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Abstract
In settings of incomplete information we put forward an epistemic framework for

designing mechanisms that successfully leverage the players’ arbitrary higher-order
beliefs, even when such beliefs are totally wrong, and even when the players are rational
in a very weak sense. Following Aumann [5], we consider a player i rational if he uses
a pure strategy si such that no alternative pure strategy s′i performs better than si
in every world i considers possible, and consider him order-k rational if he is rational
and believes that all other players are order-(k − 1) rational. We then introduce an
iterative deletion procedure of dominated strategies and use it to precisely characterize
the strategies consistent with the players being order-k rational.

We exemplify the power of our framework in single-good auctions by introducing
and achieving a new class of revenue benchmarks, defined over the players’ arbitrary
beliefs, that can be much higher than classical ones, and are unattainable by traditional
mechanisms. Namely, we exhibit a mechanism that, for every k ≥ 0 and ε > 0 and
whenever the players are order-(k+1) rational, guarantees revenue ≥ Gk−ε, where Gk

is the second highest belief about belief about . . . (k times) about the highest valuation
of some player, even when such a player’s identity is not precisely known. Importantly,
our mechanism is possibilistic interim individually rational. Essentially this means
that, based on his beliefs, a player’s utility is non-negative not in expectation, but in
each world he believes possible.

We finally show that our benchmark Gk is so demanding that it separates the
revenue achievable with order-k rational players from that achievable with order-(k+1)
rational ones. That is, no possibilistic interim individually rational mechanism can
guarantee revenue ≥ Gk − c, for any constant c > 0, when the players are only order-k
rational.



1 Introduction

Implementation in settings of incomplete information are currently limited by

(1) the inability of leveraging the players’ arbitrary higher-order beliefs, and

(2) the strong assumption that all players are expected-utility maximizers.

For our first point, in settings of incomplete information the players are free to form
arbitrary beliefs, of arbitrary order, about the (payoff) types of their opponents. A player’s
order-0 beliefs are his own type; his order-1 beliefs are his beliefs about his opponents’ types;
his order-2 beliefs are his beliefs about his opponents’ order-1 beliefs; and so on. We refer
to beliefs of order 2 or higher as higher-order beliefs. Higher-order beliefs can deeply affect
a player’s strategic decisions, yet such beliefs are not leveraged by classical mechanisms. In
particular, dominant-strategy mechanisms only leverage order-0 beliefs, and current Bayesian
mechanisms only order-1 beliefs.1 Also the recent non-Bayesian mechanisms of [12] only
leverage order-1 beliefs.

As for our second point, the assumption that all players are expected-utility maximizers is
widely relied upon, but is also widely recognized to be very strong. Indeed, a lot of empirical
evidence points out that real players may not be so rational (see, in particular, the famous
Allais Paradox [2]).

Accordingly, a mechanism designer who ignores the players’ higher-order beliefs limits
the set of achievable outcomes; and one who assumes that all players are expected-utility
maximizers limits the applicability of his mechanisms. We believe these limitations to be
serious, but not intrinsic. We note that epistemic game theory has long studied higher-order
beliefs as well as weaker notions of rationality. We thus wish to utilize this body of knowledge
in order to alleviate the above current limitations of implementation.

Our contribution is three-fold. First, we put forward an epistemic framework enabling
mechanism designers to leverage arbitrary higher-order beliefs, even when the players are
rational in a very weak sense and their beliefs totally wrong.

Second, we apply our framework to single-good auctions. Namely, we construct a mech-
anism that, whenever the players are order-(k + 1) rational, guarantees a very ambitious
revenue benchmark, Gk, defined over the players’ order-k beliefs.

Finally, we prove that each additional order of rationality provides additional power
to implementation. Specifically, we prove that, for every k, the benchmark Gk cannot be
guaranteed when the players are at most order-k rational. As far as we know, previously
it was not even clear whether such a separation existed for —say— order-4 and order-5
rationality.

1Dominant-strategy mechanisms leverage only the players’ order-0 beliefs by definition, because each
player’s best strategy is to report his own true type, no matter what his opponents might do. Bayesian
mechanisms that assume a common prior do not even envisage the players having arbitrary higher-order be-
liefs, but require their higher-order beliefs to be inferrable from those of order 1. Many Bayesian mechanisms
in the literature actually make an additional assumption: namely, the players’ payoff types are independently
distributed.
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2 Intuitive Explanation of Our Contributions

2.1 An Epistemic Approach to Implementation

Our model of the players’ higher-order beliefs follows the possible worlds model proposed
independently by Aumann [4] and Kripke [18]. Their model has been widely used in the
literature of epistemic game theory. But in most of the literature, the players’ beliefs about
types and beliefs about strategies are treated together. In our approach, we find it important
to separate these two kinds of beliefs.

Type Frameworks and Game Frameworks We specify the players’ (payoff) types, and
their arbitrary-order beliefs about types, via what we call a type framework. We succinctly
represent such a framework via a Kripke structure.2 Roughly speaking, a type framework
specifies a set Ω of possible states of the world. Each state ω ∈ Ω further specifies, for each
player i, a payoff type for i and the set of states that i considers possible, that is, i’s belief
at ω.

We then define the notion of a game framework from that of a type framework by “en-
riching it with beliefs about strategies.”3 Again, we do so via Kripke structures. (Our
formalization can be considered as a possibilistic variant of the notion of a structure in [15].)

Epistemic Social Choice Correspondences Separately formalizing type frameworks
enables us to generalize the traditional notion of a social choice correspondence. In essence,
an epistemic social choice correspondence is a function mapping not only the players’ types,
but also their beliefs about types, to outcomes. Such correspondences enable a mechanism
designer to enlarge dramatically the set of objectives she may hope to achieve.

Aumann Rationality Following Aumann [5], we take a very conservative approach to
defining rationality. Roughly speaking, a player i is rational if he uses a pure strategy si
such that, for every alternative pure strategy s′i, there exists some state of the world that
i considers possible, where si performs as well as s′i. Thus, we do not need to assume
distributions over states: it suffices to work with “possibilistic” beliefs. This notion of
rationality is significantly weaker than expected-utility maximization.4

Higher orders of rationality are naturally defined as follows: player i is order-k rational
if he is rational, and believes that all other players are order-(k − 1) rational.

Our Notion of Implementation The notion of an implementation is both closely related
to that of a solution concept and very demanding. Essentially, it requires that a desired
property hold not just at some strategy profiles specified by a given solution concept C, but
at all of them.

2For a good exposition of Kripke structures, see [13].
3Traditionally, what we call a game framework is referred to as a “type structure.” Since we wish to treat

types and strategies separately but in a uniform manner, we have adopted the term “framework.”
4Expected-utility maximizers are certainly Aumann rational, but whereas there are many experiments

showing that people do not act as expected-utility maximizers, we are not aware of any experiments showing
that people do not act rationally according to Aumann’s notion.
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We put forward a class of implementation notions that are conceptually simple and
suitable for epistemic social choice correspondences. Essentially,

for an integer k ≥ 0, our corresponding solution concept
consists of all profiles of order-k rational strategies.

Our notions of implementation

• do not depend on common belief of rationality (a very strong assumption);

• do not require any consistency about the beliefs of different players; and

• are “closed under Cartesian product.” That is, each underlying solution concept C is of
the form C1 × · · · × Cn, where each Ci is a subset of the pure strategies of player i.

This closure property is important from a purely epistemic perspective because it overcomes
the “epistemic criticism” of the Nash equilibrium concept, see [7, 6, 3]. It is also important
from an implementation perspective. In particular, implementation at all Nash equilibria is
not closed under Cartesian product, and thus mismatches in the players’ beliefs (about each
other’s equilibrium strategies) may easily yield undesired outcomes.

2.2 Our Characterization of Order-k Aumann Rationality

We characterize order-k rationality via a new iterative strategy-deletion procedure. Very
roughly speaking, for every state ω of the world in the type framework, we keep a set of
possible pure strategies for each player. In each iteration, a strategy is removed if it is strictly
dominated by some other pure strategy in every state that i considers possible at ω. Our
elimination procedure is actually defined Section 5, where we also formalize (as Theorem 1)
and prove the following

Characterization Result (Informal statement.) For all players i and k ≥ 0, a strat-
egy of i is order-k rational if and only if it survives k rounds of iterated elimination.5

Note that our characterization of order-k rationality is similar in spirit to the traditional
one of rationalizability in normal-form games (see [11, 19, 8, 20]). Also note, however,
that two main differences exist. First, our characterization applies to games of incomplete
information. Second, our characterization relies on Aumann’s weaker notion of rationality
[5], rather than the traditional stronger notion of expected-utility maximization. (This is
why we only consider domination by pure strategies.)

2.3 An Auction Leveraging Arbitrary Higher-Order Beliefs

We apply our epistemic framework to single-good auctions in a private-value setting6. Specif-
ically, we put forward and implement the following revenue benchmarks.

5Strategy profiles surviving all iterations are further characterized by common belief of rationality.
6Our actual result applies also to the more general setting of interdependent values.
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Higher-Order-Belief Revenue Benchmarks For every k, we recursively define a rev-
enue benchmark Gk on the players’ order-k (possibilistic) beliefs. For simplicity, below we
informally define only G0, G1 and G2.

• Let g0
i = θi for each player i, where θi denotes i’s true valuation for the good. (The inter-

pretation of g0
i is that player i “believes” that there exists some player —i.e., himself!—

who values the good for at least g0
i .)

Then G0 is defined to be the second highest value among all values g0
i .

• Let g1
i be the highest value vi such that player i believes that, no matter what the true

valuation profile θ may be, there always exists some player j (whose identity need not
be known to i) such that g0

j ≥ vi.
Then G1 is defined to be the second highest value among all values g1

i .

• Let g2
i be the highest value vi such that player i believes that there always exists some

player j (whose identity need not be known to i) such that g1
j ≥ vi.

Then G2 is defined to be the second highest value among all values g2
i .

Note that G0 clearly coincides with the second highest true valuation, the revenue bench-
mark achieved by the second-price mechanism. As it will become clear from the formal
definitions, G1 coincides with the second-belief benchmark of [12]; G0 ≤ G1 ≤ G2 ≤ · · · ;
and the gap between Gk and Gk+1 can be arbitrarily large.

