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Abstract 

Detection and Removal of Functional Redundancy 

in Multi-level Logic Circuits. (April 2002) 

David Michael Dorsey 
Department of Electrical Engineering 

Texas ARM University 

Fellows Advisor: Dr. M. Ray Mercer 
Department of Electrical Engineering 

Whenever digital designs are created, they may contain many logic redundancies. 

Minimization tools are then used to remove these redundancies. The minimized circuit 

should be smaller, faster, and cheaper while still behaving like the original circuit. This 

research will focus on finding non-traditional methods for minimizing multi-level logic 

circuits. 
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Introduction 

There are many different ways to construct a multi-level digital logic function. 

Some implementations of a particular logic function are more efficient than other 

implementations. The goal of multi-level logic minimization is to transform a logic 

circuit Cl into an identical functioning circuit C2, circuit C2 being less expensive than 

C 1 according to a cost function. A cost function typically includes area, propagation 

delay, power consumption, and testability as the primary goals of the optimization 

procedure [Kunz97]. 

Logic minimization is important because current synthesis tools inefficiently 

translate a hardware description language to its gate level equivalent. After this 

translation, synthesis tools then perform logic minimization. The current method to 

minimize these circuits is through manipulation of Boolean expressions. However, as 

circuits grow more complex, memory limitations severely hinder this method as it 

minimizes the circuit [Mehler99]. 

Since there exist several different implementations of a logic function, the 

problem is moving from a complex circuit Cl to a less complex, but identically 

functioning circuit C2. For a two level logic circuit with less than six inputs, the 

transformation is relatively simple - all that is required is a Karnaugh map. However, 

above six variables the Kamaugh map loses its effectiveness [Katz94]. The two circuits 

shown in Figure 1 on the following page are equivalent circuits, yet the circuit on the left 

is more complex than the circuit on the right. 



Figure I: Different Implementations of Equivalent Logic Functions 

:C3~ E 

Another limitation of the Kamaugh map is that it always produces a two level circuit. 

This can lead to a large circuit that is efficient in terms of propagation delay, but 

possibly extremely inefficient in terms of area. Quinn-McCluskey is a computer-based 

technique for performing two-level logic minimization. It works well for circuits up to 

about 20 inputs, but the complexity of the approach grows exponentially with the 

number of circuit inputs [McCluskey86]. 

Reducing a multi-level logic circuit to a more efficient implementation is much 

more complex than two-level logic minimization. Even constructing a truth table for a 

moderate size circuit can prove overwhelming. If a circuit has n inputs, there are 2" 

input combinations. A circuit with forty inputs has over one trillion input combinations. 

There are several algorithms to reduce multi-level logic circuits. Boolean algebra is a 

commonly used tool. A circuit is translated to its Boolean algebraic equivalent and then 

is minimized through the properties of Boolean algebra. The major limitation of this 

approach is the memory requirements needed to perform these calculations on a 

computer [Katz94]. 



Since it is not always possible to check every input combination (pattern) for a 

circuit, methods have been developed to model a circuit's behavior based on a relatively 

small amount of input patterns. Automatic Test Pattern Generation (ATPG) is the tool 

that is used to thoroughly test a logic circuit using only a small amount of input patterns. 

When a point internal to a logic circuit affects the output of that circuit, then that 

point is said to be observable. If two points are at exactly the same value every time 

those points are observable, the points are weakly equivalent. A fault simulation tool 

can be used to identify when points on the circuit are observable and when values at 

those points do not matter. If two circuits have the possibility of being compatible, a 

miter circuit can be used to validate their equivalence. A miter circuit uses an exclusive- 

or gate to compare the output of the current circuit and the output of the possible new 

circuit. An exclusive-or gate is used because it will output logic one if the outputs of the 

circuits differ. If the output of the miter circuit is both observable and logic one, these 

two circuits are not compatible and the possible new circuit cannot be considered to be 

an appropriate transformation from the original circuit. In order to make this 

determination using an ATPG tool, the output of the added exclusive-or gate in the miter 

circuit is considered to be stuck-at-zero. ATPG is then used to try to detect the stuck-at 

zero at the output of the exclusive-or gate. If a full test by an ATPG detects this fault, it 

means the two circuits were not equivalent when the point was observable. In such a 

case, the potential transformation from one of the circuits to the other is then discarded 

because the two circuits are not compatible. While this approach has the advantage of 

using any one of a set of commercially available logic tools that regularly run on circuits 



with millions of gate, a full test by the ATPG in some cases can be a time consuming 

task. 

