
Matching Points with Things

Greg Aloupis1, Jean Cardinal1, Sébastien Collette1?, Erik D. Demaine2, Martin
L. Demaine2, Muriel Dulieu3, Ruy Fabila-Monroy4, Vi Hart5, Ferran Hurtado6,
Stefan Langerman1??, Maria Saumell6, Carlos Seara6, and Perouz Taslakian1

1 Université Libre de Bruxelles, CP212, Bld. du Triomphe, 1050 Brussels, Belgium.
{galoupis,jcardin,secollet,slanger,ptaslaki}@ulb.ac.be. Supported by the

Communauté française de Belgique - ARC.
2 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,

Cambridge, MA 02139, USA. {edemaine,mdemaine}@mit.edu
3 Polytechnic Institute of NYU, USA. mdulieu@gmail.com

4 Instituto de Matemáticas, Universidad Nacional Autónoma de México.
ruy@ciencias.unam.mx

5 Stony Brook University, Stony Brook, NY 11794, USA. vi@vihart.com
6 Universitat Politècnica de Catalunya, Jordi Girona 1–3, E-08034 Barcelona, Spain.
{ferran.hurtado,maria.saumell,carlos.seara}@upc.edu. Partially supported by

projects MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.

Abstract. Given an ordered set of points and an ordered set of geo-
metric objects in the plane, we are interested in finding a non-crossing
matching between point-object pairs. We show that when the objects we
match the points to are finite point sets, the problem is NP-complete in
general, and polynomial when the objects are on a line or when their
number is at most 2. When the objects are line segments, we show that
the problem is NP-complete in general, and polynomial when the seg-
ments form a convex polygon or are all on a line. Finally, for objects
that are straight lines, we show that the problem of finding a min-max
non-crossing matching is NP-complete.

1 Introduction

Finding a matching between pairs of planar objects, that is connecting them by
a set of non-crossing line segments, is a natural problem that has been frequently
studied in computational geometry. It is well known, for instance, that given two
sets of n points in the plane, say n red points and n blue points, there always
exists a non-crossing matching between red and blue points. In particular, it
is not difficult to show that the minimum Euclidean length matching is non-
crossing. Kaneko and Kano [22] survey a number of related results. Algorithms
for finding minimum sum and minimum bottleneck distance red-blue matchings
are given in [15, 27].

In this paper, we investigate related questions for general planar objects
instead of points. Again, matchings are represented by line segments, but here
? Chargé de Recherches du FRS-FNRS.

?? Mâıtre de Recherches du FRS-FNRS.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/6083996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the endpoints can be placed anywhere inside the corresponding matched objects.
Note that as a consequence of the aforementioned result on points, there always
exists a non-crossing matching between two sets of objects. Here we consider
the problem where we are given object pairs (i.e. a point and the geometric
object it must be matched to) and need to find a set of non-crossing matching
edges, if one exists. This can be seen as a 1-regular graph drawing problem with
constraints on the location of vertices.

Related work. Problems on matchings have an important role in combinatorial
graph theory, both for theoretical and applied aspects; hence a lot of research is
devoted to the study of these problems (for example, see [24]).

p1

p2

p3

t2

t1

t3

Fig. 1. A non-crossing match-
ing for a set P={p1, p2, p3} of
points and a set T={t1, t2, t3}
of planar objects.

Suppose we are given an embedding of a
graph in the Euclidean plane, where the vertices
are points in the plane, edges are rectilinear line
segments, and weights on these edges represent
the Euclidean distance between the vertices they
connect. Elementary geometry tells us that the
sum of any pair of opposite sides of a convex
quadrilateral is strictly smaller than the sum of
the diagonals. Remarkably, this implies that the
minimum weight matching in any realization of
the complete graphs K2n and Kn,n consists of
pairwise non-crossing segments. These geomet-
ric graph problems can be solved using generic
algorithms for weighted graphs. However, in the
planar case just mentioned, Vaidya [27] proved
that it is possible to obtain specialized algo-
rithms with better running times (the title of his paper is especially sugges-
tive: Geometry helps in matching). In particular, in [27] the running time of the
generic algorithm for the bipartite case was reduced from O(n3) to O(n2.5 log n).
This was later improved to O(n2+ε) by Agarwal et al. [1]. Similar results have
been obtained for other matching variations, such as bottleneck matching or uni-
form matching, in the work of Efrat, Itai and Katz [15]. The authors consider
matchings as an approach for the problem of matching a point set A with a point
set B, where A must be moved in some way to coincide as much as possible with
B or one of its subsets. This is a fundamental problem in pattern recognition [5,
7, 8, 10–12, 19–21].

