View metadata, citation and similar papers at coren@ndtkto you by

provided by Texas A&M Repository

AN IMPLEMENTATION AND ANALYSIS
OF A

RANDOMIZED DISTRIBUTED STACK

A Senior Honors Thesis
by

DUSTIN CHARLES KIRKLAND

Submitted to the Office of Honors Programs
& Academic Scholarships
Texas A&M University
In partial fulfillment of the requirements of the

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOWS

April 2001

Group: Computer Science

https://core.ac.uk/display/6085979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN IMPLEMENTATION AND ANALYSIS
OF A

RANDOMIZED DISTRIBUTED STACK

A Senior Honors Thesis
By

DUSTIN CHARLES KIRKLAND

Submitted to the Office of Honors Programs
& Academic Scholarships
Texas A&M University
In partial fulfillment for the designation of

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOW

Approved as to style and content by

gkﬁ . :.%(. Wbl /%WJRIJW
Jennifer Welch Edward A. Funkhouser

(Fellows Advisor) (Executive Director)

April 2001

Group: Computer Science

ABSTRACT

An Tmplementation and Analysis
of a
Randomized Distributed Stack. (April 2001)
Dustin Charles Kirkland
Department of Computer Science

Texas A&M University

Fellows Advisor: Dr. Jennifer Welch
Department of Computer Science

This thesis presents an algorithm for a randomized distributed stack, a coded
simulator for examining its behavior, and an analysis of data collected from simulations
configured to investigate its performance in particular situations. This randomized
distributed stack represents an experimental extension of the probabilistic quorum
algorithm of Malki et al. [5,4] and the random regular register of Welch and Lee [3].
Employing the probabilistic quorum algorithm in the same manner as the random regular
register, the randomized distributed stack stands to positively affect the load and
availability of a system. Popping this randomized distributed stack, however, sometimes
returns incorrect values. Analysis of the data assembled reveals two interesting
conclusions: 1) as the number of uninterrupted pops increases, the variance of the pop

success percentage increases, and 2) for a fixed quorum size percentage, a larger system

of data servers yields a higher pop success percentage. Further research remains to fully

characterize and generalize the behavior of the randomized distributed stack.

Dedicated to my loving parents,

Allen and Donna Kirkland

ACKNOWLEDGEDMENTS

In addition to Dr. Welch’s counsel, I would like to acknowledge her graduate student,

Hyunyoung Lee. Her suggestions and ideas are much appreciated.

vii

TABLE OF CONTENTS

Page

ABSTRACT............ooooo TP TR iii

DEDICATION. ... v

ACKNOWLEDGEMENTS [T vi

TABLE OF CONTENTS s S - vii

LISTOFFIGURES. ... viii
CHAPTER

I INTRODUCTION. ...t 1

)i ALGORITHM....................... e 5

m ANALYSIS 7

Parameters.....................o 7

Simulation .. 8

Results. 16

1\% FUTURE RESEARCH B P 21

Measurements 21

Applications e 21

Other Algorithms...................... s 22

\% CONCLUSION e PP R 23

REFERENCES R 25

APPENDIX A... 26

APPENDIX B....oo 33

APPENDIXC................ UTTTR T 40

VITA ... L . 48

viii

LIST OF FIGURES
Figure Page

I Distributed Shared Memory. 2
2 Simulation | Sample Parameter Entry................ F 10
3 Simulation 1 Sample Initialized Empty Stack....................... . 10
4 Simulation | Sample Push Performed....................... . 11
5 Simulation | Sample Pop Performed. ... 11
6 Simulation 2 Sample Parameter Entry......_............................ 13
7 Simulation 2 Sample Results_................ P
8 Simulation 3 Sample Automated Command Line Execution............ 15
9 Simulation 3 Sample Output Text File................. 15
10 Results of the Push Pop Pattern Simulation. ... 17
11 Results of the Random Pattern Simulation. e 18
12 Results of the /000-Push 1000-Pop Pattern Simulation.................. 19

13 Averages of the Results of the 1000-Push 1000-Pop Pattern
Simulation with 1-Standard Deviation Error Bars.. 20
24

14 Graphof 1—¢ " versus £ B

L. INTRODUCTION

A data structure is a method of organizing information and its storage allocation
in a computer [2]. Conventional examples include lists, stacks, queues, trees, graphs,
and hash tables. Perhaps the simplest data structure is a single, simple variable called a
register that can be read and written. In a typical, sequential, deterministic environment,
these data structures behave very reliably and predictably.

Distributed computing describes the concept of multiple components working
together in parallel, rather than sequentially, to solve a problem [1]. These systems
accomplish parallelism through shared data structures (distributed data structures) on
several different levels. Algorithms that optimize the advantages of parallel processing
using shared data structures can be complex and expensive. Improving techniques,
simplifying the algorithms, and refining approaches associated with distributed data
structures is important.

Randomization occurs when an algorithm performs different actions depending
on the values of randomly selected numbers, sometimes producing completely different
output [3]. Randomization can simplify algorithms, improve efficiency over non-
randomized counterparts, and sometimes allow the existence of a solution when there is
no deterministic solution. The tradeoft is that randomization cannot guarantee absolute
correctness in every situation and sometimes, unpredictable behavior is not tolerable. It

is important to realize when randomization is a viable and desirable solution

¥ This thesis uses the /EEE

Transactions on Computers journal as a style guide.

A randomized distributed data structure is a concept in computer science that
combines the three terms described above. One application of randomized distributed
data structures is implementing shared variables in a distributed system, shown in Figure
1. In this sort of system, applications invoke and receive responses from distributed
shared memory (DSM), which consists of high-level modules that hide the
implementations of the randomized distributed data structures within. The intent is for
applications to use the distributed shared memory as they would use conventional data
structures. The distributed shared memory, then, employs special algorithms and
communicates with the data servers over the network by sending and receiving messages

to access the data

""" N m\ol\
DSM. » App. | App L :
wnd presive oot
o S ——
M LJ_Ne‘W“—U T
T TN STV T
Server Server ~~~~~~ Scrver Servef,

Figure 1: Distributed Shared Memory

There are several ways of implementing the distributed shared memory. In one

model, there is one master server that maintains the data. The problem with this design

is that the entire system is dependent on the availability of the master server. A second
model improves this availability weakness of the first model using redundancy. Here,
cach server maintains an updated replica of the data. In some systems, this can
overwhelm the Joad of the busiest replica server with update messages constantly being
passed.

There are some applications that need reliable availability but also want to keep
the load at a suitable minimum. This can be accomplished with each server keeping a
local copy of the data, but not publishing updates to every server on the network. The
basis for my research lies in a refinement of this idea by Malkhi, Reiter, and Wright,
researchers at AT&T Labs.

Malkhi et al. propose a Probabilistic Quorum Algorithm (PQA) [5.4] to
implement shared variables that optimizes load and availability. This algorithm
implements a simple read-write variable in a message-passing system. To read this
variable, messages are passed to all members of 2 quorum (a selected subset of all
available data servers). The latest value present in the quorum is chosen and returned to
the reading process. Similarly, a request to write a vanable is passed as messages to a
quorum and the latest value is stored. These quorums are chosen randomly. As the
quorum size increases, more messages are passed and the network traffic increases, but
subsequent quorums more often overlap and the probability of returning an out-of-date
value decreases. The quorum size should be carefully chosen to balance the network

load with the accuracy requirements of the application operating on the data.

w

The advantageous performance as analyzed in [5,4] seemed to Welch and Lee as
an interesting and potentially valuable distributed tool. Here, Welch and Lee defined
more complete semantics for the random regular register, suggested techniques for
programming effectively with them, and identified classes of applications that can
tolerate the more tenuous operation of a non-deterministic variable while profiting from
the improved load and availability in the system [3].

Many distributed algorithms use more complicated data structures than simple
read-write registers. Yelick et al. have studied parallel realizations of these data types,
helpful in symbolic algebra, phylogeny trees, and eigenvalue computations [8,7].
Perhaps some of these algorithms need sustained availability yet desire a controlled load
on the system. These cases may well benefit from randomized distributed
implementations of these advanced data structures

Randomization can be a powerful tool in simplifying coded algorithms and in
providing rather simple solutions to some problems that are difficult in a deterministic
environment. When the resources are available, distributed computing can solve
complex problems better than sequential or concentrated computing. Distributed
systems share data when working together. This can be a difficult problem when trying
to provide good load and availability while keeping the system simple. The research
herein described attempts to extend randomized distributed data structures beyond the

random regular register so as to provide solutions to this problem

1. ALGORITHM

In reality, programmers often use more complicated data structures than simple
read-write registers to more conveniently accomplish certain tasks. One such data
structure is the stack. A stack is a growable/shrinkable data structure wherein write
operations “push” new values to the top of the stack and read operations “pop” the most
recently pushed value from the top of the stack. The stack uses what is also known as a
“last in, first out” (LIFO) discipline [2].

