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Abstract 

This paper pa'oposes an adaptive framework for smgle shot motiora planning (i. e. , planning avathout preprocessingh 

This framework can be used in any situation, and an particular, as suitable for crowded envaaonments in which the 

r obot 's free C space has narrow corridors. The main idea of the proposed fram eu ork is that one should adaptively select. 

a planner ashose strengths match the current situation, and then switch to a dafferent planner when circumstances 

change. This approach requires that we develop a set of planners, and characterize the strengths and aocaknesses of 

each planner in such a uay that uie can easily select the best planner for the current situation. Our eeperimentat 

results shou. that adaptive selection of different planning methods enables the algorithms to be used in a cooperative 

manner to successfully solve queries that none of them u auld be able to solve on their oun. 

I Introduction 

AuLomatic motion planning has applications in many areas such as robotics, virtual reality systems, and 

computer-aided design. Although many different motion planning inethods have been proposed, most are 

not used in practice since they are computationally infeasible except for some restricLcd cases, e. g. , when 

the robot has very few degrees of freedom (dof) [11, 14]. Indeed, Lhere is strong evidence that any complete 

planner (one that. is guarantccd to find a solution or determine that none exists) requires time exponential 

in the nuniber of dof of the rol&ot [18]. For this reason, attention has focussed on randomized or probabilistic 

motion planning methods. 

When many motion planning queries will be performed in the same environment, then it may be useful 

to preprocess thc environment with the goal of decreasing Lhe difficulty of' the sulis«quent queries. Examples 

are the roadmap moLion planning methods, iii which a graph encoding representative feasible paths is built 

(usually in the robot's configuration space ). Queries are then proc~seed by connecting Lhe initial and goal 

configurations to the roadmap, anil then finding a path in I;he roadmap bct. ween these tivo connection points. 

Recently, randomized or probabilistic roadmap methods (ptaMs) have gained much attention for problems 

involving high-dimensional C-spaces [I, 2, 3, 4, 10, 12, 13, 15, 16]. Typically, the vertices of these roadmaps 

are obtained by sampling the robot. 's configuration space. Many clitficult problems thaL could not be solved 



before have been solved by these methods. 

1. 1 'Single Shot' Motion Planning 

If the start and goal configurations are known o priori, and only one (or a very few) queries will be 

performed in a single environment, then it is generally not worthwhile to perform an expensive preprocessing 

stage, particularly if there are time constraints as in animation or virtual reality applications. In this case, a 

more directed search of the free configuration space is needed (e. g. , as opposed to roadmap methods which 

are designed to try to cover thc entire freespace). Motion planning methods that operate in this fashion are 

often called single shot methods. 

One of the first randomized planning methods was the Randomized Path Planner (RPP) of Barraquand 

and Latombe [5], which is a single shot planner. This method belongs to the general class of potential field 

methods, and uses random walks to attempt to try to escape local minima. In general, these methods can 

be quite effective when the C-space is relatively uncluttered, but there exist simple situations in which they 

can fail [6, 12]. 

Some success has been achieved in adapting the general PRM strategy to solve single queries by trying to 

restrict attention to 'useful' portioiis of the C-space [10, 16]. A related idea is to use a sample of free points 

to specify promising subgoals for planning [8, 9]. 

Single shot, methods are also useful in dynamic environments where obstacles in the workspace can 

move between queries. For example, roadmaps are rendered obsolete when an obstacle moves and must be 

regenerated or updated before a new query can safely be made. Finally, single shot methods may be used 

as 'local planners' to connect roadmap nodes in PRMs. 

1. 2 Our Strategy for Single Shot Queries 

Although much progress has been made, there are siill important. classes of problems for which good single 

shot solutions are needed. In particular, problems in crowded, or clul, t«red, environments in which the robot 

Thc configuration space (C-space) or the robot s ihe parametnc space representing all possible po. iiions and orientatsons 

or i. h robot m the worlcspace. 



must maneuver through tight spots. The difficulty for such problems arises because successful planning 

requires one to find free configurations in so-called narrow corridors in the robot's configuration space, 

which is not a strength of the previous single shot met, hods (particularly when the dimension of C-space is 

high). 

