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Abstract 

A multiblock numerical method has been employed for the calculation of three- 

dimensional flow and heat transfer in the leading edge of a large-scale impingiment- 

cooled turbine airfoil. The finite-analytic method solves the Reynolds-Averaged 

Naviers-Stokes equations and the energy equation in conjunction with a two-layer 

k-e isotropic eddy viscosity model and a near-wall Reynolds-Stress closure model. 

The fundamental cases of fully developed turbulent pipe flow and an axisymmetric 

jet impinging on a flat plate are also computed and compared with experimental 

data to asses the two turbulence models. Comparison of the two-layer model and the 

Reynolds-Stress model calculations clearly shows the anisotropic behavior of turbu- 

lence resulting from impingiment. The predicted flow fleld showed flow separation 

and recirculation after impingiment on the leading edge region. The predicted local 

heat transfer distribution on the leading edge of the turbine blade shows a maximum 

near the stagnation region with a gradual decrease in Nusselt number in the spanwise 

direction. 
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Nomenclature 

cs speciflc heat 

D diameter 

e;lq third rank permutation tensor 

g'i metric tensor 

h convective heat trasnfer coefficient 

J j acobian 

K thermal conductivity 

k turbulent kinetic energy 

l turbulent length scale 
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p pressure 

Pr Prandtl number 

q heat flux 

R*' Reynolds Stress Tensor, R'y = u'u& 

ReD Reynolds number, Ren — — pUD/p 

U' 

temperature 
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Greek Symbols 

0 rotational speed 

e dissipation rate of turbulence 

p, dynamic viscosity 

v kinematic viscosity 

v, eddy viscosity 

p density 

(* contravariant coordinate component 

Subscripts 

i, j, k, . . . covariant components 

covariant derivative with respect to (' 

Superscripts 

i, j, k, . . . contravariant components 

ensemble average 

fluctuating component 

in 'wall coordinates' 

dimensionless 



Chapter 1 

Introduction 

1. 1 Gas Turbine Blade Cooling 

Turbine inlet temperatures over the next few years will approach 1650'C (3000'F) 

at maximum power for the largest commercial turbofan engines, resulting in high 

fuel efficiency and thrust levels approaching 445 kN (1, 000 lbs). High reliability and 

durability must be designed into these turbine engines to meet operating economic 

targets and certification requirements. This level of performance has been brought 

about by a combination of advances in air cooling for turbine blades and vanes, and 

the development of single crystal and directionally solidified casting processes. 

The evolution of the gss turbine engine has continually required the combined 

advances of several engineering fields. The most important of these fields has been, 

and continues to be heat transfer. Heat transfer considerations play an important role 

with respect to various components in the engine. Accurate heat trasnfer analyses are 

required to predict component dimensions and relative positioning under the infiuence 

of thermal stresses superimposed on top of centrifugal stresses. These predictions 



must be carried out over a variety of operating conditions, both transient and steady 

state. 

The use of various cooling schemes in gas turbine airfoils has been investigated 

to ascertain more effective ways of providing cooling. A typical airfoil may utilize 

both jet impingement cooling and film cooling in the leading edge region, while the 

midchord and trailing edge regions may be convection cooled with augmentation via 

roughness elements and pin flns. All these cooling schemes are forms of convective 

heat trasnfer which involve turbulent, three-dimensional flows in highly complex ge- 

ometries. Figure 1. 1 shows the typical cooling schemes in an advanced gas turbine 

airfoil. 

! z 

Figure 1. 1: Internal and external cooling in a typical gas turbine blade 

The airfoil leading edge region, as shown in Figure 1. 1, involves jet impingement 

and film cooling. Heat transfer in such a geometry is necessarily dependent upon the 



interacting effects of many variables. The parameters which may affect the flow aud 

heat transfer are many. These include: 

s Prandtl number 

~ Reynolds number based on jet diameter 

~ Radius of curvature of the the leading edge 

~ Spacing of the leading edge from jet nozzle 

~ Film cooling hole distribution 

~ Film cooling hole angle 

In addition to all of these parameters is the difliculty of dealing with an airfoil 

which is typically rotating at about 9000 rpm. 

The possible effects of these parameters just mentioned are compounded by their 

interaction. The beneficial effect of a given jet size and distribution may be offset 

by the leading edge sharpness or the film cooling hole angle and locations. Certain 

parameters may be limited in range due to other design considerations. For example; 

the leading edge sharpness may be dictated by the external aerodynamic design of 

the airfoil. 

The prediction of airfoil surface temperature, heat transfer convective coefficients, 

and three dimensional turbulent flow is necessary in order to improve the cooling 

schemes in gas turbine airfoils. Five years ago, experimental methods were the only 

means to obtain detailed and reliable convective heat transfer information in the 

complex cooling flow. At present, with the advances in CPU speed and memory size, 

super computers are able to numerically solve the differential equations governing 



fluid flow and heat transfer over complex geometries in a relatively short period of 

time. 

1. 2 Numerical Predictions 

Numerical solutions of the complete Navier-Stokes equations for laminar flow and 

the Reynolds-Averaged equations for turbulent flow have recieved a great deal of 

attention in recent years since, in principle, they describe flows with any level of 

complexity, the only uncertainty being that introduced by the turbulence model em- 

ployed to effect closure of the Reynolds stress tensor equation. As available computing 

power increases, many problems of practical interest, which invariably involve com- 

plex three-dimensional geometries, are becoming feasable to solve through solutions of 

the complete equations. The progress being made in numerical generation of compu- 

tational grids for arbitrary curvilinear geometries greatly facilitate such applications. 

Computational Fluid Dynamics (CFD) is beginning to play a major role in the 

analysis and design of turbomachinery. A new era is dawning in the ability to predict 

turbulent flow and convection heat transfer in the turbine gas path. Historically, 

experimental work and the modeling of the physics have preceded the complex com- 

putational predictions of the phenomena. This is particularly true with respect to 

heat transfer. 

1. 3 Project Scope and Objectives 

The present study is concerned with the implentation of a numerical method for the 

solution of the Reynolds-Averaged Navier-Stokes equations based on partial transfor- 

mation of the governing equations. For complete generality, the equations are writ- 



ten in non-orthogonal curvilinear coordinates. Closure of the Reynolds stress tensor 

equation is effected by an isotropic two-layer k-e turbulence model and a anisotropic 

Reynolds stress closure model. The transport equations of momentum and turbu- 

lence parameters are discretized using the flnite-analytic method of Chen and Chen 

[1]. Pressure velocity coupling is established via the continuity equation by a modified 

version of the SIMPLER algorithm of Patankar [2]. 

The research has as its main objective the determination of turbulent flow and 

local heat transfer coefficients in the leading edge region of an airfoil which utilizes 

impingement cooling. 

