
An Adaptive Framework for 'Single Shot' Motion Planning'

by

Christopher V. Jones

Submitted to the

Oflice of Honors Programs and Academic Scholarships

Texas ARM University

in partial fulfillrnent of the requirements for

1998-99 UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS PROGRAM

April 15, 1999

Approved as lo style and content hy:

Department, of Computer Scie&tce

Sttsanna Einnell, Executive Director

Honors Programs and Academic Scholarships

~Cta ~C~
"This rester 5 supported rn part by NSF CAREER Au, rd CCR962531 [aith REC Supplernen), NSF Grants IIS9619850

(pith REll Supplementi, EIA-9805823, nd EIA. 9t!10937 and by the Texas Ihgh Edu. atton Coordinattng Board under grant

ARP-036327-017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/6085887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This paper pa'oposes an adaptive framework for smgle shot motiora planning (i. e. , planning avathout preprocessingh

This framework can be used in any situation, and an particular, as suitable for crowded envaaonments in which the

r obot 's free C space has narrow corridors. The main idea of the proposed fram eu ork is that one should adaptively select.

a planner ashose strengths match the current situation, and then switch to a dafferent planner when circumstances

change. This approach requires that we develop a set of planners, and characterize the strengths and aocaknesses of

each planner in such a uay that uie can easily select the best planner for the current situation. Our eeperimentat

results shou. that adaptive selection of different planning methods enables the algorithms to be used in a cooperative

manner to successfully solve queries that none of them u auld be able to solve on their oun.

I Introduction

AuLomatic motion planning has applications in many areas such as robotics, virtual reality systems, and

computer-aided design. Although many different motion planning inethods have been proposed, most are

not used in practice since they are computationally infeasible except for some restricLcd cases, e. g. , when

the robot has very few degrees of freedom (dof) [11, 14]. Indeed, Lhere is strong evidence that any complete

planner (one that. is guarantccd to find a solution or determine that none exists) requires time exponential

in the nuniber of dof of the rol&ot [18]. For this reason, attention has focussed on randomized or probabilistic

motion planning methods.

When many motion planning queries will be performed in the same environment, then it may be useful

to preprocess thc environment with the goal of decreasing Lhe difficulty of' the sulis«quent queries. Examples

are the roadmap moLion planning methods, iii which a graph encoding representative feasible paths is built

(usually in the robot's configuration space). Queries are then proc~seed by connecting Lhe initial and goal

configurations to the roadmap, anil then finding a path in I;he roadmap bct. ween these tivo connection points.

Recently, randomized or probabilistic roadmap methods (ptaMs) have gained much attention for problems

involving high-dimensional C-spaces [I, 2, 3, 4, 10, 12, 13, 15, 16]. Typically, the vertices of these roadmaps

are obtained by sampling the robot. 's configuration space. Many clitficult problems thaL could not be solved

before have been solved by these methods.

1. 1 'Single Shot' Motion Planning

If the start and goal configurations are known o priori, and only one (or a very few) queries will be

performed in a single environment, then it is generally not worthwhile to perform an expensive preprocessing

stage, particularly if there are time constraints as in animation or virtual reality applications. In this case, a

more directed search of the free configuration space is needed (e. g. , as opposed to roadmap methods which

are designed to try to cover thc entire freespace). Motion planning methods that operate in this fashion are

often called single shot methods.

One of the first randomized planning methods was the Randomized Path Planner (RPP) of Barraquand

and Latombe [5], which is a single shot planner. This method belongs to the general class of potential field

methods, and uses random walks to attempt to try to escape local minima. In general, these methods can

be quite effective when the C-space is relatively uncluttered, but there exist simple situations in which they

can fail [6, 12].

Some success has been achieved in adapting the general PRM strategy to solve single queries by trying to

restrict attention to 'useful' portioiis of the C-space [10, 16]. A related idea is to use a sample of free points

to specify promising subgoals for planning [8, 9].