Also note that, since we allow them to be arbitrary, the players’ beliefs can be totally
wrong. In this case, Gk may, for k > 0, vastly exceed the highest true valuation. For instance,
consider the case of two players, both valuing the good for 10, where player 1 believes that
player 2 values the good at least for 200, and player 2 believes that player 1 values it for 300.
Then G1 = 200 in this example. However, if all players’ beliefs are “correct at every order”
(see our technical sections for a proper definition), then every Gk lies in between the highest
and second highest true valuation, and can be arbitrarily close to either.

A Single Mechanism Leveraging All Belief Orders We prove the following.

Possibility Result (Informal statement.) For every ε > 0 there exists an auction
mechanism Mε that, for every k, when run with order-(k + 1) rational players, always
generates revenue ≥ Gk − ε.

This result is formalized as Theorem 2 in Section 6.5.
Notice that our possibility result is stronger than saying that “for every k there exists

a mechanism Mε,k that guarantees revenue ≥ Gk − ε.” Indeed, we need not know what the
rationality order of our players is. By running our Mε we are automatically guaranteed to
get revenue ≥ G0− ε if our players are order-1 rational, revenue ≥ G1− ε if they are order-2
rational, revenue ≥ G2−ε if they are order-3 rational, and so on. This guarantee is somewhat
unusual, as typically a mechanism is analyzed under a specific solution concept, and thus
under a specific rationality order.

Notice too that, before this result, no interesting social choice correspondence was known
to be implementable with —say— order-3 rationality. Prior mechanisms (e.g., the one of
[12]) required at most order-2 rationality, or common belief of rationality, but nothing in
between.

Roughly speaking, our mechanism is a second-price auction with a reserve price. The
mechanism sets the reserve price via information provided by the players themselves, based
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on their beliefs. The players are actually paid by the mechanism to provide this information.
The idea of buying information from the players is not new. (In particular, it is used by the
auction mechanism of [12].) We are not aware, however, of any mechanism where higher-
order beliefs are being bought. In some sense, in our mechanism the seller is paying to hear
even the faintest rumors.

Finally, let us point out that a player may receive negative utility in our mechanism.
Indeed, if the players are order-(k+1) rational, their beliefs are wrong, and Gk greatly exceeds
the highest valuation, then at least one player has negative utility. This is so because in
this case our mechanism generates revenue higher than the highest valuation. Nonetheless,
our mechanism is possibilistic interim individually rational: that is, as formally defined
later, every player believes that his utility will be non-negative. Thus every player willingly
participates in our mechanism. (This situation is not too dissimilar from that of a rational
player who willingly enters the stock market, yet might end up losing money if his beliefs
are wrong.)

2.4 The Necessity of the Right Rationality Order

We prove that order-(k + 1) rationality is necessary to guarantee benchmark Gk. Namely,

Impossibility Result (Informal statement.) For every c > 0 and every k, there is no
possibilistic interim individually rational auction mechanism that guarantees revenue
≥ Gk − c if the players are only order-k rational.

This result is formalized as Theorem 4, proved in Section 7.

3 Additional Related Work

As already mentioned, we leverage the players’ beliefs in a non-Bayesian setting, and our
notion of implementation very different from implementation in dominant strategies.

Weinstein and Yildiz [21] also study iterated elimination and rationalizability based on
the players’ arbitrary-order beliefs, but in a Bayesian setting.

Although we avoid relying on common belief of rationality, our notions and mechanism
can be based on it too, again in a setting of incomplete information. Traditionally, im-
plementation under common belief of rationality has been studied for settings of complete
information (in particular, see [1] and [14]).

The literature on robust mechanism design, as initiated by Bergemann and Morris [9],
is close in spirit to our work. Robust mechanism design too aims at relaxing the common
prior assumption, and directly considers richer type spaces to model the players’ higher-
order beliefs. But the questions it studies are quite different from ours. In particular, robust
mechanism design has been used to provide additional justification for implementation in
dominant strategies. Also, [9] and subsequent papers still define social choice correspon-
dences over the players’ payoff types only (rather than their arbitrary-order beliefs). Yet,
Bergemann and Morris [10] explicitly point out that such restricted social choice correspon-
dences cannot represent revenue maximizing allocations. Indeed, our results establish that
higher revenue benchmark can be defined and achieved, if considering players’ higher-order
beliefs when defining the benchmark.
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Chen and Micali [12] have considered arbitrary (possibly correlated) valuations in single-
good auctions when the players’ beliefs are possibilistic. However, their work leverages
only the players’ first two orders of beliefs. Although our mechanism can be viewed as
a generalization of theirs, our and their respective analysis are very different. Indeed, we
analyze our mechanism using standard epistemic solution concepts with respect to a very
weak notion of rationality, whereas [12] introduced a new solution concept which assumes
mutual belief of rationality with respect to the players being expected-utility maximizers. In
fact, it is easy to see that our notion of order-2 rational implementation implies their notion
of conservative strict implementation, but not vice versa.

Finally, it is also easy to see that order-1 rational implementation implies implementation
in undominated strategies [17], but not vice versa.

4 The Epistemic Framework

We build our epistemic framework in four steps. First, we formalize game frameworks via
an intermediate concept, the type framework, through which we shall focus on just the
players’ beliefs about types. Next, we formalize epistemic contexts and epistemic social
choice correspondences, so as to enable a mechanism designer to express his desired outcomes
based on both the players’ types and their beliefs about types. Then, we formalize Aumann
rationality, of any order. Finally, we complete our epistemic framework with a very natural
and robust notion of implementation.

We start by recalling some classical “belief-free” notions, so as to establish the following

Basic Notation

• An environment is a 4-tuple (n,O,Θ, u), where [n] is the set of players; O the set of
outcomes; Θ = Θ1 × · · · × Θn the set of all possible (payoff) type profiles;7 and u the
profile of utility functions, each mapping Θ×O to R, the set of reals.

• The profile of true types is consistently denoted by θ. In an environment E = (n,O,Θ, u),
θ ∈ Θ. We refer to such a pair (E, θ) as a basic context for E.

• A mechanismM for an environment E = (n,O,Θ, u) consists of a set of (pure) strategy
profiles, S = S1× · · ·×Sn, and an outcome function (as usual also denoted by M) from
S to O —or to ∆(O) if M is probabilistic.8.

• A basic game consists of a basic context and a mechanism for the same environment.
For every n-player game Γ, we automatically let Θ(Γ) denote the set of type profiles of
Γ, Si(Γ) the set of pure strategies for player i in Γ, and ui(Γ) player i’s utility function
in Γ. Whenever no ambiguity may rise about the game in question, we “drop Γ” and
more simply let Θ, Si and ui refer, respectively, to Θ(Γ), Si(Γ), and ui(Γ).

7When we mention the “type” of some player, we always mean his payoff type —that is, we are distin-
guishing the players’ payoff types from their beliefs.

8As usual, ∆(A) denotes the set of probability distributions over set A.
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4.1 Type and Game Frameworks

For simplicity, we consider only finite frameworks. As already mentioned, we model the
players’ beliefs in a set-theoretic way, and thus have no need to assume probability distribu-
tions.

Definition 1. Let E = (n,O,Θ, u) be an environment. A type framework V for (n,Θ)
consists of a finite set of states Ω; a function v : Ω → Θ; and, a profile of functions P,
where Pi : Ω→ 2Ω for each player i, such that ∀ω ∈ Ω,

1. Pi(ω) ⊆ {ω′ ∈ Ω : v(ω′)i = v(ω)i}; and

2. Pi(ω) ⊆ {ω′ ∈ Ω : Pi(ω′) = Pi(ω)}.
The players’ beliefs in V are correct (at every order) if, ∀i and ∀ω ∈ Ω, we have ω ∈ Pi(ω).

In a type framework V = (Ω,v,P), Ω represents the possible states of the world. Our
definition does not say anything about the “true state of the world” nor about the “actual
beliefs of the players” (these will be considered in the notion of an epistemic context). For
each ω ∈ Ω, if the true state of the world were ω, then V defines an infinite hierarchy of
beliefs. Namely, for each player i

• the states in Pi(ω) are those that i believes possible;

• v(ω)i is the true type of i;

• for each player j, {v(ω′)j : ω′ ∈ Pi(ω)} represents what types i believes j may have;

• for each pair of players j and k, {v(ω′′)k : ω′ ∈ Pi(ω), ω′′ ∈ Pj(ω′)} represents what
types i believes j believes k may have;

• etc.

Conditions 1 and 2 in Definition 1 express that i has the same type and beliefs in every
state of the world he believes possible. However, a type framework does not impose any
consistency requirements among the beliefs of different players. Indeed, a player may have
totally wrong beliefs about another player’s beliefs. For instance, in a single-good auction,
player i may believe that player j’s valuation for the good is greater than 100, whereas player
j may believe that player i believes that j’s valuation is less than 10.

Note also that v is a function from Ω to Θ, rather than a profile of functions, where each
vi maps Ω to Θi. This choice enables us to deal with interdependent-type settings as well.

Graphical Representation We find it useful to represent a type framework as a directed
graph with labeled nodes and edges. In such a graph:

• a node (drawn as a circle in this paper) represents a state;

• the label of a node (drawn inside the circle) represents the type profile associated with
the corresponding state by the function v;

• an edge is labeled by a player, and each node has at least one out-going edge labeled by
i for each player i;

• for all states ω and ω′, there is an edge with label i from the node of ω to the node of
ω′ if and only if ω′ ∈ Pi(ω).
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To save space, if two edges have the same starting nodes and end nodes, we draw them as a
single edge with multiple labels.

As an example, Figure 1 represents a type framework for n = 2 and Θ = {0, 1, . . . , 10}×
{0, 1, . . . , 10} and with 6 states. From this figure we can see that at state ω: the players’
types are 3 and 7; and player 1 believes that only two states are possible. In one of them,
player 2’s type is 4 and he believes that player 1’s type is either 0 or 8. In the other, player
2’s type is 5 and he believes that player 1’s type is 3.
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Figure 1: A type framework represented by a directed graph.

Definition 2. Let M be a mechanism, for an environment (n,O,Θ, u), with strategy space
S. A game framework M for M consists of a type framework V = (Ω,v,P) for (n,Θ)
and a function s : Ω→ S, such that ∀i and ∀ω ∈ Ω, Pi(ω) ⊆ {ω′ ∈ Ω : s(ω′)i = s(ω)i}.

Such an M is consistent with a type framework V ′ = (Ω′,v′,P ′) for (n,Θ) if there ex-
ists a function ψ : Ω→ Ω′ such that ∀ω ∈ Ω, v(ω) = v′(ψ(ω)) and ψ(Pi(ω)) = P ′i(ψ(ω)) ∀i.
We refer to such a ψ as a consistency mapping.

