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ABSTRACT 

Nondestructive Testing Using Stress Waves: 

Wave Propagation in Layered Media. (April 2002) 

Jose Alberto Ortega 
Department of Civil Engineering 

Texas A&M University 
Fellows Advisor; Dr. Jose M. Roesset 

Department of Civil Engineering 

The use of stress waves in several civil engineering applications such as 

nondestructive testing of soil deposits or pavement systems has become extremely 

popular over the last few years. In all cases, a dynamic impulse is applied to thc surface 

of the investigated medium, and the corresponding motions associated with Ihe 

propagation of stress waves are recorded by receivers located at different points away 

from the source of loading. In many applications, these are primarily surface (Rayleigh) 

waves. The properties of the medium and the potential existence of defects can be 

determined from the appropriate interpretation of the recorded motions. Although 

current interpretation processes are performed considering accurate solutions to the 

dynamtc problem, a situation ol interest arises when a soil stratum is underlain by a 

much stiffer material. 

Researchers have established that no surface waves will propagate through a soil 

medium below a threshold frequency for the case when the soil base is assumed to be 

infinitely rigid. When dealing with vertical loads, some researchers had onginally 



suggested that the threshold frequency corresponds to the natural frequency of thc soil 

layer in dilatation/compression. This would imply that for a saturated soil having a 

value of Poisson's Ratio close to 0. 5, surface waves would never be generated — a 

conjecture which is clearly incorrect. 

The goals of the research project were to determine the threshold frequency as a 

function of Poisson's Ratio of the soil layer and to investigate the surface-wave 

propagation phenomena for values close to the mentioned frequency. Two approaches 

were utilized to achieve the research objectives. The first approach consisted in 

developing analytical expressions for the relations bctwccn displacements and stresses 

due to plane waves propagating in a soil layer. The second approach considered the 

study of the phase shift in the motions at different points under steady state conditions. 

Both approaches used wave propagation results provided by computer simulation 

programs. 

The results of this study are figures showing the variation of the apparent wave 

propagation velocity corresponding to the threshold frequency divided by the shear wave 

velocity of the medium as a function of Poisson's ratio and a comparison with the P- 

wave velocity. 
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CHAPTER I 

INTRODUCTION 

The use of stress waves in nondestructive testing of laboratory specimens, structural 

members, pavements systems, and soil deposits has become extremely popular. In all 

these cases, a dynamic impulse is applied by one or more sources, and the corresponding 

motions (accelerations, velocities, or displacemcnts) are recorded as functions of time by 

a series of receivers placed at different points or stations. The properties ol the medium 

or the potential existence of defects such as cracks, inclusions, or cavities are then 

determined from an appropriate interpretation of the amplitudes of the recorded motions, 

the times of arrival of the waves at the receivers, inter-amval times between receivers, or 

phase differences between the motions at the receivers. 

Most of the methods used to interpret the mentioned data and obtain the desired 

properties were originally based on highly simplified models using ray path theory or 

assuming a simple type of waves (Nazarian, 1984). These methods were normally 

acceptable for relatively simple situations, but could not provide the desired accuracy for 

more complicated and realistic conditions. As a result, more accurate, yet more complex 

formulations have been developed and implemented over the last few years (Shao 1985, 

Fomquuios 1995). 

This thesis follows the style and format of the Journal of Structural Engineering. 



The decision that must be made in practice is in some cases between speed (important 

when having to interpret large amounts of data in a reasonable amount of time) and 

accuracy (important when dealing with unusual or irregular cases), although with the 

continuous increase in speed of computation, the use of simplistic methods of analysis is 

less justifiable. This work looks at some specific cases of nondestructive testing using 

stress waves to clarify some remaining issues. 

Thc following sections of this chapter will describe concepts related to wave 

propagation in layered media, nondestructive testing techniques, how they operate, and 

the interpretation process of their outcomes. 