Single shot, methods are also useful in dynamic environments where obstacles in the workspace can

move between queries. For example, roadmaps are rendered obsolete when an obstacle moves and must be

regenerated or updated before a new query can safely be made. Finally, single shot methods may be used

as 'local planners' to connect roadmap nodes in PRMs.

1. 2 Our Strategy for Single Shot Queries

Although much progress has been made, there are siill important. classes of problems for which good single

shot solutions are needed. In particular, problems in crowded, or clul, t«red, environments in which the robot

Thc configuration space (C-space) or the robot s ihe parametnc space representing all possible po. iiions and orientatsons

or i. h robot m the worlcspace.

must maneuver through tight spots. The difficulty for such problems arises because successful planning

requires one to find free configurations in so-called narrow corridors in the robot's configuration space,

which is not a strength of the previous single shot met, hods (particularly when the dimension of C-space is

high).

In this paper we propose a general framework for single shot planning which has been designed to tackle

such problems. Briefiy, our approach (described in detail in Section 2) is based on l, he following rather

obvious idea.

Different planning methods have different strengths and weaknesses. Thus, ue should adaptively

select a planner whose strengths match the cument situation, arid then we should switch to a

different planner when circumstances change.

Of course, as usual, the devil is in the details. This approach requires that we develop a set of planners,

and characterise the strengths and weaknesses of each planner in such a way that vie can easily select the

best planner I' or the current situation.

For example, as we are particularly interested in problems involving narrow corridors in C-space, we need

to develop methods for determining whether a configuration (e. g. , the start or goal) is inside a narrow

corridor, at the entrance of a narrow corridor, or in a relatively uncluttered area of freespare.

Similarly, we must, identify/develop a set of planning methods and rank them according to their ability to

navigate inside narrow corridors or in the free C-space, discover configurations in (nearby) narrow corridors,

escape from narrow corridors, and determine subgoals for subsequent, subqueries. Note that wc do not require

any planner to be very powerful, but only to perfomn well in some very specific situation. In some sense,

this can be viewed as extending (he philosophy of the rnM methods to single shot planning.

We have designed a framework for implementing this general idea, and results from our preliminary

implementation have been very encouraging. In particular, our experimental results show that the adap-

tive selection of differcnt planning methods enables ihe algorithms (o be used in a cooperative manner to

successfully solve queries that none of the planners would be able to solve on their own.

E

G 1

Evaluate Properties of
desired Query Pairs

Properties Bank

~P ' nwm

Build Priority Queue of individu

Query Pair/Algorithm scores
Algorithm Bank

cworw o JP u 'o'P*

Algorithm I

Unued
si A

GM

upeeu
Sun d

G~

A! gorit!un 2

Updded

sun
oau

Que Solved?

Algoriihni N

updtd
s I

Path Found, Done!

Figure I: Single Shot Motion Planning Architecture.

2 A Framework for Single Shot Motion Planning

We propose a single shot motion planning archiiecture that will utilize a collection, or bank, of individual

single shot motion planning algorithms (the individual planners are presented in Section 3). This architecture

allows for the best suited algorithms to be executed for the current situation and enables Ihe algorithms to

be used in a coopers!, ive manner. Anywhere from one to all of thr- algorithms in the bank may be executed

during a single query. Figure I illustrates the structure of the architecture.

2. 1 Evaluation Criteria

To select the best, planner for the current situation, evaluation cri!, eris are needed to characterize: (i) i he local

situs! ion of the start and goal configurations in the current query pair, (ii) the possible path requirements

of the current query pair& and (iii) the strengths (and weaknesses) of each planner. The evaluation of

configurations and query pairs is (he key aspect of our single shot architecture. It allov. s us to rharacterize

the local environment of the current start and goal configurations and the approximate path requirements

of the query pair to select the most appropriate algorithm to execute at any given time during the query

process. Each algorithm in the bank has preset characteristics corresponding to those of the configurations

which enable us to perform the matching of algorithm to configuration.