To emphasize the underlying type framework V , we may write M = (Ω,v,P , s) instead
ofM = (V , s). In a game frameworkM, the constraint of the function s expresses that, for
each state ω, if ω were the true state of the world, then each player i would know his own
strategy at ω.

Note that the notion of a game framework can be defined directly, without defining type
frameworks first. But we find it important to single out the players’ higher-order beliefs
about (payoff) types via type frameworks, so that we are able to talk about the pre-existing
information in an implementation problem. Indeed, the players may form beliefs about their
opponents’ true types before a designer introduces a mechanism (and thus strategies) into
the picture. the notion of consistency captures that, the introduction of a mechanism does
not cause the players to change their beliefs about types, but causes them to form additional
beliefs about strategies.

Graphically a game framework M can be represented by a directed graph as before,
except that a node now has an additional label, corresponding to the strategy profile specified
by s. Thus, if M = (V , s), then the graphical representation of the type framework V can
be obtained by “removing” the strategy label from that of M.
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Example Figure 2 provides an elementary game framework for a 2-player mechanism M
with strategy space {a, a′} × {b, b′}, consistent with an elementary type framework V ′. The
underlying type framework V in M is then illustrated in Figure 2c. It is immediate to see
that the consistency mapping ψ is the one that maps all states of M to the only state of
V ′. Indeed, under such mapping the types are preserved and “the belief function and ψ
commute.”
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Figure 2: A Trivial Example of Consistency

4.2 Epistemic Contexts and Social Choice Correspondences

When a designer considers which mechanism to choose, we must model what pre-exists the
mechanism and is available to the designer, and what pre-exists the mechanism and is not
available to him. We take the first piece of information to consist of the environment, and
the second of the actual types of the players and the beliefs (of any order) that each player
has about the types of his opponents. We now formalize the latter piece of information.9

Definition 3. An epistemic context C for an environment E = (n,O,Θ, u) consists
of two profiles, V and ω, where, for all i, V i = (Ω(i),v(i),P(i)) is a type framework and
ωi ∈ Ω(i).

The only information about C of a player i consists of V i, v(i)(ωi)i, and P(i)
i (ωi).

In C, i’s true type is θi , v(i)(ωi)i; and i’s utility for an outcome o ∈ O is ui(v
(i)(ωi), o).

To emphasize E, we may write C = (n,O,Θ, u,V ,ω) instead of C = (V ,ω).
Note that such an epistemic context generalizes the basic context (n,O,Θ, u, θ) by adding

arbitrary and independent beliefs for every player.
Note also that in an interdependent-type setting, i may not be able to compute his own

utility, because he does not know v(i)(ωi). However, he is able to compute his utility in any
state he believes possible. In a private-type setting, however, i’s utility for an outcome o can
actually be written as ui(v

(i)(ωi)i, o), and i is always able to compute it.

Definition 4. A (deterministic) epistemic social choice correspondence for an envi-
ronment E = (n,O,Θ, u) is a function from the set of epistemic contexts for E to 2O.

9Of course, one may consider that (part of) the epistemic context is also available to the designer, but
we aim at designing mechanisms in a way that is as detail-free as possible (the Wilson’s doctrine [22]).
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Recall that a classical (deterministic) social choice correspondence f maps Θ to 2O. Thus
any classical social choice correspondence can be simulated by an epistemic one, but not vice
versa. Therefore, by allowing a mechanism designer to define his desired outcomes over the
players’ beliefs rather than their types only, we provide him with a larger set of “targets” to
choose from.

Note that to ensure that epistemic social choice correspondences are well defined before
the mechanism is chosen, we have “disentangled” type frameworks from game frameworks
and define epistemic contexts via the former.

Together with a mechanism M , again common knowledge to the players, an epistemic
context C yields an epistemic game Γ = (C,M). The players’ type frameworks of such a Γ
are those of C, and a game framework for Γ is one for M . From now on, when talking about
contexts and games, we always mean epistemic contexts and epistemic games.

4.3 Rationality

Notation Let Γ be a game, M = (Ω,v,P , s) a game framework for Γ, i a player, si a
strategy of i, ω a state in Ω, and φ and φ′ two statements Then we use the following symbols
to ease our discussion:

• ¬φ stands for the negation of φ;

• φ ∧ φ′ for the conjunction of φ and φ′;

• true for the tautological statement;

• RAT i for the statement “i is rational”;

• RAT k
i for “i is order-k rational”, for each k ≥ 0;

• play i(si) for “i uses strategy si”;

• Bi(φ) for “i believes that φ holds”;

• (M, ω) |= φ for “φ holds at (M, ω)”; and

• (M, ω) 6|= φ for “φ does not hold at (M, ω)”.

We define

• RAT 0
i , true;

• RAT k+1
i , RAT i ∧Bi(∧j 6=iRAT k

j ), for each k ≥ 0;10

• (M, ω) |= play i(si) if and only if si = s(ω)i;

• (M, ω) |= ¬φ iff (M, ω) 6|= φ;

• (M, ω) |= φ ∧ φ′ iff (M, ω) |= φ and (M, ω) |= φ′; and

• (M, ω) |= Bi(φ) iff Pi(ω) ⊆ {ω′ ∈ Ω : (M, ω′) |= φ}.

Now we turn to defining Aumann rationality and order-k rationality.

Definition 5. Let Γ be a game, M = (Ω,v,P , s) a game framework for Γ, ω a state in Ω,
i a player, and si a strategy of i. Then

• si is order-0 rational and i is order-0 rational at (M, ω), (M, ω) |= RAT 0
i ;

10That is, i is order-(k + 1) rational if and only if he is rational and believes that all other players are
order-k rational (thus RAT 1

i = RAT i).
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• si is rational at (M, ω) if for every strategy s′i of i, there exists ω′ ∈ Pi(ω) such that

ui(v(ω′), (si, s(ω′)−i)) ≥ ui(v(ω′), (s′i, s(ω′)−i));

• i is rational at (M, ω), (M, ω) |= RAT i, if s(ω)i is rational at (M, ω);

• for every integer k ≥ 1, si is order-k rational at (M, ω) if si is rational at (M, ω)
and (M, ω) |= Bi(∧j 6=iRAT k−1

j ); and

• for every integer k ≥ 1, i is order-k rational at (M, ω), (M, ω) |= RAT k
i , if s(ω)i is

order-k rational at (M, ω).

Notice that rational and order-1 rational are the same thing.
Although we do not need Aumann’s notion of common belief of rationality in our paper,

it is easy to check that it is consistent with requiring order-k rationality for all k.
We extend the notion of rationality from game frameworks to type frameworks as follows.

Definition 6. Let Γ be a game with environment (n,O,Θ, u), V = (Ω,v,P) a type framework
for (n,Θ), ω a state in Ω, i a player, si a strategy of i, and k a non-negative integer. Then
si is rational (respectively, order-k rational) at (V , ω), if there exists a game framework
M = (Ω′,v′,P ′, s) for Γ, consistent with V under some consistency mapping ψ, and a state
ω′ ∈ Ω′, such that:

ψ(ω′) = ω, s(ω′)i = si, and i is rational (respectively, order-k rational) at (M, ω′).

Finally, to be rational for a given game, a strategy must be rational relative to the actual
context (type framework and world state) of the corresponding player in the game.

Definition 7. Let Γ = ((V ,ω),M) be a game, i a player, si a strategy of i, and k a non-
negative integer. Then si is rational (respectively, order-k rational) in Γ if it is rational
(respectively, order-k rational) at (V i,ωi).

A strategy profile s is rational (respectively, order-k rational) if this is so for each si.

4.4 Order-k Rational Implementation

Definition 8. Let E = (n,O,Θ, u) be an environment, F an epistemic social choice cor-
respondence, and k a non-negative integer. Then, a mechanism M order-k rationally
implements F for E if: ∀ contexts C = (V ,ω) for E, and ∀ order-k rational strategy
profiles s in the game (C,M),

ME,F (s) ∈ F (V ,ω).

Notice that the epistemic context is universally quantified after the mechanism. Indeed, in
this paper we assume that the environment is the only information available to a mechanism
designer. Note too our notion can be easily generalized to “common belief of rationality
implementation.”

Like for other notions of implementation, ours can be strengthened by requiring that the
mechanism satisfies some additional desideratum. The one enjoyed by our auction mecha-
nism of Section 6.2 is a generalization of interim individual rationality.
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Relative to the traditional notion of implementation at equilibrium, interim individual
rationality requires that, at equilibrium, the utility of every player is non-negative in expecta-
tion. Informally speaking, in our setting we instead require that, for each possible epistemic
context and each player i, there exists a strategy si such that, according to i’s beliefs, si is
rational and guarantees i non-negative utility. We refer to such a strategy as “safe.”

Definition 9. A mechanism M for an environment E = (n,O,Θ, u) with strategy space
S is possibilistic interim individually rational if, for every game framework M =
(Ω,v, s,P) for M and every player i, there exists a function safei : Ω → Si such that
∀ω ∈ Ω,

1. safei(ω) is rational at (M, ω), and

2. for every state ω′ ∈ Pi(ω), ui(v(ω′), (safei(ω), s(ω′)−i)) ≥ 0.

Condition 1 implies that, if (M, ω) |= Bi(∧j 6=iRAT k−1
j ), i.e., if at state ω player i believes

that all other players are order-(k− 1) rational, then safei(ω) is order-k rational at (M, ω).
Note that, if strategy safei(ω) exists, then player i will be able to compute it without knowing
ω. Indeed, knowing M and Pi(ω) is enough.

5 Characterization for Order-k Rationality

Based on the above definition, checking whether a strategy is order-k rational in a given
game may not be easy. Below we characterize order-k rationality via an iterated strategy-
deletion procedure that we shall use when analyzing our auction mechanism. Our iterated
procedure is related to the classic iterated deletion of strongly dominated strategies, but
crucial differences exist. After all, the classic notion applies solely to settings of complete
information, whereas ours applies to settings of incomplete information, which include the
former ones as a very special case.

Definition 10. Let E = (n,O,Θ, u) be an environment, M a mechanism for E with strategy
space S, i a player, and si a strategy in Si.

