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ABSTRACT 

Methods for Identifying Cancellous Bone Specimen Location and Size for 

the Reduced Platen Compression Test. (April 14, 2000) 

Kyle Ray Cowen 
Department of Mechanical Engineering 

Texas ARM University 

Fellows Advisor: Dr. Harry Hogan 
Department of Mechanical Engineering 

The skeleton functions as a vital part of our everyday cxistcnce and acts as a 

framework for the body to provide movement, resist the forces of gravity, and protect 

vital organs. Skeletal rcscarch studies the effect of disease, lifestyle, and stimuli on thc 

skeleton and its ability to perform these everyday functions. The current state of hone 

testing is focused on understanding the mechanical properties of bone through use of 

traditional mechanical testing procedures such as three point bendmg, torsion, and 

compression testing. The traditional method of compression testing involves 

compressing a bone specimen between two parallel platens to failure or until a desired 

displacement is obtained. This method is useful for studying the properties of the entire 

bone sample. Bone can be catagorized into two major types: cortical bone and cancellous 

bone. Current compression testing techniques do not allow the properties of cancellous 

bone to be determined. The Reduced Platen Compression Test attempts to improve the 

traditional compression test to allow cancellous bone to be tested while the outer cortical 

shell remains on the specimen by using smaller diameter platens to compress only the 

inner cancellous area of the specimen. The RPC is relatively new and several questions 



sttll remam as to the correct method for identifying the location and size of the test 

specimen. Rat femurs used in preliminary RPC Testutg were analyzed to determine the 

best method for locating and siztng the test specimen. X-rays of approximately 120 rat 

femurs were studied to see if a standard location and size could be defined for the RPC 

(est specimen. The results indicate that the rat femur develops too inconststently for a 

standard length or percentage of the overall length to be used to define the location. The 

best method for locating the specimen is to identify the location of the dtstal end of the 

epiphyseal growth plate and take the specimen lust below that location. Thc results also 

mdicate that the best method for deftning thc specimen thickness is to average the largest 

and smallest overall bone lengths in the test group and use a reference thickness of 2 

millimeters as a percentage of this average!ength. This percentage of the overall average 

length then defines the specimen thickness for each indivtdual hone. 
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(:HAPTRR I. 
BA(:K(' ROUNIJ 

J. I ilfotivation for Jrfechanieal Testing of Borate 

Bone is the foundation and structural support of the skeletal system. It is an internal 

framework that provides strength and aides the body in supporting i!sell against the 

forces of gravity and producing limb movement. The ability of the skeletal system to 

perform ihes- functions is integral in our everyday lives. Understanding how age, 

disease, and lifeslyles affect the skeletal system, scientists and doctors can developed 

better treatments and cures for debilitating diseases such as osteoporosis and predict lhe 

effects of long term exposure to nicotme, alcohol, and other environmental conditions, 

Mechanical testing of bones is widely used to explore how the skeleton rc:acts to disease 

anti "harg s!n lilest&le. The most widely used vehicle to explore the effects of diseases 

such as osteoporosis and their possible treatments is through compositional and structural 

studies on bone tissue (Ruhmann, 1998). Traditional mechanical testing has long been 

used as the method for determimng the mechanical properties of bone tissue. Initially, 

the focus of many of these studies was to simply understand the mechanisms by which 

bone fractured and the loads at which this occurred. As early as 1884, the scientist Julius 

Wolff tested the mechanical strength of bone in an attempt to understand these 

mechanisms (Engesaeter et al. , 1978). In recent years, the mechanical properties of bone 

have been examined through a variety of testing procedures such as torsion, tension, 

compression, and three point bending. 