Wave Propagation in Layered Media 

The Spectral Analysis of Surface 8 aves (SASW) method is a technique developed 

over the last twenty years to determine the properties of soil deposits in situ and their 

variation with depth (Nazarian, 1984). The SASW is a non-intrusive, nondestructive 

technique, which has been successfully used in practice in a variety of in-land 

applications, and has been proposed to determine the properties of the subsoil in the 

ocean floor. 

The basis of the SASW method is the application of an impulse load on the free 

surface of the soil deposit, recording the resulting motions as functions of time at least at 

two receivers located on the surface as well (Figure 1). The distance spacing between 

receivers is typically the same as the distance from the source to the first receiver; 
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Figure 1. Diagram of the Set Up of a SASW Experiment 

subsequently, these distances are changed for each range of frequencies of interest (and 

their corresponding wavelengths). A number of studies have shown that those distances 

should be between half and four wavelengths. Generally, the test consists of various 

load applications for different source and receiver spacings. For a particular spacing, the 

impact is applied by the source and the motions are recorded at the two receivers. The 

time records of the displacements obtained at the two receivers are automaticall tca y 

converted to the frequency domain by applying a Fourier transform and obtaining their 

Fourier spectra with a spectral analyzer. 

The mentioned process is equivalent to consider the motions as consisting of a 

superposition of many sine waves with different frequencies and phases. One can then 

obtain the phases corresponding to each &equency component. From the phase 



difference, one can obtain the inter-arrival time of the waves (difference between the 

times of arrival at the two receivers), and therefore, their velocity of propagation in the 

horizontal direction. This kind of velocity is referred to as phase velocity. The ratio of 

the frequency ni to the phase velocity c is the wave number k. 

k=— 
C 

The wavelength is: 

2rr 

k 

The derivative of ni with respect to k is the group velocity: 

Jco 
Co = 

dk 

The variation of the phase velocity with frequency or wavelength (computed directly 

from the other previous two) is called the dispersion curve. The process is repeated for 

each position of source and receivers (Figure 2) five to ten times, and the corresponding 

results are averaged. The resulting dispersion curve is considered valid over the range of 

v avelengths corresponding to one-quarter of the receivers spacing and twice this 

distance. The positions of the receivers are then changed, and the process is repeated 

(with another five to ten impacts) to obtain a dispersion curve valid over a di [Terent 

range of frequencies (or wavelengths). The ranges of validity of the results for two 

consecutive sets of tests will normally overlap and will not be identical. 
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Figure 2. Diagram of the Setup of the SASW Experiment for 
Two Different Experiments 

The final experimental dispersion curve is formed as a composite of those obtained 

from different spacing arrangements. These partial results are smoothed for clearer 

visualization of the dispersion curve (Figure 3). 

Interpretation of Nondestructive Tests Results 

The interpretation of the experimental dispersion curves necessary to compute soil 

properties and their variation with depth is based on assumptions that the motions are 

caused by surface (Ruyleigh) waves propagating horizontally from the source to the 

u a 0 n s- u 
n 

partial solutions 
for a given 
receiver spacing 

W avelength 

Figure 3. Typical Compound Dispersion Curve for a Soil Deposit 
whose Properties Increase with Depth 



receiver. For impacts of very short duration, associated with high frequencies, small 

wavelengths, and short distances from source to first receiver and between receivers, the 

apparent velocity of propagation of the waves would be controlled by the properties of 

the soil layer closest to the surface such as the shear modulus, Poisson's ratio, and the 

soil's density. The Rayleigh wave velocity of this soil stratum can be then obtained 

directly from the experimental dispersion curve at very high frequencies. 

Increasing the duration of the impact will result in lower-frequency waves, The 

corresponding waves will have longer wavelengths and will penetrate deeper into the 

soil (Figure 4). Their apparent velocity of propagation will depend on the average 

properties of the soil over a thicker layer. By knowing the properties of the top layer 

from the results for a higher frequency, one can obtain those of a second soil layer to 

have the desired phase velocity for the combination of the two. The process can be 

source receiver receiver source receiver receiver 

high Irettueney, 

short wavelength lower Irequency, 
longer wavelength 

Short Duration Impact Longer Duration Impact 

Figure 4. Effect of Increasing the Duration of the Impact Load 



continued by sequentially looking at the results for increasingly longer wavelengths 

(smaller frequencies), and then computing the properties of a bottom soil layer knowing 

those of the strata above it. 