• Let V = (Ω,v,P) be a type framework for (n,Θ), ω a state in Ω, and S ′−i a function
from Ω to 2S−i. Then si is strongly dominated at (V , ω) with respect to S ′−i if,
there exists another strategy s′i of i such that for all ω′ ∈ Pi(ω) and all s′−i ∈ S ′−i(ω′),

ui(v(ω′), (s′i, s
′
−i)) > ui(v(ω′), (si, s′−i)).

• For each non-negative integer k, NSDk
i (·, ·) denotes the non-strictly-dominated func-

tion, mapping each type framework V = (Ω,v,P) for (n,Θ) and each ω ∈ Ω to a subset
of Si, inductively defined as follows: NSD0

i (V , ω) = Si and, for k > 0, NSDk
i (V , ω)

is the set of strategies in NSDk−1
i (V , ω) that are not strongly dominated at (V , ω) with

respect to NSDk−1
−i (V , ·), where NSDk−1

−i (V , ω) ,
∏

j 6=iNSD
k−1
j (V , ω).

• si survives k rounds of iterated strong dominance at (V , ω) if si ∈ NSDk
i (V , ω).

• si survives iterated strong dominance at (V , ω) if it survives k rounds of iterated
strong dominance at (V , ω) for all k, that is, if si ∈ NSD∞i (V , ω) ,

⋂
k≥0NSD

k
i (V , ω).
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We use NSDk(V , ω) to denote the Cartesian product
∏

iNSD
k
i (V , ω). When defining

NSDk
i (V , ω), we remove any strategy si that is “strongly dominated by some strategy in Si”.

Note that the set NSDk
i (V , ω) would be the same if we had required that si be dominated by

some strategy in NSDk−1
i (V , ω) instead. Note also that NSDk

i (V , ω) is always non-empty,
as we only consider finite games.

An immediate consequence of Definition 10 is the following lemma, stated without proof.

Lemma 1. Strategy si is not strongly dominated at (V , ω) with respect to S ′−i if and only if
there exists some belief Bi of i, that is, a subset of Θ× S−i, such that

• Bi is consistent with Pi and S ′−i at (V , ω). That is, for any (v, s′−i) ∈ Bi, there
exists ω′ ∈ Pi(ω) such that v = v(ω′) and s′−i ∈ S ′−i(ω′).

• si is rational with respect to Bi. That is, for every alternative strategy s′i of i,
there exists (v, s′−i) ∈ Bi such that ui(v, (si, s

′
−i)) ≥ ui(v, (s

′
i, s
′
−i)).

Lemma 1 is a possibilistic analog of Pearce’s lemma [19] which, in probabilistic models,
relates best responses and rationality to strong dominance. Note that whereas in the possi-
bilistic case (which is what we consider) this proof is trivial, Pearce’s original lemma for the
probabilistic case requires additional work.

Another simple but important property of our iterated procedure is the following.

Lemma 2. For each state ω′ in Pi(ω) and each k ≥ 0, NSDk
i (V , ω) = NSDk

i (V , ω′).

Proof. By the definition of type frameworks, we have Pi(ω′) = Pi(ω). Thus, the definition of
strong dominance implies that, for any strategy si, si is strongly dominated at (V , ω) with
respect to some function S ′−i if and only if it is strongly dominated at (V , ω′) with respect to
the same S ′−i. Further because NSD0

i (V , ω) = NSD0
i (V , ω′) = Si, an easy induction implies

that NSDk
i (V , ω) = NSDk

i (V , ω′) for each k.

Lemma 2 implies that player i is able to compute NSDk
i (V , ω) knowing V and Pi(ω),

without knowing ω.
We are now ready to state our characterization of order-k rationality.

Theorem 1. Let Γ be a game with environment (n,O,Θ, u), V = (Ω,v,P) a type framework
for (n,Θ), ω a state in Ω, i a player, si a strategy of i, and k ≥ 0. Then,

si ∈ NSDk
i (V , ω) if and only if si is order-k rational at (V , ω).

Proof of the “if” direction.
Assuming that si is order-k rational at (V , ω), we prove si ∈ NSDk

i (V , ω) by induction
on k.

For k = 0, the property trivially holds since NSD0
i (V , ω) = Si(Γ) by definition.

For k > 0, by Definition 6 there exists a game framework M = (Ω′,v′,P ′, s) consistent
with V under some consistency mapping ψ, and a state ω′ ∈ Ω′, such that ψ(ω′) = ω and
(M, ω′) |= play i(si) ∧ RAT k

i . Expanding out the definition of RAT k
i , we get

(M, ω′) |= play i(si) ∧ RAT i ∧Bi(∧j 6=iRAT k−1
j ).
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Thus, we have
(M, ω′) |= play i(si) ∧ RAT i, (1)

and that for every ω′′ ∈ P ′i(ω′),
(M, ω′′) |= ∧j 6=iRAT k−1

j ,

which further implies that for each j 6= i, s(ω′′)j is order-(k − 1) rational at (V , ψ(ω′′)). By
the induction hypothesis it follows that

∀ω′′ ∈ P ′i(ω′) s(ω′′)−i ∈ NSDk−1
−i (V , ψ(ω′′)). (2)

Accordingly, letting Bi , {(v(ψ(ω′′)), s(ω′′)−i) : ω′′ ∈ P ′i(ω′)}, we have that:

(a) Bi is consistent with Pi and NSDk−1
−i (V , ·) at (V , ω). This follows from the consistency

of M and V , and Equation 2.

(b) si is rational with respect to Bi. This follows from Equation 1.

By Lemma 1 we thus have that si is not strongly dominated at (V , ω) with respect to
NSDk−1

−i (V , ·).
Since for every k′ > 0 and ω′ ∈ Ω we have NSDk′

−i(V , ω′) ⊆ NSDk′−1
−i (V , ω′), si is not

strongly dominated at (V , ω) with respect to NSDk′
−i(V , ·) for any k′ < k.

It follows that si ∈ NSDk
i (V , ω), concluding the proof of the “if” direction.

Proof of the “only-if” direction.
By definition, proving this direction is equivalent to proving that, if si ∈ NSDk

i (V , ω),
then there exists a game framework M = (Ω′,v′,P ′, s) for Γ, consistent with V under some
consistency mapping ψ, and a state ω′ ∈ Ω′ such that

ψ(ω′) = ω and (M, ω′) |= play i(si) ∧ RAT k
i .

Notice that such M and ψ may depend on k, ω, i, and si.
In fact, we shall prove an even stronger statement. Namely, for each k, there exists a

universal game frameworkM = (Ω′,v′,P ′, s) for Γ, consistent with V under some consistency
mapping ψ, such that for every ω ∈ Ω, k′ ≤ k, player i and strategy si,

if si ∈ NSDk′
i (V , ω) then there exists a state ωk

′ ∈ Ω′ such that

ψ(ωk
′
) = ω and (M, ωk

′
) |= play i(si) ∧ RAT k′

i , (3)

which implies that si is order-k′ rational at (V , ω).

Define M as follows.

• Ω′ = {(s′, ω′, k′, j) : s′ ∈ NSDk′(V , ω′), ω′ ∈ Ω, k′ ∈ {0, . . . , k}, j ∈ [n]};
• v′(s′, ω′, k′, j) = v(ω′);

• s(s′, ω′, k′, j) = s′; and

• P ′i(s′, ω′, k′, j) is defined as follows:

for i 6= j:

P ′i(s′, ω′, k′, j) = {((s′i, s′′−i), ω′′,max(k′−1, 0), i) : s′′−i ∈ NSDmax(k′−1,0)
−i (V , ω′′), ω′′ ∈ Pi(ω′)}.
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for i = j:

P ′i(s′, ω′, k′, j) = {((s′i, s′′−i), ω′′, k′, i) : s′′−i ∈ NSDk′
−i(V , ω′′), ω′′ ∈ Pi(ω′)}.

It is easy to check that M is a well-defined game framework for Γ. Indeed, the reason we
define P ′i(s′, ω′, k′, j) differently for i 6= j and i = j is to ensure that a player knows his
own beliefs. Also by definition it follows that M is consistent with V under the consistency
mapping ψ where ψ(s′, ω′, k′, j) = ω′.

Let us prove by induction over k′ that for every ω ∈ Ω, k′ ≤ k, strategy profile s ∈
NSDk′(V , ω), and every player j, we have

(M, (s, ω, k′, j)) |= ∧ĵ 6=jRAT k′
ĵ
. (4)

Notice that Equation 3 follows directly from Equation 4: just let ωk
′

= ((si, s−i), ω, k′, j)
with some j 6= i and s−i ∈ NSDk′

−i(V , ω).
To prove Equation 4, notice that the base case (k′ = 0) trivially holds, since RAT 0

ĵ

is defined to be true for each player ĵ. For the induction step (k′ > 0), arbitrarily fixing
s ∈ NSDk′(V , ω), it suffices to show that for every ĵ 6= j,

(M, (s, ω, k′, j)) |= RAT k′
ĵ

;

that is,
(M, (s, ω, k′, j)) |= RAT ĵ ∧Bĵ(∧j′ 6=ĵRAT k′−1

j′ ). (5)

Because sĵ ∈ NSDk′
ĵ

(V , ω) ⊆ NSDk′−1

ĵ
(V , ω), and becauseNSDk′−1

ĵ
(V , ω) = NSDk′−1

ĵ
(V , ω′)

for any ω′ ∈ Pĵ(ω) by Lemma 2, we have sĵ ∈ NSDk′−1

ĵ
(V , ω′) for any ω′ ∈ Pĵ(ω). By the

induction hypothesis, for any ω′ ∈ Pĵ(ω) and s′−ĵ ∈ NSDk′−1

−ĵ (V , ω′), we have

(M, ((sĵ, s
′
−ĵ), ω

′, k′ − 1, ĵ)) |= ∧j′ 6=ĵRAT k′−1
j′ .

By the definition of P ′
ĵ
, this means that for any state ω̂ ∈ P ′

ĵ
(s, ω, k′, j), we have

(M, ω̂) |= ∧j′ 6=ĵRAT k′−1
j′ .

By the definition of Bĵ(φ), it thus follows that

(M, (s, ω, k′, j)) |= Bĵ(∧j′ 6=ĵRAT k′−1
j′ ).

Therefore to prove Equation 5 it remains to show that

(M, (s, ω, k′, j)) |= RAT ĵ.