This thesis follows the style of the Journal of Biontechanics 



1. 2. 'i!!iucmre ofBmie 

The first major step towards understanding and describing thc structure and functions 

of bone came with the invention of the compound microscope in the l7" century (Martin 

and Burr. 1989i. With the microscope, scientists were able to make observations of an 

extensive canal system running longitudinally and transversely through the structure of 

bone. With these observations came the understanding that bone is actually a porous 

structure and porosity varies depending upon anatomical location (Martin and Burr, 

l989), In recent years, research stemming from these foundational observations have 

continued the journey towards understanding the complete morphology and functions of 

bone. 

ln general, bone can he inriugh af as a coinpositc ma(crial containing primarily 

co!lagen fibers and a rigid crysialiine matrix (Ruhnrann, 1998). The exact composition cf 

bone varies depending on the age and sex of the animal, the specific location within ihe 

skeleton, and the area within the mdi vidual hone in question. Bone structure in mammals 

can be categorized into two basic types: cancellous (trabecular or spongy) bone and 

cortical l'compact) bone. Cortical bone is highly organized in structure, and is found in 

highest concentration in the mid-shaft (diaphyseal) region of long bones like the tibia and 

femur. Cancellous bone is highly porous with as much as a fifty percent pore volume and 

more randomly organized when compared to cortical bone. In long bones, it is primarily 

located in the ends of the bone (metaphyseal region) and along the lining of the marrow 

cavity in the diaphyseal region (Cowin, 1989; Parks and Lakes, 1992). Cancellous bone 

is also found in large concentrations in the vertebral bodies where it is surrounded by a 

thin cortical wall. Cancellous bone structure consists of three dimensional branches or 

bony trabeculae interspersed by bone marrow. It is important to note the high porosity of 



rance!ious bone compared to cortical bone tn rcfcrcnce to the rate of growth of thc 

different tissues. Cancellous bone is reproduced at a higher rate and more often than 

cortica! bone due to the large surface area associated with canccllous ttssuc. 
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Figure l. l Rat tibia and femur. The mid-shaft (or thaphysis) region is composed largely 

of cortical bone. The ends of the bone are composed of a cortical shell enclosing a 

cancellous interior. 



I. 3 Function ref Bone 

The funct'ion ol hone tissue can be divided into lour main areas: protection of vital 

structiircs, hcmatopoiesis, mineral homeostasis, and structural support (Ruhmann, l998). 

The protection ol vital ol vital structures is one o( the more obvious functions of bone 

Bone serving in this role is most readily found in the rib cage, the skull, and the vertebral 

column. Grossly, this type of bone is constructed of two cortical layers seperated by a 

region of canceilous bone (Martin and Burr, l989). This construction allows the bone tc 

be both hard and resistive to damage through the cortical layers, and energy absorbent 

through the interio cancellous layer (Maitin and Burr, 1989). 

Hematopoiesis, a metabolic function, i' a less obvious role as compared to the more. 

strucniral functiors. Eieinat&ipoiesis uivo!ves the pri:duction of red bloiad cells and is 

important in the long terin control and balance of the body'» calcium supply (Ruhmanri, 

' 998). 

Another function of bone is mineral homeostasis which is the supply of calcium 

needed for nerve conduction, muscle contraction, blood clot formation, and cell secretion 

(Cowin, 1989). Bone contains 99% ol the body's total calcium and phosphorous supply 

and thus is the major repository for these minerals (Martin and Burr, 1989). 

The function of bone as a load bearing structure is by far the most widely studied role 

of bone (Martin and Burr, 1989). In this capacity, bone serves as a mechanical support 

against the forces of gravity, and as a rigid lever system operated by muscles to perform 

locomotion or even the simple action of using your hands to turn a page. 



l. 4 Vse of Raxs in Mechanical 1'esting of Bones 

The rat has been widely accept d for years as a model for skeletal research. The 

anatomy of the rat closely resembles that of a human, and reacts comparably to various 

diseases and stimuli. Rats are relatively inexpensive for research when compared to 

larger animals, and their lifestyles can be easily manipulated and controlled for specific 

studies. The small sire of the rat anatomy is a challenging problem that is encountered, 

though, when iising rats in biological research. 

t. 5 Carrent State ofMeehanieal Testing of Caneellous Bone 

Ivlethods for evaluating the strength nf cancellous bone have been limited to 

~ oinnressmn testuig of vertebrae or a more complicated method in ivriich a compressive 