In this paper we propose a general framework for single shot planning which has been designed to tackle 

such problems. Briefiy, our approach (described in detail in Section 2) is based on l, he following rather 

obvious idea. 

Different planning methods have different strengths and weaknesses. Thus, ue should adaptively 

select a planner whose strengths match the cument situation, arid then we should switch to a 

different planner when circumstances change. 

Of course, as usual, the devil is in the details. This approach requires that we develop a set of planners, 

and characterise the strengths and weaknesses of each planner in such a way that vie can easily select the 

best planner I' or the current situation. 

For example, as we are particularly interested in problems involving narrow corridors in C-space, we need 

to develop methods for determining whether a configuration ( e. g. , the start or goal) is inside a narrow 

corridor, at the entrance of a narrow corridor, or in a relatively uncluttered area of freespare. 

Similarly, we must, identify/develop a set of planning methods and rank them according to their ability to 

navigate inside narrow corridors or in the free C-space, discover configurations in (nearby) narrow corridors, 

escape from narrow corridors, and determine subgoals for subsequent, subqueries. Note that wc do not require 

any planner to be very powerful, but only to perfomn well in some very specific situation. In some sense, 

this can be viewed as extending (he philosophy of the rnM methods to single shot planning. 

We have designed a framework for implementing this general idea, and results from our preliminary 

implementation have been very encouraging. In particular, our experimental results show that the adap- 

tive selection of differcnt planning methods enables ihe algorithms (o be used in a cooperative manner to 

successfully solve queries that none of the planners would be able to solve on their own. 
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Figure I: Single Shot Motion Planning Architecture. 

2 A Framework for Single Shot Motion Planning 

We propose a single shot motion planning archiiecture that will utilize a collection, or bank, of individual 

single shot motion planning algorithms (the individual planners are presented in Section 3). This architecture 

allows for the best suited algorithms to be executed for the current situation and enables Ihe algorithms to 

be used in a coopers!, ive manner. Anywhere from one to all of thr- algorithms in the bank may be executed 

during a single query. Figure I illustrates the structure of the architecture. 

2. 1 Evaluation Criteria 

To select the best, planner for the current situation, evaluation cri!, eris are needed to characterize: (i) i he local 

situs! ion of the start and goal configurations in the current query pair, (ii) the possible path requirements 

of the current query pair& and (iii) the strengths (and weaknesses) of each planner. The evaluation of 

configurations and query pairs is (he key aspect of our single shot architecture. It allov. s us to rharacterize 

the local environment of the current start and goal configurations and the approximate path requirements 



of the query pair to select the most appropriate algorithm to execute at any given time during the query 

process. Each algorithm in the bank has preset characteristics corresponding to those of the configurations 

which enable us to perform the matching of algorithm to configuration. 

In order for our single shot archil, ect, ure to be effective, the mosL fitting algorithm must be chosen at each 

sub-query. We accomplish this by using a hierarchical based decision tree scoring approach [17]. The decision 

tree approach begins by determining general, low-level characteristics of individual configurations and query 

pairs, such as the distance to the nearest obstacle, relaLive locations of' configurations in the query pair, or 

similarity of local environmenLs of configurations in the query pair. Next& higher level characteristics, such 

as an approximate path, are evaluated. An approximate path is constructed by connecting the start and 

goal configurations of a query pair with Lhe very fast straightline local planner using an extremely course 

step size. Based on the number of free configurations and the number of configurations in collision on this 

"approximate paCh, " we can compute such things as how many obstacles are bel, ween the query pair or 

the length of approximate path segments in collision. This information may help us to infer the type of 

planning required to solve Lhc query (i. e. , general obstacle avoidance, narrow corridor navigation). This 

implementation allows for an expandable tree in that the more nodes added to the tree, the more detailed 

and accurate our evaluation of Lhe configuration and query pair will be; thus& the more likely an appropriate 

algoriLhm will be matched vith the query pair. With our current very simple decision tree structure, we 

have had encouraging success in Lhc architecture's ability to select an appropriate algorithm to apply to Lhe 

current query pair. 

