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IINNTTRROODDUUCCTTIIOONN  

 

Porcine Reproductive and Respiratory Syndrome (PRRS) is worldwide 

spread and constitute one of the most significant diseases in the swine industry. 

This syndrome is characterised by inducing reproductive failure in sows and 

respiratory symptoms in growing and finishing pigs. Although there is some 

controversy, PRRS virus (PRRSV) is considered as able to modulate the 

immune response, making easier the concomitant infection with secondary 

bacteria, and playing a significant role in the onset of the Porcine Respiratory 

Disease Complex (PRDC) (Rossow, 1998). Although several studies have been 

carried out to elucidate the host immune response evoked against PRRSV, 

there are still a lot of aspects which still remain unclear. 

Lung and lymphoid organs represent the target organs for PRRSV 

replication (Xiao et al., 2004). Therefore, it is presumably that both lung and 

lymphoid organs play a significant role in the immune response evoked after 

PRRSV infection. However, nowadays few studies have been performed to 

determine the changes observed in these organs. Several studies have been 

focused on the changes observed in lymphocyte subsets of peripheral blood 

mononuclear cells (PBMCs), whereas other reports have been focused on the 

changes observed in the serum concentration of cytokines. Nonetheless, there 

is lack of studies which correlate the expression of cytokines with the changes 

observed in the immune response developed after PRRSV infection. 



INTRODUCTION    

   
4 

Cytokines are proteins which regulate the function of immune cells, 

participating in the cellular activation, differentiation and proliferation, and in the 

modulation of the synthesis of immunoglobulins. Cytokines are synthesised 

mainly by activated macrophages and lymphocytes, although other cells may be 

also involved in their production, just as neutrophils, and endothelial and 

epithelial cells. Several cytokines, just as interleukin-10 (IL-10), gamma 

interferon (IFNγ) and/or alpha interferon (IFNα), have been proposed to play a 

significant role in PRRS. However, no studies have been carried out to 

determine the changes in the expression of cytokines in situ in the target organs 

for PRRSV replication, namely the lung and lymphoid organs. 

Therefore, the main goals of this thesis were to determine the relationship 

between the changes observed in the serum concentration of cytokines and the 

changes observed in the innate immune response, as well as, to study the 

expression of cytokines in the lung parenchyma of PRRSV-infected pigs.  

The experimental studies carried out in this thesis have been founded by 

the Spanish Ministry of Education and Science, project number AGL2006-

04146/GAN. The PhD student, Jaime Gómez-Laguna, carried out his doctoral 

studies supported by a scholarship from the program “Formation of University 

Teachers” from the Spanish Ministry of Education and Science (AP-2004-0395). 
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IINNTTRROODDUUCCCCIIÓÓNN  

 

El Síndrome Reproductivo y Respiratorio Porcino (PRRS) es una 

enfermedad distribuida a nivel mundial y constituye una de las enfermedades 

más importantes de la industria porcina. Este síndrome se caracteriza por la 

aparición de fallo reproductivo en cerdas gestantes y de un cuadro respiratorio 

en cerdos en las fases de transición y engorde. El virus del (VPRRS) es 

considerado capaz de modular la respuesta inmune, facilitando de esta forma 

la aparición de infecciones concomitantes con bacterias secundarias, y 

desempeñando un papel importante en el establecimiento del Complejo 

Respiratorio Porcino (CRP). Aunque varios estudios se han llevado a cabo para 

elucidar la respuesta inmune del hospedador tras la infección con el VPRRS, 

todavía existen muchos aspectos que permanecen sin esclarecer. 

El pulmón y los órganos linfoides representan los principales órganos diana 

para la replicación del VPRRS. De este modo, es presumible que ambos, 

pulmón y órganos linfoides, jueguen un papel fundamental en la respuesta 

inmune que se desencadena en la infección con el VPRRS. Sin embargo, hoy 

día pocos estudios se han realizado para determinar los cambios observados 

en estos órganos. Varios estudios se han centrado principalmente en los 

cambios observados en las subpoblaciones de linfocitos en las células 

mononucleares de sangre periférica (CMSPs), mientras que otros estudios se 

han centrado en los cambios observados en la concentración sérica de algunas 
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citoquinas. No obstante, no se ha estudiado la correlación entre la expresión de 

citoquinas y los cambios observados en la respuesta inmune desencadenada 

tras la infección con el VPRRS. 

Las citoquinas son proteínas que regulan la función de las células inmunes, 

participando en la activación, diferenciación y proliferación celular, así como en 

la modulación de la síntesis de inmunoglobulinas. Las citoquinas son 

sintetizadas principalmente por macrófagos activados y linfocitos, aunque otras 

células pueden estar implicadas en su producción, como neutrófilos, y células 

endoteliales y epiteliales. Varias citoquinas, como la interleuquina 10 (IL-10), el 

interferón gamma (IFNγ) y/o el interferón alfa (IFNα), han sido propuestas como 

importantes moduladores en el PRRS. Sin embargo, no hay estudios que 

determinen los cambios en la expresión in situ de citoquinas en los órganos 

diana de la replicación del VPRRS, como son el pulmón y los órganos linfoides. 

Por todo ello, los principales objetivos de esta tesis consistieron en 

determinar la relación entre los cambios observados en la concentración de 

citoquinas y los cambios observados en la respuesta inmune innata, así como 

estudiar la expresión de citoquinas en el parénquima pulmonar de cerdos 

infectados con el VPRRS.  

Los estudios experimentales llevados a cabo en esta tesis doctoral han 

sido financiados por el Ministerio de Educación y Ciencia, número de proyecto 

AGL2006-04146/GAN. El doctorando, Jaime Gómez-Laguna, desarrolló sus 
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estudios de doctorado gracias a una beca de Formación de Profesorado 

Universitario del Ministerio de Educación y Ciencia (AP-2004-0395). 
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SSUUMMMMAARRYY  

 

Porcine reproductive and respiratory syndrome (PRRS) is nowadays one of 

the most significant diseases of swine industry. This syndrome is characterised 

by inducing interstitial pneumonia in growing pigs and reproductive failure in 

gilts. PRRS is caused by a positive-stranded enveloped, RNA virus, known as 

PRRS virus (PRRSV), which belongs to Arteriviridae family, Nidovirales order. 

PRRSV replicates mainly in porcine alveolar macrophages (PAMs), and in a 

lesser extent in monocytes and dendritic cells. 

Several studies have been carried out to decipher both the immune 

response against PRRSV infection and the role of cytokines in the pathogenesis 

of PRRS. However, nowadays several aspects remain still obscure. Therefore, 

the general aim of this thesis was to determine changes in the serum and tissue 

expression of cytokines and their relationship with the immune response evoked 

against a PRRSV field isolate. To assess this aim, twenty eight five weeks old, 

PRRSV-free pigs were inoculated by intramuscular route with PRRSV field 

isolate 2982. Other identical four pigs were inoculated with sterile medium and 

killed at the end of the study. Blood and tissue samples were collected at 0, 3, 

7, 10, 14, 17, 21 and 24 days post-inoculation (dpi) for flow cytometry studies 

and for acute phase proteins (APPs) and cytokine expression by ELISAs and 

immunohisctochemical methods. 
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In our studies, CD21+ cell counts increased in PBMCs and tracheobronchial 

lymph node from 17 to 24 dpi, coinciding with an increase in PRRSV-specific 

antibody titre in blood. CD3+ T cell counts increased mainly due to an 

enhancement of CD4-CD8high and CD4+CD8+ T cells. CD4-CD8low T cells were 

decreased in all the organs studied, whereas CD4+CD8- T cells decreased only 

in the spleen. The drop of the viraemia was correlated with an enhancement of 

CD4-CD8high T cells and with a higher expression of interleukin-10 (IL-10) and 

interleukin-12 p40 (IL-12 p40). No efficient gamma interferon (IFNγ) response 

was detected during the acute phase of the infection and the expression of 

alpha interferon (IFNα) was late and reached its maximum expression once the 

viraemia decreased. These results pointed to IL-10 and IL-12 as cytokines 

which might play a significant role in PRRSV immune response, as well as CD4-

CD8high T cells. 

Hp and Pig-MAP serum concentration displayed a moderate enhancement 

at 10 dpi, but CRP and SAA showed a delayed and highly variable increase. All 

three proinflammatory cytokines were poorly expressed, and only a mild 

increase in interleukin-1beta (IL-1β) was observed at 7 dpi. Although tumor 

necrosis factor alpha (TNFα) was expressed only in low levels, a positive 

correlation was observed with respect to the viral load, interleukin (IL-6) and Hp 

levels. The pathway used by PRRSV to modulate the innate immune response 

and the synthesis of proinflammatory cytokines still remains unclear, but it 

seems that TNFα may play a role. 
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Macrophages represent the first barrier against infections participating 

actively in the immune response, by means phagocytosis and the expression of 

cytokines. Cytokines may act activating or downregulating macrophage 

activation, depending on the cytokines synthesized. PRRS is characterised by 

replicating in PAMs, however, nowadays there is lack of information about the 

activation of macrophages and the expression of cytokines by these cells during 

PRRS. Thus, once the changes in the serum concentration of cytokines and 

their participation in the systemic immune response was studied, the last goal of 

this thesis was to determine changes in the different subpopulations of 

pulmonary macrophages and in their expression of cytokines in the lung of 

PRRSV-infected pigs. Interleukin-1 alpha (IL-1α), IL-6 and TNFα showed 

correlation with both histopathological degree of lung lesion and macrophage 

counts, playing a significant role in the pathogenesis of the interstitial 

pneumonia observed during PRRS. A significant correlation was observed 

between PRRSV and IL-10, IL-12 p40 and IFNγ, and TNFα and IFNγ. These 

results point to PRRSV modulates the immune response by the expression of 

IL-10, which might induce lower levels of other cytokines implied in viral 

clearance, just as IFNα, IFNγ, IL-12 p40 and TNFα. Moreover, these results 

also point to a stimulation of the expression of IFNγ by IL-12 p40 and TNFα, but 

not IFNα. All the cytokines studied were expressed mainly by septal 

macrophages and secondly by PAMs or other immune cells, just as 

lymphocytes or neutrophils. Our results point out that activation of septal 
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macrophages and PAMs differs throughout PRRSV infection, playing the first 

ones a main role in the synthesis and release of cytokines.  

In conclusion, our results point out that both IL-10 and TNFα played a 

significant role in the modulation of the immune response against the PRRSV 

field isolate 2982 used in our studies. Therefore, efficient strategies to control 

PRRSV infection may be address to the modulation of both cytokines, inducing 

a downregulation of IL-10 and/or an upregulation of TNFα. 
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RREESSUUMMEENN  

 

El Síndrome Reproductivo y Respiratorio Porcino (PRRS, del inglés Porcine 

Reproductive and Respiratory Syndrome) actualmente representa uno de las 

enfermedades más importantes de la industria porcina. Este síndrome se 

caracteriza por inducir una neumonía interstiticial en cerdos de transición y de 

engorde, así como fallo reproductivo en cerdas gestantes. El PRRS está causa 

por un virus ARN de cadena sencilla, con envoltura, conocido como virus del 

PRRS (VPRRS), que pertenece a la familia Arteriviridae, orden Nidovirales. El 

VPRRS se replica principalmente en macrófagos alveolares porcinos (MAPs) y, 

en menor medida, en monocitos y células dendríticas. 

Entre los principales aspectos que quedan por conocer de la enfermedad se 

encuentra la alteración de la respuesta inmune y el papel que las citoquinas 

desempeñan en la patogenia del PRRS. Por todo ello, el objetivo general de 

esta tesis consistió en evaluar los cambios de la expresión sérica y tisular de 

diferentes citoquinas y su relación con la respuesta inmune desarrollada frente 

al VPRRS. Para alcanzar este objetivo se utilizaron veintiocho cerdos, libres del 

VPRRS, de cinco semanas de edad, que fueron inoculados intramuscularmente 

con el aislado de campo 2982 del VPRRS. Otros cuatro cerdos, de idénticas 

características a los inoculados, fueron utilizados como control, sacrificándose 

al final del estudio. De estos animales se tomaron muestras de sangre y de 

diferentes órganos a los 0, 3, 7, 10, 14, 17, 21 y 24 días post-inoculación (dpi) 
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para la determinación de las subpoblaciones de linfocitos y la expresión de 

proteínas de fase aguda (PFAs) y de citoquinas. 

En nuestros estudios, se observó un aumento en el recuento de células 

CD21+ tanto en células mononucleares de sangre periférica (CMSPs) como en 

el nódulo linfático traqueobronquial entre los 17 y los 24 dpi, coincidiendo con 

un incremento del título de anticuerpos específicos frente al VPRRS. El número 

de células T CD3+ aumentó principalmente debido a un incremento de las 

células T CD4-CD8high y CD4+CD8+. El recuento de células T CD4-CD8low T 

estaba disminuido en todos los órganos examinados, mientras que las células 

T CD4+CD8- disminuyeron únicamente en el bazo. La disminución de la viremia 

se correlacionó con un aumento de las células T CD4-CD8high, y con una mayor 

expresión de la interleuquina-10 (IL-10) y de la interleuquina-12 p40 (IL-12 

p40). Durante la fase temprana de la infección no se detectó una respuesta 

eficiente de interferón gamma (IFNγ) y la expresión de interferón alfa (IFNα) fue 

tardía y no alcanzó su máximo nivel hasta que la viremia había disminuido. 

Estos resultados nos sugieren que la IL-10 e IL-12 y las células T CD4-CD8high 

serían unos importantes mediadores en la respuesta inmune frente al VPRRS. 

La concentración sérica de Hp y Pig-MAP mostró un aumento moderado a 

los 10 dpi, mientras que los niveles de CRP y SAA presentaron un incremento 

retardado y altamente variable. Las tres citoquinas proinflamatorias fueron 

detectadas en niveles bajos en suero, ya que sólo se observó un leve aumento 

de la interleuquina-1beta (IL-1β) a los 7 dpi. Sin embargo, aunque el factor de 
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necrosis tumoral alfa (TNFα) se expresó únicamente en niveles bajos, se 

observó una correlación positiva con la viremia, y con los niveles de 

interleuquina 6 (IL-6) y Hp. Por todo ello pensamos que el TNFα podría 

desempeñar un papel importante en la modulación de la respuesta inmune 

frente al VPRRS. 

En el pulmón, la expresión tisular de interleuquina-1 alfa (IL-1α), IL-6 y 

TNFα se econtraba correlacionada tanto con el grado de lesión histopatológica 

de lesión pulmonar como con la cinética de los macrófagos, lo que demuestra 

un papel importante de estas citoquinas en la patogenia de la neumonía 

intersticial observada durante el PRRS. Una correlación significativa fue 

observada entre los niveles de expresión del virus y de la expresión de IL-10, 

IL-12 p40 e IFNγ, y entre TNFα e IFNγ. Nuestros resultados sugieren que el 

VPRRS modula la respuesta inmune a través de la expresión de IL-10, lo cual 

podría inducir niveles más bajos de otras citoquinas implicadas en la 

eliminación del virus, como IFNα, IFNγ, IL-12 p40 y TNFα. Asimismo, estos 

resultados también señalan a una estimulación de la expresión de IFNγ 

mediada por la IL-12 p40 y TNFα, pero no por IFNα. Todas las citoquinas 

estudiadas fueron expresadas principalmente por macrófagos del septo del 

pulmón y en segundo lugar por MAPs u otras células del sistema inmune, como 

linfocitos o neutrófilos. Estos resultados indican que la activación de los 

macrófagos del septo y de MAPs es diferente a lo largo de la infección con el 
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VPRRS, desempeñando los primeros un papel fundamental en la síntesis y 

liberación de citoquinas.  

En conclusión, nuestros resultados señalan que tanto IL-10 como TNFα 

juegan un papel crucial en la modulación de la respuesta inmune frente al 

aislado de campo 2982 del VPRRS utilizado en nuestros estudios. De este 

modo, las estrategias eficaces para controlar la infección por el VPRRS pueden 

ir dirigidas a la modulación de ambas citoquinas, induciendo bien una inhibición 

de la expresión de IL-10 y/o un aumento de la expresión de TNFα. 
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11..11..  PPOORRCCIINNEE  RREEPPRROODDUUCCTTIIVVEE  AANNDD  RREESSPPIIRRAATTOORRYY  SSYYNNDDRROOMMEE  

 

11..11..11..  IInnttrroodduuccttiioonn  

 

In 1991, a virus which infection induced a disease characterised by 

reproductive failure in pregnant sows and respiratory symptoms in growing pigs 

was first isolated in The Netherlands being named as Lelystad virus (Wensvoort 

et al., 1991). One year later, Collins and co-authors (1992) isolated in 

Minnesota a virus related structural and genetically to Lelystad virus. This virus 

was the responsible of a similar process which was named as “swine infertility 

and respiratory syndrome” (SIRS). 

Several terminologies have been used to name the same process: “mystery 

swine disease”, “porcine epidemic abortion and respiratory syndrome 

(PEARS)”, “SIRS” or “blue ear disease”. Finally, all these names led to an 

international consensus and the disease is nowadays known as “porcine 

reproductive and respiratory syndrome (PRRS)” (Collins et al., 1992). 

When PRRS first appears in a farm it triggers off an acute outbreak of late 

term abortion and stillbirth, increased preweaning mortality and respiratory 

disease problems in growing and finishing pigs. Nowadays, the virus is enzootic 

in most of the farm from pork producing countries and its significance lied on 

concomitant infections with other common porcine respiratory pathogens, 

constituting the “porcine respiratory disease complex” (PRDC). Due to its role in 
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the PRDC, PRRS has been considered as one of the most important causes of 

economic losses in the modern swine industry (Rossow, 1998; Neumann et al., 

2005; REFERENCE). 

  

11..11..22..  VViirruuss  

 

PRRS is an infectious disease caused by a small, spherical, enveloped 

positive-stranded RNA virus named PRRS virus (PRRSV). PRRSV is classified 

within the Arterivirus genus, Arteriviridae family, which together with 

Coronaviridae family constitutes Nidovirales order (Meulenberg et al., 1993b; 

Cavanagh, 1997; De Vries et al., 1997). Other members of Arteriviridae family 

are equine arteritis virus, lactate dehydrogenase-elevating virus (LDV) of mice 

and simian hemorrhagic fever virus (Plagemann and Moennig, 1992; 

Conzelman et al., 1993; Meulenberg et al., 1993b; Cavanagh, 1997). 

Arteriviruses possess three main features: replication in macrophages, capacity 

for inducing persistent infections and high genomic variability (Snijder and 

Meulenberg, 1998). 

PRRSV has a medium size of 62 nm (45-80 nm), with an inner icosaedric 

nucleocapside, ranging from 25 to 35 nm in diameter, in its inner part 

(Wensvoort et al., 1991; Benfield et al., 1992; Kim et al., 1993). The 

nucleocapside is surrounded by a lipidic bilayer envelope which contains six 

structural proteins: P2b, GP2a, GP3, GP4, GP5 and M (Meulenberg et al., 
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1995; Mardassi et al., 1996; Wu et al., 2001). The genome of PRRSV is 

approximately 15 kb containing nine open reading frames (ORFs). ORFs 1a 

and 1b represent 75% of the genome and encode proteins with apparent 

replicase and polymerase activities (Meulenber et al., 1993a). ORFs 2a, 3, 4 

and 5 encode for membrane glycoproteins (GP) GP2a, GP3, GP4 and GP5, 

respectively. GP5, or envelope (E) protein, is considered the main protein of the 

envelope playing a significant role in the apoptosis phenomenon triggered 

during PRRSV infection (Suárez et al., 1996a). In addition, monoclonal 

antibodies (mAb) against GP5 are able to neutralise PRRSV, pointing to a role 

of this glycoprotein in the fixation of PRRSV to cellular receptor (Pirzadeh and 

Dea, 1997; Zhang et al., 1998; Weiland et al., 1999; Yang et al., 2000). 

ORFs2b, 6 and 7 codes, respectively, for unglycosylated membrane protein 

P2b, membrane associated protein (M protein) and nucleocapside protein (N 

protein) (Meulenberg et al., 1993b, 1995; Murtaugh et al., 1995). Proteins M 

and N are the most abundant proteins present in the virion (Mardassi et al., 

1996), and the majority of the antibodies produced during the infection are 

specific for N protein (Loemba et al., 1996). 
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Fig. 1. Schematic representation of PRRSV which shows the icosaedric structure of the 

virion, the different glycoproteins and the envelope. Modified from Fields Virology 2007. 

 

PRRSV is stable at -70 and -20 °C. At higher temperatures, the half life of 

PRRSV is 140 hours at 4 °C, 20 hours at 21 °C, 3 hours at 37 °C and 6 minutes 

at 56 °C (Benfield et al., 1992; Bloemraad et al., 1994). 

An important characteristic of arteriviruses is their strong tropism for cells 

that belong to the monocyte-macrophage lineage (Tong et al., 1977; 

Plagemann and Moening, 1992; Pol and Wagenaar, 1992; Voicu et al., 1994). 

During the acute phase of the infection, the preferential PRRSV replication cells 

are porcine alveolar macrophages (PAMs) and only a limited extend of other 

cells, included monocytes (Molitor et al., 1997; Bautista and Molitor, 1999). 

However, viral replication is influenced by the stage of macrophage 

differentiation (Duan et al., 1997). PRRSV antigen is found in as much as 2 % 

of the alveolar macrophages during the acute phase of the infection (Mengeling 

et al., 1995; Duan et al., 1997). When PAMs are freshly isolated, the 

macrophage differentiation makes necessary several days of PAMs cultured for 
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increase their sensitivity to PRRSV infection. PRRSV can be cultured in three 

established non porcine lines: MARC-145 cells (Kim et al., 1993), CL-2612 cells 

(Benfield et al., 1992) and CRL-11171 cells (Meng et al., 1996). 

On the other hand, the virus can also be found in macrophages throughout 

the body tissues and organs, including secondary lymphoid tissues (Lawson et 

al., 1997). Indeed, PRRSV persists during several weeks in lungs and lymphoid 

organs (Albina et al., 1994; Wills et al., 1997b; Allende et al., 2000; Lamontagne 

et al., 2001, 2003). Moreover, lung and lymphoid tissues, except for the spleen, 

appear to be the sites for viral replication in acute infection, since similar viral 

load has been detected in both (Xiao et al., 2004). In persistent infection, 

however PRRSV is restricted primarily to tonsil and sternal lymph node (Wills et 

al., 1997b; Rossow, 1998; Allende et al., 2000; Xiao et al., 2004). 

 

11..11..33..  AAnnttiiggeenniicc  aanndd  ggeenneettiicc  ddiiffffeerreenncceess  

 

There are two recognised genotypes of PRRSV: European (EU genotype, 

type I) and North American (US genotype, type II) genotypes (Snijder et al., 

2004). EU genotype is represented by Lelystad virus (LV) whereas the strain 

ATCC VR2332 is the prototype of the US genotype. These two genotypes are 

considered to come from a common ancestor, although they have important 

antigenic and pathogenic differences presenting only a 55-65 % of genetic 

similarity between them and a high genetic diversity within a given genotype 
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(Wensvoort et al., 1992; Mardassi et al., 1994; Meng et al., 1995a, 1995b; 

Murtaugh et al., 1995; Suárez et al., 1996b; Drew et al., 1997; Gagnon and 

Dea, 1998; Dea et al., 2000; Forsberg et al., 2002; Goldberg et al., 2003; Mateu 

et al., 2003; Stadejek et al., 2006). While GP5 is conserved only in 51-58 % 

between different isolates, M and P2b proteins are the most conserved 

structural proteins (74-81 %) (Meng et al., 1994; Kapur et al., 1996; Wu et al., 

2001). In this sense, marked variability in the pathogenicity and degree of 

interstitial pneumonia has been described depending on PRRSV genotype 

(Halbur et al., 1994; Shimizu et al., 1996; Drew, 2000; Thanawongnuwech et 

al., 2003). 

Significant differences have also been described among several isolates 

from a same genotype, although they are not so marked as among different 

genotypes. Initially, these differences were preferentially described for the US 

genotypes (Meng et al., 1995a; Andreyev et al., 1997; Gagnon and Dea, 1998; 

Allende et al., 1999; Dea et al., 2000; Goldberg et al., 2000a). However, recent 

publications have shown up to 18 % of divergence between EU isolates, being 

identified four different subtypes (Drew et al., 1997; Indik et al., 2000; Forsberg 

et al., 2001; Bignotti et al., 2002; Forsberg et al., 2002; Stadejek et al., 2002, 

2006). Moreover, Forsberg and co-authors (2002) concluded that the diversity 

of EU isolates was higher than that from US isolates, probably due to an 

increase of vaccination isolates. 
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In addition, breed differences have also been observed respect with serum 

antibody titres, average daily gain and susceptibility to PRRSV induced lesions 

in lung, brain and heart (Halbur et al., 1997). Taken together, these data 

suggest that allelic variation exists in disease response genes to PRRSV 

(Murtaugh et al., 2002). 

 

11..11..44..  EEppiiddeemmiioollooggyy  

 

PRRS is now present throughout the world, with the exception of Australia, 

New Zealand, Finland, Norway, Sweden, and Switzerland (www.oie.int, 2008). 

Accurate reports concerning the prevalence of the infection are only available 

from the United States where, overall, 40 to 60% of herds are estimated to be 

infected, ranging from 0 to 80%, in different States (Bautista et al., 1993; Cho et 

al., 1993). In Europe, PRRSV infection is believed to have affected more than 

50% of farms (Albina, 1997a). In Spain the disease is endemic, being more than 

90% of the farms positive and, although there are not available data, about 70% 

of breeding pigs are positive (Prieto, 2004). Anyway, the use of commercial 

vaccines makes more difficult to estimate the incidence and prevalence of 

PRRS.  

PRRSV is highly infectious but not much contagious (Prieto, 2004). The 

virus can be transmitted by means of vertical or horizontal transmission. 

Horizontal transmission, and especially close pig to pig contact, is the most 
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important way of transmission of the virus (Albina, 1997a). Aerosols and fomites 

are also significant ways of horizontal transmission (De Jong et al., 1991; Le 

Potier et al., 1995; Albina, 1997a; Torremorell et al., 1997; Lager and 

Mengeling, 2000; Kristensen et al., 2002; Otake et al., 2002b).  

Pig to pig contact is greatly promoted by intensive animal movements 

(purchase of weaners and replacement breeding stock). Infection probably 

takes place through nose to nose contact or by contact with urine or feces 

(Albina, 1997a). The virus can indeed be detected in nasal and faecal swabs or 

in urine from pigs challenged experimentally (Rossow et al., 1994). In this 

sense, it is important to remark that persistently infected pigs can be clinically 

normal although they are able to secret virus and therefore infect other pigs 

becoming in a significant entrance source of virus in PRRSV free herds (Bierk 

et al., 2001). 

PRRSV transmission through aerosols has been considered a significant 

way of transmission when the disease first appeared. However, this route of 

transmission is a little bit controversial since several authors have tried to 

demonstrate it experimentally showing contradictory results. Although PRRSV 

airborne spread as far as 20 km (De Jong et al., 1991), transmission by air is 

probably more important in short distances. PRRSV transmission has been 

described over less than 3 km (Albina, 1997a). Le Potier and co-authors (1995) 

observed that many farms (45%) located in a 500 m radius around PRRS 

outbreaks became infected, and only few (2%) became infected in the zone 1 to 
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2 km from an outbreak. The transmission has also been demonstrated between 

pigs units separated just for 0.5 to 1 m of each other and connected by pipes 

(Torremorell et al., 1997; Lager and Mengeling, 2000; Kristensen et al., 2002). 

Conversely, other research groups were not successful in reproduce PRRSV 

airborne spreading (Wills et al., 1994; Otake et al., 2002a). Airborne 

transmission is generally enhanced during winter when the temperature is low, 

humidity high, and when wind speed and ultra-violet light exposure are low 

(Komijn et al., 1991). 

Although the vertical transmission via insemination is also possible, some 

reports show contradictory results. It is accepted that both artificial insemination 

(AI) with infected semen (Gradil et al., 1996; Lager et al., 1996; Prieto et al., 

1997) and sow mating with infected boars (Yaeger et al., 1993; Swenson et al., 

1995) may lead to a venereal transmission of the disease. Several authors 

(Edwards et al., 1992; Yaeger et al., 1993; Swenson et al., 1994) have shown 

that virus can be detected in semen from infected boars for up to 35 days post 

infection (dpi) and its significance in transmission to PRRSV free herds trough 

AI. Nevertheless, the immunity of the sow is able to avoid a transplacental 

infection when is exposed to a homologous strain (to a stock of the original 

virus) (Lager et al., 1997) but not against a heterologous strain (an antigenically 

distinct PRRSV isolate) (Lager et al., 1999). Ohlinger (1992) failed to 

demonstrate infectivity in semen of infected boars or contamination of farms 

which used AI with semen from infected herds suggesting that the risk of 
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PRRSV transmission via semen was probably restricted to the acute phase of 

infection. Anyway, it is difficult to reproduce the venereal transmission of 

PRRSV in field conditions due to the low seminal viral load (Prieto et al., 1996, 

2003) and the high viral load required to pass on PRRSV by semen compared 

with other routes of transmission (Benfield et al., 2000). 