Specifically, the computational programme followed over the course of the research 

may be outlined as follows: 

~ Pre-Processing 

1. Multiblock Grid Generation 

2. Grid Reblocking 

3. Generation of Composite Grid by Chimera Method 

~ Two-Layer k-e model 

1. Turbulent pipe flow computation 

2. Axisymmetric turbulent jet impinging on a flat plate computation 

3. Three-Dimensional turbulent jet impinging on the leading edge of a gas 

turbine airfoil computation 

~ Reynolds-Stress model 

1. Turbulent pipe flow computation 



2. Axisymmetric turbulent jet impinging on a flat plate computation 

~ Post-Processing 

1. Investigate the anisotropic behavior of turbulence in fully developed pipe 

flow and in the impinging jet problem 

2. Asses the isotropic and nonisotropic models by comparing with experimen- 

tal data 

3. Understand and interpret the highly three-dimensional flow field in the 

leading edge of the turbine airfoil 

As can be seen from the computational programme, this research is also concerned 

with the computation of turbulent pipe flow and the famous axisymmetric impinging 

jet on a flat plate problem. These computations were necessary in order to asses the 

turbulence models snd capture the physics of the impinging jet problem in a simple 

geometry. 



Chapter 2 

Governing Equations 

In the present study, calculations were performed for a fully developed pipe flow, a 

jet impinging on a flat plate, and a jet impinging on the leading edge region of a 

turbine blade. The two-layer eddy viscosity model of Chen and Patel [3] and the 

near-wall second-order Reynolds stress closure model of Chen [4, 5] were used for 

the computations. Both models were developed originally for incompressible flows in 

non-rotating coordinates. They have been generalized here to include the effects of 

rotation. 

Consider the Reynolds-Averaged Navier-Stokes equations in general curvilinear 

coordinates (t', t), i = 1, 2, 3 for unsteady incompressible flow: 

(2. 1) 

OU* 
p ( 
— +U U' +R' +2pgue, „fI U" 

+W-(fi'fI &"-II II"(') =-~'-p, +(Va-"U;„) (2. 2) 



where ei „ is the third rank permutation tensor, 0 is the coordinate rotation vector, 

g „ is the metric tensor, and g 
" the conjugate metric tensor. Ili = u*u is the 

Reynolds stress tensor where overbars imply the ensemble Reynolds averaging and 

the summation convention is used for repeated indices. The subscript, m represents 

the covariant derivative with respect to ( . U' and u' are contravariant components 

of the mean and fiuctuating velocities, t is time and p is pressure. 

The energy equation is also solved to obtain the temperature field and the con- 

vective heat transfer coefficients: 

pc, 
~ 

— +U T +u T') =Z "(KT„) + +4 f OT —, 5 „Dp 
Of Dt (2 3) 

and i' is the dissipation function defined by 

i' = — p [U„U" + u~u" + g, yg 
" (U' U'„+ u' u', ) j (2. 4) 

where T and T are the mean and fluctuating temperature fields, cs is the specific 

heat at constant pressure, K is the thermal conductivity, snd u T' is the kinematic 

turbulent heat flux. A complete and detailed derivation of the Reynolds-Averaged 

Navier-Stokes equations in general curvilinear coordinates is given in the appendix. 

2. 1 Two-Layer k-e model 

The two-layer model of Chen and Patel [3] is employed to provide closure for the 

Reynolds stress tensor R'i. In this approach, the Reynolds stresses are related to the 

corresponding mean rate of strain through an isotropic eddy viscosity, v, : 



2, — R'1 = 2v, S" — — g*'k 
3 

(2. 5) 

where Sg are the contravarisnt components of the mean rate of stress tensor: 

S" = — (g' U' + g' U' ) (2 fi) 

and k is the turbulent kinetic energy: 

1 
k = -g;, u'u~ 

2 o (2. 7) 

Similarly, the turbulent heat fiuxes can be related to the mean temperature gra- 

dient as follows: 

(2 3) 

where Pr, is the turbulent Prandtl number. Substituion into (2. 2) and (2. 3) yields 

momentum and energy equations for eddy viscosity turbulence modeling: 

OV' — + U U' +g „(O'0 t'" — 0 0"t"') + gue~ „A U" = 

, „fp 2 5 — g' 
( 

— + — 
k) +2v& S' +(v+v&) g "U' „ 

P 
(2 9) 

— +U T =g" — + — T„ (2. 19) 

where Pr are the Prandtl numbers. Equations (2. 9) amd (2. 10) are closed using 

the two-layer turbulence model of Chen and Patel [3). The approach utilizes a two- 

equation k-e model for most of the flow field, but a one-equation k-l model in the 



viscous sublayer and buffer layer. The prescribed length scale (l) circumvents numer- 

ical problems often encounterd with near-wall dissipation calculations, and results in 

a more realistic sublayer profile. 

In the fully turbulent region, the conservation equations for turbulent kinetic 

energy and its dissipation rate can be written: 

— +U k =g" v+ — k„yP — e (2. 11) 

(2. 12) 

where the production term P is given by: 

P = 2g„rv, S "Ur 

and the eddy viscosity is computed from: 

ks 

the model coefficients (C„, C, t, C, q, or. , a, ) are equal to (0. 09, 1. 44, 1. 92, 1. 0, 1. 3). 

In the near-wall region, the rate of turbulent dissipation is specified in terms of k 

rather than being computed from (2. 12). From Chen and Patel [3j: 

where l, is a dissipation length scale given by: 

10 



l, = C(y 1 — exp (2. 16) 

with 

vky 
v 

(2. 17) 

With k and e known, the eddy viscocity is found from: 

v, = Culv~k (2. 18) 

where 

l„= Cry 1 — exp (2. 19) 

The constants Co A„, and A, are chosen to to yield a smooth distribution of eddy 

viscosity between the two regions, and take the values (C~ — — OA18C„~, As — — 70, 

A, = 2'). 

2. 2 Second-Moment Closure Model 

Consider the Reynolds stress tensor transport equation: 

clR" 
+ Co = Pe+Du ++Do+ Co +Du — eu 

Ot 
(2. 20) 

Where 
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~ C": Convection 

U R'3 

~ P": Production 

— (R' U +R U ) — 2e~mnft (g'R +g R' ) 

~ D'„~: DifFusion by Velocity Fluctuation 

— (u-u*~) 

~ D&'. Difussion by Pressure Fluctuation 

~ 4": Pressure-Strain 

~ D'~: Viscous Diffusion 

fll. TL Ro 

~ e'~: Viscous Dissipation 

2vg u u, 

To solve these equations, appropriate closure models must be provided for the 

pressure-strain, diffusion and dissipation terms. In the present study, the pressure- 

strain correlation of Speziale, Sarkar, and Gatski [6] was combined with the near-wall 

Reynolds stress closure of Chen [4, 5] for detailed resolution of three-dimensional 

boundary layer flow all the way up to the solid walls. For the sake of completeness, 

a brief summary of the near-wall second-moment closure model is given: 

12 



1. DifFusion D" = D'„' + D& (Daly and Harlow [7]) 

Dg'3 CI R22424R43 

E 
(2. 21) 

2. Pressure-Strain and Dissipation 4I26 — e" (Speziale, Sarkar, Gatski [6]; Chen 

[4, 6]) 

20 (2. 22) 

where 

412" , = — C, 1 — 1 — = f kbgi+C (1 — f ) e (g „bk bfgg — — g"II (2. 23) 
Ck) j 3 

e', f = (C, — C, "11-*) kS3+C, k(g „b' S'"+g „b' Sf" 

2. 
g g— g "5 , 5 „') "+"C kfg 5W „'+g '"O' W „)0 (2. 24) 

5' = f [0. 45 (P' — — g' P) — 0. ~ 2 (kf — — g' P) + 0. 05k (250 l] l2. 25) 

R" 1, " 
bgl — go 

2k 3 
(2. 26) 

II = g, g„, b "bg 0 (2. 27) 
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kVij (gmUi imUj 
) (2. 28) 

1 P= — lj„P" 
2 

(2. 29) 

q0 g (gw»jljl + gnfiil) Um (2. 30) 

, P 
Cg —— Ct+ C;— 

(2. 32) 

where the model coefficients (C~, Cr", Cs, Cs, Cs, C4, Cs) are equal to (3. 4, 1. 80, 4. 2, 

0. 8, 1. 30, 1. 25, 0. 40) respectively. It should be remarked that the coefficient in f 
was adjusted from 0. 015 to 0. 0184 based on numerical optimizations for the present 

test cases. 