Each planning algorithm in the bank has characteristic values corresponding to how weII it performs in 

the situations distinguished above. When an algorithm is added to the bank, values are assigned to these 

characteristics to represent the optimal or "ideal" working situation for the algorithm. If two algorithms 

in the bank have the seine characteristic set, an additional, distinguishing, characteristic should be added. 

ThaL is, the evaluation criteria. should bc sufiicient, so that the algorithms in the bank can be uniquely ranked. 

for any situation. For example, we might rank each planner according to its ability to: 

Pl: navigate mside namow corridors or in thc I'ree C-spnce and/or escape l'rom narrow corridors, 



P2: discover configurations in narrow corridors, or 

P3: navigate efficiently in relatively free areas of C-space and/or determine subgoals for subsequent sub- 

queries. 

The ranking of the various planning meLhods is based on programmer expertise and empirical evidence. 

2. 2 Single Shot Planning 

The goal of the architecture is to grow a tree of paths from the initial start configuration towards the initial 

goal configuration& and vice versa. To begin, two query pairs are constructed. The first, query pair with 

its start configuration being the initial start configuration and its goal configuration being the initial goal 

configuration. The second query pair with its start configuration being the initial goal configuration and 

its goal configuration being the initial start configuration. Next, each of these query pairs is evaluated as 

described above. From the properties of each individual query pair, a set of best matching algorithms is 

selected based on the corresponding algorithm characteristics. All the algorithms selected by these two query 

pairs are then put into a priorily queue, with the best matching query pair/algorithm combinations at the 

top. At this point, the top N algorithms of the priority queue are executed on their respective query pairs. 

lf an algorithm fails to solve its query, iL returns any partial path it found and the architecture subsequently 

builds query pairs containing the last configuration on the returned partial path paired up with a sct of "goal' 

configurations, with the "goal" configurations being a set of configurations in the opposite tree. The process 

now repeats, returning to the top of the architecture. This continues until a predefined number of iterations 

is reached, or a path is found connecting the initial start and goal trees. This iuethod of algorithni hsndofi' 

allows cooperation ainong algorithms in solving the original query. This process of reevaluation allows for 

another algorithm set to be sclecL«d in response to any change in the local environment after the previous 

round of algorithms has been given a chance at, Lhe query. 



3 Single Shot Algorithm Bank 

Ideally, the algorithm bank should contain at least one method that is good at planning in any possible 

situation. Noi, e thai, we do not expect any of the algorithms to be good in all situations. Instead, our goal is 

i. o include a diverse set of algorithms in the bank so thai, at least one of them will perform well in the current 

situation. Thus, it is not the individual planners, but their execution in concert that. gives our approach its 

diversity and power. 

In this section we bricfly describe the individual single shot algorithms available in our prototype imple- 

ill e lit a I lo Ii. 

3. 1 Simple 'Local Planning' Methods 

The first algorii, lans in our algorithm bank are methods thai are commonly used in pnMs as local planners. 

That is, they are relatively simple, deterministic methods that are fast but not very powerful. Thus, these 

planners are best, used when C-space is uncluttered, although i, he A -like methods can be used in slightly 

more crowded situations. 

The particular methods currently in our bank are: 

~ straight-line in C-space 

~ roi, ate-ut-s plaiiners (for rigid bodies) 

~ simple A'-like planners 

All methods are described in detail in [2]. Briefly, ihe rotate-ai-s planner first translates to an intermedial, e 

configuration c', then rotates to the goal's orientation, and then translates to ihc goal; the parameter s 

represents the fractional part of the translational distance between ihe start and the goal thai, the robot 

first translates. The A"-like planners generate a limii, ed number of candidate neighbor nodes snd then select 

among them in a deterministic fashion. 