Some avian species may be involved in the epidemiology of PRRSV acting 

as vectors. In this sense, it has been reported that pigs intranasally inoculated 

with PRRSV isolated from faeces of mallard ducks became viraemic, 

seroconverted and transmitted the virus to sentinel pigs (Zimmerman et al., 

1997). Otake and co-authors (2002c, 2002d) reported that blood-borne 

transmission of PRRSV can be achieved by contaminated needles and by 

mosquitoes. On the other hand, rodents are not susceptible to PRRSV (Hooper 

et al., 1994). 

Once infected, pigs shed virus in nasal secretions, saliva, urine, mammary 

gland secretions, feces and semen until at least 28 dpi (Yoon et al., 1993; 

Rossow et al., 1994; Christopher-Hennings et al., 1995; Wagstrom et al., 2001; 

Wills et al., 1997a). However, the acute phase of the infection does not 

necessarily lead to seroconversion of all animals within the herd, being infected 

the remaining negative pigs at any time subsequently and therefore contribute 

to maintain the presence and the virus shedding (Albina, 1997a). 
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11..11..55..  PPaatthhooggeenneessiiss  

 

Pigs of all ages are susceptible to PRRSV infection. Experimental infection 

can be achieved following intranasal, intratracheal, oronasal, oral, 

intramuscular, intrauterine, intravenous or intraperitoneal inoculations 

(Wensvoort et al., 1991; Christianson et al., 1992; Collins et al., 1992; 

Christianson et al., 1993; Rossow et al., 1994; Swenson et al., 1994; Wills et al., 

1994; Pol et al., 1997; Van Reeth et al., 1999; Yoon et al., 1999). Under natural 

circumstances, the virus most frequently enters via the respiratory tract, but 

viraemia and dissemination throughout the body rapidly occur (Duan et al., 

1997; Beyer et al., 2000).  

Once the virus has entered in the organism, mainly macrophages (Duan et 

al., 1997; Lawson et al., 1997), but also monocytes and dendritic cells (DC) 

(Halbur et al., 1996), become target cells for PRRSV replication. In 

macrophages, the virus penetrates cells by a pH dependent endocytosis 

phenomenon (Kreutz and Ackerman, 1996) and by a 210 kDa receptor (Duan et 

al., 1998). Additionally, two new PRRSV receptors have been described to 

participate in the virus attachment: heparan sulfate, which plays a role in the 

attachment but probably not in virus uptake (Delputte et al., 2002), and porcine 

sialoadhesin, which is essential for PRRSV internalization in macrophages 

(Vanderheijden et al., 2003) and partially for attachment to these cells 

depending on the presence of sialic acids within the virus envelope (Delputte 



BACKGROUND    

   
32 

and Nauwynck, 2004). The virus replicates rapidly and releases the viral 

progeny by infected cells lysis. Moreover, cellular infection induces apoptosis of 

bystander cells (Sur et al., 1997, 1998; Sirinarumitr et al., 1998). Apoptosis 

induction of bystander cells and cytokines released by infected macrophages 

could play a role in the development of lesions associated to PRRSV infection, 

as the proliferative interstitial pneumonia (Suárez, 2000; Labarque et al., 

2003a). 

PRRSV spread from PAMs to the whole organism by haematogenous and 

lymphatic routes. Indeed, the virus can be constantly detected in lymphoid 

tissues and blood after infection (Rossow et al., 1994). Haematogenous 

dissemination is fast enough to allow the virus to infect different organs. PRRSV 

has been detected in nasal turbinates, trachea, tonsils, lymph nodes, kidneys, 

adrenal glands, brains, liver, spleen, bone marrow and choroid plexus during 

different periods (Pol et al., 1991; Rossow et al., 1994; Halbur et al., 1995a; 

Rossow et al., 1995; Beyer et al., 2000). From lungs, infectious virus has been 

recovered as late as 35 dpi, being infected cells mostly located in the alveolar 

spaces (Duan et al., 1997; Beyer et al., 2000). At the beginning of the infection, 

Halbur and co-authors (1996) evidenced PRRSV by immunohistochemistry in 

bronchiolar epithelial cells, arteriolar endothelial cells, mononuclear cells of 

alveolar septa and interstitial, intravascular and alveolar macrophages. From 3 

dpi onwards, PRRSV was detected mainly in interstitial and alveolar 

macrophages, remaining in PAMs for longer periods (Halbur et al., 1996). As 
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well as lung, other preferential tissue for PRRSV replication is the lymph node. 

In the lymph nodes, macrophages and DC from the germinal centres, which 

appear hyperplastic and with focal necrosis, displayed the highest 

immunostaining against PRRSV antigen (Halbur et al., 1996), being recovered 

from lymph nodes infectious virus until 21 dpi (Duan et al., 1997; Beyer et al., 

2000). PRRSV can be detected from 1 dpi to extend periods in tonsils, being 

detected by reverse transcriptase-polymerase chain reaction (RT-PCR) at 251 

dpi although virus isolation from tonsils was possible just until 56 dpi (Wills et 

al., 2003). PRRSV antigen distributes scattered in the tonsilar parenchyma, but 

especially in the epithelium of the crypts and within follicles, in macrophage-like 

or dendritic-like cells (Halbur et al., 1996).  

PRRSV replication in lymphoid tissues and its release to bloodstream could 

facilitate an extended viraemia (Rossow et al., 1995) as well as PRRSV 

elimination by different routes during long periods, still without viraemia 

(Christopher-Hennings et al., 1998; Prieto et al., 2003). Thus, PRRSV infection 

induces an extended viraemia from 12 hours post infection (hpi) (Rossow et al., 

1995) to 63 dpi in sera samples (Vézina et al., 1996), with half duration of 28 

days. During viraemia, the virus may be distributed to various organs. In boars, 

the virus may infect the reproductive tract and be shed in semen (Swenson et 

al., 1994; Christopher-Hennings et al., 1995), in which is able to persist until 43-

92 dpi (Swenson et al., 1994; Christopher-Hennings et al., 1995). In pregnant 

sows, PRRSV is able to cross through the placenta depending on the stage of 
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gestation. At early and mid gestation, transplacental infection is rarely observed 

(Christianson et al., 1993; Mengeling et al., 1994). However, during the latter 

stages of gestation (93 days), transplacental infection occurs easily 

(Christianson et al., 1992). These differences may be explained by differences 

in placental permeability during gestation (Christianson et al., 1993). 

PRRSV can be isolated from blood samples until 23 dpi in EU genotypes 

infections (Prieto et al., 2003) and 28 dpi in US genotypes infections (Wills et 

al., 2003) although it can be detected by RT-PCR until 56 dpi (Wills et al., 

2003). Viraemia last longer in sows than in piglets, probably due to an immature 

immune system and a higher proportion of susceptible cells in piglets in 

comparison with sows (Yoon et al., 1993; Mengeling et al., 1994; Rossow et al., 

1994; Prieto et al., 1997). 

 

The tropism of PRRSV for PAMs plays a function in the development of the 

pathogenesis of the respiratory disease. Macrophages play important roles in 

both innate and acquired immunity, performing a large variety of functions that 

include phagocytosis, inactivation of microorganisms, scavenging at sites of 

tissue injury, processing and presentation of antigens to lymphocytes and 

cytokine production. Thus, in PRRS, 50-65% PAMs are destroyed during the 

first week post infection (wpi) leading to a dysfunction of these cells (Molitor et 

al., 1992; Zhou et al., 1992; Molitor, 1993) and a decrease in superoxide anions 

and hydrogen peroxidase release by macrophages (Molitor et al., 1992; Zhou et 
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al., 1992; Thanawongnuwech et al., 1997; Chiou et al., 2000; López-Fuertes et 

al., 2000). The decrease in superoxide anions and hydrogen peroxidase 

release, leads to an impairment of the pulmonary immune response but only 

transiently because 4 weeks after infection PAMs recover their functions 

(Molitor, 1993; Done and Paton, 1995). The cytokines released during the 

infection, just as interleukin 1 (IL-1) or tumor necrosis factor alpha (TNFα), could 

mediate the inflammatory response in the lungs, being responsible of the 

dyspnoea and cutaneous erythema observed sometimes (Van Reeth and 

Nauwynck, 2000). 

PRRSV has been associated to other different pathogens (Rossow, 1998) 

suggesting a possible immunosupresor role of the virus which would make 

easier concomitant and/or secondary infections. However, although the role of 

PRRSV in the PRDC is accepted, it has not been successful to trigger 

experimentally secondary bacterial infections in pigs infected previously with 

PRRSV (Drew, 2000). The predisposition for Streptococcus suis infection has 

been proved in both growing animals (Galina et al., 1994; Halbur et al., 2000; 

Thanawongnuwech et al., 2000) and piglets infected in utero (Feng et al., 

2001). Concomitant infections of PRRS and Porcine Circovirus type 2 (PCV2) 

deserve special significance since lesions and piglet mortality rates displayed a 

great aggravation (Allan et al., 2000; Harms et al., 2001). During PRRSV 

infection has also been described an increase in the susceptibility to Salmonella 

choleraesuis (Wills et al., 2000), Bordetella bronchiseptica (Brockmeier et al., 
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2000), Swine Influenza virus (SIV) and porcine respiratory coronavirus (PRCV) 

(Van Reeth et al., 1996) and Mycoplasma hyopneumoniae (Thacker et al., 

1999). In field conditions, concomitant infections between PRRS and 

Streptococcus suis, Mycoplasma hyopneumoniae or PCV2 are present in a high 

frequency (Segalés et al., 2002). 

 

PRRSV infection in boars is multisystemic, being possible to isolate the 

virus from different organs from 2 to 30 dpi (Prieto et al., 2003). After infection, 

PRRSV spread through the whole organism, and infects the semen by 

replicating in organs of the reproductive tract or by the invasion of infected 

monocytes and macrophages from bloodstream to reproductive organs, without 

an obliged viral replication (Prieto et al., 2003). PRRSV can be isolated only 

until 8 dpi from testicles, pointing that testis are not a primary viral replication 

place (Prieto et al., 2003). 

In sows, PRRSV infection takes more significance at late term gestation, 

since the virus has no effect until the implantation of the embryos (Prieto et al., 

1997). When sows are infected intranasally the percentage of embryos or 

foetuses infected at the two first thirds of the gestation is almost zero 

(Mengeling et al., 1994; Prieto et al., 1996), being necessary to infect directly 

the piglets to develop the infection (Christianson et al., 1993; Lager and 

Mengeling, 1995). Mengeling and co-authors (1994) and Lager and co-authors 

(1996) reported a 100 % rate of piglets infected in utero at 90 days of gestation, 
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appearing stillbirth and weak-born piglets, which usually dye before weaning, 

increasing pre-weaning death ratio, or survive displaying growth retardation. 

Piglets with persistent infections associated to in utero infections present a 

marked dyspnoea, abdominal breathing and are more susceptible to bacterial 

infections (Benfield et al., 1997). 

 

11..11..66..  CClliinniiccaall  ssiiggnnss  

 

PRRS is characterised by producing both reproductive failure in breeding 

animals and respiratory disorders in growing and finishing pigs. However, their 

presentation in a naïve farm is different. While the reproductive disease is 

presented usually as an epizootic, developing a good protective immunity, the 

respiratory disease displays more characteristics typical of an endemic disease 

with a weak immune response and a greatly varying severity of clinical sings 

(Blaha, 2000; Drew, 2000). 

After a severe pandemic phase, characterised by reproductive failure in 

pregnant sows and gilts and respiratory disease problems in pigs of all ages, 

but particularly in nursery pigs, the disease has become endemic in most of pig 

producing countries, with a majority of herds being persistently infected for 

several years and showing high variability and severity of clinical signs, 

including a subclinical course of infection (Stevenson et al., 1993). 
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Subclinical presentation of PRRS is highly varied being also difficult to 

measure due to concomitant infections (Done and Paton, 1995). The clinical 

differences found in outbreaks are attributed to several factors, namely, different 

virulence and tropism of different PRRSV strains (Halbur et al., 1996), 

immunitary status of the herd (Wensvoort, 1993), evidence of concomitant 

infections (Done and Paton, 1995), different management and flow of animals 

just as the facilities of the farm (Goldberg et al., 2000b) and, finally, the size of 

the farm, being more severe in higher farms (Goldberg et al., 2000b). 

Epidemic appearance of the disease usually is limited to PRRSV negative 

farms being characterised by anorexia, pyrexia, depression and cyanosis of the 

skin, usually in the ears, vulva and limbs (Meldrum, 1991). More specific 

symptoms include dyspnoea and polypnea in adult animals and abdominal 

breathing in piglets. In the acute phase, problems appear associated to 

reproductive failure as a moderate increase of abortion, stillbirths, 

mummificated and macerated foetuses and weakborn piglets (De Jong et al., 

1991; Loula, 1991; Hopper et al., 1992),  decreasing in four the number of born 

alive piglets per litter in an outbreak of the disease (Polson et al., 1990). In 

addition, weakborn piglets can suck colostrum with difficulty increasing their 

mortality during lactation period (Hopper et al., 1992) and leading to mastitis in 

sows and diarrhoea in piglets. Piglets can show frequently abdominal breathing 

together conjunctivitis, cough, or palpebral oedema (Rossow et al., 1994) and 

circulatory disturbances, like haemorrhages at the umbilical cord or spread 
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haematomas at the points of iron administration (Hopper et al., 1992), cyanosis 

at the ears, cutaneous erythema and rough hair (Rossow, 1998). Nervous 

symptoms, like somnolence and anorexia in sucking piglets have been also 

described (Rossow et al., 1999). 

Boars will present, in addition to anorexia, lethargy and lack of libido, a 

decrease in sperm quality due to a reduction in motility, increase of abnormal 

acrosomes and morphological alterations (De Jong et al., 1991; Feitsma et al., 

1992), which may lead to a decrease in the number of sperm doses between 4–

7 weeks post infection (wpi) (Feitsma et al., 1992). 

The severity of the disease in growing and fattening pigs depends on the 

age of the animals, being more severe in younger animals (Rossow et al., 

1994), and in appearance of concomitant pathogens. However, most of the 

times PRRSV infection passes unnoticed in fattening pigs, displaying only fever, 

respiratory distress and weight loss when it is inoculated together other 

pathogens (Van Reeth et al., 1996; Labarque et al., 2002). The mean daily 

intake can be diminished till a 50% (Keffaber, 1989). 

Chronic disease is the most common way of presentation of the disease, 

following an acute phase, characterised by respiratory disorders in growing 

pigs, and sometimes in breeding sows. During this phase also reproductive 

parameters are impaired leading to the greatest economical losses (Dee et al., 

1996) due to normal parameters will not be restored until 6 months after an 

outbreak of the disease, meanwhile the virus remain in growing and fattening 
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animals (Stevenson et al., 1994). Indeed, the main characteristic of PRRS is the 

concomitance with secondary diseases, both bacterial and viral infections, 

emphasizing SIV, PRCV and specially PCV2 or bacteria like Haemophilus 

parasuis, Streptococcus suis, Actinobacillus pleuropneumoniae, Salmonella 

choleraesuis, Bordetella bronchiseptica or Pasteurella multocida, but above all 

Mycoplasma hyopneumoniae (Galina et al., 1994; Van Reeth et al., 1996; 

Rossow, 1998; Thacker et al., 1999; Allan et al., 2000; Brockmeier et al., 2000; 

Halbur et al., 2000; Thanawongnuwech et al., 2000; Wills et al., 2000; Harms et 

al., 2001; Segalés et al., 2002). 

An atypical form of PRRS has been described being characterised by an 

acute phase with mortality higher than 5% in breeding animals and abortions 

ratio greater than 10%, reaching until 60%. Abortions appear along the whole 

gestation period, but with higher frequency at the first and the last third of the 

pregnancy. This form lasts only between 2 – 4 wpi. These outbreaks are related 

to highly virulent strains of PRRSV (Mengeling et al., 1998).  Recently, a new 

outbreak of atypical PRRSV has been described associated to a deletion in the 

NSP2 of PRRSV (Tian et al., 2007). However, further studies have to be carried 

out to confirm the unique involvement of an atypical PRRSV strain, due to the 

difficulty to discern clinically from other porcine viruses, which may be also 

involve in the outbreak, just as PCV2 or Hog Cholera Virus. 
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11..11..77..  LLeessiioonnss  

 

The clinical and pathological effects of the disease depend on enzootic 

pathogens of each farm. Furthermore, gross lesions are not usually evidenced 

when PRRS is not complicated with secondary pathogens, while microscopic 

changes are just observed at respiratory tract (Done and Paton, 1995).  

The main lesions observed in PRRS consist on tan-mottled, rubbery lungs, 

especially at the ventral area of medium and accessory lobules, and  

hyperplasia of lymph nodes (Pol et al., 1991; Halbur et al., 1995a, 1995b; 

Vézina et al., 1996). The multifocal pattern of the interstitial pneumonia 

observed in the lungs point to a postviremic development of the lesions (Ramos 

et al., 1992). When the virus affects pregnant sows hydrothorax, ascites and 

subcutaneous haemorrhages in weak born and stillbirth piglets (Plana et al., 

1992; Scruggs and Sorden, 2001) may be seen. In addition, mummification and 

maceration is common in piglets from infected litters just as oedema and 

haemorrhages of the umbilical cord (Lager and Halbur, 1996). 

The main microscopic feature is a multifocal proliferative interstitial 

pneumonia, characterised by type II pneumocytes hypertrophy and hyperplasia, 

mononuclear cells infiltration of the alveolar septa and the presence of cellular 

debris and inflammatory cells in alveolar spaces (Halbur et al., 1994, 1995; 

Rossow et al., 1994, 1995). Histopathological lesions also include rhinitis, 

characterised by vacuolization of epithelial cells, loss of their cilia and surface 
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epithelium desquamation (Pol et al., 1991; Collins et al., 1992). These lesions 

appear from 3 dpi to 21 dpi (Rossow et al., 1995). PAMs and epithelial cells 

degeneration has been ultrastructurally observed in lung and in nasal turbinate, 

evidenced by an excessive vacuolization of endoplasmic reticulum (Pol et al., 

1991). In addition, the virus is able to produce apoptosis both in vitro (Suárez et 

al., 1996a) and in vivo in bystander cells (Sirinarumitr et al., 1998; Sur et al., 

1997, 1998).  

Moreover, hypertrophy of the germinal centres, necrosis of lymphoid 

follicles and an increased number of macrophages in sinusoids of lymphoid 

tissue, just as lymph nodes, spleen and tonsils, together subcapsular 

haemorrhages of the lymph nodes have been reported (Rossow et al., 1994; 

Halbur et al., 1995a). Feng and co-authors (2002) also described a marked 

thymic atrophy in piglets when they had been infected in utero. 

Other microscopic lesions observed include multifocal miocarditis with 

mononuclear perivascular cuffing (Rossow et al., 1994; Halbur et al., 1995a), 

non suppurative diffuse encephalitis characterised by a mononuclear 

perivascular cuffing (Collins et al., 1992) and severe meningoencephalitis 

(Rossow et al., 1999). 

Some extrapulmonary lesions attributed to PRRSV are thought to be 

caused by PCV2, like multisystemic vasculitis and miocarditis. As well, several 

authors reported PRRSV and PCV2 like the main pathogens associated to 

proliferative necrotizing pneumonia (PNP) (Pesch et al., 2000; Grau-Roma and 
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Segalés, 2007). Although PRRSV has been pointed as the main responsible of 

PNP in the United States, PCV2 would be the main responsible of this process 

in Europe (Grau-Roma and Segalés, 2007). 

 

11..11..88..  IImmmmuunnee  ssyysstteemm,,  aappooppttoossiiss,,  ccyyttookkiinneess  aanndd  tthheeiirr  rreellaattiioonnsshhiippss::  aann  

aapppprrooxxiimmaattiioonn  

 

Although it is well established that pigs develop both humoral (Yoon et al., 

1995; Loemba et al., 1996) and cellular (Bautista and Molitor, 1997; López-

Fuertes et al., 1999; Meier et al., 2003) immune responses in PRRSV infection, 

precise knowledge of the immune mechanisms induced is still incomplete. 

Circulating antibodies can be detected early in PRRSV infection although 

infected pigs may be viraemic until 6 – 12 wpi (Yoon et al., 1995; Batista et al., 

2004; Johnson et al., 2004). However, neutralizing antibodies (NAs) do not 

appear until 8-10 wpi and their role in PRRSV protection is not yet clear 

(Murtaugh et al., 2002). The studies about cell mediated immune (CMI) 

response has been focused mainly in the study of peripheral blood 

mononuclear cells (PBMCs) (Shimizu et al., 1996; Albina et al., 1998b; López-

Fuertes et al., 1999; Samsom et al., 2000; Feng et al., 2002; Xiao et al., 2004; 

Díaz et al., 2005), meanwhile few studies have been done in peripheral 

lymphoid tissues (Kawashima et al., 1999; Lamontagne et al., 2003; Xiao et al., 

2004). The results obtained of the different reports are contradictory, however a 
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decline in the viraemia has been observed simultaneously with an increase in 

CD8+ cells, pointing to a possible role of these cells in the clearance of the virus 

(Lamontagne et al., 2003). 

PRRSV mediated immunomodulatory effects, like interleukin 10 (IL-10) 

upregulation (Chung and Chae, 2003; Suradhat et al., 2003) and interferon α 

(IFNα) suppression (Albina et al., 1998a; Van Reeth et al., 1999), have been 

suggested to play a role in delaying the host protective immune response and in 

favouring opportunistic infections. In this sense, one of the most controversial 

aspects of PRRS is the immunosuppressive capacity of the virus. In young pigs, 

the disease is frequently associated with secondary infection due to several 

pathogens, especially of the respiratory tract, suggesting that the virus reduces 

host defence mechanism (Stevenson et al., 1993). The results obtained when 

the immunosuppressive state induced by PRRSV has been recreated 

experimentally displayed contradictory results (Galina et al., 1994; Cooper et 

al., 1995; Van Reeth et al., 1996; Carvalho et al., 1997; Pol et al., 1997; Solano 

et al., 1997; Wills et al., 2000). On the one hand, several reviews of the 

literature have consistently concluded that PRRSV infection does not have an 

immunomodulatory or immunosuppressive effect (Beilage, 1995; Albina, 1997a, 

1997b; Molitor et al., 1997; Albina et al., 1998b; Drew, 2000). In this sense, 

Albina and co-authors (1998b) suggested that the increased disease 

susceptibility of PRRSV infected pigs could be due to a disruption of the first 

lines of defence by means the replication of the virus in alveolar macrophages 
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and subconsequent local inflammatory reaction. Moreover, PRRSV has been 

shown to induce the death of alveolar macrophages, major target cells of the 

virus, and to reduce their functions in infected pigs (Molitor et al., 1992; Zhou et 

al., 1992). This diminishing on the number of macrophages has been related by 

several authors with apoptosis phenomenon linked to PRRSV infection. In this 

way, Feng and co-authors (2002) observed an increase in the number of 

apoptotic cells in the thymus of piglets infected in utero, Sirinarumitr and co-

authors (1998) and Sur and co-authors (1998) described apoptosis in the lung 

and lymphoid tissues of pigs infected with PRRSV, and Suárez and co-authors 

(1996a) related apoptosis phenomenon with GP5 of PRRSV. Several 

mechanisms might be implicated in the development of apoptosis phenomena 

in infected animals. In this sense, high levels of IL-1β expression have been 

detected in alveolar macrophages in the course of PRRSV infection (Zhou et 

al., 1992). Apoptosis could be also triggered by a decrease of the intracellular 

superoxide levels subsequent to infection of macrophages with PRRSV (Lin et 

al., 1999). However, an indirect mechanism involved in PRRSV induced 

apoptosis has been also suggested, since apoptosis phenomena are mainly 

observed in non infected cells (Labarque et al., 2003a). 

Another striking point about PRRSV is related to the cross immunity get by 

means of vaccination. It has been probed that vaccination protects against 

homologous genotypes, however the protection against heterologous ones is 

only partial (Van Woensel et al., 1998b; Lager et al., 1999; Labarque et al., 



BACKGROUND    

   
46 

2003b), pointing to an immune response similar but not equal against different 

PRRSV genotypes (Díaz et al., 2005). When a mixed protocol of vaccination 

has been followed up using both modified live vaccines (MLV) and killed 

vaccines (KV), only KV vaccination increased antibody levels in previously 

immunised (MLV or KV) sows (Bassaganya-Riera et al., 2004). 
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11..22..  IIMMMMUUNNOOLLOOGGIICCAALL  RREESSPPOONNSSEE  OOFF  SSWWIINNEE  TTOO  PPRRRRSSVV  

 

Immunity to PRRSV begins with an innate antiviral response in the 

cytoplasm of the infected macrophage with a minimal production of type I 

interferon (IFNα/β) at the site of infection (Murtaugh et al., 2002). Several 

authors have described a non significant IFNα production in PRRSV infection 

(Albina et al., 1998a; Buddaert et al., 1998; Van Reeth et al., 1999; Murtaugh et 

al., 2002) pointing to a non efficient innate immune response. 

The antigen specific humoral immunity appears early after infection (5-7 

dpi), although NAs are detected later in serum (Loemba et al., 1996; Eichhorn 

and Frost, 1997; Albina et al., 1998b; Meier et al., 2003). Nonetheless, the 

efficiency of NAs in PRRS clearance is not clear, and the different reports show 

contradictory results (Yoon et al., 1995; Murtaugh et al., 2002; Batista et al., 

2004). The transfer of passive maternal immunity to piglets in colostrum is able 

to protect the piglets against the development of clinical symptoms and 

curtailment of viraemia (Murtaugh et al., 2002). 

CMI response, measured as antigen specific proliferation, is transiently 

induced 4–8 wpi and is restimulated for a 2–4 week window after rechallenge 

(López-Fuertes et al., 1999). The persistence of PRRSV points to both humoral 

and cellular immune responses are not able to completely eliminate the virus. 

Pigs infected with PRRSV show prolonged viraemia, persistent infection, 

and may suffer repeated episodes of the disease (Murtaugh et al., 2002). 
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Otherwise, occasionally it has also been described a short viraemia (López-

Fuertes et al., 1999; Meier et al., 2003; Sipos et al., 2003; Díaz et al., 2005). 

Furthermore, exposure of pigs to PRRSV induces a homologous immunity, 

protecting efficiently against the reexposure to the same strain (Lager et al., 

1997). However, further studies have to been carried out to confirm the 

establishment of a homologous immunity and to determine the role of a possible 

heterologous immunity. 

Although modified-live vaccines (MLV) are able to reduce the severity of the 

disease, duration of viraemia, virus shedding and the frequency of PRRSV 

infection (Christopher-Hennings et al., 1997; Nielsen et al., 1997; Dee et al., 

1998; Van Woensel et al., 1998a; Mavromatis et al., 1999; Mengeling et al., 

1999), nowadays there is lack of a reliable vaccine which offer a total control 

and prevention of PRRS. 

 

11..22..11..  IInnnnaattee  rreessppoonnssee  aaggaaiinnsstt  PPRRRRSSVV  iinnffeeccttiioonn  

 

In viral infections, the presence of double-stranded RNA triggers a variety of 

antiviral functions, of which the induction of the type I interferons (IFNα/β) is a 

hallmark of cellular antiviral defence (Vicek and Sen, 1996; Pfeffer et al., 1998; 

Tizard, 2008). Virus induced IFNα/β activates or induces the synthesis of 

numerous proteins, including 29,59-oligoadenylate synthetase (OAS), double-

stranded RNA-dependent protein kinase (PKR) and ribonuclease L (Rnase L) 
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(Vicek and Sen, 1996). OAS, PKR, and Rnase L suppress viral protein 

synthesis by a combination of RNA degradation and inhibition of protein 

synthesis (Chebath et al., 1987; Vicek and Sen, 1996). However, there is no 

evidence of accelerated viral RNA degradation or reduced levels of viral protein 

synthesis in PRRSV-infected macrophages, accordingly with the minimal type I 

interferon expression observed in vitro (Albina et al., 1998a; Buddaert et al., 

1998) or in vivo PRRSV infections (Albina et al., 1998a; Buddaert et al., 1998; 

Van Reeth et al., 1999). Moreover, IFNα/β potently activates and stimulates the 

proliferation of natural killer (NK) cells, which comprise an important innate 

cellular response to viral infection (Tay et al., 1998). The antiviral functions of 

NK cells result in the production of immunoregulatory cytokines (mainly IFNγ 

and TNFα) and in cytotoxicity to virus infected cells (Paya et al., 1988; Orange 

and Biron, 1996; Tay et al., 1998; Biron et al., 1999; Rowland et al., 2001). 

In addition to IFNα production, inflammatory cytokine expression also is 

important in the initial response to a variety of viral respiratory infections (Van 

Reeth and Nauwynck, 2000). Accordingly, substantial production of IFNα, TNFα 

and/or IL-1 has been detected in swine influenza and porcine respiratory 

coronavirus, while PRRSV infection failed to elicit any significant cytokine 

expression by in vivo (Van Reeth et al., 1999) and in vitro studies 

(Thanawongnuwech et al., 2001). The downregulation of IFNα production 

seems to facilitate PRRSV replication since the increase of type I interferons 

level by in vivo stimulation or exogenous administration has been shown to 
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substantially reduce viral growth and to enhance humoral immune responses 

(Albina et al., 1998a; Le Bon et al., 2001). 