Since s ∈ NSDk′(V , ω), we have that sĵ is not strongly dominated at (V , ω) with respect to

NSDk′−1

−ĵ (V , ·). That is, for every alternative strategy s′
ĵ

of ĵ, there exists ω′ ∈ Pĵ(ω) and

s′−ĵ ∈ NSDk′−1

−ĵ (V , ω′) such that

uĵ(v(ω′), (sĵ, s
′
−ĵ)) ≥ uĵ(v(ω′), (s′

ĵ
, s′−ĵ)). (6)
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Letting ωk
′

= ((sĵ, s
′
−ĵ), ω

′, k′ − 1, ĵ), by definition we have

ωk
′ ∈ P ′

ĵ
(s, ω, k′, j), v′(ωk

′
) = v(ω′), s(s, ω, k′, j)ĵ = sĵ, and s(ωk

′
)−ĵ = s′−ĵ.

Combining Equation 6 with the equalities above we have that, for every s′
ĵ

there exists

ωk
′ ∈ P ′

ĵ
(s, ω, k′, j) such that

uĵ(v
′(ωk

′
), (s(s, ω, k′, j)ĵ, s(ωk

′
)−ĵ)) ≥ uĵ(v

′(ωk
′
), (s′

ĵ
, s(ωk

′
)−ĵ)).

Thus (M, (s, ω, k′, j)) |= RAT ĵ by definition, and Equation 5 holds. This concludes the
proof of the induction step for Equation 4, and the proof of Equation 3. Therefore the
“only-if” direction holds, concluding the proof of Theorem 1.

Theorem 1 has the following immediate corollary.

Corollary 1. Let Γ be a finite game with context (V ,ω), i a player, and k ≥ 0. Then the
set of order-k rational strategies of i is NSDk

i (V i,ωi), which is always non-empty.

Finally, note that we can also characterize common belief of rationality: si survives
iterated strong dominance at (V , ω) if and only if it is common-belief rational at (V , ω).

6 The Arbitrary-Belief Mechanism

Let us quickly recall single-good auctions so as to establish the following

Auction Notation A (finite) single-good auction environment E = (n,O,Θ, u) where

• O consists of all pairs (a, P ), where a ∈ {0, . . . , n} and P ∈ Rn.
We refer to a as the allocation, and to P as the price profile. If a = 0, then the good
is unallocated; if a > 0, then the good is allocated to player a. If Pi ≥ 0, then player i
pays Pi to the seller; if Pi < 0, the i is paid −Pi by the seller.

• Θ , {0, 1, . . . , V }n, for some positive integer V .
A type in Θi is referred to as a possible valuation, and V as the valuation bound.
Accordingly, the true type of player i, θi, is referred to i’s true valuation.

• For all i ∈ [n], v ∈ {0, . . . , V }n, and (a, P ) ∈ O,
ui(v, (a, P )) = vi − Pi if a = i, and = −Pi otherwise.

Notice that an auction environment is fully specified by just n and V , and thus de facto
consist of a pair: E = (n, V ).

The revenue of an outcome (a, P ), denoted by rev(a, P ), is
∑

i Pi.
As usual, an epistemic context for an auction environment E = (n, V ) further specifies

a type framework profile V where each V i = (Ω(i),v(i),P(i)), and a state profile ω where
each ωi ∈ Ω(i). We denote by C V

n the set of all (epistemic) contexts for (n, V ). From now
on we only deal with single-good auctions, and thus refer to a type framework a “valuation
framework”.
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6.1 The Epistemic Revenue Benchmarks Gk

Recall that an epistemic social choice correspondence for an environment E maps each
epistemic context for E to a set of outcomes. Below we instead define an epistemic revenue
benchmark for an auction environment E, that is, a function b mapping each epistemic
context (V ,ω) for E to a real number b(V ,ω). This function is equivalent to the epistemic
social choice correspondence mapping each (V ,ω) to the set of auction outcomes whose
revenue is at least b(V ,ω). The notion of order-k rational implementation is thus well
defined for b.

Definition 11. Let V = (Ω,v,P) be a valuation framework for an auction environment
(n, V ). Then, for each player i and each integer k ≥ 0, we inductively define the function gki
as follows: ∀ state ω ∈ Ω,

g0
i (V , ω) = min

ω′∈Pi(ω)
v(ω′)i, and gki (V , ω) = min

ω′∈Pi(ω)
max
j∈[n]

gk−1
j (V , ω′) ∀k ≥ 1.

We refer to gki (V , ω) as the order-k guaranteed value of i at (V , ω).

We so name gki (V , ω) because, if gki (V , ω) ≥ c, then, at state ω, player i believes that
there always exists some player j(1) who believes that there always exists a player j(2) ...
who believes that there always exists some player j(k) whose valuation is at least c.

Note that if the players’ beliefs in V are correct at every order, then for each player i,
each state ω, and each k ≥ 0, gki (V , ω) ≤ maxj v(ω)j. Note also that player i is able to
compute the value of gki (V , ω) knowing V and Pi(ω), without knowing ω itself. Indeed, the
following claim can be trivially proved by induction.

Claim 1. Let V = (Ω,v,P) be a valuation framework for an auction environment (n, V ).
Then ∀ω ∈ Ω, ∀i ∈ [n], and ∀k ≥ 0, Pi(ω) ⊆ {ω′ : gki (V , ω′) = gki (V , ω)}.

Next, note that the gki ’s are non-decreasing in k.

Claim 2. Let V = (Ω,v,P) be a valuation framework for an auction environment (n, V ).
Then ∀ω ∈ Ω, ∀i ∈ [n], and ∀k ≥ 1, gki (V , ω) ≥ gk−1

i (V , ω).

Proof. By Definition 11 and Claim 1, we have

gki (V , ω) = min
ω′∈Pi(ω)

max
j∈[n]

gk−1
j (V , ω′) ≥ min

ω′∈Pi(ω)
gk−1
i (V , ω′) = min

ω′∈Pi(ω)
gk−1
i (V , ω) = gk−1

i (V , ω).

Thus Claim 2 holds. �
Finally, because v(ω′)i = v(ω)i for each ω′ ∈ Pi(ω), we additionally have

g0
i (V , ω) = v(ω)i.

We are now ready to define our revenue benchmarks for single-good auctions.

Definition 12. Let (n, V ) be an auction environment and k a non-negative integer. Then
the order-k revenue benchmark, denoted by Gk, is the function mapping each context
(V ,ω) for (n, V ) to the second highest value in {gki (V i,ωi)}i∈[n].
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Note that Gk (as for other non-Bayesian revenue benchmarks) is actually well defined
for all single-good auction environments.11 Note also that Gk(V ,ω) ≥ Gk−1(V ,ω) for each
k > 0.

Further note that, because each player knows his own valuation, G0(V ,ω) always coin-
cides with “the second highest valuation” (which is what the standard second-price auction
guarantees). Finally note that for any constant ε > 0, the revenue benchmarks Gk − ε can
be defined from Gk in a straightforward way.

6.2 The Arbitrary-Belief Mechanism Mn,V,K,ε

In this section, we construct a finite auction mechanism, Mn,V,K,ε, that for every auction
environment (n, V ), positive integer K, ε > 0, and every k ∈ {0, . . . , K}, order-(k + 1)
rationally implements Gk−ε. The value K is called the order bound, specifying the maximum
order of beliefs leveraged by our mechanism. That is, if K = 99 then, our mechanism
leverages the players’ order-0 up to order-99 beliefs about valuations, when they happen to
be respectively order-1 up to order-100 rational, but does not leverage the players’ order-100
beliefs even if they happen to be order-101 rational or more. This mechanism is actually
uniformly constructed on inputs n, V , K, and ε. Since it does not depend on the rationality
order of the players, we refer to it as the Arbitrary-Belief Mechanism.

(Note: the reliance of our mechanism on the order bound K is not crucial —in fact, if
we are willing to make the strategy space of our mechanism infinite, then we do not need K
and our mechanism can leverage the players’ beliefs up to any order. However, since K can
be arbitrarily large, we prefer the current, finite formalization of our mechanism.)

In the Arbitrary-Belief Mechanism, a strategy of a player i has three components: (1)
his own identity, for convenience only; (2) a belief-order `i ∈ {0, . . . , K}; and (3) a value
vi ∈ {0, . . . , V }. The mechanism is of normal form. The players simultaneously announce
their chosen strategies, and the mechanism decides the winner of the good and an initial
price for every player. (As in the second-price mechanism, this price is 0 when a player does
not win the good). The final price of each player consists of his initial price minus a reward
determined by evaluating a reward function ρ mapping strategy profiles to real numbers.

The mechanism is presented below. Note that the players act only in Step 1, and Steps
a through c are just “conceptual steps taken by the mechanism”. The expression “X := x”
denotes the operation that sets or resets variable X to value x.

Mechanism Mn,V,K,ε

1: Each player i, publicly and simultaneously with the others, announces a triple (i, `i, vi) ∈
{i} × {0, . . . , K} × {0, . . . , V }.

a: Order the n announced triples according to v1, . . . , vn decreasingly, and break ties ac-
cording to `1, . . . , `n increasingly. If there are still ties, then break them according to
the players’ identities increasingly.

11Actually, Gk is well defined even when the players do not know their own valuations. In such cases,
formally speaking a type framework V = (Ω,v,P) is defined dropping the requirement Pi(ω) ⊆ {ω′ :
v(ω′)i = v(ω)i}. The only difference is that we no longer have g0

i (V, ω) = v(ω)i. Both our possibility result
and impossibility result hold for such cases.
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b: Let a be the player in the first triple, Pa := 2ndv , maxj 6=a vj, and Pi := 0 ∀i 6= a.

c: ∀i, Pi := Pi − δi, where δi , ρ(vi, `i) , ε
2n

[
1 + vi

1+vi
− `i

(1+`i)(1+V )2

]
.

We refer to δi as player i’s reward, ρ as the reward function, and (a, P ) as the final outcome.

Note that our mechanism never leaves the good unsold. Let us now formalize the state-
ment of the possibility result promised in the Introduction.

Theorem 2. For all auction environments (n, V ), positive integers K, and ε > 0, the
mechanism Mn,V,K,ε is possibilistic interim individually rational and, for each k ∈ {0, . . . , K},
order-(k + 1) rationally implements the revenue benchmark Gk − ε.