It is important to note that the effects of the damping function f diminish expo- 

nentially away from the solid surfaces with 4'3 = 0 in the fully developed turbulent 

regions. Therefore, the present near-wall Reynolds stress model automatically recov- 

ers the the high-Re SSG second-moment closure of Speziale, Sarkar, and Garski [6] 

in the far field. A more detailed description of the present near-wall second-moment 

closure is given in Chen [4, 5]. 

In general, the turbulent heat fluxes u~T' may also be solved directly using second- 

order models such ss those shown in Launder [10]. In the present study, however, a 

generalized gradient diffusion hypothesis (GGDH) was used: 

14 



(2. 33) 

with Cs — — 0. 225. 

To complete the Reynolds stress closure, the rate of turbulent kinetic energy 

dissipation e must also be modeled. In the present study, the low Reynolds number 

model of Shima [8] was adopted with minor modifications ss follows: 

E EE* — + U E'~ = l/g + CE R e„+ C, r (I + C, sf~) — P — C, rf, (2. 34) 

where 

f, = 1 — — exp (2. 35) 

k~ 
Rz — —— 

VE 

The near-wall damping function f is given earlier and the model coefficients are 

(C„C, r, C, s, C, s) = (0. 15, 1. 35, 1. 8, 1. 0). 

15 



Chapter 3 

The numerical method 

3. 1 Partial Transformation 

For three-dimensional flows involving complex geometries, it is desirable to employ 

body-fitted coordinate systems so that the flow in the wall layer can be accurately 

resolved with a reasonable number of grid points. Once such a coordinate system is 

selected for a given geometry, there remains the task of formulating the equations of 

motion in that system. Two different approaches can be adopted for this purpose. 

One of them is the so called "partial transformation", in which only the independent 

coordinate variables are transformed, leaving the dependent variables (i. e. velocity 

components) in a preselected orthogonal coordinate system. This approach, which 

was the one used in the present study, hss the advantage that the resulting equations 

have a strong conservation form snd facilitate the use of pressure-velocity coupling 

algorithms based on conservation of mass. Also, the equations are relatively simple 

and the results can be readily interpreted. Since the velocity vectors, in general, do not 

align with the coordinate directions, this approach may lead to increased numerical 

16 



diff'usion when the angles between the velocity components and coordinate surfaces 

become large. The alternative is to transform the governing equations completely, 

including the independent as well as the dependent variables. The use of contravariant 

velocity components in such a complete transformation allows a much more accurate 

resolution of the flow near a solid surface. However, the fully-transformed equations 

involve many more geometric coefficients and their higher order derivatives. This 

not only leads to increased computer storage requirements but also can adversely 

affect the flow solution if the coefficients are not smooth and accurate, especially 

the Christoffel symbols of the second kind which involve summations of higher order 

derivatives. In many practical applications it is not necessary to use the complete 

transformation if the basic coordinate systems are chosen carefully so as to avoid large 

skew angles between velocity componets and the faces of the computational cell. 

Using the partial transformation described in Chen, Patel, and Ju [9j; the conti- 

nuity equations and the momentum equations become: 

1 8 
. [b, 'U(j)) = 0 J, . „. , (3(' 

(3. 1) 

BU(i) a 
I OU(i) 1 

+QC&(I . — — V U(i)+sp() =0 (3 3) 

and the transport equations for k and e in the two layer model become: 

, ak — +PC„' . — — 7'k+s, =0 
at I, "ati (3. 3) 

0 . 0 1 — + g C~ —. — — V s + s, = 0 
at I, 'agi (3. 4) 
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The above transport equations for U(i), k, e, and also R'~ can be cast in the form 

of a general convection/diffusion equation: 

(3. 5) 

where Q is any transport quantity. 

3. 2 The Finite-Analytic Method 

In the finite analytic approach, Equation 3. 5 is linearized in each local element of 

dimensions At' = AP = At' = 2 and solved analytically by the method of sepa- 

ration of variables. Evaluation of the analytic solution at the interior node provides 

a stencil for the center point in terms of its nearest neighbors. Using Euler implicit 

differencing in time, and lumping streamwise influences into single points upstream 

and downstream, results in a 12-point discretization formula: 

1 8 

1 + Cr (Cp + Cn + Rs/At) [ 
Ycy 

+c, (c ~+c, go+ — 'y" 
) 

— c, (s, ), ] (3. 8) 

where subscripts U and n represent points in the stencil upstream and downstream 

of P, and subscripts (m = 1, 8) represent the eight nearest points to P in the 

cross-flow plane. Expressions for the finite-analytic coefficients (Cp, CU, Co, C ) 

can be found in Chen, Patel, and Ju [9]. 

18 



3. 3 General Solution Procedure 

The solution procedure consists of an outer loop over time and an inner loop or 

sweep that iterates over the blocks of the grid. The system of discretized equations 

generated for each block is solved using an iterative ADI scheme, resulting in a tridi- 

agonal system of equations. For unsteady problems, the solution procedure can be 

summarized as follows: 

1. Construct the grids for each component of the configuration. 

2. Construct a boundary condition table specifying appropriate boundary condi- 

tions for each face. 

3. Specify the initial conditions for velocity, pressure, and turbulence fields. 

4. Determine interpolation information to link the grids using the PZGSUS pro- 

gram (discussed in the next chapter). 

5. Calculate the geometric coefficients. 

6. Calculate the finite-anlytic coelllcients and the source functions. 

7. Solve the momentum equations and the turbulence equations using the iterative 

ADI scheme. 

8. Calculate the pseudovelocities. 

9. March to the next downstream station and repeat steps 6 through 8. 

10. After reaching the last downstream station, solve the pressure equation. Several 

iterations from downstream to upstream are employed to update the three- 

dimensional elliptic pressure field. Depending upon the time step employed, 

some under-relaxation of pressure is required for converegnce. 

19 



11. Repeat steps 6 through 10 for several sweeps until both the pressure and velocity 

fields have converged within a specific tolerance. 

12. Return to step 6 for the next time step. 

20 



Chapter 4 

Grid Generation 

The grid generation process, in general, proceeds from first defining the boundary 

geometry. Then points are distributed on the curves that form the edge of boundary 

sections. A surface grid is then generated on the boundary surface, and finally a 

volume grid is generated in the field. 