In viral infection, TNFα and IL-1β are significant activators of the nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) (Didonato et al., 

1997; Regnier et al., 1997; Christman et al., 1998, 2000). NF-κB plays a central 

role in the innate response to infection by regulating the transcription of more 

than 100 genes, including inflammatory and immunoregulatory cytokines, 

antigen receptors, adhesion molecules, inhibitors of apoptosis, acute phase 

proteins, and innate effector molecules (Schmid and Adler, 2000). In this 

aspect, the mild or subclinical respiratory involvement in PRRSV infection may 

be due to the lack of activation of NF-κB. However, PRRSV has been reported 

to activate NF-κB in MARC-145 cells and alveolar macrophages (Lee and 

Kleiboeker, 2005), losing strength the hypothesis described above.  

In summary, the initial innate immune response to PRRSV is not totally 

efficient. The lack of an IFNα response is significant, since IFNα-mediated 

events inhibit PRRSV replication in vitro (Albina et al., 1998a; Buddaert et al., 

1998) and since elevation of IFNα in vivo by preinfection with other viruses, like 

PRCV, substantially attenuates subsequent PRRSV replication (Buddaert et al., 

1998). The alteration of the profile of cytokine expression in macrophages and 

DC and the modification of molecules involved in antigen presentation may be 

responsible of innate immune response downregulation by PRRSV (Mateu and 

Díaz, 2008). 
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11..22..22..  HHuummoorraall  iimmmmuunnee  rreessppoonnssee  ttoo  PPRRRRSSVV  

 

Circulating antibodies against PRRSV are first detected like IgM at 5–7 dpi 

and then decline rapidly to undetectable levels after 2–3 weeks (Joo et al., 

1997; Park et al., 1995; Yoon et al., 1995; Loemba et al., 1996). All the animals 

seroconvert at 14 dpi (Yoon et al., 1992, 1995).  Anti-PRRSV IgG antibodies are 

first detected at 7–10 dpi, peak at 2–7 wpi (Yoon et al., 1995; Loemba et al., 

1996; Vézina et al., 1996; Labarque et al., 2000), remain constant for a period 

of months, and then decline to low levels by 300 dpi (Nelson et al., 1994; 

Nielsen and Bøtner, 1997). Immunoglobulins of the IgG1 subclass appear at 9 

dpi, while IgG2 subclass antibodies are first detected at 14 dpi with kinetics 

similar to that of IgG1, but at a lower level (Labarque et al., 2000). Anti-PRRSV 

IgA can be detected in serum at 14 dpi, reaches a maximum at 25 dpi, and 

remains detectable until 35 dpi. The kinetic of anti-PRRSV antibody isotypes in 

bronchoalveolar lavage fluid (BALF) is similar to those in serum, indicating that 

these antibodies extravasate from the vasculature (Labarque et al., 2000). 

Unlike the overall rapid production of anti PRRSV antibodies, NAs are 

reported to appear later in the infection and not in all inoculated animals 

(Loemba et al., 1996; Eichhorn and Frost, 1997; Albina et al., 1998b; Meier et 

al., 2003), although some authors (Yoon et al., 1994) have reported the 

detection of NAs as early as 9 dpi. The differences observed can be due to 

conventional virus neutralisation tests (VNTs) do not detect NAs in the first 4 
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wpi, although with some modifications of the technique they can be detected as 

early as 9-12 dpi (Takikawa et al., 1996). NAs are consistently detected by 28 

dpi or later for both EU and US genotypes (Yoon et al., 1994; Meier et al., 2003; 

Díaz et al., 2005). Usually, the decline in PRRSV specific serum antibodies 

coincidence with the appearance of NAs (Albina et al., 1998b; Molitor et al., 

1997; Nelson et al., 1994; Shibata et al., 2000; Meier et al., 2003). Anti-PRRSV 

immunoglobulins in serum after PRRSV infection are directed primarily against 

PRRSV N protein (encoded by ORF 7) and M protein (encoded by ORF 6) (Dea 

et al., 2000). Otherwise, NAs against PRRSV have been reported with 

specificities against GP5, GP4, and M (Halbur et al., 1997; Meulenberg et al., 

1997; Pirzadeh and Dea, 1997, 1998; Weiland et al., 1999; Yang et al., 2000; 

Ostrowski et al., 2002). GP5 seems to be the protein of major biological 

significance. 

The role of NAs in prevention of this disease and in protection of pigs from 

infection is not clear. On the one hand, NAs have been correlated with a 

reduction in PRRSV titre in the lung and in peripheral blood, culminating in the 

clearance of PRRSV from circulation (Yoon et al., 1995). Osorio and co-authors 

(2002) reported that sows with a NAs titre of 1:16 may clear PRRSV infection, 

when challenged at 90 days gestation, not suffering reproductive failure, which 

points to a protective role of NAs. Moreover, NAs titres of 1:8 have been 

reported to block viraemia but not peripheral tissue shedding and transmission 

to contact animals, whereas higher titres (1:32) could induce complete 
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protection (López et al., 2007). On the other hand, PRRSV has been isolated 

from serum and different tissues in the presence of NAs (Christianson et al., 

1992; Rossow et al., 1994; Vézina et al., 1996; Wills et al., 1997b; Dee et al., 

1998; Batista et al., 2004), pointing that the level of NAs normally generated 

against PRRSV may not be sufficient to clearance of the virus (Murtaugh et al., 

2002). This fact may suggest a role of cellular immune mechanisms in the 

control of this viral infection (Vézina et al., 1996; Wills et al., 1997b). All these 

data together point to NAs may protect against the disease, when they are 

present in a sufficient quantity, but they do not play an important role in virus 

clearance (Mateu and Díaz, 2008). 

The phenomenon of antibody-dependent enhancement (ADE) also may be 

involved in the reduced effectiveness of NAs response (Kurane et al., 1991). 

Low titres of NAs may increase the association of viral particles with permissive 

macrophages through binding of virus antibody complexes to the Fc receptor, 

and thus facilitate viral binding and uptake through the macrophage PRRSV 

binding protein (Christianson et al., 1993; Yoon et al., 1996, 1997). The 

prolonged duration of viraemia and virus isolation from the tissues in piglets with 

low maternal antibodies also suggests ADE in PRRS (Shibata et al., 1998). 

Colostral antibody responses are closely correlated with serum antibody 

responses. In this way, Eichhorn and Frost (1997) showed that serum-positive 

sows were colostrum-positive and all colostrum-negative sows also were 

serum-negative. Because the concentration of IgG in colostrum exceeds that 



BACKGROUND    

   
54 

found in serum (Pastoret et al., 1998), sows may be colostrum-positive but 

serum-negative (Eichhorn and Frost, 1997). These maternal antibodies are 

reported to persist in piglets up to 6–8 weeks of age (Houben et al., 1995; 

Chung et al., 1997). However, antibodies fail to totally protect when transferred 

from PRRS recovered sows to 1 week old piglets (Morrison et al., 1992). Pigs 

previously exposed to the virus are protected to reexposure to at least 

homologous virus challenge (Molitor et al., 1997), suggesting a role for cellular 

immunity in protection (López-Fuertes et al., 1999). 

The impairment of host immune response in PRRSV infected animals, with a 

fast developed humoral response and a late and erratic cell mediate immune 

response, shows similarities with the immune response observe in human 

immunodeficiency virus (HIV) infection. In HIV most of the patients produce 

anti-HIV antibodies, which can be detected by means ELISA or Western blot 

methods, within 2 months post-infection while NAs do not appear at high titres 

till 25-53 wpi (Pilgrim et al., 1997). It seems that PRRSV and HIV lead to a 

delayed induction of NAs by focusing the immune response to non neutralizing 

epitopes (Ho et al., 1991; Ostrowski et al., 2002). Thus, both PRRSV and HIV 

may posses a similar strategy for evading the potentially inhibitory activity of the 

host humoral immune response and present a similar challenge to effective 

vaccination (Meier et al., 2003). 
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11..22..33..  CCeellll--mmeeddiiaatteedd  iimmmmuunnee  rreessppoonnssee  iinn  PPRRRRSS  

 

PRRSV infection induces a transient leukopenia and lymphopenia in the first 

week which resolves in 8–10 days (Christianson et al., 1993; Nielsen and 

Bøtner, 1997; Feng et al., 2002; Lamontagne et al., 2003). However, the 

absence of a corresponding increase in lymphocyte numbers in the BALF at this 

time indicates that this change may not be a direct response to the virus 

(Labarque et al., 2000; Samsom et al., 2000), since PAMs are the target cell for 

viral replication. 

PRRSV does elicit a late CMI response (Meier et al., 2003), which usually is 

not organised and consistent. PRRSV infection in the lung peaks at 

approximately 9 dpi and foci of infection decline to near zero by 20 dpi, although 

virus still may be isolated from lung fluids for extended periods (Mengeling et 

al., 1996; Labarque et al., 2000; Samsom et al., 2000; Tingstedt and Nielsen, 

2004). Samson and co-authors (2000), using gnotobiotic and specific-pathogen-

free (SPF) piglets infected with a European strain of PRRSV, identified an 

increase in the total number of bronchoalveolar cells (BALCs) due to an 

increase in CD4-CD8+ T cell population between 14 and 21 dpi, together a CD6-

CD8+ and CD6+CD8+ increase at 7 dpi. The lymphocytes were classified as NK 

cells and cytotoxic T cells based on the cell marker phenotype CD6-CD8+ and 

CD6+CD8+, respectively. Both subtypes of lymphocytes regulate cellular 

immunity via the production of IFNγ (Trinchieri, 1995). Moreover, they found no 
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changes in the levels of CD4+CD8- and CD4+CD8+ between infected and control 

animals neither a decrease in the number of the macrophages in the lung 

during the infection. Interestingly, Tingstedt and Nielsen (2004) reported a low 

CD4+ and a high CD2+, CD3+ and CD8+ immunohistochemical antigen 

expression in the lung of piglets born from PRRSV inoculated sows being 

correlated with the results above. 

Several authors also have observed a substantial increase in CD8+ T cells 

(Shimizu et al., 1996; Albina et al., 1998b; Feng et al., 2002; Lamontagne et al., 

2003; Díaz et al., 2005), whereas the decrease of CD4+ T cells was not an 

uniform feature (Shimizu et al., 1996; Feng et al., 2002; Díaz et al., 2005). 

These results led to a significantly low CD4+/CD8+ ratio in PBMCs of both 

naturally and experimentally infected pigs (Shimizu  et al., 1996; Albina et al., 

1998b; Feng et al., 2002). Furthermore, Feng and co-authors (2002) also 

described an increase in CD4+CD8+ T cells in piglets infected in utero with 

PRRSV. Otherwise, these results are opposite to those reported by Zhou and 

co-authors (1992) and Xiao and co-authors (2004). These discrepancies are 

probably due to the different PRRSV isolate used in each study, since marked 

variability in the pathogenicity of PRRSV has been suggested (Halbur et al., 

1994; Shimizu et al., 1996; Drew, 2000; Thanawongnuwech et al., 2003). The 

transient nature of the PRRSV specific T cell response has been also observed 

in LDV infection, in which cytotoxic T cells were elicited in acute LDV infection 

but disappeared in the chronic phase of infection (Even et al., 1995). 



                                                                                                        MODULATORY ROLE OF CYTOKINES IN PRRS 

   
57 

The mechanism involve in this low CD4+/CD8+ ratio in PRRSV infection is 

unknown. Shimizu and co-authors (1996) showed that PRRSV neither infects 

nor kills CD4+ T cells and no posses a mitogenic activity for CD8+ T cells, 

suggesting that intermediate immune effectors are necessary for the increase in 

CD8+ T cells. These effectors could consist on helper cells or 

immunostimulating cytokines induced by the virus. In this sense, Paliard and co-

authors (1988) reported an induction of the CD8 molecule mediated on human 

CD4+ cells by IL4 expression, and Moore and co-authors (2001) reported CD8+ 

T cells growth promotion and differentiation by the expression of IL-10. Anyway, 

the biological significance of the change in CD8+ T cells in infected pigs is not 

well understood, although some approaches have been done. Albina and co-

authors (1998b) hypothesised that the change in CD8+ T cell subset could be 

related with the control of virus replication, due to they observed a decline of the 

viraemia simultaneously to the proliferation of CD8+ cells. 

PRRSV-specific T cell proliferative response first appears in peripheral blood 

at approximately 4 weeks after infection with both US either EU PRRSV 

isolates, once viraemia was no longer detectable (Bautista and Molitor, 1997; 

López-Fuertes et al., 1999). In vivo specific cell-mediated reactivity to PRRSV 

antigen was confirmed by a delayed type hypersensitivity (DTH) reaction to 

inactivated PRRSV (Bautista and Molitor, 1997). López-Fuertes and co-authors 

(1999) reported a CD4+ T cell proliferation in T cell response to PRRSV which 

was present for a period of 10 weeks after infection. Stimulated cells expressed 
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IFNγ and IL-2, but not IL-4 or IL-10, suggesting that the CD4+ T cells possessed 

a Th1 cytokine expression phenotype characteristic of CMI response to 

intracellular pathogens (López-Fuertes et al., 1999). However, in vitro 

restimulation of PBMCs with PRRSV antigen and IL-2 led to the observation 

that the responding cells were primarily CD8+, which were represented by 

CD4+CD8+ double positive cells, which are known to represent antigen-specific 

memory T helper cells (Zuckermann and Husmann, 1996), or by CD8+γδ+ cells 

with constitutive cytolytic activity (NK activity), like CD8+ cytolytic cells (López-

Fuertes et al., 1999). The delay to detect proliferative response until 4 weeks 

post inoculation could be due to the sequestration of specific T cells in infected 

organs (López-Fuertes et al., 1999). Otherwise, an excess of viral load in the 

blood may also lead to an unresponsiveness state of specific T cells as it has 

been described for other viruses (Zinkernagel et al., 1997). 

Host IFNγ production is central to mechanisms of protection in a variety of 

cytopathic viral infections in murine models (Ramsay et al., 1993; Zinkernagel et 

al., 1996). IFNγ mRNA has been detected in the lymph nodes, lungs and 

PBMCs of PRRSV-infected pigs (López-Fuertes et al., 1999; Rowland et al., 

2001; Thanawongnuwech et al., 2003). Moreover, it has been reported that 

IFNγ blocks PRRSV replication in cultured cells (Bautista and Molitor, 1999) 

apparently by the inhibition of viral RNA synthesis via a double-stranded RNA-

inducible protein kinase (Rowland et al., 2001). The intensity of the IFNγ 

response to either wild type or attenuated PRRSV increases gradually over a 
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period of months, while humoral immunity decreases (Meier et al., 2000). The 

observation that PRRSV persists in lung and lymph nodes despite the presence 

of NAs in serum and BALF (Albina et al., 1994; Chung et al., 1997; Wills et al., 

1997b; Zimmermann, 1999; Labarque et al., 2000) argues that cell-mediated 

immunity is necessary for the complete elimination of the virus. Nevertheless, 

the existence of PRRSV persistence also suggests that cell-mediated immunity 

is not potent and that IFNγ production is either weak or ineffective in the early 

stage to the infection (Murtaugh et al., 2002). 

 

Xiao and co-authors (2004) and Díaz and co-authors (2005) suggested a 

hypothetical model in which the outcome of PRRSV infection is related more to 

the dynamic of permissive macrophages and the early events of the natural 

response than to the development of specific immunity. In the early events IL-10 

would be released impairing the development of CMI response (Royaee et al., 

2004), which explained the lack of IL-2 and IL-4 producing cells and the erratic 

levels of IFNγ (Meier et al., 2003; Díaz et al., 2005). As infection progresses, 

the number of permissive macrophages would be decreased by the cytolytic 

cycles of virus replication (Xiao et al., 2004). Thus, the weak CMI response 

would be able to confine PRRSV to specific tissues (i.e. lymph nodes) where 

the proportion of permissive cells could be still relatively high (Xiao et al., 2004). 

In consequence, viraemia should cease or become inconstant and low. As far 

as the infection can be confined to certain tissues and permissive macrophages 



BACKGROUND    

   
60 

are not replaced at a high rate, the number of infected cells will decline steadily 

and the immune response will finally be able to clear the infection. At this 

moment, an increase of IFNγ secreting cells (IFNγ-SCs) and the final 

development of NAs would take place (Díaz et al., 2005). From then onwards, 

the pig would be protected against homologous challenge (Mengeling et al., 

2003). Such a model would explain why no clear correlation between the 

immune response and the clearance of infection can be determined, as well as 

making sense of the delayed T cell responses observed in PRRSV infection 

(Díaz et al., 2005). 

 

11..22..44..  LLyymmpphhooccyyttee  ssuubbsseettss  iinn  ppeerriipphheerraall  llyymmpphhooiidd  ttiissssuuee  dduurriinngg  PPRRRRSSVV  

iinnffeeccttiioonn  

 

While an extensive study on PBMCs in PRRSV infection has been 

performed, the available information about lymphoid T cell subsets in lymphoid 

tissues is scarce and controversial. Moreover, peripheral blood contains only 

2% of the total T cells of the body (Westermann and Pabst, 1992) and is the site 

of neither viral replication nor antigen presentation. Therefore, it is possible that 

the main T cell dependent response to PRRSV might be occurring in lymphoid 

tissues, analogous to T cell response to simian immunodeficiency virus and 

human immunodeficiency virus (HIV) (Kuster et al., 2000; Sopper et al., 2003). 

A significant increase of CD2+CD8high T cells in spleen from 10 to 45 dpi by 



                                                                                                        MODULATORY ROLE OF CYTOKINES IN PRRS 

   
61 

means immunohistochemistry (Kawashima et al., 1999) or flow cytometry 

(Lamontagne et al., 2003) techniques, has been correlated with a rapid 

elimination of the virus from blood and spleen (Lamontagne et al., 2003). 

However, a decrease or no significant changes in CD8high cells were observed 

in the rest of lymphoid organs studied (Kawashima et al., 1999; Lamontagne et 

al., 2003), which may lead to the persistence of the virus. Xiao and co-authors 

(2004) did not find any change in the percentage of CD4+ or CD8+ T cells in 

lung, blood or lymphoid tissues. On the other hand, Kawashima and co-authors 

(1999) described an increase of CD4+ cells in spleen and a decrease of this 

subset in the rest of lymphoid tissues studied. Lamontagne and co-authors 

(2003) did not find significant changes in the percentages of CD4+ cells in any 

lymphoid tissue studied, suggesting that this lack of changes may be due to a 

depletion of all the lymphoid subsets in the lymphoid organs analyzed. 

The increase in the percentage of CD2+CD8high cells was reflected in a 

decrease of CD4/CD8high ratio in the spleen and CD8low/CD8high ratio in the 

spleen and mediastinal lymph node, while no significant changes were detected 

in tonsils (Lamontagne et al., 2003). CD2+CD8low cells only increase transiently 

in tonsils at 3 dpi. NK cells, characterised as CD2+CD8lowMIL4+, were not 

significantly modified in PRRSV infection indicating that the innate immune 

response was not stimulated in peripheral lymphoid organs (Lamontagne et al., 

2003) or that newly NK cells produced were recruited in lungs (Samson et al., 

2000), facilitating viral persistence in lymphoid organs. CD2+CD8lowMIL4- 
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memory cell subset only displayed a significant decrease in the spleen at 3 dpi 

(Lamontagne et al., 2003). Conversely, Xiao and co-authors (2004) did not find 

any change in the percentage of CD4+CD8+ T cells, although they reported a 

decrease in γδ T cells population in all examined tissues, especially in lung and 

lymph nodes. The decline of γδ T cells would contribute to the impairment of 

CMI response to PRRSV (Murtaugh et al., 2002) and may be due to a low 

production of proinflammatory cytokines (Van Reeth et al., 1999). 

Although Lamontagne and co-authors (2003) initially suggested a possible 

role of CD8high cells in the clearance of the virus due to the coincidence 

between the increase of this subset and the decrease of viral titre in serum and 

spleen, later they also observed RNA viral persistence in the blood and the 

spleen indicating an impaired immune mediated viral elimination. Moreover, the 

persistence of the virus in tonsils and mediastinal lymph nodes indicate both the 

absence of T cell immune stimulation, observed by the low levels of CD8high 

cells in these tissues, or a fast death of activated lymphoid cells (Lamontagne et 

al., 2003). Lamontagne and co-authors (2001, 2003) conclude from their results 

that the CMI response evoked against PRRSV is not efficient and that lymphoid 

cells could be susceptible to PRRSV mediated apoptosis. 

The only information available about B cell levels in PRRSV infected 

lymphoid tissues is that reported by Kawashima and co-authors (1999). They 

reported an enhancement in the number of B cells in tonsil, Peyer’s patches 

and lymphoid patches of the ileocecal junction, and in superficial inguinal, 
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mandibular and tracheobronchial lymph nodes during PRRSV infection while 

the number of B cells decrease in thymus. 

 

11..22..55..  AAccttuuaall  aanndd  ffuuttuurree  aapppprrooaacchheess  iinn  PPRRRRSSVV  vvaacccciinnaattiioonn  

 

Several approaches have been done to understand the host immune 

response against PRRSV vaccination, since different reports show contradictory 

results. Therefore, Sipos and co-authors (2003) reported no significant changes 

neither in cytokine expression nor in lymphocyte subsets, although a trend 

towards CD8+ T cells and TNFα and IL-6 enhancement was observed. Although 

most of the authors report a delayed onset of the CMI response (Bautista and 

Molitor, 1997; López-Fuertes et al., 1999; Xiao et al., 2004), Piras and co-

authors (2005) reported a fast onset of PRRSV specific T cell response in 6-8 

weeks old pigs inoculated with the highly virulent European PRRSV strain 120. 

They observed that PRRSV specific IFNγ response was mainly due to an 

increase in CD8high T cells in challenged animals and to an increase in 

CD4+CD8+ and CD8high T cell subsets in vaccinated animals with an inactivated 

vaccine. 

In vaccinated sows has been described a decrease in the proliferation of 

CD8+ and CD4+CD8+ T cells against PRRSV, regardless of the type of vaccine 

used, which was partially overcome when the sows were immunised with a 

heterologous PRRSV vaccine (Bassaganya-Riera et al., 2004). This finding 
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points to immunization with combined vaccines (MLV and KV) would supply 

more antigen-specific T lymphocytes proliferation against PRRSV than single 

vaccination. Conversely, no improve in the levels of NAs were found using a 

heterologous immunization (Bassaganya-Riera et al., 2004). An increase in the 

antibody response to GP5 has been observed in pigs vaccinated with a MLV 

using cholera toxin as adjuvant (Foss et al., 2002). 

Meier and co-authors (2003) reported a fast enhancement of non 

neutralizing antibodies and a delayed expression of both NAs and IFNγ after 

immunization with a MLV of PRRS. Moreover, these authors also found no 

changes in the immune response when adding the adjuvant Imugen(R) to the 

MLV, which showed a marked enhancement in both NAs titre and IFNγ 

response in pigs vaccinated against pseudorabies virus (Meier et al., 2003).  

Since IFNγ is known to protect macrophages from PRRSV infection, but low 

levels of this cytokine are produced during the disease, some vaccine adjuvants 

have been used to increase the expression of IFNγ. Thus, a plasmid encoding 

either porcine IL-12 or IFNα has been co-administered during vaccination with a 

MLV (Meier et al., 2004; Royaee et al., 2004). Both plasmids displayed an 

increase in the expression of IFNγ, however, whereas the IFNγ response was 

maintained when the plasmid encoding IFNα was used, a decrease in the 

number of IFNγ-SC was observed after the second week post-immunization 

with the plasmid encoding IL-12 (Meier et al., 2004). Although a correlation 

between the number of IFNα-SC and IFNγ-SC was observed in the 
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immunization with the plasmid encoding IFNα (Royaee et al., 2004), the 

immunization with both plasmids, encoding either IL-12 or IFNα, induced no 

improvement in the titres of PRRSV-specific antibodies or NAs (Meier et al., 

2004). Therefore, the use of these plasmids induces to a Th1 polarization of the 

immune response, although no improvement in the humoral immune response 

was observed with respect to the vaccination alone without any plasmid as 

adjuvant.   

An increase in the expression of IFNγ has been reported in PRRSV-infected 

animals treated with recombinant porcine IL-12 (rpIL-12) (Foss et al., 2002; 

Carter and Curiel, 2005), being also observed a decrease in PRRSV titres and 

in the expression of IL-10 by PAMs isolated form these animals (Carter and 

Curiel, 2005). However, when rpIL-12 was used as a MLV adjuvant, no changes 

in the expression of IFNγ neither in the titres of PRRSV-specific antibodies or 

NAs were observed among the control group, immunized only with the MLV, 

and the group immunized with the MLV together rpIL-12 (Meier et al., 2004). 

Although the use of plasmids and recombinant porcine cytokines, may 

represent useful tools in the improvement of the immune response evoked after 

PRRSV vaccination, there is lack of a precise knowledge of how these 

mediators modulate the immune response. Moreover, different PRRSV 

genotypes should be included in future studies to confirm a homogeneous effect 

of the tested vaccine. 
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All these reports point to a different immunological behaviour of PRRSV 

vaccines. This fact, has been also reported by Díaz and co-authors, who 

observed different IFNγ-SC frequencies when different MLV against PRRSV 

were used. Therefore, new vaccines need to be developed to reach a better 

control against this disease. These new vaccines must accomplish four 

essential characteristics: efficacy, universality, safety and ability to differentiate 

vaccinated from infected animals (Mateu and Díaz, 2008). 
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11..33..  CCYYTTOOKKIINNEESS  PPRROOFFIILLEE  IINN  PPRRRRSSVV  IINNFFEECCTTIIOONN::  IINNTTEERRFFEERROONNSS  ((IIFFNNαα,,  IIFFNNγγ))  AANNDD  

IINNTTEERRLLEEUUKKIINNSS  ((IILL--11,,  IILL--66,,  IILL--1100,,  IILL--1122,,  TTNNFFαα))  

 

11..33..11..  IInntteerrffeerroonnss  ((IIFFNNss))  

 

1.3.1.1. IFNα 

 

Type I IFNs are a superfamily which includes seven subfamilies: IFNα, IFNβ, 

IFNε, IFNκ, IFNω, IFNδ and IFNτ (Pestka et al., 2004). IFNα and IFNβ are the 

best characterised, being identified more than 12 subtypes of IFNα in humans 

and pigs, and one subtype of IFNβ in humans and multiple subtypes in pigs and 

ruminants (Van Reeth and Nauwynck, 2000; Biron and Sen, 2001). IFNα and 

IFNβ were originally named leukocyte and fibroblast IFN, respectively, 

according to their main producer cells, but nowadays it is known that these IFNs 

can be produced by many other cell types (Van Reeth and Nauwynck, 2000). 

IFNα and IFNβ subtypes are closely related, share a common receptor and 

have similar effects (Van Reeth and Nauwynck, 2000). They constitute one of 

the two pathways involved in the innate cytokine response, inducing an antiviral 

state in target cells (Van Reeth and Nauwynck, 2000; Biron and Sen, 2001). 

Some of the main functions of type I IFNs are inhibition of IL-12 expression, 

activation of macrophages and NK cell cytotoxicity, in vivo induction of CD8 T 

cell proliferation and stimulation of T cell differentiation into IFNγ-SCs during 
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viral infections (Cousens et al., 1999; Cella et al., 2000; Kadowaki et al., 2000; 

Biron and Sen, 2001; Tizard, 2008). Correlations between the frequencies of 

virus specific IFNα-SCs and virus specific IFNγ-SCs have been described in 

PRRSV infected pigs (Royaee et al., 2004). 

In PRRSV infection IFNα response by porcine alveolar macrophages (Albina 

et al., 1998a; Buddaert et al., 1998; Van Reeth et al., 1999) or PBMCs (Albina 

et al., 1998a) is not significant, being detected at low levels from 2 dpi to 9 dpi 

(Albina et al., 1998a; Chung et al., 2004; Van Gucht et al., 2004). When 

compared with other viral diseases, PRRSV induce much lower levels of IFNα 

in the lungs than SIV or PRCV (Van Reeth et al., 1999; Van Reeth et al., 2002). 

Therefore, PRRSV would be able to inhibit IFNα response, since the virus can 

be actively replicating in the lung where this cytokine can not be detected 

(Albina et al., 1998a; Buddaert et al., 1998; Chung et al., 2004). However, the 

mechanism used by PRRSV to inhibit IFNα remains still unknown. 

Lee and co-authors (2004) reported different abilities to induce or inhibit 

IFNα by different PRRSV isolates. Thus, the absence or the very low level of 

IFNα production combined with the initially inadequate viral inhibitory immunity 

could contribute to the prolonged infection and the elicitation of a weak initial 

IFNγ response observed in PRRSV infection (Meier et al., 2003). 
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1.3.1.2. IFNγ 

 

IFNγ, type II IFN or immune IFN, in contrast to type I IFNs, is produced 

exclusively by cells of the immune system (Boehm et al., 1997) and represent 

an important regulator of the adaptative immunity (Braciale et al., 2007). It is 

initially produced by NK cells in the innate immune response being later also 

produced by T cells during the adaptative immune response (Biron and Sen, 

2001; Domeika et al., 2002; Rodríguez-Carreño et al., 2002; Biron and Sen, 

2007). IFNγ promotes and mediates a Th1 immune response and suppresses 

Th2 cell development (Abbas et al., 1996). Although some functions of IFNγ 

overlap with those of IFNα/β there are some specific functions for IFNγ. Thus, 

IFNγ (1) stimulates monocytic cells to an antimicrobial defence mechanism, 

mainly by means of nitric oxide synthetase 2 (NOS2 or iNOS) induction; (2) 

enhances inflammatory response, increasing the expression of TNF receptors 

and also (3) enhances the production of several cytokines, like IL-12 by 

macrophages and DC (Biron and Sen, 2007; Braciale et al., 2007). 