In the research [performed, I sought to define, characterize, and analyze the
performance of a stack data structure operating in a randomized distributed environment
according to the Probabilistic Quorum Algorithm. Below are the specifications for a
base case algorithm. In this simplest scenario, there are multiple data servers, each
server storing a replica, or local copy. of the stack. Each server also associates an
assigned timestamp to its replica. There exists a single application that pushes and pops
To push or pop the randomized distributed stack:

1. Choose a quorum of a given size at random

2. Examine the timestamp of each stack selected in the quorum

3. Select the stack with the greatest timestamp

4. Perform the desired operation (push or pop) on the selected stack
5. Update the selected stack’s timestamp

6. Publish the modified stack and the new timestamp to every server in the quorum

A more realistic system utilizing a randomized distributed stack may necessitate
multiple-popping applications and/or muitiple-pushing applications. The multiple-
popper and multiple-pusher situations presented a more complicated problems than I was
able to consider without first examining the most basic case. For these more
complicated cases, additional rules are needed to manage overlapping pops and pushes
and to coordinate the synchronicity of the timestamps. Therefore it is my intuition that
the base case behaves most favorably and most simply as compared to the others.
Analysis thereof provides an upper bound best-case performance of the randomized

distributed stack.

I11. ANALYSIS

Parameters

There are four basic parameters configurable for the test simulations. These are
described below.

Number of Servers: This variable represents the integral number of data servers
available to the system. Each server stores a replica of the stack and a timestamp
associated with that stack.

Quorum Size: This variable represents the integral quorum size the system will
select each time a push or pop is requested.

Number of Operations: This variable represents the integral total pushes and pops
the simutation will perform before terminating.

Pattern: This is a selectable variable that determines the pattern at which pushes
and pops are interleaved. This simulation can test the following regularly interleaved
pop patterns: push/pop, push/push/pop, push/push/push/pop. It can also test a random
pattern, where pushes and pops are equally likely to occur. Finally, the simulator can
test a pattern that continuously pushes 1000 items onto the stack, and then continuously

pops 1000 oft of the stack.

Simulation

I designed and coded a software simulation that implements the randomized
distributed stack according to the above specifications. Note that the objective of this
simulation is not to benchmark the performance of the randomized distributed stack in a
particular existing application. Rather, the objective of this simulation is to collect data
and better describe the behavior of the randomized distributed stack by extrapolating
from the tested situations.

1 used Perl, CGI (Common Gateway Interface), and HTML (Hyper Text Markup
Language) in coding three versions of the simulator. Perl is a treely available,
interpreted programming language. The Perl interpreter takes Perl code and generates
relatively fast and efficient C code. The true power of Perl is the ease and speed at
which a knowledgeable developer is able to solve sophisticated problems. CGI is an
indispensable tool for web developers designing interactive, input-driven browser
applications [6]. Tused Perl, CGI, and HTML to rapidly develop a powerful application
with which 1 could interact through the convenience of a web browser.

1 developed three simulators that implemented the randomized distributed stack
Though there are only slight variations among the three, each is tailored for a specific
examination of the performance of the stack. Descriptions of each of the simulators and
screen captures of the simulations in execution follow immediately. The source code is

found in the attached appendices

Simulation 1. This simulation initiates when the user submits an HTML form
specifying the user’s desired number of servers and quorum size. The user is then able
to very meticulously and surgically push and pop the randomized distributed stack
according to any particular push-pop pattern desired by subsequently choosing a push or
pop button. This simulation is not designed for collecting large sums of data due to its
reliance on user input. However, it is handy for precisely examining a given situation.

Figures 2-5 are screen shots demonstrating Simulation I in execution. Figure 2
shows the HTML form in which the user configures the parameters (the number of data
servers and the quorum size). Figure 3 reflects the input parameters and allows the user
to select a push or a pop operation. Figure 4 demonstrates the results of a push
operation, including the selected quorum, their timestamps, the selected server, and the
value to push. Figure S shows the results of a pop operation, including the selected
quorum, their timestamps, the selected server, the value that was popped, the ideal value
that should have been popped, and the status of the latter two matching. See Appendix

A for the documented source code.

ETEERE PR o e it 1 .
R e p——y—] 7] w0

Wamber of g Inteprai amber of servrs to arucipate n i sl of aracdoguzed diibued
Sev stack

Quorum Size 3 Insegral size of quorun, maust be 65 han mcber of servers

submit

|0 R gon_froms bt
| S > D D A et oy | S DG - P
e [0 AQUORL M= BAC TIChmtrert AN +] %0 |

.}
5

Figure 3: Simulation 1 Sample Initialized Empty Stack

fced O

gracT OUNT=06RUN-

Input Parameters
ACTION =puh
SERVERS
QUORUMSIZE
COINT

RIN

Selected Server
Run
Sqmr‘-s Searv

15 10, &

o]]

“itinestanpeln)

{

P —]

1
0 $tSstack(E)([0) * 1
&l bore T

® tront

Figure 4. Simulation I Sample Push Performed

53 Rendunn.ed Distriboted Stack Sinmlation - Mhcrosoft Inkernet Explorer

[Ho ER vow Fpertes Toob leb
| Bk < = -

alalx

DD Qoowd Wrewts Inawy S IT-HD
=

1% & 5 pub L -
2 10, 9% 10, pop 1 1 bt
op | pueh o

Timeste
$cimestampsiz]
scimeatemps|3)

Tstimescamps (1]
§eimescanps 2]
ftimestemps (3]
o, - R

@t

Figure 5: Simulation 1 Sample Pop Performed

Simulation 2: This is an extension of the first simulation described. The
previous simulation performs one operation per form submission. This simulation can
perform any number of operations at submission according to one of the input
parameters. Here, one uses a form to submit the number of servers, the quorum size, the
number of operations, and the pattern to execute. This simulation can perform hundreds,
thousands, or millions of push-pop operations according to the selected push-pop
pattern. The form returns a dynamically generated HTML page that describes each
individual operation. For each operation, the selected quorum and each server’s
timestamp is display, the selected server from the quorum and the updated timestamp,
the desired operation (push or pop), to value pushed or popped, as well as the ideal value
as would be expected from a deterministic stack. In addition, the simulation also
displays calculations and statistics according to the current execution, including the pop
success percentage. Finally, a histogram is displayed showing the number timestamps
off of the optimal value for each failing pop. This simulation was designed for
examining the performance of the randomized distributed stack over the course of
thousands or millions of operations.

Figures 6 and 7 demonstrate the execution of Simulation 2. Figure 6 shows the
HTML form in which the user configures the parameters (the number of data servers, the
quorum size, the number of operations, and the pattern). Figure 7 illustrates the part of
the entire results of the simulation, including a trace of each operation, output
calculations, and histogram showing the distance each popped value was from its ideal

value. See Appendix B for the documented source code

B riduizcd Dist
_Be ER you Fpemes Dok teb
kv - QD L Pewh Gufoetm Gy TV D 13

Woamber o Tntegral sumber of servers to paricipate in this siamlation of 2
Seovers candomized distriwuted stack.

Quenm Ser [Tntegral stz of quonum; mus: b less than namber of servers
Namber of Invegral cumber of operations, or rums, for the synudasonto
Operations serform

Paem Paters of e cperatiors
Verbose Outpus [t Print atrace of eachrun

[PUSH/PUSH=OR
|PUSHPUSHEUSHYPOP.

one | e

Figure 6: Simulation 2 Sample Parameter Entry

RUNS -

PATTERN POPS/RUNS) % Jo oo

VERBOSE =1 SUCCESSFIL _g
POPS.

FAILDIGECPS =5
FAILURES/ =

RUNS) % 250%

Quumm Selected Server Led FALTRSS/ =
R SeryoT e St STy Time Sy Vilie Vame POPS) % 500%%
0 P PUSE 1 -

B » . Missed by

Dors Not 5
N

E SN % o I
203 1 9 3, PUSE 2 -
305 L 1 POP 2 2 Matchest
4 5 101 s P 2 .