3. 2 Iterative Translation Method (ITM) anfI Iterative Rotation Method (IRM) 

The objective of the ITM method is to get as far as possible from the start configuration using only 

translation. An outline of the method is presen(, ed in Figure 2. 

ITN(st zt. , goal( ( 
Add start to path: 
previous - t t; 
p*evnir - Pindaandomnirection()i 
Fo ' - I to nlteratto 

T y to use prevDir to rind a new fg newcfg 
from pre ious th t is farth f om st rt; 
If th t ts not pose bl try to ft d new 
r do direction s h tlat the n Iu newefg 
from previous f ee and f th t from statti 
Add Cfg to Path; 
previous - Cfgi 

f it zs not po. bl Lo find dom 
dtrectton h that the ne fg fro m pre 
is free, 
th return Path: 

ret r P th; 

Figure 2: Iterative Translation Method (ITM). 

The IRM method is completely analogous (. o ITM, with the only difierence being IRM tries (o get far 

from the start configuration using only rotations. 

3. 3 Random Walk Method (RWM) 

This method performs a random v alk from a given start configuration. 

An outline of the method is presented in Figure 3. 

Rwje(start, gos. li( 
Add start to Path; 
previous = start; 
For i = 1 to prterations ( 

Find a random free cfg newef'g 
close to previous; 

Add newcfg to Path; 
previous = newCfg, 

If it is not possible to find a random 
free cfg close t. o previous 

then zet. urn Path; 

return Path; 
j 

Figure fn Random Walk Method (RWM). 



3. 4 First Intersection Method (FIM) 

The idea behind FIM is to try to go directly from (. he start configuration to the goal configuration. If that 

is not possible because of collision with an obstacle, then this method tries to go around the obstacle. 

An outline of the method is presented in Figure 4, and an example of FIM can be seen in Figure 5. 

FIN(start, goal)( 
If it is possible to go directly from sCart 
to goal using a straightline local planner, 
then reCurn the path from start to goal; 

else 
ury to go directly from start to goal 
using a straightline local planner, and 

Find the first obstacle in collision 
obstcollision; 
Continue until there is no collision with 
that obstacle; 
save the last free cfg beforecfg before 
collide with obstcollision; 
save the first free cfg aft. ercfg after 
collide with obstcollision; 
fir tpath = path from st. art to beforeCfg; 

Gererate free cfgs around obstcollision; 
connect those cfgs co construct a roadmapt 
If it is possible to cornecc beforecfg Lo 
afcercfg using that roadmap 

secondpath = path from beforecfg to goal 
Path - firstpath + secondpath; 
return Path; 

else 
returr firstPath; 

Figurc 4: First Intersection Method (FIMi. 

~ second Fath 

~ ~ 

erst path 

beforeCfg 
SCan 

Obstacle 

afterCfg 

Goat 

~ ~ ~ ~ 
~ ~ ~ 

&ee cfgs 

Figure 5: Example of First Intersection Method iFIMi. 
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3. 5 Iterative Spread Method (ISM) 

A more specialized planner included in the algorithm bank is the iterative spread method ()sM). The 1SM 

planner was designed to operate in cluttered C-Space, and in particular in narrow C-space corridors where 

large movements are not possible. Intuitively, it is good at 'feeling' its way along the corridor, and spreading 

out of corridor openings. These characteristics make the )sM a good candidate to be used when another 

algorithm in the bank finds itself at the entrance, or in the interior, of a narrow passage in C-Space. 

The general idea of )slvi is to 'grow' or 'spread'ia component of connected configurations away from the 

start configuration, and to do so towards the goal configuration when possible. An outline of the method 

is presented in Figure 6. 

INN(start. , goal) { I. fringe - )start). FRINGE - )start, goal) 
for i I to alters 
fringegpread = null 
for each fcfg in fringe 

generate n s configs close to fcfg 
and add them to frlrigespread 

fringe' = n fs configs iii fringeap ead 
that are fartiiest from thc start 

fringe = n cg configs in fringe' 
that are closest to the goal 

FRINGE = FRINGE fringe 
) I. try to connect start I goal using conflgs 

in FRINGE as intermediate nodes 
) 

Figure 6i Iterative Spread Method (ISM). 

