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Abstract 

Much of my research career has been spent working both on modern oceanic volcanic systems and at the same 

time looking at their Archaean counterparts. Many authors have attempted to make inferences on early Earth models 

based on modern processes which can be increasingly well constrained. In this short review I show how we are 

beginning to understand and quantify inputs to modern subduction systems and I pose some questions as to how 

these processes may have affected Earth’s evolution in its distant past. 

Geochemical models have convincingly demonstrated that sediment and altered oceanic crust must be recycled 

into the mantle through subduction zones. These ‘subduction factories’ use these components, along with molten 

mantle, to create arc magmas. The ‘residue’ from this process is recycled into the mantle and has a modified 

chemical and mineralogical composition. The altered oceanic crust input function in the current plate tectonic cycle 

seems to be relatively constant in composition, but the chemical compositions of the sediment fluxes into 

subduction zones vary widely and control many of the end-member compositions of arc magmas. They must also 

control the compositions of fluids and gases derived from these magmas and ultimately ore-deposition and 

atmospheric fluxes associated with arc volcanoes. 

There is relatively strong evidence for subduction processes for at least the past 3.5 Ma and some would argue 

that exogenic components have been recycled into the mantle since at least ~4.3 Ma. How might the subduction 

fluxes have changed through time, and how might they have influenced crust, ocean and atmospheric compositions? 

Can different ore regimes in temporal and spatial distribution on Earth be related to the change in inputs and 

residues from the subduction factory through time? 
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It is generally accepted that the subduction zones of the planet are the main focus of recycling material back 

into the mantle and also of stabilization and creation of continental crust (e.g., Armstrong, 1968, 1991; VonHuene 

and Scholl, 1991; Plank and Langmuir, 1998). Geochemical tracers of various kinds have been used to model this 

process through the history of Earth. There is still considerable discussion on when plate tectonics started. What was 

recycled? How much crust was created and destroyed at different time intervals throughout the Earth? How may this 

have influenced the composition of the crust, mantle, ocean, and atmosphere? 

In this short paper I do not intend to answer all of these problems, but I will focus on how we are beginning to 

constrain and understand modern subduction cycles, and how some of the different input functions that we can now 

observe must have changed and most probably influenced key geochemical processes on Earth. 

1.1 Fluxes at subduction zones 

Figure 1 (Anbar and Rouxel, 2007) provides a schematic view of the sequence from the production of oceanic 

crust at ridges to its subduction in convergent margins. The ocean crust matures through cooling and interaction with 

sea-water and also through hydrothermal exchange with cooling magma bodies in the deep ocean crust. These 

processes change its composition and also the global composition of sea-water. It was recognized relatively early 

after the discovery of hydrothermal systems that the global balance of major elements such as Ca and Mg were 

controlled in part through hydrothermal alteration of oceanic crust (Mottl and Wheat, 1994). 

 

Fig. 1. Inputs into the subduction factory from altered oceanic crust and entrained sediments. Adapted from 

Anbar and Rouxel (2007). 



 

 

The carbon budget is also controlled in part by the exchange of warmed sea-water with oceanic crust (Alt and 

Teagle, 1999), as are some of the key trace elements (K, U, and Pb) that control the isotopic evolution of the planet 

(Staudigel and Hart, 1983). Apart from the odd serendipitous discovery of hydrothermally altered crust exposed in 

fractures zones in the oceanic crust, the only systematic sampling of oceanic crust to study these budgets has been 

through oceanic drilling by ODP and IODP. 

In addition to altered oceanic crust, the other important input flux to the subduction system is sediment that has 

accumulated on the crust since its creation at the ridge axis. As demonstrated in Fig. 1, this sediment is trapped in 

the subducting wedge and some of it contributes to the creation of the accretionary prism and is scraped off during 

subduction, as is often the case for the upper part of the oceanic basement (Kimura and Ludden, 1995). Nonetheless, 

the composition of volcanic rocks extruded in volcanic arc systems clearly indicates that some of these sediments 

are entrained into the mantle and participate in the melting process that produces magmas in arcs (Plank and 

Langmuir, 1993). Models defining the amount of sediment involved in this process vary widely, but even 

conservative estimates may place 2% subducted sediment as a component in magmas and, depending on the 

composition of the sediment, this may strongly influence the magma composition. Whole mantle models using 

tracers sensitive to sediment addition, such as Hf isotopes (Blichert-Toft et al., 1999) also indicate that sediment is 



 

mixed back into the mantle during this process. 