The non-crossing requirement in our problems is quite natural in geomet-
ric scenarios (see for example [25, 2, 3]), and the family of geometric problems
that we consider has several applications; these applications include geomet-
ric shape matching [4, 13, 17, 18], colour-based image retrieval [13], music score
matching [26], and computational biology [14, 16].

Our results. Throughout the paper, we let P := {p1, p2, . . . , pn} be a set of
points in the plane and T := {t1, t2, . . . , tn} be a set of planar objects. A matching
for a pair (P, T ) consists of a set of line segments, called edges, of the form



{p1m1, p2m2, . . . , pnmn}, where mi ∈ ti. A matching is said to be non-crossing
if no pair of matching edges properly cross. This is illustrated in Figure 1.

We consider the problem of deciding whether a non-crossing matching exists
for a given pair (P, T ). In cases where a non-crossing matching always exists, we
consider the problem of finding the matching that minimizes either the length
of the longest edge, or the sum of the lengths of all the edges.

In Section 2, we study the case where the objects ti are finite point sets.
We prove that the decision problem is NP-complete in general, but becomes
polynomial when every ti has size at most two, or when all the tis are on a line.
In Section 3 we consider T to be a set of line segments and prove that the (P, T )
matching problem is NP-complete. We also consider special cases, such as the
case when the line segments form a convex polygon surrounding all points in P
(Section 4), or the case when segments belong to a single line (Section 5). We
show that these special cases have polynomial solutions. Finally, in Section 6,
we consider the problem of matching points with lines. In this variation, a non-
crossing matching always exists, but the optimization problems are NP-hard.

2 Matching Points with Finite Point Sets

We first prove that if the objects ti are pairs of points, then we can decide
whether there exists a non-crossing matching in polynomial time. On the other
hand, if the sets ti may contain three points or more, the problem becomes
NP-complete. This situation is similar to that of the k-satisfiability problem (k-
SAT). In k-SAT we are given a boolean formula f of the form C1∧C2∧· · ·∧Cm

(where each Ci is an OR clause of k variables), and we are required to find a
truth assignment of its variables that satisfy the formula. It is well-known that
2-SAT has a polynomial-time solution whereas k-SAT is NP-complete for k ≥ 3.
The 2-SAT problem can be solved in polynomial time by exploiting the fact
that, if in a clause a variable is set to false, it forces the other variable to be
set to true. This dependency between the variables can be represented by an
implication graph.

An implication graph for the formula f is a directed graph having two vertices
for each variable xi of f , one of these vertices is labeled xi while the other is
labeled ¬xi. The vertex xi represents setting xi to true while ¬xi represents
setting xi to false. Dependencies between literals in f are represented by directed
edges. Thus if (xi ∨ ¬xj) is a clause in f , in the implication graph there would
be a directed edge from ¬xi to ¬xj and a directed edge from xj to xi. These
edges represent the fact that if xi is set to false then xj must also be set to false
in order for the formula to be satisfied. Likewise if xj is set to true then xi must
be set to true.

There exists a truth assignment satisfying f if and only if no strong com-
ponent of the implication graph contains both a vertex and its negation. The
implication graph can be constructed in O(m) time, where m is the number of
clauses. The previous condition can be verified in O(m) time, and in general the
strong components of a directed graph of v vertices and e edges can be computed



in O(e+v) time. A similar implication graph can be constructed for our problem
when ti is a pair of points. Using this graph, it is possible to decide in O(n2)
time whether (P, T ) has a non-crossing perfect matching.

