View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Texas A&M Repository

An Adaptive Framework for ‘Single Shot’ Motion Planning®
by

Christopher V. Jones

Submitted to the
Office of Honors Programs and Academic Scholarships
Texas A&M University
in partial fulfillment of the requirements for

1998-99 UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS PROGRAM
April 15, 1999

Approved as Lo style and content by:
Nancy Amato

Department of Computer Science

Susanna Finnell, Executive Director

Honers Programs and Academic Scholarships

“Fellows Group: Engineering T

Craes

*This research supported in part by NSF CAREER Award CCR-9624315 {with REU Supplement), NSF Grants 11S-9619850

(with REU Supploment), EIA-9505823, and ELIA-9810937, and by the Texas Higher Bducation Coordinating Board under grant

ARP.036327-017.

https://core.ac.uk/display/6085887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This paper proposes an adaptive framework for single shot motion planning (i.e., planning without preprocessing).
This framework can be used in any situation, and in particular, is suilable for crowded environments in which the
robot’s frec C-space has narrow corridors. The main idea of the propased framework is that one skould adaptively select
o planner whose strengths match the current situation, and then switch to a different planner when circumstances
change. This approach requires that we develop a set of planners, and characterize the sirengths and weaknesses of
cach planner in such a way that we can casily select the best planner for the current situation. Our eaperimental
results show that adaptive selection of different planning methods enables the algorithms to be used in a cooperative

manner io successfully solve queries that none of them would be able to solve on their own.

1 Introduction

Automatic motion planning has applications in many areas such as robotics, virtual reality systems, and
computer-aided design. Although many different motion planning methods have been proposed, most are
not nsed in practice since they are computationally infeasible cxcept for some restricted cases, e.g., when
the robot has very few degrees of freedom (dof) [11, 14]. Indeed, there is strong evidence that any complete
planner (one that is guaranteed to find a solution or determine that none exists) requires time cxponential
in the number of dof of the robot [18]. For this reason, attention has focussed on randomized or probabilistic
motion planning methods.

When many motion planning queries will be performed in the same cnvironment, then it may be useful
to preprocess the environment with the goal of decreasing the difficulty of the subsequent queries. Examples
are the roadmoap motion planning methods, in which a graph cncoding representative feasible paths is built
(usually in the robot’s configuration space?). Queries are then processed by connecting he initial and goal
configurations to the roadmap, and then finding a path in the roadmap between these two conneclion points.
Recently, randomized or probabilistic roadmap methods (PRMs) have gained much attention for problems
involving high-dimensional C-spaces [1, 2, 3, 4, 10, 12, 13, 15, 16]. Typically, the vertices of these rondmaps

are obtained by sampling the robot’s configuration space. Many difficult problems that could not be solved

before have been solved by these methods.

1.1 ‘Single Shot’ Motion Planning

If the start and goal configurations are known a priori, and only one (or a very few) queries will be
performed in a single environment, then it is generally not worthwhile to perform an expensive preprocessing
stage, particularly if there are time constraints as in animation or virtual reality applications. In this case, a
more directed search of the free configuration space is needed (e.g., as opposed to roadmap methods which
are designed to try to cover the entire freespace). Motion planning methods that operate in this fashion are
often called single shot methods.

One of the first randomized planning methods was the Randomized Path Planner (RPP) of Barraquand
and Latombe [5], which is a single shot planner. This method belongs to the general class of potential field
methods, and uses random walks to attempt to try to escape local minima. In general, these methods can
be quile effective when the C-space is relatively uncluttered, but there exist simple situations in which they
can fail {6, 12].

Some success has been achieved in adapting the general PRM stralegy to solve single queries by trying to
restrict attention to ‘useful’ portions of the C-space [10, 16]. A related idea is to use a sample of free points
to specify promising subgoals for planning [8, 9].

Single shot methods are also useful in dynamic environments where obstacles in the workspace can
move between queries. For example, roadmaps are rendered obsclete when an obstacle moves and must be
regenerated or updated before a new query can safely be made. Finally, single shot methods may be used

as ‘local planners’ to connect roadmap nodes in PRMs.