Eome

Figure 7: Simulation 2 Sample Results

Simulation 3: This simulation is a slight modification of Simulation 2 in
conjunction with a wrapper script. In addition to using a web browser to send and
receive input and output, Perl programs can receive input parameters through a
command line interface and output data to files. Rather than manually entering every
combination of parameters and manually collecting the results of my test runs, I slightly
modified the simulator code. 1In this version, the simulator takes each of its input
variables as parameters on the command line program call. A very brief wrapper script
contains a series of nested toops that calls the simulator program with each combination
of the varying parameters. After each execution, it appends a tab-delimited list of output
calculations to the specified output file. This file is easily and immediately loaded into a
spreadsheet for analysis and graphing.

Figures 8 and 9 demonstrate the execution of Simulation 3. Figure 8 shows part
of the command line execution of the wrapper script that repeatedly feeds the simulator
different combinations of parameters. Figure 9 iliustrates part of the entire results of the
simulation as was written to a text file in tab-delimited format. See Appendix C for the

documented source code.

e rmam
) a
X3

1teration
iteration

terat ion
iteration

EEECTEINY ﬂqqqqqqqquq“qqqqq"“‘“"‘"‘“’"

=

1 000 7] 3 72 50 52
1 w0e 7 o 72 89 58 50
1 000 7 o a4 a1 7 53
1 woc 7 o a8 83 k) 59
1 woe 7 3 = 02 e s6
2 wos 7 o 245 148 g7 o
z wou 7 9 213 167 e a1
H oo 7 2 243 e es 0
2 w00 7] 223 14 1w m
2 w000 7 o 26 13 96 56
3 1000 7 o ass 18 77 a5
3 000 7 o 441 188 M %7
3 w000 7 o 429 182 ™ sa
3 w00 7 o a8 11 e 55
i 000 7 o as as 77 50
1 w00 7 o 72 w0 37 2
3 w000 7 o 26 106 a0 23
a w000 7 o 60 10 4z s
1 w00 7 o w7 a3 25
3 woa 7 o 0 1 4 s
s w7 o s 1m M i

s wo 7 o ass 22 . 4

s 000 7 o 527 26 w .

s w0 7 o 947 16 10 H

s w00 7 o s 16 3 1

1 woe 7 o n 50 31 10

et EdvalUn4000TAS — 3on Gogvaeris —

Figure 9: Simulation 3 Sample Output Text File

Results

The following graphs are most representative of the results of the simulation
executions.

All of the graphs have identical x- and y-axes. The y-axes represent the
percentage of pops performed by the system where the randomized distributed stack
returned the same value as a deterministic stack would have. The x-axes represent
varying quorum sizes as a percentage of the total number of servers in the system. Using
these percentages allows for simulations of different server sizes to be displayed on the
same graph. Each simulation tested systems with 10, 20, 50, and 100 data servers. For
each level of data servers, every integral quorum size from 1 to half of the total number
of servers was tested”. For each of these quorum sizes, 1000 pops were performed, 5
separate times. Finally, 3 different push/pop patterns were applied to each of these

systems.

* If the quorum siz is over half of the total number of servers, each subscquent operation is guaranteed (o
overlap quorums. This is not consistent with the probabilistic quorum model and the load of the system
suffers with the increased quorum size.

Push/Pop Pattern: This pattern consists of alternating pushes and pops. As
mentioned above, five identical runs were recorded for each set of parameters. Note the
low variance of the five identical runs for each quorum size with the data points tightly
clustered (Figure 10). The performance of the randomized distributed stack is therefore
rather predictable for this pattern. Also, notice that as total number of data servers
available to the system increases, the quorum size percentage needed to achieve pop
success at 100% decreases. The results of push/push/pop and push/push/push/pop

patterns were virtually identical to this graph.

Push/Pop Pattern

Pop Success %

0% 10% 20% 30% 0% 50% 60%
Quorum Size/Servers %

—+—10Servers —=—20Severs S0Servers 100 Servers

Figure 10: Results of the Push/Pop Pattern Simulation

Random Pattern: This pattern randomly chooses to push or pop with equal
probability each time an operation is to be performed. Later, I generated a single,
random pattern of pushes and pops and used this pattern for all of the test runs. Both
forms of random patterns returned practically identical results. The variance of the
repeated executions is still relatively low and the results predictable. The curves closely
match those of the push/pop pattern shifted slightly right, indicating slightly worse

performance (Figure 11).

Random Pattern

Pop Success %

10% 20% 30% 40% 50% 60%
QuorumSize/Servers %

—— 10 Servers —#— 20 Servers 50 Servers 100 Servers

Figure 11: Results of the Random Pattern Simulation

1000-Push’1000-Pop Pattern: This pattern represents a common use of a stack,
where many values are continuously pushed onto a stack and later continuously popped
from the stack. Programmers expect the values to come off of the stack in precisely the
opposite order in which they went onto the stack. This pattern suggests a weakness of
this randomized distributed stack. The variance of the five identical runs for each
quorum size is far higher than in the push/pop and random patterns (Figure 12).
However, the averages of the five identical runs nearly follow the same functions in the

previous two cases (Figure 13).

—_——
1000Push-1000Pop Pattern

110% ——
100% 1
90%
80%
70%

Pop Success %

40%
30%
20%
10%

0%

0%

QuorumSize/Servers %

—#—10Servers —@—20 Servers 50 Servers 100 Servers |

Figure 12: Results of the 1000-Push/1000-Pop Pattern Simulation

20

i 1000Push-1000Pop Mean Values with Error Bars

110%
100%
90%

70%

Pop Success %
§8
Ny
|

§
H-
Ny

ao%—— T - F
T - J P
ol I | 2nt. 3 S 4 —

10%

10% 20% 30% 40% 50% 60%
QuorumSize/Servers %
[—#—10 Servers ——20 Servers 50 Servers 100 Servers

Figure 13: Averages of the Results of the 7000-Push/1000-Pop Pattern Simulation with

Standard Deviation Error Bars

21

IV. FUTURE RESEARCH

Measurements

While this research concentrated on the absolute accuracy of the randomized
distributed pops matching the ideal, deterministic stack, there are other measures by
which one might gauge the usefulness of the randomized distributed stack. Perhaps
future research on the topic should include tests on the values that are popped more than
once or never popped at all. The metric used in this research is particularly harsh toward
patterns involving repeated pops. If at some point several quorums are chosen poorly
and a single value is lost on all replicas, the system quorums can perfectly overlap for
the rest of the simulation, yet every value popped will be off by one and considered a
failure. Other forms of measurement may bring to light different strengths and

weaknesses of randomized distributed stacks

Applications

For what kinds of distributed applications are these randomized distributed stacks
advantageous to use? How beneficial can it be? These are the most important questions
this research leaves unanswered. Answering these questions will be key in motivating

further investments of time and resources in additional research

22

Other Algorithms

The randomized distributed stack algorithm used in this research is but one of

several that I considered. These are several tangents from this algorithm that may merit

further study.

Future research should certainly consider algorithms that allow for multiple-
pushing and multiple-popping applications on the network

In current simulations, the quorum size remains constant for the length of the
simulation. Perhaps additional research could include dynamic quorums that
tradeoff accuracy with network load during runtime.

In this algorithm, both push and pop quorums are the same size. Particularly in
multiple-pushing or multiple-popping scenarios, there may be
accuracy/performance advantages to having different sizes for push and pop
quorums.

The current algorithm moves entire stacks around during pushes and pops. This
could easily overwhelm a network with traffic when dealing with large stacks,
while usually only the top few values are of importance. A more efficient
algorithm may exist where a finite number of the topmost values on the stack are

passed across the network rather than the entire contents of the stack.

V. CONCLUSION

This research presents a single implementation of a randomized distributed stack

in the style the probabilistic quorum algorithm of Malkhi et al. [5,4] and the random

regular register of Welch and Lee [3]. In general, the stack is a far more complicated

data structure than a simple register. These complications are multiplied in the

randomized and distributed settings. More research remains 10 fully characterize and

generalize the behavior of the randomized distributed stack.

This research does demonstrate some particular strengths and weaknesses in the

performance of the randomized distributed stack for particular cases. Research within

the cases examined yields the following two conclusions.

1.

As the number of uninterrupted pops increases, the variance of the pop
success percentage increases. The success of a single push operation is
independent of the success of any previous operation. When a pop
immediately follows a push, the pop operation’s success depends only on
whether its quorum overlaps with the previous push operation’s quorum.
But when a pop follows one or more pops, this operation’s chances for
success are reduced since they depend on the success of each of the
previous pops.

For a fixed quorum percentage, a larger system of data servers yields a
higher pop success percentage. The shapes of the curves yielded by the

test simulations probably relate to an equation by Malkhi et al. [5] that

24

defines the probability of two quorums intersecting (Figure 13). They
prove that the probability of two randomly chosen quorums intersecting is
at least 1— e, where the quorum size is ¢+/iotalservers (Figure 14).
The exact mathematical relationship between this formula and the pop

success rate remains to be revealed.

