
OPTIMAL MOTION PLANNING WITH CONSTRAINTS FOR. IvIOI3ILE

R. OI3OT NAVIGATION

A Senior Honors Thesis

ROGER ALLAN PEARCE

Submitted to thc Offic of Honors Programs
k Academic Scholarships

Texas A&M University
in partial fulfillment of the requirements of the

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOWS

April 2000

Group: Engineering k Physics 2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M Repository

https://core.ac.uk/display/6086067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OPTIVIAL MOTION PLANNING V&'ITH CONSTRAINTS FOR IvIOBILE

ROBOT NAVIGATION

A Senior Honors Thesis

ROGER ALLAN PEARCE

Submitted to thc Offi of Honors Programs
k Academic Scholarships

Texas ARM University
in partial fulfillment for the designation of

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOW

Approved as to style and content by:

Nancy lvi. Amato
(Fellows Advisor)

Ed&vard A. Funkhouser
(Executive Director)

April 2003

Group: Fngineering 4 Physics 2

111

ABSTRACT

Optimal Motion Planning with Constraints for

Mobile Robot Navigation. (April 2003)

Roger Allan Pearce
Department of Computer Science

Texas Aft M Univcrsitv

Fellows Advisor: Dr. Nancy IVI. Amato
Department of Computer Science

Motion planning is the process of planning a sequence of motions to move an

object from one configuration to another. Recently, randomized techniques kno&vn as

PffMs have shown great potential for solving motion planning problems in compli-

cated high-dimensional space. Motion Planning, or path planning for robots, becomes

increasing difficult as the dimension of the. planning space increases with the robot's

degrees of freedom (dof). AVhile thc. running time of deter&ninistic motion planning

algorithms grows exponentially with an increase in dof, PRMs can produce solutions

in ti&nes that do not depend on the dof but only the diffi&culty of the problem. PRMs

randomly generate collision free configurations in a robot's Cor&figuration-space (C-

space), representing feasible positions and orientations for the robot, . Nearby con-

ligurations are linked together by so called local planners, and these connections are

edges in a roadmap, s, graph containing representative discrete paths the robot may

travel.

4'&&&: p&escnt methods to extract optimal paths fr&&rn &oadmap- based motion plan-

ners. O&n system uses Markov — like states and IIexihlc goal states so that general

optimization criteria including collision detection, kinematic/dynamic constraints, or

minimum clearance can be used in various applications. Ou& algorithm is an aug-

mented version of Dijkstra's shortest path algorithm. We present, simulation results

maximizing minimnrn path clearance, minimizing localization effor, and enforcing

kinematic/dynamic constraints.

ACKNOAVLEDGIvIENTS

I would like to thank my advisor Dr. Nancy 5'I. Amato for giving me the op-

portunity, tools, and environment to work on this project. Through her dedication

toward her &cscarch and students, she has provided me a great environment conducive

to learning. Dr. Amato has become an invaluable academic mentor in my life.

Next, I would like to thank Jinsuck Kim, a PhD student under Dr. Amato. As

my graduate student mentor, Jinsuck has been a great help through our research

projcci. s.

Finally, I would like to thank all the n&c&nbcrs of the 5~lotion Planning group in

the Parasol Lab: Burchan Bayazit, Nick D&&wning, Aimee Estrada, Jinsuck Kim, , lyh-

. 'vling Lien, Ivlarco lvlorales, Bharatinder Sandhu, Guang Song, Kasthuri Srinivasan,

Rick Stover, Xinyu Tang, Shawna Thomas, and Dawen Xie.

TABLE OF CONTENTS

Page

AI3STRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS vi

LIST OF TABLES

LIST OI' FIGURES

CHAPTER

vi 1 1

ix

IV

INTRODUCTION . .

PRELIItIINARY AUD RELATED WORK

A. Roadmap based Motion Planning

13. Path Optimization

1. Improving Paths

2, Finding Optimal Paths

C. Dijkstra's Algorithm

ISSUES IN ROBOT PATH OPTIMIZATION

A. Standard Cost Function

B. Non — Markov optimization criteria

C. Goal sets — flexible final states .

SYSTEM DFSCRIPTION

A. Problem Formulation

13. Iv1arkov — like Optimization

C. Flexible I'inal Condition

D. Augmented Dijkstra's Algorithm .

SYSTEM EVALUATION .

A. Optimization Criteria

4

4

6

7
7

9
10
10

12
12
16
16

18

19

CHAPTER Page

1. Minimizing Travel Time

2. Avoiding Localization Failure

3. Kinematic Constraints .
4. Maximizing Minimum Clearance

I3. Combination of Critexia

C. Simulation Results

1. Maximizing lvfinimum Cleat ance

2. Flexible Final Condition and Dynamic Constraints

VI APPLICATION CAlvIPUS NAVIGATOR

A. Components of the Campus Navigator

1. Overview of Campus Navigator .

2. The Campus Graph

3. Thc Roadmap Editor

4. Campus Graph Query

5. Campus Path Visualization Via Vizmo++ .

0. User Web Interface .

VH SUIvIMARY AND CONCLUSIONS

A. Future 1Vork .

19
20

20

21

22

22

22

24

27

27

28

29

29

30
31
31

REFERENCES

VITA

vnt

LIST OF FIGURES

FIG UR. E

Ovcrvic&v of roadmap — based ¬, ion planning.

Optimizing path with initial guesses

Pseudo co&le for Dijkstra's algorithn&

Pseudo code for short&. st path algorithm

Path optimization problem

The aug&non&ed Dijkstra's algorithm

Environment, roadmap and path searching. 18

Diagram of shortest path computation.

10

Cost functions, (a) for features and (b) for turning rad&us.

Weight function with two adjacent edges.

20

21

Cost function for edge clearance 22

12 Weighting with two adjacent edges and related data, .

Maximizing clearance and co&nbination of criteria

Simulations with different pararr&ctc&s . 25

15 Mobile platform with robotic arm. (a) Roadmap, (b) start posi-

tion, and (c) three. different configurations in the goal set.