Reciprocally, several cytokines may also induce an enhancement of IFNγ 

expression. IL-12, especially in combination with IL-18, is a potent inducer of 

IFNγ (Biron and Sen, 2001; Domeika et al., 2002; Biron and Sen, 2007; Braciale 

et al., 2007), however, T cell IFNγ response has been detected in absence of 

IL-12 in several viral infections, probably due to viruses elicit specific CD8 T 

cells response primed to produce high levels of IFNγ (Biron and Sen, 2001; 
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Biron and Sen, 2007; Braciale et al., 2007). Porcine CD4+CD8low, CD4-CD8high 

and γδ T cells are reported as the main T cells subsets implicated in IFNγ 

production (Olin et al., 2005; Charerntantanakul and Roth, 2007). 

Because IFNγ plays a key role in CMI response, factors that increase its 

expression may enhance anti-PRRSV cell-mediated response. IL-12 and IFNα, 

in particular, are involved in the differentiation of naïve T cells into antigen-

specific IFNγ-SCs (Tough et al., 1999; Cousens et al., 1999; Banyer et al., 

2000; Cella et al., 2000; Kadowaki et al., 2000; Biron and Sen, 2007), being 

reported correlations between the frequencies of virus specific IFNα-SCs and 

virus specific IFNγ-SCs (Royaee et al., 2004). Therefore, PRRSV vaccination 

with IL-12 or IFNα accelerates the development of a virus-specific IFNγ 

response (Foss et al., 2002; Meier et al., 2004). Nevertheless, PRRSV is a poor 

inducer of proinflammatory cytokines (Albina et al., 1998b; Buddaert et al., 

1998; Van Reeth et al., 1999), leading also to a poor early expression of IFNγ. 

IFNγ in PRRSV infection requires of macrophage activation for its 

expression, and its effect is time and dose dependent (Bautista and Molitor, 

1999). Moreover, porcine IFNγ has been demonstrated to block PRRSV 

replication in cell cultures (Bautista and Molitor, 1999), apparently by the 

inhibition of viral RNA synthesis via double stranded RNA inducible protein 

kinase (Rowland et al., 2001). An enhanced expression of IFNγ has been 

reported in both in vitro (López-Fuertes et al., 1999) and in vivo (Choi et al., 

2002; Johnsen et al., 2002; Feng et al., 2003; Meier et al., 2003; Xiao et al., 
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2004; Díaz et al., 2005; Olin et al., 2005) experimental infections. However, 

PRRSV specific IFNγ-SCs appear late after infection, at 14 dpi, increasing in 

waves until 4-6 months post infection when them still remain (Meier et al., 2003; 

Xiao et al., 2004; Díaz et al., 2005, 2006; Olin et al., 2005). Correlations 

between the level of PRRSV-specific IFNγ-SCs and the detection of viraemia in 

infected (Díaz et al., 2005) and vaccinated pigs (Díaz et al., 2006), and the 

protection against reproductive failure (Lowe et al., 2005) have been proved 

suggesting that IFNγ may develop an important role in virus clearance.  

Differences in IFNγ expression depending on PRRSV strain have been also 

reported, being described a peak in IFNγ expression in the lungs at 7-10 dpi 

when a high virulent PRRSV strain was inoculated (Choi et al., 2002; 

Thanawongnuwech et al., 2003), being the expression of IFNγ lower when a 

low virulent strain was used (Thanawongnuwech et al., 2003). The progressive 

increase of IFNγ production observed along PRRSV infection could be 

explained by the differentiation of naïve T cells into PRRSV-specific IFNγ-SCs, 

stimulated by IFNγ release by PRRSV-specific IFNγ-SCs. This initial increase of 

IFNγ would lead to a microenvironment which facilitates T cell differentiation 

into IFNγ-SCs, resulting in an eventual enhancement of this type of immune 

response (Meier et al., 2003). However, other authors have described no 

changes in mRNA expression of IFNγ after vaccination with a European MLV 

strain of PRRSV (Sipos et al., 2003). 
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11..33..22..  IInntteerrlleeuukkiinnss  

 

1.3.2.1. IL-1 

 

IL-1, together IL-6 and TNFα, constitute an alternative pathway involved in 

the innate immune response (Biron and Sen, 2001). IL-1 is synthesised by both 

non immune cells (i.e. fibroblasts, vascular endothelium) and immune cells (i.e. 

monocytes-macrophages) (Chamberlain et al., 1999; Van Reeth and 

Nauwynck, 2000; Biron and Sen, 2001). There are two forms of IL-1: IL-1α and 

IL-1β (Biron and Sen, 2001). Although both forms of IL-1 required to be cleaved 

for acquiring function, IL-1α precursor may have some biologic activity (Biron 

and Sen, 2001). IL-1α and β proteins have only 25 % homology, however, they 

bind to the same receptors and have identical biological effects (Murtaugh et al., 

1996; Biron and Sen, 2001). Functions of IL-1 overlap to those of TNFα and 

when they are secreted simultaneously some of their effects can synergise (Van 

Reeth and Nauwynck, 2000; Biron and Sen, 2001). These cytokines, known as 

proinflammatory cytokines, may enhance IFNγ response, induce adherence of 

leukocytes to endothelial cells, increase the microvascular permeability, induce 

bronchoconstriction and act as endogenous pyrogen (Murtaugh et al., 1996; 

Biron and Sen, 2001). Moreover, IL-1 can be a major contributor of IL-6 release 

(Biron and Sen, 2001).  
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During PRRSV infection only a mild increase in IL-1α and IL-1β mRNAs 

expression have been reported in in vitro studies (Thanawongnuwech et al., 

2001, 2004). In vivo experiments showed an increase in IL-1α  and IL-1β in 

BALF from 1 to 52 dpi (Labarque et al., 2003a; Van Gucht et al., 2003, 2004; 

Thanawongnuwech et al., 2004), although IL-1β was not enhanced in serum 

until 42 dpi (Thanawongnuwech et al., 2004). However, no significant changes 

in IL-1α mRNA were observed in pigs vaccinated with a European MLV strain of 

PRRSV (Sipos et al., 2003). Furthermore, PRRSV is able to downregulate the 

expression of IL-1 and TNFα in PAMs infected in vitro (López-Fuertes et al., 

2000). Thus, further researches about IL-1 expression in PRRS infection and 

vaccination are required for a better understanding of the role of this cytokine in 

the immunopathogenesis of the disease. 

 

1.3.2.2. IL-6 

 

IL-6 is a multifunctional cytokine which plays an important role in host 

defence, acute phase reactions and immune response. This cytokine may be 

produced by lymphoid and non lymphoid cell types (Biron and Sen, 2001). The 

main porcine cell types reported to express IL-6 include PBMCs, alveolar and 

intravascular macrophages, fibroblasts and endothelial cells (Murtaugh et al., 

1996; Scamurra et al., 1996). Whereas IL-1 and TNFα may upregulate IL-6 

production, IL-6 downregulates in contrast IL-1 and TNFα levels by means of 
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the production of IL-1 receptor antagonists and soluble TNFα receptors 

(Murtaugh et al., 1996; Van Gucht et al., 2003). IL-6, just as IL-1 and TNFα, is 

also considered like an early cytokine which may be inhibited by the expression 

of inhibitory cytokines such as IL-4, IL-10 or IL-13 (Cavaillon, 1994). 

IL-6 is mainly characterised by activation of hepatocytes inducing the 

synthesis of acute phase proteins during the acute inflammatory response, and 

by promotion of B cell growth and differentiation into immunoglobulin-secreting 

plasma cells, playing an important role in the humoral response (Murtaugh et 

al., 1996; Biron and Sen, 2001). Finally, IL-6 may be also involved in the 

antiinflammatory response inhibiting the release of IL-1 and TNFα and reducing 

the influx of inflammatory cells to the site of inflammation (Murtaugh et al., 

1996). 

Low levels of IL-6 protein have been detected from 3 to 21 dpi after PRRSV 

infection (Asai et al., 1999; Van Gucht et al., 2003), whereas results of IL-6 

mRNA amplification are less uniform being detected from 0 to 28 dpi (Feng et 

al., 2003; Thanawongnuwech et al., 2004). When pigs were vaccinated with a 

European MLV strain of PRRSV IL-6 trended to increase at 22 and 44 dpi 

(Sipos et al., 2003). The low response of IL-6 after inoculation or vaccination 

points to a probably no significant role of this cytokine in PRRS. 
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1.3.2.3. TNFα 

 

Tumour necrosis factors (TNFs) are differentiated into two groups: TNFα, 

produced mainly by activated monocytes/macrophages and NK cells, and 

TNFβ, also known as lymphotoxin (LT) and produced by lymphocytes after 

antigenic stimulation (Van Reeth and Nauwynck, 2000; Biron and Sen, 2001). 

Production of TNFα generally occurs at an earlier stage than TNFβ during 

infection, being more closely associated to proinflammatory effects, although 

both bind to common receptors and share several biological activities (Van 

Reeth and Nauwynck, 2000). Enhancement of vascular permeability and 

adhesion properties of endothelial cells, cell death, activation of monocytes and 

neutrophils, induction of IFNγ responses, DC migration, upregulation of class I 

MHC expression and activation of antiviral state, killing virus infected cells in an 

IFN independent way, are among the responses to TNFα expression (Murtaugh 

et al., 1996; Van Reeth and Nauwynck, 2000; Biron and Sen, 2001). 

Additionally, TNFα is related to the induction of fever, sleepiness, loss of 

appetite and acute phase effects in liver (Van Reeth and Nauwynck, 2000; 

Biron and Sen, 2001).  

TNFα is absent or poorly expressed during PRRSV infection. Although its 

expression has been reported in vitro (Thanawongnuwech et al., 2001, 2004), in 

vivo studies have shown a lack (Asai et al., 1999) or a weak TNFα response, 

between 7-28 dpi, in both infected (Choi et al., 2002; Johnsen et al., 2002; 
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Labarque et al., 2003a; Van Gucht et al., 2003; Thanawongnuwech et al., 2004) 

and vaccinated pigs (Sipos et al., 2003). López-Fuertes and co-authors (2000) 

demonstrated a downregulation on TNFα and IL-1 expression in PRRSV 

infected PAMs and a reduction of viral replication after recombinant porcine 

TNFα addition although its effect did not synergise with those of IFNα. 

Therefore, vaccines which induce an enhancement on TNFα response may 

represent an useful tool for PRRSV control. 

 

1.3.2.4. IL-10 

 

IL-10 is produced mainly by cells of monocyte/macrophage lineage, 

regulatory T cells or, less frequently B cells (Biron and Sen, 2001; Moore et al., 

2001). IL-10 is a potent antiinflammatory cytokine capable to modify a broad 

spectrum of activated monocyte/macrophages functions just as inhibition of 

cytokine, chemokine, prostaglandin (PG) E2 and class II major 

histocompatibility complex (MHC) antigen presentation and toll-like receptor 

(TLR) 4 expression, downregulating both Th1 and Th2 responses (Moore et al., 

2001; Pestka et al., 2004). The main cytokines suppressed by IL-10 include IL-

1α, IL-1β, IL-6, IL-12, IFNγ and TNFα (Cavaillon, 1994; Biron and Sen, 2001; 

Moore et al., 2001; Pestka et al., 2004), being especially significant for its 

antiinflammatory activities the inhibition of IL-1 and TNFα, due to the synergism 

observed between these two cytokines (Moore et al., 2001). IL-10 expression 
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has a strongly inhibition effect on CD4+ T cells proliferation whereas stimulates 

NK and CD8+ T cells and induces their recruitment, cytotoxicity and proliferation 

(Moore et al., 2001; Pestka et al., 2004). 

IL-10 may be a crucial cytokine in the development of the impaired immune 

response against PRRSV, playing a significant role in the pathogenesis of the 

disease. In vitro and in vivo PRRSV infections with both genotypes, EU and US 

genotypes, displayed an increase in protein and genomic levels of IL-10 

expression from 0 to 14 dpi (Johnsen et al., 2002; Chung and Chae, 2003; Feng 

et al., 2003; Labarque et al., 2003a; Suradhat and Thanawongnuwech, 2003; 

Suradhat et al., 2003; Thanawongnuwech and Thacker, 2003; 

Thanawongnuwech et al., 2004; Díaz et al., 2005, 2006). However, other 

authors have described no changes in the expression of IL-10 (López-Fuertes 

et al., 1999; Sipos et al., 2003). These differences may be due to the different 

PRRSV strains or the different health status of pigs used in each study. 

On the other side, peaks in IL-10 production have been reported to coincide 

with lower levels of IFNγ-SCs in PBMCs from pigs vaccinated with different EU 

PRRSV genotypes, inducing a strong IL-10 response (Díaz et al., 2006). 

Moreover, several studies have described a non significant production of TNFα 

and IFNα (Albina et al., 1998a; Buddaert et al., 1998; Van Reeth et al., 1999; 

Van Reeth and Nauwynck, 2000; Van Gucht et al., 2004), together a mild 

clinical course and respiratory signs (Van Reeth et al., 1999; Van Reeth and 

Nauwynck, 2000; Van Gucht et al., 2003) following PRRSV infection which 
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could be due to the increase in IL-10 expression mentioned above. All these 

findings together support the hypothesis that IL-10 may interfere actively in 

PRRSV infection through the alteration of the cascade of proinflammatory 

cytokines and the inhibition of antigen presenting cells (APCs), leading to a 

delayed protective immunity against PRRSV. 

 

1.3.2.5. IL-12 

 

IL-12 is a key cytokine in both innate and adaptative immunity and in 

regulation of mucosal immunity, being produced by activated DC and 

macrophages (Braciale et al., 2007). IL-12 is a heterodimer constituted by two 

subunits, p35, expressed constitutively, and p40, which is expressed in 

response to challenge (Biron and Sen, 2001). However, both subunits are 

required to trigger off its biological activity (Biron and Sen, 2001). The main 

function of IL-12 consists on NK cell IFNγ production after a challenge (Biron 

and Sen, 2001; Biron and Sen, 2007). Other functions of this cytokine are 

promotion of CD8 T cell cytolytic differentiation and CD4 T cells activation to 

effector CD4 T cells (Chan et al., 1992; Cesano et al., 1993; Biron and Sen, 

2007; Braciale et al., 2007), and promotion of type I immunity against 

intracellular pathogens (Hsieh et al., 1993; Macatonia et al., 1995). 

The information about the expression of this cytokine during PRRS is scarce 

and contradictorial. In vitro studies showed no IL-12 mRNA expression by 
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PAMs infected with a highly virulent PRRSV (VR-2385) (Thanawongnuwech et 

al., 2001), however, PAMs isolated from piglets infected with the same strain 

showed an increased expression of IL-12 mRNA at 10, 24 and 48 dpi 

(Thanawongnuwech and Thacker, 2003). Chung and Chae (2003) observed an 

enhanced mRNA expression of both IL-12 p35 and IL-12 p40 from 1 to 7 dpi in 

the lung of inoculated pigs, suggesting a possible role of IL-12 in the pulmonary 

defence against PRRSV. Otherwise, other authors observed only a weak 

increase in mRNA IL-12 expression in BALCs (Johnsen et al., 2002) or no 

increase in PBMCs (Feng et al., 2003) from in utero infected piglets. Moreover, 

an enhancement in the IL-10/IL-12 ratio has been described pointing to a role of 

the imbalance between these two cytokines in the immunomodulation observed 

during PRRSV infection (Feng et al., 2003).  

The efficiency of IL-12 as adjuvant has been also studied in the immune 

response against PRRS displaying a marked increase in the expression of IFNγ 

(Foss et al., 2002; Carter and Curiel, 2005) but no improvement in antibody 

titres (Foss et al., 2002). 
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11..44..  AACCUUTTEE  PPHHAASSEE  PPRROOTTEEIINNSS  ((AAPPPPSS))  AANNDD  TTHHEEIIRR  EEXXPPRREESSSSIIOONN  IINN  PPRRRRSS  

 

The acute phase response (APR) is characterised by the disturbance of the 

normal homeostasis by several stimuli like infection, inflammation, stress, 

trauma or tissue damage (Eckersall, 2000; Ceciliani et al., 2002; Gruys et al., 

2005). This APR is triggered by the synthesis of proinflammatory cytokines, 

namely IL-1, IL-6 and TNFα, at the local site of the injury. These cytokines are 

released into the bloodstream, reach the liver and induce the production of 

acute phase proteins (APPs) by the hepatocytes (Eckersall, 2000; Petersen et 

al., 2004). APPs have been classified as “positive” or “negative” depending on 

the increase or decrease of their serum concentration, respectively (Ceciliani et 

al., 2002; Petersen et al., 2004). Haptoglobin (Hp), C-reactive protein (CRP) 

and serum amyloid A (SAA) are considered as main APPs in pigs. The 

classification of the pig-major acute protein (Pig-MAP) is controversial, and it is 

considered as a major or moderate APP depending on the study (Parra et al., 

2006).  

It is generally accepted that APPs are inductors of a proinflammatory 

reaction and fever, but their overexpression can lead to an anti-inflammatory 

response (Ceciliani et al., 2002; Petersen et al., 2004). Thus, APPs are used 

today as potential biological markers for monitoring animal welfare and the 

health status of swine herds and of individual pigs at slaughter (Eckersall, 2000; 

Petersen et al., 2004; Gruys et al., 2005). Moreover, APPs may be used to 
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determine the virulence of different isolates of the same bacteria or virus, or the 

efficacy of vaccines (Heegaard et al., 1998). 

Hp is considered a diagnostically useful APP in most species. Hp may show 

a more than 10 times increase in serum, and marked differences have been 

observed between herds whereas no differences have been observed between 

breeds (Petersen et al., 2004). The main biological function of Hp consists on 

prevention of iron loss by the formation of haemoglobin-iron complexes 

(Ceciliani et al., 2002; Petersen et al., 2004). Therefore, Hp also develops a 

bacteriostatic effect reducing the level of available iron for the microorganisms 

(Petersen et al., 2004). Furthermore, Hp seems to play a major role in 

modulating immune responses through a complex network of interactions. The 

expression of Hp has been related to the secretion of antiinflammatory 

cytokines, particularly IL-10, through the interaction with CD163, a haemoglobin 

scavenger receptor that is solely present in cells of monocyte/macrophage 

lineage (Moestrup and Moller, 2004; Philippidis et al., 2004). However, the 

exact mechanism used by Hp as modulator of the immune response is not 

clear, acting as suppressor of lymphocyte proliferation in bovine (Murata and 

Miyamoto, 1993), and as supporter of B and T lymphocytes proliferation and 

differentiation in Hp-deficient C57BL/6J mice (Huntoon et al., 2008). 

CRP was discovered in the serum of patients which suffered a 

pneumococcal infection, as a substance which reacted with C polysaccharide 

(Petersen et al., 2004). In the acute phase response CRP increases more 
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moderately than Hp, showing between 1 to 10 times increase (Petersen et al., 

2004). Although some authors consider CRP as an useful tool to differentiate 

between a bacterial or a viral infection, other authors could not detect such 

differences because of the individual variability (Petersen et al., 2004). CRP 

participates in the innate immune response removing bacteria and damaged 

cells by complement activation and opsonisation, activating 

monocyte/macrophage to inflammatory cytokines production, and preventing 

neutrophils migration (Ceciliani et al., 2002; Petersen et al., 2004). Since CRP 

is a component of the innate response, it may be considered as an early 

bioindicator of health status in swine herds (Stevenson et al., 2006). 

SAA shows more than 10 times increase after any injury which triggers off 

the APR (Petersen et al., 2004). SAA carries out several functions related with 

the inflammatory response, just as cholesterol removal from the local site of 

inflammation and transport to hepatocytes; chemotaxis of monocytes, 

polymorphonuclear leukocytes and T cells; inhibitory effect on fever, oxidative 

burst, platelet activation and in vitro immune response (Ceciliani et al., 2004; 

Petersen et al., 2004). Secondary amyloidosis is triggered by a conformational 

change of SAA into an insoluble peptide, AA, which takes place when there is a 

marked high expression of SAA (Ceciliani et al., 2004). 

Generally it is accepted that Pig-MAP enhanced more than 10 times in the 

APR (Petersen et al., 2004). However, Parra and co-authors (2006) suggested 

that the changes observed in this APP sometimes are moderate and not as 
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exacerbated as those observed for the other APPs named above. Pig-MAP is a 

relatively novel APP and its specific functions still remain unclear. 

APPs have been tested in pigs after exposure to stress (Salamano et al., 

2008) and after natural (Chen et al., 2003; Segalés et al., 2004; Parra et al., 

2006) or experimental infections (Francisco et al., 1996; Asai et al., 1999; 

Magnusson et al., 1999; Knura-Deszczk et al., 2002; Van Gucht et al., 2005; 

Stevenson et al., 2006). Increased levels of Hp, CRP and/or Pig-MAP have 

been reported in porcine viral and bacterial respiratory infections, like porcine 

circovirus type 2 (PCV2) (Segalés et al., 2004; Parra et al., 2006; Stevenson et 

al., 2006), swine influenza virus (SIV) (Barbé and Van Reeth, 2006), Aujeszky’s 

disease virus (Parra et al., 2006), Actinobacillus pleuropneumoniae (Heegaard 

et al., 1998), Mycoplasma hyopneumoniae (Parra et al., 2006), Bordetella 

bronchiseptica and toxigenic Pasteurella multocida type D (Francisco et al., 

1996). 

Nowadays just few studies have been focused on the expression of APPs 

during PRRS. Moreover, these studies are usually limited to only one APP or to 

a single time-point or short timeframe of the infection. Elevated serum 

concentrations of Hp, CRP and SAA have been reported in pigs naturally 

infected with PRRSV, sometimes earlier than the development of specific 

PRRSV antibodies (Parra et al., 2006). Enhanced serum Hp concentration has 

also been described after experimental infection with a European strain of 
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PRRSV from 7 to 21 dpi, being correlated with an increase on IL-6 but not TNFα 

(Assai et al., 1999) or IL-10 (Díaz et al., 2005) production.  
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AAIIMMSS  OOFF  TTHHEE  TTHHEESSIISS  

 

Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most 

significant porcine diseases of the modern swine industry, being the responsible 

of important economic losses. Nonetheless, although numerous studies have 

been carried out, nowadays it is still no clear the immune pathways involved in 

the immune compromise observed after PRRS virus (PPRSV) infection. 

Therefore, the general aims of the present thesis were to extend the knowledge 

on the immune response evoked at lymphoid tissue level to determine the role 

of lymphocyte subsets and evaluate the systemic and local expression of 

cytokines and their role in the immune response. 

The specific aims may be defined as follows: 

1. To characterise the changes observed in lymphocytes subsets in blood 

and lymphoid tissues in an acute experimental infection with a European 

PRRSV field isolate and their relationship with the serum expression of 

IL-10, IL-12, IFNα, and IFNγ. 

2. To study the relationship between the serum expression of acute phase 

proteins and proinflammatory cytokines during an early infection with 

PRRSV. 

3. To determine the expression of IL-1, IL-6, IL-10, IL-12, TNFα, IFNα, and 

IFNγ in the lung of pigs experimentally infected with a PRRSV field 



AIMS OF THE THESIS    

   
88 

isolate, the main cell types involved in their expression and their role in 

the pathogenesis of the respiratory form of the disease. 
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OOBBJJEETTIIVVOOSS  DDEE  LLAA  TTEESSIISS  

 

El Síndrome Reproductivo y Respiratorio Porcino es una de las 

enfermedades más importantes de la industria porcina moderna, siendo el 

responsable de importantes pérdidas económicas. No obstante, aunque se han 

llevado a cabo numerosos estudios, hoy día no se conoce con claridad cuáles 

son los mecanismos inmunes involucrados en el compromiso inmunitario 

observado tras la infección con el VPRRS. De este modo, el objetivo general de 

esta tesis consistió en determinar la expresión de citoquinas tanto a nivel 

sistémico como local así como su papel en la respuesta inmune. 

Los objetivos específicos se detallan a continuación: 

1. Caracterizar los cambios observados en las subpoblaciones de linfocitos 

en sangre y órganos linfoide durante una infección aguda experimental 

con un aislado de campo del VPRRS y su relación con la expresión 

sérica de IL-10, IL-12, IFNα, e IFNγ. 

2. Estudiar la relación entre la expresión sérica de proteínas de fase aguda 

y citoquinas proinflamatorias durante una infección aguda con el 

VPRRS. 

3. Determinar la expresión de IL-1, IL-6, IL-10, IL-12, TNFα, IFNα, e IFNγ 

en el pulmón de credos infectados experimentalmente con un aislado de 

campo del VPRRS, así como las principales células involucradas en su 
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expresión y su papel en la patogenia de la forma respiratoria de la 

enfermedad. 
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EEXXPPEERRIIMMEENNTTAALL  SSTTUUDDIIEESS  

 

3.1. COMMON EXPERIMENTAL DESIGN. 

3.2. CHANGES IN LYMPHOCYTE SUBSETS AND CYTOKINES DURING EUROPEAN PORCINE 

REPRODUCTIVE AND RESPIRATORY SYNDROME: INCREASED EXPRESSION OF IL-12 

AND IL-10 AND PROLIFERATION OF CD4-CD8HIGH. 

3.3. ACUTE PHASE RESPONSE IN PORCINE REPRODUCTIVE AND RESPIRATORY 

SYNDROME (PRRS). 

3.4. IN SITU EXPRESSION OF CYTOKINES BY MACROPHAGES IN THE LUNG OF PRRSV-

INOCULATED PIGS. 
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33..11..  CCOOMMMMOONN  EEXXPPEERRIIMMEENNTTAALL  DDEESSIIGGNN  

 

To assess all the aims of this thesis a common experiment was carried out, 

using different techniques for the different approaches. The common 

experimental design is the following:  

 

33..11..11..  VViirruuss  

 

The third passage of the PRRSV field isolate 2982 (kindly provided by Dr. E. 

Mateu) was used in this study. The virus was initially isolated in porcine alveolar 

macrophages (PAMs) from serum of a naturally infected piglet during an 

outbreak of PRRS affecting a Spanish farm where piglets displayed respiratory 

signs. Viral stock was adjusted to a titre of 103.0 TCID50/ml as determined by 

means of an immunoperoxidase monolayer assay (IPMA) (Weensvoort et al., 

1991) in PAMs. PRRSV strain 2982 belonged to EU sub-genotype 1 and shared 

a 93 % similarity to LV based on ORF5 sequences. The viral stock was free of 

aerobic and anaerobic bacterial contamination as determine after 

bacteriological culture. 
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33..11..22..  AAnniimmaallss  aanndd  eexxppeerriimmeennttaall  ddeessiiggnn  

 

A total of thirty-two, male, five-week-old piglets from a high-healthy farm 

historically seronegative for PRRSV were used for the experimental infection. 

Pigs were clinically healthy and were housed in biocontainment level III animal 

facilities at “Centro de Investigación en Sanidad Animal” (CISA-INIA, Valdeolmos, 

Madrid, Spain). Pigs were allowed to stay housed in the biocontainment level III 

facilities 10 days prior to challenge. Twenty eight pigs were randomly distributed in 

batches of four and inoculated by the intramuscular route, behind the right ear in 

the neck with 1 ml the viral inoculum. The four animals of each batch were killed 

at 3, 7, 10, 14, 17, 21 and 24 days post-inoculation (dpi), respectively. The four 

remaining pigs, used as controls, were inoculated with 1 ml of sterile RPMI 1640 

medium (BioWhitaker) following the same procedure and humanely killed at the 

end of the study (24 dpi). Euthanasia was performed by initial anesthesia with 

tiletamine-zolazepam (ZOLETIL, Virbac) followed by a lethal dose of 5 % 

sodium thiopental (THIOVET, Vet Limited). Tissue samples were subjected to in 

situ hybridization and were proved as negative to PCV2. This experiment was 

carried out under the guidelines of the European Union (Directive 86/609/EEC) 

and was approved by Cordoba University Ethical Review Committee. 
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33..22..  CCHHAANNGGEESS  IINN  LLYYMMPPHHOOCCYYTTEE  SSUUBBSSEETTSS  AANNDD  CCYYTTOOKKIINNEESS  DDUURRIINNGG  EEUURROOPPEEAANN  

PPOORRCCIINNEE  RREEPPRROODDUUCCTTIIVVEE  AANNDD  RREESSPPIIRRAATTOORRYY  SSYYNNDDRROOMMEE::  IINNCCRREEAASSEEDD  EEXXPPRREESSSSIIOONN  OOFF  

IILL--1122  AANNDD  IILL--1100  AANNDD  PPRROOLLIIFFEERRAATTIIOONN  OOFF  CCDD44--CCDD88HHIIGGHH  

 

Porcine Reproductive and Respiratory Syndrome (PRRS) is known to 

persist during several weeks in lungs and lymphoid organs (Wills et al., 1997; 

Albina et al., 1998a; Allende et al., 2000; Lamontagne et al., 2001, 2003). Lung 

and lymphoid tissues appear to be sites for viral replication in acute infection, 

since similar viral load has been detected in these organs (Xiao et al., 2004). 