At the beginning of each iteration, a set of fringe configurations of the current component is known. For 

each f cfg in fringe, we generate uniformly at, random nm nearby configurations (so we can likely connect 

)hem using a simple local planner such as those mentioned in Section 3. 1). The fringe set for the next 

iteration is a subset of the current iterations fringegpread sc), ; it is first biased towards configurations far 

from )he start, and then towards configurations close to the goal. (Distances are compu)ed based on some 

C-space metric [2]. ) 

After the itera)ive process, s, path from the start to the goal is sought. which uses intermediate config- 

urations from all previous fringe sets. This is implemented by passing all iringe configurations anil the 

start and goal to the coniieciion phase of our OBFBM probabilistic roadmap planning algorithm [3]. 

11 



3. 6 Recursive Midpoint Method (RMM) 

Another single shot motion planning method included in the algorithm bank is the recursive midpoint method 

(RMM). The ideal operation oi' RMM is in un-cluttered C-Space requiring navigation around obstacles and 

general free space navigation. RMM will also help identify problem areas in C-Space such as narrow corridors. 

This method will possibly find the entrance and exit to the corridor, bu(, will not be able to navigate through 

it. These characteristics make RMM ideal for our proposed single shot architecture. It can get a path started 

and find where the regions requiring an algorithm with a specific strength are needed, and hand control over 

to them at this point. 

RMM effectively breaks down the initial motion planning query into recursively smaller queries until each 

sub-query results in a direct collision free connection. The final path is then only the traversal of each 

sub-path in the appropriate sequence. An outline of RMM is given in Figure 7 and an exainple of RMM can 

be seen in Figure 8. 

asm(scarc, goal) 
if ieaneonrect(start, goal)) 

then add edge (start, goal) to path 
return 

else 
mpt - midpointietart, goal) 
if (Incollieton(mpt, ohetacleel) 

then raove mpt 'away' unttl no colllelot! 
if (Caneonnect(start. , mpt)) 

then add edge (et. rt, mpt) to path 
else Rmm(etart, mpt) 

tf (canconn ct (mpt. , goal) ) 

then add edge (mpt, goal) to path 
else Rmm(mpt, goal) 

) 

Figure 7: Recursive Midpoint Method (RMM). 

The basic idea is that the midpoint mpt of the current start and goal configurations will serve as a 

subgoal in the query. If the mpt configuration is in collision with the obs(acies in the environment, then RMM 

will try to transform (he mpt to a free configuration and then use that as the subgoal. This transformation 

can be done in a number of ways. One simple s(rategy is io test configurations on a line in C-space that 

passes by the mpt and is orthogonal to the line between the start and goal. 

To increase the likelihood that connections can be made, RMM actually works with 'clouds' of configu- 

rations for the start, goal, and mpt. These clouds arc sets of configurations close to the configuration of 

12 
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Figure 8: Example of Recursive Midpoint Met, hod (RMM). 

interest, and are generated in the same manner as the fringeSpread configurations in tsM. Note that all 

configurations in a cloud can be connected together& either directly or indirectly. Thus, the canconnect tests 

in RMM simply test if any configuration in one cloud can be connected with any configuration in the other 

cloud. 

4 Experimental Results 

In this section we examine the perfonnance of our single shot planning framework. We first consider queries 

in some relatively simple environments whose successful solution requires the path to pass through different 

types of regions. We show that our framework solves these queries by adaptively selecting an algorithm 

to execute which is suitable for the current situation. We also consider some queries arising in some real 

problems involving complex CAD models of mechanical designs. 

4. 1 Artificial Environments 

Environment l. Our first environment consisted of three blocks, two parallel t, o each ot, her, and I, hc third 

perpendicular to the other two. The robot is a smaller block that barely fits in the corridor between the 

parallel blocks. (See Figure 9(a). ) 

Alt, hough this environment, is very simple, it contains regions in which different planning methods are 
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Figure 9. Test Environment 1: (a) three-dimensional snapshot, (b) schematic of algorithm regions and path. 