Theorem 1. Given an ordered set P of points and an ordered set T of pairs
of points, there is an algorithm that decides in O(n2) time whether (P, T ) has a
non-crossing matching.

Proof. Assume that the elements of each ti are labeled arbitrarily “Ti” and “Fi”
(thus ti = {Ti,Fi}). We think of each pi as a boolean variable, so that if we
match pi with Ti then pi is set to “true”, and if pi is matched with Fi, it is set
to “false”. We construct a directed implication graph G as follows: For each pi

we have vertices pi,Ti
and pi,Fi

in G. For every i, j = 1, 2, . . . , n, we add the edge
(pi,X , pj,Y ) (X equal to Ti or Fi, and Y equal to Tj or Fj) to G if and only
if the line segments pi, X and pj ,¬Y intersect. For example if pi, Ti intersects
pj ,Fj , we add the edge (pi,Ti , pj,Tj ) to G (since if pi is matched to Ti, pj must be
matched to Tj as well). So (P, T ) has a non-crossing complete matching if and
only if for every pi, pi,Ti

and pj,Fj
lie in different strong connected components

of G. Since G is constructed in O(n2) time and has O(n2) edges, the overall
complexity of the algorithm is O(n2). ut

2.1 Matching points with triples

By a reduction from Planar 3-SAT, we can prove that the problem of matching
points with triples is NP-complete, even when the points within each triple are
horizontally collinear. Details are omitted due to space limitations.

Theorem 2. Given an ordered set P of points and an ordered set T of triples of
points, it is NP-complete to decide whether (P, T ) has a non-crossing matching.
The problem remains NP-complete even if each triple is horizontally collinear.

2.2 Matching points with k-tuples on a line

Theorem 3. Given an ordered set P of points and an ordered set T of k-tuples
of points on a line, we can decide in O(k3n2) time whether (P, T ) has a non-
crossing matching.

Proof. Without loss of generality, assume all the tuples are on a horizontal line L.
Assume also that all points are on one side of L; otherwise we may consider each
problem separately as the matching edges on each side of L do not interact. We
now show how to build a dynamic programming table that solves the problem.

In any solution to the problem, if a matching edge e is part of the solution,
then there is no matching edge that intersects e. Therefore, we can consider
the regions on each side of e (sub-problems) separately and determine whether
they in turn have a valid solution. Thus, a sub-problem (P ′, T ′) is defined as
follows (see Figure 2): given a simple quadrilateral A with one face adjacent to
L, we want to decide if it is possible to find a non-crossing matching completely



A
p

Fig. 2. Definition of a sub-problem.

A1

p
A2

A1

p
A2

A1

p
A2

A1

p
A2

Fig. 3. In this example, there are three pairs of sub-problems to consider to decide if
p can be matched.

contained in the region A for all the points contained in A, i.e., we want to solve
the problem with P ′ = P ∩ A and T ′ containing the subsets of the tuples of T
contained in A. If A does not contain at least one point of P (sub-problem of
size 0), it is trivially true that there is a non-crossing matching. Otherwise, to
solve the sub-problem we consider the topmost point p in A. It has at most k
possible matching edges. If it has no possible matching edge, i.e., if all points
that p could be matched to in T are out of A, then there is no valid matching.

Each of the possible matching edges defines two new independent sub-problems
(see Figure 3) in the quadrilaterals A1 and A2, whose sizes are strictly smaller
than that of the original problem, as there is one less point to match. To decide
whether a matching exists for the original sets P and T , we solve the sub-problem
defined by the bounding box of both P and T . Notice that all the sub-problems
correspond to quadrilaterals defined by a pair of possible matching edges (or
by the edges of the bounding box). Moreover, since in every sub-problem A the
y-coordinates of the corners of the bounding box are at least as large as that of
every point in A, then the union of the regions of the sub-problems of A will
contain all the points in A. Thus no point will be left out.