Pigs develop both humoral (Yoon et al., 1995; Loemba et al., 1996; 

Lamontagne et al., 2003) and cellular (Bautista and Molitor, 1997; López-

Fuertes et al., 1999; Meier et al., 2003) immune responses against PRRSV 

infection. However, precise understanding of the immune mechanisms induced 

is still incomplete. Moreover, several studies have been focused mainly in the 

changes observed in the lymphocyte subsets of peripheral blood mononuclear 

cells (PBMCs) (Shimizu et al., 1996; Albina et al., 1998b; López-Fuertes et al., 

1999; Samsom et al., 2000; Lamontagne et al., 2001; Xiao et al., 2004; Díaz et 

al., 2006), meanwhile few studies have been carried out in lymphoid organs 

(Kawashima et al., 1999; Lamontagne et al., 2001; Xiao et al., 2004). 

The delayed onset of the host protective immune response after PRRSV 

infection has been related with the upregulation of interleukin-10 (IL-10) 

expression (Chung and Chae, 2003; Suradhat and Thanawongnuwech, 2003; 



EXPERIMENTAL STUDIES                  

   
96 

Díaz et al., 2005, 2006), erratic levels of gamma interferon (IFNγ) (Díaz et al., 

2005, 2006) and alpha interferon (IFNα) suppression (Albina et al., 1994; Van 

Reeth et al., 1999). Interleukin-12 (IL-12) has been detected in both in vitro 

either in vivo studies (Chung and Chae, 2003; Royaee et al., 2004; 

Thanawongnuwech and Thacker, 2003), but in low levels. IL-12 has been also 

used as a vaccine adjuvant candidate inducing a moderate enhancement in 

IFNγ production (Carter and Curiel, 2005; Meier et al., 2004). 

Thereby, the main goal of this study, which represents the first aim of this 

thesis, was to characterise the changes observed in lymphocyte subsets in 

blood and lymphoid organs during an acute experimental infection with a EU 

PRRSV field isolate and correlate them with the expression of IL-10, IL-12/23 

p40, IFNα and IFNγ. 

 

MMaatteerriiaallss  aanndd  MMeetthhooddss  

 

Virus 

 

The inoculum used in this experiment has been described above in the 

section “Common experimental design”, page 55. 
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Animals and experimental design 

 

The animals and experimental design used in this experiment have been 

described above in the section “Common experimental design”, page 56. 

 

Clinical signs, total leukocyte counts and leukocyte formula 

 

Pigs were monitored daily for rectal temperature and a clinical respiratory 

score (ranging from 0 to 6) was calculated all throughout the experiment, as 

described previously (Halbur et al., 1995). 

Blood samples were taken at 0, 3, 7, 10, 14, 17, 21 and 24 dpi. Samples were 

taken from eight animals at the different time points but at 24 dpi only the four 

remaining animals were bled ante mortem. Blood samples were diluted in acetic 

acid solution and stained with Türk liquid and the total number of leukocytes was 

visually counted in a modified Neubauer counting-chamber, as described 

previously (Schalm et al., 1975). Blood smears were fixed in methanol for 5 

minutes and stained with May-Grünwald-Giemsa staining for 30 minutes. The 

relative quantities of the different leukocytes populations were assessed counting 

a total of 500 leukocytes per sample. 
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Viraemia and specific antibody detection in serum samples 

 

Viraemia and specific antibody detection in serum samples were determined 

as described previously (Labarque et al., 2000). Briefly, the virus titration was 

carried out cultivating 50 μl of tenfold serial dilutions of serum samples on PAMs, 

from PRRSV-negative pigs, and incubating at 37 ºC for 1 hour. The samples 

were replaced by medium, and the PAMs were incubated for 72 hours at 37 ºC 

for developing cytopathic effect, washed once with PBS and further stained 

using an immunoperoxidase monolayer assay (IPMA) (Wensvoort et al., 1991). 

For specific antibody detection, 50 μl of serial fourfold dilutions of serum 

samples were incubated on MARC-145 cells for 1 hour at 37 °C and next 

stained using an IPMA (Wensvoort et al., 1991). 

 

Leukocyte isolation  

 

Swine PBMCs were separated from whole blood by Ficoll-Paque (Roche) 

gradient centrifugation. Samples from lymphoid organs, medial retropharyngeal 

and tracheobronchial lymph nodes and spleen were taken and freshly 

preserved in RPMI 1640 medium (BioWhitaker); tissue samples were manually 

disaggregated in RPMI 1640 medium and filtered through 70 μm pore-size cell 

strainer membranes (BD Pharmingen). Erythrocytes were lysed adding 1 ml of 

NH4Cl to both cell preparations from tissue sources either peripheral blood 
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followed by serial rinses in RPMI 1640 medium. The resulting mononuclear cell 

preparations were washed twice with RPMI 1640 (10 % fetal calf serum, FCS) 

by centrifugation and resuspended. Cell viability was determined using trypan 

blue vital staining. A total of 106 leukocytes were seeded per well in 96-wells 

plates. 

 

Flow cytometry 

 

Isolated leukocytes were transferred to U-bottom microtiter plates (1x106 

cells in a volume of 100 μl) and centrifuged (3 min at 1,600 x g). Then, cells 

were stained using 50 μl per well of monoclonal antibodies (mAb), diluted 1 in 

125. Porcine anti-CD3-FITC (BD Pharmingen, clone BB23-8E6-8C), anti-CD4-

FITC (BD Pharmingen, clone 74-12-4), anti-CD4-PE (BD Pharmingen, clone 74-

12-4), anti-CD8-PE (BD Pharmingen, clone 76-2-11), and anti-CD21 (VMRD 

Inc., clone BB6-11C9) were added and incubated on ice and in the dark for 20 

minutes. Cells were double-stained for CD4 and CD8 and single stained for 

CD3, CD21. Goat anti-mouse IgG1-Alexa 488 (Molecular Probes) diluted 1 in 

250 was used as secondary antibody for anti-CD21 labelling. After antibody 

incubation, cells were washed with 150 μl of PBS-staining buffer, centrifuged 

and fixed with 4 % paraformaldehyde for 10 minutes at room temperature in the 

darkness. Cells were washed four times with PBS-staining buffer prior to 

analysis in a FACS analyser (Facscalibur, Becton-Dickinson). The results 
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presented in this study were based on lymphocyte gating on a forward scatter-

versus-side scatter diagram. 

 

Serum detection of cytokines (IL-10, IL-12/23 p40, IFNγ and IFNα) by ELISAs.  

 

Serum samples were analysed for cytokines expression by means of 

commercial ELISA kits for IL-10, IL-12/23 p40 and IFNγ, following 

manufacturer’s instructions (Swine IL-10 and Swine IFNγ ELISA kits, Biosource; 

Porcine IL-12/IL-23 p40 Immunoassay, R&D Systems). All the ELISA kits were 

carried out using a species specific monoclonal antibody and their sensitivity 

thresholds were 3 pg/ml, 9 pg/ml, and 2 pg/ml, respectively. All samples were 

analysed in duplicate. Cytokine concentrations were calculated by using the 

linear-regression formula from optical densities of the cytokine standards 

provided by the manufacturer.  

IFNα was determined by a sandwich ELISA carried out as previously 

described by Diaz de Arce et al. (1992) with modifications. Microtitre plates 

were coated overnight at room temperature with F17 IFNα mAb (kindly provided 

by Dr. K. Van Reeth) at 1 μg/ml in 50 mM Tris-HCl buffer (pH 9.5), then blocked 

for 1 h at 37 ºC in PBS containing 5 % BSA and 0.05 % Tween 20. After five 

washes in PBS containing 0.05 % Tween 20, plates with duplicate samples and 

recombinant IFNα protein (R&D Systems) standard range were incubated for 2 

h at room temperature. After five washes, biotinylated-K9 IFNα mAb (kindly 
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provided by Dr. K. Van Reeth) (0.88 μg/ml) was added for 1 h at room 

temperature. Following five washes, streptavidin-horseradish peroxidase 

complex (Amersham) (dilute 1 in 500) was then added for 1 h at room 

temperature. Reaction was developed with 100 μl per well of 

tetramethylbenzidine (TMB). After 30 minutes, the reaction was stopped adding 

100 μl per well of 1M H2SO4. The absorbance was measured at 450nm 

wavelength.  

 

Statistical analysis 

 

All the values are expressed as the mean ± SD. Since control animals were 

bled at 0, 7, 14, 21 and 24 dpi, blood values of inoculated animals at 3, 10 and 

17 dpi were analysed with the mean value of the control animals at the prior- 

and post-time points. The values of all the studied parameters were evaluated 

for approximate normality of distribution by using Kolmogorov-Smirnov statistic. 

The difference between means was assessed by ANOVA test followed by a 

Mann-Whitney-U non-parametric test (GraphPad Instat 3.05). P<0.05 was 

considered significant. 

 

RReessuullttss  

 

Clinical signs, total leukocyte counts and leukocyte formula 
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No differences were observed in the respiratory score between the control 

group and the inoculated animals throughout the study, however, from 3 dpi more 

than 20 % of the inoculated animals presented dullness and moderate growth 

retardation. The rectal temperature was always between the normal physiological 

ranges, although it was mildly elevated at 3 and 10 dpi (P<0.05), and decreased 

at the end of the experiment (P<0.05) (Fig. 2).  

No significant changes were observed in the total leukocytes counts 

throughout the experiment in either control or inoculated animals (Fig. 3A). The 

average percentage of monocytes suffered a progressive decrease from 3 to 17 

dpi, being statistically significant at 14 dpi (P<0.05) (Fig. 3B). The average 

percentage of lymphocytes displayed an undulant profile with higher 

percentages at 7 dpi and at the end of the study with respect to the control 

group (p<0.05) and decreasing significantly at 14 dpi (P<0.05) (Fig. 3C). The 

drop observed in monocytes and lymphocytes population at 14 dpi was 

accompanied by an increase of neutrophils at this time-point (P<0.05) (Figs. 3B, 

3C and 3D). In addition, a decrease in the average percentage of neutrophils 

was also observed at 7 and 24 dpi matching the increase of the percentage of 

lymphocytes at those dates (P<0.05) (Figs. 3B, 3C and 3D). 

 

 

 



                    MODULATORY ROLE OF CYTOKINES IN PRRS 

            
103 

Viraemia and specific antibody detection in serum samples 

 

Neither virus nor PRRSV-specific antibodies were detected in control 

animals throughout the study. Virus was detected in blood samples from 3 dpi 

until the end of the study, showing a progressive titre increase from 3 to 10 dpi 

and decreasing by the end of the study (Fig. 4). PRRSV-specific antibodies 

were first detected at 7 dpi. Antibody titres increased progressively until 17 dpi 

remained constant afterwards (Fig. 4).  

 

Flow cytometry 

 

CD3+ and CD21+ cells subsets 

Anti-CD3 and anti-CD21 monoclonal antibodies were used to stain αβ T 

cells and B cells, respectively. The percentages of CD21+ cells in both 

inoculated and control animals were always higher in the lymph nodes studied 

than in PBMCs or spleen (Tables I and II). Medial retropharyngeal lymph node 

displayed no changes in CD3+ cells throughout the study, while CD3+ cells 

underwent an increase until 10 dpi in PBMCs (P<0.05) and spleen (P<0.05), 

decreasing at 17 and 21 dpi in PBMCs (P<0.05) (Tables I and II). 

Tracheobronchial lymph node described a similar trend to that one observed in 

PBMCs and spleen, however, the differences with the control group were 

considered not statistically significant (Table II). CD21+ cells subset was 
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increased from 17 until 24 dpi in PBMCs and tracheobronchial lymph node 

(P<0.05) (Tables I and II). Medial retropharyngeal lymph node and spleen 

presented only a mild increase, no statistically significant (Table II). 

 

CD4+CD8-, CD4-CD8high, CD4-CD8low and CD4+CD8+ T cells subsets 

CD4+CD8- T cells did not display significant changes in PBMCs and lymph 

nodes, however, their percentage decreased significantly at 14 and 17 dpi in the 

spleen (P<0.05) (Figs. 5 and 6). At the end of the study a decrease of CD4-

CD8low T cells together with an increase in CD4-CD8high and CD4+CD8+ T cells 

were observed in the tracheobronchial lymph node and the spleen (P<0.05) 

(Figs. 6B, 6C and 6D). PBMCs showed similar changes, although the increase 

in CD4-CD8high T cells was not statistically significant (Fig. 5D). Moreover, the 

same kinetics in the medial retropharyngeal lymph node were observed but 

without statistically significant differences with respect to the control group (Fig. 

6).  

 

Cytokine expression in serum samples 

 

Inoculated animals showed higher levels than control animals for all the 

cytokines analysed in serum from 3 to 24 dpi (Fig. 7), however, these 

differences were considered statistically significant only for IL-12 p40 at 3, 7, 17 

and 24 dpi. IL-10, IL-12 p40 and IFNα increased displaying a peak at 10 (IL-10 
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and IL-12 p40) and at 14 dpi (IFNα), respectively, and decreased at the end of 

the study (Figs. 7A, 7B and 7C). IFN-γ expression was erratic and increased 

towards the end of the study (Fig. 7D).  

 

DDiissccuussssiioonn  

 

The changes observed in the different lymphocyte subsets at blood and 

lymphoid tissue levels together with the expression of different cytokines during 

an experimental infection with a EU PRRSV field isolate are discussed in the 

present report. Few studies have been carried out about the significance of the 

lymphocyte subsets changes in lymphoid organs, being mainly focused on US 

genotypes. 

Although the oronasal via represent the most common way of natural 

infection (Albina, 1997), in our study we carried out an intramuscular inoculation 

of the virus to guarantee the same infective dose to every animal. The 

experimental infection with the PRRSV field isolate 2982 developed no changes 

in respiratory signs and only mild hyperthermia in inoculated animals. Difficulties 

to trigger respiratory symptoms after experimental infection with different 

PRRSV strains have been also previously reported (Van Reeth et al., 1999; Van 

Reeth and Nauwynck, 2000; Foss et al., 2002; Sipos et al., 2003; Van Gucht et 

al., 2003). 
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US PRRSV genotypes are characterised by an early and prolonged viraemia 

(Rossow et al., 1995; Vézina et al., 1996), whereas EU genotypes usually 

induce a shorter period of viraemia (Albina et al., 1998b; López-Fuertes et al., 

1999;Díaz et al., 2005, 2006). In this study the virus was isolated from serum 

samples from 3 dpi, peaking at 10 dpi and decreasing by the end of the 

experiment. The peak of the viraemia was followed by a decrease in the 

number of monocytes and lymphocytes at 14 dpi. These changes may be 

explained to an increase in neutrophils at the same time point, probably due to 

chemo-attractive agents released during the infection mainly in the lung (Van 

Reeth et al., 1999). 

Medial retropharyngeal and tracheobronchial lymph nodes and spleen were 

the lymphoid organs selected for this study, since they deal with the lymphatic 

drainage from the oronasal mucosa, lung and systemic level, respectively. Díaz 

et al. (2005) reported no changes of CD21+ cells subset in pigs infected with a 

EU PRRSV genotype. Conversely, a rapid polyclonal activation of B cells has 

been reported in pigs inoculated with a PRRSV US isolate together with an 

early increase of B cells, mainly in the tonsils (Lamontagne et al., 2001). 

Interestingly, in our study, using a EU isolate as inoculum, CD21+ cell counts 

were also increased from 3 dpi onwards in all the studied organs. Moreover, this 

increase was considered significant in PBMCs and tracheobronchial lymph 

node, which seems logical due to the viral replication is focused in the lung 

during acute PRRSV infection. This is in agreement with the lack of significant 
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changes in the counts of CD21+ cells observed in the spleen, since PRRSV 

replicates in the spleen in a lesser extent than in lymph nodes during an acute 

infection (Xiao et al., 2004).  

The global changes observed in αβ T lymphocytes were analysed by means 

of the use of the mAb CD3+. The dynamic of CD3+ cells was similar to the curve 

of viraemia, showing a peak also at 10 dpi. The changes in αβ T lymphocytes 

were studied more in depth by means of a double staining with anti-porcine 

CD4 and anti-porcine CD8. The most significant changes in lymphocyte subsets 

consisted on a generalised increase of CD4+CD8+ and CD4-CD8high T cells 

together with a decrease of CD4-CD8low T cells in all the studied organs at the 

end of the study. Moreover, CD4+CD8- T cell counts did not show any 

significant change in all the studied organs but the spleen, in which a significant 

decrease in CD4+CD8- T cell was observed at 14 and 17 dpi. At this time, CD4-

CD8high T cells were significantly enhanced with respect to the control animals, 

pointing to a marked imbalance in helper/cytotoxic activity in the spleen, as it 

has been previously suggested for US genotypes (Lamontagne et al., 2003). 

Porcine CD4+CD8+ T cells are considered as memory cells that induce cell 

proliferation and immunoglobulins production, as well as production of the 

cytokines IL-2, INFα and IFNγ (Charerntantanakul and Roth, 2007). 

Interestingly, the percentages of CD4+CD8+ T cells presented a significant 

increase at 24 dpi, coinciding with an enhancement of both CD21+ cells and 

PRRSV-specific antibody titre, pointing to a continuous exposure to PRRSV 
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antigen. The dynamic of αβ T lymphocyte subsets in lymphoid organs during 

PRRSV infection is still uncertain. Xiao et al. (2004) described no changes for 

both CD4+ and CD8+ T cells in an infection with a US genotype, meanwhile, 

Lamontagne et al. (2003) reported an increase in CD4-CD8high T cells in the 

mediastinal lymph node and spleen of pigs infected with a US isolate. In our 

study, CD4-CD8high T cells were increase from 7 until 24 dpi in PBMCs, 

tracheobronchial lymph node and spleen, and in the medial retropharyngeal 

lymph node at the end of the study. PBMCs presented a higher number of CD4-

CD8high T cells at 10 dpi, when the viraemia began to decrease. Since CD4-

CD8high T cells are characterised by presenting cytotoxic activity, the 

enhancement of CD4-CD8high T cells and the drop of the viraemia at the same 

time-point suggest a possible role of the cytotoxic activity of this T cell subset in 

the virus clearance, as it has been suggested before for US (Lamontagne et al., 

2003) and EU genotypes (Nielsen et al., 2003; Tingsted and Nielsen, 2004). 

However, when pigs were treated with an anti-CD8 mAb, no changes in the 

ability to clear PRRSV were observed (Lohse et al., 2004), pointing to another 

mechanism involved in PRRSV clearance. The antiviral state induced by IFNα 

during the innate immune response, as well as, the neutralization or clearance 

of the virus by neutralizing antibodies (NAs) or antigen-specific IFNγ-SC might 

be some of the mechanisms involved in PRRSV clearance. 

Shimizu et al. (1996), suggested that immune effectors may be necessary to 

induce such enhancement in CD8+ T cells, since PRRSV fails to induce in vitro 



                    MODULATORY ROLE OF CYTOKINES IN PRRS 

            
109 

CD8+ T cells proliferation in PBMCs. IL-12 and IL-10 are regulatory cytokines 

able to stimulate natural killer (NK) and CD8+ T cells, inducing their recruitment, 

cytotoxicity and proliferation (Wolf et al., 1994; Moore et al., 2001; Pestka et al., 

2004). Moreover, IL-10 also has strong inhibitory effects on CD4+ T cells 

proliferation (Moore et al., 2001; Pestka et al., 2004). Interestingly, in our study 

IL-12 p40 and IL-10 displayed a peak at 10 dpi, just when the increase in CD4-

CD8high T cells was observed. Furthermore, the expression of IL-10 may be 

related also with the absence of changes observed in CD4+CD8- T cells in our 

study. However, further studies are required to determine which cells involve in 

the synthesis of IL-10 and IL-12, and if these cytokines are able to modulate T 

cell subsets during PRRSV infection. On the other hand, CD4-CD8low T cells 

decreased just after the peak of viraemia and at the end of the study. How CD4-

CD8low T cell subset responses against antigen exposure remains unclear 

nowadays. 

IFNα and IFNβ constitute one of the two pathways involved in the innate 

cytokine response, inducing an antiviral state in target cells (Van Reeth and 

Nauwynck, 2000; Biron and Sen, 2001). We observed a higher expression of 

IFNα from 10 to 14 dpi, coinciding with the drop of the viraemia. However, the 

lower levels of IFNα expression in PRRS than in other porcine respiratory viral 

diseases, such as Swine Influenza Virus or Porcine Respiratory Coronavirus 

infections (Van Reeth and Nauwynck, 2000), reflects that IFNα expression is 

insufficient for PRRSV clearance. A possible role of NAs has been also 
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suggested in PRRSV clearance, correlating the level of NAs with a reduction in 

PRRSV titre in the lung and in peripheral blood (Yoon et al., 1995). 

Nonetheless,  PRRSV has been isolated from serum and different tissues in the 

presence of NAs (Vézina et al., 1996; Wills et al., 1997; Batista et al., 2004), 

pointing to NAs normally generated against PRRSV may not be sufficient to the 

resolution of the viraemia (Murtaugh et al., 2002). In our study, the detection of 

viraemia until the end of the study confirms an inefficient virus clearance.  

IL-12 and IFNα are involved in the differentiation of naïve T cells into 

antigen-specific IFNγ-SCs. Correlations between the frequencies of virus 

specific IFNα-SCs and virus specific IFNγ-SCs has been described in pigs 

vaccinated with an attenuated, modified–lived vaccine (MLV) of PRRSV 

(Royaee et al., 2004). Moreover, IFNγ protects macrophages in vitro against 

PRRSV replication (Bautista and Molitor, 1999). However, the inhibitory effect of 

IL-10 and the poor expression of IFNα compared with other porcine viral 

infections (Van Reeth and Nauwynck, 2000), contributed to the minimal 

expression of IFNγ in the acute phase of our experimental PRRSV infection. 

Indeed, the expression of IFNγ was downregulated when the expression of IL-

10 was higher, increasing once the expression of IL-10 dropped. These results 

point to IL-10 plays a role in the development of the immune response against 

PRRSV. 

We described here the main changes in lymphocytes subsets and cytokines 

in pigs inoculated with a EU PRRSV field isolate. An enhancement of IL-12 and 
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IL-10 was correlated with a peak of CD4-CD8high T cells and with the drop of the 

viraemia. The possible role of these cytokines stimulating the cytotoxic activity, 

and if such cytotoxic activity is also involved in PRRSV clearance, is aspects 

which need to be clarified. IL-10 expression might be also the responsible of the 

low levels of IFNγ detected, in spite of the expression of IL-12 and IFNα. Further 

studies should be conducted to determine the role of IL-12 and IL-10 in PRRS, 

and the pathways involved in their expression during the disease to develop 

efficient measures of control against PRRSV infection. 
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TABLE I. Percentages of CD3 and CD21 lymphocyte subsets in PBMCs of control and inoculated animals analysed by flow cytometry. 

Data are expressed as means ± SD. *P<0.05. 

 
 

PBMCs (%) ± SD 

 0 dpi 3 dpi 7 dpi 10 dpi 14 dpi 17 dpi 21 dpi 24 dpi 

CD3+         
Controls 

Inoculated 
46.79±5.40 
43.53±4.89 

ND 
61.65±11.83

62.24±8.84 
63.40±6.17 

ND 
78.61±8.53* 

66.38±7.84 
63.55±13.18

ND 
60.25±6.25* 

72.06±4.51 
54.30±1.60* 

62.94±6.40 
65.84±4.78 

CD21+         
Controls 

Inoculated 
15.55±5.32 
16.47±4.46 

ND 
17.59±10.87

19.21±6.82 
18.83±3.41 

ND 
18.71±6.96 

20.38±2.39 
20.80±10.44 

ND 
27.68±4.24* 

22.67±3.57 
30.84±7.50 

15.09±2.30 
28.24±9.73* 

ND: Not determined. 
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TABLE II. Changes in CD3 and CD21 lymphocyte subsets studied by flow cytometry in medial retropharyngeal and tracheobronchial 

lymph nodes and spleen of inoculated animals respect with control animals (killed at 24dpi). Data are expressed as means ± SD. 

*P<0.05. 

Lymphoid organs cells (%) ± SD 
 

Control Animals 3 dpi 7 dpi 10 dpi 14 dpi 17 dpi 21 dpi 24 dpi 

CD3+ 

   LN Med R 
   LN TB 
   Spleen 

 
66.11±7.95 
66.15±0.90 
71.07±6.57 

 
73.21±8.72 
61.55±9.11 

69.74±14.89 

 
65.55±6.60 
68.17±7.47 
78.40±7.10 

 
70.31±4.09 
68.80±6.93 
82.62±3.03* 

 
70.69±17.75 
58.59±11.66 
78.68±10.29 

 
67.85±7.13 
60.83±6.05 
70.76±4.06 

 
61.95±9.71 
60.93±13.80 
71.21±6.57 

 
74.20±4.13 
68.22±9.20 
82.89±8.77 

CD21+ 

   LN Med R 
   LN TB 
   Spleen 

 
32.88±5.80 
24.13±6.57 
14.87±4.26 

 
33.63±9.09 

ND 
16.67±4.54 

 
31.38±6.75 

ND 
ND 

 
40.46±13.37 
35.60±8.17 
14.95±3.62 

 
ND 
ND 
ND 

 
38.80±11.52 
48.79±9.39* 

ND 

 
36.36±1.45 
33.81±11.70 
16.09±4.21 

 
31.58±4.39 
31.34±4.44* 
18.21±3.21 

LN Med R.: Lymph node medial retropharyngeal. LN TB: Lymph node tracheobronchial. ND: Not determined. 
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FIGURES LEGENDS 

Figure 2. Rectal temperature (ºC) of control (○) and inoculated (■) animals 

throughout the study. Data expressed as the mean ± SD. *P<0.05. 

Figure 3. (3A) Absolute numbers of total leukocytes counts (x106/ml), and 

differential percentage of monocytes (3B), lymphocytes (3C), and neutrophils 

(3D) from control (white columns) and inoculated (black columns) pigs. Data are 

expressed as mean ± SD. *P<0.05. 

Figure 4. Viraemia (■, expressed as log10) and PRRSV-specific antibody (▲, 

expressed as log2) titres from serum of the pigs inoculated with the PRRSV 

field isolate 2982. 

Figure 5. Double colour flow cytometric analysis of CD4 expression versus CD8 

expression in PBMCs. 5A and 5B show the changes observed in CD4+CD8-, 

CD4-CD8high, CD4-CD8low and CD4+CD8+ T cells subsets in PBMCs between a 

control and an inoculated animal at the end of the study (24 dpi). 5C to 5F show 

the changes observed for the same T cell subsets in control (white columns) 

and inoculated (black columns) animals throughout the study. Data are 

expressed as means ± SD. *P<0.05. 

Figure 6. Flow cytometric analysis of CD4 expression versus CD8 expression in 

lymphoid organs. 6A to 6D show the changes observed in CD4+CD8-, CD4-

CD8high, CD4-CD8low and CD4+CD8+ T cells subsets in inoculated animals 

respect with control animals (killed at 24 dpi) throughout the study. Data are 

expressed as means ± SD. *P<0.05. 
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Figure 7. Expression of IL-10, IL-12 p40, IFN-γ and IFN-α in serum samples of 

inoculated pigs throughout infection with 2982 PRRSV field isolate. Serum 

concentrations of IL-10, IL-12 p40 and IFN-γ are expressed as pg/ml (7A, 7B 

and 7C), and serum concentration of IFN-α is expressed as U/ml (6D). Data are 

expressed as means ± SD. 
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Fig.2 

 

Fig.3 
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Fig.4 
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Fig.5 
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Fig.6 

 

Fig.7 
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33..33.. ACUTE PHASE RESPONSE IN PORCINE REPRODUCTIVE AND RESPIRATORY 

SYNDROME (PRRS) 

 

The APR is characterised by the disturbance of the normal homeostasis by 

several stimuli like infection, inflammation, stress, trauma or tissue damage 

(Eckersall, 2000; Ceciliani et al., 2002; Gruys et al., 2005). This APR is 

triggered by the synthesis of proinflammatory cytokines, namely IL-1, IL-6 and 

TNFα, at the local site of the injury. These cytokines are released into the 

bloodstream, reach the liver and induce the production of APPs by the 

hepatocytes (Eckersall, 2000; Petersen et al., 2004).  

APPs are used today as potential biological markers for monitoring animal 

welfare and the health status of swine herds and of individual pigs at slaughter 

(Eckersall, 2000; Petersen et al., 2004; Gruys et al., 2005). Moreover, APPs 

may be used to determine the virulence of different isolates of the same 

bacteria or virus, or the efficacy of vaccines (Heegaard et al., 1998). To our 

knowledge, there are few studies on the expression of APPs during PRRS. 

