
ARCc: A Case for an Architecturally Redundant
Cache-coherence Architecture for Large Multicores

Omer Khan1,2, Henry Hoffmann2, Mieszko Lis2, Farrukh Hijaz1, Anant Agarwal2, Srinivas Devadas2

1University of Massachusetts, Lowell, MA, USA
2Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract—This paper proposes an architecturally redundant
cache-coherence architecture (ARCc) that combines the directory
and shared-NUCA based coherence protocols to improve perfor-
mance, energy and dependability. Both coherence mechanisms
co-exist in the hardware and ARCc enables seamless transition
between the two protocols. We present an online analytical
model implemented in the hardware that predicts performance
and triggers a transition between the two coherence protocols
at application-level granularity. The ARCc architecture delivers
up to 1.6× higher performance and up to 1.5× lower energy
consumption compared to the directory-based counterpart. It
does so by identifying applications which benefit from the large
shared cache capacity of shared-NUCA because of lower off-chip
accesses, or where remote-cache word accesses are efficient.

I. INTRODUCTION

Four to eight general-purpose cores on a die are now
common across the spectrum of computing machinery [1],
and designs with many more cores are not far behind [2],
[3]. Pundits confidently predict thousands of cores by the
end of the decade [4]. The biggest challenge facing large-
scale multicores is convenience of programming. Today the
shared-memory abstraction is ubiquitous and some form of
cache coherence is required to keep a consistent view of data
among cores. Software can provide cache coherence, but at
the cost of programming complexity and loss of performance
because of limited observability and controllability into the
hardware. Therefore, multiprocessors and most recently single-
chip multicores support a uniform hardware-coherent address
space. In large-scale multicores lacking common buses, this
usually takes the form of directory-based coherence hardware.

Traditional directory-based cache coherence faces signifi-
cant challenges in the era of large-scale multicores; the most
significant one being the scalability challenge due to the off-
chip memory wall [4]. Today’s multicores integrate very large
on-chip caches to reduce the pressure of off-chip memory
accesses and improve data locality [1]. Directory-based co-
herence requires a logically centralized directory (typically
distributed physically) that coordinates sharing among the
per-core private caches, and each core-private cache must
negotiate shared or exclusive access to each cache line via a
complex coherence protocol. On-chip directories must equal a
significant portion of the combined size of the per-core caches,
as otherwise directory evictions will stress off-chip memory
and limit performance [5].

This work was funded by the U.S. Government under the DARPA UHPC
program. The views and conclusions contained herein are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

In addition to the complexity of the coherence protocol, the
performance of the directory-based coherence architecture is
impacted in the following ways: (i) the directory causes an
indirection leading to an increase in the cache miss access
latency for both producer and the consumer, (ii) the automatic
data replication of shared read data results in one address
being stored in many core-local caches, reducing the amount
of cache left for other data, thereby adversely impacting cache
miss rates, and (iii) a write to shared data or an on-chip
directory cache eviction requires invalidation of all shared
copies of the data, resulting in higher cache miss rates and
protocol latencies.

These shortcomings have been partially addressed by
shared-NUCA [6]; here, we consider a variant Distributed
Shared Cache (DSC) based architecture that ensures cache
coherence. (Note that DSC is similar to [7] and Tilera’s
TILE64 processor, but does not require operating system (OS)
or software support for coherence). The DSC architecture
unifies the per-core physically distributed caches into one large
logically shared cache, in its pure form keeping only one copy
of a given cache line on chip and thus steeply reducing off-
chip access rates compared to the directory-based coherence.

Under DSC, when a thread needs to access an address
cached on another core, the requesting core initiates a remote-
cache access to the core where the memory is allowed to be
cached. A two-message round trip via the on-chip interconnect
ensures any memory load or store can be successfully executed
for the data cached on a remote core. This offers a tradeoff:
where a directory-based protocol would take advantage of
spatial and temporal locality by making a copy of the block
containing the data in the local cache, DSC must repeat
the round trip for every remote access to ensure sequential
consistency; on the other hand, a round trip 2-message pro-
tocol is much cheaper (in terms of latency) than a 3-party
communication of the directory-based protocol. However, the
performance of DSC is primarily constrained by the placement
of data; if the requested data is not locally cached, on-chip
network latencies add to the cost of accessing remote memory.
Various S-NUCA proposals have therefore leveraged data
migration and replication techniques previously explored in
the NUMA context (e.g., [8]) to move private data to its owner
core and replicate read-only shared data among the sharers [9],
[10]; but while these schemes improve performance on some
kinds of applications, they still do not take full advantage of
spatio-temporal locality and may require directory coherence
to deliver the desired performance.

In this paper, we propose an architecturally redundant

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/6083998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sampling period

D
irC

C
 à

 D
S

C

Application execution

DirCC

… DSC

Cache	
 	

miss	
 rate	

Performance	
 predic2on	

hardware	

Remote-­‐cache	
 	

access rate	
 3. Halt application

4. Initiate protocol transition

5. Resume application under DSC

1. Monitor application characteristics

…
Load App

Fig. 1. Key components of the ARCc Architecture.

cache-coherence architecture (ARCc) that combines the per-
formance advantages of both directory and DSC based co-
herence protocols by enabling these two independent and
heterogenous protocols to co-exist in the hardware. We present
architectural extensions to seamlessly transition between di-
rectory and DSC protocols at application granularity. Figure 1
shows the key components and mechanisms in the proposed
ARCc architecture. The x-axis shows the execution of a
multithreaded application on a multicore. Initially, the appli-
cation is initialized under the directory (DirCC) coherence
protocol. After initialization, a few application characteristics
are monitored at runtime for a short duration of time (the
sampling period in Figure 1). ARCc deploys an in-hardware
analytical model to concurrently predict the performance of
the DirCC and DSC protocols at application-level granularity.
The ARCc architecture delivers higher performance than either
DirCC or DSC protocols, because it trades off the impact of
higher cache miss rate under DirCC with lower cache miss
rate coupled with the remote-cache access rate under DSC.
When the online analytical model indicates a performance
gain of using DSC over DirCC, the hardware automatically
transitions from DirCC to DSC and continues execution. This
process is repeated whenever the operating system schedules
a new application to run on the multicore.