A mesh or volume grid is a set of points distributed over a calculation field for a 

numerical solution of a set of partial differential equations (PDEs), in this case, the 

Reynolds-Averaged Navier-Stokes equations. These set of points may be structured, 

e. g. , formed by the intersections of curvilinear coordinate surfaces, or unstructured, 

i. e. , with no relation to coordinate directions. The structured grid can be generated 

algebraically by interpolation from boundaries, e. g. , transfinite interpolation (TFI), 

or by solving a set of partial differential equations in the region. In the present 

study, structured grids were used to represent the physical domains. GRIDGEN, an 

interactive multi-block grid generation software package, was used to generate the 

volume grids. 

21 



4. 1 Multi-Block or Composite Structured Grids 

Here, multi-block refers to the fact that the physical region is divided into sub- 

regions within each of which a structured grid is generated. These subgrids may be 

patched together at common interfaces, may be overlaid, or may be connected by 

an unstructured grid. Considerable confusion has arisen in regard to terminology for 

composite grids, making it difficult to immediately classify papers on the subject. 

Composite grids in which the subgrids share common interfaces are referred to as 

block, patched, embedded, or zonal grids in literature. The use of the ffrst two of 

these terms is fairly consistent with this type of grid, but the last two are sometimes 

also applied to overset grids. Overset grids are often called Chimera grids after the 

composite monster of Greek mythology. Unfortunately, the common interface grids 

can also be said to overlap, since they typically use surrounding layers of points to 

achieve continuity. Embedded grids can be almost anything, and the term is probably 

best avoided. 

4. 2 Composite Overset Structured Grids: Chimera 

The multiblock Chimera method of domain decomposition was used to generate the 

composite grid for the turbine airfoil. In the Chimera approach, grid components are 

not required to align with neighboring components in any special way. Accordingly, 

the approach offers an additional degree of flexibility that is not available with a fully 

connected multiblock approach. Another novel contribution of Chimera to the overall 

approach of structured grid based domain decomposition is the allowance for holes 

within grid components. 

The cost of the advantages inherent to an overset grid approach are reIIected in 
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the need to establish domain connectivity. Domain connectivity is the communica- 

tion of dependent variable information between grid components. Transmission of 

this information occurs through the intergrid boundary points by interpolation from 

the interior of overlapping neighboring grid systems. Accordingly, the domain con- 

nectivity solution for a given system of overlapping grids is the identity of a suitable 

donor element for each intergrid boundary point on the system. 

General implementations of the method must allow for grid components posed 

in curvilinear coordinate systems. This fact makes the task of establishing domain 

connectivity nontrivial. The position of points within all grid components is defined 

relative to a fixed reference frame. Data structure is realized on a componet-wise 

basis due to the fact that grid points are distributed along curvilinear coordinate 

lines. However, the coordinate systems of the respective grid components are mutually 

independent. Hence, there is no direct correspondance between the computational 

space of one grid component and that of any other component in the system. The 

task of establishing domain connectivity can be stated for a single intergrid boundary 

point as follows. Given an intergrid boundary point P, identify a grid component 

that can satisfy the domain connectivity needs of P, snd the position of P within the 

computational space of the domain component. 

PEGSUS, a code developed at Arnold Air Force Base, was used to generate the 

composite mesh and associated Chimera interpolation data for use in the flow solver. 

Figure 4. 1 shows an example of an overset grid. The surface is actually part of the 

plenum-hole intersection of the turbine airfoil mesh. The overset grid consists of a 

cylindrical grid inside a cartesian-type grid. PEGSUS was used to remove unnecessary 

points from inside the cylindrical mesh and to find donor points to communicate the 

two grids. Figure 4. 2 shows the same overset grid after hole cutting and donor point 

identification. 
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Chapter 5 

Fully developed turbulent pipe fIow 

5. 1 Geometry and Grid Generation 

The turbulent pipe flow was studied in the cyclindrical geometry shown in Figure 

5. 1. The diameter of the pipe is denoted by D, and the length of the computational 

domain by L, with L = 70D. Such a large aspect ratio was required in order for the 

flow to become fully developed. The Reynolds number based on pipe diameter D and 

on mean velocity was equal to Ren = 23, 000. 

Figure 5. 1: Flow geometry and coordinate system 
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From symmetry about the axis of the pipe, only three planes were required in 

the circumferential (8) direction. The present computations were carried out with a 

41 x 210 x 3 non-uniform, orthogonal grid in the r, z, 8 direction respectively. The 

minimum grid spacing in the near-wall region was maintained at 10 4 of the body 

length which corresponds to a wall coordinate y+ of the order of 0. 1. This enabled the 

computation of the viscous sublayer and bufFer layer of the fully developed turbulent 

flow. It should be emphasized that commercial codes cannot handle such fine spacing 

near the wall and have to place their first point at y+ = 10. Instead of computing 

the viscous sublayer and bufi'er layer, commercial codes use an analytic profile given 

by the universal law of the wall. This introduces error into the fully turbulent region 

and consequently into the entire computational domain, especially when there is flow 

separation or a negative pressure gradient. 

5. 2 Results and Discussion 

The turbulent pipe flow was computed using the two-layer model and the Reynolds- 

Stress model. Laser Doppler Anemometry (LDA) and Particle Image Velocimetry 

(PIV) measurements made by Eggels et. al. [11] in 1994 are used to asses the turbu- 

lence models. Figure 5. 2 shows the computed and measured mean velocity profiles in 

wall coordinates. The plot is semilogarothmic, where the following definitions apply: 

u 
u 

u7 
(5 1) 

y =Re — u 
D (5 2) 

where u, is the frictional velocity, defined as: 
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and T is the shear stress at the wall. 

20 
— - — - — - Two-Layer model 

R-S model 
Eggels et. el. 

10 

10 10 
Y 

10 

Figure 5. 2: Axial mean velocity profile in wall coordinates (Reo = 23000) 

The entire law of the wall is divided into three regions, where of course, there is 

no sudden transition from one region to the next: 

1. viscous sublayer: 0 ( y+ & 5 

27 



2. buffer layer: 5 & y+ & 30 

3. logarithmic layer: y+ & 30 

Both, the two-layer model and the Reynolds-Stress model, were able to predict 

the mean turbulent velocity profile. However, in the region where turbulent shear 

becomes important (the logarithmic region), the Reynolds-Stress model outperformed 

the isotropic two-layer model (see Figure 5. 2). 

In the region very close to the wall where viscous shear is dominant, the mean 

velocity profile follows a linear viscous relation. This region is the viscous subiayer 

(0 & y+ & 5). In the region where both viscous and turbulent shear are important, 

the velocity profile follows a logarithmic relation. As can be seen from Figure 5. 2 

the flow solver was perfectly able to resolve the viscous sublayer and the buffer layer. 

Commercial codes are not able to resolve these regions because of the small spacing 

requirements and the poor stability of their numerical schemes. Instead, commercial 

codes ignore the viscous sublayer and the buffer layer and compute the logarithmic 

region using the so called logarithmic law of the wall: 

I u+ = — ln(y+) + C (5. 4) 

where ~ and C are empirically determined constants. This approximation collapses 

for adverse pressure gradients and flow separation because of the assumptions made 

during its derivation. It will be made evident in the chapters to come, that the overall 

performance of the flow solver depends heavily upon the ability to resolve the viscous 

sublayer and buffer layer. 