Probability of Two Quorums Intersecting
According to Malkhi, Reiter, Wright Equation

Figure 14: Graph of 1-¢* versus ¢

{1

{21

3]

141

[5]

(6]

M

[8]

REFERENCES

Burghart, T., “Distributed Computing Overview,” July 1998, Available from

http://www.quoininc.com/quoininc/dist_comp.html#Distributed Computing
Overview

Cormen, T., C. Leiserson and R. Rivest, Introduction to Algorithms,
Cambridge, MA: The MIT Press, pp. 197-296, 1998.

Lee, H. & 3. L. Welch, “Specification, Implementation and Application of
Randomized Regular Registers.” Proc. 21" International Conference on
Distributed Computing Systems, 2001 .

Malkhi, D. and M. Reiter, “Byzantine Quorum Systems,” Proc. 29" ACM
Symposium on Theory of Computing, pp. 569-578, May 1997

Malkhi, D. M Reiter and R. Wright, “Probabilistic Quorum Systems,” Proc.
16" ACM Svmp. Principles of Distributed Computing, pp. 267-273, 1997.

Seiver, E., S. Spainhour and N. Patwardhan, Perl in a Nutshell, Sebastopol,
CA: O’Reilley & Associates, Inc., pp. 3-6 & 321, 1999.

Yelick, K. e al., “Parallel Data Structures for Symbolic Computation,”
Workshop on Parallel Symbolic Languages and Systems, Oct. 1995. Also
available from
http.//www.cs.berkeley.edu/projects/parallel/castle/multipol/papers.html

Yelick, K. et al., “Data Structures for Irregular Applications,” DIMACS
Workshop on Parallel Algorithms for Unstructured and Dynamic Problems,
June 1993. Also available from

http.//www.cs berkeley.edu/projects/parallel/castie/multipol/papers. html

27

<html>
<heads
<META HTTP-EQUIV-="Expires™ CONTENT="0">
<META HITF-EQUIV="Bragma” CONTENT="no-cache”
<META HITP-EQUIV="Cache-Control" CONTENT="no-cache™>
<title>Randomized Uistributed Srack Simulation</titlex

</hea:

<body>
<form merhod="get" action="../cgi-pin/stacksimulstion2.cgi'>
<table>
<tr>
<td align="right">Number of Servers</td>
<td><input type="text" siz name="SERVERS"></td>
<td»Integral number of servers to participate in
this simalstion of 5 cardomized distributed stack.</ta>

>
<tr>
<td align="right”>Quecrum $ize</td>
<td><input type-"text™ size=l
name="QUORUMSIZE"»</ td>
<td>Integral size of quarum; must be less than
number of servers</td>
<
<tr>
<td colspan=3 align="center"> </td>
<ta>
<input type="hidden" name="ACTION”
values"entesz"»
<input type="hidden” name="COUNT" value=0>
<input type name="RUN" value=1>
<input type=Tsubmit® values"submit":
</td>
</rr>
</table>
</ forms

</body>
“<fhtmix

#!/usr/local fbin/perl

Global variables passed through the URL:

SSERVERS - Number of servers in simulation
& SQUORUMSIZE - Size of quorum to select

¥ SRUNS - Number of runs to perform

$DISTRIBUTION - Distcribution of pops/pushes

sub printstack (8} {
e s e e ST P ST PSS

Function s printstack (STACK)

¥ Arguments : STACK - Array of stack %o be printed

Return T SUM - Checksum of all elements in the atack

This function will print the contents of a stack stored
i an array to L tacie

brror Codes : None

T A T A L S R

Locally scoped variabies
my (8s, $i, Ssum};
Inpet argument

print ("<table><tr colspan=»><ta>Dump of
Stack</th></tra<tra<th>Index</th><ri>Value</Tho</tr>in) ;
for ($1=0; Si<scalar(@s); $i++) {
print ("<tr alig nter><td>$i</tdr<td>Ss |81} </td></tr>\n");
Ssum = Ssum + $3($3]

i
print ("<trr<rd> </tEbatd>Enbsps </ td><taSsums/ td </ trad/ table>"
rezure ($suml;

sub selectquorum (] {
L S T e LIS S EEy

4 Function : selectquorum (}

Rrquments : None

i This function acts on the globally scoped variables

$QUORUMSIZE and $SERVERS

Return : QUOKUM - Array of indices tc rapdomly selected group of

servers

¥ Error Code:

e e e € B AR

Locally scoped variables
my iéquorur, @choser, $server);
s = 0;
while [$1<$QUORUMSIZE} {
§server = int{rand{$SERVERS]) + 1;
if (1$chosen{$server})
push (8quorum, Sserver);
Schosen($server)

1
i

return {@quorum;

sub selectserver (\@\@) {

355505500500 55505535 5555355555553 555250 NP II PS5 SbE IS IS NSNS
Function Bl crngerver [QUORUM, TIMESTAMPS)

¥ Rrguments QUOKUM - array of irdizes to the chosen quorum of servers

28

¥ TIMESTAMPS - Array of timestamps for each server in the set
Return : SELECTEDSERVER - Index of the most currently timestamped

server

Frror Codes : None

F R R R e S R e e

Locally scoped variables
my (@quorum, Stimestamps, $server, $newesitimestamp, 3selectedserver);
Gquorum = &{$_{01}:

Gtimestamps = 8{3_[1]];
Snewesttimestamp = -~99999;
foreach $server (Bquorum) {
if ($timestamps(Sserver] > Snewesttimestamp) !
Snewssttimestamp ~= S$timestamps[Scerver);
sselectedserver = Sserver

}

return ($selectedserver):

sub updatequorum (\@\E$) |

B T - T
Function updatequorum (QUORUM, NEWSTACK, NEWTIMESTAMP

4 Rrguments QUORLM ~ Array of indices to the chosen quorum of servers

NEWSTACK - Array of the newly pushed/popped stack

NEWTIMESTAMP - Timestamp for all of the newly updated servers

¥ Keturn o on completion
[
#

Error Codes None
B T T s

Locally scoped variables

my (Bquorum, @newstack, Sserver, Snewtimestamp);

Gquorum = @{$_[0]);

@newstack = 8($ [1]}

Snewtimestamp = $ [2];

foreach Szerver (Eguorum) |
@(sstack[sserver]} = Bnewstack;
Stimestamps[Sserver] = $newtimestamp;

eturn 07

sub loaddata (3] (

T e R S IS e PP
4 Functien : loaddata (FILENAME!

Arguments SILENAME - S$tring rawe of file to jcad

Return : 0 on successful file load

Ttis function reads » file and evaluates the contents.

L] In the context of this simulation, Lhis function will

load the values of the all variables used in the last

run of the simulation.

Zrror Codes : 1 if file dues nut exist

R T T Rt

4 Locally scoped variables
if (-e "S$filename") [
my (3filename, @lines, Sline);
3filename = $_10];
open (FH, $filenamel;
Blines <FH>;
clese (FH)G
foresch Sline (@lines)
Evaluate each jine as a legal Per! expression

29

30

eval (Sline);

return C;

return 1;

sub storedata (S} {

L T T T ST E IS S TP TR S a e
Function : storedata (FILENAME]

4 Arguments : FILENAME - Siring name of file to which to write

Return 1 0 on completion

% This function will dump the values of each stack, the

ideal stack, and the timestamps to a file. The file

4 will consist of legal Perl assignments of variables

[so thac the entire contents of the file can be loaded

q 4s legal Perl expressions,

Error Cides : MNo

L R R L T S N A LTI TITRILL

4§ Lecally smoped variables
my (SEilename, 31,
$filename = ¢_{0);
open (FH, ">$Tilenamen;
Lar {$:=1; $1<=3SERVERS: 3i++i {
print FH ("\Stimestamps{$1] = $timestamps($3):\n"1;
for (85 s<scalar(@{Sstack($i]1) S534)
print FH (" AS{\$stack[511}[$3] = 3{Satack($i]i($il;\n"):
}
i
print {"\n\nm)
for ($i=0; Si<scalari@thestack); $ise) {
print FH {"\S$thestackl$tl = Sthestack|$il;\n"i;
i
close (EH);
b
R0 BN A (R YL g AR A KA R g R R
{ Main Bedy of Simulator
R e e R L e R R R e R S T R R R R L LR LR T

4 HTML Headers, eto.
print “Content-type:text/hmiinis
rint "htmly<head><titlelRindomized Distributed Stack
Simulatione/title>e/head>\n";
print "<oody>\n®;