CHAPTER II 

RESEARCH PROBLEM 

Nondestructive Testing of Soils 

Following the process of interpretation of nondestructive tests' results mentioned in 

the previous chapter, computation of the elastic properties of the soil near the surface is 

relatively easy. The computation becomes increasingly more cumbersome as the depth 

at which properties are desired increases. The maximum depth is limited by the ability 

to produce an impact of sufficient duration and amplitude to produce reliable recordings 

at large distances. When trying to determine soil properties at great depths, the test often 

ceases to be nondestructive, relying on dropping large masses from sufficient heights to 

produce the desired impact duration and magnitude. 

The interpretation of the experimental data (dispersion curve) was initially carried out 

based on some very simple assumptions, considering a simple Rayleigh wave 

corresponding to the first mode of vibration of the soil, This approach produced 

reasonable (although not too accurate) results for simple soil profiles, where the 

properties increased smoothly and gradually with depth. For cases with a stiffer layer 

&tear the surface (case of a pavement system, Figure 5), this approach can yield serious 

errors. 



Wavelength 

Figure 5. Typical Dispersion Curve for a Pavement System 

Today, the interpretation (also called inversiori) of the data is normally performed 

considering a more accurate solution of the actual dynamic problem including all types 

of waves (response of a layered soil deposit to a dynamic load applied at its surface). A 

number of studies have been carried out to show the difference between the results 

obtained with this more accurate formulation and those of the more traditional one 

accounting only for one mode of the theoretical Rayleigh wave (or more properly 

generalized Rayleigh wave) (Shao 1985, Foinquinos 1995). A situation of interest arises 

when a soil stratum is underlain by a much stiffer, rock-like material with a sharp 

transition in elastic properties (Chang, et. al. 1991). 

In the limiting case, when the base is assumed to be infinitely rigid, no surface wave 

will propagate horizontally through the soil below a threshold frequency (Foinquinos, 

1995). When applying horizontal (shear) forces on the surface of the soil, this threshold 

frequency is the natural frequency of the soil deposit in shear: 

C 

4H (4) 



where: H = thickness of the stratum, C, = shear wave velocity, The situation is more 

complicated when dealing with vertical loads as in the case of the SASW test. Some 

initial studies had suggested that in this case, the threshold frequency would be the 

natural frequency of the soil layer in dilatation/compression: 

C 

'=4H 

where: H = thickness of the stratum, C~ = P wave velocity of the material, given by 

This is an approximation for values of Poisson's ratio less than one third. In the 

limits, for a saturated soil i~dth a Poisson's ratio very close to 0. 5 the P wave velocity 

tends to infinity, suggesting that surface waves would never be generated. This last 

statement is clearly incorrect. 

The objective of this research is to find the threshold frequency at which wave 

propagation occurs for a soil stratum over rigid rock subjected to vertical loads. This 

can also be considered as the resonant frequency of the stratum under vertical excitation. 

Dynamic Stiffness of Foundations 

In the design of foundations for large vibrating machines that rotate at a fixed 

velocity, it is important to know the stiffness of the foundation and the surrounding soil 

as a function of frequency. This problem is closely related to the previously discussed 

one with harmonic forces (rather than a transient pulse) being applied on the soil deposit 

through the foundation. The foundation stiffness as a function of frequency is the 
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relation between the applied force and the resulting displacement. For the dynamic case, 

the displacement will be characterized by an amplitude and a phase (representing the 

phase difference between the force and the displacement). It is common to write the 

dynamic stiffness of a foundation in the form 

Ka: K (k] + ia, c, ) 

where: 

Kq is the dynamic stiffness. 