In order for our single shot archil, ect, ure to be effective, the mosL fitting algorithm must be chosen at each

sub-query. We accomplish this by using a hierarchical based decision tree scoring approach [17]. The decision

tree approach begins by determining general, low-level characteristics of individual configurations and query

pairs, such as the distance to the nearest obstacle, relaLive locations of' configurations in the query pair, or

similarity of local environmenLs of configurations in the query pair. Next& higher level characteristics, such

as an approximate path, are evaluated. An approximate path is constructed by connecting the start and

goal configurations of a query pair with Lhe very fast straightline local planner using an extremely course

step size. Based on the number of free configurations and the number of configurations in collision on this

"approximate paCh, " we can compute such things as how many obstacles are bel, ween the query pair or

the length of approximate path segments in collision. This information may help us to infer the type of

planning required to solve Lhc query (i. e. , general obstacle avoidance, narrow corridor navigation). This

implementation allows for an expandable tree in that the more nodes added to the tree, the more detailed

and accurate our evaluation of Lhe configuration and query pair will be; thus& the more likely an appropriate

algoriLhm will be matched vith the query pair. With our current very simple decision tree structure, we

have had encouraging success in Lhc architecture's ability to select an appropriate algorithm to apply to Lhe

current query pair.

Each planning algorithm in the bank has characteristic values corresponding to how weII it performs in

the situations distinguished above. When an algorithm is added to the bank, values are assigned to these

characteristics to represent the optimal or "ideal" working situation for the algorithm. If two algorithms

in the bank have the seine characteristic set, an additional, distinguishing, characteristic should be added.

ThaL is, the evaluation criteria. should bc sufiicient, so that the algorithms in the bank can be uniquely ranked.

for any situation. For example, we might rank each planner according to its ability to:

Pl: navigate mside namow corridors or in thc I'ree C-spnce and/or escape l'rom narrow corridors,

P2: discover configurations in narrow corridors, or

P3: navigate efficiently in relatively free areas of C-space and/or determine subgoals for subsequent sub-

queries.

The ranking of the various planning meLhods is based on programmer expertise and empirical evidence.

2. 2 Single Shot Planning

The goal of the architecture is to grow a tree of paths from the initial start configuration towards the initial

goal configuration& and vice versa. To begin, two query pairs are constructed. The first, query pair with

its start configuration being the initial start configuration and its goal configuration being the initial goal

configuration. The second query pair with its start configuration being the initial goal configuration and

its goal configuration being the initial start configuration. Next, each of these query pairs is evaluated as

described above. From the properties of each individual query pair, a set of best matching algorithms is

selected based on the corresponding algorithm characteristics. All the algorithms selected by these two query

pairs are then put into a priorily queue, with the best matching query pair/algorithm combinations at the

top. At this point, the top N algorithms of the priority queue are executed on their respective query pairs.

lf an algorithm fails to solve its query, iL returns any partial path it found and the architecture subsequently

builds query pairs containing the last configuration on the returned partial path paired up with a sct of "goal'

configurations, with the "goal" configurations being a set of configurations in the opposite tree. The process

now repeats, returning to the top of the architecture. This continues until a predefined number of iterations

is reached, or a path is found connecting the initial start and goal trees. This iuethod of algorithni hsndofi'

allows cooperation ainong algorithms in solving the original query. This process of reevaluation allows for

another algorithm set to be sclecL«d in response to any change in the local environment after the previous

round of algorithms has been given a chance at, Lhe query.

3 Single Shot Algorithm Bank

Ideally, the algorithm bank should contain at least one method that is good at planning in any possible

situation. Noi, e thai, we do not expect any of the algorithms to be good in all situations. Instead, our goal is

i. o include a diverse set of algorithms in the bank so thai, at least one of them will perform well in the current

situation. Thus, it is not the individual planners, but their execution in concert that. gives our approach its

diversity and power.

In this section we bricfly describe the individual single shot algorithms available in our prototype imple-

ill e lit a I lo Ii.

3. 1 Simple 'Local Planning' Methods

The first algorii, lans in our algorithm bank are methods thai are commonly used in pnMs as local planners.

That is, they are relatively simple, deterministic methods that are fast but not very powerful. Thus, these

planners are best, used when C-space is uncluttered, although i, he A -like methods can be used in slightly

more crowded situations.