Simulations of a 128-core single-chip multicore show that,
depending on the application and on-chip cache capacity,
the ARCc architecture can significantly improve the overall
application performance (up to 1.6×) and energy consumption
(up to 1.5×) when compared to DirCC. Even better, ARCc
allows redundant coherence protocols to co-exist (that share
minimum hardware resources), and therefore enables a more
dependable architecture that guarantees functional correctness
and performance in the presence of alarming failures rates of
the future CMOS technologies [11].

II. BACKGROUND AND MOTIVATION

One of the key challenges for large-scale multicores is
to preserve a convenient programming model. The shared
memory abstraction is now ubiquitous but requires some form
of cache coherence. Because energy-performance efficiency is
a first-order challenge, we expect a multicore chip to be fully
distributed across tiles with a uniform address space shared by
all tiles (similar to the Tilera TileGx100 [12]). In our baseline
architecture, each tile in the chip communicates with others
via an on-chip network. Such physical distribution allows the
system layers to manage the hardware resources efficiently.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

Homed	

(striped	
 data	

placement)	

Homed	

(applica8on	

optomized)	

Sp
ee
du

ps
	
 re

la
+v

e	

to
	
 d
ire

ct
or
y	

ca
ch
e	

co
he

re
nc
e	

(D
irC

C)
	

Fig. 2. DSC vs. DirCC performance of 256x256 2D FFT application using
the 64-core Tilera’s TILEPro64 Processor.

Each tile has an Intel Atom processor-like core with a
2-level L1/L2 instruction and data cache hierarchy. Under
private-L1, a directory protocol is responsible for coherence.
Although a shared-L2 caters to applications with large shared
working sets, many traditional multithreaded applications re-
quire larger private working sets, making private-L2 an attrac-
tive option [10]. Therefore, our baseline architecture utilizes a
private-L1/L2 for the DirCC configuration. On the other hand,
a shared-L1/L2 configuration unifies the physically distributed
per-core caches into one large logically shared cache. Because
only one copy of a cache line can be present on chip,
cache coherence is trivially ensured and a directory protocol
is not needed. The shared-L1/L2 organization is termed as
the Distributed Shared Cache (DSC) architecture. Because
multicores are expected to be critically constrained by limited
package pin density, we expect a small number of on-chip
memory controllers orchestrating data movement in and out of
the chip, therefore, limiting off-chip memory bandwidth [4].

To motivate the proposed ARCc architecture that combines
the performance benefits of directory and DSC protocols under
a unified architecture, we ran a 256x256 2D FFT application
using Tilera’s TILEPro64 processor. We ran three different
setups. First is cache coherence with directories (DirCC),
where the home directories are distributed with an OS hash
function. Second, homed memory (DSC) where each cache
line has a home cache (determined by the OS with a striped
hash function based data placement), where everyone can read
from the home cache (single-word reads), but the data can only
be cached in the home. Third is an optimization for the homed
memory DSC architecture (remote store programming (RSP)
details in [13]), where homes are determined by the application
such that only word-level remote writes are allowed. RSP
guarantees all loads to be local and minimum latency.

Figure 2 shows a non-optimized DSC architecture (naive
data placement statically assigned using striping, resulting in
high remote-cache access rate) that performs 1.23× worse
than the directory protocol for the FFT application. After
application-level modifications (as in RSP [13]), DSC is shown
to outperform DirCC for this application by 3.3×. This shows
that DSC is highly dependent on the application and it can
yield significant performance gains compared to DirCC. Our
proposed ARCc architecture specifically exploits the perfor-
mance benefits of DSC and DirCC protocols by intelligently
choosing the higher performing coherence protocol at runtime.

In what follows, we first present the details of the
ARCc architecture, our experimental methodology, and finally
simulation-based evaluation of the ARCc architecture.

On-­‐chip	
 interconnec-on	

network	

Router	

FETCH	

PC	

DECODE	

EXE	
 UNIT	

MEMORY	

WR	
 BACK	

TLB	

L1	
 I-­‐cache	

Remote-­‐access	

Controller	

L1	
 D-­‐cache	

Directory	
 	

Cache	

L2	
 Cache	
 (inclusive)	

R
eg

is
te

r
Fi

le
 Home

core	

Switch

Directory	

Controller	

Fig. 3. The architecture of a single ARCc tile with support for directory and
DSC cache coherence. The shaded blocks represent the components needed
to enable DSC and ARCc in addition to DirCC.

III. ARCHITECTURALLY REDUNDANT CACHE-COHERENCE

ARCC enables runtime transition between the two cache co-
herence protocols at application granularity, thereby enabling
coarse-grain redundancy with the goal of optimizing user-level
performance. In case one of the coherence mechanisms is
expected to yield degraded performance (cf. Figure 1), it is
disabled and the system transitioned to the alternate mecha-
nism. Figure 3 shows a tile-level view of the proposed ARCc
architecture. In addition to a directory controller and directory
cache orchestrating coherence at cache line granularity, the
DSC protocol requires a remote-access controller (RAC) in
each tile to allow accessing cache resources in another tile via
the interconnection network.