¥ Pacse the irput parameters oub of the query string and svaluate them into
the globally scoped varisbles, and then print

vrink i"<3 href=/cpsndBS/stack2.html>Restart Simulation<hr>"
3str = $ENV{'QUERY STRING'!;

@params — split (/&/, $str):

print ("<tables<tr><td valign=top>\n®);

print ("<rable>crr><th>Input Faramerers</th></tr>")

foreach Sparam (@params) {

eremp - split (/=/, Sparam);

eval ("\S$temp[0} ~ 'Stemplli'™);

Print ("<ir><te>$temp(h] </Tad<td>s Stemp(ll4/tdvesiit

i
print ("</tables<nrst);

¥ Data dump file name
sfilename = "iemp.data™;

§ HTML dump file name
shtmltilename = "temp.html

pravious contents of file
open (FH, $filename);
@befcre — <TH»;

slose (FH);

if ($ACTTON eq "enter™) {

§ 1f the simulator is now being entered, delote all old data store in the files
if {-e S$filename) [
unlink (Sfilename);

Initialize the timestamps to zeco
open (FH,

for (Si=1; svsssswras- sien o
print FH !"\Stimestamps(Sil

nti

}
close (FH];

e
Otherwise, act as if a push or pep will hagpen

Load the existing variables from
loaddara (“$filename®):
Choase a querunm
Bquorum = selestquorum(l;
b Print the table header
rint {"<table cellpadding=3 celispasing=3 border=1><tr><th>Run</th><th
colspan=$QUORUMSTZE>Quorunchr>Server_{TimeStamp}</ th><th>Select ed
Server
Server_{NewTimeStamp}</th><th>Action</th><th>Value</th><th>Ideal
Value</th><th»Status</ th></ trr<tr>");
Load the existing HTML
open (HTML, "$htmlfilenume™;:
Bhtm) = <HTML>»;
close {HIMLI;
Append to the HTML file
open (HTML, "»»Shtmifilename™);
peine HIML ("<rrsend riters3RUNG/ td»\n"
print ("€ntml7);
print ("<td alig
Print the gusrum
foresch Sserver (dgucrum)
print ("<td>$sorver_{Stimestarps |Sserver]}</td>"i;
print KTML ("<tdoSserver_{Stimestamps|$server]}</is

rtervSRUNC/TE>\n");

b

§ Choose the best server from the quorum
$selectedserver = selectserver (équorum, @timestamps):
$rewtimestanp = $timestomps|Sselsctedserver! ¢ 1;

if ($RCTION eq "push™) |
SCOUNT+

Svalue $TOUNT ;.
Sideal = "--";
$status = "\ :":
Push onto the idesl stack, and the chosen stack
push (Ethestack, Svalveli
pust. (8(istackiSselectedserver]), Svalue);

i
elsif (SACTION eq "prp™) [
§ Pop from the ideal stack and the chosen stack

31

SR

32

$ideal = pop (Bthestack);
Svalue - pop (8{Sstack|$selecredserver]));
if (Sideal == Svalue) !

status - "hit

1
else {
$status

)

Update the entire guorum with the new stack
updateguorum (@quorum, #{Sstack{$selectedserver]}, Snewtimestamp

Store all of the data to fiie
storedata ("S$iilename!
SRUN++;

Print the resulfs to the current HIML page, and store it o the HTML file
print t"<td

align-venter>$selectedserver_{$timestarps [$selentedserver]}</td>\n");

enter»SACTIONS/ Lasin®};

center>Svalues/td>\ani;

nterr$ideal</td>\n");

Enter»S5TatUS/ L/ Lra\nT) 5

print ("<td alig
print HTML {"<rd

Terr3selectedserver<suphStinestanps|$selectedserver] </subs</td>\n");
print HIML ("<td align-ccenter>$ACTIONG/id>\n
prine WIML {"<td enter>dvaluec/tas\n")
print HTML ("<td
print HTML ("<td
print ("</table>\n";;
closze {HTML):

enterv$statusd/td></Lrxn");

}

i Create the push and pop buttons
print ["<table»<tr><td><form method=get acticr
type=submit name=ACTION valus=pop>");
print ("<input type-hidden nam
A3me=QUCRUMSTZE +alue=SQUORLMSIZE><input Lyp
typeshidden name=RUN value=SRUN></form></td>
print ("<td><form method=get actic
name=ACTION value=push»");
print ("<input type=hidden nawe=SERVERS value-$SERVERS><input type=hidden
name=QUORUMSTZE value=S$QUORIMSIZE><ingut type-hidden name=COUNT value=$COUNY »><imput
typeshidden rame=RUN value=$RUN></formsc/odea/ trne/Tablasin®!;

=stacksimulstion? . cgl><input

ERVERS value=$SERVERS>Cinput type=hidder.
idden name=COUNT value=SCOUNT><input |

tacksimulationZ.cgi><input type=submit

LE (SACTION ne "erter™) |
cpen (FH, $Zilenamei;
Bafter <EH»;
close (FH);
rint ("<table border=iv<rrs<td valign-top><pre> Bbcforec/preeitda<td
valign=topr<pre> fafter</pre></td></Tr></table>\n"};

JRtmlskestart Simulation</ad"

print {“chr><s fref=jcpecdddistach
print (7</body></htri>in"i;

APPENDIX B

HTML Source Code for Submission Form

Documented Perl Source Code for Simulator 2

33

34

<htmis
<head>
<META HTTP~EQUIV="Expires" CONTENT="0">
<META HTTP-EQUIV="Pragma” CONTENT="no-cache™>
<META NTTP-EQUIV="Cache-Contrel” CONTENT="no-cachevs
<title>Randomized Oistributed Stack Simulation</title>
</head>

<body>
<form method="get” action-"../cgi-bin/stacksimulation3.cgi">
<table>
<o
<td align="right">Number of Servers</td>
<td><input type="text" $ize=d name="SERVERS":</td>
<td>Integral number of servers to participate in
this simulation of a randomized distribured stack.</td>

</tr>
<tr>
<td align="right">Quorum 5ize</td>
<id»<input type="text" sizes
name="QUORUMSIZE"></tad>
<td>Integral size of guorum; must be less than
number of servers</td>
</ftre
<tr>
<td align="right">Number of Operations</td>
<td>cinput type="texr® sizeq name-"RUNS"></td>
<td>Integral number of perations, or runs, for the
sinulation to performe/tad>
</tr>

<td align="right">Pattern</td>

<td>
<select name="PATTERN">
<option selacted
value=2>BUSH/ POP</cpticn>
<opticn
value=3>PUSH/ BUSH/BOB</option>
<opticn
value=4>PUSH/PUSH/ PUSK/ POB</option>
<iselect>
</ra>
<td>Pattern of the operations</td>
<z
<td align="right">Verbose Output</td>
<td>
<select name="VERBOSE">
<aption selected
walue=1>YES</opt ion>
<option value=0>NO</option>
</select>
</ed>
<td>Print a trace of cach rin</td>
<trs
<td colspan=3 align="center"> <jtd>
<ta><input type=Tsubmit' values"submit"></td>
</res
</tr>

</tabler
</farm>
</body>
</html>

#1/use/local/bin/perl

Global variables passed through the URL:

$SERVERS ~ Number of servers in simulation
i SQUORUMSTZE - Size of guorum to select

SRUNS - Number »f runs to perform

“ SPATTERN - Pattern of pops/pushes

$VERBOSE - Brint a trace of zach run

sub printstack (8)
D e resney

Function : printstack [STACK!