K„ is the static stiffness = F / W, where F is the static force and IV the 

corresponding static displacement. 

kn c& are dynamic stiffness coefficients, functions of frequency. k& represents 

inertia effects in the soil due to the dynamic loads. ci represents the loss of 

energy by radiation of waves away from the foundation. 

a0 is a dimensionless frequency, a0 = ur R /c, where ui is the frequency in 

radians/sec, R is the radius of a circular mat foundation (an equivalent radius for 

other cases), and c, is the shear wave velocity of the soil. 

The product K„= R c& /c, can be interpreted as the constant of an equivalent viscous 

dashpot. The term c& is particularly important in assessing the dynamic response of a 

machine foundation or of a structure subjected to dynamic loads (wind, waves, 

earthquake) because it can represent a substantial amount of beneficial damping. This 

damping would considerably reduce the response and is particularly large under vertical 

vibrations. IJnfortunately, ci and the corresponding damping would be zero below the 

threshold frequency for a soil stratum over rigid rock because no waves would propagate 
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horizontally. In the preliminary stages of the dynamic or seismic design of a structure 

for which soil-structure interaction effects may be important, it is necessary to know 

whether one can rely on radiation damping or not. This implies the knowledge of the 

predominant frequencies of the structure and of the excitation, and ol the threshold 

frequency of the soil deposit, 
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CHAPTER HI 

RESEARCH METHODS 

The objective of this research project was to develop a better understating of how 

waves propagate in a soil layer of finite thickness, underlain by a stiffer material, when 

subjected to dynamic vertical loads applied at its surface. Particularly, this study looked 

at the frequency at which surface waves could propagate through the soil layer. This 

was referred to as the thresholdfrerjuency. 

The work started with a review of the basic literature on wave propagation in a half 

space due to dynamic vertical loads applied at the surface. This is often known as 

Lamb's problem (Lamb, 1904). Fundamental solutions for pulse and harmonic loads 

have been developed by a number of authors (Quinlan 1953, Miller and Pursey 1954, 

Pekeris 1955, Mooney 1974, Holzlohner 1980). The more general numerical solutions 

for a soil layer or a layered half space were proposed by Apsel (1979) using a continuous 

formulation and by Kausel (1981) using a discrete formulation. Thcsc two approaches 

have been implemented in special purpose computer programs by Roesset. 

Two approaches were then used in this study. The first one is referred to as general 

wave propagation considerations and consists in developing analytical expressions for 

the displacements and stresses due to plane wave propagation in a layer. The second 

considers steady state vibrations of a soil layer under a harmonic load applied at the 

surface. In this case we look both at the amplitude of the resulting displacements to 



assess the frequency at which the peak displacement occurs, and the phase differences 

between source and receiver or between two receivers. 

General Wave Propagation Considerations 

Analytical expressions for displacements and stresses due to plane waves propagating 

through a layer are considered in this section. The objective of developing these 

expressions was to check the existence of real values for the wave number k for which 

one can have non-zero motions without any applied forces. 

The expression describing the relationship between applied forces and particle 

displacements is: 

(g) 

where K is the stiffness matrix of a soil layer. For the case of in-plane motion: 

[k„k„] 
where kt n k&t, krn and ktz are functions of frequency at and wave number k (or phase 

velocity c). The expansions of these terms are the following: 

(10) 

kn: kn: [1 — C'C' + rsS'S" ] — kG(1+ s ) 
jcG(1 — S') 

kG(1 — S')[, „, . „] (12) 
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having: 

(14) 

C" = — ( 
'rh+ 'rh) 7 

2 

gr ( 
krh -krh) 

2 (17) 

Cr ( 
krh+ hrh) 

7 

2 

(19) 

In order to have real values of the wave number k for which non-zero motions exist 

without any applied loads, one must have the determinant of the stiffness matrix equal to 

zero, that is: 

K =0 (2o) 

ktr krs — kgs k2h =- 0 (21) 

A Fortran program was implemented to evaluate the determinant of the stiffness 

matrix and to find values of k or c at which it would become zero. Figure 6 presents 

some typical dispersion curves, calling: 
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Figure 6. Dispersion Curves for Two Different Values of Poisson's Ratio 
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C, 
(22) 

Ci7~ = 2i1fb„— 
ruH 

C, 
(23) 

where H is the thickness of the soil stratum, c, is the shear wave velocity of the soil, and 

v is the value of the Poisson's ratio of the layer. 