The sediments that can be introduced into the ‘subduction factory’, as it has been termed, vary widely in 

composition, from purely ocean or hydrothermal derived chemical or organic precipitates, through volcanogenic 

sediment sloughed off volcanic seamounts, volcanic ash from the subduction systems themselves, to water- and air-

borne terrigenous sediments. The only means of defining these sedimentary assemblages has been through drilling 

type sections close to subduction zones, and IODP has done this on a number of occasions. In some cases sampling 

was done with the expressed aim of characterizing the full subduction assemblage (Legs 123, 185). In Leg 185, we 

went as far as developing composite samples that can be used as a reference for modeling the fluxes in the 

subduction factory (Kelley et al., 2005). 

Two relatively simple models indicate the importance of this process in the control of magma and mantle 

compositions: 

1.2.1 The U/Pb ratio of altered recycled basaltic oceanic crust 

Figure 2a (Kelley et al., 2003) shows that as the oceanic crust ages and interacts with sea-water and is 

oxidized, its U content increases. The original composition of U in the crust is about 0.2 ppm and with oxidation 

increases can be greater than ten-fold. The enhanced values are located at the top of the section where oxidation is 

most pervasive as well as in localized alteration zones through the crust. One of the challenges is estimating the 

bulk composition of elements such as U in the oceanic crust, and Kelley et al. (2005) have attempted this by using 

gamma logs and also discrete samples. Estimates of the altered crust are about 0.4 ppm and unaltered glass at 0.08 

ppm. The U/Pb ratio of altered crust is thus increased by alteration processes. As shown in Fig. 2b, U and Pb are 

lost at different stages in the subduction process due to difference in their partition coefficients. Interestingly, as 

modeled by Kelley et al. (2005), all of the lavas of the Honshu-Izu-Mariana system align along mixing lines which 

define a Pb/U ratio of 30 and reflect an eight-fold enrichment of Pb over U in the fluids derived from the subducted 

slab (Fig. 2b?). The residue is thus an altered oceanic crust which will transform to eclogite on, and sink into, the 

mantle and will have a very high U/Pb ratio that through time will generate a highly radiogenic mantle component. 

This component was proposed by Hofman and White (1982) to be the end member for high U/Pb mantle sources 

(the HiMU source). The results from Kelley were the first to provide a firm estimate of the input function to the 

subduction zone. 

 

Fig. 2. (a) Down-hole distribution of U based on gamma log data and also from discrete sampled and composite 

mixed samples (from Kelley et al., 2003). (b) Pb/U and Th/U ratios in arc systems from the west Pacific illustrating 

control by altered crust derived fluids (from Kelley et al., 2005). (c) Modelled fluxes of U and Pb in the zone system 

indicating differential U and Pb loss. The heavy black line traces slab losses at preferred growth rates. Yellow zones 



 

indicate maximum possible losses (from Kelley et al., 2005). (  

 

1.2.2 Sediment input into the subduction system 

As demonstrated by Plank and Langmuir (1998) the composition of sediment input into subduction systems 

varies dramatically across the planet and as such different arc-systems are ‘fed’ by quite different sedimentary 

products with different geochemistry and mineralogy. One of the early demonstrations of the control of sedimentary 



 

input into arc systems was by White and Dupre (1986) where in the Lesser Antilles the influence of highly 

radiogenic Precambrian sedimentary rocks derived from the Archaean crust of northern South America diminishes 

from north to south up along the arc and the output from the volcanic systems varies congruently with the subducted 

sedimentary input. This demonstration was quantitative and it is only recently through drilling complete oceanic 

sections ocean-ward of arc systems that we have been able to constrain the process a little better. As for the 

demonstration above for U/Pb in altered oceanic crust, the first quantitative attempts to measure fluxes were the 

objective of ODP Leg 185 which drilled a series of holes ocean-ward of the Izu-Mariana arc (Ludden et al., 2006). 

 

Fig. 3. (a) Th/La ratios of sediments from three West Pacific locations ocean-ward of the Honshu-Izu-Mariana arc 

system. (b) Mixing trends between mantle sources and subducted sediments for the Honshu-Izu-Mariana system 

(from Plank et al., 2007).  

 



 

 



 

From north to south, from Honshu, through the Izu Bonnin Arc to the Marianas, the sedimentary assemblage is 

defined broadly by three components, each having a range in compositions: terrigenous components (wind derived, 

carried by ocean currents, etc.); authigenic sediments from the oceans (chemical and biological sediments); 

volcanogenic sediments derived locally from the arc, but also from volcanic seamounts on the oceanic plate. The 

proportions of these sediments vary along the arc and reflect different wind conditions (continental detritus blown in 

from Asia), different authigenic components (controlled by water depth, composition, compensation depths, 

hydrothermal sources, etc.) and also volcanogenic inputs from intra-plate volcanoes and also from the arcs 

themselves. 