The particular methods currently in our bank are:

~ straight-line in C-space

~ roi, ate-ut-s plaiiners (for rigid bodies)

~ simple A'-like planners

All methods are described in detail in [2]. Briefly, ihe rotate-ai-s planner first translates to an intermedial, e

configuration c', then rotates to the goal's orientation, and then translates to ihc goal; the parameter s

represents the fractional part of the translational distance between ihe start and the goal thai, the robot

first translates. The A"-like planners generate a limii, ed number of candidate neighbor nodes snd then select

among them in a deterministic fashion.

3. 2 Iterative Translation Method (ITM) anfI Iterative Rotation Method (IRM)

The objective of the ITM method is to get as far as possible from the start configuration using only

translation. An outline of the method is presen(, ed in Figure 2.

ITN(st zt. , goal((
Add start to path:
previous - t t;
p*evnir - Pindaandomnirection()i
Fo ' - I to nlteratto

T y to use prevDir to rind a new fg newcfg
from pre ious th t is farth f om st rt;
If th t ts not pose bl try to ft d new
r do direction s h tlat the n Iu newefg
from previous f ee and f th t from statti
Add Cfg to Path;
previous - Cfgi

f it zs not po. bl Lo find dom
dtrectton h that the ne fg fro m pre
is free,
th return Path:

ret r P th;

Figure 2: Iterative Translation Method (ITM).

The IRM method is completely analogous (. o ITM, with the only difierence being IRM tries (o get far

from the start configuration using only rotations.

3. 3 Random Walk Method (RWM)

This method performs a random v alk from a given start configuration.

An outline of the method is presented in Figure 3.

Rwje(start, gos. li(
Add start to Path;
previous = start;
For i = 1 to prterations (

Find a random free cfg newef'g
close to previous;

Add newcfg to Path;
previous = newCfg,

If it is not possible to find a random
free cfg close t. o previous

then zet. urn Path;

return Path;
j

Figure fn Random Walk Method (RWM).

3. 4 First Intersection Method (FIM)

The idea behind FIM is to try to go directly from (. he start configuration to the goal configuration. If that

is not possible because of collision with an obstacle, then this method tries to go around the obstacle.

An outline of the method is presented in Figure 4, and an example of FIM can be seen in Figure 5.

FIN(start, goal)(
If it is possible to go directly from sCart
to goal using a straightline local planner,
then reCurn the path from start to goal;

else
ury to go directly from start to goal
using a straightline local planner, and

Find the first obstacle in collision
obstcollision;
Continue until there is no collision with
that obstacle;
save the last free cfg beforecfg before
collide with obstcollision;
save the first free cfg aft. ercfg after
collide with obstcollision;
fir tpath = path from st. art to beforeCfg;

Gererate free cfgs around obstcollision;
connect those cfgs co construct a roadmapt
If it is possible to cornecc beforecfg Lo
afcercfg using that roadmap

secondpath = path from beforecfg to goal
Path - firstpath + secondpath;
return Path;

else
returr firstPath;

Figurc 4: First Intersection Method (FIMi.

~ second Fath

~ ~

erst path

beforeCfg
SCan

Obstacle

afterCfg

Goat

~ ~ ~ ~
~ ~ ~

&ee cfgs

Figure 5: Example of First Intersection Method iFIMi.

10

3. 5 Iterative Spread Method (ISM)

A more specialized planner included in the algorithm bank is the iterative spread method ()sM). The 1SM

planner was designed to operate in cluttered C-Space, and in particular in narrow C-space corridors where

large movements are not possible. Intuitively, it is good at 'feeling' its way along the corridor, and spreading

out of corridor openings. These characteristics make the)sM a good candidate to be used when another

algorithm in the bank finds itself at the entrance, or in the interior, of a narrow passage in C-Space.

The general idea of)slvi is to 'grow' or 'spread'ia component of connected configurations away from the

start configuration, and to do so towards the goal configuration when possible. An outline of the method

is presented in Figure 6.