As shown in Figure 4, the system is composed of directories
for tracking actively shared cache lines, translation lookaside
buffers (TLB) with additional entry bits to track the home
core for memory addresses (note that DSC operates on the
OS-page granularity and each memory access looks up the
TLB to extract the core where the cache line is allowed
to be cached), and system registers to differentiate whether
an application is running under DirCC or DSC. By default,
each application is initialized to run under DirCC. However,
regardless of the coherence protocol, the system always en-
ables data placement for assigning a home core to each active
page. During runtime, an application’s progress is time-sliced
into two phases: a sampling period followed by a steady-
state period that lasts until the application executes. During
each sampling period, the system uses in-hardware profiling
to collect runtime parameters that are used to predict the
performance of the DirCC and DSC protocols. At the end
of the sampling period, if the application will substantially
benefit from transitioning the coherence protocol, the system
halts and initiates the transition mechanism and updates the
system registers. It is important to note that the application
executes normally during the sampling period and only halts
if the coherence protocol transition is triggered.

For each memory instruction, the core first consults the
system registers to discover the coherence protocol mode of
operation. If DSC enable is set, the TLB access stage of
the pipeline extracts the home core for that address. If the
memory address’ home core is on another tile, it is a core miss

Ways

S
et

s

Directory Cache System
registers

Ways

S
et

s

Translation
Lookaside Buffer

…

Fig. 4. The ARCc Architecture.

and a 2-message memory transaction is initiated to access the
remote cache hierarchy, otherwise, the local cache hierarchy
is accessed. If DirCC enable is set, the core simply initiates a
cache lookup in the local cache hierarchy and possibly consults
the directory to extract the requested data.

A. Protocol Transition Trigger Mechanism

The proposed framework for transitioning between DirCC
and DSC consists of two components: the online profiler and
the performance predictor. The online profiler concurrently
and non-invasively profiles certain aspects of the execution
characteristics during each sampling period. The performance
predictor collects the profiled application characteristics at the
end of the sampling period, and predicts whether to transition
from DirCC to DSC for that application.

By default, the application is loaded and initialized under
DirCC. The time axis is sub-divided into a sampling interval
followed by a longer steady-state interval (cf. Figure 1). The
online profilers are implemented in hardware to collect runtime
statistics during the sampling interval to concurrently estimate
the performance of the application under DirCC and DSC. At
the end of each sampling period, the system hardware uses the
following procedure to decide when/how to transition between
the coherence protocols.

if (DSC performance > DirCC performance)
Halt execution of the application code
Transition coherence protocol from DirCC to DSC
Update system registers to indicate ”DSC enable”
Continue execution of the application under DSC

else Continue execution of the application under DirCC
1) Performance Predictor: Estimating an application’s per-

formance on different cache coherence mechanisms based
on the observed application characteristics is a key step to
avoid expensive trial runs. To gain some intuition for where a
coherence mechanism can win on performance, we consider
the average memory latency (AML), a metric that dominates
program execution times with today’s fast cores and relatively
slow memories.

Under the DSC remote-cache access architecture, AML has
three components: cache access (for cache hits and misses),
off-chip memory access (for cache misses), and a 2-message
cost to access remote data (for core misses):

AMLDSC = cost$access,DSC +
rate$miss,DSC× cost$miss,DSC +

ratecore miss× costremote cache access

(1)

While cost$access,DSC mostly depends on the cache technology

itself, DSC improves performance by optimizing the other
variables: DSC is expected to significantly lower rate$miss,DSC
when compared to DirCC, and therefore, its AML primarily
depends on ratecore miss. costremote cache access depends on the
distance of the remote core from the requesting core; we
estimate an average under a particular interconnect technology.
ratecore miss is application dependent and must be measured
using an online profiler.

Under the directory-based architecture, AML has two key
components: cache access (for cache hits and misses), and
cache misses (including on-chip protocol costs, cache-to-cache
transfers and/or off-chip accesses).

AMLDirCC = cost$access,DirCC +
rate$miss,DirCC× cost$miss,DirCC

(2)

While cost$access,DirCC mostly depends on the cache tech-
nology itself, DirCC improves performance by optimizing
the rate$miss,DirCC. Both cost$miss,DirCC and rate$miss,DirCC are
application dependent and must be measured using an online
profiler.

We propose to use relative comparisons between equations 1
and 2 to predict when it is beneficial for an application to
switch from DirCC to DSC. Transitioning between the two
coherence protocols can be expensive, therefore, we only
allow a transition when our proposed online predictor shows
a performance advantage that amortizes the cost of protocol
transition. For this paper, we empirically fixed the transition
criterion to allow a protocol transition when predicted perfor-
mance advantage is in excess of 5%.

Four critical parameters need to be profiled at runtime
or otherwise estimated to accurately make a prediction
about switching coherence protocols at the application level:
(a) average round trip latency of remote-cache access, (b)
ratecore miss, (c) average cache miss latency under DirCC, and
(d) rate$miss,DirCC.

2) Online Profilers: Because the ARCc architecture always
starts an application under DirCC and may transition the
coherence protocol based on the performance predictor, the
average cache miss latency under DirCC, and rate$miss,DirCC
can be accurately profiled at runtime. The TLB contains the
home core information for each memory access, therefore for
DSC ratecore miss can also be precisely measured for every
memory access. Since the round trip latency of a remote-cache
access cannot be profiled in hardware, we estimate it using a
12×12 mesh network (we assume a 128 core multicore for this
study) with three-cycle-per-hop 128-bit flit pipelined routers,
and an average distance of 8 hops per transit; making the
round trip network transit cost 48 cycles. We deploy hardware
support to efficiently profile the average cache miss latency
under DirCC, rate$miss,DirCC, and ratecore miss.