!oad is applied to the i'etnotal h:ad causing betiding in the leinoral neck (Hou et al. , 

1990). !ii either case, these methods generally test specimens containing the exterior 

cortical she! l and therefore do not give a true measure of cancelious bone strength. One 

notable exception to this is a stud& by Demetropouios et al. , (1993) in which isolated 

cancellous bone samples were cored from vertebrae and tested in compression. However, 

useful or conclusive results were not presented in this article, so there is still a need for a 

more comprehensive investigation into methods for testing cancellous bone of the rat 

(Ruhmann, 1998). The necessity lies in the fact that the structural properties of 

cancellous bone vary for different anatomical regions (Turner and Burr, 1993). As 

previously stated, current methods for testing the compressive strength of cancellous 

bone involves testing slice or whole specimens usually with the exterior cortical shell 

intact. For the majority of tests using this technique, the objecnve was to draw some 

conclusion on the mechanical properties of cancellous bone. However, because the 



spec!mens 'ont!un the extern!' cort!cal shell, the !esults are not a true rel)ection of 

canccllous bone strength, but more so, reveal the compos!tc strength of cortical and 

cancel!ous hone. The actual testing follows that of traditional compression testmg with 

the exception that specimens are kept moist with Ringer's solut! on!o ma!nta!n a hydrated 

condition. Hydration helps mamta!n the bone's in vivo properties (Turner and Burr, 

1993). The pmcedure for compression testing mvolves placing a specimen between two 

fiat surl'aced load!ng platcns and applying a umaxial compressive load to the specimen 

until fa!lure or a desired displacement has been reached. The main drawback with this 

method of testing is that for the majority of specimens, machining is necessary to produce 

piano-parallel ends necessary lor loading. Machining of the specimens may cause 

boundary' errors and also produce loading t'aces that ar. not pcrfcc!Iy plar!o-parallel vvhich 

can cau;e some erro: during!rest)ng (Ruh!nanri, ll!98). 

1. 6 Harrdh'rrgand Tesrirrg . lf SPecimerrs 

For most mechanical testing of materials, it is important to use specimens that reflect, 

or closely parallel, the true or working properties of the material. Thus, specimens 

should not be handled because oils could be passed from the hands of the experimenter to 

the specimen which could alter the mechanical properties. In general, for mechanical 

testing of materials, it is important to use specimens that have not been damaged with 

notches, chips, or other such conditions which could alter the mechanical properties. 

When testing bone specimens, it is important through the time of removal through 

mechanical testing, to keep the bone as similar to its in vivo conditions as possible. Thus, 

specimen preservation, hydration, and temperature become important (Turner and Burr, 

1993). The most commonly used method for preservation prior to testing is to wrap the 



specimen in gauze wetted with Ringers solution and freeze ii al. -20'C (Turner and Burr, 

1993). While the specimen is "in hmbo" between removal and freezmg, or freezing and 

testing, it is important to keep the bove moist with Ringers solution. This is important 

because as the hone drtcs. the inechanical properties change. Considertng temperature, as 

with most biological materials, bone's mechanical properties are influenced by the 

surroundmg temperatures (Ruhmann, 1998). Thus, mechanical testing should ideally be 

performed at 37'C (Turner and Burr, 1993) However, this temperature level is often 

difficuh to attain m most material testing facilitics without complex modification of the 

testing set up, so a standard testing temperature of 23'C (or room temperature) is 

acceptaole 

I. 7 Re laced Ptan a Can!press i@:i Tert 

l. 7a RPC I est Idea 

'fhe difficulties associated v, ith separating cancellous bone tissue from the 

surrounding cortical wall have recently led researchers at Texas A&M to develop a 

version of the traditional compression test that attempts to isolate the properties of the 

inner cancellous bone material while still surrounded by the cortical shell. The Reduced 

Platen Compression Test, RPC Test, as it is called is designed to load only the inner 

cancellous tissue in compression. This is accomplished by using platens which are 

smaller in diameter than the cortical wall to load the specimen. 