Also of interest and importance to the present study are the turbulence intensities 

in the three coordinate directions. Figure 5. 3 shows a plot of the root-mean-square 

(r. m. s. ) values of the fluctuating velocities computed by the Reynolds-Stress model. 

28 



Figure 5. 3 also shows the associated isotropic fluctuations in the two-layer model 

(2/3k). We note that velocity fluctuations are higher in the dominant flow direction 

(the axial direction). Fluctuations in the radial and circumferential directions are 

small because the mean velocity in these directions is low. The anisotropy of the 

turbulence is clearly seen by comparing the predicted isotropic intensity (2/3k) to 

the predicted fluctuations in the three coordinate directions. 

From the LDA and PIV measurements only the streamwise velocity fluctuations 

are obtained, and are compared to the computed values in Figure 5. 4. The available 

experimental data is in excellent agreement with the computations. Despite the fact 

that PIV is better suited to study instantenous flow structures rather than to generate 

flow statistics, the PIV measurements agree well with the numerical results. Close 

to the wall (r/D ) 0. 4) the PIV data is obscured by noise at small scales snd hence 

larger r. m. s. velocities are obtained. 

Figure 5. 5 shows the Reynolds shear stress normalized by the shear stress at 

the wall. Shear stress near the wall is mostly due to its viscous component, hence 

the small values of Reynolds stress near the wall. Away from the wall, in the fully 

turbulent region, the Reynolds stress is the dominant component. The experimental 

data agrees well with the predictions. 

The mean velocity profile normalized by the average velocity is shown in Figure 

5. 6. The Reynolds-Stress model and experimental results coincide for all r/D. Note 

that in the central region, where turbulent shear is dominant, the velocity profile is 

"flat" and is well correlated by a logarithmic profile (recall the law of the wall); ss 

opposed to the parabolic profile for fully developed laminar flow. 
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Figure 5. 3: r. m. s. of the velocity fluctuations normalized by frictional velocity as a 

function of the distance from the centerline (Ren = 23000) 
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Figure 5. 4: Numerical snd experimental data for the streamwise fluctuating veloc- 

ities (ReD = 23000) 
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Figure 5. 5: Reynolds shear stress normalized by the shear stress at the wall as a 

function of the distance from the centerline (Ben = 23000) 
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Figure 5. 6: Axial mean velocity normalized by mean velocity (Ren — 23000) 



Chapter 6 

Axisymmetric jet impinging on a 

flat plate 

6. 1 Geometry and Grid Generation 

The grid generation was greatly simplified by the axisymmetric nature of the flow. 

The geometry and computational domain are shown schematically in Figure 6. 1. 

Only three computational planes were required in the circumferential direction, two 

of which were used to impose the boundary conditions; making the problem two- 

dimensional, since only one plane was computed. 

Simulations were performed for a fixed Reynolds number of Reo = 23, 000 at 

aspect ratios of H/D = 2 and 6. Profiles at the inlet were created by solving a 

fully developed turbulent pipe flow. The flow domain began at two pipe diameters 

upstream of the jet exit as shown in Figure 6. 1, so that the fully developed turbulent 

profiles may evolve in the nozzle as the flow approaches the jet exit. The effect of the 

jet wall thickness on the flow was also properly modeled; the pipe wall thickness used 



8 

Figure 6. 1: Geometry and computational domain 

was equal to 0. 0313D. The efiect of the right boundary location was examined and 

wss found that once this was larger than (8+ H/D), there wss no noticeable efl'ect 

on the flow field. 

A fine, non-uniform, orthogonal, cylindrical grid of 35, 000 grid points was used; 

with high resolution on all solid boundaries, including the thickness and outer bound- 

aries of the pipe wall. The minimum grid spacing in the near-wall region wss main- 

tained at 10 4 of the body length which corresponds to a wall coordinate y+ of the 

order of 0. 1. An 0-type grid wss used around the pipe wall; the grid was first created 

by using Transfinite Interpolation (TFI) and then smoothed by solving the Laplace 

equation over the domain. This was deemed necessary in order to capture the details 

of the entrainment at the pipe exit. The 0-type grid around the pipe wall is shown 

in Figure 6. 2. 
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Figure 6. 2: 0-type grid around the pipe wall 
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6. 2 Results and Discussion 

6. 2. 1 Aerodynamics of impinging jets 

The flow structure of impinging axisymmetric jets have been characterized and can 

be subdivided into three characteristic regions: the free jet region, the impingiment 

(stagnation) flow region, and the wall jet region. In the free jet region, the shear- 

driven interaction of the exiting jet and the ambient produces entrainment of mass, 

momentum, and energy. The net effect includes development of a nonuniform radial 

velocity profile within the jet, expansion of the jet, an increase in total mass flow rate, 

and modification of the jet temperature before it impinges on the surface. Figure 6. 3 

shows the computed mass and momentum entrainment represented by the velocity 

vector field. 

The impingiment zone is characterized by a stagnation region and the turning 

of the jet in the radial direction, which affects a transition for a wall jet further 

downstream. High pressure and low velocities are expected at the stagnation region. 

Figure 6. 4 shows the predicted normalized pressure contours at the stagnation region 

for H/D = 2. Note that there is a small pressure gradient at the exit of the jet, no 

pressure gradient in the free jet region, and high pressure gradients near the stagnation 

region. The high pressure gradients here are caused by the sudden turning of the jet, 

i. e. the rapid decrease of the axial velocity component. 

Within the stagnation region, flow is decelerated and accelerated in the axial and 

radial directions respectively. As the jet leaves the stagnation region there is a bulk 

flow outward in the radial direction. However, since the flow continues to entrain zero 

momentum fluid from the ambient, radial acceleration cannot continue indefinetly and 

accelearting flow in the stagantion region is transformed to a decelerating wall jet. 
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Hence, with increasing r, velocity components parallel to the surface increase from 

a value of zero to some maximum and subsequently decay to zero. Velocity profiles 

within the wall jet are charecterized by zero velocity at both the impingiment and 

free surfaces. Figure 6. 5 shows the velocity magnitude contours for H/D = 2 at the 

stagnation region and the wall jet region. Note that the radial velocity maximum 

occurs at approximately one jet diameter from the impingiment zone. The contours 

also show the potential core of the jet; defined as the region of the jet where the axial 

velocity remains constant and equal to the nozzle exit velocity. Here, the potential 

core cannot extend to its full length because of the small nozzle-plate spacing. Figure 

6. 5 also shows the decay of the axial velocity profile caused by the large shear stresses 

at the jet boundary. 

The impinging potential core of the free jet contains low levels of turbulence and 

these should remain relatively low in the stagnation region. The two-layer model and 

Reynolds-Stress model predictions are consistent with this expectation. Turbulent 

kinetic energy contours predicted for H/D = 6 with the isotropic two-layer model 

are shown in Figurc 6. 6. The maximum value of i'r predicted by the two-layer model 

occurs away from the stagnation region at r/D — 1. 

Turbulent kinetic energy contours predicted with the Reynolds-Stress model are 

shown in Figure 6. 7. Again, the maximum value of k occurs away from the stagnation 

region at r/D 1. The maximum values of k predicted by both models differ by 8%. 