Moreover, these studies are usually limited to only one APP or to a single time-

point or short timeframe of the infection. Enhanced serum Hp concentration has 

been reported after experimental infection from 7 to 21 dpi (Asai et al., 1999; 

Díaz et al., 2005), and this was associated with an elevated expression of IL-6 

but not TNFα (Asai et al., 1999). Lipopolysaccharide binding protein (LBP) is an 

APP known to transfer bacterial lipopolysaccharide to CD14, a macrophage and 
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B cell surface receptor (Ceciliani et al., 2002). LBP concentrations in 

bronchoalveolar lavage fluids (BALFs) were elevated between 7 and 14 dpi, 

whereas CD14 expression increased from 3 to 9 dpi in PRRSV infected pigs 

(Van Gucht et al., 2005). Elevated serum concentrations of Hp, CRP and SAA 

have also been reported in pigs naturally infected with PRRSV, sometimes 

before the development of specific PRRSV antibodies (Parra et al., 2006). 

The main aim of this study, which coincides with the second aim of the 

thesis, was to analyse the kinetics of APPs and proinflammatory cytokines in 

the blood stream during the APR in pigs infected with a European PRRSV field 

isolate. 

 

MMaatteerriiaallss  aanndd  mmeetthhooddss  

 

 Virus, animals and experimental design 

 

The inoculum, animals and experimental design used in this experiment 

have been described above in the section “Common experimental design”, 

pages 55-56. 

 

Virus titre in serum samples 

 

The viral titration technique has been described above in the page 58. 
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Clinical signs, gross pathology and histopathology of the lungs 

 

The pigs were monitored daily for clinical signs, i.e. rectal temperature and a 

clinical respiratory score, as described previously (Halbur et al., 1995). 

Respiratory scores ranged from 0 to 6. Post mortem examination was carried out 

following standard operational procedures and any observed lesion was recorded. 

Macroscopic lung lesions were evaluated by visual inspection following the 

scoring system described by Halbur et al. (1995). Samples from the right lung 

(cranial lobe, medial lobe, accessory lobe, caudal dorsal lobe and caudal ventral 

lobe) were fixed in 10 % buffered formaldehyde and embedded in paraffin-wax. 

Four μm sections were stained with haematoxylin and eosin for histopathological 

examination. Microscopic lesion scores from 0 to 4 were assigned as previously 

described (Halbur et al., 1995). 

 

Detection of APPs in serum 

 

Serum samples were analyzed for APPs by means of commercial kits, 

previously validated in our laboratory (Tecles et al., 2007). Porcine serum Hp 

concentrations were quantified by using a non-species specific 

spectrophotometric method with commercial kit (PhaseTM Range Haptoglobin 

Assay; Tridelta Development Ltd). The assay presented a detection limit of 0.02 

mg/ml and was performed according to the manufacturer’s instructions on an 
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automated analyser (Cobas Mira Plus; ABX Diagnostics, Montpellier, France). 

Serum CRP and Pig-MAP levels were assessed with porcine specific ELISA kits 

based on monoclonal antibodies (PhaseTM Range; Tridelta Development Ltd, 

Maynooth, Ireland; PigCHAMP Pro Europa S.A., Segovia, Spain). Their 

detection limits were determined as 2.00 µg/ml and 0.18 mg/ml, respectively. 

SAA concentration was determined by using a commercial non-species specific 

ELISA kit based on a monoclonal antibody (PhaseTM Range; Tridelta 

Development Ltd, Maynooth, Ireland). The detection limit for this ELISA test 

was 3.06 µg/ml. All samples were analysed in duplicate. 

 

Detection of cytokines in serum 

 

Sera samples were analyzed for cytokines concentration by means of 

commercial ELISA kits for IL-1β, IL-6 and TNFα, following manufacturer’s 

instructions (Swine IL-1β and Swine TNFα ELISA kits, Biosource; Porcine IL-6 

Immunoassay, R&D Systems). Swine IL-1β and Swine TNFα ELISA kits were 

carried out using a non-species specific polyclonal antibody and a species-

specific porcine monoclonal antibody, respectively. Porcine IL-6 Immunoassay 

determines the serum IL-6 concentration by means of a species-specific porcine 

polyclonal antibody. The detection limits of the different ELISA kits used were 

15 pg/ml, 3 pg/ml and 10 pg/ml, respectively. All samples were analysed in 

duplicate. Cytokine concentrations were calculated by using the linear-
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regression formula from optical densities of the cytokine standards provided by 

the manufacturer. 

 

Statistical analysis 

 

Microscopic lung lesion scores, serum APPs and proinflammatory cytokines 

concentrations are expressed as means ± SD. Values of gross pulmonary 

lesions are expressed as percentages (%). Since control animals were bled at 

0, 7, 14, 21 and 24 dpi, blood values of inoculated animals at 3, 10 and 17 dpi 

were analysed with the mean value of the control animals at the prior- and post-

time points. The values were evaluated for approximate normality of distribution 

by using Kolmogorov-Smirnov test. Differences between the means of control 

and inoculated animals were assessed by a Kruskal-Wallis test followed by a 

Mann-Whitney-U non-parametric test (GraphPad Instat 3.05), and differences 

between means of control animals throughout the study were assessed by a 

Friedman test followed by a Wilcoxon matched pairs test (GraphPad Instat 

3.05). Correlation between viral load, lung lesions and APP and cytokine serum 

concentrations was assessed by a Pearson test (GraphPah Instat 3.05). P<0.05 

and P<0.01 were considered as significant and very significant statistical 

differences, respectively. 
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RReessuullttss  

 

Virus titre in serum samples 

 

No virus was detected in control animals throughout the study. Viraemia was 

detected in blood samples from 4/8 inoculated pigs at 3 dpi, and in 8/8 

inoculated pigs at 7 and 10 dpi. From 10 dpi onwards the viraemia decreased, 

and was detected in 7/8 inoculated pigs at 14 dpi, in 6/8 inoculated pigs at 17 

dpi, and in 4/8 and 2/4 of inoculated pigs at 21 and 24 dpi (Fig.8).  

 

Clinical signs, gross pathology and histopathology 

 

Control animals displayed no clinical signs throughout the study. No 

differences were observed in the respiratory score between the control group and 

the inoculated animals, however, from 3 dpi more than 20 % of the inoculated 

animals presented dullness and weight loss. The rectal temperature was mildly 

elevated at 3 and 10 dpi, and remained normal at the end of the experiment (data 

not shown). Gross lesions displayed a significant increase from 7 dpi until the end 

of the study (P<0.05), when almost 50 % of the lung parenchyma was affected. 

Infected animals developed significant microscopic lung lesions compared to the 

control group (P<0.01) (Fig.9). The most severe lesions were observed in the 
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cranial and medial pulmonary lobes. Gross and microscopic lesions are 

summarised in Table III. 

 

APPs expression in serum 

 

Serum APPs concentrations displayed no significant changes in control 

animals throughout the study (Figs. 10A and 10B). Comparing serum APPs 

expression between control and inoculated animals, APPs values presented 

high variability due to interindividual variation. In the PRRSV inoculated pigs, 

mean levels of SAA and CRP were decreased at 7 dpi; while Hp and Pig-MAP 

levels were increased at 10 and/or 14 dpi. Serum Hp concentration peaked at 3 

and 10 dpi (1.34-fold, and 2.42-fold, respectively), being statistically significant 

at 10 dpi (P<0.01) (Fig. 10A). Pig-MAP levels were enhanced from 3 dpi to 21 

dpi (from 1.27-fold to 2.60-fold, respectively), showing a peak at 10 and 14 dpi 

(P<0.05) (Fig.3A). CRP and SAA serum concentrations significantly decreased 

at 7 dpi (P<0.01) in inoculated animals with respect to the control group, and 

were increased at 14, 17 and 21 dpi (1.59-fold, 2.55-fold, and 2.37-fold, 

respectively) for CRP, and from 17 to 21 dpi (5.29-fold, and 2.30-fold, 

respectively) for SAA (Fig. 10B). No correlation was found between viral load, 

lung lesions and APPs serum concentration throughout the study. 
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Cytokines expression in serum 

 

Serum concentration of proinflammatory cytokines displayed no significant 

changes in control animals throughout the study (Fig. 11A). Comparing between 

control and inoculated animals, serum levels of cytokines showed high 

variability due to individual variability (Figs. 11A and 11B), not being detected 

significant changes in the serum concentration of proinflammatory cytokines 

between control and inoculated groups. Nevertheless, IL-1β levels showed a 

moderate increase at 7 dpi decreasing at 10 dpi, whereas serum IL-6 and TNFα 

levels were mildly enhanced at 10 dpi decreasing by the end of the study (Fig. 

11B). The expression of TNFα showed a significant correlation with respect to 

the viraemia (r = 0.70; P<0.05), and to the serum levels of IL-6 (r = 0.75; 

P<0.05) and Hp (r = 0.81; P<0.05). 

When all the three proinflammatory cytokines were considered together, 

their serum concentration was significantly correlated with the extent of the 

gross lung lesions (r = 0.71; P<0.05). 

 

DDiissccuussssiioonn  

 

The main goal of this study was to determine the changes and the 

relationship between serum levels of APPs and proinflammatory cytokines as 
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well as their role in PRRSV pathogenesis. Our experimental infection with 

PRRSV field isolate 2982 displayed no respiratory symptoms and only a mild 

increase in the rectal temperature in PRRSV inoculated animals, although 

lesions of the pulmonary parenchyma were evident throughout the study. IL-1, 

IL-6 and TNFα are considered as “early” cytokines which are involved in the 

development of local inflammatory injuries (Van Reeth and Nauwynck, 2000). 

Nonetheless, PRRSV is known to induce poor levels of proinflammatory 

cytokines compared with other porcine viral respiratory diseases, like SIV and 

porcine respiratory coronavirus (Van Reeth and Nauwynck, 2000; Van Reeth et 

al., 2002). The infection with the field isolate used in our study induced a poor 

expression of all three proinflammatory cytokines in serum, being observed only 

a mild (IL-6, TNFα) or moderate (IL-1β) increase of these cytokines. Previous 

studies have reported an enhancement in IL-1 concentrations in PRRSV-

infected pigs (Van Reeth et al., 1999). Asai and co-authors (1999) reported an 

increase in IL-6 but not in TNFα expression in the serum of pigs infected with a 

US genotype of PRRSV. Both IL-1 and TNFα may induce the synthesis of IL-6 

(Van Reeth and Nauwynck, 2000), but in our study the expression of IL-6 was 
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correlated only with the expression of TNFα. These results might be related with 

a different pattern of expression of proinflammatory cytokines between different 

PRRSV genotypes. 

Instead of the poor expression of proinflammatory cytokines observed in our 

study, a correlation between the extent of pulmonary lesion observed in 

inoculated animals and the expression of all the three proinflammatory 

cytokines was observed. The lack of significant changes in serum levels of 

proinflammatory cytokines during our study contrast with the inflammatory 

response observed at lung level. This inflammatory response might be related 

with higher amounts of cytokines detected at the pulmonary parenchyma, 

whereas the serum concentration of these cytokines may remain generally low 

or undetectable (Baarsch et al., 1995; Conn et al., 1995). This statement 

indicates that proinflammatory cytokines would show a paracrine synthesis, not 

being observed a significant increased in the serum levels of these cytokines, 

which is supported by the results obtained in a parallel study carried out by our 

group, which reports a significant enhancement in the in situ expression of 
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proinflammatory cytokines by macrophages in the lung of PRRSV-infected pigs 

(Gómez-Laguna et al., 2009). 

On the other side, the mild expression of TNFα observed in our study 

showed a correlation with respect to the viraemia. Besides its role in the 

inflammatory response, TNFα may act as an antiviral cytokines, protecting cells 

from viral infection, or killing selectively virus infected cells in an interferon-

independent way (Van Reeth and Nauwynck, 2000). The poor expression of 

TNFα observed in our study, point to impairment in the regulation of the host 

immune response, which makes unable the induction of an efficient PRRSV 

clearance.  

The lower expression of proinflammatory cytokines during PRRSV infection 

than in other viral infections (Van Reeth and Nauwynck, 2000; Van Reeth et al., 

2002) is also related with the expression of lower levels of APPs (Parra et al., 

2006), since proinflammatory cytokines are known to induce APPs production 

by hepatocytes (Eckersall, 2000; Petersen et al., 2004). The results obtained 

from our study are in accordance with data from a field study (Parra et al., 

2006), although in our study the fold-increase was lower than in the latter. The 
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use of an experimental model, with an exhaustively controlled environment, 

instead of field conditions may have influenced in the lower levels observed in 

this study. 

APPs were only moderately increased in their expression from 7 dpi, just 

when lung lesions started to be observed. Hp and Pig-MAP were the earliest 

APPs synthesised after the mild enhancement observed in proinflammatory 

cytokines concentrations. Hp and Pig-MAP expression were increased at 10 

dpi, coinciding with the highest titre of viraemia. Serum Hp concentration 

enhancement has been reported previously related to an increase in IL-6 but 

not TNFα expression during PRRSV infection (Asai et al., 1999). Otherwise, in 

our study the changes observed in Hp concentration were correlated with the 

mild expression of TNFα but not with IL-1β or IL-6 expression. No correlation 

was found between the serum concentration of the other APPs and cytokines 

analysed in this study, however, individual inoculated pigs showing higher 

values for any of the APPs presented also higher level of any or several of the 

cytokines analysed, higher viral load and/or higher score of lung lesion (data not 

shown). The differences observed in the proinflammatory cytokines profile in 
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our study with respect to previous reports (Asai et al., 1999; Van Reeth et al., 

1999), suggest that the expression of proinflammatory cytokines, and the 

subsequent expression of APPs, may become in useful tools to determine 

differences in the pathogenicity between PRRSV isolates.  

The serum concentrations of CRP and SAA showed a delayed increase at 

17 dpi. SAA was the APP which showed a higher increase in the present study, 

being enhanced 5.29-fold at 17 dpi. In spite of the enhancement observed in 

both SAA and CRP concentrations in inoculated animals with respect to the 

control group, the differences were not statistically significant. This fact may be 

due to the high interindividual variability for SAA and CRP values between 

different animals, confirmed by the wide standard deviation, as previously 

suggested for postweaning multisystemic wasting syndrome (Segalés et al., 

2004). In further studies, the same batch of animals should be bled at the 

different time-points to avoid the interindividual variability.  

The lack of increased levels of proinflammatory cytokines secretion during 

PRRSV infection is a question which nowadays remains without an answer. 

One possible explanation for the low serum levels of IL-1β, IL-6, and TNFα may 
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be that these cytokines are mainly expressed at the local place where the 

inflammatory response is triggered, as it has been suggested above. 

Furthermore, some studies have been addressed to determine the pathways 

used by PRRSV to modulate the innate immune response. Several factors may 

be involved in the inhibition of proinflammatory cytokines, inducing, therefore, 

an inhibition of the APRS and a decreased and/or delayed expression of APPs, 

as it was observed in our study for both CRP and SAA. NF-κB is a transcription 

factor which activation induces the synthesis of several immune molecules, as 

proinflammatory cytokines. The inhibition of NF-κB activation might be one 

mechanism involved in the poor expression of proinflammatory cytokines 

observed during PRRSV infection. However, PRRSV has been reported to 

activate NF-κB in MARC-145 cells and alveolar macrophages (Lee and 

Kleiboeker, 2005). IL-10 is an immunomodulatory cytokine which potently inhibit 

the production of IL-1, IL-6, TNF, and several other cytokines (Moore et al., 

2001). An enhancement in IL-10 expression has been previously reported after 

PRRSV-infection or vaccination, showing an inverse correlation with the 

expression of IFNγ (Díaz et al., 2005; 2006). Indeed, IL-10 may inhibit the 
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production of proinflammatory cytokines following the same pathway triggered 

to inhibit IFNγ synthesis. Otherwise, the expression of transforming growth 

factor-β (TGF-β), other regulatory cytokine able to inhibit the expression of 

proinflammatory cytokines, seems to be downregulated after PRRSV 

immunization with a modified live virus vaccine (Royaee et al., 2004). Finally, 

PRRSV is also able to interfere the antigen presentation process, inducing a 

downregulation of the innate immune response and the cytokine expression 

(Mateu and Díaz, 2008). 

In conclusion, this study reports a poor expression of both APPs and 

proinflammatory cytokines during the APR in pigs inoculated with 2982 PRRSV 

field isolate. Only a mild enhancement of proinflammatory cytokines was 

observed together with a moderate increase in Hp and Pig-MAP serum 

concentrations. Moreover, TNFα was correlated with viraemia, IL-6 and Hp 

expression, pointing to a role of this cytokine in the modulation of the immune 

response against PRRSV. The impairment of the innate immune response may 

be related with the onset of a regulatory response, able to inhibit the synthesis 

of proinflammatory cytokines and consequently the synthesis of APPs . Further 
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studies should be conducted to determine the exact pathway used by the virus 

to downregulate the immune response as well as the utility of APPs to establish 

differences between PRRSV isolates. 
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TABLE III: Gross and microscopic lesions of control and inoculated animals throughout the study. Gross lesions are expressed as % 

of pulmonary parenchyma with lesion. Data are expressed as the mean ± SD. 

 Control 3 dpi 7dpi 10dpi 14dpi 17dpi 21dpi 24dpi 

Gross lesions 1.67±1.53 13.25±15.44 47.75±17.52* 31.50±12.01* 45.25±23.21* 20.50±16.11* 28.50±17.14* 47.25±17.52* 

Microscopic lesions         

Cranial lobe 0.25±0.50 0.75±0.96 1.75±0.50* 2.00±0.00* 2.25±0.96* 1.50±1.00 2.00±1.41 1.75±1.26 

Medial lobe 0.25±0.50 0.75±0.96 2.25±0.50* 1.75±0.50* 2.50±0.58* 1.25±0.96 2.50±0.58* 2.25±0.50* 

Accessory lobe 0.25±0.50 0.75±0.96 1.50±0.58* 1.00±0.82 2.00±0.82* 2.25±0.50** 1.50±1.29 1.75±1.26* 

Caudal ventral lobe 0.25±0.50 0.75±0.96 1.75±0.50* 1.75±0.96* 1.50±1.00 1.25±0.96 1.75±0.50* 2.00±0.82* 

Caudal dorsal lobe 0.25±0.50 1.25±0.96 1.25±1.50 0.75±0.96 1.75±0.50* 1.50±1.00 2.00±0.82* 2.25±0.50* 

Mean total microscopic lesions 0.25±0.50 0.85±0.96** 1.70±0.72** 1.45±0.65** 2.00±0.77** 1.55±0.88** 1.95±0.92** 2.00±0.87** 

Microscopic scores: 0, no microscopic lesions; 1, mild interstitial pneumonia; 2, moderate multifocal interstitial pneumonia; 3, moderate diffuse interstitial 

pneumonia; 4, severe interstitial pneumonia. *,** Indicate significant differences between control and inoculated animals (P<0.05, P<0.01, respectively).  
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FIGURES LEGENDS 

Figure 8. Virus titre (●, expressed as log10) from serum of the pigs inoculated 

with the PRRSV field isolate 2982. Each point represents one different animal 

and the horizontal line shows the mean value at each time point. 

Figure 9. Photomicrograph of the cranial lobe of the right lung from a control pig 

(killed at 24 dpi) (9A) and from a pig inoculated with PRRSV field isolate 95/05 

at 14 dpi (9B). Interstitial pneumonia is characterised by a severe septal 

infiltration with mononuclear cells and type 2 pneumocyte hypertrophy and 

hyperplasia (Haematoxylin and eosin; original magnification 10x). 

Figure 10. (10A) Hp and Pig-MAP serum concentrations in control and 

inoculated animals. The median is marked with a line, the box shows the 25th to 

75th percentile, the whiskers show maximum and minimum values. *,** Indicate 

significant differences between control and inoculated animals at one time-point 

(P<0.05 and P<0.01, respectively). (10B) SAA and CRP serum concentrations 

in control and inoculated animals. The median is marked with a line, the box 

shows the 25th to 75th percentile, the whiskers show maximum and minimum 

values. ** Indicate significant differences between control and inoculated animals 

at one time-point (P<0.01). 

Figure 11. IL-1β (■), IL-6 (●) and TNF-α (▲) concentrations in serum samples 

from control (white symbols; 11A) and inoculated (black symbols; 11B) animals. 

Data are expressed as means ± SD. 
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Fig.8 

 

 

Fig.9 
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Fig.10 
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Fig.11 
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3.4. IN SITU EXPRESSION OF CYTOKINES BY MACROPHAGES IN THE LUNG OF PRRSV-

INFECTED PIGS 

 

Macrophages represent the first barrier against infections by pathogens, 

taking part in the immune response in several aspects: phagocyting invading 

pathogens through pattern recognition receptors, expressing molecules of the 

class II major histocompatibility complex (MHC II) and/or synthesizing cytokines 

(Mitchell and Kumar, 2004). Cytokines may be also synthesised by several 

other immune or non immune cells, as lymphocytes, neutrophils or fibroblasts. 

The expression of both cytokines either “pathogens associated molecular 

patterns” (PAMPs) constitute the main pathways involved in the macrophages 

activation (Zhang and Mosser, 2008). Furthermore, cytokines may act as 

promoters or inhibitors of macrophage activation, depending on which cytokines 

are expressed. Indeed, IL-12, TNFα, IFNα and IFNγ act as potent activators of 

macrophages, whereas, IL-10 is able to inhibit their activation (Mitchell and 

Kumar, 2004). 

IFNγ and IL-12 are cytokines involved in the Th1 immune response, and 

both of them stimulate the synthesis of the other one (Biron and Sen, 2001). On 

the other hand, proinflammatory cytokines are the main cytokines involved in 

the inflammatory changes observed during the innate response (Biron and Sen, 

2001). IFNα is another cytokine which participates in the innate response, 

developing an antiviral activity, inducing the differentiation of naïve T cells into 
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IFNγ-SCs and downregulating the expression of IL-12 (Biron and Sen, 2001; 

Tizard, 2008). Finally, IL-10 is considered as an immunosuppressive cytokine, 

which downregulates the expression of several cytokines (Biron and Sen, 2001; 

Moore et al., 2001). 

Several studies have been carried out to determine the role of cytokines in 

the pathogenesis of PRRS (Van Reeth and Nauwynck, 2000). However, it is not 

clear how cytokines participate in macrophages activation during PRRSV 

infection neither their role in the development of the immune response. 

Moreover, the interactions between different cytokines make even more difficult 

the understanding of the mechanisms trigger off during PRRSV infection. 

Thanawongnuwech et al. (2003) suggested that the expression of IFNγ by 

macrophages and lymphocytes may be related with an inhibitory effect in 

PRRSV replication. Nonetheless, IL-10 expression was associated with a lower 

number of IFNγ-SCs in PBMCs during a PRRS-modified live vaccine trial (Díaz 

et al., 2006). In addition, the role of cytokines in the interstitial pneumonia 

described in PRRS has not been determined. 

The main aim of this study, which represents the third goal of the thesis, was 

to determine the changes observed in both PAMs and septal macrophages in 

the lung of PRRSV-infected pigs, as well as, the changes observed in the 

expression of cytokines by macrophages in situ in the lung parenchyma.  
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MMaatteerriiaallss  aanndd  MMeetthhooddss  

 

Virus, animals and experimental design 

 

The inoculum, animals and experimental design used in this experiment 

have been described above in the section “Common experimental design”, pp. 

55-56. 

 

Clinical signs, gross pathology and histopathology of the lungs 

 

The clinical signs and gross pathology were evaluated as described above 

in the page 70. 

During post mortem examination, macroscopic lung lesions were evaluated by 

visual inspection and samples from the medial lobe of the right lung were fixed in 

10 % buffered formaldehyde and Bouin solution, and embedded in paraffin-wax. 

Four μm sections were stained with haematoxylin and eosin for histopathological 

examination. 

 

Immunohistochemical examinations 

 

Since PRRSV is most frequently detected in the apical and medial lung 

lobes (Halbur et al., 1996), the medial lobe was selected for 
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immunohistochemical examinations. The Avidin-Biotin-Peroxidase complex 

technique (ABC) was used for the detection of PRRSV, macrophages and 

cytokines antigens as described previously (Hsu et al., 1981). Briefly, the 

sections were deparaffinised and dehydrated in a graded series of ethanol; the 

endogenous peroxidase activity was quenched in a 3 % H2O2 solution in 

methanol during 30 minutes. The sections were washed with PBS (pH 7.4, 0.01 

M) and incubated (30 minutes, room temperature (r.t.)) with 100 μl per slide of 

blocking solution in a humid chamber. Table IV describes the primary antibodies 

and antigen retrieval methods used. Primary antibodies were incubated 

overnight at 4 ºC in a humid chamber. In each case, the correspondent 

secondary antibody was incubated at r.t. for 30 min. An avidin-peroxidase 

complex (Vector Laboratories) was applied for 1 hour at r.t. The 

immunoenzymatic reaction was developed using NovaRED Substrate kit 

(Vector Laboratories). Sections were counterstained with Mayer’s haematoxylin, 

dehydrated and routinely mounted. The specific primary antibody was replaced 

by blocking solution, normal serum and isotype-specific reagents for each 

primary antibody in the negative controls. 

 

Semiquantitative analysis 

 

The number of positive cells labelled against the different antibodies in 

medial lobe of the right lung was counted using a method described previously 
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(Salguero et al., 2005). Briefly, cells immunolabelled were counted in 50 no 

overlapping consecutive selected, high magnification fields of 0.20 mm2 for 

each inoculated or control animal. Results are expressed as number of cells per 

mm2. Immunolabelled cells were identified and counted morphologically as 

macrophages, lymphocytes or neutrophils. Due to in lung tissue sections 

pulmonar intravascular macrophages (PIMs) are hardly differentiable from 

macrophages from the septa, we use the term “septal macrophages” to refer to 

both PIMs and interstitial macrophages.   

 

Statistical analysis 

 

Values of macrophages, PRRSV and cytokines antigens counts are 

expressed as the mean ± SD. The values were evaluated for approximate 

normality of distribution by using Kolmogorov-Smirnov statistic. Differences 

between the means of control and inoculated animals were assessed by a 

Kruskal-Wallis test followed by a Mann-Whitney-U non-parametric test 

(GraphPad Instat 3.05). Correlation between the histopathological lung lesion 

and the expression of virus, macrophages and cytokines antigens was 

assessed by a Spearman test (GraphPad Instat 3.05). P<0.05 was considered 

as significant statistical difference. 
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RReessuullttss  

 

Clinical signs, gross pathology and histopathology of the lungs 

 

Animals from the control group showed neither clinical signs nor significant 

gross or microscopic lung lesions. Although inoculated animals displayed no 

significant respiratory changes, dullness, weight loss, and a mild hyperthermia 

were evident from 3 dpi. From 7 dpi until the end of the study, almost 50 % of the 

pulmonary parenchyma of inoculated animals showed interstitial pneumonia, 

which was confirmed by histopathological examination of the tissue samples 

(Figs. 12A and 13A). 

 

Tissue expression of macrophage and PRRSV antigens 

 

MAC387 antibody was used to detect changes in the counts of 

macrophages in the lung throughout the study. The number of macrophages 

was increased in inoculated animals from 7 dpi onwards (Fig. 12B). This 

enhancement was mainly due to an increase in the number of septal 

macrophages, and secondly PAMs, being more significant at 7, 14, and at the 

end of the study (Figs. 12B and 13B). PAMs were significantly decreased at 7 

dpi recovering normal values onwards (Fig. 12B). The expression of the 
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antibody MAC387 was significantly correlated with the microscopic score of 

lung lesion (r = 0.85; P<0.05) (Table V). 

Control animals were negative for PRRSV antigen labelling. PRRSV antigen 

was detected in the lung of PRRSV-infected pigs from 3 dpi until the end of the 

study, reaching a peak at 7 dpi (P<0.05) (Fig. 12C). The antigen expression 

was detected mainly in the cytoplasm of macrophages, being statistically 

significant higher in porcine alveolar macrophages (PAMs) than in septal 

macrophages (P<0.05) (Figs. 12C and 13C). Immunolabelled cells were 

observed in both areas of interstitial pneumonia and lung parenchyma without 

lesion in the inoculated animals. 

 

Tissue expression of proinflammatory cytokines antigens 

 

IL-1α antigen was observed in the cytoplasm of PAMs, septal macrophages 

and neutrophils, playing the latter a significant role in the expression of this 

cytokine (Fig. 12D). The expression of IL-1α was always higher in inoculated 

animals than in control pigs, and displayed a mild to marked enhancement at 7 

and 14 dpi (P<0.05) (Fig. 12D), respectively. The increase observed in IL-1α at 

14 dpi was associated to a severe infiltrate of IL-1α-secreting neutrophils 

(P<0.05) (Figs. 12D and 13D).  

The expression of IL-6 and TNFα antigens peaked at 7 and 14dpi (P<0.05) 

(Figs. 12E and 12F). IL-6 immunolabelling still remained enhanced at the end of 
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the study (Fig. 12E), but the expression of TNFα was no significant with respect 

to control animals at 21dpi (Fig. 12F). Septal macrophages were the main cell 

population involved in the expression of both IL-6 and TNFα antigens (P<0.05) 

(Figs. 12E, 12F, 13E and 13F). PAMs and lymphocytes were also related with 

the expression of these cytokines, but in a lesser extent (Figs. 12E and 12F).  