1.2 Our Strategy for Single Shot Queries

Although much progress has been made, there are still important classes of problems for which good single

shot solutions are needed. In particular, problems in crowded, or cluitered, environments in which the robot

2The configuration space (C-space) of the robot is the parametric space representing all possible positions and orientations

of the robot in the workspace.

must maneuver through tight spots. The difficulty for such problems arises because successful planning
requires one to find free configurations in so-called narrow corridors in the robot’s configuration space,
which is not a strength of the previous single shot methods (particularly when the dimension of C-space is
high).

In this paper we propose a general framework for single shot planning which has been designed to tackle
such problems. Briefly, our approach (described in detail in Section 2) is based on the following rather

obvious idea:

Different planning methods have different strengths and weaknesses. Thus, we should adaptively
select o planner whose strengths match the current situation, and then we should swilch lo a

different planner when circumstances change.

Of course, as usual, the devil is in the details. This approach requires that we develop a set of planners,
and characterize the strengths and weaknesses of each planner in such a way that we can easily select the
best planner for the current situation.

For example, as we are particularly interested in problems involving narrow corridors in C-space, we need
to develop methods for determining whether a configuration (e.g., the start or goal) is inside & narrow
corridor, at the entrance of a narrow corridor, or in a relatively uncluttered area of freespace.

Similarly, we must identify /develop a set of planning methods and rank them according to their ability to
navigate inside narrow corridors or in the free C-space, discover configurations in (nearby) narrow corridors,
escape from narrow corridors, and determine subgoals for subsequent subqueries. Note that we do not require
any planner to be very powerful, but only to perform well in some very specific situation. In some sense,
this can be viewed as extending the philosophy of the PRM methods to single shot planning.

We have designed a framework for implementing this general idea, and results from our preliminary
implementation have been very encouraging. Tn particular, our experimental results show that the adap-

tive selection of differcut pl thods enables the algorithms to be used in a cooperative manner to

successfully solve queries that none of the planners would be able to solye on their own.

Evaluate Properties of
desired Query Pairs

Properties Bank

Patb Found, Done!

Path

Figure 1: Single Shot Motion Planning Architecture.
2 A Framework for Single Shot Motion Planning

We propose a single shot motion planning architecture that will utilize a collcetion, or bank, of individual
single shot motion plamning algorithms (the individual planners are presented in Section 3). This architectnre
allows for the best suited algorithms to be executed for the current situation and enables the algorithms to
be used in a cooperative manner. Anywhere from one to all of the algorithms in the bank may be executed

during a single query. Figure 1 illustrates the structure of the architecture.

2.1 Evaluation Criteria

To select the best planner for the current situation, evaluation crileria are needed to characterize: (i) the local
situalion of the start and goal configurations in the current query pair, (ii) the possible path requirements
of the current query pair, and (iii) the strengths (and weaknesses) of each planner. The evaluation of
configurations and query pairs is the key aspect of our single shot architecture. It allows us to characterize

the local environment of the current start and goal configurations and the approximate path requirements

of the query pair to select the most appropriate algorithm to execute at any given time during the query
process. Each algorithm in the bank has preset characteristics corresponding to those of the configurations
which enable us to perform the matching of algorithm to configuration.

In order for our single shot architecture to be effective, the most fitting algorithm must be chosen at each
sub-query. We accomplish this by using a hierarchical based decision tree scoring approach [17]. The decision
tree approach begins by determining general, low-level characteristics of individual configurations and query
pairs, such as the distance to the nearest obstacle, relative locations of configurations in the query pair, or
similarity of local environments of configurations i;rthe query pair. Next, higher level characteristics, such
as an approximate path, are evaluated. An approximate path is constructed by connecting the start and
goal configurations of a query pair with the very fast straightline local planner using an extremely course
step size. Based on the number of free configurations and the number of configurations in collision on this
“approximate path,” we can compute such things as how many obstacles are between the query pair or
the length of approximate path segments in collision. This information may help us to infer the type of
planning required to solve the query (i.e., general obstacle avoidance, narrow corridor navigation). This
implementation allows for an expandable tree in that the more nodes added to the tree, the more detailed
and accurate our evaluation of the configuration and query pair will be; thus, the more likely an appropriate
algorithm will be matched with the query pair. With our current very simple decision tree structure, we
have had encouraging success in the architecture’s ability to select an appropriate algorithm to apply to the
current query pair.