INN(start. , goal) { I. fringe -)start). FRINGE -)start, goal)
for i I to alters
fringegpread = null
for each fcfg in fringe

generate n s configs close to fcfg
and add them to frlrigespread

fringe' = n fs configs iii fringeap ead
that are fartiiest from thc start

fringe = n cg configs in fringe'
that are closest to the goal

FRINGE = FRINGE fringe
) I. try to connect start I goal using conflgs

in FRINGE as intermediate nodes
)

Figure 6i Iterative Spread Method (ISM).

At the beginning of each iteration, a set of fringe configurations of the current component is known. For

each f cfg in fringe, we generate uniformly at, random nm nearby configurations (so we can likely connect

)hem using a simple local planner such as those mentioned in Section 3. 1). The fringe set for the next

iteration is a subset of the current iterations fringegpread sc), ; it is first biased towards configurations far

from)he start, and then towards configurations close to the goal. (Distances are compu)ed based on some

C-space metric [2].)

After the itera)ive process, s, path from the start to the goal is sought. which uses intermediate config-

urations from all previous fringe sets. This is implemented by passing all iringe configurations anil the

start and goal to the coniieciion phase of our OBFBM probabilistic roadmap planning algorithm [3].

11

3. 6 Recursive Midpoint Method (RMM)

Another single shot motion planning method included in the algorithm bank is the recursive midpoint method

(RMM). The ideal operation oi' RMM is in un-cluttered C-Space requiring navigation around obstacles and

general free space navigation. RMM will also help identify problem areas in C-Space such as narrow corridors.

This method will possibly find the entrance and exit to the corridor, bu(, will not be able to navigate through

it. These characteristics make RMM ideal for our proposed single shot architecture. It can get a path started

and find where the regions requiring an algorithm with a specific strength are needed, and hand control over

to them at this point.

RMM effectively breaks down the initial motion planning query into recursively smaller queries until each

sub-query results in a direct collision free connection. The final path is then only the traversal of each

sub-path in the appropriate sequence. An outline of RMM is given in Figure 7 and an exainple of RMM can

be seen in Figure 8.

asm(scarc, goal)
if ieaneonrect(start, goal))

then add edge (start, goal) to path
return

else
mpt - midpointietart, goal)
if (Incollieton(mpt, ohetacleel)

then raove mpt 'away' unttl no colllelot!
if (Caneonnect(start. , mpt))

then add edge (et. rt, mpt) to path
else Rmm(etart, mpt)

tf (canconn ct (mpt. , goal))

then add edge (mpt, goal) to path
else Rmm(mpt, goal)

)

Figure 7: Recursive Midpoint Method (RMM).

The basic idea is that the midpoint mpt of the current start and goal configurations will serve as a

subgoal in the query. If the mpt configuration is in collision with the obs(acies in the environment, then RMM

will try to transform (he mpt to a free configuration and then use that as the subgoal. This transformation

can be done in a number of ways. One simple s(rategy is io test configurations on a line in C-space that

passes by the mpt and is orthogonal to the line between the start and goal.

To increase the likelihood that connections can be made, RMM actually works with 'clouds' of configu-

rations for the start, goal, and mpt. These clouds arc sets of configurations close to the configuration of

12

~ t
~ ~

Mpt Mpt

Start Mpt Goal

Figure 8: Example of Recursive Midpoint Met, hod (RMM).

interest, and are generated in the same manner as the fringeSpread configurations in tsM. Note that all

configurations in a cloud can be connected together& either directly or indirectly. Thus, the canconnect tests

in RMM simply test if any configuration in one cloud can be connected with any configuration in the other

cloud.

4 Experimental Results

In this section we examine the perfonnance of our single shot planning framework. We first consider queries

in some relatively simple environments whose successful solution requires the path to pass through different

types of regions. We show that our framework solves these queries by adaptively selecting an algorithm

to execute which is suitable for the current situation. We also consider some queries arising in some real

problems involving complex CAD models of mechanical designs.

4. 1 Artificial Environments

Environment l. Our first environment consisted of three blocks, two parallel t, o each ot, her, and I, hc third

perpendicular to the other two. The robot is a smaller block that barely fits in the corridor between the

parallel blocks. (See Figure 9(a).)