Arguments : STACK - Array of stack to e printed

4 Return * SUM - Checksum of 2311 elements in the stack

This function will print the contents of a stack stored
in an array to an HTML table

Error Codes : None

[R R R R

Locally scopea variablies
ny (€s, $i, $sum):
Input argument
Bs = @_;
print ("<rable><tr colspans2><th»Dump of
Stack</ Lha</ trr<trr<th>Index</th><th>Value</th></tr>\n");
for ($1=0; Si<scalar(€s); $i++} !
priot |"<tr align=cenfer><td»$i</td><td>$s($il</td></tr>\n"};
Ssum = Ssum + $5(51)
1
print ("<rr><ta>Enbsp;</td><rd> </td><rd>$sumd/Tar</tr></Table"];
return (Ssum);

servers

sub selectguorum () {
T T T TIPS T EE PSS S
Function selectquorum 1}

Arguments @ Nome

This function acts on the globally scoped variables

SQUORUMSIZE ard $SERVERS

Return : QUORUM - Array =f indices to rendomly selected group of

4

¥

Error Codes
f R L L S S S R

Locally scoped variables
my (8quorum, @chosen, Sscrverl;
51 = 0;
while ($1<3QUORUMSIZE) {
Sserver = int{randi$SERVERS) - 1:
it (!Schosen[3server)) {
push (€quorum, Sserver);
$chosen[sserver] =
Sivt;

1
3

return (€quorum);

sub selec
e

ver (\@\E) [
EIIIEIPIIIIIEISIIIIIID I IIIIEIIIEIIIBIIIIIIIIF>IILIPIIIIBIISIINNN

35

Function
Arguments

selectserver (QUORUM, TIMESTAMPS)

QUORUM - Array of indices to the chosen quorum of servers

TIMESTAMES - Array of timestamps for each server in the set

SELECTEDSERVER - Index of the mcst currently timestamped
server

8
¢
Return
¥
Ercor Codes : None
H R €EC Qe e EECadaa e aedasCade Sad £ aeLEiqedCuaadadCdedaddds s CEddae<sCne<<a<
Locally scoped variables
my {8quorum, @timestamps, $server, $newesttimestamp, S$selectedserver);
equorum = @{$_[0]];
etimestamps - @{$_{11};
Snewesttimestamp - -99995;
foreach $server (@quorum) {
if (Stimestamps|$server] > 3newesttimestamp) (
Snewesttimestamp = Stimestamps[$serve.
Sselectedserver = Sserver;

i

return ($selectedservery;

sub updatequorum (\E\@$)
F B L L e T L T SO P
Funetior, updatequorum (QUORLM, NEWSTACK, NEWTIMESTAME

Arguments QUORUM - Array of indices to the chosen guorum of servers

NEWSTACK - Array of the newly pushed/popped stack

NEWTIMESTAME - Timestamp for all of the newly updated servers

Return : 0 on completion

Error Codes @ None
R R I NN

Locally scoped varlables

ny (@quorum, @newstack, $server, Snewtimestamp);

equorum = 8(S_{0]];

énewstack = @{S_{1]};

$newtimestamp = $_(2]

foreach S$server {dguorum) |
@{$stack[Sserverl} = Enewstack;
Stimestamps($server] = Snewtimestamp

sub printoccluma ($;5)
L e
¢ Function printcolumn (VALUE, COLOR

Arguments VALUE - Integer value for the height of the column

K

COLOR ~ HIML iegal text for color of calumn
4 keturn : None
Error Codes : Nene

R S e R e T L 1

my (Svalue, $i, Scolor);

Scolor = "red";
}
print ("<table cellspasirg=0 celipadding=3 border=
Print ("<tr><td align=center><small>$value</small></td></tr>");
for ($1=0;61<$valuesSire) |

36

print ("<tr><td bgcolors$nolor width=20
height=2><small> </small></td></tr>")
1

print ("</tabie>");
1

sub printhistogram (€} i
my (8data, Sdatum, $i};

fdata ~ @
print ("<table><tr>\n");
print {"<td valign-bottom align=senter>");
printcolumr ($datai$ii, "bluem};
print ("</tdx\n");
for (3i=1; Si<scalar(@data)s; $i+4) {
print ("<td valignebottom align=center>®);
printeolumn (Sdata($i]):
print ("e/td>\n"};

1
print ("</tr><iret);
for (51=0; Si<scalar(@data); Si++]
print ("<td align=center><small>$i</small></td>");

print {"</rr></tables");

sub printvy (31 |
if {$VERBOSE) [
print ("S_[0]");
y

AR A g R R AR

©oMa :
SRREA QAR K SR ARG G A R g AR R g g

HTML Headers, etc.
print "Content-type:text/html\rin";
print "<niml><nead><title>Randomized Distributed Stack
Simuiation</titlen</nead>\o
print "<oedy>\n";

Parse the input parameters out of the query string and evaluate them iato
the globally scoped variables, and then print

Sstr = SENV'QUERY_STRING'};

€params = split (/8/, Sstri;

print ("<table border=l»<tr»><td valigne=top»\n“):

print ("<lable><tr><th>Inpui TarameTers</ih></tr>");

foreach $param [@params)
@temp = split [/=/, Sparam);
eval ("\$$temp(0] = Stemp(l]™
print ("cree<rd>Stempl0] </td><td>= Stemp[i]</td></tr>");

i
print ("</tables<brschrs<boo<hs®);

Locally scoped variable

Sstart = (times)[C);

¥ Seed the random number generator, initialize counte
srand;
gcount = 0
Sfailures
Ssuccesses

ahy

37

38

for (Si~
B

$1<=SSERVERS; $i++}

Spops = 03
1:
cimestamps($1] = 05

Print HTML table header
printv ("<table cellpadding=3 cellspacing=3 border=0><tr><th>RUn</th><th
£ol span=3QUORUMSTZE>Quorum
Server_{TimeStamp}</th><th>5elecred
Server<pr>Server_{NewTimeStamp}</ th»<th>Action</tha<th>Value</th><th>Ideal
Value</th><th>Status</th></tr>

§ Main loop of simulation runs
for ($1=0;31<SRUNS; $14-)

Choose an action
Saction = int(rand (10));
if (({$i + 1} & SPATTERN]
Sacticnverk = “BUSH";

i
else {
Sactionverb = "POE™;
i
printv ("<te><td>$i</tda\ntl;
¥ Chocse the quorum and print the timestamps of each
€quorum = selectguorum();
foreach Sserver (@guorum)
printv ("<td>3server<sub>$timestamps [Sserver)</subs</1d>";

¥ Choose the most recently stamped server and calcuiate the new timestamp, and print
Sselectedserver = selectserver [Bguorum, #Timestamps):
Snewtimestamp = Stimestamps[3selectedserver] + 1;
printv ("</td><td
=center>§sclectedservercsub>Stinestamps [$selectedserver] </sub></td>\n"};
if ({{31 + 1) % SPATTERN) = ©
Perform a push

al

Scount i+
Svalue = Scount;
Sidealvalue - ;
Push onto the ideal stack
push (Ethesiack, $value);
Push onto the chesen stack
push (B($srack{Sselectedserverl], $value);
Publish to everyone on the quorum and update the timestamps
updatequorum (8quorum, €{$stack[$selectedserver]}, $newtimestamp);
$status = "\ ";
i
else {
Perform a pop
Spopase;
Pap the ideal stack

Sidealvalue = pop (Bthestackl;
4 Pop the chosen st

Svalue = pop (#{$stack[$selectedserver];);
Publish to everyoue on the gucrum and update the timestamps
updatequorum (€querum, 8[$stack{Sselectedserver}), Snewtimestamp):

}
printv (T<ré>Sactionverb</td>\n");
1f (3value Sidealvalue)
$status = "Matches!™:
Ssuccesses+
Smissedby{Sidealvalue - $valuel+;
printy ("<td align-center>$value</td><td
align-center»$idealvalue</td><td
align=center>$status</td></tra\n");

eise {
if ($idealvalue
$startus =

}
else {
$status = "Does Not Match!";
Sfailures++;
smissedbyl$idealvalue - $valuel++;
)
printv {"<td align=center>$value</ta><td
align=center>Sidealvalue</td><td align-center>§status</d></tr>\n

1

¥ calculate and print statistics of the simulation

print ("</table></td><td valign-top align=right><table><tr><th>Output
Caleulations</th></Ers");

$failurepercent = 100 * $failures / SRUNS;

Spoppercent = 100 * $pops / SRUNS:

Spopfailurepercent = 100 * ($failures / Spops):

print ("<tr><rdr<table><try<ld>RUNSC/td><td>= SRUNSC/tdd</Lrainm);

Print {"<tr>atd>POPS</tdr<td>= $pops</td></Tr>\a");

printf ("<Lr><td>[POPS / RUNS) § </ta><tdy= #.1f\&</td></trz\n", Spoppercent);

print ("<tr><td>SUCCESSFUL POPSC/td»<td>= $successes</td»</tr>\n");

print ("<tr><rd>FAILING POBS</td><td>= $failures</td></tr>\n");

printf ("<tr><td>(FAILURES / RUNS) § </td><tdr= #.1£08</td></te>\n",
$failurepercenti;

rintf ("<te><te>(FAILURES / POPS) § </td><td>=

®.1E\8</1d></ Tr></tablex</td></tr>\n", S$popfailurepercent];

print ("<tr valign-botcom align=center><td>
Missed by...");
printhistogram {Bmissedby;

print ("</tr></td>");

print {"</table></td></tr></table>\n");

Send - itimes)I01;