17

Ovc&view of Campus Navigato& system.

Prototype of Campus Navigator interface

28

31

CHAPTER I

INTRODUCTION

Automatic motion planning has been used in many areas such as robotics an&i computer

aided design (CAD) to fin& paths in the presence of obstacles. Though originating in

robotics, ¬ion planning techniques have also been adapted i, o other areas such as

autonomous transportation systems for automobiles or aircraft, inilitary unmanned

vehicles that operate in thc air or underwater, and computer animations in the en-

tertaininent industry.

In these applications, paths rmist be found quickly in large search spaces. Roadmap-

based planners are ideal for such scenarios [1]. A roadmap containing representative

paths is computed during a preprocessing step, and paths can bc quickly extracted

froin the roadmap during query processing. Recently, a class of roadmap — based plan-

ning methods, called probabilistic roadmap methods (PRMs) [1], have proven to be

very successful in efficiently solving high — dimensional probleriis in complex enviroii-

ments. In PRMs, the roadmap is a graph representing the conncctivity of the free

configuration space where thc nodes are sampled robot configurations an&1 the edges

are paths connecting nodes that are computed by a simple and deterministic local

planner.

The strength of road&nap — based planners is that, the roadmap approximates the

conncctivity of the planning space. 1Vhile roadmap — based planners are extremely

effectiv in providing feasible solution paths for arbitrary queries, generally no guar-

antees can be provided regarding the quality of the paths. In particular, paths ex-

tracted from roa&lmaps seldom provide optimal solutions because they are restricted

The journal inodel is IEEE Trans&ictions or& Automatic Control.

to the nodes and edges in the roa&lrnaps. In many cases, this is not, a concern because

thc problem of interest is simply finding a feasible path. For this reason, optimizing

paths has rcccived little attention for roadrnap — based planners.

In this research project, we consider the problem of extracting an optimal path

from among all paths contained in the roadmap. There. arc two main issues that arc

of concern. First, roadmaps contain many possible routes connecting two diff'erent

nodes. Depending on the graph search algorithm and the criteria applied, different

paths connecting thc same start and goal nodes can be found. Second, a path ex-

tracted from a roadmap is composed of many short line segments and its quality

is likely lower than a "smoothed" path obtained by exhaustive numerical optimiza-

&, ion. These two properties are inhcrcnt in roadmap based methods. We call the first

a macroscopic p&nperty because the chosen search method can result in large — scale

changes in the path. We rcfcr lo the second as a micros&ripic property because typi-

cally there are no topological differences between the extracted path and the optirrml

path.

A number of techniques have b'&. cn proposed to improve the solution paths ex-

tracted from road&naps (the microscopic property). Common approaches arc to post

process the path by converting the path to a curve, moving existing nodes, or adding

additional nodes to the suboptirnal path [2, 3].

In this research project, we focus on thc macroscopic property and provide a

method to quickly compute an optimal path from among all paths contained in the

roadmap. Our method is based on an augmented version of Dijkstra's shortest path

algorithm which enables one to consider &nore general optimization criteria and re-

laxed definitions of the goal state.

The results in this thesis will appear in ICRA 2008, the IEEE International

Conference or& Robotics and Automation]4]. This work builds on our previous work

on mobile robot navigation and localization [o. , 6).

CHAPTER II

PRELIMINARY AND RELATED WORK

A. Roadmap based Motion Planning

At the heart of our path optimization techniques is roadmap — based motion planning.

These motion planning methods model the robot(s) in Configuration Space (C-sp«ce),

a multi-dimensional space where the dimensions represent the dof of thc robot. This

configurat, ion consists of all the information required to describe the robot's position

and orientation in the real world. For example, a cube moving in 3d space will need

a six dimensional configuration (z, y, z, roll, pitch, , yam &, and a Mobile Robot or

car will need a three dimensional configuration (:r„y, ori&. r&tatton &.

Many roadmap — based motion planners focus on randomly creating roadrnaps to

solve complicated high-dimensional problems. These roadmaps consist of randomly

created vertices representing a single confignration of thc robot. . These vertices are

connected together by edges representing collision free paths between two vertices.

Many random and heuristic methods have been developed to create road&nap edges

ansi the en&i result, is a graph consisting of vertices and edges representing a small

discrete set of collision-free space in the robot's environment. Figure I clescribes how

many roadmap — based motion planning methods work.

B. Path Optimization

Previous research shows that applying common optimization techniques to robotics is

not straightforward because the collision — free requirement, renders it difficult l. o solve

opi itnization constraints analytically or numerically [7, 8]. In particular, discontinuity

of ihc search space makes it drfficult to find the optimal path. Figure 2(a) shows a

Given: an environment (descriptions of moveable
object A and obstacles B), and start and goal positions
of A

Find: a valid path (continuous sequence of valid

configurations of A) from start to goal

C-space
gos . ~

c-gttgh

Roadma Construction Pre- rocessin
1 Randomly generate robot configoralions (nodes)

- discard nodes that are in cogision (cogimon check)

2 Connect pairs of nodes to form roadmap
- simple, deterministic focelpfanner (e g, arhiohilme)

discard paths that are m cogrsron (col&sion check)

t Co neet start and goalie roadmap

2 Find path in roadmap between sart and goa!
- regenerate pl ~ ns for edges in roadmap

Fig. 1. Overview of roadmap — based motion planning.

pal, h extracted from a roadrnap (pg) and paths generated by general optimization

techniques (pi, pi, pd). Figure 2(b) shows two regions separated by an obstacle. To

solve two — point boundary — value optimization problems, an initial guess of the solution

roust l&c given [9]. If thc initial guess is pd, then the solution cannot be improved

beyond pg without understanding thc discontinuity of thc search space. However, the

buboptirnal path pz can k&c transformed to thc optimal pi.