Each planning algorithm in the bank has characteristic values corresponding to how well it performs in
the situations distinguished above. When an algorithm is added to the bank, values are assigned to these
characteristics to represent. the optimal or “ideal” working situation for the algorithm. If two algorithms
in the bank have the same characteristic set, an additional, distinguishing, characteristic should be added.
That is, the evaluation criteria should be sullicient so that the algorithms in the bank can be uniquely ranked

for any situation. For example, we might rank each planner according to its ability to:

P1: navigate inside narsow corridors or in the free C-space and/or escape from narrow corridors,

P2: discover configurations in narrow corridors, or

P3: navigabe cfficiently in relatively free areas of C-space and/or determine subgoals for subsequent sub-

queries.

The ranking of the various planning methods is based on programmer expertize and empirical evidence.

2.2 Single Shot Planning

The goal of the architecture is to grow a bree of paths from the initial start configuration towards the initial
goal configuration, and vice versa, To begin, two query pairs are constructed. The first query pair with
its start configuration being the initial start configuration and its goal configuration being the initial goal
configaration. The second query pair with its start configuration being the initial goal configuration and
its goal configuration being the initial start configuration. Next, cach of these query pairs is evaluated as
described above. From the properties of each individual query pair, a set of best matching algorithms is
selected based on the corresponding algorithm characteristics. All the algorithms selected by these two query
pairs are then put into a priority queue, with the best matching query pair/algorithm combinations at the
top. At this point, the top N algorithms of the priority queue are executed on their respective query pairs.
If an algorithm fails to solve its query, il returns any partial path it found and the architecture subsequently
builds query pairs containing the last configuration on the returned partial path paired up with a sel of “goal”
configurations, with the “goal” configurations being a set of configurations in the opposite tree. The process
now repeats, reburning to the top of the architecture. This continues until a predefined number of iterations
is reached, or a path is found conmecting the initial start and goal trees. This method of algorithm handoff
allows cooperation among algorithms in solving the original query. This process of reevaluation allows for
another algorithm set. to be selected in response to any change in the local environment after the previous

round of algorithms has been given a chance at the query.

3 Single Shot Algorithm Bank

Ideally, the algorithm bank should contain at least one method that is good at planning in any possible
situation. Nole that we do not expect any of the algorithms to be good in all situations. Tnstead, our goal is
to include a diverse set of algorithms in the bank so that at least one of them will perform well in the current
situation. Thus, it is not the individual planners, but their execution in concert that gives our approach its
diversity and power.

In {his section we bricfly describe the individual single shot algorithms available in our prototype imple-

mentation.

3.1 Simple ‘Local Planning’ Methods

The first algorithms in our algorithm bank are methods that are commonly used in PRMs as local planners
That is, they are relatively simple, deterministic methods that are fast but not very powerful. Thus, these
planners are best used when C-space is uncluttered, although the A*-like methods can be used in slightly
more crowded situations.

The particular methods currently in our bank are:
o straight-line in C-space

o rotate-at-s planners (for rigid bodies)

o simple A”like planners

ANl methods are described in detail in [2]. Briefly, the rotate-al-s planner first translatcs to an intermediate
configuration <!, then rotates to the goal’s orientation, and then translates to the goal; the parameter s
represents the fractional part of the translational distance between the start and the goal that the robot
first translates. The A-like planners generate a limited number of candidate neighbor nodes and then select

among them in a determinisiic fashion.

3.2 Iterative Translation Method (ITM) and Iterative Rotation Method (IRM})

The objective of the ITM method is to get as far as possible from the start configuration using only

translation. An outline of the method is presented in Figure 2.

I-m(scaxt,qaau(
xt to pat
Drev)nus - stare:
prevDir = FindRandemDirection():
For i - 1 to nIterations
Try to use prevDir to find a new cfg newCfgy
from previous that is farthes from start;

1f that is not possible try to find a new
random direction such that the new cfg newCfg
from previous is free and farthest from start;
add newCfg to Path:

previous - mewcfg;

TE it is not possible to find a random
direction such that the new cfg from previous
is free,

then return Path;

¥
return Path;:
¥

Figure 2: lterative Translation Method (ITM).

The IRM method is completely analogous to ITM, with the only difference being IRM tries to get far

from the start configuration using only rotations.

3.3 Random Walk Method (RWM)

This method performs a random walk from a given start configuration.

An outline of the method is presented in Figure 3.