The determinant of the stiffness matrix K becomes zero among others at the 

frequencies: 

/6, „„, , = 0. 25, 0. 75, 1. 25 . . . . 

rutar rrs 
= ii/2, 3ii/2, 5tt/2 

which are the natural frequencies of the soil stratum in shear and at the frequencies; 

C C, C 

fggt~p: 0 25 
~ 0 75 

~ 
1 25 

C, C C, 
(rt/2) (3 it/2) (5tr/2) 

which are the natural frequencies of the soil stratum in compression or dilatation. 

At the frequencies ft, „„, the terms kin kiz, kzi become zero and the horizontal 

displacements would become infinity under a horizontal load. At the frequencies ft„„„~ 

the vertical displacements would become infinity under vertical loads. Starting at these 

frequencies we have dispersion curves, providing for each value ol' ai one or more values 

of c or k at which the determinant is zero. Figure 6 illustrates these results (only the first 

two dispersion curves are shown) for values of Poisson's ratio, v= 0. 25 and 0. 45. These 

studies were repeated for a number of values of Poisson's ratio. 



Steady-State Vibrations 

Under steady state vibrations due to harmonic vertical loads, one can obtain the 

amplitudes and the phases of the motions at various receivers (directly under the load or 

at some distance). Using Fortran programs, which address the solution to the wave 

propagation phenomena, amplitude and phase angle spectra were developed for several 

cases. Figured 7 and 8 present examples of the results obtained from this part of the 

study. 

20 400 
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16 

-f, 
P 

300 

200 

4 
i 

— Receiver 0. 0 ft 
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100 
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Figure 7. Phase Angle Spectrum for a Layer over a Rigid Base 
(v= 0 25, H= 20 ft, c, = 500 ftls, Radius = 0 5 ft, Damping = 2%) 
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Figure 8. Amplitude Spectrum for a Layer over a Rigid Base 

( v = 0. 25, Il = 20 ft, c, = 500 ftls, Radius = 0. 5 ft, Damping = 2%) 

Finally figures 9 and 10 show the dynamic stiffness coefficients kn cr for a circular 

foundation. Figure 9 corresponds to the horizontal stiffness and Figure 10 to the vertical 

stiffness. II. can be seen that the horizontal stiffness coefficient kr has a dip at the natural 

frequency of the stratum in shear, while the cr coefficient is zero below this frequency. 

In Figurc 10, for the vertical stiffness the dip occurs at thc frequency corresponding to 

the frequency of the peak in Figure 8 and the cr coefficient has a sharp increase around 

this frequency. 
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Figure 9. Horizontal Dynamic Stiffness Coefficients for a Circular Foundation 

( v = 0. 25, H = 20 ft, c, = 500 A/s, Radius = 0. 5 ft, Damping = 2 I6) 
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CHAPTER IV 

SUMMARY OF RESULTS 

General Wave Propagation Approach 

Figure 11 presents the dispersion curves showing values of the phase velocity c as 

function of the dimensionless frequency fi, „ for which the determinant of the dynamic 

stiffness matrix of a layer becomes zero. Only the first two dispersion curves are shown. 

The first one starts at the natural frequency of the soil layer in shear (f, a, „= 0. 25). At 

this frequency, the wave number for a zero determinant would be k = 0, leading to an 

infinite phase velocity. As the dimensionless frequency increases the phase velocity 

decreases and tends to the Rayleigh wave velocity. For values of Poisson's ratio ( v) 

larger than 0. 15 the first dispersion curve exhibits a clear oscillation with two inflection 

points. Figure 12 shows for this dispersion curve the plot of the wave number k versus 

the dimensionless frequency fq„„, while Figure 13 shows the variation of the group 

velocity over the frequency range with the oscillation. It can be seen that the group 

velocity has a maximum and a minimum over this range. The value at which the group 

velocity is minimum has been labeled in this study as fai. 