The isotropic two-layer model was able to predict a very accurate turbulent kinetic 

energy. However, this does not imply that the turbulence intensities associated with 

a jet impinging on a flat plate are nearly isotropic. The high performance of the 

isotropic model in predicting the turbulent kinetic energy field is attributed to the 

two-layer approach used in the turbulence modeling and to the capacity of the flow 

solver to resolve the viscous sublayer and buffer layer. 

38 



The normalized velocity fluctuations in the radial direction are shown in Figure 

6. 8. The radial velocity fluctuations in the free jet are small because radial mean 

velocity in this region is not significant and turbulence intensities at the exit of the 

pipe are quite low. As the jet approaches the wall jet region and leaves the stagnation 

region, uz becomes a maximum. This increase arises from the acceleration of the 

mean radial velocity and the deceleration of the mean axial velocity. The turbulence 

intensity diminishes deep into the wall jet region because of the entrainment of low 

turbulence fluid and the decelerating radial velocity. The increase at greater distance 

from the wall simply reflects a more energetic part of the turbulent mixing layer. 

Figure 6. 9 shows the normalized velocity fluctuations contours in the axial or 

normal to the plate direction. The axial velocity fluctuations in the free jet are as high 

as the radial velocity fluctuations at beginning of the wall jet region. The maximum 

value of u~ is the maximum value of all the velocity fluctuations and occurs away from 

the stagnation region. The high value arises from the pressure-strain process and from 

the axial mean velocity falling to zero, i. e. the shear induced by the flow acceleration 

away from the stagnation region. As the jet moves into the wall jet region, axial 

velocity fluctuations decrease rapidly due to the small axial mean velocity component 

in this region. 

Normalized fluctuations in the circumferential direction are shown in Figure 6. 10. 

Fluctuations in this direction are negligible relative to the other two components. 

39 



I 

j/~l 
I 1 IZ~~~~ ~ ~ 
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H/D = 6 and Ren = 23, 000 
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6. 2. 2 Heat Transfer 

As the cold jet impinges on the heated surface, heat transfer by convection takes place 

between the moving fluid and the heated surface. To quantify the heat transfer near 

the surface of the heated plate we compute the Nusselt number, defined as: 

hD 
Nun =— 

K (6. 1) 

where K is the thermal conductivity of the fluid, D is the diameter of the pipe, and 

h is the local convective heat transfer coeflicient defined by: 

h= 
(~aran +j et) 

(6. 2) 

where q is the convective heat fiux. We can rewrite equation 6. 2 by using Fourier's 

law and express the convective heat fiux in terms of the temperature gradient at the 

wall: 

h= 
— K (aT) (6. 3) 

Combining equations 6. 1 and 6. 3, we may write the Nusselt number in terms of 

the normalized temperature gradient at the wall: 

Nun = (6 4) 

Figure 6. 11 shows the the predicted local Nusselt number distribution along the 

radial direction, with r/D = 0 being the stagnation point. The results shown were 
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computed with the isotropic two-layer k - e model and are compared with the exper- 

imental data of Lytle and Webb [12] and the predictions of Durbin's isotropic k — e 

model [13]. 

Durbins's standard k-e model overpredicted the staganation Nusselt number by 

as much ss 100%. while our twwlayer k-» model underpredicted by as much as 7%. 

The only difference between the two isotropic models is that the two-layer k-e model 

of Chen and Patel [3] is able to resolve the viscous sublayer and buffer layer, whereas 

Durbin's standard k-» uses the law of the wall to resolve the inner layer. This indicates 

that the resolution of the viscous sublayer and the bufFer zone is of critical importance 

in heat transfer predictions. 

This is readily understood by realizing that in the two-layer model the velocity 

gradient at the wall is computed directly, rather than being extrapolated from the 

logarithmic region, as is the case in the standard k-a Furthermore, the velocity 

gradient at the wall is used to compute the temperature profde and consequently the 

local heat transfer coeffcients. 
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Figure 6. 11: Nusselt number distribution for H/D = 6 snd Ren = 23, 000 
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Chapter 7 

Impinging jet on the leading edge 

of a turbine blade 

7. 1 Geometry and Grid Generation 

The geometry for the leading edge of the turbine blade was taken from the exper- 

imental test section of Bunker and Metzger [14]. The test section is composed of 

a plenum chamber and the airfoil. The plenum chamber has a diameter R of 7. 62 

cm, a wall thickness of 0. 95 cm, and a height of 40. 64 cm. The impinging jets issue 

through nozzles of diamter D, which are placed symmetrically along the plenum apex 

at a uniform spacing (pitch) C between jet centerlines. The present computation 

utilized a plenum with pitch-to-jet diameter ratio of C/D = 4. 67. The airfoil had 

a radius of curvature r' = R/D equal to 0. 4. The jet-nozzle to apex spacing was 

kept at z/D = 3. 04. The symmetric behavior of the flow and the shape of the test 

section allowed for the modeling of only on quarter of a pitch. Figure 7. 1 shows a 

two-dimensional top view of the model. 
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Figure 7. 1: Top view of the computational domain 

Cold, uniform flow with U* = 0. 085 enters the plenum at t = 0. The magnitude 

of the uniform velocity proflle at the inlet was chosen such that U'~ = 1. 0 at the inlet 

of the jet-hole. As can be seen from Figure 7. 1, the velocity of the fluid will increase 

becasue of the reduction in area of the plenum. The cold jet issues through the nozzle, 

impinges on the heated leading edge of the airfoil, and exits the test section through 

an expanding duct. The Reynolds number based on the jet dismter D and mean 

velocity was equal to Ren — — 25, 000. 

The numerical grid was generated using GRIDGEN. It was then reblocked into 

several interlocked computational blocks to facilitate the implementation of near-wall 

turbulence models and speciflcation of boundary conditions. To provide adequate 

resolution of the viscous sublayer and buffer layer adjacent to a solid surface, the 

minimum grid spacing in the near-wall region is maintained at 10 4 of the body 

length which corresponds to a wall coordinate y+ of the order of 0. 1. This can be 
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Figure T. y: Three-d'imensional geometry and coordinate system 

The Srst numerical grids generated were coarse (around 100, 000 grid points) and 

made extensive use of the Chimera method to obtain adequate resolution in geomet- 

rically dif6cult areas. Of particular interest is the plenum-hole-airfoil intersection, 
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Figure 7. 3: Plenum-hole-airfoil Chimera intersection 

shown in Figure 7. 3. 

The flrst attempt was to have the cylindrical grid deflning the hole, cut through 

part of the plenum and the airfoil, as shown on Figure 7. 3. However, it wss found that 

the point donation between adjacent blocks in the near-wall region was of unaccept- 

able quality due to the small spacing in this region. This led to poor comunication 

between blocks, which showed as discontinuities in the numerical solution of the flow 

and temperature flelds. The problem was solved by making the plenum-hole-airfoil 

intersection fully connected in subsequent grids, as shown in Figure 7. 4. The Chimera 

method, continued to be implemented, but this time away from the near-wall region. 
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Figure 7. 4: Plenum-hole-airfoil fully connected intersection 



7. 2 Results and Discussion 

7. 2. 1 Turbulent flow field analysis 

The present computation differs from that presented in Chapter 6 in the following 

aspects: 

~ Now, the jet is confined, 

~ the impingiment surface is no longer flat but highly concave, 

~ and finally, the jet belongs to an array of jets. 