6.3 Variants of Our Mechanism and the Arbitrary-Belief Lemma

Even without formal analysis, it is easy to see that in mechanism Mn,V,K,ε the utility of a
player who does not get the good is upper-bounded by the absolute value ε/n. Accordingly,
a player who believes that he will not win the good also believes that ε/n is the most he
can gain from participating to the mechanism. According to traditional economic theory,
this is sufficient motivation: indeed, a utility maximizer i strictly prefers outcome o1 to
outcome o2 whenever ui(o1) − ui(o2) > 0, even if this difference is very small. However,
several researchers (with computer scientists in the lead) worry that an “ε motivation” may
not be sufficient. The same concern should of course arise in the second-price mechanism.
Indeed, if the player with the second highest valuation believes that he is not going to get
the good, then it is rational for him to drop out or bid 0 in the second-price mechanism, in
which case the revenue fetched may be much lower than the second-highest valuation.12

Avoiding these objections requires increasing the rewards given to the players, but then,
of course, the revenue collected will diminish correspondingly! A way to increase motivation
that merits attention is rewarding the players not with an absolute (amount of money) ε, but
with an ε fraction (e.g., 1%) of the price at which the good is sold. Properly implementing
this approach yields the following revenue guarantee.

Theorem 3. For all auction environments (n, V ), positive integers K, and ε ∈ (0, 1), there
exists a mechanism M ′

n,V,K,ε that is possibilistic interim individually rational and, for each
k ∈ {0, . . . , K}, order-(k + 1) rationally implements the revenue benchmark (1− ε)Gk − ε.

This and other revenue guarantees can be obtained by just changing the reward function
ρ of the Arbitrary-Belief Mechanism with one satisfying the following property.

Definition 13. A reward function ρ̄ for Mn,V,K,ε is proper if it maps any triple (2ndv, vi, `i)
to a real number so as to satisfy the following conditions:

(1) for all vi and `i, ρ̄(·, vi, `i) is non-decreasing with 2ndv;

12Preventing this requires offering some form of “ε reward” to the players in the second-price mechanism
too, thus reducing its revenue guarantee by ε. Once the playing field is so leveled, it can be seen that our
mechanism offers at least the same revenue than the second-price one (since players are always assumed to
be order−1 rational and G0 coincides with the second highest valuation), and sometimes much more (if they
are order-k rational and have “suitably high” beliefs).
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(2) for all 2ndv, ρ̄(2ndv, ·, ·) is strictly increasing with vi —that is, if vi > v′i, then for all
`i and `′i, we have ρ̄(2ndv, vi, `i) > ρ̄(2ndv, v′i, `

′
i);

(3) for all 2ndv and vi, ρ̄(2ndv, vi, ·) is strictly decreasing with `i.

We denote by Mn,V,K,ρ̄ the mechanism obtained by replacing ρ with ρ̄ in Mn,V,K,ε.

Note that the reward function ρ of Mn,V,K,ε is indeed proper (although degenerated, since
it does not depend on 2ndv). Note also that the parameter ε enters the Arbitrary-Belief
Mechanism only via the reward function ρ, and thus is no longer relevant in Mn,V,K,ρ̄.

Let us now state a general lemma easily implying both Theorems 2 and 3.

Lemma 3. (Arbitrary-Belief Lemma) For all auction environments (n, V ), positive
integers K, and proper reward functions ρ̄, the mechanism Mn,V,K,ρ̄ is possibilistic interim
individually rational and, ∀ context (n, V,V ,ω) ∈ C V

n , ∀ k ∈ {0, . . . , K}, and ∀ order-(k+1)
rational strategy profile s, we have

rev(M(s)) = 2ndv −
∑
i

δi and 2ndv ≥ Gk(V ,ω).

6.4 Proof of the Arbitrary-Belief Lemma

To prove Lemma 3, we write Mn,V,K,ρ̄ as M for short. The equality for the revenue of
M follows directly from the description of M . To show that M is possibilistic interim
individually rational is easy and done at the end. The more complex part is showing that
2ndv ≥ Gk(V ,ω) for any order-(k + 1) rational strategy profile s, which is done below. To
ease the discussion, we first provide the following

6.4.1 Over-Simplified Analysis of M

To start with, notice that as long as each player i’s announced value vi is at least gki (V i,ωi),
2ndv is at least Gk(V ,ω) by the definition of Gk. Therefore the main point of the analysis
is to show that, for any strategy si = (i, `i, vi) ∈ NSDk+1

i (V i,ωi), vi ≥ gki (V i,ωi).
Assuming vi < gki (V i,ωi), it suffices to prove that si is strongly dominated by another

strategy ŝi = (i, v̂i, ˆ̀
i) at (V i,ωi) with respect to NSDk

−i(V i, ·). To do so, we take ŝi to

be the alleged strategy, that is, v̂i = gki (V i,ωi) and ˆ̀
i = min{` : g`i (V i,ωi) = gki (V i,ωi)}.

Because ρ̄ is proper, no matter what the other players do, using ŝi gives player i more reward
than using si.

But this is not enough to prove the desired domination. Because when gki (V i,ωi) >
g0
i (V i,ωi), in principle there exists the case where, by using si player i does not get the

good, and by using ŝi he gets the good and pays a price higher than g0
i (V i,ωi). In such

a case i’s utility could be negative using ŝi, while positive using si. The key point here
is to show that such a case never occurs according to player i’s belief —that is, assuming
order-(k + 1) rationality, if gki (V i,ωi) > g0

i (V i,ωi), then player i believes that by using ŝi
he never gets the good (and thus the bigger reward is his pure gain).

To prove this, we do induction on k. The first induction hypothesis is about the value
of vi. By the definition of gki (V i,ωi), player i believes that there is always some player
who believes that ... (k times) that there is always some player who values the good for at
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least gki (V i,ωi). Accordingly, in any state of the world ω′ considered possible by player i at
ωi, there exists some player j whose order-(k − 1) guaranteed value gk−1

j (V i, ω
′) is at least

gki (V i,ωi). Because player i is order-(k + 1) rational, he believes that all the other players
are order-k rational. Accordingly, by induction hypothesis, in player i’s belief, at state ω′

player j’s announced value is at least gk−1
j (V i, ω

′). If gk−1
j (V , ω′) > gki (V i,ωi), of course

player i cannot get the good (actually we also need to show that j 6= i, but this follows easily
from the definition of the gk’s).

What if gk−1
j (V i, ω

′) = gki (V i,ωi)? To deal with this possibility, we need another in-
duction hypothesis, about the value of `i. Again because the reward function ρ̄ is proper,
fixing v̂i, announcing ˆ̀

i gives player i a bigger reward than announcing anything greater
than ˆ̀

i. By induction hypothesis, player j above, being order-k rational in i’s belief, is going
to announce the lowest belief order `′ such that g`

′
j (V i, ω

′) = gk−1
j (V i, ω

′). By the definition

of the gk’s, it can be proved that `′ is at most ˆ̀
i − 1, that is, `′ < ˆ̀

i. From the way how the
players’ announced triples are ordered, player j is ordered before i, and thus i cannot get
the good.

To summarize, if player i believes that some player believes that ... that some player
values the good for at least gki (V i,ωi), then it is always “safe” for i to use his alleged
strategy, which gives him the biggest reward without any risk of being over charged. This
concludes our simplified analysis. Let us now turn to a

6.4.2 Detailed Analysis of M

Definition 14. For any two pairs of non-negative integers (`, v) and (`′, v′), we say that
(`, v) is greater than (`′, v′), written as (`, v) � (`′, v′), if: either v > v′, or v = v′ and
` < `′. We say that (`, v) is great than or equal to (`′, v′), written as (`, v) � (`′, v′), if
(`, v) � (`′, v′) or (`, v) = (`′, v′).

If (`, v) � (`′, v′), then we also say that (`′, v′) is less than (`, v), written as (`′, v′) ≺
(`, v). The expression (`′, v′) � (`, v) is similarly defined.

Lemma 4. ∀ context (n, V,V ,ω) ∈ C V
n , ∀ k ∈ {1, . . . , K + 1}, ∀ player i, and ∀ strategy

si ∈ NSDk
i (V i,ωi), denoting si by (i, `i, vi), we have

(`i, vi) � (min{` : g`i (V i,ωi) = gk−1
i (V i,ωi)}, gk−1

i (V i,ωi)).

Proof. We prove Lemma 4 by induction on k. Arbitrarily fixing (n, V,V ,ω), i, and si ∈
NSDk

i (V i,ωi), we proceed by contradiction.
Assume (`i, vi) ≺ (min{` : g`i (V i,ωi) = gk−1

i (V i,ωi)}, gk−1
i (V i,ωi)), that is, either

vi < gk−1
i (V i,ωi), or vi = gk−1

i (V i,ωi) and `i > min{` : g`i (V i,ωi) = gk−1
i (V i,ωi)}.

We shall prove that si is strongly dominated by another strategy ŝi at (V i,ωi) with re-
spect to NSDk−1

−i (V i, ·), which contradicts the hypothesis si ∈ NSDk
i (V i,ωi). The strategy

ŝi , (i, ˆ̀
i, v̂i) is such that

ˆ̀
i = min{` : g`i (V i,ωi) = gk−1

i (V i,ωi)} and v̂i = gk−1
i (V i,ωi).

Write V i = (Ω,v,P), and arbitrarily fix a state ω′ ∈ Pi(ωi) and a strategy subprofile
t−i ∈ NSDk−1

−i (V i, ω
′). By definition it suffices to prove

ui(v(ω′), (ŝi, t−i)) > ui(v(ω′), (si, t−i)). (7)
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Let 2̂ndv and 2ndv respectively be the second-highest value announced by the players ac-

cording to (ŝi, t−i) and (si, t−i). It is easy to see that 2̂ndv ≥ 2ndv, because each player’s
announced value either does not change or is stricter bigger, according to the first strategy
profile. Let δ̂i and δi respectively be the rewards that player i gets in Step c in the plays of
(ŝi, t−i) and (si, t−i). Because ρ̄ is proper, we have

δ̂i = ρ̄(2̂ndv, v̂i, ˆ̀
i) ≥ ρ̄(2ndv, v̂i, ˆ̀

i) > ρ̄(2ndv, vi, `i) = δi > 0.

Indeed, the first inequality above is because of Condition 1 in Definition 13, and the second
is because of (`i, vi) ≺ (ˆ̀

i, v̂i) as well as Conditions 2 and 3 in Definition 13 —if vi < v̂i then
the inequality holds by Condition 2, otherwise the inequality holds by Condition 3.

Let (â, P̂ ) and (a, P ) respectively be the outcomes of the two plays, and denote tj by
(j, `′j, v

′
j) for each j 6= i. We distinguish two cases.

Case 1. ˆ̀
i = 0.

This case applies to both the Base Case of the induction (k = 1) and the Induction Step
(k > 1). In this case we have v̂i = gk−1

i (V i,ωi) = g0
i (V i,ωi), and we distinguish three

subcases.