The second dispersion curve starts at the natural frequency of the soil layer in 

dilatation/compression, f„i, „„= 0. 25 chic, for low values of Poisson's ratio and has a 

shape similar to that of the first curve. As Poisson's ratio increases, however, the shape 
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of this curve changes drastically and has two roots for each frequency for values larger 

than a minimum frequency ftso 

Figure 14 shows the variation with Poisson's ratio of various frequencies relative to 

the first natural frequency of the stratum in shear f, . They are the extension-dilatation 

nat. ural frequency f~, the frequency corresponding to the threshold of the second 

dispersion curve fhn and the frequency corresponding to the minimum group velocity 

fht. 1n the second part of the study we compare the frequency at which the peak 

amplitudes of displacement is reached with these two frequencies. 
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Figure 14. Significant Frequencies as Functions of Poisson's Ratio 
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Steady-State Vibrations 

Figures 15, 16, and 17 show the amplitudes and phases of the vertical displacements 

recorded under the load source and at a distance of 6 II when a harmonic vertical load is 

applied on the surface of a soil layer. The layer has a thickness of 20 ft, a shear wave 

velocity of 500 ft/s, and Poisson's ratio changes from 0, 25 (Figure 15) to 0. 35 (Figure 

16) and 0. 45 (Figure 17). The radius of the loaded area is 0. 5 ft. 

It can be seen that the amplitude reaches a peak at a frequency f», . The phase is 

essentially zero below this frequency and has a sudden jump around the frequency. As 

Poisson's ratio increases the frequency of the peak in the amplitude curve seems to 

increase slightly with increasing distance to the source and the jump in the value of the 

phase becomes a much smoother one. Additionally, it is observed that the phase starts to 

grow from the frequency', (shear wave natural frequency for the stratum), increasing 

slowly at first and has then a sharp increase around the frequency f». 

Figures 18, 19, and 20 show on the other hand the dynamic stiffness coefficients ki 

and ci for a rigid circular mat of radius 0. 5 ft resting on the surface of the same soil 

stratum. For values of Poisson's ratio of 0. 25 (Figure 18), 0. 35 (Figure 19), and 0. 45 

(Figure 20), the results shown are the stiffness coefficients for horizontal and vertical 

vibrations. 

From these graphs, it is observed that the horizontal stiffness coefficient ki has a first 

dip at the natural frequency of the stratum in shear for any value of Poisson's ratio, while 
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the c& coel'ficicnt has a value of zero below this frequency. Once this frequency is 

reached, the ci coefficient abruptly increases. For the cases ol' the vertical stiffness 

coefficients, both dynamic stiffness coefficients remain essentially constant below the 

natural frequency of the stratum in shear for any value of Poisson's ratio. Subsequently, 

the k& coefficient presents the first dip at the frequency f i„while the value of the c& 

coefficient increases around this frequency. For small values of Poisson's ratio, the 

increase of the ci coefficient is abrupt, while for larger values this increase is gradual. 

These findings, based on the study of the dynamics of a foundation, agree with the 

results from the steady-state vibration analysis for a receiver placed underneath the 

source of loading. Figure 21 shows the variation with Poisson's ratio of the fi, 

frequencies for the two different cases of receiver locations relative the first natural 

frequency of the stratum in shear. 

Finally, Figure 22 presents a summary of the findings of the different approaches 

used in this study to identify the frequencies at which horizontal wave propagation 

occurs due to thc application of vertical loads on a soil layer underlain by a rigid stratum. 

The natural frequency of the stratum in dilatation/compression, the frequency 

corresponding to the threshold of the first dispersion curve (general wave propagation 

considerations), the frequency corresponding to the minimum group-wave velocity, and 

the threshold frequencies for the two receiver locations based on the steady-state 

vibration studies are plotted versus Poisson's ratio. 
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