Figure 3a is taken from Plank et al. (2007). It defines the Th/La ratio in sediments in three ocean floor sections 

for three arcs in the West Pacific. The compositions of the volcanic products in the arcs (Fig. 3b) show well defined 

mixing trends from the mantle source to the sediment input composition in each arc. Honshu is the closest to the 

Asian dust input and thus has the highest Th/La ratio while the Mariana arc is dominated by sediments derived from 

volcanogenic components with a bulk composition near to that of the mantle. 

These results for the West Pacific arc confirm the early inferences by White and Dupre, (1986) for the Antilles 

arc but allow geochemists to begin to better quantify the inputs to the subduction systems. 

Over the past 10 years geochemists have thus started to place quantitative constraints on processes in arc 

systems. This is largely due to higher quality trace element geochemistry, but also a better understandings of 

partition coefficients for key elements (Hawkesworth et al., 1997) and also phase transitions during subduction 

processes. Furthermore, geophysicists are able to provide much better images of oceanic plates in the subduction 

system (Abers et al., 2006), allowing geologists to tie together structural, thermal, and chemical regimes in the 

subduction system. 

How may these processes have worked in the earliest periods of Earth’s evolution? 

 

2. Subduction zones in the early Earth 

I do not intend to cover all of the discussion on how and when subduction started on the Earth. There have been 

numerous articles written on the subject and academics will continue to fill journal pages with arguments on the 

subject. Suffice it to say that the results of the Canadian LITHOPROBE project have provided convincing 

arguments for subduction related processes and images of potential fossil subduction systems potentially as old as 

3600 Ma (Cook et al., 1998), but certainly well and truly active by about 3000 Ma (Kimura et al, 1993). Figure 4 

shows a seismic reflection image which has been interpreted as a fossil subduction zone. In this zone, Archaean 

greenstone assemblages (volcanic and sedimentary rocks) are thrust subducted below a plutonic complex – the 



 

Opatica plutonic complex, which can be traced across the Superior Province of Canada and reflects an ancient 

subduction system that was active at about 2800 Ma to 2700 Ma (Ludden and Hynes, 2000). 

 

Fig. 4. A seismic reflection image which has been interpreted as an Archaean fossil subduction zone. Modified from 

Calvert et al. (1995). 

 

 

Geochemical and mineralogical data has been obtained from some of the oldest preserved minerals on Earth. 

Zircons preserved in younger sediments have been dated from as early as 4.3 Ga (Harrison et al., 2005) and show 

characteristics which indicate an exogenic origin prior to their inclusion in Hadean plutonic rocks. Thus, there is 

relatively good evidence that sediments and altered materials from the surface of the Earth may have been recycled 

into the mantle since 4000 Ma and perhaps before. 

What was the chemistry of the altered oceanic crust and sediments that was subducted? How might this have 



 

reacted in the subduction zone? What would the consequences be for the mantle, arc volcanoes, and the atmosphere 

and oceans? 

3. How the geochemical recycling process may have changed through time 

Altered oceanic crust and the sediments carried into the subduction factory strongly influence numerous 

geochemical processes on Earth. I have addressed above some of the questions as to when did we start recycling 

altered oceanic crust and sediment into the mantle by subduction. Below, I speculate on some consequences of 

changing subduction regimes through time. There are numerous examples, some are highly speculative, but there is 

a renewed interest in early Earth processes due to our abilities to apply new geochemical tracers to the early Earth 

(Anbar and Rouxel, 2007) and I hope we will soon be able to apply firm constraints to some of the speculations 

below. 

Some authors (Francis et al., 1999) would argue that basaltic crust was richer in iron in the early Earth. This 

could be due to a less oxidized mantle source which had yet to be oxidized by extensive subduction of volatiles back 

into the mantle. It could also be because the mantle itself generated more Fe-rich magmas from a mantle source that 

was different from that now forming at mid-ocean ridge axes. 

High-Fe basalt mixed back into the mantle in the early Earth may now provide the source for some mantle 

plume magmas that are also rich in iron, and may not have a peridotitic mantle source, but rather a pyroxene 

dominated mantle source (Francis, 1995). 

