes, and an output layer with just one node. The
nodes of a layer have no connections with each other, and there
are no connections between the input and output layers. Fig. 1
shows the structure of such a network.

The network has k inputs that represent the independent
variables of the model, m nodes in the hidden layer, and one
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node in the output layer. The activation of the jth node in the
hidden layer is given by

Bj(x,wj) =
k∏

i=1

x
wji

i (2)

where wji is the weight of the connection between input node
i and hidden node j. The activation of the output node is
given by

β0 +
m∑

j=1

βjBj(x,wj) (3)

where βj is the weight of the connection between the hidden
node j and the output node. The transfer function of all nodes
is the identity function.

The local-search algorithm is used for optimizing the weights
of the neural-network connections. The objective function used
is the fitness value of the network.

V. PROPOSED MODEL APPLIED TO

PRODUCT-UNIT-NEURAL-NETWORK EVOLUTION

The evolution of product-unit networks uses the operations
of selecting the best individuals of the population and two
types of mutation: structural and parametric. We select the best
r% individuals in the population, in our experiments r = 90.
There is no crossover, as this operation is usually regarded
as less effective [39] for network evolution. In the following
paragraphs, we describe each one of the different aspects of the
algorithm in detail.
Initial population: The algorithm begins with the random

generation of a number of networks bigger than the number of
networks used during the evolutionary process. We randomly
generate 10NP networks, and we select the best NP from
among them.

So, we construct the initial population B, whose size is NP.
Selection plan: The r% best individuals of the population are

selected from the set B∗ = B − {Bbest} of cardinality N ∗
P =

NP − 1, where Bbest is the best individual of B. With these
individuals, we make up the population B′ of size 
rN ∗

P/100�.
Structural and parametric mutations: Every individual of

the population B′ is subject to structural mutation, obtaining
B′

struct. The parametric mutation is applied only to the best
s = 
(100 − r)N ∗

P/100� individuals of B′, obtaining B′
param.

We construct the population B′′ = B′
struct ∪B′

param, where the
cardinality of B′′ is N ∗

P = Np − 1.
Updated plan: The new population will be B=B′′∪{Bbest}

of cardinality NP.

A. Clustering Partitioning Techniques and Local Search

Let D = {(xl, yl) : l = 1, 2, . . . , nT} be the training set,
where the number of samples is nT. We define the following
application from the family of functions F to the Euclidean
space RnT

ŷf = (f(xl, θ))l=1,2,...,nT
(4)

where θ is the set of parameters of f . The application assigns to
each function of the family the vector obtained with the values
of the function over the training dataset. Then, we can define the
distance between two functions of the family as the Euclidean
distance between the associated vectors

d(f, g) = ‖ŷf − ŷg‖ =

(
nT∑
l=1

|f(xl, θ) − g(xl, θ)|2
) 1

2

. (5)

With this distance measure, the proximity between two func-
tions is related to their performance. So, similar functions will
have similar performance over the same regression problem.

Now, considering a set of functions {f1, f2, . . . , fM} of
the family F , we can build the set of associated vectors
{ŷf1

, ŷf2
, . . . , ŷfM

} of RnT . The minimum sum-of-squares
clustering problem is to find a partition P = {C1, C2, . . . , CK}
of {ŷf1

, ŷf2
, . . . , ŷfM

} in K disjoint subsets (clusters) such
that the sum of squared distances from each point to the centroid
of its cluster is minimum. We use k-means clustering [40].
The election of the k-means algorithm has been made mainly
because it is fast, simple, and easy to implement. The reduction
in the computational cost is one of the main objectives of our
work, so a computationally heavy clustering algorithm would
be counterproductive. In this algorithm, the cluster centroid is
defined as the mean data vector averaged over all the items in
the cluster. The problem can be expressed as

min
P∈PK




K∑
j=1

∑
ŷl∈Cj

‖ŷl − ȳj‖2


 (6)

where ȳj = (1/Nj)
∑

ŷj∈Cj
ŷj , Nj = |Cj | is the centroid of

the jth cluster, and PK denotes the set of all partitions of
{ŷf1

, ŷf2
, . . . , ŷfM

} in K sets. It is important to note that the
centroid ȳj does not necessarily correspond to any concrete
function of the population. We use the centroid only as a tool of
the algorithm.