The immunostaining against proinflammatory cytokines antigens was 

observed mainly in areas of interstitial pneumonia, with a moderate to severe 

thickening of the alveolar septa, and only few immunolabelled cells were 

observed in non pathological areas of the lung (Figs. 13D, 13E and 13F). The 

correlations between the histopathological lung lesion, macrophages counts 

and the expression of proinflammatory cytokines is shown in Table V. In 

addition, Table VI shows the correlation between the expression of TNFα and 

IFNγ. 

 

Tissue expression of IFNα, IFNγ, IL-10 and IL-12 p40 antigens 

 

IFNα antigen was expressed in the cytoplasm of PAMs, septal macrophages 

and lymphocytes. Septal macrophages were the main cell type involve in the 

expression of this cytokine, which displayed a significant increase at 3 dpi 

(P<0.05) and decreased onwards (Figs. 14A and 15A). The number of IFNα-

expressing PAMs was also enhanced at 3 dpi (P<0.05). IFNα expression was 

always higher in inoculated animals respect with control animals (Fig. 14A). The 
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expression of IFNα showed a significant correlation with respect to virus 

expression (r = 0.86; P<0.05) (Table VI). 

The kinetics of both IFNγ and IL-12 p40 was similar throughout the study (r 

= 0.95; P<0.05) (Table VI), displaying a peak at 7 dpi and decreasing onwards 

(Figs. 14B and 14C). These cytokines were expressed mainly by septal 

macrophages, but also by PAMs and lymphocytes (Figs. 15B and 15C). 

Inoculated animals showed always higher counts of IFNγ-expressing cells than 

control animals. 

The expression of the cytokine IL-10 displayed an increase at 7 dpi 

decreasing onwards (Fig. 14D). The antibody against porcine IL-10 was 

observed mainly in the cytoplasm of septal macrophages (Fig. 15D). The 

kinetics shown by this cytokine was significantly correlated with that one of the 

virus (r = 0.77; P<0.05) (Table VI). 

The number of septal macrophages expressing any of these cytokines was 

statistically higher than the number of PAMs (Fig. 14). The immunolabelling 

against IFNα, IFNγ, IL-12 p40 and IL-10 was associated to areas of mild to 

moderate interstitial pneumonia, and in a lesser extent to areas of pulmonary 

parenchyma without lesion (Fig. 15). The correlations between the expression 

of PRRSV, IFNα, IFNγ, IL-10, IL-12 p40 and TNFα in the lung of PRRSV-

infected pigs are shown in Table VI. 
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DDiissccuussssiioonn  

 

Several reports have studied the changes in cytokines during PRRSV 

infection, nonetheless, there is lack of study of the main cell-types involved in 

their expression. In this study the expression of cytokines by macrophages has 

been examined to determine their activation during PRRS and their role in the 

inflammatory reaction and modulation of the immune response. 

Our experimental infection displayed no respiratory symptoms but dullness, 

weight loss, mild hyperthermia and lesions of the pulmonary parenchyma were 

observed. A peak of PRRSV replication was observed at 7 dpi, mainly located 

in PAMs, considered as the target cell for viral replication (Molitor et al., 1997; 

Bautista and Molitor, 1999). No correlation was observed between viral 

replication and the degree of histopathological lung lesion. However, the 

microscopic lung lesion was significantly correlated with a marked infiltrate of 

the septa and the counts of macrophages. Moreover, lung lesion showed a 

significant correlation with the expression of both IL-1α and IL6, but not TNFα, 

and macrophages counts were correlated with the expression of IL-1α and 

TNFα, but not IL-6. These results point to a significant role of IL-1α in the 

development of the interstitial pneumonia during PRRS. Nonetheless, when all 

the three proinflammatory cytokines were considered a highly significant 

correlation was observed with respect to both histopathological pulmonary 

lesion and macrophage counts, which demonstrates the role of joint 
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proinflammatory cytokines in the inflammatory response evoked in PRRSV 

infection. 

Although PRRSV replicated mainly in PAMs, proinflammatory cytokines 

were expressed mainly by septal macrophages, especially for IL-6 and TNFα 

from 14 dpi onwards. This fact points to an activation of septal macrophages, 

which may be induce by the synthesis of cytokines itself (Zhang and Mosser, 

2008). Similar findings have been reported for other porcine viral diseases, like 

African Swine Fever (ASF), which triggers an activation of interstitial 

macrophages expressing IL-1α and TNFα after viral replication (Carrasco et al., 

2002).  

In our study, a severe intra-alveolar neutrophil infiltration expressing IL-1α 

was observed at 14 dpi. The increase of both IL-1α and TNFα at earlier time-

points may induce such inflammatory infiltrate and activation of neutrophils 

since these cytokines are considered as neutrophils-chemoattractant and 

stimulant agents (Van Reeth and Nauwynck, 2000). Furthermore, IL-1 and 

TNFα may induce the synthesis of IL-6 (Van Reeth and Nauwynck, 2000; 

Mitchell and Kumar, 2004), however, in our study no correlation was observed 

between the expression of these cytokines, although the maximum expression 

of IL-6 temporally coincided with a higher expression of IL-1α and/or TNFα. 

IFNs are cytokines known for playing a significant role in the host immune 

response against viruses (Van Reeth and Nauwynck, 2000; Biron and Sen, 

2001). IFNα participates in the innate immune response and is able to induce 



EXPERIMENTAL STUDIES                  

   
152 

an enhancement in IFNγ levels (Biron and Sen, 2001; Tizard, 2008). A 

significant correlation was observed in our study between PRRSV replication 

and IFNα expression, pointing out that PRRSV directly modulate macrophages 

towards the expression of IFNα. However, PRRSV induces lower levels of IFNα 

when compared with other porcine respiratory viral diseases, such as Swine 

Influenza Virus or Porcine Respiratory Coronavirus infections (Van Reeth and 

Nauwynck, 2000), which indicates that IFNα expression is not enough for 

PRRSV clearance. 

The expression of IFNγ by macrophages and lymphocytes has been 

previously reported in the lung of PRRSV-infected pigs (Thanawongnuwech et 

al., 2003). In this study, an increase in the expression of IFNγ was observed at 

10 dpi for high virulent strains whereas low virulent strains displayed a higher 

expression at the end of the study (28 dpi). In our study, the expression of IFNγ 

was undulating, showing a peak at 7 dpi, just when PRRSV replication 

displayed a maximum. IFNγ is known to protect macrophages in vitro against 

PRRSV replication (Bautista and Molitor, 1999), however, the viral replication 

observed still at the end of our study supports that the expression of IFNγ is 

insufficient to avoid a prolonged PRRSV replication. 

The activation of pulmonary macrophages to produce IFNγ is induced by 

the expression of other cytokines, just as IL-12, TNFα or IFNα (Nguyen and 

Benveniste, 2002; Mitchell and Kumar, 2004; Tizard, 2008). In our study a tight 

correlation was observed with respect to IL-12 p40 and TNFα but not to IFNα. 
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Therefore, IL-12 p40 and TNFα was the most significant cytokines involved in 

the synthesis of IFNγ in our study, being less important the contribution of IFNα. 

Royaee et al. (2004) have reported a correlation between virus specific-IFNα-

SCs and virus specific-IFNγ-SCs in pigs vaccinated with an attenuated, 

modified–lived vaccine (MLV) of PRRSV. High antigenic and pathogenic 

differences have been attributed to European and North American PRRSV 

genotypes, and within a given genotype (Halbur et al., 1995; Mateu et al., 2003; 

Stadejek et al., 2006), which may be the cause of the discrepancies observed 

between our study and that one of Royaee et al. (2004). 

Instead of the expression of IFNα, IFNγ, IL-12 p40 and TNFα observed in 

our study, PRRSV was still replicating in the lung of PRRSV-infected pigs at the 

end of the study. IL-10 is an immunomodulatory cytokine which is able to inhibit 

the synthesis and release of other several cytokines (Biron and Sen, 2001; 

Moore et al., 2001). Therefore, the expression of IL-10 observed in our study 

might be the responsible for lower levels of cytokines, such as IFNα, IFNγ, IL-12 

p40 and TNFα, which may avoid a prolonged viral replication in the lung of 

infected animals. Interestingly, the expression of IL-10 was significantly 

correlated with PRRSV replication. These results point out that PRRSV acts 

inducing the expression of IL-10, and so inhibiting the expression of other 

cytokines allowing a prolonged viral replication in the lung. This idea is 

supported by the correlation observed in our study between the expression of 

IL-10 and IFNα. 
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Our results indicate that activation of septal macrophages and PAMs differs 

throughout PRRSV infection, playing the first ones a main role in the synthesis 

and release of cytokines. Proinflammatory cytokines play a significant role in the 

pathogenesis of the interstitial pneumonia observed during PRRS, being directly 

correlated with the infiltration of the septa by macrophages. Additionally, 

PRRSV seems to modulate the immune response by the expression of IL-10 by 

macrophages, which may be the responsible of lower levels of other cytokines 

implied in viral clearance, just as IFNα, IFNγ, IL-12 p40 and TNFα. 
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TABLE IV: Antibodies source and immunohistochemical techniques used for the immunocharacterisation of PRRSV, macrophages 

and cytokines antigens expression. 

Specificity 
Type of 
antibody 

Source Commercial origin Fixative Dilution Antigen retrieval 

Anti-PRRSV (clone SDOW-17/SR-30) Monoclonal Mouse myeloma cells Rural Technologies Inc. Bouin 1:1.000 HTAR 
Anti-human MΦ  (clone MAC387) Monoclonal NS1 Mouse myeloma cell line Chemicon Europe Formaldehyde 10 % 1:750 Protease 10’ 
Anti-human IL-1α Polyclonal Rabbit serum Endogen Bouin 1:100 Tween 20 0.01 % 
Anti-pig IL-6  Polyclonal Rabbit serum Endogen Bouin 1:10 Tween 20 0.01 % 
Anti-human TNFα (clone 68B6A3) Monoclonal NSO Mouse myeloma cell line Biosource Bouin 1:25 Tween 20 0.01 % 
Anti-IFNα (clone F17) Monoclonal Mouse myeloma cells Prof. K. Van Reeth Bouin 1:300 Tween 20 0.01 % 
Anti-pig IFNγ Polyclonal Goat serum RnD Systems Bouin 1:20 Tween 20 0.01 % 
Anti-pig IL-10 Polyclonal Goat serum RnD Systems Bouin 1:20 Tween 20 0.01 % 
Anti-pig IL-12 Polyclonal Goat serum RnD Systems Bouin 1:20 Tween 20 0.01 % 

MΦ: macrophages. pAb: Polyclonal Antibody. HTAR: High Temperature Antigen Retrieval with citrate buffer ph 6.0. Protease 10’: protease digestion for 10’. 

Tween 20 0.01 %: Tween 20 diluted 0.01 % in PBS during 10’. 
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TABLE V: Correlations between the histopathological lung lesion, the counts of macrophages and the expression of 

proinflammatory cytokines. 

 Microscopic lesion MΦ IL-1α IL-6 TNF-α IL-1α + IL-6 +  TNF-α 

Microscopic lesion - 0.85* 0.85* 0.80* 0.54 0.87* 

MΦ  - 1.00* 0.69 0.74* 0.98* 

IL-1α   - 0.69 0.74* 0.98* 

IL-6    - 0.62 0.79* 

TNF-α     - 0.76* 

IL-1α + IL-6 +  TNF-α      - 

MΦ: macrophages. *P<0.05 
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TABLE VI: Correlations between the expression of PRRSV, IFNα, IFNγ, IL-10 and IL-12 p40 in the lung of PRRSV-infected pigs. 

 PRRSV IFNα IFNγ IL-10 IL-12 p40 TNF-α 

PRRSV - 0.86* 0.54 0.77* 0.42 0.31 

IFNα  - 0.57 0.93* 0.52 0.43 

IFNγ   - 0.60 0.95* 0.71* 

IL-10    - 0.64 0.60 

IL-12 p40     - 0.74* 

TNF-α      - 

*P<0.05 
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FIGURES LEGENDS 

Figure 12. (A) Histopathological score for lung lesions throughout the infection 

with PRRSV field isolate 2982. (B, C, D, E and F) Counts for MAC387, 

SDOW17/SR30, IL-1α, IL-6 and TNF-α, respectively. * Indicate statistical 

significant differences (P<0.05) of the inoculated group with respect to the 

control group. ** Indicate statistical significant differences (P<0.05) between the 

counts of PAMs and septal macrophages within a given time point. 

Figure 13. (A) Photomicrograph of the medial lobe of the right lung from a pig 

inoculated with PRRSV field isolate 2982 and killed at 7 dpi. Interstitial 

pneumonia is characterized by a severe septal infiltration with mononuclear 

cells and type 2 pneumocyte hypertrophy and hyperplasia. HE. Bar, 100μm. (B) 

Marked infiltrate of macrophages in the alveolar septa in the lung of a pig killed 

at 7 dpi. IHC. Bar, 100μm. (C) PAMs and septal macrophages immunolabelled 

against SDOW17/SR30 antibody in a pig killed at 7 dpi (ABC complex method) . 

IHC. Bar, 25μm. (D) Numerous IL-1α-expressing-septal macrophages and 

neutrophils in the pulmonary parenchyma of a pig killed at 7 dpi, which shows a 

marked thickening of the alveolar septa. IHC. Bar, 100μm. (E) PAMs and septal 

macrophages expressing IL-6 in their cytoplasm in the lung of a pig killed at 7 

dpi. IHC. Bar, 25μm. (F) Pulmonary parenchyma of a pig killed at 7 dpi, with a 

mild interstitial pneumonia, showing septal macrophages immunolabelled 

against TNF-α antibody. IHC. Bar, 30μm. 
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Figure 14. (A, B, C, and D) Counts for IFNα, IFNγ, IL-12 p40 and IL-10, 

respectively, in the lung of pigs infected with PRRSV field isolate 2982. * 

Indicate statistical significant differences (P<0.05) of the inoculated group with 

respect to the control group. ** Indicate statistical significant differences 

(P<0.05) between the counts of PAMs and septal macrophages within a given 

time point. 

Figure 15. (A) Septal macrophages and a PIMs immunolabelled against IFNα in 

the lung of a pig killed at 3 dpi with a mild thickening of the alveolar septa. IHC. 

Bar, 20μm. (B) A focus of mild interstitial pneumonia in the lung of a pig killed at 

14 dpi, which shows septal macrophages expressing IFNγ (ABC complex 

method). IHC. Bar, 15μm. (C) Septal macrophages showing cytoplasmic 

immunostaining against porcine IL-12 p40, in the lung of a pig killed at 7 dpi 

with a marked thickening of the alveolar septa. IHC. Bar, 25μm. (D) IL-10 

immunolabelling in the cytoplasm of septal macrophages in the pulmonary 

parenchyma of a pig killed at 7 dpi, which shows thickening of the alveolar 

septa. IHC. Bar, 20μm. 
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Fig.12 
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Fig.13 
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Fig.14 
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Fig.15 
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GGEENNEERRAALL  DDIISSCCUUSSSSIIOONN  

 

Deciphering how PRRSV modulates the host immune response is one of 

the most striking points nowadays in swine research. In this way, several 

reports have tried to elucidate how the host immune response is set up after 

PRRSV infection (Yoon et al., 1995; Loemba et al., 1996; Shimizu et al., 1996; 

Bautista and Molitor, 1997; Wills et al., 1997; Albina et al., 1998a, 1998b; 

Kawashima et al., 1999; López-Fuertes et al., 1999; Allende et al., 2000; 

Samsom et al., 2000; Lamontagne et al., 2001, 2003; Meier et al., 2003; Xiao et 

al., 2004; Díaz et al., 2006), although there is not yet conclusive results.  

The genomic or protein expression of some cytokines has been studied by 

several authors after PRRSV infection or vaccination (Albina et al., 1994; Asai 

et al., 1999; Van Reeth et al., 1999; Van Reeth and Nauwynck, 2000; Chung 

and Chae, 2003; Suradhat and Thanawongnuwech, 2003; Thanawongnuwech 

and Thacker, 2003; Thanawongnuwech et al., 2003; Meier et al., 2004; Royaee 

et al., 2004; Carter and Curiel, 2005; Díaz et al., 2005, 2006). Nonetheless, few 

reports have related the expression of cytokines with their role in the immune 

response in PRRS. Therefore, the main goal of this thesis was to correlate the 

changes observed in serum concentration of cytokines in an early infection with 

a European PRRSV field isolate and the changes observed in lymphocyte 

subsets and in the inflammatory response evoked during the innate immune 

response. 
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Some reports have studied the CMI against PRRSV by determining the 

changes in the levels of IFNγ. In this sense, some authors have reported a 

correlation between a downregulation of IFNγ together with an overexpression 

of IL-10 (Díaz et al., 2005, 2006), other authors have found no significant 

changes in both or any of these cytokines (López-Fuertes et al., 1999; Sipos et 

al., 2003). On the other hand, the CMI response has also been studied 

determining the changes observed in lymphocyte subsets observed after 

PRRSV infection (Shimizu et al., 1996; Albina et al., 1998b; López-Fuertes et 

al., 1999; Samsom et al., 2000; Lamontagne et al., 2001; Xiao et al., 2004; Díaz 

et al., 2006). The high antigenic and pathogenic variability observed between 

PRRSV strains is considered as one of the main factors which may mediate the 

contradictory results obtained in these reports. 

Changes in lymphocyte subsets of PBMCs have been reported by several 

authors throughout PRRSV infection (Shimizu et al., 1996; Albina et al., 1998b; 

López-Fuertes et al., 1999; Samsom et al., 2000; Lamontagne et al., 2001; Xiao 

et al., 2004; Díaz et al., 2006), otherwise, few studies have been carried out to 

determine these changes in lymphoid organs (Kawashima et al., 1999; 

Lamontagne et al., 2001; Xiao et al., 2004). The most significant changes 

observed in our experimental infection in PBMCs consisted on a generalised 

increase of CD4+CD8+ and CD4-CD8high T cells together with a decrease of 

CD4-CD8low T cells, pointing to a marked imbalance in helper/cytotoxic activity, 

which has been also previously suggested for US genotypes (Lamontagne et 
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al., 2003). Moreover, an enhancement in the counts of CD4-CD8high T cells was 

observed at 10 dpi, when the viraemia began to decrease, suggesting a 

possible role of the cytotoxic activity of this T cell subset in the virus clearance. 

The kinetics of lymphocyte subsets of lymphoid organs has been scarcely 

studied, displaying controversial results. Thus, after inoculating different US 

PRRSV strains, it has been pointed that either no changes for both CD4+ and 

CD8+ T cells (Xiao et al., 2004) or an increase in CD4-CD8high T cells 

(Lamontagne et al., 2003) were observed in the examined lymphoid organs. In 

our study, a generalised increased in CD4-CD8high T cells was observed from 7 

dpi in all the studied lymphoid organs, but no cytotoxic response seems to be 

evoked after PRRSV infection (Lohse et al., 2004). Thus, the role of CD4-

CD8high T cells in the pathogenesis of the disease should be clarified. 

PRRSV has been shown to fail in inducing in vitro CD8+ T cells proliferation 

in PBMCs (Shimizu et al., 1996). Thus, any other immune effectors may be 

necessary to induce such enhancement in CD8+ T cells. In our study IL-12 p40 

and IL-10 displayed a peak at 10 dpi, just when the increase in CD4-CD8high T 

cells was observed. Both IL-12 and IL-10 are regulatory cytokines known for 

stimulating CD8+ T cells (Wolf et al., 1994; Moore et al., 2001; Pestka et al., 

2004) and inhibiting CD4+ T cells proliferation (Moore et al., 2001; Pestka et al., 

2004). Therefore, the expression of both may be involved in the changes 

observed in the lymphocyte subsets during PRRSV infection. 
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The antiviral state induced by IFNα during the innate immune response, as 

well as, the neutralization or clearance of the virus by NAs or antigen-specific 

IFNγ-SC might be some of the mechanisms involved in PRRSV clearance 

(Yoon et al., 1995; Bautista and Molitor, 1999; Van Reeth and Nauwynck, 2000; 

Biron and Sen, 2001). Nonetheless, the poor expression of IFNα in PRRS with 

respect to other porcine respiratory viral diseases (Van Reeth and Nauwynck, 

2000), the isolation of PRRSV in the presence of NAs (Vézina et al., 1996; Wills 

et al., 1997; Batista et al., 2004), and the inhibitory effect of IL-10 in the 

expression of IFNγ (Moore et al., 2001) points out that these mechanisms are 

not efficient inducing PRRSV clearance (Murtaugh et al., 2002).  

The expression of INFα together with the detection of viraemia until the end 

of our study confirms an inefficient virus clearance. Moreover, in our studies IL-

10 was expressed when lower levels of IFNγ were detected, increasing once 

the expression of IL-10 dropped, which shows the regulatory role of IL-10 on 

IFNγ during PRRSV infection.  

Besides IFNγ, IL-10 is also able to inhibit the production of IL-1, IL-6, TNFα, 

as well as other cytokines (Moore et al., 2001). Therefore, it would be a reason 

for the poor serum expression of all three proinflammatory cytokines observed 

in our study, which has been previously reported (Van Reeth and Nauwynck, 

2000; Van Reeth et al., 2002). Moreover, Van Reeth and co-authors (1999) 

reported an enhancement in IL-1 levels but not in TNFα in pigs infected with a 

EU genotype of PRRSV, whereas Asai and co-authors (1999) observed an 
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enhancement in IL-6 but not in TNFα expression in pigs infected with a US 

genotype. These differences observed between different genotypes point out 

that that the serum profile of proinflammatory cytokines may be useful in 

determining differences in the pathogenicity between PRRSV isolates. 

Proinflammatory cytokines are the main immune mediators of the APR 

inducing the synthesis of APPs after a tissue injury (Eckersall, 2000; Ceciliani et 

al., 2002; Petersen et al., 2004; Gruys et al., 2005). APPs are considered as 

biomarkers in monitoring animal welfare and determining the health status 

(Eckersall, 2000; Petersen et al., 2004; Gruys et al., 2005). However, rather 

limited studies have been focused on the expression of APPs during PRRS. 

An increased in serum Hp concentration has been related to an 

enhancement in IL-6 but not TNFα expression during PRRSV infection (Asai et 

al., 1999). However, our results showed an enhancement in the levels of Hp 

correlated with respect to the serum expression of TNFα but not to IL-1β or IL-6 

serum expression. Moreover, the serum levels of TNFα were also correlated 

with the viraemia and with the expression of IL-6, although the mild expression 

of TNFα observed support the theory that this cytokine is inefficient in PRRSV 

clearance.  

APPs showed a different kinetics throughout the infection with the PRRSV 

field isolate 2982. Hp and Pig-MAP were the earliest APPs synthesised after the 

mild enhancement observed in proinflammatory cytokines concentrations, 

coinciding with the highest titre of viraemia at 10 dpi. Otherwise, CRP and SAA 
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showed a delayed enhancement at 17 dpi. The delayed expression of some 

APPs may be due to the participation of regulatory factors, which also may 

affect the synthesis of proinflammatory cytokines. NF-κB is a transcription factor 

which activation is needed to the synthesis of cytokines. Therefore, a inhibition 

of NF-κB activation might be the responsible of the poor level of 

proinflammatory cytokines observed in PRRS, but PRRSV has been reported to 

activate NF-κB (Lee and Kleiboeker, 2005). Other mechanism which may be 

involved in the poor expression of proinflammatory cytokines may be the 

synthesis of regulatory cytokines, as IL-10 or TGFβ, which has been described 

above. PRRSV has been also reported to avoid the antigen presentation 

process, which may downregulate the synthesis of cytokines (Mateu and Díaz, 

2008). 

The lack of significant changes in serum levels of proinflammatory cytokines 

during our study contrast with the inflammatory response observed at lung level. 

This inflammatory response might be related with higher amounts of cytokines 

detected at the pulmonary parenchyma, whereas the serum concentration of 

these cytokines are generally low or undetectable (Baarsch et al., 1995; Conn 

et al., 1995). These statements indicate that proinflammatory cytokines would 

show a paracrine synthesis, not being observed a significant increased in the 

serum levels of these cytokines. To confirm this hypothesis, we carried out a 

last study to determine the expression in situ of cytokines in the lung of PRRSV-

infected pigs. 
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PRRSV replicated mainly in PAMs of the lung of infected pigs displaying a 

peak at 7 dpi, just earlier than the peak of viraemia observed at 10 dpi. The 

lungs of infected pigs showed a marked thickening of the alveolar septa due to 

a severe infiltrate of macrophages. The role of PAMs and septal macrophages 

seems to differ a lot in PRRS, since PAMs were the main cells where PRRSV 

replicated and septal macrophages were mainly involved in the synthesis of 

cytokines. 

Although a poor expression of proinflammatory cytokines was observed in 

serum, the expression IL-1α, IL6, and TNFα in the pulmonary parenchyma was 

significantly enhanced, showing a correlation with the degree of lung lesion and 

with the counts of macrophages, what point out to an activation of these cells. 

IL-1α was the cytokine mainly involved in the development of the interstitial 

pneumonia, whereas both IL-1α and TNFα induced an intra-alveolar neutrophils 

infiltrate and their activation. Serum expression of TNFα was correlated, in our 

study, with the serum expression of IL-6. However, no correlation was observed 

between the tissue expression of IL-1α and/or TNFα with respect to the tissue 

expression of IL-6, although the maximum expression of IL-6 temporally 

coincided with a higher expression of IL-1α and/or TNFα. 

The antigen expression of PRRSV was correlated with the expression of 

IFNα antigen. PRRSV antigen was detected until the end of the study, pointing 

to a persistent viral replication which may induce the persistent viraemia 

characteristic of the disease. The persistent viral replication in the lung is also 
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indicative of an insufficient expression of IFNs to induce PRRSV clearance, 

which has been also proposed from the serum expression of IFNs. An 

enhanced expression of IFNγ in the lung of PRRSV-infected pigs has been 

previously documented (Thanawongnuwech et al., 2003). In our study, the 

expression of IFNγ antigen showed a peak at 7 dpi, coinciding with the of 

PRRSV replication in the lung. Therefore, IFNs are not expressed enough to 

induce viral clearance although may mediate a decrease in viral replication, 

which supports the findings shown in vitro by Bautista and Molitor (1999). 

The expression of IFNγ may be induced by many other cytokines, namely 

IL-12, TNFα or IFNα (Nguyen and Benveniste, 2002; Mitchell and Kumar, 2004; 

Tizard, 2008). Both the expression of IL-12 p40 and TNFα, but not IFNα, was 

correlated in our study with the expression of respect to. Thus, IL-12 p40 and 

TNFα represented in our study the main stimulus for the synthesis of IFNγ. A 

previous study reported a correlation between virus specific-IFNα-SCs and virus 

specific-IFNγ-SCs (Royaee et al., 2004). The discrepancy shown with respect to 

our study may be due to the high antigenic and pathogenic differences 

observed between PRRSV genotypes (Halbur et al., 1995; Mateu et al., 2003; 

Stadejek et al., 2006). 

The persistent viral replication observed in our study point to a not enough 

expression of IFNα, IFNγ, IL-12 p40 and TNFα to induce viral clearance. IL-10 

was expressed in the lung of PRRSV-infected pigs showing a peak at 7 dpi, 

which coincided with the peak of viral replication in the lung. These results point 
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to a modulation of the expression of IL-10 by PRRSV, which leads to lower 

levels of IFNα, IFNγ, IL-12 p40 and TNFα (Moore et al., 2001), as it has been 

also proposed above to the serum expression of these cytokines.  
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DDIISSCCUUSSIIÓÓNN  GGEENNEERRAALL  

  

Uno de los puntos más importantes en la investigación en sanidad animal 

consiste en elucidar como el VPRRS modula la respuesta inmune del 

hospedador. En este sentido, diversos estudios han intentado determinar como 

se activa la respuesta inmune del hospedador tras la infección con el VPRRS 

(Yoon et al., 1995; Loemba et al., 1996; Shimizu et al., 1996; Bautista y Molitor, 

1997; Wills et al., 1997; Albina et al., 1998a, 1998b; Kawashima et al., 1999; 

López-Fuertes et al., 1999; Allende et al., 2000; Samsom et al., 2000; 

Lamontagne et al., 2001, 2003; Meier et al., 2003; Xiao et al., 2004; Díaz et al., 

2006), aunque todavía no existen resultados concluyentes. 

La expresión génica y proteica de algunas citoquinas ha sido estudiada 

por varios autores tras la infección o vacunación frente al VPRRS (Albina et al., 

1994; Asai et al., 1999; Van Reeth et al., 1999; Van Reeth and Nauwynck, 

2000; Chung y Chae, 2003; Suradhat y Thanawongnuwech, 2003; 

Thanawongnuwech y Thacker, 2003; Thanawongnuwech et al., 2003; Meier et 

al., 2004; Royaee et al., 2004; Carter y Curiel, 2005; Díaz et al., 2005, 2006). 

No obstante, son escasos los estudios que han intentado relacionar 

directamente la expresión de citoquinas y su papel en la respuesta inmune en 

el PRRS. De este modo, el principal objetivo de esta tesis consistió en 

correlacionar los cambios observados en la concentración sérica de citoquinas 

durante la infección temprana con un aislado de campo del VPRRS con los 
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cambios observados en las subpoblaciones de linfocitos y en la respuesta 

inflamatoria desencadenada durante la respuesta inmune innata. 