Alt, hough this environment, is very simple, it contains regions in which different planning methods are

Ns Ih
MMoII

RMM Pals

LP P Ih)
1 ISM Pasa

LP

(a)

(b)

Figure 9. Test Environment 1: (a) three-dimensional snapshot, (b) schematic of algorithm regions and path.

ENVIRONMENT 1 RESULTS

Method Nodes Ge»crated Eeecutto» 1'ts»e (sec) Solved Query

OBPRM 745 28072 YES

Singlcghot 309 597 YES

Table 1: Environment 1 Results

needed. In particular, it has a narrow corridor which requires delicate maneuvering (e. g. , IsM, ITM, IRM,

RWM), regions in which more global navigation is needed (e. g. , RMM, FIM), and relatively free regions (e. g. ,

thc local planners). These regions are depicted with ovals in Figure 9(b).

The query we consider has the start configuration in the corridor between the parallel blocks and

the goal configuration on l, hc far side of the perpendicular block. This query involves several subs(cps i, o

successfully find a path, see Figure 9(b) for a schematic representation of a path found by our architecture.

This example shows that our architecture has thc ability to adaptively select an algorithm suitable for thc

current, situation. Moreover, it. does so in a relatively efficient marnier. As can be seen from the results shown

14

(a)

'Cts
raa

~ RMM Path stot

Wtnfirg

aigoritiun
haodoff

ISM Path

(b)

Figure 10: Test Envirornnent 2: (a) three-dimensional snapshot, (b) schematic of algoriLhm regions and

path.

in Table 1, our singleshot architect, ure generated fewer nodes and solved the query in only a small fraction

of the time spent by OBPRM. In particular, isM ran for 183 seconds and generated 196 free configurations

in the narrow corridor, and then RMM ran for 414 seconds and generated 113 free configurations to move

around the perpendicular block.

Environment 2. Our second test environment consisted of three identical blocks. The three blocks are

parallel to one another and slightly ofiseL in a relatively tight fii, ting bounding box. The robot was a smaller

block that, barely fits in i, he corridor bencaLh the middle block, while there is a bii, more clearance available

between the top and the middle blocks. Again, although this environment is very simple, it contains regions

in which different planning methods are needed. (See Figure 10(a).)

The querv we consider has the start configuration in the lower right hand corner of the bounding box,

and the goal configuration in the lower left in (lie narrow corridor under the middle block. See Figure 10(b)

for a schematic representation of the path found by our architecture.

Results from Environtneni, 2 are shown in Table 2. In this case, ILMM ran for 86 seconds and generated

ENVIRONMENT 2 RESULTS

3fetliod Nodes Gerserated Evecvnoa Tirae (sec) Solved query

OBPRM 670 39569 NO

SingleShot 557 326 YES

Table 2: Environment 2 Results

(a)

(b)

(c)

Figure 11: Walls Environment: (a) Enviromnent (b) Path generated by Singleshot (c) Roadmap generated

by PRM

197 free configurations, and 5hen IsM ran for 240 seconds and generated 360 free configurations. As can be

seen, the UBPRM planner generated 670 nodes and ran for 39569 seconds, and still hadn't solved this query.

Walls Environment. The walls environment, as seen in Figure 11(a), consists of a series of 4 parallel

walls, each with only a small hole cut out, creating a series of narrow corridors. For this environment,

our query only requires thc robot (the long, thin stick) to traverse through one of these narrov: openings.