Recently, two different approaches have been developed to obtain optimal paths

in robotics applical. ions; one is based on improving existing paths, the other applies

optimal control tech(&iqucs to motion planning.

start

. — — ~J22

- roadmap

0. '" '-"" '"""'""':::::.
. ::. ::- a goal goal

0 ~ a
start

r2

(a) (b)

Fig. 2. Optimizing path with initial guesses

1. Improving Paths

lv1ost recent methods for motion planning arc explicitly/implicitly based on roadrnaps.

Several methods consider the problem of optimizing or irrq&roving an existing path, for

example, grids [10], visibility graphs [11, 3], PRMs [12], and growing control points

in barycentric coordinates [13].

In [13], the optimal path of a nonholonomic robot is found bv iteratively growing

thc computed region of optimal control points from the goal configuration using a

cost — to — go function. To find optimal motions for human figures, [10] uses Dijkstra's

shortest path algorithm in grids with cdgc weights reflecting the clearance and rota-

tion of the body parts. For 2D environments with polygonal obstacles, [3] computes a

roadmap from the visibility graph and optimizcs a B — spline based path for kinematic

constraints and driving torque.

All of the approaches above use deterministic roadmaps. Probabilistic roadmaps

encoding physical constraints have. bccn studied in [12] where the roadmap is cus-

tomized for various applications, and paths are improved by iterative refinement in

the query step.

2. Finding Optimal Paths

Optimal paths can be obtainc&1 by modifying f enrnal optimization or optimal control

techniques for motion planning. Because the methods are not based on roadmaps,

collision checking needs to be geometrically and/or mathematically formulated, and

is relatively complex and inclficient.

In [8], l. he constraints of thc optimization problem are extended to A'. v'D and

OR logic, which are referred to as generalized constraints and deal with polygonal

obstacles. Modification of genetic algorithms was atterrrpted in [14] to improve the

path using using Gram — Schmidt orthogonalization. To optimally coordinate multiple

robots with specified trajectories, [7] used &XIILP (&nixed integer linear programming)

&vhere the collision between two robots is formulated by a &I function.

It is difficult to apply these techniques to paths extracted from roadrnaps due to

the discontinuities ir& the search space (scc Figure 2).

C. Dijkstra's Algorithm

Onr optimization method is based on Dijkstra's shortest path algorithm. Dijkstra's

algorithm searches for a shortest path in a weighted directed graph (V, E) where

all edge weights are nonnegativc. Figure 3 shows thc pseudo code fo& Dijkstra's

algorithm &vhcuc dist[a] stores the shortest distance from start to v and PQ contains

the unexplored vertices sorted by dist. Thc. shortest path from start to goal is

computed in the pseudo code in I'igure 4 where Dijkstra's algorithm is used as a

subroutine. Thc key to computing l. he correct solution is the relazatior& in lrnes 8 9

of Figure. 3 which repeatedly decreases an upper bonnd on the weight of thc vertices

in PQ when a new lower — weighted path is found.

DI JKSTRA(V, E, start, , goal)
1. for each v E V
2. dist[v] &

— oc
3. dist[start] &

— 0

4. PQ &
— Prioritygueue of V ordered by dist

while (PQ g 0)
6. u &

— PQ. dcqueue
7. for each v E PQ adjacent to u

8. if (dist[v]) (dist[v] + weight(u, u))
9. di st[v] &

— dist[v] + weight(a, v)
10. parent[v] &

— u
11. PQ. reorder

Fig. 3. Pseudo code for Dijkstra. 's algorithm

SHQRTEs TPATH(V, E, star t, goal)
1. parent &

— DI JKSTRA(V, E, start, goal)
2. path &

— 0, u &
— goal

3. while (suffix of path g start)
4. append u to path
5. ~r, &

— parent[u]
6. reverse path

Fig. 4. Pseudo code for shortest path algorithm

Dijkstra's algorithm is widely used in many areas where the path cost needs to

I&c minimized, for example in wireless network applications [15] where the edge cost

is an estimation of thc required transmission power and the propagation delay.

CHAPTER. III

ISSUES IN ROBOT PATH OPTIMIZATION

In this section, we discuss useful properties and requirerrients for computing opti-

mal paths in robotics that have not been addressed in previous woik. These issues

rnotivatc our augmentation of Dijkstra's algorithm for computing optimal paths in

roadrnaps. AVe start with a, general cost function which is commonly used in the

optimizatioii of physical systems, an&i then discuss its limitations for robotics appli-

cations.

A. Standard Cost Function

The optimization of certain values for a physical system that rnovcs from an initial

state at time 0 to a final state at time T~, while suk& ject to constraints, is described by

thc problem of minimizing a cost function. The standard cost function, J in optimal

control theory [9] is described by

J — j ' p(in(t), u(t))dt + h(x(Ty))

where &n(t) is the state at time t, and u(t) is the control input at time t. The, necessary

condition at thc final time T~ is described by h(x(T~)).

This form of the cost function has been used in [13] an&1 optimizes the path

of a car like robot bv subdividing configuration space and linearly interpolating.

In general, ail optimal path satisfying Equation 3. 1 with initial and final boundary

conditions can bc computed using several numerical methods [9].

10

B. Non — Markov optimization criteria

Compare&I to o»r rvork, pm ious work with roadmap — based methods lacks two irnpor-

tant properties needed for real applications. The first is the need for non-I&Iarkovian

states, i. e. , states which depend on information from a range of previous states.

For example, to maximize clearance, it is clear that a cost function g will contain

the reciprocal of clearance if the optirnizcr rrrinimizes J. We denote the reciprocal

of the clearance as g', . If we let g(x(t), u(t)) —
r 'Iril in Equation 3. 1, then

the resulting path will maximize the accurrnilsterl ii'ifll from the start to goal. In

most cases, the objective is to optimize the path for maximum safety and thc proper

criterion is maximizing thr; minimum path clearance, not maximizing the accumulated

clearance. This requires a modified cost function

/' Tf 1 J =
/

y(x(t), u(t))dt+ h(x(Tt)) + (3 2)

where t E (0, Ttj such that cl(x(t)) is minimum, and maximizing cl(x(t, „)) is

eqnivalcnt to minimizing, g, i', IF The term cl(x(t)) is non — Markov, and we force

the state to be Markov.