RWM (start,goal) [
Add stert to Path;
previous - start;
For i = 1 to nIteratioms [
Find a random free cfg newCfg
close to previous;

Add newcfg to Path;
previous - newCig;

If it is not possible to find a random
free cfg close tc previous
then return Path;

1
return Path;

Figure 3: Random Walk Method (RWM),

3.4 First Intersection Method (FIM)

The idea behind FIM is to try to go directly from the start configuration to the goal configuration. If that
is not possible because of collision with an cbstacle, then this method tries to go around the obstacle.

An outline of the method is prescnted in Figure 4, and an example of FIM can be scen in Figure 5.

Fm(s:an goal) [
it is possible to go directly from start
tu goal using a straightline local planner,
then return the path from start to goal;

else
Try to go directly from start to goal
ueing a straightline local planner, and

Find the first obstacle in collision
obstcollision;

Continue until there is no collision with
that obetacle;

save the last free cfg beforecfg before
collide with obstcolllsion

Save the first free cfg aftercfg after
collide with obstCollision;

firstPath = path from start to beforsCfg;
Generate free cfgs around cbstcollision;
Connect those cfgs to construct a roadmap;
If it ic possible to comnect beforecfg to
aftercfg using that roadmap

secondPath - path from beforecfy to goal
Path = firstPath + secondPath;
return Path;

else
return firstPath;

Figure 4; First Tntersection Method (FIM)

/ second Path

Obstacle
]

firstPath P

—
afterCfg
beforeCly
Start
e o L4
e © o
o o
free cfgs

Figure 5: Example of First Intersection Method (FIM).

3.5 Iterative Spread Method (ISM)

A more specialized planner included in the algorithm bank is the iterative spread method {15M). The 15M
planner was designed to operate in cluttered C-Space, and in pariicular in narrow C-space corridors where
large movements are not possible. Intuitively, it is good at ‘feeling’ its way along the corridor, and spreading
out of corridor openings. These characteristics make the 1M a good candidate to be used when another
algorithm in the bank finds itself at the entrance, or in the interior, of a narrow passage in C-Space.

The general idea of I15M is to ‘grow’ or ‘spread’a component of connected configurations away from the
start configuration, and to do so towards the goal configuration when possible. An outline of the method

is presented in Figure 6.

IsM{start,goal) {
1.fringe = {start). FRINGE = (start,goal}
for i=1 to nIters
fringespread = null
for each fofg in frinmge
generate n_s configs close to fcfg
and add them te fringespread

fringe’ - n_fs configs in fringespread
that are farthest from the starc
fringe - n_cg configs in fringe’

at are closest to the goal
FRINGE = FRINGE + fringe

2.try to connect start & goal using configs
in FRINGE as intermediate nodes

Figure 6: Tterative Spread Mcthod (ISM).

At the beginning of each iteration, a set of fringe configurations of the current component is known. For
cach fcig in fringe, we generate uniformly at random n s nearby configurations (so we can likely connect
them using a simple local planner such as those mentioned in Section 3.1). The fringe set for the next
iteration is a subset of the current iterations fringeSpread sei; it is first biased towards configurations far
from the start, and then towards configurations close to the goal. (Distances are computed based cn some
C-space metric [2].)

After the iterative process, a path from the start to the goal is soughl which uses intermediate config-
urations from all previous fringe sets. This is implemented by passing all fringe configurations and the

start and goal to the connection phase of our OBPRM probabilistic roadmap planning algorithm [3}.

3.6 Recursive Midpoint Method (RMM)

Another single shot motion planning method included in the algorithm bank is the recursive midpoint method
(rMm). The ideal operation of RMM is in un-cluttered C-Space requiring navigation around obstacles and
general free space navigation. RMM will also help identify problem areas in C-Space such as narrow corridors.

This method will possibly find the entrance and exit to the corridor, but will not be able to navigate through

it. These characteristics make MM ideal for our proposed single shot ar e. Tt can get a path started
and find where the regions requiring an algorithm with a specific strength are needed, and hand control over
to them at this point.

RMM effectively breaks down the initial motion planning query into recursively smaller queries until each
sub-query results in a direct collision free connection. The final path is then only the traversal of each
sub-path in the appropriate sequence. An outline of RMM is given in Figure 7 and an example of RMM can
be seen in Figure 8.