The number of clusters must be preassigned, and the initial
partition is created randomly. Determining the number of clus-
ters is not an easy problem, because we may consider the merg-
ing of two classes into a single class or the splitting of a class
into a number of classes.

1) We apply the L–M algorithm to the best individual ob-
tained by the EA in the final generation. The HEP algo-
rithm is provided in Fig. 2. The L–M algorithm optimizes
the error function (7) with respect to the parameters θ of
the model.

2) We apply the clustering process to the best s̃Np individ-
uals in the final population that is divided into K clusters
C1, C2, . . . , CK . After that, we apply the L–M algorithm
to the best individual of each cluster. The individuals
obtained with the local-search algorithm are stored in a
local optimum set C. The HEPC algorithm is provided in
Fig. 3. In this way, s̃ is the percentage of best individuals
for clustering.

3) We apply the clustering process and then the L–M al-
gorithm to the best individual of each cluster every Go

generations and in the final generation. The clustering
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Fig. 2. HEP algorithm.

process is applied to the best s̃NP individuals of the cur-
rent population. The individuals obtained with the local-
search algorithm are stored in C. Algorithm HEPCD is
provided in Fig. 4.

In cases 2 and 3, the final solution is the best individual
among the local optima of set C. The EA without clustering
process and local search is represented by EP.

B. Fitness Value

Let D = {(xl, yl) : l = 1, . . . , nT} be the training dataset.
The sum-of-squares error of an individual of the population that
implements a function f is

J =
1
2

nT∑
l=1

(yl − f(xl))
2 . (7)

From this error, we define the fitness function as

A(f) =
1

1 + J
. (8)

C. Parametric and Structural Mutation

The structural mutation implies a modification in the struc-
ture of the function performed by the network and allows
an exploration of different regions in the search space. The
parametric mutation modifies the coefficients of the model
using a self-adaptive annealing algorithm [41]. The severity of

a mutation to an individual is dictated by the temperature T (f)
given by

T (f) = 1 −A(f), 0 ≤ T (f) < 1. (9)

Parametric mutation is accomplished for every coefficient
wji and βj of the network

wji(t + 1) = wji(t) + ε1(t) (10)

and

βj(t + 1) = βj(t) + ε2(t) (11)

where εk(t) represents a one-dimensional normally distributed
random variable εk(t) ∈ N(0, αk(t)T (f)). The αk(t) allow
the adaptation of the learning process throughout the evolution
following

αk(t + 1) =




(1 + λ)αk(t), if A(gs) > A(gs−1),
∀s ∈ {t, t− 1, . . . , t− ρ}

(1 − λ)αk(t), if A(gs) = A(gs−1),
∀s ∈ {t, t− 1, . . . , t− ρ}

αk(t), otherwise
(12)

where k ∈ {1, 2}, A(gs) is the fitness of the best individual
before the application of the local optimization algorithm gs

in generation s; λ and ρ must be set by the user. In our
case, we have considered α1(0) = 0.1, α2(0) = 0.5, λ = 0.1,
and ρ = 10.
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Fig. 3. HEPC algorithm.

Fig. 4. HEPCD algorithm.
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It should be pointed out that the modification of the expo-
nents wji is different from the modification of the coefficients
βj , α1(t) � α2(t),∀t. The parameters α1(t) and α2(t) deter-
mine, together with the temperature, the change in the variance
of the distribution throughout the evolution, allowing the adap-
tation of the learning process. The adaptation of the parameters
tries to avoid being trapped in local minima and to speed up
the evolutionary process when the conditions of the searching
are suitable. A generation is defined as successful if the best
individual of the population is better than the best individual
of the previous generation. If many successes are observed,
this indicates that the best solutions are residing in a better
region of the search space. In this case, we increase the strength
hoping to find even better solutions closer to the optimum
solution. If the fitness of the best individual is constant during
several generations, we decrease the mutation rate. Otherwise,
the mutation strength is constant.

There are five different structural mutations: Node addition
(AN), node deletion (EN), connection addition (AC), connec-
tion deletion (EC), and node fusion (UN). The first four are
identical to the mutations in the generalized acquisition of
recurrent links (GNARL) model [39]. In the node fusion, two
randomly selected nodes (a and b) are replaced by a node c,
which is a combination of the two. The connections whose
source (outcoming) node is common to both the nodes under
consideration are kept, with a weight given by

βc =βa + βb

wci =
wai + wbi

2
. (13)

In this way, the new node has a similar performance as the
selected nodes, and the behavioral link is preserved as far as
possible.