$runtime = Send - §stact;

print {"Simulation run time on CPU: Sruntime");

print "</bedys</htnl>\r";

APPENDIX C

¢ Documented Perl Source Code for Wrapper Script

* Documented Perl Source Code for Simulator 3

40

41

-

wrapper.pi

Weapper script which repeatedly calls the main simulator
with each combination of parameters

- =

Medify this file to configure combinations of automated
§ test runs

¥ Create array with each psrameter value to use
éservers = (10, 20, 50, 100);

&quorumratios = (.5, .4, -3, .2, .1};

Gpops = (100013

@patterns = (7);

Seount = 1;

¥ Nested locps to generate unique and ordered combinations
toreach $s (Eservers)
fguoruncatios = (
for ($i=1;5i<=95/2;5i+4)
push ifguorumratios, $1/%s);

1
foreach $a (fquorumratios) [
foreach Sps (Bpops} {
foreach $p (Bpatterns)

535 = 8g v 3s;

Siter = Scount § 5;
This loop performs the five identical test rums for
calculating the variance of the system

while (Siter <= 5) {

The following line calls the simulaticn program ascerding
to the current combinatiorn of parameters and chooses the
cutput text file. Modify this lime to cutput to a
¥ different file.
“stacksimulatior3.pl $s $gs $r $p output-10.txt’;

print ("Scount: Finished izeracicn ", $izer, “ of
3s, Sgs, $r, Sp\n");

Siterts;

Seount++;

}
}

print ("Finished $s\n"i;

42

#1/usr/local/bin/pert

4 Global variables passed through the URL:

4 $SERVEKS - Number of servers in simulaticn
¥ SQUORUMSIZE - Size of quorum to select

L] - Number of runs Lo perform

$PATTERN - Pattern of pops/pushes

SVERBOSE - Print a trace of sach run

sub printstack (€) {
f S e
Function printstack (STACK)

Rrouments © STACK - Array of stack to be printed

4 Return 1 SUM - Checksum of all elements in the stack

This functicn will print the contents of a stack stored

¥ in an array to an HTML table

Error Codes : Nene

F4 K<L LR LR ELLLLE LR L EL LR CLLELL L LKL EL L AR LL L L

Locally sceped variables
(8s, 1, $suml;
4 Input argument
4s = 4 _;
printhtml ("<table><tz colspan=2><th>Dump of
Stack</th></tr><tr><th>Index</th><th>Valued/th></tr>\n");
for {$i=0; $i<scalar(®s); $i+4) {
printhtml ("<tr align=center><ra>$ic/td><tdsSsi$ij</tdr</rravn");
$sum = Ssum + Ss(Si]

)
printhtml ["<tr><td>enbsp; </ ta><id>enbs
return ($sum);

</rd><td>$sumc/td></tro</tables)

sub selectquorum () {
e e T EE R P ER e T PP PP P B P PR T e e

Function selectquorum ()

4 Arguments Nene

This function acts on the globally scoped variables
1] SQUORUMSTZE and $SERVERS

¥ Return : QUORUM ~ Array of indices to rardomly selected group of
¥ servers

Error Codes : None
R Y RS T S g e S e S 2

Locally scoped varisbles
my (8quorum, @chosen, $server);
Sio- 03
while [$L<SQUORIMSIZE) |
Sserver = int{rand (SSERVERS)) + 1;
if (!$chosen[$server)) {
push (quorum, Sserver);
Schosen($server] ~
it

)]

return (@querimi;

sub selectserver (M8\€) |
T L eSS T PEP

S TSRS Y

43

Function : selectserver (QUORUM, TIMESTAMPS)

Arguments : QUORUM - Array of indices to the chosen quorum of servers

¥ TIMESTAMPS - Array of timestamps for each server in the set

Keturn : SELECTEDSERVER - Index of the most currently timestamped

[server

Error Codes : None

<L LKL LR LR C LR RLL L L LE LR L CLLER L LR ALK L LKA CLLLLKRT

Locally scoped variables
my (Bguorum, @timestamps, $server, $newesttimestamp, Sselectedserver);
€quorum = €{$_[0)1;

@timestamps = €{$_(11];
Snewesttimestamp = -99999;
foreach $server (@quorum) |
if {Stimestamps|Sserver] > $newesttimestamp) {
Snewesttimestamp = Stimestamps($server):
Sselectedserver = $servi

1
1

return ($selectedserver};

sub updatequozum (A@\8$) {
e S T T e L T TT T TS CEET PRSP P TSP e P e

¥ Function : updatequorum (QUORUM, NEWSTACK, NEWTIMESTAMP)

Arguments : QUORUM - Array of indices ro the chosen guorum of servers

NEWSTACK - Array of the newly pushed/popped stack

NEWTTMESTAMP - Timestamp for all of the newly updated servers

Return : 0 on completion; This function publishes the new stack to
each server in The quorum and updates their timestamps

Error Codes : None
FeCCaedLadaeaaaaddiddaqdaas CardaedEacsCaee<<deCadaad<Caeddeaaa<aeeacadaass

Locally scoped variables
my l{eguorum, Enewstack, $server, Snewtimestamp);
Bquorum = Q(5_{0)};
Anewstack = @($ (11};
Snewtimestamp ~ $_[2]:
foreach Sserver {Bguorum) |

@{$srack[$server]] = Gnewstack;
Stimestamps[$server] = Snewtimestamp:

3
return 0;

sub printeolumn ($:5] 1
L LR e e PR R e b b b Tt e RSP sSSP Ee RM RS S e
¥ Function prirteciunn [VALUE, COLOR}
Arguments VAZUE - Integer value for the height cf the cclumn
COLOR - HIML legal text for colar of column
None; This function generates and prints the HTML table for
the zolumn of a histogram
Frror Codes 1 None
B R R T

[
#
Return
]
#
]

my ($value, $i, Scolori;

svalue = $_[0];
Scolor = $_[11:
1t (1Scolor] {
Scolor = "red":

b
printhtml {"<table spacing=0 cellpadding=0 border=03");

printhtml ["<tr><td align-center><smali>$value</small></td></tr>
for (5i=0;8i<$value;$1++)
printhtml ("<tr><td bgeolor=$celor width=20
height=2><small> </small></td></tr>");

¥
printhtml ("</table>"

)
sub priathistogram (€)

B33 22a555a5 0553355 5P0 RS EEES IS III NI II IS EISIIEA PRI I IIBIII ISR IIBEISINS
¥ Function : printhistogram (DATA)

Arguments DATA - Array of the data to display in the histogram format

Return None; This function generates and prints the HTML for a

] statistical histegram by repeatedly calling the

printcolumn() function

Error Codes : Nonme
T L N T R T

my (@data, S$datum, $i

8data - 6_;
printhtml [“<rable><tr>\n");
printhtml ("<td valign=bottom align-center>"};
Print the first column individually
printcolumn (Sdata[$1], "blue”);
prinzhtml ("</tds\n");
Print each subsequent column individually
for 1$i=1; $i<scalar(@data); $is+] {
printhiml ("<td valign=bottom align=center>");
printcolumn ($datal$i]i:
printhtml ("</td>\n");
)
printhtml ("</tr><tr>"i;
for {$i=0; $i<scalar{@data); Si++) {
printhtml ("<td align-center><small>$i</small></td>"];
'
printhtml ("</trr</tacle»”);
}

sub printv (S) {

BO2>52555) E e SEPIBEBROOBIDBILSIIPBISBEDIEISSEIBIBHEBDS
Function printv (STRING)

Arguments STRING - String to be printed

4 VERBCSE - This functior alsc acts or the globally detined

] value of VEREOSE

¥ Return : None; This function prints the STRING argument if the VERBOSE

¥ arqument is asserred

Error Codes : Nene

B L L EE L ELEE € XL e SRR L CaRLL L CXTLLLLLCLLLLLLLLLLLLL LR LS

if (SVERROSE) |
printhtml ("5_[0]"];

¥
sub printhtrl {$) {

e L EEE TR P e e e e e L PP PP bbb R
Function printv (STRING)

Arguments STRING - String to be printed

[HIML - This functior alse acts on the globally defined

] value of HTML

§ Return : None; This function prints the STRING argument if the HIML

4 argument is asserted

¥ Frror Codes : None
F<LRLLLLLRLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLEL LKL L L LLLL LKL LKL LKL L LS

LE ISHTMLY {

+

sul sum (€) {
[s o =TSSR RS EeS

print ("S_[0]™);

4 Function sum (DATA)
Rrguments DATA - Array of numbers
Return : This function returns the sum of an array of numbers

¥ Ervor Codes

None

T S S ST LS

L e R g L At

LA A L L LS]

my (€array, Ssum, $i);

earray = 8 ;

foreach $i (Rarray) {
Seum 4= $1;

return ($sum);

wray

4 Mali Body oi Simulator
R R L e L R T L L T R R R A T R SR RV F P EE P EFEE TS

HTML Headers, etc.

if

simulation</title></head>\n!