(A 

Figure 1. 2 Compression Testing: (A) traditional compression testing, (B) Reduced 

Piaten Compression Test method 

L7h Bone Keno)val ansi Preservation 

The femut and tibia from both hind legs of the rats in the test groups were 

collected at necropsy. The bones were carefully cleaned r&i adhering soft t&ssue, wrapped 

separately in gauze wetted with Ringer's solution, sealed m plastic bags, and frozen at 

20'C. It should be noted that such freezing and preservation techniques have been shown 

to have minimal effect on the mechanical properties of bone (Pelker, 1984). 

L 7c Measurement of Bone Length, Thickness, and Diameters 

L 7c. I Digital Micrometer Method 

The maximum length of the femur and tibia were measured in millimeters to the 

second decimal place using a digital micrometer. For the femur, length was measured as 

the distance between the top of the trochanter and the ridge between the end of the 



medial-lateral conilyle. For the tibia, length was n:easured as the distance between the 

(op of the medial-laicrai condyle and thc end of the medial-lateral malleolus. 

The outer diameters in the diaphysis region of the iibia and femur were also 

measured in millimctcis to the second decimal place using a digital micrometer. 

Measurements were taken in anterior-posterior and medial-lateral directions. 

J. ". i. . Z Contact Radiograph Method 

Two sets of contact radiographs were taken of (he whole bones. The l'irst set was 

taken with (hc bones oriented so tha( their posterior aspect. was facing down. The second 

set xas taken with the bones oriented so that their lateral aspect was facing dowii. X-rays 

werc t&iken on Kodak X-Om u TL Fiim t'Fas(man kodak Comps:iy, Ri chester, VY ) using 

a (Seneia! Elec(tii: Induitrial Radiograph Machine (Lexineion, Mt. ) set!o 25 kV and I 

mA. The focal film dis(ance (FFD) was set at 30 inches and the exposure ', ime was 85 

seconds. The developed x-rays were then scanned imo a PC for image analysis using 

SigmaScan/Image Software (AISN Software Inc. , Jandel Scientific Software, San Rafael, 

CA). For the femurs, the to(al length and the midpoint along the long axis of the bone 

were determined. Once the midpoint was determined, a method developed by Warren et 

al, , (unpublished) was used to determine the internal and external diameters for each 

radiograph. Using this method, a line was drawn one pixel wide through the bone 

midpoint perpendicular to the diaphyseal long axis. The plot of pixel intensity along this 

line has two distinct peaks associated with the edges of the marrow cavity. The distance 

between these two peaks was taken as the marrow cavity diameter (internal 

diameter)(Warren et al. , unpublished). For the external diameter, the diameter was taken 

as the distance between the two pixels in the pixel intensity plot where the pixel 



:ntensit&es fust exceed the mean background thresh&&ld (Warren et al. , unpublished). This 

was done for both the anterior-p&sstcnor and rned&al-lateral radiographs for each bone. 

Figure I. 3 Dimensions for fentur and tibia measured using StgmaScanilrnage Software 

1. 7d RPC Specimen Extraction 

Slice specimens were taken from the proximal tibia and femurs. The desird 

location of each specimen was determined from the developed x-rays using 

SigmaScan/Image Software by visually identifying a section 2 mm long lying below the 

epiphyseal growth plate and containing a maximum amount of cancellous bone material. 

In an attempt to standardize the locations, the total length of each bone was measured, 

and the length from the distal end of the bone to the distal extent of the specimen target 

region was measured as well. The ratio of these two lengths was calculated for each 



specimen and averaged io obtain a final value. This average value was then used to 

loca', e eacn specimen (Ruhmann, Hogan and Sampson, l997). Specimens viere cut 

jserpend'. cular to the !ong axis of the bone to a length of two millimeters using a lovi 

spec I diamond blade wafering saw (Buehler I. TD, I. ake Blull, IL) under constant 

imgation with Ringers solution. Additional x-rays were then taken of each slice to give 

unages of the cross-sections from which geometric and 'irea calculations werc made. The 

slice x-rays were taken on Kodak X-Omat TL. Film using a General Electric Industrial 