The connections that are not shared by the nodes are inherited
by c with a probability of 0.5 and its weight is unchanged. For
each mutation (except node fusion), there is a minimum value
∆min and a maximum value ∆max, and the number of elements
(nodes and connections) involved in the mutation is calcu-
lated as

∆min + 
uT (f)(∆max − ∆min)� (14)

where u is a random uniform variable in the interval [0,1]. All
the above mutations are made sequentially in the given order,
with probability T (f), in the same generation on the same
network. If the probability does not select any mutation, one of
the mutations is chosen at random and applied to the network.

VI. EXPERIMENTS

For each problem and each algorithm, we have performed
30 runs with different random seeds. We have used the error
measures standard error prediction (SEP)

SEP = 100 ×

√∑N

i=1
(yi−ŷi)2

N

|ȳ| (15)

TABLE I
ANOVA RESULTS FOR THE MSEG (RESPONSE) WITH THREE

PARAMETERS AS FACTORS. RESULTS WITH A SIGNIFICANCE

LEVEL OVER 95% ARE IN BOLDFACE. SS REPRESENTS

SUM OF SQUARES, DF DEGREES OF FREEDOM, MS,
AND F IS THE VALUE OF THE SNEDECOR’S F

and mean squared error

MSE =
∑N

i=1(yi − ŷi)2

N
(16)

where N is the number of patterns. We designate with MSEG

the mean squared error obtained over the generalization set.
In the rest of the paper, we will use preferably the SEP for

the microbial-growth problem, because it is nondimensional
and can be used to compare the error of dependent variables
at different ranges and scales and the MSE for the Friedman
function.

A. Parameters of the Algorithm

The exponents wji are initialized in the interval [−5, 5], and
the coefficients βj are initialized in [−10, 10]. The maximum
number of nodes is m = 6. The size of the population is
NP = 1000. The stop criterion is reached whenever one of
the following three conditions is fulfilled: 1) the algorithm
achieves a given fitness; 2) the values of α1(t) and α2(t) are
below 10−4; 3) for 20 generations, there is no improvement
either in the average performance of the 20% best individuals
in the population or in the fitness of the best individual. For
the Friedman function, this stop criterion is modified, and the
algorithm is always performed for 1800 generations.

The number of nodes that can be added or removed in a
structural mutation is within the interval [1, 2]. The number
of connections that can be added or removed in a structural
mutation is within the interval [1, 6]. The only parameter of
the L–M algorithm is the tolerance of the error to stop the
algorithm; in our experiment, this parameter has the value
0.01. The k-means algorithm is applied to s̃ = 25% of the
best individuals in the population. The number of clusters is
6 for both the HEPC and HEPCD algorithms. For the latter
algorithm, G0 = 450.

To adjust these parameters, we have performed a study of the
effect of the parameter values on the performance of the model.
The study consisted of an analysis of variance using different
values for the most important parameters: the percentage of the
best individuals for clustering s̃, number of clusters K, and the
number of times we do cluster partitioning during the evolution-
ary processG. Observe thatG0 = (Number of generations)/G.
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TABLE II
RESULTS OF MSE FOR THE FRIEDMAN#1 FUNCTION FOR 30 RUNS WITH NETWORKS

OF A MAXIMUM OF SIX HIDDEN UNITS, s̃ = 25%, K = 6, AND G = 4

TABLE III
p-VALUES OF THE t-TEST FOR THE GENERALIZATION

RESULTS OF THE FRIEDMAN#1 FUNCTION

The main objective of the analysis is to determine if the
influence of a change in a parameter value over the MSEG is
significant. We have performed the analysis for the HEPCD
algorithm. ANOVA examines the effects of some quantitative
or qualitative variables (called factors) on one quantitative
response: the MSEG. The objective for that analysis is to
determine if the influence of a change in a parameter has a
significant effect on the MSEG obtained. Our linear model is of
the form

MSEGijkl
= µ+ s̃i +Kj +Gk

+ s̃Kij + s̃Gik +KGil + s̃KGijk + eikjl (17)

where i = 1, 2, 3, j = 1, 2, 3, k = 1, 2, 3, l = 1, . . . , 10, the
first factor s̃ is the percentage of best individuals used and
has levels {10%, 25%, 50%}, K is the number of clusters
in the last generation and has levels {2, 4, 6}, and G is the
interval between clustering and has levels {2, 4, 6}. The s̃Kij ,
s̃Gik, and KGil represent the interactions between each pair
of factors, and s̃KGijk the interaction among the three factors.
µ is a constant average term, and eikjl represents random noise.
A total of 270 experiments were carried out, corresponding to
all the possible combinations of the three levels for each one
of the three parameters. The analysis of variance (ANOVA) III
results are shown in Table I.