Each core implements hardware support to instrument the
following parameters during the sampling period: (a) number
of memory accesses, (b) number of core misses (although core
misses are actually not initiated unless the DSC protocol is
activated, this parameter is profiled to predict the performance
of DSC during the sampling period), and (c) accumulated
latency of L2 misses. (a) is implemented using a 64-bit counter

that is incremented on every memory access. Core misses are
tracked when a memory access from a thread is to a home
core that is different from the core this thread is running on.
(b) is implemented using a 64-bit counter that is incremented
on each core miss. Finally, (c) is implemented using a 64-bit
register that is updated by accumulating the latency of each
L2 miss. Because the core is stalled and waiting for the L2
miss data, this register is updated using the core’s ALU. These
profiling registers are reset every time a new thread or a new
application is mapped to a core.

The computation cost of the performance prediction for
DirCC and DSC is mainly attributed to converting the profiled
data into parameters used to predict performance. We summa-
rize the performance prediction calculation in the following
equations:

DirCCPerf =

num cores

∑
i=1

accumulated latency o f L2 misses

num cores

∑
i=0

num o f memory accesses

DSCPerf =

48 cycles network transit×
num cores

∑
i=1

num of core misses

num cores

∑
i=0

num o f memory accesses

Assuming a 128 core processor, this requires approximately
384 accumulate, 1 multiply, and 2 divide operations. Since
the prediction is made only once every sampling interval, these
operations can be performed on the functional units already
present on the chip by stealing their idle slots. By starting
the process of estimating performance several thousands of
cycles before the end of the sampling period, the computation
for performance prediction can be completely hidden and will
not incur performance penalties.
B. Protocol Transition: DirCC → DSC

The final required component of the ARCc architecture is to
enable coherence protocol transition from DirCC to DSC when
the performance predictor indicates substantial performance
gains of using DSC over DirCC. Note that this transition is
initiated only once at the end of the sampling period for each
application. During the protocol transition phase, the execution
of the application is halted and the following procedure is
initiated by the hardware to transition the cache coherence
protocol.

A system wide message is sent to each core to flush all
modified data to the home core for that data. Flushing the data
to the home core has the advantage of avoiding unnecessary
off-chip memory accesses. Each L2 cache initiates a “cache
walk” procedure to scan all cache lines and check whether a
cache line is in modified state. If a cache line is in modified
state, a TLB lookup extracts the home core for that data and
a cache-to-cache transfer is initiated to move the cache line to
its home core. Note that on arrival at the home core’s cache,
if the cache line being replaced is itself in modified state,
then depending on the home core for that cache line, it is
either evicted to its home core or stored back to main memory.
Evictions to the home core may cause a cascade effect, but
the system will stabilize when all modified cache lines reach
their home cores. Because this procedure is implemented in

hardware, it is transparent to the operating system and the
application. At the end of the protocol transition, the system
registers are updated to disable DirCC and enable DSC.

The protocol transition phase is the only performance
penalty observed by the application and may need efficient
implementation. Our estimates for a 128-core processor with
256KB L2 cache per core show that a cache walk with 10%-
20% of the cache lines in modified state requires 50K to 100K
cycles overhead for transitioning coherence protocols.

IV. METHODS

We use Pin [14] and Graphite [15] to model the proposed
ARCc architecture as well as the DirCC and DSC baselines.
We implemented a tile-based multicore similar to Tilera’s
TILE-GX with 128 cores; various processor parameters are
summarized in Table I. We swept the per-tile L2 cache sizes
to characterize the performance and energy tradeoffs between
the proposed ARCc, DirCC, and DSC architectures. On-chip
directory caches (not needed for DSC) were set to sizes rec-
ommended by Graphite on basis of the total L2 cache capacity
in the simulated system. For all experiments using ARCc, we
fixed the sampling period to 5 million cycles. As discussed
in Section III-B, we modeled the overheads associated with
transitioning the coherence protocol from DirCC to DSC.

Our experiments used a set of SPLASH-2 benchmarks:
FFT, LU CONTIGUOUS, OCEAN CONTIGUOUS, RADIX, RAY-
TRACE, and WATER-N2. For the benchmarks for which
versions optimized for directory coherence exist (LU and
OCEAN [16]), we chose the versions that were most optimized
for DirCC. Each application has 128 threads and was run to
completion using the recommended input set for the number of
cores used. For each simulation run, we tracked the completion
time and cycles per instruction for each thread, the percentage
of memory accesses causing cache hierarchy misses, and
the percentage of memory accesses causing remote-cache
accesses.
A. Energy estimation

For energy, we assume a 32nm process technology and use
CACTI [17] to estimate the dynamic energy consumption of
the caches, routers, register files, and DRAM. The dynamic
energy numbers used in this paper are summarized in Ta-
ble II. We implemented several energy counters (for example
the number of DRAM reads and writes) in our simulation
framework to estimate the total energy consumption of running
SPLASH-2 benchmarks for DirCC, DSC and ARCc. Note that
DRAM only models the energy consumption of the RAM, and
the I/O pads and pins will only add to the energy cost of going
off-chip.
B. Data Placement for DSC

In standard S-NUCA architectures and our DSC variant,
data placement is key, as it determines the frequency and
distance of remote-cache accesses. Data placement has been
studied extensively in the context of NUMA architectures
(e.g., [8]) as well as more recently in the S-NUCA context
(e.g., [10]), the operating system controls memory-to-core
mapping via the existing virtual memory mechanism: when
a virtual address is first mapped to a physical page, the OS

!"#"$%&%#' (%)*+,'