C. Goal sets — flexible final states

The second issue that has not been addressed in previous work is a flcxil&lc definitio

of the final necessary condition. Describing the final condition at Tt using an equality

conditiori changes Equation 3. 1 to

J = J;, g(x(t). u(t))dt
(3. 3)

h(x(Tt)) = 0

11

where the prqblem is now minirnixing, J with 6(x(T~)) = 0 satisfied. This is identical

to one of the boundary conditions of the optimal control formulation where Ty is free

and x(Ty) is moving on the surface, h(x(t)) = 0. In a graph search based path planner

snch as Dijkstra's algorithm, it is difficult to find a node that satisfies h(x(T~)) = 0

unless some of the nodes are generated exactly on the surface where h(x(t)) = 0. So,

we modify the surface to be more inclusive by using an inequality comlition.

J: fj) g(x(t) n(t))dt

h(x (Ty)) & ci
(3. 4)

The final necessary condition h(x(Ty)) & cy is used to terrninatc the graph search if

any node satisfying h(x(T&)) & cJ is reached. AVe call this set of nodes a goal set, and

its sine is dctcrmined by the constant c1. Note that, Dijkstra's algorithm requires two

cost functions correspornling to g and h in Equation 3. 4.

12

CHAPTER IV

SYSTE&UI DESCRIPTION

Our path optimization system is based on thc probabilistic roadmap method (PRMs)

and Dijkstra's shortest path algorithm. To address the issues mentioned in the pre-

vious section, we design an augmcntcd version of Dijkstra's algorithm and cost com-

putation.

A. Problem Formulation

Before explaining the details of our framework, we reformat the mathematical descrip-

tion (in Equatioii 3. 4) to a pseudo — code friendly version. Figuic fi& describes our path

optimization problein of ininiinizing the cost of a given path p. Operators start(e,)

and end(e,) denote the start and end vertex of edge e„respectively, and thc cost

functions cost~ and costi, dcnotc t. he functions «and h in Equation 3. 4, rcspcctively.

Start is a node in the roadmap, and the final conrlition specified by a constant cl

is intc&rnally transformed to a goal set. goal, , „, that will terminate the search when

reached. In Section D, pseudo code is used to describe this in detail.

Note that we do not use the approach of iterative improvement of J, such as

hill cliinbing and steepest descent. Like dynainic piogramming methods in optimal

control, we compute the solution in one shot using Dijkstra's algorit, hm.

B. Markov -like Optimization

Ideal Markov Function. The issue of maximizing minimum clearance was intro-

Given environment, start ansi ct,

find a path p = (e~. , ez, . . .) such that

minimize r oat(p)

where cost(p) = g cost, (e,) under the constraints

start(e,) = sta~t

clearance(e,)) 0, i = 1. . . n

others (e. g. , time, energy, . . .)

and p = ten ez, . . . , et) by the final condition

end(et) E goal„r

where goal, « — — (end(e,)) ~
costs(end(e,)) & ct)

Fig. 5. Path optimization problem

duced in Section III, and the cost function including a non — X'Iarkovian state is

J — J~ g(x(t), u(t'))dt + h(x(Tt)) +

t. „, C [O, Tt]
(4. 1)

where m(x(t, „)) is a general non — Markovian cost function. In Equation 3. 2, m(x(t„„))

was
q i', ll

with t the tirrze when the clearance is lowest. This formulation is not

tractable for cornrnon optimization solvers. Onr approach to this problcrn is to modify

g(x, u) or costs(e,) in Figure 5 so that m(x(t„„)) is eliminated in the cost function.

Discretization. Since we are using a graph search algorithm which is similar to

dynamic prograrnrning in classic optiruizatiou theory, Equation 4. 1 can be represented

14

by a discretized version

J = g, ':, v' g(x„u,) + h(xr, ,) + m(x,),

i E r0, 1, . . . , Ã1)

T, =Q(x r, u r)

(4. 2)

where &VJ is the total number of time steps, i is the time step corresponding to t

and &r is a discrete time state update equation of the system dynamics.

Using Previous State. Now, we replace g(x„u,) with g(x„x, „u,) so that

both previons and cnrrenr, states are nse&1 for computing thc cost, . The previous state

is obtained by using parent data structure in the search tree of Dijkstra's algorithm.

Thc. vrrtcx corresponding to x, r can be quickly obtained from the parent data struc-

ture and the. vertex corresporrding to x, ;. '&Vc note that this is similar to converting

a continuous time state x to a discrete time state composed of x„x, , r and At us-

ing Taylor's series expansion. Many optimization values such as turning angle can

be computed from x (or x„x, r and At if in discrete time). In this case, using,

g(:r:„x, , r, u,) in Dijkstra's algorithm can 1&e regarded as applying a standard discrete

time optimization to a graph search technique. This does not exhaust thc possible

applications of our optimizer.

Markov — like Cost Function. An example of an optimization value that can-

not be computed frorrr:i is minimum clcarancc, which will be computed from x,

and x, r. There are other optimization values such as localization su&. cess ratio that

can bc forrnulatcd using x, and x, r. So, our motivation for using g(x„x, r, u,) is

nor, from discretizing g(x, r, , u), lmt to cxtcnd thc ability of the graplr search based

path optirnizcr usirrg current sr&&i previous states. '&Ve call this approach Markov — like

because x, r is not iviarkov in a strict, sense E&nt:r;; an&1 x& r can E&c dcnotcd by a

compound state x, . The general cost function is

15

J = g, ':& ' g(x, , u,) + I&(x&v,)+m(x, „),

i C (1, 2, . . . , Xf)
(4. 3)

xx — &

New State Update Equation. We added x, &
to the cost function with the

intention of elin&inating m(x, ,), and the state equation a(x, &, u, &) needs to be

changed accordingly. The idea is that x; should contain the entire history of the

non — Markovian property. For example, to maxirnizc the minimum path clearance, an

element in x, will indicate the minimum clearance from start, to time step i. Now, wc

denote the rninirrmm clearance state by x, "' and add it to x, .