RMM(starc,goal) {
if (cancomnect (start,goall)
then add edge (start,goal} to path
return
else
mpt = midpoint(start,goal)
if (InCollision(mpt,obstacles))
then move mpt ‘away‘ until mo collision
if (CanConnect (start,mpt})
then add edge (start,mpt) to path
else RMM(start,mpth
if (CanConnect(mpt,goal))
then add edge (mpt,goal) to path
else RMM({mpt,goal)

Figure 7: Recursive Midpoint Method (RMM).

The basic idea is that the midpoint mpt of the current start and goal configurations will serve as a
subgoal in the query. If the mpt configuration is in collision with the obstacles in the environment, then RMM
will try to transform the mpt to a free configuration and then use that as the subgoal. This transformation
can be done in a number of ways. One simple sirategy is to test configurations on a line in C-space that
passes by the mpt and is orthogonal to the line between the start and goal.

To increase the likelihood that connections can be made, RMM actually works with ‘clouds’ of configu-

rations for the start, goal, and mpt. These clouds arc sets of configurations close to the configuration of

Start Mpt Goal

Figure 8; Example of Recursive Midpoint Method (RMM).

interest and are generated in the same manner as the fringeSpread configurations in 1sM. Note that all
configurations in a cloud can be connected together, either directly or indirectly. Thus, the CanConnect tests
in RMM simply test if any configuration in one cloud can be connected with any configuration in the other

cloud.

4 Experimental Results

In this section we examine the performance of our single shot planning framework. We first consider queries
in some relatively simple environments whose successful solution requires the path to pass through different
types of regions. We show that our framework solves these queries by adaptively selecting an algorithm
to execuie which is suitable for the current situation. We also consider some queries arising in some real

problems involving complex CAD models of mechanical designs.

4.1 Artificial Environments

Environment 1. Our first environment consisted of three blocks, two parallel to each other, and the third
perpendicular to the other two. The robot is a smaller block that barely fits in the corridor between the
parallel blocks. (See Figure 9(a).)

Although this environment is very simple, it contains regions in which different planning methods are

(a)

Tigure 9: Test Bavironment 1: (a) three-dimensional snapshot, (b) schematic of algorithm regions and path.

ENVIRONMENT 1 RESULTS

Method | Nodes Generated | Evecution Time (sec) | Solved Query

OBPRM 745 28072 YES

SingleShot 309 597 YES

Table 1: Environment 1 Results

needed. In particular, it has a narrow corridor which requires delicate maneuvering (e.g., 158, ITM, IRM,
RWM), regions in which more global navigation is needed (e.g., RMM, FIM), and relatively free regions (e.g.,
the local planners). These regions are depicted with ovals in Figure 9(b).

The query we consider has the start configuration in the corridor between the parallel blocks and
the goal configuration on the far side of the perpendicular block. This query involves several substeps to
successfully find a patl, see Figure 9(b) for a schematic representation of a path found by our architecture.

This example shows that our architecture has the ability to adaptively select an algorithm suitable for the

current situation. Moreover, it does so in a relatively efficient manner. As can be seen from the results shown

14

S I;M-\
(algorithm ISM Path
handoff
(®)
Figure 10: Test Enviromment 2: (a) bhree-dimensional snapshot, (b) scl of algorithm regions and
path.
in Table 1, our singleshot architectur d fewer nodes and solved the query in only a small fraction

of the time spent by OBPRM. In particular, 1sM ran for 183 seconds and generated 196 free configurations
in the narrow corridor, and then RMM ran for 414 seconds and generated 113 free configurations to move

around the perpendicular block.

Environment 2. Qur second test environment consisted of three identical blocks. The three blocks are
parallel to one another and slightly offsel in a relatively tight fitting bounding box. The robot was a smaller
block thal barely fits in the corridor bencath the middle block, while there is a bit more clearance available
between the top and the middle blocks. Again, although this environment is very simple, it contains regions
in which different planning methods are needed. (See Figure 10(a).)

The query we consider has the start configuration in the lower right hand corner of the bounding box,
and the goal configuration in the lower left in the narrow corridor under the middle block. Sce Figure 10(b)
for a schematic representation of the path found by our architecture.

Results from Environment 2 are shown in Table 2. In this case, iMM ran for 86 seconds and generated

ENVIRONMENT 2 RESULTS

Method | Nodes Generated | Ezecution Time (sec) | Solved Query

OBPRM 670 39569 NO

SingleShot 557 326 YES

Table 2: Environment 2 Results

Figure 11: Walls Environment: (a) Environment (b) Path generated by Singleshot (c) Roadmap gemerated

by PRM

197 free configurations, and then IsM ran for 240 seconds and generated 360 free configurations. As can be

seen, the OBPRM planner generated 670 nodes and ran for 39569 seconds, and still hadn’t solved this query.