Rad:ograph Machine set to 20 kV and I mA. The focal film distance (FFD) was set ai 30 

inches. In order to determine the optimal exposure time, a series of x-rays v ith exposure 

times ral!ging froiri 20 to 85 seconds with a . ", second increment werc taken. From this 

set, ex;iosure times of 55 arid 30 seconds wein chosen as the optin;al exposure lengths. 

i . 7i Co»inression Testing 

Each of ihe slice specimens was tested in quasi-static compression on a 

MTS model It 312. 31S servo-hydraulic testing machine (Minneapolis, MN) with a 

displacement rate of 0. 51 mm/min. Specimens were loaded through two axially aligned, 

cylindtdcal, piano-parallel platens which contacted only the central cancellous region of 

the bone (Ruhmann, Hogan and Sampson. 1997). A platen diameter of 3 mm was chosen 

to provide a loaded area well within the endocortical perimeter of all specimens. 
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CHAPTER II 
DATA ANALYSIS AND RESULTS 

2. 1 Moth n(km 

Tiie advent of the RPC Test method for analysis ol cancellous bone properties in 

rats may lead to significant findings m skeletal research. However, the method is nev' 

and some questions still exist as to the hesi. meihod for conducting thc test. Results 

presented i'rom earlier research using this test rrethod oniained a high degree of 

vanahility in the resulis (Ruhmann, 1998). Standard deviations of up to sixty percent of 

t«e mean were common. 

. 2 ' )irisctivL 

i hc objective of this research is to attempt io develop test standards lnr!he RPC 

Test and to try to reduce or identify causes of variability in the results by implementing 

these test standards. 

2. 3 AnlPlBIS 

Rats from two previous study groups will be used throughout this research to 

gather and analyze data for the RPC Test. Group I consists of femurs extracted from 69 

virgin female Spraque-Dawley rats used to study the effects of osteoporosis on cancellous 

bone properties. The RPC Test was used on Group I for comparison with the traditional 

method of compression testing. The data gathered from Group l will be used to analyze 

the test methods used in the RPC Test for consistency and possible sources of error. This 

information will then be used to develop better RPC Test methods. Group 2 consists of 

femurs extracted from 60 rats used in an alcohol/OVX study. Data gathered fmm the 
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bone and SigmaScan/Image measurements ol Group 2 will be used to rel'me ihe 

recommended test procedures devclopcd from Group 1. These new test procedures will 

lre implemented as the RPC Test is used on the lemurs in Group 2. 

2. 4 Lor ation of the RPC Test Specimen 

The first ohlectvvie of this study was to develop a method for conststently 

i& efltrfyiirg the locatron of the RPt: 'lest specimen within the femur. In previous tests, 

SigmaScan/Image was used to measure thc distance from the distal end of the femur to 

the drstal extent of the epiphyseal growth plate. The distance was averaged for the entire 

tesi g-oup, and this average was used to locate hoiv far from the distal end of the femur 

the RPC specimen would bc taken. I'«e dare arid Sigr taScan images taken from Group l 

arid C!roup 2 were used to dcternine rf th!s methcd is valio, or if a better method should 

be developed. 

RPC specimen 
target region 

Figure 2. 1 Location, S, of the RPC Test Specimen and target region location for 
maximum cancellous bone density. 



'I'able '. 1 Overall femur lengths and distances i'rom the distal end io the 

distal extent of the epiphyscal growth plate for Group 1 

Femur l. ength Distance to Growth Plate 
(mm) 

1 A — Av g. 

STD 
%COV 
2A — Avg. 
STD 
PoCOV 

3A — Avg. 
STD 
%COV 

1P — Avg. 
STD 
%CQV 
2P — Avg. 

STD 
oro( OV 

3P - Avg. 
STD 
%COV 
1C - Avg. 

STD 
%COV 
3C — Avg. 