I — Q & g(x~, &t,) + h(x&v&),

a(x& n«, ,)

x, ' u"(x* x &)

[x xc&, . cl)T

(4. 4)

The state equation a" returns x, ' that is lower than x, ", only if cl(x, ,), the

clearance of:r:„ is smaller than x, , ", . Otherwise, x, " must e&p&al x, ", because the

clearance of thc current state is not smaller than the minimum clearance discovered

so far (see Figure 11). It is clear that a" must contain a Boolean operator.

cl(x,) if cl(x,) (x, ",
x, ", otherwise

(4 5)

New Cost Function. 'Next, wc focus on g" (x, ", x, ",) which is a part of g(x, „«,)

and corresponds to the state x". It compares the differenc between x, " and x, ", ,
and should return a nonzero positive value if x"

, (x, ", . Otherwise, it returns zero

so that J does not increase. So, we have

cl (ais xd)

l (x" — x, ") ii x, "' (x' (4. 6)

otherwise

whcrc « is a constant. This technique for minimum clearance can be applied to other

non — lvlarkovian optimization values with the superscript " changed in Equations 4. 4,

4. 5 and 4. 6.

C. Flexible Final Condition

We apply thc modified final condition shown in Equation 3. 4 to our ncw cost function

in Equation 4. 4, which is the final form of thc cost function that we seek.

d = P, :i g(x„u),

x, — a(x„u, ,)

h(xa . u, v) («t

D. Augmented Dijkstra's Algorithm

AvoMENrEn DIJKSTRA(V, E, start, ct)
1. for (each v E V) dist[v] e- oo

2. di st[start] l — 0
3. PQ e- Priority64ueuc of V ordered by dist
4. while (PQ g f))

5. u e- PQ. dequcue
6. for each v E PQ adjacent to u

7. if (dist[v]) (dist[v] + u)eight(u, v, parcnt[u]))
8. di st[v] e- dist[v] + iveight(u, v, parent[u])
9. pnrent[v] e- u

10. if (costs [v] & ct) return
11. PQ. reorder

Fig. 6. Thc augmented Dijkstra's algorithm

17

Dijkstra's algorithm is augmented to reflec thc changes in Equation 4. 7, and its

pseudo code is shoxvn in Figure 6. To usc Markov — like states, the tceight function

that corresponds to costv in Figure 5 is changed so that thrcc adjacent vertices are

used. The cost function costs checks if a node is in the goal set using cy.

18

CHAPTER V

SYSTEivi EVALUATION

In this chapt. er we provide some robotic examples that benefit from the path op-

timization methods described. The following example utilizes our roadrnap — based

mobile robot system described in (16, 6, 17]. It uses feature based localization and

sonar range sensors. A T — shaped environment, an&i roadinap are shown in Figure 7

where five nodes in the goal sei. are marked. ~ obstacle

roadmap edges

start
node

ei — 1 e t

goal set

searched edges of
of Dijkstra's algorithm

Fig. 7. Environinent, roadmap and path searching.

In thc following, we first describe various optimization criter and then we present

some simulation results.

19

A. Optimization Criteria

The diagram shown in Figure 8 has tv'o components, Dijkstra's algorithm and weight,

computation. In this section, we will show that various optimization values are com-

puted by using different weight computations in the corn&non framework. In the

diagram shown in Figure 8, we compute the shortest distance, path by usirig

r:ost (c,) — Iengt h (e,)

startgoal,

Dijks&ra*s

0 t'mal path
Algorithm

edge et

cost(et)

Weight
Function

Fig. 8. Diagram of shortest path computation.

1. 1VIinimizing Travel Time

Thc path extracted from a roadmap consists of a series of translations and rotations

(unless converted to a curve). For ease of presentation, we assume that, thc rotation

time can be approximated by a constant value and the translation time is proportional

to the length of the edge. In Figure 8, travel time is minimized by using

cost(e;) = ci length(et) + rz (o 2)

where ci and cz are constants.

20

2. Avoiding Localization Failure

In this case, we assume that thc rok&ot's sensors have range limits and always fail

to localize if no feature exists within the range. The locations of all features in the

environment are assumed to be known. In Figure 8, we use

cost(e,) = cs fr(visibility of c;) (8 3)

where 'visibility of e, ' determines if the robot can successfnlly scan one or more

feature(s) on the edge e, . The function f, (e,) converts the visibility of edge c, into

a scalar as shown in Figure 9(a). Note that the optimal path can traverse a region

with no fcaturcs if necessary.

10 infinity
B

1 2 3 4
features

(a)

10
0

10 infinity
turning radius(m)
(b)

Fig. 9. Cost, functions, (a) for featnrcs and (b) for t, urning radius.

3. Kinematic Constraints

If the robot has constraints on its turning radius, two adjacent edges c, and e, , arc

neo&lcd Io cornpuic thc required turning radius to obtain the cost of e, , The weight

function now uses two edges (or three vcrticcs) as shown in thc pseudo code in Figure

21

6. In Figure 10, which refiects the modified weight computation, we use

cost(e,) = c4 fz(turn radius of e, r and e,) (5 4)

where fz is an appropriate linear or nonlinear function.

Optimal Path

Augmented
Dijkstra's

Algorithm

edges ei. ei — I

cost(e t)

Weight
Function

I' ig. 10. Q'eight function with two adjacent edges.