Although only one jet was needed for the simulation, the rest of the jets were ac- 

counted for via Neumman boundary conditions at the symmetry planes. The com- 

putation was performed with the isotropic two-layer model only, the Reynolds-Stress 

model wss not implemented due to time constraints. 

Uniform flow enters the plenum and is accelerated towards the inlet of the nozzle 

by the plenum's reduction in cross-sectional area. Just after the nozzle, the flow hss 

the distinctive characteristics of a jet. It expands with an angle of about 10' and 

entrains the surrounding fluid. Figure 7. 5 shows the velocity magnitude contours on 

the spanwise symmetry plane. Over a distance of about 1. 5D the velocity remains 

constant as in the potential core of a free jet. Then the velocity decreases strongly 

under the influences of both turbulent difFusion and flow confinement. Turbulent 

diffusion is responsible for the transfer of momentum from the axis to the surrounding 

fluid similar to a free turbulent jet. However, in contrast to the unbounded case in 

which the total flux of momentum remains nearly constant with the distance, for 

the present geometry, the total mass flux must remain constant with z. The mixing 
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process causes the velocity profile to flatten with z and the total momentum fiux 

to decrease. This decay can only be compensated by an adverse pressure gradient 

(Figure 7. 6) which, in turn, makes the velocity drop faster with z. 

As the jet impinges on the leading edge, it attaches to the leading edge surface and 

moves in the chordwise direction. The adverse pressure gradient caused by the decay 

of the momentum flux (shown in Figure 7. 6) causes the attached fiuid to separate 

and form the recirculaion region shown in Figure 7. 7. 

In the potential core, the velocity gradients are negligible and the turbulence 

level is weak. Turbulence levels are shown in Figure 7. 8 as turbulent kinetic energy 

contours. The fluctuations are induced by the growing mixing layer and increase 

from the jet exit. Farther away than z — D, owing to high strain rate turbulence, 

production leads to intense turbulence at the jet boundary. As in unbounded jets, 

the turbulent kinetic energy decreases with z due to the diminution of the velocity 

gradient. Before impingiment, the turbulence energy is redistributed from the axial 

component to the other components. 

Near the stagnation region, at the location where the cross-section area of the 

jet occupies more than half of the leading edge region (z = 2. 5D), the effect of 

the chordwise or lateral confinement becomes significant. There exists a core of near 

constant radius in which the velocity is positive. This core is surrounded by an annular 

layer in wich the velocity is negative (Figures 7. 9 and 7. 10). At the core boundary, the 

radial component of the mean velocity is directed towards the wall. Hence, the bulk 

velocity decreases with z. Owing to the lateral confinement, the mean flow structure 

has drastically changed with respect to the region of expansion. Nevertheless, the 

turbulence is still dominated by similar mechanisms involving production, advection, 

and dissipation. 
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The kinematic structure of mean and turbulent properties of the velocity field 

on the jet axis show some peculiarities of the fiow behaviour. Indeed, both lateral 

(chordwise) confinement due to the blade wall (Figure 7. 5) and long'tudinal (span- 

wise) confinement caused by the leading edge of the blade (Figure 7. 11), compel the 

flow to restructure from a typical shear flow to a decaying diffusive turbulence. The 

transition between these two states involves different succesive steps. The flrst step 

takes place in the region dominated by the mean velocity. The interaction of the mean 

flow with the blade wall causes the jet expansion to stop. The second step is more 

gradual snd hss been described by Fitzgerald and Gsrimella [15]. The mean velocity 

decreases snd the fiow becomes dominated by the turbulence near z = 2. 5D. As the 

turbulence level is not maintained by production, it decays with z and the size of the 

larger eddies increases. The third step is when their size reaches the tube diameter. 

They stop growing and the turbulent scale is controlled by the tube diameter. 

Contrary to our expectations, the predicted turbulent flow field shows that once 

the flow leaves the stagnation region, the bulk of the flow moves in the spanwise 

direction instead of the chordwise direction; ss shown by Figures 7. 5 and 7. 11. 
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Flgrrre T. S: Normalized velocity magnitude mntours on. the spanwise symmetry 

plane for Reo = 25, QOO 
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Figure 7. 8: Normalised pressure contours on the apewise symmetry plane for 

Reo = 25, 000 
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Flgttre T. T: Velocity vector field showing the recirculation region on the spanwise 

symmetry plane for Reo — — 25, 000 
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Ffgrrre 7. 8: Turbulent kinetic energy contours on the spsnwise symmetry plane for 

ReD = 25, 000 



Figure V. 9; Velocity vector Seld in the epsnvriee symmetry plane colored by axial 

(s) velocity for Re@ — — 25, 000 



Figure T. 10: Normalized velocity vector Seid m the ehordeise symmetry plane for 

Beg) = 25, 000 
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Ftipn'e T. l 1: NormaIiaed velocity magnitude contours on the ehordwise symmetry 

plane for Rem — — 25, 000 
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7. 2. 2 Heat Transfer 

Figure 7. 12 and 7. 13 show the predicted temperature Beld in the spanwise and chord- 

wise symmetry planes respectively. As the cold jet issues through the nozzle and 

starts to entrain fluid we see a small temperature gradient at the beginning of the 

shear Bow region. As the jet approaches the leading edge endwall, the lateral con- 

Bnement causes the jet to stop growing and to "spray" its cold potential core onto 

the heated leading edge endwall. 

The local heat transfer distribution on the leading edge of the airfoil was com- 

puted in terms of Nusselt number and is shown in Figure 7. 14. The maximum Nusselt 

number occurs near the stagnation region and decreases gradually in the spanwise di- 

rection. The abrupt change in Nusselt number in the chordwise direction is attributed 

to the bulk movement of the liow in the spanwise direction instead of the chordwise 

direction. We believe that this abrupt change is due to a geometry modeling problem 

brought about the poor description of the geometry of the test section in the Bunker 

and Metzger publication [14]. However, the Nusselt number destribution on the end- 

wall of the leading edge region is physically correct and close to experimental data, 

especially in terms of spanwise average Nusselt number. 
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Ffifore 7. 12: Normalised temperature contours on the spanwise symmetry plane for 

Beg = 25, 000 
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Figrrre 'F. 18: Normalised temperature contours on the shordwise symmetry plane 

for Reo = M, 000 
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Figure T. ld: Local nusselt number distribution on the leading edge of the airfoil for 

Ben = 25, 000 and r/D = 3. 04 



Chapter 8 

Conclusions and Recommendations 

The present investigation wss concerned with the implementation of a numerical 

method to solve the governing equations of fluid flow and heat transfer in order to 

predict the turbulent flow field and local heat transfer coefficients in the leading edge 

region of an impingiment cooled gas turbine airfoil. The computations have covered 

an extensive programme to asses the turbulence models and to study the physics 

of impingiment in a simple geometry, i. e. the axisymmetric jet impinging on a flat 

plate. This research has succesfully achieved the objective of showing the anisotropy 

of turbulence in the impingiment problem and providing information on the turbulent 

flow fleld and local heat transfer distrubution on the leadinge edge region of the airfoil. 