The results show that there is no interaction between two of
the three factors. The number of clusters has a significant effect
on the value of MSEG, with a best value of K = 6. The over-
all set of parameters with best results are {s̃ = 25%,K = 6,
G = 4} and {s̃ = 50%,K = 4, G = 4}. We choose the first
set of parameters, which is less computationally expensive.

B. Friedman#1 Function

This is a synthetic benchmark dataset proposed in [42] and
widely used in the regression literature [43], [44]. Each instance
of the training and test sets has five inputs. A total of 1200
samples were created randomly, 200 for the training set, and
1000, without noise, for the test set. The function is given by

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε (18)

where ε is a Gaussian random noise N(0, 1) and the input
variables are uniformly distributed in the interval (0,1]. Table II
shows the results for the Friedman#1 function. The results show
that the dynamic approach obtains not only better results in the
mean but also in the standard deviation.

Table III shows a comparison of the generalization results of
the different proposed algorithms. The table shows the p-values
of two-tailed t-tests, comparing the means of the algorithms in
pairs, as the normality test showed that the results of EP, HEP,
HEPC, and HEPCD were normal. The tests show that HEPCD
is the best performing algorithm, at a confidence level of 5%
when compared with the other algorithms, and that HEPC is
better than HEP at a confidence level of 10% and better than
EP at a confidence level of 5%.

As the comparison tests show that the dynamic approach is
the most suitable, we show the best model. This model achieves
an MSEG of 0.151 and has the following form:

ŷ = 6.221 + 123.710x1.314
1 x1.499

2

− 126.400x1.641
1 x1.875

2

− 58.334x1.335
3

+ 58.255x0.003
2 x1.695

3

+ 9.365x1.073
4

+ 4.891x0.021
3 x1.050

5 . (19)

These results can be compared with other works in the
regression literature that use the same experimental setup.
Vapnik [45] obtained an MSEG = 2.20 using bagging tech-
niques, MSEG = 1.65 using boosting, and MSEG = 0.67 using
a support vector machine (SVM). Roth [46] achieved an MSEG

over the original dataset, before adding noise, of 2.84, 2.92,
and 2.80 using the Lasso, SVM, and RVM methods, respec-
tively. Other works obtained similar results, but with a slightly
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Fig. 5. Representation of lag time, growth rate, and yend.

TABLE IV
RESULTS FOR MICROBIAL GROWTH FOR 30 RUNS. VALUES BETWEEN PARENTHESES INDICATE THE STRUCTURE OF THE EVOLVED NETWORKS

different experimental setup. Drucker [47] used 200 training
samples and a test set of 5000 samples. Results for ten runs with
single trees, bagged trees, and boosted trees produced a MSEG

of 4.65 for a single tree, 3.31 for bagging, 2.15 for boosting
(with square loss), 2.79 for boosting (with exponential loss),
and 2.84 for boosting (with square-law loss). Granitto et al. [48]

used neural-network ensembles, with a training set of 300 pat-
terns, and a test set of 1000 patterns. They used a random noise
with distribution following a N(0, 1). They also used a normal-
ized mean-squared-test error, that is, NMSEG = MSEG/σ

2
D,

where σ2
D is the variance of the noisy dataset. The results, in

units of 10−2, averaged over 50 experiments, and with 20%



MARTÍNEZ-ESTUDILLO et al.: HYBRIDIZATION OF EVOLUTIONARY ALGORITHMS AND LOCAL SEARCH 543

of the data used for validation, are 2.71 for a single network,
1.92 for bagging, 2.12 for epoch, 1.74 for SECA, and 1.80 for
SimAnn.