Figure 9(b) shows an example of a nonlinear function thai, maximizes turning ra-

dius (region A) and prohibits e, from being used if it violates the kinematic constraint

of a turning radius of less than 10 meters (region B),

4. 'Maximizing Minirnurn Clearance

As discussed in Section B, the minimum clearance z"z is a non — increasing variable and

is shown as a solid linc in Figure 11. To implement this in the augmented Dijkstra's

algorithm framework, we add the new variable as auxiliary data as in Figure 12.

The data is maintained according to the rule shown in Fquation 1. 5. The edge cost

compui. ation equivalent to Equation 4. 6 is described by

cost(e,) = cs (ct, „n, — cl(e,)) if cl(e,) (cl, „
otherwise

(o. 5)

where cl, „ is thc auxiliary data and cl(e,) is the clearance of edge e, ;. Initially, cl, „„,
is sct to ihc clearance of the start nocle.

22

eM ~ge . . -,

minimum
path clearance

/
/

/
/

/
/

/
/

/

/

cost(e;)

start goal

Fig. 11. Cost function for edge clearance

B. Con&binai, ion of Criteria

Combining various costs into one function resnlts in thc optimization for multiple

values, and is useful in many applications. The combined edge cost is expressed by

cost(e,) = g ub cost~
z

(5. 6)

where m, is an appropriate weight and cost, is cost(c,) in Equations 5, 1- 5. 5.

C. Simulation Results

Simulation results for maximizing minimum clearance and allowing a flexible final

condition arc presented.

lvfaximizing Minimum Clearance

Three different possible routes exist in the environment using the roadrnap shown

in Figure 13(a) from the start, to goal area in Figure 13(c). Paths going through

Auxiliary data

start, cf
edge el f data

Optimal Path

Augmented
Dijkstra' s

Algorithm

edges ei, e'-1

cost(e;)

Weight
Function

Fig. 12. Weighting with two adjacent edges and related data.

corridor A or C in Figure 13(c) are obtained by maximizing the minimum clearance

or minimizing path length, respectively. Figurc 13(c) shows thc path going through

corridor B; this is the result of combining the tivo conditions depicted in Equations

5. 1 and fi. o.

cost(c,) = 0, 03 tcngttr(c,)+

0. 97 (cl, „„, — cl(e,)) if cl, (r. ,) & cl, „
other wise

Serirch tree edges ot' Dijkstra' algorithm arc illustrated in Figure 13(b) by arrows

representing the clirection of the search frorri the start node. .

Several simulations in the same environment arc presented in Table 14 using an-

other pararncter, turning radius. Then, the cost(r,) is computed usirig three constant

weights costs, , , r, cost, i and cost, „. Costrr is the cost for turning radius arid penalizes

the edge with a sharp turn. The fourth row shows that the smoothest path is obtained

by going though region B, which is shown in Figure 13(c). The fifth and sixth rows

show that, ditferent combinatioris of weight constants can result in thc similar paths.

environment

roadmap

search tree

optimal path

(b) (c)

Fig. 13, Maximizing clearance and combination of criteria

2. Flcxiblc Final Condition and Dvnamic Constraints

A mobile platform and robotic arm with 3 links in an environment, composed of three

walls is illustrated in Figure 15. The wall in the middle has a passage, and each

node's position in the roadrnap (Figure 15(a)) indicates the mobile platform's center

of mass. The start configuration is shown in F'igure 15(b), and the final condition is

that the end effector of the robotic arm should touch the wall opposite to the start

position, and the mobile plal. form must come l. o a stop. Thc optimization criterion

is time required. We use bang — bang control logic (move at full speed until the end

25

Route COStdtn cost~(cost«

0. 03 0. 97

B 0. 08 0. 84 0. 08

0. 03 0. 32

Fig. 14. Srmulations with different pararrtctcrs

effector touches the wall, and apply thc brake as hard as possible) to cornputc the

minimum time of each path in Dijkstra's algorithm. KVc assume that the mass of the

robot is small enough that it does not exceed the maximum deceleration rate and

collide with the, goal wall.

Depending on the weight, (including payload) of the robot, final configurations

will vary. In this case, we do not nccd to compute the optimal final configuratio

so long as possible goal configurations (shown in Figure 15(c)) arc in the roadmap.

Three different simulations show different final configurations in the paths with three

different mass values.

Vip, . t5. Mohile platform with robo?. io arm, (aj Boadmap, (bj start, position, an(1 (nj

throe j?lffcrcnt oonf1gln'at. tons ln t1M goa? sot.

27

CHAPTER VI

APPLICATION: CAlvIPUS NAVIGATOR

There are a nurriber of applications of motion planning research. Onc application

currently under development in the Parasol Lab is a campus path planner. This

prograni will allow users to find their ivay across the Texas A&M Lniversity campus.

Essentially, thc campus navigator is similar to applications such as Yahoo! Ivlap and

lvfapOuest in that, it provides users ivith directions (text and/or an image of the route)

to get from one. location on cainpus to another.

However, the campus navigator goes beyond the simple point-to-point route plan-

ning of thcsc existing map programs. The campus navigator is designed to allow much

more sophisticated queries tailored to the specific needs of the user. For instance, the

campus navigator takes transportatioii mode changes into consideration. The user

can specify if she will be walking, riding a bike, driving a car, or willing to take the

bus.

As an exariiplc, consider a user wishing to find a route to get from a building on

main campus to a building on west carry&us. There. arc a number of ways to accomplish

this. One could simply walk to west campus. Using thc cainpus navigator system,

the user can find ivhich bus(es) to take, where and when they stop, saving time and

effor. The system will take into account driving conditions (i. e. , close&1 streets due to

construction), parking lots basc&l on per&nit restrictioiis, and handicapped accessibility

to provide the best path for the user.

A. Coinponents of the Campus Navigator

Currently, the carry&us iiavigator is under development. A prototype of the systciii

is expected to be ready by the end of thc Spring 2003 semester. The next sections

28

describe the four fundamental components of the campus navigator system.