The robot positions in Figure 11(a) represent the start and goal configurations. In this case, the singleshot

method is more efficient because it only considers the part of the environment necessary for the query; thus,

ignoring obstacles irrelevant to the query. Roadniap methods, such as the PRM or OBPRM methods,

16

1"igure 12: CAD Model: (e) Flange (b) Part Removal

RESULTS FROM WALLS ENVINONlvlENT

Method ftodes Generated Executson Tires (sec) Solved Query

PRM 592 2311. 59 NO

OBPRM 199 5005 YES

SingieShot 352 508 YES

Table 3: Results from Walls Environmeni,

construct a roadmap spanning I he entire environment, regardless of the query. Notice the cirastic difFerence

in the single path generated by Singleshot, as shou n in Figure 11(b), and the roadmap generated by the

PRM, as shown in Figure 11(c). 11, can be seen from ihe roadmap graphs and the walls environment, data

in Table 3 thaC not, only can our singleshot method solve thc query, but, it can solve the narrow corridor

query significantly faster than the PRM and OBPRM methods. Note, the number of nodes generated by

singleshot represents ihe sum total number of nodes generated by each individual method; however, only

the nodes needed for the path are stored. Although the number of nodes generated by singleshot was 352,

the number of nodes retained by the singleshoi, architecture was only 8.

]7

4. 2 Complex CAD models

An important design criteria for complex mechanical systems is that certain parts are easy to service and/or

replace. Motion planning algorithms for testing such conditions automal, ically during the design process

would be a great aid to engineers, and have been the subject of previous work [7]. Such problems are ideal

for single shot methods since one typically only needs to solve the problem once in a given environment. .

The Flange. The flang environment consists of two objects; the flange and the elbow. The flange is

a fairly flat object with a hole in the cenler, it is fanned of 974 velicies and 990 triangles. Tire elbow is an

"L" shaped object, with one extreme wider than Lhe rest of the object, it is formed of 3525 vertices and 5306

triangles.

The start configuration corresponds to the elbow completely inside the flange (see Figure 12(a)), and

the goal configuration corresponds to the elbow outside the flange, so basically the problem is Lo remove

the elbow from the flange. Iiote that this problem is one with a very long and narrow corridor in O-space,

requiring a lengthy series of very small translations and rotations of the elbow to successfully remove it from

the flange.

Our singleshot architecture solved a version of the original problem with the elbow scaled down to . 98

of its original size. To solve the problem (i. e. , to find the path from the start, to the goal configuration)

the program ran 8 iterations, 7 of them using Lhe ISM method, and the last iteration the program used the

rotate-at-s local planner. It took 25165 sec for our singleshot architecture to solve the problem. Due to the

high complexity of this model and the i cry fine translations and rotations required to zemove the elbow from

the flange, probabilistic roadmap methods are not suitable for this query.

Engine Part Removal Environment. A problem solved by our meLhod involved a complex design

consisting of 15 parts, 14 of which were considered obstacles and the other the 'robot' (see Figure 12(b)).

The obstacles consist of many pipes encasing a few larger parts; in total, the models of these parLs consist

of 126, 970 vertices and 269, 712 triangles. The robot is another part consisting of some 2887 vertices and

5802 triangles. Originally, Lhe 'roliot' part is between the large object, and covered by several pipes. The

motion planning problem was to find a removal path for the 'robot' part. . Again, v:e note that a general

probabilistic roadmap method is not suitable for such a problem due to Lhe large size of the models involved

and the complexity of the C-space, much of which is irrelevanL to this particular query.

5 Conclusions aud Future Work

This paper proposes a framework for single shot motion planning that adaptively selects a planner whose

strengths match the current situation, and then switches to a different planner when circumstances change.

We have shown that, this strategy can be used lo solve challenging problems.

However, much work remains to fully develop the framework. For example, more diverse algorithms need

to be added to the algorithm bank which can handle specialized situations (e. g. , backing out of dead end,

turning a sharp corner, etc.). Also, more work is needed in adding additional nodes to our decision tree to

allow more precise matching of query pairs Lo algorithms.

Finally, even in our limited prototype system we have found it a very challenging task to select appropriate

parameters for the framework (c. g. , number of algorithms to run, how long to run them) and for the individual

algorithms in the bank (e. g. , iterations to run, how many conliguraLions to generate). Thus, if we hope Lo

exploit the full power of l, hc framework, it. is imperative thai, we develop automatic paranteter tuning methods.

When applied to algorithms in the hank, such methods would lead to self-adaptive algoriLhms.