8. 1 Conclusions 

The specific conclusions of the study are: 

~ The Reynolds-Averaged Navier-Stokes equations were solved to examine the 

aerodynamics of an axisymmetric jet impinging on a flat plate. The anisotropy 
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of the turbulence qunatities wss shown and explained in terms of mean velocity 

gradients, entrainment of zero momentum fluid, and the pressure-strain process. 

~ The near wall resolution of the viscous sublayer and buffer layer is crucial when 

attempting to predict local heat transfer coefficients. This was demonstrated 

when the predicted local Nusselt number proflle using the two-layer model wss 

compared to experimental data and standard k-e results. 

~ A turbulent flow field analysis of the impinging jet on the leading edge of the 

turbine wss performed and showed that just after the nozzle, the flow has the 

characteristics of a jet: expansion and entrainment. The mean velocity of the 

flow decreased as it approached the leading edge due to fiow conflnement and 

turbulent diffusion. The recirculation region observed in the symmetry plane of 

the airfoil was explained in terms of an adverse pressure gradient resulting from 

the rapid decay of the mean velocity gradient and the momentum flux. Heat 

transfer on the endwall of the leading edge region was explained in terms of the 

kinematic structure of the flow field. 

8. 2 Recommendations 

The following recommendations are made for a future study: 

~ Due to time constraints, the present study dealt with a fixed Reynolds number 

of Re~ —— 25, 000, a fixed pitch-to-jet diamter ratio of C/D = 4. 67, a fixed radius 

of curvature equal to r* = 0. 4, and a fixed target spacing of z/D = 3. 04. It 

would be desireble to design a computational programme to deal with at least 

four different Reynolds numbers, three different pitch-to-jet diameter ratios, 

two radii of curvature, and at least six different target spacings. This would 
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be done with the purpose of studying the efl'ect of each parameter on the local 

heat transfer distribution on the leading edge of the airfoil. The results could 

also be used to form a database for the purpose of designing cooling schemes 

for turbine airfoils. 

s This investigation dealt with impingement cooling on the leading edge of a blade 

without showerhcad bleed. It would be desirable to include showerhead bleed 

on the leading edge to study its efl'ect on the local heat transfer distribution. 

Showerhead bleed hole positioning could also be studied. 

~ The present study dealt with a non-rotating airfoil. The effects of rotation on 

the turbulent flow field and local heat transfer coefficients should be studied in 

future work. 
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Appendix A 

Derivation of the RANS equations 

Let us start from the instantenous momentum equation, where the instantaneous 

contravariant velocity component in the ith direction is given by V"'. 

+ V*~V"' = F'* — -g"p" + vg'"V'-' (A. 1) 

We now proceed to split the instanteneous velocity component, V"', into its mean 

and Huctuating components: 

V"' = V' + v' (A. 2) 

Thus, the instsnteneous mean momentum equation becomes: 

0(V' + v') . . . , 1, " 
+(V'+&)(V'+ *), = (F'+f') — -g"(p+p'), + 4"(V*+ *), (A3) 

The next step is to take the ensemble average of (A. 3): 
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B(V' + e'). . . . , , 1 +(V'+ e')(V*+ u'). - = (F*+ f*)--a*'(I +u')'+~K"(V'+ &') ' (A 4) 

Knowing that the ensemble average of a fluctuating quantity is identically equal 

to zero, i. e. P = 0, equation (A. 4) reduces to the ensembled averaged momentum 

equation or the Reynolds Averaged Navier-Stokes (RANS) equation: 

BV' . , —, . 1 — + V'V' + uiu' = F' — — g"p . +. vg"V'„ 
at 

(A. 6) 
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Appendix B 

Derivation of the Reynolds Stress 

Tensor Transport equation 

Next, we substract the instanteneous momentum equation (A. 3) from the averaged 

momentum equation (A. 5) to obtain the Huctuating momentum equation: 

— + V'v'. + v'V'+ v'v' — vyv' = f' — -g"p'-+ vg'"v' r. (B. 1) 
Ot 

Or equivalently 

Let us now denote the above equation by m' and multiply it by vi and add its 

symmetric component: 

v'm'+ v'm' (ll 3) 
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The resulting expression is rather complicated, so let us analyze term by term: 

~ TERM 1: Be', BH B(e'et) 
H — + e* — = 

at at 
= 

at 

~ TERM 2: 

V (v'v' +v'e' ) = V (v*e') 

~ TERM 3: 

e HV' +e e'V' 

~ TERM 4: 

v He' + e vtH = (v v'H) 

~ TERM 5: 

H v~e' + e e~H 

~ TERM 6: 

v'f*+ v'f' 

~ TERM 7: 

1 ' 
( 1 ' ' 

( 1 ' 
) 1 — g' v P' + — g v'P' = — g' (HP') + — g (v'P') — — g' v P' — — g' v' P' 

P 
' 

P 
' 

P P P 
' P 

~ TERM 8: 

vg "v v' „+ vg "v'v „= vg "(v v' „+ v'v „) 

Note that (v'vt) „= (vte' „+ v'e' „) +e' H„+ H v'„, thus TERM 8 

simplifies to: 

vg "(v'e') „— 2vg "v' v'„ 



Putting all the pieces together yields the following expression: 

ci( *») 
+ V (v'vi) = — (v HV' + v v'V~ ) — (v v'v') + Hv~v' 

+v*v v, ' +v'f'+v'f' — — g* (v'p') — -g' (v'p') + — g' v' p' 
P P P 

1 -, I + — g' v' p'+ vg "(v vi) „— 2vg "v' v' 
P 

(B. 4) 

The next step is to take the ensemble average (which eliminates two of the terms) 

and join like terms (namely, the fiuctuating pressure terms): 

0(v'vl) 
V~(va») = (vmtljVi ~ vmvcV~ ) (vrnvsvg) 

1, . 1 —. p' 
+ v~ f' + v*f& — -g' (v&p') — -g' (v'p') + — (g' v', + g' v' ) 

P P P 

i vg "(v*»), „— 2' "v' v, 
' (B. s) 

Let v'vi = R'~, thus the Reynolds Stress Tensor Transport equation takes its 

"almost" final form: 

yV R'~ = — (R' V~ +R' V' ) — (v~v'vy) 

1, . —, 1 . —. p' 
+ »f + v'*f~ — — g' (vip') „ — -g' (v'p') + — (g* v', + g' v*' ) 

P P P 

+ vg "R" „— 2vg "v' v', (B. fi) 

Attaching physical significance to each term yields the final form of the Reynolds 

Stress Tensor Transport equation: 

BRv +C' =P' +D' +F' +D' +4* +D" — eu 
p V (B. 7) 
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Where 

~ C": Convection 

VTll Rig 

~ P": Production 

— (R' V'+R~ V') 

~ D„*'. Diffusion by Velocity Fluctuation 

— (v v'vy), 

~ F": Force Field 

vgfc y vzfy 

~ D&'. Difussion by Pressure Fluctuation 

(vip') — — g' (v*'p') 
P P 

~ 4": Pressure-Strain p'- — (g' v, ' +g' v' ) 
P 

~ D'„'. Viscous Diffusion 

~ e'~: Viscous Dissipation 

v ra% 
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