!"#$%& '()&*+,"#-$#.&/,%012$&3*3$4*+$.&%*+24$,*%%5$&6"#$%&

7'&*+%0#568"+9-101&616:$&3$#&6"#$& ;(9'<&=>.&?9(,@1A&%$0&1%%"6*18B$&

7(&616:$&3$#&6"#$& C'<.&;(.&<?.&'().&(/<D&=>.&?,@1A&%$0&1%%"6*18B$&
!16:$&4*+$&%*E$&F&<?&GA0$%&

H4$60#*614&+$0@"#I& (J&K$%:.&LM&#"58+2.&'()G&N*0%&
(&6A64$%&3$#&:"3&OP&6"+0$+8"+Q&

J101&3416R+0&%6:R& S*#%0,0"56:.&?&=>&312$&%*E$&

J*#$60"#A&3#"0"6"4& KTHUV.&S544,R13&3:A%*6144A&-*%0#*G50$-&-*#$60"#*$%&
H+0#*$%&3$#&-*#$60"#A&F&C(/<.&/'(.&'=.&(=.&?=D&
;(,@1A&%$0&1%%"6*18B$&

K$R"#A& ;W&X>9%&G1+-@*-0:.&Y/+%&410$+6A&

TABLE I
SYSTEM CONFIGURATIONS USED.

!"#$"%&%'()(*&+,(&%&-./(
0%123%4'+%5&6(

7-3'&(&%&-./(
0%123%4'+%5&6(

8&'+394(

!"#$%&"'()$*"(+,-(./..0(./..,(12!34(125'(67'&%8(91:,1(;$&%(

!7<&"'(+,-(./.++(./..1(02!34(025'(67'&%8(+,-:,.(;$&%(

=$'">&7'?(>@>A"(+,-(B./+C4(./+-4(
./D94(./CD4(./C1E(

B./+C4(./+-4((
./14(./--4(./FE(

B-4(+94(,14(1.4(91E(GH(>@>A"4(
D,2I@?(@%%7>$@JK"(

L,(>@>A"(+,-(B./.D4(./.14(
./.-4(./+14(./,-E(

B./.,4(./.D4(
./.C4(./+,4(./,-E(

B+94(D,4(914(+,-4(,09E(GH(>@>A"4(
12I@?(@%%7>$@JK"(

L+(3@&@(>@>A"(+,-(./.D1(./.+C(+9(GH(M,2I@?(@%%7>$@JK"N(

OP2>A$6(=!QR(-(9/DDD(9/D,,(+(SH(!QR(

TABLE II
AREA AND ENERGY ESTIMATES.

chooses where the relevant page should be cached by mapping
the virtual page to a physical address range assigned to a
specific core. Since the OS knows which thread causes a page
fault, more sophisticated heuristics are possible: for example,
in a first-touch-style scheme, the OS can map the page to
the thread’s originating core, taking advantage of data access
locality to reduce the remote-access rate while keeping the
threads spread among cores. It is plausible to combine a first-
touch data placement policy [18], which maps each page to the
first core to access it, with judicious profiling-based placement
and replication of read-only shared data [10], making DSC an
attractive alternative for cache coherence. In this paper, we
consider a first-touch style data placement scheme, and defer
optimizations for data placement to future work.

C. Directory vs. Distributed Shared Cache (DSC) Coherence

Our baseline directory-based hardware cache coherence
architecture (DirCC) configures the L1/L2 caches private to
each tile and enables a sequentially consistent memory sys-
tem. A coherence controller utilizes a directory-based MOESI
protocol and all possible cache-to-cache transfers to manage
coherence for the associated address space regions. The DirCC
architecture implements a full-map physically distributed di-
rectory [19]. To keep track of data sharers and to minimize
expensive off-chip accesses, we deploy an on-chip directory
cache [5]. The directory cache is sized appropriately as a
function of the number of L2 cache entries tracked by the
coherence protocol. On a directory cache eviction, the entry
with the lowest number of sharers is chosen and all sharers
for that entry are invalidated.

The most performance sensitive aspect of DirCC is the
sizing and organization of the data and directory caches. A
directory cache conflict can result in evicting active cache
lines, causing an increase in off-chip memory accesses due to
data re-fetch. A key feature of DirCC is automatic replication

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

()
**+
,
-.
"

'&
"/0

-1
21
/"

%3
"/0

-1
21
/"

4"
/0
-1
21
/"

%"
/0
-1
21
"

56
7"

()
**+
,
-.
"

'&
"/0

-1
21
/"

%3
"/0

-1
21
/"

4"
/0
-1
21
/"

%"
/0
-1
21
"

56
7"

()
**+
,
-.
"

'&
"/0

-1
21
/"

%3
"/0

-1
21
/"

4"
/0
-1
21
/"

%"
/0
-1
21
"

56
7"

()
**+
,
-.
"

'&
"/0

-1
21
/"

%3
"/0

-1
21
/"

4"
/0
-1
21
/"

%"
/0
-1
21
"

56
7"

()
**+
,
-.
"

'&
"/0

-1
21
/"

%3
"/0

-1
21
/"

4"
/0
-1
21
/"

%"
/0
-1
21
"

56
7"

()
**+
,
-.
"

'&
"/0

-1
21
/"

%3
"/0

-1
21
/"

4"
/0
-1
21
/"

%"
/0
-1
21
"

56
7"

((8" 9:;7<=8" <7>?=;7<=8" @?5AB" @?C8@?7>" D?8>@+=&"

!"
#"
$$%
$&'
()

*$
%+

(,
&+
)
%&
&

#%
$"
+-

%&
.(
&/0

$$1
)
"*

2&3
45
.#
46
0.
%3

&7
4#8

8&

Fig. 5. Performance of full-map directory coherence is optimal compared to
the limited hardware sharer variants; as maximum allowed hardware sharers
per cache line are reduced the performance of DirCC drops because limiting
the S state only spreads sharing and therefore cache pollution over time.
On the other hand, DSC only allows a cache line to be cached in a single
tile, therefore increasing the total available cache capacity and effectively
dramatically reducing off-chip accesses.

of shared data that exploits temporal and spacial locality. On
the flip side, replication decreases the effective total on-chip
data cache size because, as the core counts grow, a lot of
cache space is taken by replicas and fewer lines in total can
be cached, which in turn can lead to an increase in off-chip
memory access rates and lower performance.