ENVIRONMENT 1 RESULTS 

Method Nodes Ge»crated Eeecutto» 1'ts»e (sec) Solved Query 

OBPRM 745 28072 YES 

Singlcghot 309 597 YES 

Table 1: Environment 1 Results 

needed. In particular, it has a narrow corridor which requires delicate maneuvering (e. g. , IsM, ITM, IRM, 

RWM), regions in which more global navigation is needed (e. g. , RMM, FIM), and relatively free regions (e. g. , 

thc local planners). These regions are depicted with ovals in Figure 9(b). 

The query we consider has the start configuration in the corridor between the parallel blocks and 

the goal configuration on l, hc far side of the perpendicular block. This query involves several subs(cps i, o 

successfully find a path, see Figure 9(b) for a schematic representation of a path found by our architecture. 

This example shows that our architecture has thc ability to adaptively select an algorithm suitable for thc 

current, situation. Moreover, it. does so in a relatively efficient marnier. As can be seen from the results shown 

14 



(a) 

'Cts 
raa 

~ RMM Path stot 

Wtnfirg 

aigoritiun 
haodoff 

ISM Path 

(b) 

Figure 10: Test Envirornnent 2: (a) three-dimensional snapshot, (b) schematic of algoriLhm regions and 

path. 

in Table 1, our singleshot architect, ure generated fewer nodes and solved the query in only a small fraction 

of the time spent by OBPRM. In particular, isM ran for 183 seconds and generated 196 free configurations 

in the narrow corridor, and then RMM ran for 414 seconds and generated 113 free configurations to move 

around the perpendicular block. 

Environment 2. Our second test environment consisted of three identical blocks. The three blocks are 

parallel to one another and slightly ofiseL in a relatively tight fii, ting bounding box. The robot was a smaller 

block that, barely fits in i, he corridor bencaLh the middle block, while there is a bii, more clearance available 

between the top and the middle blocks. Again, although this environment is very simple, it contains regions 

in which different planning methods are needed. (See Figure 10(a). ) 

The querv we consider has the start configuration in the lower right hand corner of the bounding box, 

and the goal configuration in the lower left in (lie narrow corridor under the middle block. See Figure 10(b) 

for a schematic representation of the path found by our architecture. 

Results from Environtneni, 2 are shown in Table 2. In this case, ILMM ran for 86 seconds and generated 



ENVIRONMENT 2 RESULTS 

3fetliod Nodes Gerserated Evecvnoa Tirae (sec) Solved query 

OBPRM 670 39569 NO 

SingleShot 557 326 YES 

Table 2: Environment 2 Results 

(a) 

(b) 

(c) 

Figure 11: Walls Environment: (a) Enviromnent (b) Path generated by Singleshot (c) Roadmap generated 

by PRM 

197 free configurations, and 5hen IsM ran for 240 seconds and generated 360 free configurations. As can be 

seen, the UBPRM planner generated 670 nodes and ran for 39569 seconds, and still hadn't solved this query. 

Walls Environment. The walls environment, as seen in Figure 11(a), consists of a series of 4 parallel 

walls, each with only a small hole cut out, creating a series of narrow corridors. For this environment, 

our query only requires thc robot (the long, thin stick) to traverse through one of these narrov: openings. 

The robot positions in Figure 11(a) represent the start and goal configurations. In this case, the singleshot 

method is more efficient because it only considers the part of the environment necessary for the query; thus, 

ignoring obstacles irrelevant to the query. Roadniap methods, such as the PRM or OBPRM methods, 

16 



1"igure 12: CAD Model: (e) Flange (b) Part Removal 

RESULTS FROM WALLS ENVINONlvlENT 

Method ftodes Generated Executson Tires (sec) Solved Query 

PRM 592 2311. 59 NO 

OBPRM 199 5005 YES 

SingieShot 352 508 YES 

Table 3: Results from Walls Environmeni, 

construct a roadmap spanning I he entire environment, regardless of the query. Notice the cirastic difFerence 

in the single path generated by Singleshot, as shou n in Figure 11(b), and the roadmap generated by the 