Acknowledgement

I would hke to thank Nancy Amato, Daniel Vallejo, and the rest of the robotics group al, Texas AkM. The

collision detection library used in our code was Pat Xavier's C-Space Toolkit, [19]. GE provided us with

CAD models and Product Vtston, their CAD animation package.

References

(1) J. M. Ahuactzin and K. Gnpta. A motion planning based approach for inverse kinematics of redundant roboLs:

The kinematic roadmap. In Proc. IRZZ Int. Conf. Robot. ztntom. (IC'RA), pages 3609 — 3614, 1997.

19

[2] N. M. Amato, O. B. Bayazit, L. K. Dale, C, V. Jones, and D. Valiejo. Choosing good distance metrics and local

planners for probabilistic roadmap methods. In Proc. IEEE Iut. Conf. Robot. Autom. (ICRA), pages 630 — 637,

1998.

[3] N. M. Acnato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo. OBPRM: An obstacle-based PRM for 3D

workspaces. In Proc. Iot. Workshop ou Algorithmic Fouodotcons of Robotics (WAFR), pages 155-168, 1998.

[4] N. M. Amato and Y. Wu. A randomized roadmap method for path and manipulation planning. In Proc, IREE

Int. Conf. Robot. Autom. (ICRA), pages 113 — 120, Minneapolis, MN, April 1996.

[5] J. Barractuand and J. -C. Latombe. Rol&ot motion planning. A distributed representation approach. Iot. I
Iiobot. Res. , 10[6)c628 — 649, 1991.

[6] D. J. Challou, M. Gini, and V. Kumar. Parallel search algorithms for robot motion planning. In Proc. IREE

Iot. Conf. Robot. Autom. (ICRA), volume 2, pages 46 — 51, 1993.

[7] H. Chang and T. Y. Li. Assembly maintainability study with motion placuung. In Proc. IEEE Iot. Conf. Robot.

Astern. (ICRA), pages 1012 — 1019, 1995.

[8] B. R. Don ld. A search algorithm for motion planning with six degrees of freedom. Artif. IoteR. , 31(3):295 — 353,

1987.

[9] B. Glavina. Solving findpath by combination of directed and randomized search. In Proc. IREE lot. Conf.

Robot. Autors. . (ICRA), pages 1718 — 1723, 1990.

[10, ' D. Hsu, J-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. In Proc. IREE Iot.

Conf. Robot. Auiom. (ICRA), pages 2719 — 2726, 1997.

[11] Y. K. Hwang and N. Alcuja. Gross motion planning — a survey. A CM Computi ug Surveys, 24[3) c2'19-291, 1992.

[12] L. Ifavraki and J. C. Latombe. Rarcdorccized preprocessing of configuration space for fast, path planning. In Proc.

IREE Int. Conf. Robot. Autom. (ICIIA), pa es 2138 — 2145, 1994.

[13] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars. Probabilistic roadmaps for path plaguing in high-

dirnensional configuration spaces. IEEE Truss. Rolet 4uiocnot. , 12[4)c566 — 580, August 1996.

[14] J. C. Latom'be. Robot Mohoo Plooccing, Khcwer Academic Publisherb Boston, MA, 1991.

[15] M. Overmars. A random approach to path planninc. Technical Report RUU-CS-92-32, Computer Science,

Ui, recht, University, Tice Netherlands, 1992.

20

[16] M. Overmars and P. Svestka. A probabilistic learning approach to motion. planning. In Proc. Workshop on

Algorithmic I"onndations of Robotics, pages 19 — 37, 1994.

[17] J. R. Quinlan. C4. gi Progiomi for Machine learning. Morgan Kautfman, 1992.

[18] J. Reif. Complexity of the piano mover's problem and generalizations, In Proc. IEEE Sgmp. I'ouiiilatiors of

Computer Science (FOCSj, pages 421 — 427, 1979.

[19] P. G. Xavier and R, A. Laparge. A configuration space toolkit for automated spatial reasoning: Tectuucal results

and ldrd project final report. Tecluiical Report SAND97-0366, Sandia National Laboratories, 1997.

21