Figure 5 characterizes the performance of our full-map di-
rectory coherence implementation for 64KB L2 cache per core.
The data presented here is an average across all benchmarks.
Although at first blush it may seem plausible that reducing
the maximum number of allowed hardware sharers per cache
line may yield similar performance as the DSC counterpart, in
reality our results show that reducing the number of allowed
hardware sharers only spreads the sharing and therefore cache
pollution over time. On the other hand, DSC only allows a
cache line to be cached in a single tile, therefore trading off
cache capacity and policy with a communication protocol to
access remote data, effectively dramatically reducing off-chip
accesses. We observe that full-map DirCC and DSC enable the
most interesting tradeoffs in application performance. In the
next section, we show that our ARCc architecture detects and
exploits the performance advantage of transitioning between
DirCC to DSC protocols at application-level granularity.

V. EVALUATION

A. Cache Hierarchy Misses vs. Remote-cache Accesses

Figure 6 illustrates how the DSC and DirCC coherence
protocols differ in cache miss rates. Under DSC, which unifies
the per-core caches into one large logically shared cache and
does not replicate data in caches, cache miss rates not only
start lower to begin with, but also deteriorate much more
slowly as the cache capacity drops.

Although cache miss rates are a primary factor in deter-
mining overall application performance, non-uniform latency
remote-cache accesses in DSC mean that DSC performance
critically depends on how often and how far the remote access
messages must travel. This factor is highly dependent on the
application and the placement of its data in the per-core cache
slices: core miss rate (i.e., the fraction of memory references

0	

1	

2	

3	

4	

5	

6	

7	

256	
 128	
 64	
 32	
 16	

Ca
ch
e	

hi
er
ar
ch
y	

m
is
s	
 r
at
e	

L2	
 Cache	
 per	
 core	
 (in	
 Kilobytes)	

DirCC	

DSC	

ARCc	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

256	
 128	
 64	
 32	
 16	

Co
re
	
 m

is
se
s	
 p

er
	
 m

em
or
y	

ac
ce
ss
	

L2	
 Cache	
 per	
 core	
 (in	
 Kilobytes)	

DSC	
 ARCc	

Fig. 6. On the one hand, DirCC is highly sensitive to cache miss rates, while
DSC markedly lowers cache misses; on the other, DSC is highly dependent on
data placement, which dictates remote-cache access rates (a.k.a core misses).
The data presented in this figure is an average across all benchmarks.

-­‐0.15	

-­‐0.1	

-­‐0.05	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0	

0.5	

1	

1.5	

2	

2.5	

3	

FF
T	

LU
_C
ON
T	

OC
EA
N_
CO
NT
	

RA
DIX
	

RA
YT
RA
CE
	

WA
TE
R-­‐N

2	

GE
O	
 A

VG
.	

Co
re
	
 m

is
se
s	
 p

er
	
 m

em
or
y	

ac
ce
ss
es
	

DS
C	

pa

ra
lle
l	
 c
om

pl
e0

on
	
 0
m
e	

re
la
0v

e	

to
	
 D
irC

C	

16KB	
 L2$	

32KB	
 L2$	

64KB	
 L2$	

128KB	
 L2$	

256KB	
 L2$	

Remote-­‐cache	
 access	
 rate	

Fig. 7. DSC performance compared to DirCC for various L2 cache sizes.

that result in remote-cache accesses) for DSC varies from less
than 3% in FFT to about 25% in RADIX, and we observe an
average of 14% remote-cache accesses (see Figure 7).

The ARCc architecture intelligently chooses the DirCC or
DSC coherence protocol to tradeoff the latency of the directory
3-party communication (of every cache hierarchy miss) with
the DSC round trip latency (of each remote-cache access).
Figure 6 shows that a 256KB L2 cache lowers the cache
hierarchy miss rates of DirCC to under 1% and the cost of
(on average 14%) remote-cache accesses for DSC exceeds the
latencies associated with cache misses under DirCC. There-
fore, ARCc only transitions from DirCC to DSC for a few
select applications. As the per-core L2 cache size is reduced,
the cache miss rates of DirCC increase sharply compared
to DSC, but the remote-cache accesses under DSC remain
relatively constant. This results in more applications choosing
DSC as the coherence protocol under ARCc. Eventually,
at 16KB L2 cache per core, we observe that most of the
applications transition to DSC under ARCc as the benefits
of reducing cache miss rates (and associated communication
latencies) outweigh the latencies associated with the remote-
cache accesses.
B. Performance Advantage of ARCc

The key contribution of the proposed ARCc architecture is
its performance advantage over DirCC and DSC protocols.
To understand where ARCc wins in performance, we evaluate
the parallel completion time (PCT) of DSC relative to DirCC.
Figure 7 shows the PCT for various per-core L2 cache
configurations. Because DSC does not allow data replication
and utilizes the available cache capacity more efficiently, the
performance for DSC is on average superior to DirCC at
smaller per-core L2 cache configurations. The remote-cache
accesses (a.k.a core misses) primarily dictate the memory
latency and performance under DSC. Results show that this
factor is highly dependent on the application and the data
placement in the per-core caches; applications with higher

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

FF
T	

LU
_C
ON
T	

OC
EA
N_
CO
NT
	

RA
DIX
	

RA
YT
RA
CE
	

WA
TE
R-­‐N

2	

GE
O	
 A

VG
.	