STD 
%COV 
ADLB- 
Avg. 
STD 
%COY 

36 83 

0. 97 
Z. 63 

37. 49 
1. 31 
3. 49 
37. 56 
0. 70 
l. 87 

37. 35 
1. 28 
3. 42 
37. 38 
1. 11 

Z. 96 
'37. 56 
0. 68 
1. 81 

37. 56 
0. 92 
2. 44 

38. 09 
1. 10 
2. 90 
37. 52 

1. 26 
3. 36 

4. 60 
0. 69 
15. 03 
5. 17 
0. 31 
6. 07 

4. 88 
0. 29 
6. 03 
4. 68 
0. 26 
5. 58 

4. 60 
O. Z& 

5. 22 

498 
0. 63 
12. 70 
4, 62 
0. 16 
3. 46 
5. 13 
0. 75 
14. 55 

4. 91 

0. 23 
4. 66 

STD- Standard Deviation 
% COV — Standard deviation as a percentage of the mean 

Table 2. 1 Shows the average femur lengths for the individual test sets in Groupl 

and the distances from the distal end of the femur to the distal extent of the epiphyseal 

growth plate. These results seem to indicate that the distance from the distal end of the 



femur to the distal extent of the cpiphyscal growth plate vary between indivithial test sets 

to 8 large enough extent that a single average distance for all specimens is incorrect. 

One hypothesis for a better method of dctcrmining thc location of thc RPC Test 

specimen v, as to use a standard percentage of the overall femur length to define the 

distance from the distal end of thc femur that the RPC specimen would be located. 

Image. - of the iat femurs from SigmaScan were used to determine the location of the 

growti! plate in each femiir. These distances were then converted to a percentage of the 

overall femur length. 

i 2. 20 
ix 12 00 
I 1180 
0 11. 60 

11 40 
11 2C' 

o 
1 i. 00 
10 80 

e i060 
A sham P sham C sham A ovx 

Group 2 

8 
P ovx C ovx 

Figure 2. 2 RPC specimen location as a percentage of the overall length of the rat femur 



14. 10 
o 13. 60 

13 10 
12. 60 
12. 10 
11. 60 
11. 10 
I 0. 60 

1A 2A BA 1P 2P 3P 1C 3C ADLB 

Group 1 

F gure 2. '1 Average specimen location as a percentage, ol the overall length. 

Ftgures 2. 2 and?. 3 show the average ltPt' specimen iocations as a percentage of 

the overall length. Tltese . esults show that the anatomical ditncnstons ot the rat fetnurs 

arc toc hlconststern between individua! '. est sets to defi:te a standard percentage of tite 

length as the location of the RFC Test specimen. For the compression test to be accut'ate, 

the:est spectmen must not contain any po~tion of the epiphyseal growth plate. The 

growth plate is much more dense than the cancellous bone and would therefore give 

invalid results. Therefore, care must be taken to avoid locating the test specimen to close 

to the distal end of the femur. However, the most dense regions of cancellous bone 

material are located just below the epiphyseal growth plate. Often these areas are very 

small. There, fore, the specimen location cannot be too far beyond the growth plate, or an 

insufficient amount of cancellous bone material will be in the specimen. A conservative 

value for the percentage could be used to ensure that the growth plate is always missed, 

but then one cannot guarantee a sufficient amount of cancellous bone material will be left 

in the specimen. 
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2. S . Si. e tff' tfie RPC Test . Specimen 

The second objective of this study was to determine a standard for sizing the RPC 

Test sp~ ciiren. In previous tests, a 2 mm thickness was arbitrarily chosen as the size of 

the Rl'C Test specimen. This method periodically resulted in specimens with voids in the 

center where no canccllous bone was present. Again, the SigmaScan images for Groups 

I ard 2 vvere evaluated to identify the ideal test spec~men size. , and a possible method for 

standardizii, g this size. 