Walls Environment. The walls environment, as seen in Figure 11(a), consists of a sexies of 4 parallel
walls, each with only a small hole cut out, creating a series of narrow corridors. For this environment,
our query only requires the robot (the long, thin stick) to iraverse through one of these narrow openings.
The robot positions in Figure 11(a) represent the start and goal configurations. In this case, the singleshot
method is more efficient because it only considers the part of the environment necessary for the query; thus,

ignoring obstacles irrelevant to the query. Roadmap methods, such as the PRM or OBPRM methods,

Figure 12: CAD Model: {a} Flange (b) Part Removal

RESULTSE FROM WALLS ENVIRONMENT

Method | Nodes Generated | Bvecution Time (sec) | Solved Query

PRM 592 2311.59 NO
OBPRM 199 5005 YES
SingleShot, 352 508 YES

Table 3: Results from Walls Environment

construct a rosdmap spanning the entire environment, regardless of the query. Notice the drastic difference
in the single path generated by Singleshot, as shown in Figure 11(b), and the roadmap generated by the
PRM, as shown in Figure 11(c). It can be seen from the roadmap graphs and the walls environment data
in Table 3 that not only can our singleshot method solve the query, but it can solve the narrow corridor
query significantly fasier than the PRM and OBPRM methods. Note, the number of nodes generated by
singleshot represents the sum total number of nodes generated by each individual method; however, only
the nodes needed for the path are stored. Although the number of nodes generated by singleshot was 352,

the number of nodes retained by the singleshot architecture was only 8.

4.2 Complex CAD models

An important design criteria for complex mechanical systems is that certain parts are easy to service and, | for
replace. Motion planning algorithms for testing such conditions automatically during the design process
would be a great aid to engineers, and have been the subject of previous work [7]. Such problems are ideal

for single shot methods since one typically only needs to solve the problem ouce in a given environment.

The Flange. The flange cnvironment consists of two objects; the flange and the elbow. The flange is

s
a fairly flat object with a hole in the cenler, it is formed of 974 veticies and 990 triangles. The elbow is an
“L” shaped object with one extreme wider than the rest of the object, it is formed of 3525 vertices and 5306

triangles.

The start jon cor ds to the elbow letely inside the flange (see Figure 12(a)), and
the goal configuration corresponds to the elbow outside the flange, so basically the problem is to remove
the elbow from the flange. Nole that this problem is one with a very long and narrow corridor in C-space,
requiring a lengthy series of very small translations and rotations of the elbow to successfully remove it from
the flange.

Our singleshot architecture solved a version of the original problem with the elbow scaled down to .98
of its original size. To solve the problem (.., to find the path from the start to the goal configuration)
the program ran 8 iterations, 7 of them using the ISM method, and the last iteration the program used the
rotate-at-s local planner. It took 25165 sec for our singleshot architecture to solve the problem. Due to the
high complexity of this model and the very fine translations and rotations required to remove the elbow from

the flange, probabilistic roadmap methods are not suitable for this query.

Engine Part Removal Environment. A problem solved by our method invelved a complex design
consisting of 15 parts, 14 of which were considered obstacles and the other the ‘robot’ (see Figure 12(b}).
The obstacles consist of many pipes encasing a few larger parts; in total, the models of these parts consist
of 126,970 vertices and 269,712 triangles. The robot is another part consisting of some 2887 vertices and
5802 triangles. Originally, the ‘robot’ part is between the large object and covered by seversl pipes. The

motion planning problem was to find a removal path for the ‘robot’ part. Again, we note that a gencral

probabilistic roadmap method is not suitable for such a problem due to the large size of the models involved

and the complexity of the C-space, much of which is irrelevant to this parlicular query.

5 Conclusions and Future Work

This paper proposes a framework for single shot motion planning that adaptively selects a planner whose
strengths match the current situation, and then switches to a different planner when circumstances change
We have shown that this strategy can be used to solve challenging problems.

leorith

need

However, much work remains to fully develop the framework. For le, more diverse

to be added to the algorithm bank which can handle specialized situations (e.g., backing out of dead end,
turning a sharp corner, etc.). Also, more work is needed in adding additional nodes to our decision tree to
allow more precise matching of query pairs (o algorithms.