C. Application to Microbial Growth

Acid lactic bacteria (ALB) are considered the main microor-
ganisms responsible for the deterioration of precooked-packing
meat products. These bacteria produce lactic acid, slime, and
CO2, which causes strange odors and tastes and affect product
acceptance [49]. In this paper, we study the growth of the ALB
microorganism Leuconostoc mesenteroides, which has been
frequently isolated as responsible for different alterations in
meat products [50], [51].

To obtain absorbency data in Bioscreen C, a combination
of factorial design and central composite design (CCD) was
used to quantitatively assess the effects and interactions of the
main factors that affect microbial stability in meat products:
temperature T (◦C), pH, NaCl concentration (%), and NaNO2

concentration (ppm). We wanted to study the combined effect
of these factors in a culture medium Tryptone Soy Broth (TSB).
We carried out seven experiments with every set of conditions.
From the seven experiments, we randomly chose five experi-
ments for the training set and the other two for the generaliza-
tion set [52].

The collected data consist of 210 curves, representing the
growth of the microorganism against time. These curves were
adjusted to an exponential model [53] with the program DM-
Fit 1.0 (József Baranyi, Institute of Food Research, Norwich
Research Park, Norwich NR4 7UA, U.K.). The models that
describe the response of one or more kinetic parameters from
the primary model are called secondary models. Typically, there
are three parameters that are interesting from the biologist’s
point of view: lag time, growth rate, and yend. These three val-
ues are shown on Fig. 5 in a typical curve of microbial growth.

The growth rate (grate) is the maximum value of the growth-
curve slope. The lag time (lag) is the instant in which the inter-
section between the line of the maximum slope and the lower
asymptote of the growth curve is produced. yend is the value
of the asymptote of the growth curve. This dataset is available
upon request from the authors.

The input variables of the problem have different scales
and present a large range of variability. For this reason, it is
advisable to carry out a preprocessing of the data. We have done
a simple linear rescaling to the input variables to the interval
[0.1, 1.1]. The lower bound is chosen to avoid inputs values
near 0 that could produce very large values of the function for
negative exponents. The upper bound is chosen near 1 to avoid
dramatic changes in the outputs of the network when there are
weights with large values (especially in the exponents). The
output variables are scaled in the interval [1, 2].

Table IV shows the results for this problem. The table shows
the values of SEP for learning and generalization.

As in the previous problem, the dynamic approach using
clustering obtains the best results for all of the three problems.
The two approaches using clustering outperform the other two
models while also showing a better variance. This is corrobo-
rated by the results of the t-tests shown in Table V.

TABLE V
p-VALUES OF THE t-TESTS FOR THE PARAMETERS OF THE

SECOND-ORDER MODEL OF MICROBIAL GROWTH

For this experiment, we can obtain the lower bound of the
SEP for the training set. This lower bound is given by the
curve whose points are the marginal means of the statistical
distribution of the training data [28, p. 203].

If we obtain these values, we have an SEP of 3.38 for the lag
time, an SEP of 1.64 for the growth rate, and an SEP of 10.42
for yend. We can see that the best values obtained by our hybrid
model are close to these optimal values.

VII. CONCLUSION

In this paper, we have proposed a new approach to solve
nonlinear-regression problems. This approach is based on the
combination of an EA, a clustering process, and a local-search
procedure. The clustering process allows the selection of indi-
viduals representing different regions in the search space. These
selected individuals are the ones subject to local optimization.
In this way, the optimized individuals are more likely to con-
verge towards different local optima.

We have proposed two different versions of the hybrid EA,
depending on the stage when we carry out the local searches and
the cluster partitioning. The results showed that the dynamic
version obtains not only better results in the mean but also in
the standard deviation.

The hybrid EA proposed was applied to two regression prob-
lems. In both of them, the approach is able to perform better
than similar algorithms that do not use a clustering analysis.
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Although the computational cost is only slightly higher, the dif-
ferences in accuracy/generalization performance between the
proposed method and the method that does not use clustering
is significant. This result suggests that the use of a clustering
algorithm to select just a few individuals to optimize, instead
of optimizing many of them, provides a very good compromise
between performance and computational cost.

The experiments showed that the hybrid approach is able to
obtain good results not only in a benchmark function, such
as Friedman’s, but also in a hard real-world problem, as in
the estimation of the parameters of a second-order model in
microbial growth.
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