(&1

1
printhtml "Content-type:Text/html\n\n";
printhtml "<khtml><head><t:tlerRapdomized Distributed Stack

printhtnl "<body>\n";

Parse the input parameters cut of the guery String and evaluate them into
the globally scoped variables, and then print

slse

)

$str = SENV{'QUERY_STRING'};
€params = split (/&/, $str):
printhtml ("<table border=1><tr><td valign=top>\n"}
printhtml ("<table><tr><th>Input Parameters</th></tr>");
foreach Sparam [@params) (

8temp = split (/=/, Sparam):

eval ("\3Stemp(0] = Stemp(l]"):

printhtml {("<tr><td>8temp(0] </td><td>= Stemp(l]</td></trami;

v
printheml ("</tables><bri<bry<bes<hr»);

$SERVERS = shift (€ARGY!;
SQUORUMS)IZE = shift (BARGY
SRUNS = shift (8ARGV);
SPATTERN = shift [@ARGV);
SOUTFILE = shift (GARSVI;
SVERBOSE = 07
sprogramstart = (times)[0};
open (FH, ">>SOUTFILE"};
require (“pattorn.txt®);

¥ Locally scoped variable

#

Geed

$start = (times)[0];

the randem number generator, initialize counters
srand;
Scount = 0;
$failures = 0;
fsuccesses = 0

4

LR LR A R A A AL R L AT N L AR S T TSR T T

i

45

46

1$i=1:%ic
stimestamps ($il = o,

Print HIML table header

printv ["<table cellpadding-3 cellspacing=3 border=0><tr><th>Run</th><th
colspan=3QUORUMSTZE>Quorum
Server<sub>TimeStamps/ sub></ th><th>Selectod
Server<or>Server<subsNewTimeStamp</sub></th><th>Action</th><th>Value</th><th>Ideal
Value</th><th>Status</th»</Tr>");

$i= 0
Main loop of simulation runs
for [$i=0;$i<SRUNS;Si++) {
¥ while [$pops < SRUNS) {

while ($do < scalar (@pattern); |

§ Choose an action
Saction = irz(rand {iG)):
if (((§1 + 1} % SPATTERN}
if (Spattern($do] == 0) |
Sactionverb = “PUGH";

else |
$actionverb = "POPT;
1
print ("$actionverkanty;
printy (T<Lr><id>$1</td>\n"1;
Choose the quorum and print the timestamps of each
equorum - selectquorumi();
foreach $server {@guorum)
printv ["<td>$server_{$timestamps[$server)}</td>");

Chouse the most recently stamped server and calculate the new Limestamp, and print
$selectedserver = selectserver (@quorum, @timestamps];
Snewtimestamp = Stimestamps[$selectedserver] + 1;
printv ("</td><td
align-center>$selectedserver_{$t inestamps [$selactedserver |}</td>\n");
¥ 1f (((S1 + 1) % SPATTERN} != 0]
if (spattern($de] -= 0) |
Ferlorm 2 push
Scount++;
Svalue = 3ocunt;
$idealvalue = ;
Push onto the ideal stack
push (@thestack, Svalue}:
4 Push onto the chosen stack
push (@{Sstack[$selectedserver]}, Svalue);
Publish tc everyone on the guorum and update the timestamps
updatequorum (@quorum, 2{$stack{$selectedserverl], $newtimestamp);
$status ~ "\enbspi";

y
else |
Perform a pop
Spopste;
¥ Pop the ideal stack
Sidcalvalue = pop (fthestack);
Pop the chosen stack
Svalue = pop (B{Sstack{Sselectedserver)ll;
if (t$value) {
Snullpopsti;

§ Publish to everyone on the quorum and update the timestamps
updatequorum (@quorum, @{Sstack[$selectedserver]}, $newtimestamp);
!

Sdo+r;

47

printv ("<td>Sactionverb</td>\r");
it {$value —= Sidealvalue} {
$status = "Matchos!™;
Ssuccessestr;
$missedbylabs (Sidealvalue - Svalue)]++;
printv ["<td align=center><font color:
align=center><tont color=red-$idealvalue</td><td
align-center>$status</td></tr>\n");
}

ed>$value</ fonto></td><td

elge |
if ($idealvalue == "--")
tatus = "\anbspi "
else {
$status - "Does Not Match!";

Sfailures++;
$missedby{abs|Sidealva

e - Svalue)]++;
H
printv ("<t align=center>Svalue</td><rd
align=center>Sidealvalued/=d><td zlign=center>$status</td></trin”

3

éprintmissedby = @missedby;
Calculate and print statistics of the simulation
printhtml ("</table></td><td valign=top align=right><table><tr><th>Output
Caloulations</ Lho</tesn
$failurepercent 100 * $fallures / $RUNS;
$poppercent = 100 * $Spops / SRUN
Spopfailurepercent = 100 * (Stailures / Spops);
printhtml ("<tr><td><tables<tr><td>RUNS</ta><td>— SRUNS</td></tr>\n"
printhtml {*<tr><td>POPS</td><ta>= $pops</Ld></tronn®);
[l printf ("<tr><td>(POPS / RUNS) ¥ </td><td>= $.1f\#</td></tr>\n",Spoppercent);
¥ printf ("<tr><td>(FAILURES / RUNS) % </td><td>= $.1f\%</td></tr>\n",
$failurepercent;
printhtml ("<tr><td>SUCCESSFUL FOPS</td><td>= Ssuccesses</td»</Lr>\rn");
prianthtml (“<tr><td>FATLING POPS</td»<td>= $failures</td»</tr>\n");
Stemp = shift(€printmissedby);
printhtml ("<Er><td>POPS oft by 0</td><td>= $temp</td></Tr>\n"
Stemp = shift[@printmissedby);
printhtml ("<tr><td>POPS of f by 1</td>»<td»= $temp</td></tr>\n"};
$temp = shifr (@printmissedby):
printhtml ("<tr><td>POPS off by 2</td><td>= $temp</td></Lr>\n");
Stemp = stift(Eprintmissedbyi;
Printhtmt ("<L:i><td>POPS off by 3</td><td>= $temp</td></tr>\n"};
Smissedbymore - sum{@printmissedby);
printhtml ("<tr><td>POPS off by more</td»<td>= Smissedbymore</td></tr>\n*);
prirthiml {"<tr><rd>Null POPS</td><td>= $nullpops</td></tr>\n");
printhtml ["<tr>ctd>(FAILURES / POPS) $ </td><td>=
3popfallurepercent\c/ Ld></Lr>\n");
Sinstancetime = (times)[0]=Sstart;
printhtml ["<cr><td>Sir run time</td><td>= Stemo</td></tr></tablerd/tdr/tr>\n");

printhtml ("<tr valign=bottom align=center><td>
Missed by..."
printhistogram (#missedby);

printhtml ("</tr></td>");

prinzhtml ("</table></td></tr></table>\n

printhtml "</body></html>\n";

for ($i=0:$1<=3;51+4) | if (Y$missedbyl[$i)) ! Smissedby($i] = 0;) |
if (!$missedbymorc) {$missedbymore = 0; |}

1f (I1$nullpops) | $nullpops = 0; }

if (!$instancetime) {$instapncetime = 0; }

print (FH "SINSTANCE SSERVERS SQUORUMSIZE $RUNS $PATTERN
SVERBOSE. Spops Sfailures Smissedbyl0) Smissedbyll] $missudby(2)
Smissedby[3) Smi e snullp sinstancetime\n®);

close (EHI:

48

VITA

Dustin Charles Kirkland is the oldest son of Allen and Donna Kirkland of 5213
Eudora Dr. Addis, Louisiana 70710. He achieved National Merit Commended Student
status and graduated Valedictorian of Catholic High School in Baton Rouge, Louisiana
in 1997. Dustin was awarded a President’s Endowed Scholarship, a Carolyn Lipscomb
Web Opportunity Award, and a Robert C. Byrd Scholarship. He anticipates graduation
from Texas A&M University in College Station, Texas in May of 2001 Magna Cum
Laude with University Honors, a Bachelor of Science in Computer Engineering, and a
minor in Mathematics. Dustin has accepted a position with Tivoli Systems, Inc. of IBM

in Austin, Texas where he will work as a Software Engineer in Build Automation.