Finally, cven in our limited prototype system we have fonnd it a very challenging task to select appropriate
parameters for the framework (c.g., number of algorithms to run, how long to run them) and for the individaal
algorithms in the bank (e.g., iterations to run, how many configurations to generate). Thus, if we hope to
exploit the full power of the framework, it is imperative thal we develop automatic parameter tuning methods.

When applied to algorithms in the bank, such methods would lead to sclf-adaplive algorithms.

Acknowledgement

T would Iike to thank Nancy Amato, Daniel Vallejo, and the rest of the robotics group at Texas A&M. The
collision detection library used in our code was Pat Xavier's C-Space Toolkit [19]. GE provided us with

CAD models and Product Vision, their CAD animation package.

References

[1) J. M. Ahuactzin and K. Gupta. A motion planning bascd approach for inverse kinematics of redundant robots:

The kinematic roadmap. In Proc. IEEE Int. Conf. Robot, Autom. (ICRA), pages 3609-3614, 1997,

(2

[10}

(1

[12)

[13]

[14)

[15)

N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Valiejo. Choosing good distance metrics and local
planners for probabilistic readmap methods, In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 630-637,
1998.

N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo. OBPRM: An obstacle-based PRM for 3D
workspaces. In Proc. Int. Workshap on Algorithmic Foundations of Robotics (WAFR), pages 155-168, 1998,
N. M. Amato and Y. Wu. A randomized roadmap method for path and manipulation planning. In Proc. JEEE
Int. Conf. Robot. Autom. (ICRA), pages 113-120, Minneapolis, MN, April 1996.

J. Barraquand end J.-C, Latombe, Rohot motion planni A distri repr il h. Int. J.

Robot. Res., 10(6):628-649, 1991,

D. J. Challou, M. Gini, and V. Kumar. Parallel search algorithms for robot motion planning. In Proc. IEEE

Int. Gonf. Robot. Autom. (ICRA), volume 2, pages 46-51, 1993,

H. Chang and T. Y. Li. Assembly maintainability study with motion planning, In Proc. IEEE Int, Conf. Robot.

Autom. (ICRA), pages 1012-1019, 1995.

B. R. Donald. A scarch algorithm for mation planning with six degrees of freedom. Artif, Intell., 31(3):295-353,

1987.

B. Glavina, Selving findpath by combination of directed and randomized search. In Proc. IEEE Int. Conf.

Rabot. Autom. (ICRA}, pages 1718-1723, 1990,

D. Hsu, J-C. Latombe, and R. Motweni, Path planning in expansive configuration spaces. In Proc. IEEE Int.

Conf. Robot. Autorn. (ICRA), pages 2719-2726, 1997,
Y. K. Hwang and N. Ahuja. Gross motion planning - & survey. ACM Computing Surveys, 24(3):219-291, 1992,

L. Kavraki and J. C. Lalombe. Randomized ing of ion space for fast path planning. In Prac.

IEEE Int. Conf. Robot. Autom. (IGRA), pages 2138-2145, 1994,

L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars. Probabilistic roadmaps for path planming in high-

dimensional configuration spaces. JEEE Trans. Robot. Automat., 12(4):566-580, Augnst 1996.
J. C. Latombe, Robot Motion Plenning. Kluwer Academic Publishers, Boston, MA, 1991,

M. Overmars. A random approach to path planning. Technical Reporl RUU-C$-92-32, Computer Science,

Utrechi University, The Netherlands, 1992.

{16} M. Overmars and P. Svestka. A probabilistic learning app Lo motion planning. In Proc. Workshop on

Algorithmic Foundations of Robotics, pages 19-37, 1994.
(27 J. R. Quinlan. C4.5: Programs for Machine Learning. Morgen Kauffman, 1992.

[18] J. Reif, Complexity of the piano mover’s problem and generalizations, In Proc. IEEE Symyp. Foundations of

Computer Science (FOCS), pages 421-427, 1979,

(19] P. G. Xavier and R. A. LaFarge. A configuration space toolkit for automated spatial reasoning: Technical results

and ldrd project final report. Technical Report SANDS7-0366, Sandia National Laboratories, 1997.

21