Varios estudios se han centrado en determinar la respuesta inmune de 

base celular desarrollada tras la infección con el VPRRS a través de los 

cambios observados en los niveles de IFNγ. En este sentido, algunos autores 

han descrito una correlación entre una bajo regulación de la expresión de IFNγ 

con una sobre expresión de la IL-10  (Díaz et al., 2005, 2006). Sin embargo, 

otros autores no han observado cambios significativos en estas citoquinas 

(López-Fuertes et al., 1999; Sipos et al., 2003). Por otro lado, la respuesta 

inmune de base celular mediada también ha sido estudiada determinando los 

cambios observados en las subpoblaciones de linfocitos tras la infección con el 

VPRRS (Shimizu et al., 1996; Albina et al., 1998b; López-Fuertes et al., 1999; 

Samsom et al., 2000; Lamontagne et al., 2001; Xiao et al., 2004; Díaz et al., 

2006). La elevada variabilidad antigénica y patogénica entre distintas cepas del 

VPRRS es considerada como uno de los principales factores implicados en la 

obtención de resultados contradictorios en diferentes estudios. 

Los cambios en las subpoblaciones de CMSPs a lo largo de la infección 

por el VPRRS han sido descritos por varios autores (Shimizu et al., 1996; 

Albina et al., 1998b; López-Fuertes et al., 1999; Samsom et al., 2000; 

Lamontagne et al., 2001; Xiao et al., 2004; Díaz et al., 2006), por el contrario, 

pocos estudios se han centrado en determinar dichos cambios en los órganos 

linfoides (Kawashima et al., 1999; Lamontagne et al., 2001; Xiao et al., 2004). 
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Los cambios más significativos observados en nuestra infección experimental 

en CMSPs consistieron en un aumento generalizado de linfocitos T  CD4+CD8+ 

y CD4-CD8high junto a un descenso de los linfocitos T CD4-CD8low, indicando un 

marcado desequilibrio entre los linfocitos colaboradores y los linfocitos 

citotóxicos, lo cual también ha sido previamente sugerido para genotipos 

americanos (Lamontagne et al., 2003). Además, se observó un aumento en el 

recuento de linfocitos T CD4-CD8high a los 10 dpi, justo cuando la viremia 

comenzó a descender, sugiriendo un posible papel de la actividad citotóxica de 

estos linfocitos en la eliminación del virus. 

La cinética de las subpoblaciones de linfocitos en los órganos linfoides ha 

sido escasamente estudiada, dando lugar a resultados contradictorios. Así, tras 

la inoculación de diferentes cepas americanas del VPRRS, se ha señalado que 

en los órganos linfoides analizados o bien no se producen cambios en las 

subpoblaciones de linfocitos T CD4+ y CD8+ (Xiao et al., 2004) o bien se 

produce un aumento de los linfocitos T CD4-CD8high (Lamontagne et al., 2003). 

En nuestro estudio, se observó un aumento generalizado de los linfocitos T 

CD4-CD8high T desde los 7 dpi en todos los órganos linfoides estudiados, pero 

no se desencadena una respuesta citotóxica tras la infección por el VPRRS 

(Lohse et al., 2004), por lo que debería estudiarse qué papel desempeñan 

estas células en la patogenia de la enfermedad. 

El VPRRS es incapaz de inducir in vitro la proliferación de linfocitos T CD8 + 

(Shimizu et al., 1996). De este modo, sería necesario algún otro efector 
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inmunitario para inducir el aumento de linfocitos T CD8+ observado en la 

enfermedad. En nuestro estudio la IL-12 p40 y la IL-10 mostraron un 

incremento a los 10 dpi, coincidiendo con un aumento en el recuento de 

linfocitos T CD4-CD8high. Tanto la IL-12 como la IL-10 son citoquinas conocidas 

por estimular la proliferación de linfocitos T CD8+ (Wolf et al., 1994; Moore et 

al., 2001; Pestka et al., 2004) e inhibir la proliferación de linfocitos T CD4+ 

(Moore et al., 2001; Pestka et al., 2004). Por lo tanto, la expresión de ambas 

citoquinas puede estar implicada en los cambios observados en las 

subpoblaciones de linfocitos a lo largo de la infección con el VPRRS. 

El estado antiviral inducido por el IFNα durante la respuesta inmune innata, al 

igual que la neutralización o eliminación del virus a través de anticuerpos 

neutralizantes (ANs) o de células secretoras de IFNγ antígeno específicas 

podrían ser algunos de los mecanismos involucrados en la eliminación del 

VPRRS (Yoon et al., 1995; Bautista y Molitor, 1999; Van Reeth y Nauwynck, 

2000; Biron y Sen, 2001). Sin embargo, la pobre expresión de IFNα observada 

en el PRRS en comparación con otras enfermedades víricas respiratorias 

porcinas (Van Reeth y Nauwynck, 2000), el aislamiento del VPRRS en 

presencia de ANs (Vézina et al., 1996; Wills et al., 1997; Batista et al., 2004), y 

el efecto inhibidor de la IL-10 sobre la expresión de IFNγ (Moore et al., 2001) 

señalan que estos mecanismos no son suficientemente eficientes para inducir 

la eliminación del VPRRS (Murtaugh et al., 2002). 
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La pobre expresión de IFNα junto a la detección de la viremia hasta el final 

de nuestro estudio, confirma una eliminación ineficaz del virus. Asimismo, en 

nuestro caso la IL-10 se expresó cuando se observaron niveles más bajos de 

IFNγ, los cuales aumentaron una vez que la expresión de IL-10 disminuyó, lo 

cual demuestra el papel regulador de la IL-10 sobre la síntesis de IFNγ a lo 

largo de la infección con el VPRRS. 

Aparte del IFNγ, la IL-10 es capaz de inhibir la producción de IL-1, IL-6, 

TNFα, así como otras citoquinas (Moore et al., 2001). De este modo, se 

justificaría la pobre expresión de las tres citoquinas proinflamatorias observada 

en nuestro estudio a nivel sérico, lo que coincide con estudios previos (Van 

Reeth y Nauwynck, 2000; Van Reeth et al., 2002). Además, Van Reeth y 

colaboradores (1999) describieron un aumento en los niveles de IL-1 pero no 

de TNFα en cerdos infectados con un genotipo europeo del VPRRS, mientras 

que en el mismo año, Asai y colaboradores (1999), describieron un aumento en 

la expresión de IL-6 pero no de TNFα en cerdos infectados con un genotipo 

americano del virus. Estas diferencias observadas entre diferentes genotipos 

señalan que el seroperfil de las citoquinas proinflamatorias puede representar 

una herramienta útil para determinar diferencias en la patogenicidad entre 

diferentes aislados del VPRRS. 

Las citoquinas proinflamatorias son los principales mediadores inmunes de 

la RFA induciendo la síntesis de PFA tras un daño tisular (Eckersall, 2000; 

Ceciliani et al., 2002; Petersen et al., 2004; Gruys et al., 2005). Las PFAs son 
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consideradas como biomarcadores útiles para el monitorizaje del bienestar 

animal y para determinar el estatus sanitario de un individuo o granja  

(Eckersall, 2000; Petersen et al., 2004; Gruys et al., 2005). Sin embargo, muy 

pocos estudios se han centrado en la expresión de PFAs en el transcurso del 

PRRS. 

Un aumento en la concentración sérica de la Hp se ha relacionado con un 

incremento en la expresión de IL-6 pero no de TNFα a lo largo de la infección 

con el VPRRS (Asai et al., 1999). Sin embargo, nuestros resultados 

demuestran un aumento en los niveles de Hp correlacionado con la expresión 

sérica de TNFα pero no con los niveles en suero de IL-1β o de IL-6. Además, la 

expresión sérica de TNFα también estaba correlacionada con el título del virus 

y con la expresión de IL-6, aunque los bajos niveles de expresión de TNFα 

observada apoya la teoría de que esta citoquinas es ineficaz en la eliminación 

del VPRRS. 

Las PFAs desarrollaron una cinética diferente en el transcurso de la 

infección con el aislado de campo 2982 del VPRRS. La Hp y la Pig-MAP fueron 

las PFAs que se sintetizaron de manera más temprana tras el leve aumento 

observado en la concentración sérica de las citoquinas proinflamatorias. Tanto 

la Hp como la Pig-MAP estaban aumentadas a los 10 dpi coincidiendo con el 

pico observado en la viremia. Por el contrario, la PCR y la AAS mostraron un 

aumento tardío a los 17 dpi. La expresión tardía de algunas PFAs podría 

deberse a la participación de factores reguladores, que podrían afectar 



DISCUSIÓN GENERAL    

   
182 

igualmente a la síntesis de citoquinas proinflamatorias. El NF-κB es un factor 

de trascripción cuya activación es necesaria para la síntesis de citoquinas. De 

este modo, la inhibición del NF-κB podría ser el responsable de los bajos 

niveles de citoquinas proinflamatorias observados en el PRRS, no obstante, se 

ha demostrado que el VPRRS es capaz de activar el NF-κB (Lee y Kleiboeker, 

2005). Otro mecanismo que podría estar involucrado en la pobre expresión de 

citoquinas proinflamatorias podría ser la síntesis de citoquinas reguladoras, 

como la IL-10 o el factor transformador del crecimiento beta (TGFβ). También 

se ha descrito que el VPRRS es capaz de alterar el proceso de presentación 

antigénica, lo cual puede inducir una bajo regulación de la síntesis de 

citoquinas (Mateu y Díaz, 2008). 

La ausencia de cambios significativos en los niveles séricos de citoquinas 

proinflamatorias durante nuestro estudio contrasta con la observación de una 

respuesta inflamatoria a nivel pulmonar. Esta respuesta inflamatoria local 

estaría relacionada con  mayores niveles de citoquinas detectados en el 

parénquima pulmonar, y la concentración sérica de las citoquinas es 

generalmente baja o indetectable (Baarsch et al., 1995; Conn et al., 1995). 

Estos resultados indicarían que las citoquinas proinflamatorias se expresarían 

de forma paracrina, no observándose un aumento marcado de los niveles 

séricos de dichas citoquinas. Para confirmar esta hipótesis, se llevó a cabo un 

último estudio para determinar la expresión in situ de citoquinas en el pulmón 

de cerdos infectados con el VPRRS. 
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El VPRRS se replicó principalmente en MAPs del pulmón de cerdos 

infectados presentando un pico a los 7 dpi, justo antes del pico de viremia 

observado a los 10 dpi. Los pulmones de los cerdos infectados mostraron un 

marcado engrosamiento de los septos alveolares debido a un intenso infiltrado 

de macrófagos. El papel de los MAPs y de los macrófagos septales en el PRRS 

parece ser muy diferente, ya que mientras que en los MAPs se produce 

principalmente la replicación del virus, en los septales se observa 

principalmente la expresión de citoquinas.  

 Aunque en nuestro estudió se observó una pobre expresión sérica de las 

citoquinas proinflamatorias, la expresión de  IL-1α, IL6, y TNFα en el 

parénquima pulmonar estaba significativamente incrementada, mostrando una  

correlación con el grado de lesión pulmonar y con el recuento de macrófagos, 

considerado como indicativo de activación de estas células. La IL-1α fue la 

citoquina principalmente implicada en el desarrollo de la neumonía intersticial, 

mientras que tanto la IL-1α como el TNFα fueron las responsables del infiltrado 

intra-alveolar de neutrófilos observado y de su activación. La expresión sérica 

de TNFα estaba correlacionada, en nuestro estudio, con la expresión sérica de 

IL-6. Sin embargo, no se observó ninguna correlación entre la expresión tisular 

de IL-1α y/o TNFα con respecto a la expresión de IL-6, aunque la expresión 

máxima de IL-6 coincidió temporalmente con una mayor expresión de IL-1α, 

TNFα o ambos. 
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La expresión del antígeno del VPRRS estaba correlacionada con la 

expresión del antígeno del IFNα. El antígeno del VPRRS se detectó hasta el 

final del estudio, indicando la presencia de una replicación vírica persistente 

que podría inducir la viremia persistente carcterística de la enfermedad. Esta 

replicación vírica persistente en el pulmón es indicativa de una expresión 

insuficiente de IFNs para lograr la eliminación del VPRRS, lo cual ya se había 

observado en la expresión sérica de los IFNs. Un aumento en la expresión de 

IFNγ en el pulmón de cerdos infectados con el VPRRS ha sido descrita 

previamente (Thanawongnuwech et al., 2003). En nuestro estudio, la expresión 

del antígeno del IFNγ mostró un pico a los 7 dpi, coincidiendo con el pico 

observado en el pulmón para la replicación del virus, por lo que aunque se 

producen IFNs, su expresión no sería suficiente como para inducir la 

eliminación del virus, aunque sí que podrían mediar en una disminución de la 

replicación del virus, lo cual apoya los hallazgos previos observados in vitro por 

Bautista y Molitor (1999). 

La expresión de IFNγ se puede inducir por muchas otra citoquinas, como 

IL-12, TNFα o IFNα (Nguyen y Benveniste, 2002; Mitchell y Kumar, 2004; 

Tizard, 2008). Tanto la expresión de IL-12 p40 como la de TNFα, pero no la de 

IFNα, estaban correlacionadas en nuestro estudio con la expresión de IFNγ. 

Así, IL-12 p40 y TNFα representaron el principal estímulo para la síntesis de 

IFNγ. En un estudio previo se describe una correlación entre las células 

secretoras de IFNα y las células secretoras de IFNγ (Royaee et al., 2004). Las 
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diferencias mostradas entre este estudio y el nuestro pueden deberse a la 

elevada variabilidad antigénica y patogénica observada entre distintos 

genotipos del VPRRS (Halbur et al., 1995; Mateu et al., 2003; Stadejek et al., 

2006). 

La replicación vírica persistente observada en nuestro estudio indica una 

expresión insuficiente de IFNα, IFNγ, IL-12 p40 y TNFα para inducir la 

eliminación del virus. La IL-10 se expresó en el pulmón de cerdos infectados 

con el VPRRS mostrando un pico a los 7 dpi, lo que coincidió con el pico de 

replicación del virus observado en el pulmón. Estos resultados señalan una 

modulación de la expresión de la IL-10 por el VPRRS, lo cual conduce a niveles 

más bajos de IFNα, IFNγ, IL-12 p40 y TNFα (Moore et al., 2001), como también 

habíamos propuesto anteriormente para la expresión sérica de estas 

citoquinas.  
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CCOONNCCLLUUSSIIOONNSS  

 

 Porcine Reproductive and Respiratory Syndrome Virus field isolate 2982 

induces an enhancement of interleukin-12 and interleukin-10, which is 

correlated with a peak of CD4-CD8high T cells and with the drop of the 

viraemia.  

 Interleukin-10 serum expression coincides with low serum levels of gamma 

interferon, in spite of the expression of interleukin-12 and alpha interferon, 

therefore this cytokine play an immunomodulatory role inhibiting gamma 

interferon. 

 Porcine Reproductive and Respiratory Syndrome Virus field isolate 2982 

induces a poor serum expression of both acute phase proteins and 

proinflammatory cytokines during the acute phase response to the 

infection, being detected only a mild enhancement of interleukin-1β serum 

levels together with a moderate increase in haptoglobin and Pig-MAP 

serum concentrations. 

 Serum concentration of tumor necrosis factor-alpha is correlated with viral 

load, interleukin-6 and haptoglobin expression in Porcine Reproductive 

and Respiratory Syndrome, thus, this cytokine plays a significant role in 

the modulation of the immune response against Porcine Reproductive and 

Respiratory Syndrome Virus. 
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 Activation of septal macrophages and pulmonary alveolar macrophages 

differs throughout Porcine Reproductive and Respiratory Syndrome Virus 

infection, playing the first ones a main role in the synthesis and release of 

cytokines at the local area of tissue injury, whereas the second ones are 

mainly involved in the viral replication. 

 Proinflammatory cytokines are mainly expressed in the lung parenchyma 

but not in the serum of Porcine Reproductive and Respiratory Syndrome 

Virus-infected pigs, displaying a paracrine synthesis, which displayed mild 

serum levels of these cytokines. 

 Proinflammatory cytokines play a significant role in the pathogenesis of the 

interstitial pneumonia observed during Porcine Reproductive and 

Respiratory Syndrome, being directly correlated their expression with the 

infiltration of the alveolar septa by macrophages. 

 Porcine Reproductive and Respiratory Syndrome Virus seems to modulate 

the immune response by the expression of interleukin-10 by macrophages, 

which may be the responsible of lower levels of other cytokines implied in 

viral clearance, just as alpha interferon, gamma interferon, interleukin-12 

p40 and tumor necrosis factor-alpha. 
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CCOONNCCLLUUSSIIOONNEESS  

 

 El aislado de campo 2982 del virus del Síndrome Reproductivo y 

Respiratorio Porcino induce un aumento de los niveles séricos de 

interleuquina-12 e interleuquina-10, coincidiendo con un pico en el 

recuento de células T CD4-CD8high y con una disminución de la viremia.  

 La expresión sérica de interleuquina-10 coincide con bajos niveles séricos 

de interferón gamma, a pesar de la expresión de interleuquina-12 e 

interferón alfa, por lo que esta citoquina jugaría un papel 

inmunomodulador inhibiendo la síntesis de interferón gamma. 

 El aislado de campo 2982 del virus del Síndrome Reproductivo y 

Respiratorio Porcino induce una pobre expresión sérica tanto de proteínas 

de fase aguda como de las citoquinas proinflamatorias durante la 

respuesta de fase aguda a la infección, siendo detectado únicamente un 

leve aumento de la concentración sérica de interleuquina-1β junto a un 

moderado incremento en los niveles séricos de haptoglobina y Pig-MAP. 

 Los niveles séricos del factor de necrosis tumoral-alfa están 

correlacionados con la viremia, y con la expresión sérica de interleuquina-

6 y haptoglobina en el PRRS, por lo que esta citoquina tiene un importante 

papel en la modulación de la respuesta inmune frente al virus del 

Síndrome Reproductivo y Respiratorio Porcino. 
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 La activación de los macrófagos septales y de los macrófagos alveolares 

difiere a lo largo de la infección con el virus del Síndrome Reproductivo y 

Respiratorio Porcino, desempeñando los primeros un papel fundamental 

en la síntesis y liberación de citoquinas a nivel local en las áreas de daño 

tisular, mientras que los segundos son las células en las que 

principalmente se replica el virus. 

 Las citoquinas proinflamatorias se expresan principalmente a nivel del 

parénquima pulmonar pero no en el suero de cerdos infectados con el 

virus del Síndrome Reproductivo y Respiratorio Porcino, representando 

una síntesis paracrina, que dará lugar a niveles séricos bajos de dichas 

citoquinas. 

 Las citoquinas proinflamatorias desempeñan un papel importante en la 

patogenia de la neumonía interstiticial observada durante Síndrome 

Reproductivo y Respiratorio Porcino, estando su expresión directamente 

correlacionada con el infiltrado de macrófagos observado a nivel de los 

septos alveolares. 

 El virus del Síndrome Reproductivo y Respiratorio Porcino parece modular 

la respuesta inmune a través de la expresión de interleuquina-10 por los 

macrófagos, la cual podría ser la responsable de niveles más bajos de 

otra citoquinas implicadas en la eliminación del virus, como interferón alfa, 

interferón gamma, interleuquina-12 p40 y factor de necrosis tumoral-alfa. 
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FFUUTTUURREE  AASSPPEECCTTSS  

 

Future studies should include different strains from both EU and US 

genotypes, due to the variability observed between genotypes, to try 

deciphering common pathways involved in the establishment of the immune 

response, with the aim to establish a more versatile and efficient control of the 

disease. 

In our studies, both IL-10 and TNFα played a significant role in the 

modulation of the immune response against the PRRSV field isolate 2982. The 

use of tools which allow the blockade of the expression of IL-10 and an 

upregulation in the expression of TNFα, would lead to get new knowledge about 

how these cytokines acts in the immune response evoked against PRRSV.  

Thus, the use of specific antibodies would block the expression of IL-10, and 

therefore avoid the inhibition induced by IL-10 of the expression of several 

cytokines. In this sense, Charentantanakul et al. (2006) observed an 

enhancement in the expression of IFNγ and TNFα in PBMCs inoculated with 

several isolates of PRRSV after a neutralization assay of IL-10, by means a 

specific monoclonal antibody. Nonetheless, nowadays there is lack of a similar 

study in vivo, which may confirm the immunoregulatory effect of IL-10 in the 

expression of other cytokines, after its blockade by means specific antibodies. 

A strategy developed by pathogens to evade the host immune response 

consists on the induction of a regulatory response associated to a suppression 
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of the host effector immune response. This regulatory response may be induced 

either directly by immunomodulatory cytokines produced by cells of the innate 

immune response, as IL-10 or TGF-β, or indirectly by regulatory cells (Belkaid, 

2007). Regulatory T cells (Treg) (CD4+CD25+FOXP3+) are included among 

these cells, and may be classified as natural or induce Treg, if they are 

originated before or after the exposition to the pathogen, respectively (Belkaid, 

2007). Treg are able to interact with dendritic cells form lymph node and inhibit 

the activation of effector T cells, leading to an inhibition of the CMI response 

(Tang et al., 2006). The suppressive activity of Treg may be helped by the 

production of specific cytokines, just as IL-10 and TGF-β (von Boehmer, 2005). 

Some viral diseases, just as the infection by human immunodeficiency virus 

(HIV), an increase in the counts of induced Treg has been reported together 

with a decrease in circulatory natural Treg(Andersson et al., 2005). The role of 

Treg in the pathogenesis of HIV infection has been observed in in vitro studies, 

which showed an enhancement of the specific immune response against this 

virus after blocking CD4+CD25+ T cells in PBMCs (Kinter et al., 2004). 

Moreover, when a in vitro depletion of Treg in the blood stream of patients 

infected by hepatitis C virus was carried out an increase in antigen-specific 

CD8+ T cells (Sugimoto et al., 2003). 

Among the results obtained in this thesis, a lack of changes in CD4+ T cells, 

as well as, a moderate increase in CD8high and CD4+CD8+ T cells, together with 

the expression of IL-10 and IL-12 was observed. The lack of an efficient CMI 
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response against PRRSV might be associated to an increase in Treg subset. 

The increase in the counts of Treg, might be related with the expression of IL-

10, representing therefore one of the main mediators involved in the inhibition of 

an efficient immune response. For these reasons, the study of the role of Treg 

throughout the infection by PRRSV, as well as their relationship with the profile 

of cytokines expressed during the disease represent an interesting field for 

future studies. 

Antisense phosphorotioate oligodeoxynucleotides (AS ODNs), also known 

as RNA interference (RNAi), is able to inhibit protein synthesis by a specific 

inhibition of the gen expression which codifies a determined protein, using two 

different mechanisms, by means the target messenger RNA (mRNA) 

degradation by the ribonuclease Rnase-H and by the blockade of translation 

(Chiang et al., 1991). In this sense, Sidahmed and Wilkie (2007) observed a 

decreased in the genomic and protein expression of both IL-10 and IFNγ when 

a specific AS ODNs corresponding to the AUG initiation codon of both IL-10 and 

IFNγ mRNA. However, these authors did not evaluate the effect of specific AS 

ODNs for IL-10 on the expression of other cytokines. Due to the significant role 

that IL-10 seems to play in the pathogenesis of PRRS, the use of specific AS 

ODNs for this cytokines might represent an useful tool to diminish the 

expression of IL-10 and therefore induce a higher expression of antiviral 

cytokines, just as IFNs. 
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AASSPPEECCTTOOSS  FFUUTTUURROOSS  

 

Debido a la variabilidad existente entre distintos genotipos, sería de interés 

que en futuros estudios se incluyeran diferentes cepas de ambos genotipos, 

europeo y americano, para intentar descifrar mecanismos comunes que 

conduzcan a la instauración de la respuesta inmune, con el objetivo de poder 

establecer un control más amplio y eficaz frente a la enfermedad. 

En nuestros estudios, tanto la IL-10 como el TNFα desempeñaron un papel 

importante en la modulación de la respuesta inmune frente al aislado de campo 

2982 del VPRRS. El empleo de distintas herramientas que permitan bloquear la 

expresión de IL-10 e inducir una sobre expresión del TNFα, permitiría obtener 

nuevos conocimientos sobre cómo estas citoquinas participan en la respuesta 

inmune desencadenada frente al VPRRS. Así, el empleo de anticuerpos 

específicos permitiría bloquear la expresión de IL-10, y de esta forma evitar la 

inhibición en la síntesis de diversas citoquinas inducida por la IL-10. En este 

sentido, Charentantanakul et al. (2006) observaron un aumentó en la expresión 

de IFNγ y de TNFα en CMSPs inoculadas con distintos aislados del VPRRS 

tras la neutralización de la IL-10, utilizando un anticuerpo monoclonal 

específico frente a la IL-10 porcina. No obstante, hoy día no se ha llevado a 

cabo ningún estudio similar in vivo, en el que se confirme el efecto 

inmunomodulador de la IL-10 sobre la expresión de otras citoquinas, tras 

bloquear su expresión mediante anticuerpos específicos. 
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 Una de las estrategias utilizadas por los patógenos para evadir la respuesta 

inmune del hospedador consiste en la inducción de una respuesta reguladora 

asociada con una supresión de la respuesta inmune efectora del hospedador. 

Esta respuesta reguladora se puede inducir directamente a través de citoquinas 

inmunomoduladoras producidas por células de la respuesta inmune innata, 

como la IL-10 o el TGF-β, o indirectamente a través de la generación de células 

reguladoras (Belkaid, 2007). Entre estas células se encuentran los linfocitos T 

reguladores (Treg) (CD4+CD25+FOXP3+), que se pueden clasificar como Treg 

naturales o como Treg inducidos, según se originen antes o después de la 

exposición al patógeno, respectivamente (Belkaid, 2007). Los Treg son 

capaces de interaccionar con las células dendríticas de los nódulos linfáticos 

inhibiendo la activación de células T efectoras por estas últimas, lo que 

conduciría a una inhibición de la respuesta inmune de base celular (Tang et al., 

2006). La acción supresora de los Treg también se puede ver favorecida por la 

producción de determinadas citoquinas, como la IL-10 y el TGF-β (von 

Boehmer, 2005). 

En determinadas enfermedades víricas, como la infección con el virus de la 

inmunodeficiencia humana (VIH), se ha descrito un incremento en el número de 

Treg inducidos en tejidos linfoides junto a una disminución de Treg naturales en 

circulación (Andersson et al., 2005). El papel de los Treg en la patogenia de la 

infección con el VIH se ha puesto de manifiesto en estudios in vitro, en los que 

se observó un aumento de la respuesta inmune específica frente al virus al 
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inhibir los linfocitos T CD4+CD25+ en leucocitos de sangre periférica (Kinter et 

al., 2004). Asimismo, al inducir in vitro una depleción en el número de Treg  en 

células sanguíneas de individuos infectados con el virus de la hepatitis C se 

observó un aumento de células T CD8+ antígeno-específicas (Sugimoto et al., 

2003). 

Entre los resultados obtenidos de esta tesis se ha observado una ausencia 

de cambios en linfocitos T CD4+, así como un ligero incremento de los linfocitos 

T CD8high y CD4+CD8+, junto con un aumento de la expresión de interleuquina 

(IL-10) e interleuquina (IL-12). La ausencia de una respuesta inmune de base 

celular eficaz frente al VPRRS, podría estar asociada con un aumento de las 

poblaciones de Tregs. El incremento en el número de Tregs, podría estar a su 

vez relacionado con la expresión de IL-10, siendo así esta interleuquina uno de 

los principales mediadores involucrados en la inhibición de una respuesta 

inmune eficaz. Por ello, el estudio del papel de los Treg en la infección con el 

VPRRS, así como su relación con el perfil de citoquinas observado en la 

enfermedad representa un área de interés a tener en cuenta en futuros 

estudios. 

El fosforotioato de oligodesoxinucleótidos antisentido (AS ODNs), también 

llamado ARN de interferencia (RNAi), es capaz de inducir la inhibición de la 

síntesis de una proteína inhibiendo de forma específica la expresión del gen 

correspondiente que la codifica, mediante dos mecanismos, la degradación del 

ARN mesanjero (ARNm) diana por la ribonucleasa H-Rnasa y mediante el 
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bloqueo de la translación (Chiang et al., 1991). En este sentido, Sidahmed y 

Wilkie (2007) observaron que al utlizar AS ODNs correspondientes al codón de 

inciación AUG tanto del ARNm de la IL-10 como del IFNγ se produjo una 

disminución en la expresión tanto del ARNm como de la proteína de ambas 

citoquinas, respectivamente. Sin embargo, estos autores no estudiaron el 

impacto de AS ODNs específicos para la IL-10 sobre la expresión de otras 

citoquinas. Teniendo en cuenta el importante papel que parece jugar la IL-10 

en la patogenia del PRRS, el empleo de AS ODNs específicos frente a esta 

citoquina podría representar una herramienta útil para conseguir disminuir la 

expresión de la IL-10 y de esta forma conseguir una mayor expresión de 

determinadas citoquinas antivirales, como pueden ser los IFNs. 
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