An alternative method to Boolean manipulation is to reduce gates in a gate 

netlist. Previous efforts in this area have met with success. The Texas Aggie I. ogic 

Optimizing Netlister (TALON) was shown to be comparable to commercial tools and 

could be used in addition to commercial tools. TALON uses single stuck-at fault 

simulation for a limited number of input vectors to portray the full set of input vectors. 

For each point in the circuit, there are three values 

1. Stuck-at zero 

2. Stuck-at one 

3. No stuck-at fault detected. 

If there is no fault detected, the value at that point does not affect the output. TALON 

then checks to see if points in the circuit are compatible with other points in the same 

circuit. Two points do not have to be the same for all input vectors to be exchangeable; 

they only have to be the same when that point in the circuit has an effect on the output. 

TALON minimizes a circuit in a step-by-step manner. TALON investigates one 

potential transformation and verifies the validity of that transformation. It then tests the 

newly created circuit again for any possible redundancies [Mehler99]. 

This research seeks to enhance this process by finding new rules to minimize 

logic circuits. 



Procedure 

To find rules for minimization, we had to decide how many switching variables 

to use. Three switching variables create 256 different functions while four switching 

variables create 65, 536 different possible functions. Three switching variables create a 

manageable number of functions, but we decided it was too few functions to be 

interesting. However, four variables gave us so many functions we had to find a way to 

bridge the gap to a more manageable number of functions. 

This gap was bridged by functional isomorphism. This takes advantage of the 

similarities between many functions. Constructing a logic function can be viewed as a 

two-step procedure. The first step is to define the structure of the circuit and assign gate 

types. The circuit itself is then considered "inside the box. " In our research, this box 

was limited to four inputs and one output. 

Figure 2: Two Isoinorphic Functions 

Box A 
B 

Out Box A Out 

The second step assigns variables to inputs and possibly inverts any input and the 

output. This is done "outside the box. " It has no affect on the internal structure of the 

box. Figure 2 shows two isometric functions; they only differ outside the box. 



Inversions are shown through "bubbles", as shown inputs of C and D and the output of 

the function on the left. Depending on how step two is performed, different functions 

can be generated. However, all the functions created during step two are isomorphic to 

each other. Two functions, A and B, are said to be isomorphic to each other if function 

A can be transformed into function B by inverting the output, inverting one or more of 

the inputs, reconnecting the inputs in a different order, or any combination of these. 

When we applied this idea to all functions of four variables, we reduced the 

effective number of functions from 65, 536 to 222 — a reduction of over 99%. In 

addition, fourteen of these are degenerate functions. A degenerate function is a function 

that is not dependent on all the input variables. This leaves us with only 208 

fundamentally different functions in our set of interest. 

With this reduction, we set out to find rules to minimize the suucture inside the 

box. To do this, we started by looking at all possible non-isomorphic structures of three 

and four gates. Isomorphic structures are structures that are laid out differently but are 

fundamentally the same. Figure 3 gives an example of two structures isomorphic to each 

other. As you can see, the bottom one is merely the mirror image of the top one. 

Figure 3: Two isomorphic Structures 



We created all non-isometric structures of three and four gates. For three gates, 

there are only two different structures. We used successive extension to get Irom the 

simple three gate structures to the four gate structures. This technique adds a gate at 

every unique point of the circuit. It then adds a fan-out from every other unique point of 

the circuit that would maintain the circuit as a combinational circuit. We did not want a 

sequential circuit because ths would fundamentally change the nature of the logic 

function being realized. When we applied this to the three gate structures, we found 

thirty unique structures of four gates. 