AR
Cc
	
 p
er
fo
rm

an
ce
	
 g
ai
ns
	
 	

re
la
2v

e	

to
	
 D
irC

C	

16KB	
 L2$	

32KB	
 L2$	

64KB	
 L2$	

128KB	
 L2$	

256KB	
 L2$	

Fig. 8. ARCc performance compared to DirCC for various L2 cache sizes.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

FF
T	

LU
_C
ON
T	

OC
EA
N_
CO
NT
	

RA
DIX
	

RA
YT
RA
CE
	

WA
TE
R-­‐N

2	

GE
O	
 A

VG
.	
 AR

Cc
	
 d
yn
am

ic
	
 e
ne

rg
y	

re
du

c0
on

	

re
la
0v

e	

to
	
 D
irC

C	

16KB	
 L2$	

32KB	
 L2$	

64KB	
 L2$	

128KB	
 L2$	

256KB	
 L2$	

Fig. 9. ARCc energy compared to DirCC for various L2 cache sizes.

core miss rates tend to perform worse under DSC, specifically
when the corresponding cache hierarchy miss rates are low
under DirCC. For example, the average cache hierarchy miss
rate for DirCC under 16KB per-core L2 cache is 6% and
most applications tend to perform better under DSC where
the latency cost of round trip remote-cache accesses results
in lower memory access latency compared to the 3-party
directory protocol for the (6%) cache misses under DirCC.

The proposed ARCc architecture intelligently selects (cf.
Section III-A) the appropriate coherence protocol at per-
application granularity and as a result delivers higher perfor-
mance relative to either DSC or DirCC protocols. Figure 8
shows the performance advantage of ARCc relative to DirCC
for several per-core L2 cache configurations. The point where
DSC outperforms DirCC is different for each application and
also depends on the available cache capacity; this motivates
our ARCc architecture and automatic DirCC to DSC coher-
ence protocol transition.

FFT has the lowest core miss rate for DSC, and a high
cache miss rate for DirCC, resulting in DSC outperforming
DirCC by a wide margin. Under ARCc, our performance
model switches to DSC for all L2 cache configurations in this
application. On the other hand, WATER-N2 exhibits a mixed
behavior, where the cache miss rate under DirCC ranges from
4% (16KB L2) to less than 1% (256KB L2). Because DSC
has 15% remote-cache accesses, the small cache miss rate of
DirCC (less than 1% under 256KB per-core L2) allows it to
outperform DSC. On the other hand, the 4% cache hierarchy
miss rate of 16KB per-core L2 results in several round trip
messages due to 3-party communication under DirCC. The
latency of 15% remote-cache access round trips is offset by
much lower (under 1%) cache hierarchy misses resulting in
superior performance for DSC relative to DirCC.

In summary, our results show that ARCc always predicts
the better performing coherence protocol correctly under the
proposed online analytical model. As a result ARCc delivers
1.6× (for 16KB L2) to 1.15× (for 256KB L2) performance

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

256	
 128	
 64	
 32	
 16	

Pe
rf
or
m
an

ce
	
 re

la
,v

e	

to
	

Di
rC
C	

at
	
 2
56
KB

	
 p
er
-­‐c
or
e	

L2
	

L2	
 Cache	
 per	
 core	
 (in	
 Kilobytes)	

DirCC	

DSC	

ARCc	

Fig. 10. Performance averaged over all benchmarks as cache sizes decrease
for 128-core multicore.

advantage over the directory-based DirCC protocol.
C. Dynamic Energy Advantage of ARCc

Since energy consumption is a critical factor in future
single-chip processors, we employed an energy model (cf.
Section IV-A) to estimate the dynamic energy consumed by
the ARCc, DSC and DirCC coherence protocols. On the
one hand, remote-cache accesses incur dynamic energy costs
due to increased traffic in the on-chip network; on the other
hand, dramatic reductions in off-chip accesses equate to very
significant reductions in DRAM access energy.

Figure 9 shows that energy consumption depends on each
application’s access patterns. For FFT, for example, which
incurs crippling rates of eviction invalidations under DirCC,
the energy expended by the coherence protocol messages
and DRAM references far outweigh the cost of energy used
by remote-cache accesses. ARCc chooses to switch to the
DSC protocol and exploits energy benefits in addition to the
performance gains. On the other extreme, the mostly on-
chip data usage and read-only paradigm of RAYTRACE allows
DirCC to efficiently keep data in the per-core caches and
consume far less energy (in addition to performance gains)
compared to DSC.

In summary, our results show that in addition to perfor-
mance, ARCc also exploits the energy advantage of DSC.
For all applications and per-core cache sizes, where ARCc
chooses to switch from DirCC to DSC, dynamic energy
benefits materialize. Overall, ARCc delivers 1.5× (for 16KB
L2) to 1.05× (for 256KB L2) dynamic energy advantage over
the directory-based DirCC protocol.
D. Overall Performance and Dependability

Figure 10 shows, for a 128-core processor, how the ARCc
architecture performs on average as the capacity of caches
is reduced. Although the DSC protocol performs better at
lower cache sizes and DirCC performs better at higher cache
sizes, the combined ARCc architecture responds to system
conditions to select the best combination on a per-application
granularity, and outperforms both baselines. We observe that
ARCc becomes more advantageous when the system cache
sizes are no longer sized exactly to deliver maximum perfor-
mance for a particular protocol.

Even under our default 256KB per-core L2 cache, ARCc
picks the best performing protocol and delivers an average of
8% performance gain over DirCC protocol. At 128KB and
64KB per-core L2 cache sizes, ARCc incurs 3% and 27%
performance loss respectively, whereas, the DirCC counterpart
would have experienced in excess of 30% and 50% perfor-
mance loss compared to the default 256KB L2 cache per core.