Although most arc-related magmas seem to be related to devolatilisation of the subducting plate, it is possible 

that the basaltic plate itself melts to generate andesitic magmas. Certain authors argue that adakite magma is formed 

this way in hot subduction zones in the modern Earth (Martin et al., 2005) and also argue that basaltic plate melting 

would have predominated in subduction processes in the early Earth, generating andesite, rather than basalt, as is the 

case in most modern subduction systems (Martin, 1987). This may be why the composition of andesite-dacite 

systems in the Archaean have high LREE/HREE ratios because the REE would have been fractionated by garnet-

rich eclogitic residues. The average composition of the crust generated in Archaean subduction systems may have 

been generally more andesitic (Rudnick and Gao, 2003) 

Oxidized upper oceanic crust in the early Earth may not have been enriched in U and K, as is the case now, and 

these elements may have had completely different controls in early Earth mantle processes. Uranium was not 

released from the crust until the Mesoproterozoic oxidation and the complete crust-mantle cycle of U would have 

been different to that after the Neoproterozoic. High U/Pb mantle sources may not have been formed until the 

Proterozoic. Indeed, they may have been formed preferentially in the Proterozoic when large quantities of Fe, U, and 



 

other elements susceptible to oxidation (e.g., molybdenum–Anbar and Rouxel, 2007) were sequestered on the ocean 

floor and thus made available for input to the subduction factories of the Proterozoic. 

Base metal ore deposits do not seem to differ greatly in the mid- and late-Archaean from those now being 

formed in arc and ocean floor systems. The process of hot sea-water interaction with basaltic crust may not have 

changed dramatically through time, but the trace elements often associated with these deposits and often 

focused in subduction related ore-systems (Au, Pb, Mo, Sn, etc.) must have been influenced by the volatile 

fluxes in subduction systems. These must have been subject to different source compositions in the dewatering 

oceanic crust and sediments. One cannot help but imagine that the Proterozoic and Phanerozoic regions with 

high metal concentrations – the Proterozoic metal provinces, the west Pacific high-Au regions, the Bathurst Au 

camp – are related to inherited concentration processes in subduction systems that are atypical. 

Carbonate fluxes into subduction systems must be related to precipitation processes on the sea-floor. We 

know, as shown in this article, that latitude influences carbonate accumulation on the sea-floor. Carbonate fluxes 

in the early Earth are related to abiotic carbonate fluxes, probably linked to metamorphic fluxes in the continental 

and ocean crust (Groves et al., 1988). 

Phosphate and REE budgets in subduction zones now appear to be controlled by pelagic sediments deposited 

slowly on the sea-floor and taken into the subduction zones. Is the phosphorous budget of the mantle controlled in 

some way through subduction? Are some of the extreme magmas from the mantle, such as carbonatites, related to 

calcite and phosphorous injected back into the mantle – C and P that would relate to biological activity and reappear 

at the Earth’s surface in magmatic systems? 

Carbonate deposition predominates in cold water oceans. Plate configurations in which generally east-west 

subduction systems in cooler oceans, rather than longitudinal systems in temperate oceans, may result in a 

significant increase of the CO2 flux into the subduction system and thus more CO2 feed-back to the atmosphere and 

associated consequences for global change. This paper probably does not have a clear place in a journal such as 

Applied Geochemistry. It was solicited as part of a series of papers presented by the past presidents of the IAGC.  

Applied Geochemistry and the IAGC have developed a strong symbiotic relationship. This paper not only spreads 

across the bounds of geochemistry, it also covers Earth’s history and the range in processes in the subduction 

system. It is impossible in a short paper to do justice to the problem. Suffice it to say that some of the geochemical 

fluxes of the Earth have important applied consequences and these are commonly not analyzed in the specialist 

literature. The changing oxidation state of the planet and the associated sediment flux to the sea-floor and into the 

subduction system, and ultimately the deep mantle, must have played a major role on chalcophile element fluxes and 

in ore deposit generation associated with subduction zone magmas. The U-cycle from the Neoproterozoic onward 

must have a control in subduction and erosion processes. The carbonate flux into subduction zones since the 



 

Paleozoic, and before, must depend on the global orientation of the subduction systems relative to the North and 

South Pole and hence the amount of carbonate precipitated on the sea-floor. The carbonate soaked up by ocean crust 

must also provide a strong constraint on the process of carbon capture and sequestration in minerals. 

Although there are no new data in this paper, I hope the combination of geoscience subject matter has 

provided the reader with a ‘few things to scratch their head over’ and some of the implications for applied 

geochemistry are apparent. 
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