1. Overview of Campus Navigator

Before delving into each of these components, an overview of the system as a rvholc

is in order. The user will interact with the system through a set of web pages. These

pages allow the user to specify the start location and destination. Thc user's selection

is sent to a program, query, that searches a preconstructed graph of carnpras (created

via the roadmap editor). This graph, which is stored in a database, contains all thc

data needed by query to select a route that meets the user's request.

The path resulting from query's search of thc graph is sent to Vizmo++, a

visualization tool developed within the Parasol research group (18). Using a 8D

model of campus and the path, Vizmo++ creates a JPEG image that depicts the

route through campus. This JPEG image is sent back to the user's browser. In

addition to the image, a textual descripl, ion ol' the route is provided. Figure 16 shows

how all the corrrponents of our Campus Navigator systnn interact.

Fig. 16. Overview of Canqrus Navigator system.

29

2. The Campus Graph

The fundamental component of the carrq&us navigator is a graph. As with many

motion planning problems, this application is built upon thc idea of finding a path

through a graph. All the various constraints are expressed through properties of the

vertices and weights on the edges of this graph. Vc&ticcs are used to represent physical

places on campus such as buiklings and parking lots. The edges of the graph are used

to represent streets and walking paths through campus.

For this application, the graph is stored in a database. Thc current implemen-

tation employs the open source 'vIySQL database management systeiii. There are a

number of reasons for storing the graph in a database. First, it allows concurrent

access to the graph from the various components of the system. Initial designs called

for the graph to be stored in a fil. , which is a customary storage medium for graphs.

Second, the database simplifies thc sharing of data between the campus navigator

systein components. As an example, thc road&nap editor, query, and the wcb interface

need to access building names. The roadmap editor uses the names to allow vertices to

be associated with buildings. Query cinploys building names when generating textual

directions, and the web interface needs the narncs to give the user a list of buildings to

choose from (for specifying start and/or destination). Each of these components are

currently implernentcd in disparate languages. The database provided the simplest

medium through which all three pieces could access the same data.

3. The Roadmap Fditor

Currently, thc cainpus graph is constructed rrianuallv. This is somewhat ironic as

much of the work in motion planning is aimed at automatically creating a r&&a&i&nap.

Automatic construction of the campus graph is not realistic as most autogeneration

30

techniques &ely on randomly generating vertices and connecting those vertices with

edges. Rando&n placement of vertices is not appropriate for this application, as ver-

tices need to be tied to specific points on campus. For instance. , a vertex needs to bc

associated with each building and parking lot.

To ease the construction of this large graph, a roa&finap editor is currently under

development. This program allows the campus graph to bc built over an image of the

campus. The user of this program can place vertices at ea«h of the buildings, parking

lots, intersections, etc. on campus by simply clicking on the building, parking lot, or

intersection in the, irnagc. Then edges can be a&fled for the streets and walking paths

between these vertices. All of i. his information is stored in the centralized database.

Even if the campus graph could be generated randomly, all the properties of the

vertices an&I edges of the graph would have to be manually specified. For instance,

for a vertex representing a parking lot, sornconc must specify which permits (student,

faculty/stalf, etc.) are allowed to park in the lot, . This is the second role of the

roadmap editor. It allows this information to be entered for all the parts of the

graph.

4. Campus Graph Query

The query progra&n is responsible for finding routes through the graph that mcct the

user's request. This application employs Dijkstra's algorithm to find the optimal path

through campus. This portion of Carr&pus Navigator builds on the Path Optimization

research presented in the previous chapters. Running as a service, the web interface

will send requests to query and receive the computed path for Vizmo++ to display.

Calnpus path Visualization Via Viz)no++

Vlzlno++ ls lesponslMP, fol' gel'IPI'sting a ptctul'c of cMnpus frith fhP. path ovcl'laved

t181. After the user selects t, hc sf;arf, and goal points and query gcn(frat»a a path flic,

Vizmo++ opens up a 3D model of the (alnpus slid thc path file to begin cr(sting f:hc

snapshot. Thc earners f, hen zoon)a or)to the path and cr(ates f;he image. This imag»

is sent back to thc web server to be displayed on thc us»res brolvscr.

6. User Vrcb Intn face

Us(lrs of thc canlpus navigator will int»rfacc with if via a, sct of wcb pages. Users

will select the start and dcstirlation via selection boxes populated by data from the

data4f lac. Plein tbc us»I' s('. lect, lens, tbe wp4 pages clpfprlrnlre thc v(', rf lees that. col'-

I'cspolul to t4». sclcctc(l. Ioceltlons. These so-callPd start Mld goal vcl'flees, 'll'c glvcn

to (lucry Ivhi(lh finds I'4» I'Out('. . Th('. wc4 pages rccPlve an lnlagc of 14» refit('. fl'onl

an i)nag» generated by Vizmo++. I'igurp 17 is a, scrcenshot from a prototype of the

Calnpus X'avigator lveb interfac».

t te e

I If

i eltt

eet t fe e, e t. I

It f I f« te I I

„, "tf@„;:, , !;, , -;:„t, ", 's, :„),

Fig. 17. Prototype of Campus (Iavfgator infcrface

Initially, the lvcb interface will provide simply a two dimension'll)nap of campus

with the path overlayed. Similar to Ivlapguest and other programs, the campus

navigator web interface allows users to xoo&n in and out on the returned campus

path. Ultimately, it is envisioned that users would l&e able to generate a movie,

allowing the user to "fly-through" a 3D model of campus along the path generated

by query.

The campus navigator is an interesting and useful application of motion planning

research, Exploiting the techniques developed to plan the paths of robots, the campus

navigator aims to guide people around the large campus of Texas A&%1 University.

It is envisioned that this application would potentially be useful for cities. By taking

into consideration all the various modes of transportation such as buses and subways,

the campus navigator could be extended to a city navigator, allowing residents and

visitors to efhciently navigate the city.