Subcase 1.1. a = i.
In this subcase, we have â = i as well, because according to M the triple (i, ˆ̀

i, v̂i)
is ordered before (i, `i, vi). Therefore Pi = maxj 6=i v′j − δi and P̂i = maxj 6=i v′j − δ̂i.
Accordingly,

ui(v(ω′), (ŝi, t−i)) = vi(ω
′)− P̂i = vi(ω

′)−max
j 6=i

v′j + δ̂i

> vi(ω
′)−max

j 6=i
v′j + δi = vi(ω

′)− Pi = ui(v(ω′), (si, t−i)),

where the inequality is because δ̂i > δi.

Subcase 1.2. a 6= i and â = i.
In this subcase, Pi = −δi and P̂i = maxj 6=i v′j − δ̂i. Accordingly,

ui(v(ω′), (ŝi, t−i)) = vi(ω
′)− P̂i = vi(ω

′)−max
j 6=i

v′j + δ̂i ≥ g0
i (V i,ωi)−max

j 6=i
v′j + δ̂i

= v̂i −max
j 6=i

v′j + δ̂i ≥ δ̂i > δi = −Pi = ui(v(ω′), (si, t−i)),

where the first inequality is by the definition of g0
i (V i,ωi), and the second is because

v̂i ≥ maxj 6=i v′j as implied by the fact â = i.

Subcase 1.3. a 6= i and â 6= i.
In this case, Pi = −δi and P̂i = −δ̂i. Accordingly,

ui(v(ω′), (ŝi, t−i)) = −P̂i = δ̂i > δi = −Pi = ui(v(ω′), (si, t−i)).

Case 2. ˆ̀
i ≥ 1.

This case applies to the Induction Step (k > 1) only. In this case, we shall prove that
â 6= i. To do so, first notice

g
ˆ̀
i−1
i (V i,ωi) < g

ˆ̀
i
i (V i,ωi), (8)
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by the definition of ˆ̀
i. Second, notice

gk
′
i (V i, ω

′) = gk
′
i (V i,ωi) ∀ k′ ≥ 0, (9)

by Claim 1. Combining Equations 8 and 9 and taking k′ = ˆ̀
i − 1, we have that

g
ˆ̀
i−1
i (V i, ω

′) < g
ˆ̀
i
i (V i,ωi).

Because g
ˆ̀
i
i (V i,ωi) = minω′′∈Pi(ωi) maxj′ g

ˆ̀
i−1
j′ (V i, ω

′′) ≤ maxj′ g
ˆ̀
i−1
j′ (V i, ω

′), we have

g
ˆ̀
i−1
i (V i, ω

′) < max
j′

g
ˆ̀
i−1
j′ (V i, ω

′).

Therefore, letting j = argmaxj′ g
ˆ̀
i−1
j′ (V i, ω

′) with ties broken lexicographically, we have

j 6= i and g
ˆ̀
i−1
j (V i, ω

′) ≥ g
ˆ̀
i
i (V i, ω),

and thus
(ˆ̀
i − 1, g

ˆ̀
i−1
j (V i, ω

′)) � (ˆ̀
i, g

ˆ̀
i
i (V i, ω)). (10)

Because tj ∈ NSDk−1
j (V i, ω

′) ⊆ NSD
ˆ̀
i
j (V i, ω

′), by the induction hypothesis13 we have

(`′j, v
′
j) � (min{` : g`i (V i, ω

′) = g
ˆ̀
i−1
i (V i, ω

′)}, g ˆ̀
i−1
i (V i, ω

′)) � (ˆ̀
i − 1, g

ˆ̀
i−1
j (V i, ω

′)),

which together with Equation 10 implies that

(`′j, v
′
j) � (ˆ̀

i, g
ˆ̀
i
i (V i,ωi)) = (ˆ̀

i, g
k−1
i (V i,ωi)) = (ˆ̀

i, v̂i). (11)

By Equation 11 we have that the triple (j, `′j, v
′
j) is ordered before (i, ˆ̀

i, v̂i) according to

M , and thus â 6= i. Since (ˆ̀
i, v̂i) � (`i, vi), we have a 6= i as well. Therefore in Case 2,

we have Pi = −δi and P̂i = −δ̂i, which implies

ui(v(ω′), (ŝi, t−i)) = −P̂i = δ̂i > δi = −Pi = ui(v(ω′), (si, t−i)).

In sum, Equation 7 holds, and si is strongly dominated by ŝi at (V i,ωi) with respect to
NSDk−1

−i (V i, ·), contradicting the hypothesis that si ∈ NSDk
i (V i,ωi). Therefore Lemma 4

holds.

Following Lemma 4, we have that for any order-(k+1) rational strategy profile s in game
((V ,ω),M), 2ndv ≥ Gk(V ,ω) and rev(M(s)) = 2ndv −∑i δi. Now the only remaining part
in the proof of Lemma 3 is to show that M is possibilistic interim individually rational.

13The lemma is stated with respect to (Vi, ωi), but it is easy to see that it can be stated with respect to
any type profile V and state ω. Thus the induction hypothesis also applies to any type profile V and state
ω —here Vi and ω′.
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Proof of Possibilistic Interim Individual Rationality of M . To do so, for each game
framework M = (Ω,v,P , s) for M , each player i, each state ω ∈ Ω, each state ω′ ∈ Pi(ω),
and each player j 6= i, denote s(ω′)j by (j, `j(ω

′), vj(ω′)).
If v(ω′)i ≥ maxj 6=i vj(ω′) for each ω′ ∈ Pi(ω), then safei(ω) , (i, V, 0). By doing so,

player i gets the good in each state he considers possible, pays no more than his valuation
in that state, and maximizes the reward he gets in Step c of the mechanism, which is always
positive. It is easy to verify that safei(ω) satisfies the two conditions in Definition 9.

If there exists ω′ ∈ Pi(ω) such that v(ω′)i < maxj 6=i vj(ω′), then for each such ω′, let
j(ω′) be the player whose announced triple at state ω′ is ordered the first by M among −i.
That is, j(ω′) = argmaxj′ 6=i vj′(ω

′), with ties broken in favor of smaller value of `j′(ω
′), and

further in favor of smaller player identity. Let strategy si(ω
′) = (i, vi(ω

′), `i(ω′)) be such
that, it maximizes player i’s reward subject to the following condition: when player i uses
si(ω

′) and each j 6= i uses s(ω′)j, player j(ω′)’s announced triple is ordered the first by M
among all players. Let safei(ω) be the strategy that is ordered the last by M , in the set

Ŝ , {si(ω′) : ω′ ∈ Pi(ω),v(ω′)i < max
j 6=i

vj(ω
′)}.

It is easy to verify that safei(ω) satisfies Condition 2 of Definition 9, i.e., player i believes
that his utility is always non-negative by using safei(ω). Indeed, at any state ω′ ∈ Pi(ω)
player i always gets non-negative reward, and he wins the good only if ω′ 6∈ Ŝ, in which
case his price is maxj 6=i vj(ω′) ≤ v(ω′)i. As for Condition 1 of Definition 9, notice that if
safei(ω) is not strongly dominated at ω with respect to S ′−i where S ′−i(ω̂) = {s(ω̂)−i} for
each ω̂ ∈ Ω, then safei(ω) satisfies Condition 1. Otherwise, there exists a pure strategy ŝi
strongly dominating safei(ω) at ω with respect to S ′−i. Resetting safei(ω) to be ŝi, we have
that player i’s utility at each ω′ ∈ Pi(ω) by using safei(ω) has increased, and thus safei(ω)
still satisfies Condition 2. Repeatedly check whether safei(ω) is strongly dominated at ω with
respect to S ′−i and replace it with the dominating strategy if so. Because there are finitely
many pure strategies, ultimately we shall find a safei(ω) that is not strongly dominated,
and this strategy satisfies both conditions in Definition 9.

Accordingly, M is possibilistic interim individually rational, concluding the proof of
Lemma 3.

6.5 Proofs of Theorems 2 and 3

Let us now argue that the Arbitrary-Belief Lemma indeed implies Theorems 2 and 3.

Proof of Theorem 2. Because the reward function ρ is proper, the Arbitrary-Belief
Lemma implies that the mechanism Mn,V,K,ε is possibilistic interim individually rational.

By Theorem 1, for any k ∈ {0, . . . , K}, to show that Mn,V,K,ε order-(k + 1) rationally
implements Gk−ε, it suffices to show that ∀ context (n, V,V ,ω) ∈ C V

n and ∀ strategy profile
s ∈∏iNSD

k+1
i (V i,ωi), we have

rev(Mn,V,K,ε(s)) ≥ Gk(V ,ω)− ε.

Denote si by (i, `i, vi) for each player i, the second highest value announced by the play-
ers in the play of s by 2ndv, the reward of each player i in Step c by δi, and the final
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outcome Mn,V,K,ε(s) by (a, P ). Again by Lemma 3 we have that 2ndv ≥ Gk(V ,ω) and
rev(Mn,V,K,ε(s)) = 2ndv −∑i δi. Because for each player i

δi = ρ(2ndv, vi, `i) =
ε

2n

[
1 +

vi
1 + vi

− `i
(1 + `i)(1 + V )2

]
≤ ε

2n
· 2 =

ε

n
,

we have

rev(Mn,V,K,ε(s)) = 2ndv −
∑
i

δi ≥ Gk(V ,ω)−
∑
i

δi ≥ Gk(V ,ω)−
∑
i

ε

n
= Gk(V ,ω)− ε.

Thus Theorem 2 holds.

Proof of Theorem 3. Consider the following reward function:

ρ′(2ndv, vi, `i) ,
ε(2ndv + 1)

2n

[
1 +

vi
1 + vi

− `i
(1 + `i)(1 + V )2

]
,

and let M ′
n,V,K,ε be the mechanism obtained by replacing ρ with ρ′ in Mn,V,K,ε. Theorem 3

then easily follows from the fact that ρ′ is proper and that δi ≤ ε(2ndv+1)
n

for each i.

Additional Ways to Trade Revenue for Robustness Using different proper reward
function within the Arbitrary-Belief Mechanism gives the seller much flexibility in trading
revenue for “player motivation.” In particular, he can use the reward function ρ′ just for the
winner and the second-highest bidder, and use ρ for all others.