Finally, when the L2 cache is sized at 32KB or 16KB per
core, DirCC performs significantly worse than DSC, whereas
ARCc matches or performs slightly better than DSC. Thus,
the ARCc architecture exploits application-level asymmetri-
cal behaviors to boost system performance and consistently
outperforms both DSC and DirCC coherence mechanisms.
The fact that ARCc allows two redundant and independent
coherence protocols to co-exist in hardware can be exploited
to improve dependability; we will explore this in future work.

VI. RELATED WORK

Although directory-based coherence protocols have become
the de facto standard to keep on-chip caches coherent, they
have certain drawbacks such as frequent indirections due
to the directory storage overhead and protocol complexity.
Therefore, researchers have recently proposed several alter-
native architectures to simplify the hardware requirements for
cache coherence. The COHESION architecture [20] combines
hardware-managed and software-managed coherence domains
at fine-grained granularity. COHESION offers reduced mes-
sage traffic and does not require an on-chip directory when
software coherence is used. Our ARCc architecture is superior
to COHESION in that it utilizes a more efficient hardware
alternative to ensure architectural redundancy. Because ARCc
is all-hardware, it also does not require any software changes.

Pugsley et al. [21] proposed SWEL, a directory-less coher-
ence protocol. The SWEL protocol replaces the directory with
a much smaller bookkeeping structure that tracks private, read-
only and shared read/write cache lines. The read-only data is
allowed to be replicated in the L1 caches and the read/write
data is only allowed to be present in the L2 cache that is shared
by all cores. SWEL greatly reduces the number of coherence
operations, but it also requires a fallback broadcast-based
snooping protocol when infrequent coherence is needed. Their
results show that SWEL can improve performance over the
directory-based counterpart when an application has frequent
read-write data sharing.

The ARCc architecture proposes distributed shared cache
(DSC) based coherence as an alternative, architecturally re-
dundant mechanism to directory-based coherence. The DSC
protocol is similar to the shared-memory mechanism for
coherence proposed by Fensch and Cintra [7]. They argue that
directory-based hardware cache coherence is not needed and
that the OS can efficiently manage the caches and keep them
coherent. The L1s are kept coherent by only allowing one L1
to have a copy of any given page of memory at a time.

VII. FUTURE WORK

In this paper, we have presented the ARCc architecture
that allows a one-way transition from directory to DSC based
coherence at application-level granularity. Hence, only one
application can run at a time. In the future we plan to
evaluate the ARCc architecture at the granularity of phases
within application, OS-pages, as well as cache lines. Novel
static and dynamic methods will be explored that correctly
predict when DSC is preferable to the directory protocol. After
prediction, efficient transitions need to be made between the
two protocols.

VIII. CONCLUSION

In this paper we have identified the need for architecturally
redundant cache-coherence in large-scale multicore proces-
sors. We have proposed a novel cache coherence architecture
(ARCc) that provides architectural redundancy for maintaining
coherence across on-chip caches. ARCc combines traditional
directory-based coherence with a remote-cache-access based
coherence architecture (DSC) to ensure significant perfor-
mance and energy gains. ARCc allows these two independent
and heterogeneous coherence protocols to co-exist in hardware
and enables a more dependable architecture.

REFERENCES

[1] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada, M. Ratta,
and S. Vora, “A 45nm 8-core enterprise Xeon R© processor,” in A-SSCC,
2009, pp. 9–12.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown et al., “TILE64 - processor:
A 64-Core SoC with mesh interconnect,” in ISSCC, 2008, pp. 88–598.

[3] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain et al., “An 80-Tile Sub-100-W
TeraFLOPS processor in 65-nm CMOS,” IEEE J. Solid-State Circuits,
vol. 43, no. 1, pp. 29–41, 2008.

[4] S. Borkar, “Thousand core chips: a technology perspective,” in DAC,
2007, pp. 746–749.

[5] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes,” in
International Conference on Parallel Processing, 1990.

[6] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” in ASP-
LOS, 2002.

[7] C. Fensch and M. Cintra, “An os-based alternative to full hardware
coherence on tiled cmps,” in International Conference on High Perfor-
mance Computer Architecture, 2008.

[8] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
system support for improving data locality on cc-numa compute servers,”
SIGPLAN Not., vol. 31, no. 9, pp. 279–289, 1996.

[9] M. Zhang and K. Asanović, “Victim replication: maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in ISCA, 2005.

[10] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in ISCA, 2009.

[11] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” in IEEE Micro,
2005.

[12] http://www.tilera.com, “Tile-gx processor family: Product brief,” 2011.
[13] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote Store Program-

ming A Memory Model for Embedded Multicore,” in HiPEAC, 2010.
[14] M. M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazel-

wood, A. Jaleel, C. Luk, G. Lyons, H. Patil et al., “Analyzing parallel
programs with pin,” Computer, vol. 43, pp. 34–41, 2010.

[15] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in HPCA, 2010, pp. 1–12.

[16] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2
programs: characterization and methodological considerations,” in ISCA,
1995.

[17] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.
Jouppi, “A comprehensive memory modeling tool and its application to
the design and analysis of future memory hierarchies,” in ISCA, 2008,
pp. 51–62.

[18] M. Marchetti, L. Kontothanassis, R. Bianchini, and M. Scott, “Using
simple page placement policies to reduce the cost of cache fills in
coherent shared-memory systems,” in IPPS, 1995.

[19] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, “Directory-based
cache coherence in large-scale multiprocessors,” in COMPUTER, 1990.

[20] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,
“Cohesion: A hybrid memory model for accelerators,” in International
Conference on Computer Architectures, 2010.

[21] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian,
“Swel: Hardware cache coherence protocols to map shared data onto
shared caches,” in International Conference on Parallel Architectures
and Compilation Techniques, 2010.