CHAPTER VH

SUMIvIARY AND CONCLUSIONS

A framework for extracting an optimal path in a roadmap for motion planning has

liccn created. Our fraiiicwork combines the inathematical flexibility of general op-

tiinization techniques arid computational efficien of roadmap — based methods. We

designed an augmented Dijkstra's shortest path algorithin that uses lvlarkov — like state

and goal sets. Using PAMs, the path can be efficiently optiinized in a large space

for several values including kinematic/dynamic constraints and minimum clearance.

Siinulation results ivere presented to illustrate thc feasibility of our approach.

Application to the Canipus Navigator ivas presented to demonstrate the many

areas where path planning and optimization can be used. In this example, wc harness

the power and flcxibility of graph search algorithms to allow customizable queries on

a hand-made roadmap. Thc framework we created in the Campus Navigator can be

exten&lcd to larger City Navigators.

A. Future Work

Future work consists of exprrimenting with robots with high degrees of freedom,

explicit formulation of dynamic constraints, and hardware experiments using mobile

robots. Also, planning paths for multiple robots sharing a roadmap will k&c considered

in the future. Using many ideas presented in this thesis, in particular Flexible Goal

Conditions, we may extract optiinal paths and meeting or coordination points for

rrniltiplc robots.

34

REFERENCES

[1] L. Kavraki, lvl. Kolountzakis, and, l. -C. Latombe, "Analysis of probabilistic

roadmaps for path planning, " in IEEE Trans. Robot. Automat. , 1998, vol. 14,

pp. 166 — 171.

[2] F. Lamiraux and J. -P. Lammond, "Smooth ¬ion planning for car-like vehi-

cl&. s,
" in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2001, pp. 498 — 501.

[3] M. Yamamoto, M. Iwamura, ansi A. Mohri, "Quasi-time-optimal motion plan-

ning of &noh&le platforms in the presence of obstacles, " in Proc. IEEE Int. Conf.

Robot, . Autom. (ICRA), 1999, pp. 2958 — 2963.

[4] Nancy t''I. Arnato, linsuck Kim, Roger A. Pearce, "Extracting optimal paths

from roadmaps for motion planning, " in Proc. IEEE Int. Conf. Robot. Autoin.

(ICRA), 2003, To appear.

[5] Nancy M. Amato Jinsuck Kim, Roger A. Pearce, "Feature-based localization

using scannablc visibility sectors, " in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), 2003, To appear.

[6] J. Kim, R. A. Pearce, and N. il'I. Amato. "Robust geoiiictric — based localization in

indoor environments using sonar range sensors, " in Proc. IEEE Int, . Conf. Intel.

Rob. Syst. (IROS), 2002, To appear.

[7] S. Akclla and S. Hutchinson, "Coordinating the motions of multiple robots with

specified trajectories, " in Proc. IEEE I&it. Conf. Robot. Autom. (ICRA), 2002,

pp. 624 631

35

[8] Y. 1Vang and D, Lane, "Solving a generalized constrainted optimization pro bleru

with both logic AND and OR relationships by mathematical transformation and

its application i. o robot, motion planning, " in IEEE transactions on systems,

man and snd cybernetics, part C, 2000, pp. o25 — 536.

[9] Donald E. Kirk, Optimsl Control Theory: !1n Introduction, Prentice Hall, 1970.

[10] Z. Shiller, K. Yamane, and Y. Nakamura, "Planning motion patterns of human

ligurcs using a tnulti-layered grid and the dynamics filter, " in Proc. IEEE Int.

Conf. Robot, . Autorrc (ICRA), 2001, pp. 1 — 8.

[11] C. Ahrikencheikh and A. Seireg, Optimized-Alotion Planning, John 1Viley &

Sons, Inc. , 1994.

[12] G. Song, S. L. Miller, and N. M. Amato, "Customizing PRM roadmaps at query

time, " in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2001, pp. 1500 1505.

[18] P. Konkimalla and S. M. LaValle, "Efficient computation of optimal navigation

functions for nonholonomic planning, " in Proc. IEEE Int. Conf. Robot, . Autom.

(ICRA), 1999, pp. 187 — 192.

[14] C. Hocaoglu and A. Sanderson, "Planning multiple paths with evolutionary

speciation, " in IEEE transactions on evolutionary cotnputation, 2001, vol. 5,

pp. 169 — 191.

[15] M. A. Yousscf, M. F. Younis, and K. A. Arisha, "A constrained shortest-path

energy-aware routing algorithm for wireless sensor networks, " in IEEE tVireless

Communications and iUetworking Conference (tVCXC), 2002, pp. 794 — 799.

[16] J. Kim, N. M. Amato, and S. Lee, "An integrated mobile robot path (re)planner

and localizer for personal robots, " in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), 2001, pp. 3789 — 3794.

[17] S. Lee, N. M. Amato, and J. P. Fellers, "Fast localization of mobile robots using

visibility scctots, " Tech. Rep. , Department of Computer Scicncc, Texas A&M

I;niversity, 1999, Appeared in ICRA 2000.

[18] Bharatinder Sandhu, "A visualization tool to study the motion of complex 3d

objects in space, " Senior Honors Thesis, University Undergraduate Fellows Pro-

grarrb Texas AJzM University, 2003.

37

VITA

Roger Allan Pearce began his undergraduate studies in the Fall of 1999. He is

pursuing a Computer Enginccring Degree from the Department of Electrical Engi-

neering at Texas ASM University.

He has worked as an undergraduate researcher in the Parasol lab under

Dr. Nancy Amato for two years. Roger is interested in many aspects of robots in-

cluding motion planning, mechanical design, and robot-human interaction.

He plans to pursue a Ivlasters of Co&rq&uter Science after graduating from

Texas A%M University.

Permanent address:

219 AVcdgcwood

Lake Jackson, TX 77566

The typist for this thesis was R. oger Allan Pearce.