7 Impossibility Results for Epistemic Implementation

Theorem 4. For any n, V, k and c < V , there is no possibilistic interim individually rational
mechanism that order-k rationally implements Gk− c for single-good auctions with n players
and valuation bound V .

Proof. We first prove the theorem for n = 2. Arbitrarily fix V, k > 0 (the case where k = 0
is degenerated and will be briefly discussed at the end), c < V , and an possibilistic interim
individually rational mechanism M . It suffices to show that there exists an auction context
C = (2, V,V ,ω) such that in game (C,M) the following statement holds:

∃strategy profile s ∈∏iNSD
k
i (V i,ωi) such that rev(M(s)) < Gk(V ,ω)− c. (12)

To construct C, we construct a valuation framework V = (Ω,v,P) as follows.

• Ω = {ω} ∪ {ωi,` : i ∈ {1, 2}, ` ∈ {1, 2, . . . , k}};
• v(ω) = (0, 0),v(ωi,`) = (0, 0) ∀i and ∀` < k,

if k is odd then v(ω1,k) = (0, V ) and v(ω2,k) = (V, 0),

otherwise v(ω1,k) = (V, 0) and v(ω2,k) = (0, V );
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• P1(ω) = {ω1,1},
P1(ω1,`) = {ω1,`} ∀ odd ` < k, P1(ω1,`) = {ω1,`+1} ∀ even ` < k, P1(ω1,k) = {ω1,k},
P1(ω2,`) = {ω2,`+1} ∀ odd ` < k, P1(ω2,`) = {ω2,`} ∀ even ` < k, and P1(ω2,k) = {ω2,k};
• P2(ω) = {ω2,1},
P2(ω1,`) = {ω1,`+1} ∀ odd ` < k, P2(ω1,`) = {ω1,`} ∀ even ` < k, P2(ω1,k) = {ω1,k},
P2(ω2,`) = {ω2,`} ∀ odd ` < k, P2(ω2,`) = {ω2,`+1} ∀ even ` < k, P2(ω2,k) = {ω2,k}.

We let V1 = V2 = V and ω1 = ω2 = ω.
When k is odd, the valuation framework is illustrated by Figure 3, which follows our

graphical representation except that some self-loops are omitted for succinctness —any miss-
ing edge at any node corresponds to a self-loop at that node.

0, 0 2 // 0, 0 1 // . . . 2 // 0, 0 1 // 0, V

ω1,1 ω1,2 ω1,k−1 ω1,k

0, 0

1
>>

2 ""
ω

0, 0 1 // 0, 0 2 // . . . 1 // 0, 0 2 // V, 0

ω2,1 ω2,2 ω2,k−1 ω2,k

Figure 3: Valuation framework V when k is odd.

To prove Statement 12, we introduce an auxiliary context Ĉ = (n, V, V̂ ,ω), where:

• V̂1 = V̂2 and both equal an auxiliary valuation framework V̂ = (Ω, v̂,P), such that v̂
equals v everywhere except v̂(ω1,k) = v̂(ω2,k) = (0, 0); and

• ω is the same one as in C.

When k is odd, V̂ is shown in Figure 4.

0, 0 2 // 0, 0 1 // . . . 2 // 0, 0 1 // 0, 0

ω1,1 ω1,2 ω1,k−1 ω1,k

0, 0

1
==

2 ""
ω

0, 0 1 // 0, 0 2 // . . . 1 // 0, 0 2 // 0, 0

ω2,1 ω2,2 ω2,k−1 ω2,k

Figure 4: Valuation framework V̂ when k is odd.

By definition we have that for each player i, gki (V , ω) = V and gki (V̂ , ω) = 0. Thus

Gk(V ,ω) = V and Gk(V̂ ,ω) = 0.

However, we shall show that the order-k rational strategies are the same at both (V , ω) and

(V̂ , ω). To do so, note that for each ω′ ∈ Ω,

NSD0(V , ω′) = NSD0(V̂ , ω′) = S,
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where S is the strategy space of M . Because v(ω′)i = v̂(ω′)i = 0 for every player i and
every state ω′ except ω1,k and ω2,k, by the definition of the iterated deletion procedure and
the construction of P1 and P2, we have

NSD1(V , ω′) = NSD1(V̂ , ω′) ∀ω′ ∈ {ω} ∪ {ωi,` : i ∈ {1, 2}, ` ≤ k − 1}.

By induction, we further have that for each `′ < k,

NSD`′(V , ω′) = NSD`′(V̂ , ω′) ∀ω′ ∈ {ω} ∪ {ωi,` : i ∈ {1, 2}, ` ≤ k − `′}.

In particular, NSDk−1(V , ω) = NSDk−1(V̂ , ω) and NSDk−1(V , ωi,1) = NSDk−1(V̂ , ωi,1) for
each i. Finally, this implies that

NSDk(V , ω) = NSDk(V̂ , ω).

Following this equation, and because Gk(V , ω)− c = V − c > 0, to prove Statement 12 it

suffices to show that there exists a strategy profile s ∈ NSDk(V̂ , ω) such that rev(M(s)) ≤ 0.
Since v̂(ω) = (0, 0), we have rev(M(s)) = −u1(v̂(ω), s) − u2(v̂(ω), s). Therefore it suffices
to show the following statement:

∃s ∈ NSDk(V̂ , ω) such that ui(v̂(ω), s) ≥ 0 for each i. (13)

To do so, notice that it is easy to construct a game frameworkM = (Ω′,v′,P ′, s) consistent

with V̂ under some consistency mapping ψ, satisfying the following requirement: there exists
ω′ ∈ Ω′ such that

• ψ(ω′) = ω; and

• s(P ′i(ω′))−i = S−i for each player i —that is, player i believes that the other player
may use any strategy.

Since M is possibilistic interim individually rational, for each i there exists strategy safei(ω
′)

such that

∀s′i,∃ω′′ ∈ P ′i(ω′) such that ui(v
′(ω′′), (safei(ω

′), s(ω′′)−i)) ≥ ui(v
′(ω′′), (s′i, s(ω′′)−i)) (14)

and
∀ω′′ ∈ P ′i(ω′), ui(v′(ω′′), (safei(ω

′), s(ω′′)−i)) ≥ 0. (15)

Because ψ(P ′i(ω′)) = Pi(ψ(ω′)) = Pi(ω) = {ωi,1}, we have v′(ω′′) = v̂(ωi,1) = (0, 0) for each

ω′′ ∈ P ′i(ω′). Thus Equation 14 implies that safei(ω
′) is not strongly dominated at (V̂ , ω)

with respect to NSD0
−i(V̂ , ·), that is,

safei(ω
′) ∈ NSD1

i (V̂ , ω).

Further, because s(P ′i(ω′))−i = S−i = NSD0
−i(V̂ , ωi,1), Equation 15 implies

ui(v̂(ωi,1), (safei(ω
′), s−i)) ≥ 0 ∀s−i ∈ NSD0

−i(V̂ , ωi,1).
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Because NSD1
−i(V̂ , ωi,1) ⊆ NSD0

−i(V̂ , ωi,1), we have

ui(v̂(ωi,1), (safei(ω
′), s−i)) ≥ 0 ∀s−i ∈ NSD1

−i(V̂ , ωi,1).

Below we consider a new strategy ŝi. If safei(ω
′) ∈ NSD2

i (V̂ , ω) then let ŝi = safei(ω
′).

Otherwise let ŝi be an arbitrary strategy in NSD2
i (V̂ , ω) strongly dominating it at (V̂ , ω)

with respect to NSD1
−i(V̂ , ·). By construction we always have

ŝi ∈ NSD2
i (V̂ , ω) and ui(v̂(ωi,1), (ŝi, s−i)) ≥ 0 ∀s−i ∈ NSD1

−i(V̂ , ωi,1).

Continuing this line of reasoning, we finally have that for each i there exists strategy si such
that

ŝi ∈ NSDk
i (V̂ , ω) and ui(v̂(ωi,1), (ŝi, s−i)) ≥ 0 ∀s−i ∈ NSDk−1

−i (V̂ , ωi,1).

Accordingly, the strategy profile ŝ = (ŝ1, ŝ2) is in NSDk(V̂ , ω). Because v̂(ω) = v̂(ωi,1) =
(0, 0), to prove Statement 13, the only thing remaining to show is

ŝ−i ∈ NSDk−1
−i (V̂ , ωi,1) ∀i.

Because ŝ−i ∈ NSDk
−i(V̂ , ω) ⊆ NSDk−1

−i (V̂ , ω), to prove Statement 13 it suffices to show that
for each i,

NSDk−1
−i (V̂ , ω) = NSDk−1

−i (V̂ , ωi,1).

This follows from the fact that v̂ maps every state to the valuation profile (0, 0), and thus

NSDk−1
−i (V̂ , ·) is the same at every state. Therefore Statement 13 holds, and so does State-

ment 12. Accordingly, Theorem 4 holds for n = 2 and k > 0.

In the degenerated case where k = 0, using the same idea as before, consider contexts
C = (V ,ω) and Ĉ = (V̂ ,ω). let V1 = V2 = V = (Ω,v,P) be such that Ω = {ω} and

v(ω) = (V, V ), and V̂1 = V̂2 = V̂ = (Ω, v̂,P) be such that v̂(ω) = (0, 0). Because M is

possibilistic interim individually rational, in game (Ĉ,M) there exists a strategy profile s
such that ui(v̂(ω), s) ≥ 0 for each i. But then rev(M(s)) ≤ 0 < V − c = G0(V ,ω) − c.
Because s ∈∏iNSD

0
i (V i,ωi) = S, M cannot order-0 rationally implement G0 − c.

In sum, Theorem 4 holds for n = 2. For n > 2, we construct the desired contexts and
valuation frameworks by adding dummy players to the valuation frameworks V and V̂ of the
2-player case. The analysis is almost the same, and thus omitted.

8 Concluding Remarks

In this paper we have extended the notions of implementation and social choice correspon-
dence, so as to incorporate the players’ arbitrary higher-order beliefs about (payoff) types.
In so doing we hope to have established a tighter connection between implementation and
epistemic game theory. Indeed there are plenty of attractive epistemic social choice corre-
spondences whose implementability should be investigated.

Also, we can further extend the notion of an epistemic social correspondence by allowing
it to additionally depend on the players’ maximum common rationality order. Indeed, it

28



is trivial to (formally state and) verify that the Arbitrary-Belief Mechanism actually imple-
ments the revenue benchmark G , Gm, where m is the maximum integer k such that all
players are order-k rational, although no one (player or designer) might know the actual
value of m.
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