PRM, as shown in Figure 11(c). 11, can be seen from ihe roadmap graphs and the walls environment, data 

in Table 3 thaC not, only can our singleshot method solve thc query, but, it can solve the narrow corridor 

query significantly faster than the PRM and OBPRM methods. Note, the number of nodes generated by 

singleshot represents ihe sum total number of nodes generated by each individual method; however, only 

the nodes needed for the path are stored. Although the number of nodes generated by singleshot was 352, 

the number of nodes retained by the singleshoi, architecture was only 8. 

]7 



4. 2 Complex CAD models 

An important design criteria for complex mechanical systems is that certain parts are easy to service and/or 

replace. Motion planning algorithms for testing such conditions automal, ically during the design process 

would be a great aid to engineers, and have been the subject of previous work [7]. Such problems are ideal 

for single shot methods since one typically only needs to solve the problem once in a given environment. . 

The Flange. The flang environment consists of two objects; the flange and the elbow. The flange is 

a fairly flat object with a hole in the cenler, it is fanned of 974 velicies and 990 triangles. Tire elbow is an 

"L" shaped object, with one extreme wider than Lhe rest of the object, it is formed of 3525 vertices and 5306 

triangles. 

The start configuration corresponds to the elbow completely inside the flange (see Figure 12(a)), and 

the goal configuration corresponds to the elbow outside the flange, so basically the problem is Lo remove 

the elbow from the flange. Iiote that this problem is one with a very long and narrow corridor in O-space, 

requiring a lengthy series of very small translations and rotations of the elbow to successfully remove it from 

the flange. 

Our singleshot architecture solved a version of the original problem with the elbow scaled down to . 98 

of its original size. To solve the problem (i. e. , to find the path from the start, to the goal configuration) 

the program ran 8 iterations, 7 of them using Lhe ISM method, and the last iteration the program used the 

rotate-at-s local planner. It took 25165 sec for our singleshot architecture to solve the problem. Due to the 

high complexity of this model and the i cry fine translations and rotations required to zemove the elbow from 

the flange, probabilistic roadmap methods are not suitable for this query. 

Engine Part Removal Environment. A problem solved by our meLhod involved a complex design 

consisting of 15 parts, 14 of which were considered obstacles and the other the 'robot' (see Figure 12(b)). 

The obstacles consist of many pipes encasing a few larger parts; in total, the models of these parLs consist 

of 126, 970 vertices and 269, 712 triangles. The robot is another part consisting of some 2887 vertices and 

5802 triangles. Originally, Lhe 'roliot' part is between the large object, and covered by several pipes. The 

motion planning problem was to find a removal path for the 'robot' part. . Again, v:e note that a general 



probabilistic roadmap method is not suitable for such a problem due to Lhe large size of the models involved 

and the complexity of the C-space, much of which is irrelevanL to this particular query. 

5 Conclusions aud Future Work 

This paper proposes a framework for single shot motion planning that adaptively selects a planner whose 

strengths match the current situation, and then switches to a different planner when circumstances change. 

We have shown that, this strategy can be used lo solve challenging problems. 

However, much work remains to fully develop the framework. For example, more diverse algorithms need 

to be added to the algorithm bank which can handle specialized situations (e. g. , backing out of dead end, 

turning a sharp corner, etc. ). Also, more work is needed in adding additional nodes to our decision tree to 

allow more precise matching of query pairs Lo algorithms. 

Finally, even in our limited prototype system we have found it a very challenging task to select appropriate 

parameters for the framework (c. g. , number of algorithms to run, how long to run them) and for the individual 

algorithms in the bank (e. g. , iterations to run, how many conliguraLions to generate). Thus, if we hope Lo 

exploit the full power of l, hc framework, it. is imperative thai, we develop automatic paranteter tuning methods. 

When applied to algorithms in the hank, such methods would lead to self-adaptive algoriLhms. 
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