We also limited the gate types that went inside the box to five different two-input 

gates. They are the AND gate, the AND gate with one input inverted, the AND gate 

with the other input inverted, the AND gate with both inputs inverted, and the XOR 

(exclusive-or) gate. This set is one minimal set of gates that can realize every possible 

switching function for any given structure. 

With these results, we were then able to make circuits and analyze them to find 

rules to move from a one structure to a more nearly minimal structure. Our procedure 

was to create all possible circuits and then identify what function they produced. Once 

we identified the function, we transformed it into the representative function for that 

isometric family and stored the structure. We called the process of identifying and 

transforming to the representative function "spinning. " A by-product of spinning was 

the creation of identical circuits. We used a concept called "bubble pushing" to keep 

only one copy of identical circuits. Since spinning can invert inputs, we push these 



bubbles (inversions) inside the box. Once the bubbles are inside the box, the circuit is 

changed depending on the gate type and the location of a bubble. 

After creating and classifying every possible circuit for all three and four gate 

structures, we had some interesting results. 

Results 

There are 250 different possible circuits of three gates divided evenly between 

the two non-isomorphic structures. These circuits realized only 18 of the 222 different 

isometric families. With three gates, we could realize less than 9 10 of the total number 

of non-isomcntc logic functions. In addition, after eliminating all redundant circuits 

from the original set of 250, only 22 unique circuits remain. 

There are 18, 750 different possible circuits formed of four two-input gates, and 

they are divided evenly among thirty non-isomorphic structures. However, these circuits 

only realized 59 of the 222 different non-isomorphic logic functions. This is still less 

than one-third of the total number of functions. All but one of the functions realized 

using three two-input gates were also realized by at least one of the circuits formed using 

four two-input gates. 

Analysis 

It is surprising that all possible circuits of three and four gates create only 27'/o of 

the 222 potential non-isomorphic functions of four variables. This means that the 



majority of the functions minimize to five gates at best. This is important because we 

need to know when we arrive at the minimal circuit for any given function. 

Despite only creating 27% of the functions, we were able to find some simple 

rules for minimization. For the four two-input gate structures and three two-input gate 

structures that realized the same function, every one of the four two-input gate structures 

contained structural redundancy. Figure 4 shows a simple example of a structural 

redundancy. In this example, the logic operation "A and B" is performed twice. Only 

once is necessary; the second gate does not accomplish anything. We can detect 

structural redundancy in this case by determining that if the upper "A" input is fixed to 

the value of logic I, the realized circuit function is not changed. This suggests 

replacement of the first AND gate by the primary input "B, " and this step results in the 

desired minimum realization. 

Figure tn An Example of Structural Redundancy 

Using isometric functions and isometric structures to reduce the amount of data 

to analyze was an important achievement of this research. As indicated in the Results 
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section, the 250 possible circuits of three gates were reduced to merely 22 — a reduction 

of 9 L2'/0. The level of reduction for the four gate structures is similar. 

Conclusions i' Future Work 

Eliminating redundant circuits by using spinning and bubble pushing is an 

important step in our logic minimization research. Spinning allows us to easily identify 

and transform a function into the representative function of that isometric family. 

Bubble pushing allows us to eliminate most of the circuits created by spinning because 

they are identical. 

Much future work is needed in this area. One area udll focus on finding circuits 

that realize the 162 functions that we have not yet created. We do not know the 

minimum number of gates needed for most of the functions out there and finding them is 

an important step. Another area, and in my opinion the most important area, is finding 

reductions or transformations to move from a complex circuit to a more minimal circuit. 

Lastly, work is needed in the creation of isomorphic structures of five or more gates. 

Creating the isomorphic structures of three and four gates was a simple task to do by 

hand, but creating all the five gate structures will be too time consuming because of 

sheer numbers. This process will need to be automated by a computer program. 
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