3 00 
E 
u 200 
oi 1. 00 

0. 00 
A sham P sham C sham A ovx P ovx C ovx 

Group 2 

Figure 2. 4 Average ideal specimen length from SigmaScan 

Figure 2. 4 shows the ideal locations for the RPC Test specimens in Group 2. The 

ideal lengths were determined by identifying the location where the epiphyseal growth 

plate ended, and measuring the thickness of the portion below the growth plate that 

contained dense cancellous bone material. This method is admittedly subjective and 

completely dependent upon the quality of the contact radiographs. 



A hypothesis I'or standardtzing tbe size of thc RPC specimen was to define the 

ideal thickness as a percentage of the overall length. F&gure 2. 5 shows the results from 

the data gathered from Group 2. 
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Figure ', 5 Ideal specimen size ss a percentage of the overall length 

Agam, the data seems to suggest that a single standard percentage, of the overall 

length would not be acceptable in definmg the size of the RPC Test specimen. 

A second hypothesis for defining the s&ze of the RPC specimen was also studied. 

The average overall femur lengths for each test set in Group 2 were measured using 

SigmaScan. A 2 mm length was then calculated as a percentage of the largest and 

smallest average femur lengths. These two average percentages were then averaged to 

give one percentage of the overall length. This percentage was then used to define the 

thickness of each RPC Test specimen. The percentage of the overall length used to 

define the specimen thickness would be calculated for each different test set. A standard 

percentage for all RPC Test specimens would not be used. The results indicate that the 
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ihicknesses resulting from this method closely parallel the ideal thicknesses found l'rom 

analysts of the SigrnaScan images. 
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CHAPTER III. 
CONCLUSIONS AND RECO1VIMENDATIONS 

3. ' t onclurionsP~r the RPC 22 st Specimen 1 ocotion 

The conclusion ohiained from analysis of thc results gathered from Groups l and 

2 suggest that usc of a standard percentage of the overall length to define the location of 

the distal end ol' ihe RPC Test specimen is not possible. A conservative percentage could 

be used to ensure ihat ihe loc:iuon of the distal end would be below the distal extent of 

the cpiphyseal growth plate; however, in many specimens, sufficient cancellous bone 

material would not be present because the RPC specimen location would be too far below 

the area ol' dense cancellous bone. The best method for locating the test specimen is to 

ide:itify rhe di, . uince i:t':hc distal:nd of thc growth plat from the distal end of the lemur 

u ng SigrnaScan Thii analysis must be dore on an individual hone basis. This method 

is tedious and time c&. nsuming, but it is the only ivay to ensure that the specinien will be 

located below the growth plate and coiitain sufficienl cancellous matenal. 

3. 2 Conclus'. ons for the RPC Test Specimen Thickness 

The data gathered from analysis of Groups I and 2 suggest that a standard 2 mm 

thick specimen is not a good standard. The SigmaScan images show that there is not 

ahvays 2 mm of cancellous material present. The method determined for sizing the test 

specimens is to a percentage of the overall length for each individual test set. This 

percentage is found by taking the longest and shortest overall femur lengths and defining 

2 mm as a percentage of each length. These two percentages are then averaged to give 

one percentage of the overall length that is used to define the thickness of each individual 

test specimen. 



3. 3 Recuinnicvidnnons 

Other areas of the RPC Test should be, . nalyzcd to determine conect procedures. 

One specific area that attention should be given to is the sizing of the platens used to load 

the specimens in compression. Care must be taken to accurately size each platen. If the 

platen is !oo large, tlie edge of the platen will he too close to the inner diameter of the 

cortic ! wall This;vill cause shearing of the cancellous hone along the cortical wall. 

Also, if the platen diameter is too small, thc effective loading area will be too small, and 

loading wiii be much mire like an indention test than a compression test. Furthermore, 

piaten shape should be tested to determine if a shape other than circular is ideal for 

ioading itic cancellous to ca. 

One I'inal area ihat needs !o he !mpri ved is the consistency of quality of the 

cotitac'. radiographs. Much of the identification and sizing of the RPC Test specimens is 

depe:ident upon analysis ot the scanned x ray images. Iml roper exposure time or quality 

of the x-tays inhibits the researcher from accurately identifying the location of the 

cpiphyseal growth plate and area of dense cancellous bone material. 
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