The dynamic programming table has kn+2 rows and kn+2 columns, each of
which corresponds to a possible matching edge or one of the left and right edges
of the bounding box; the cells correspond to sub-problems (a pair of non-adjacent
edges defines a quadrilateral), and we fill them with true or false depending on
whether or not a matching exists for the considered sub-problem. Filling a cell of
the table corresponds to solving at most k pairs of sub-problems, which implies
at most 2k lookups in the table for each of the O(k2n2) cells. Therefore, the
total time and space required to solve the problem is O(k3n2). ut



The additional restriction of having points on a line greatly simplifies the
problem, because the problem is NP-hard in the general case, but is polynomial
for points on a line.

3 Matching Points with Line Segments: General Case

In this section we show that deciding the existence of a non-crossing matching
between a set of points and a set of line segments is NP-complete, even if the
segments are all horizontal or all have equal length. The proof uses appropriate
gadgets to show that this problem reduces from the problem of matching points
to triples (Theorem 2). It is omitted due to space limitations.

Theorem 4. Given an ordered set P of points and an ordered set T of line seg-
ments, it is NP-complete to decide whether (P, T ) has a non-crossing matching.
The problem remains NP-complete even if all line segments in T are horizontal
or all have equal length.

4 Matching Points to an Enclosing Convex Polygon

In this special case of matching points with line segments, we assume the seg-
ments are the edges of a convex polygon and the points to be matched are inside
the polygon, in general position.

We first describe some geometric properties of the input of this problem. We
then describe an algorithm that runs in O(n log2 n) time, and finds a non-crossing
matching (if one exists) between a given set of point-segment pairs where the
line segments form a convex polygon enclosing the points. This algorithm allows
a minimum-length matching to be extracted easily.

Let Do = {∆o
1, ∆

o
2, . . . ,∆

o
n} be a set of triangles where each ∆o

i is the tri-
angle with apex pi and base ti. Any valid matching edge ei must lie completely
inside ∆o

i . Depending on the positions of other triangles in Do, some candidate
positions for ei can be identified as invalid because they would always cross
other matching edges. By identifying such cases, triangle ∆o

i can be reduced to
a smaller triangle ∆i. At any time, the reduced triangle ∆i has apex pi but its
opposite base is a subsegment of ti. Initially, ∆i = ∆o

i .
There are four ways in which two triangles ∆i and ∆j interact. The second

case leads to a reduction rule. We describe the four cases below (see Figure 4):
1. ∆i, ∆j are disjoint. In this case there will never be a direct interaction be-

tween the two.
2. pj is in ∆i, but pi is not in ∆j . In this case ∆i should be reduced so that

the two triangles become tangent (so that pj is no longer in ∆i).
3. pi is in ∆i and pj is in ∆j . We call ∆i and ∆j inverted triangles, and cannot

immediately make a reduction.
4. Both edges incident to each of pi and pj pairwise intersect. Then no non-

crossing matching exists.



∆i ∆o
i

pi pi pi

Fig. 4. Left: ∆o
i is reduced to ∆i (case 2). Middle: one of the two combinatorially

distinct solutions (case 3). Right: no solution exists (case 4).

Note that in case (2) there is no choice but to reduce. The matching edge ej that
is finally chosen will block any candidate ei that is outside the newly reduced
∆i. In case (3) there are two combinatorially valid placements for ei, ej , with
respect to the positions of pi, pj . There is no reason to choose arbitrarily before
verifying that neither triangle will be reduced further.

If we exhaustively apply our reduction rule to the triangles based on the cases
described above, we would end up with a set having certain properties. Due to
lack of space, we omit a detailed discussion of these properties.

Let two (three) mutually inverted triangles be called an inverted pair (triple).
Let a unit be a (possibly reduced) triangle, an inverted pair, or an inverted triple.

Theorem 5. Given an ordered set P of points inside a convex polygon having
an ordered set T of line segments as edges, deciding whether (P, T ) admits a
non-crossing matching can be done in O(n log2 n) time.

Proof. We provide an algorithm where we employ a divide-and-conquer tech-
nique. Suppose that we have solved the problem separately on two consecutive
convex chains (we can transform a chain into a polygon by adding 3 fake edges
and points; thus, solving the problem on a chain is equivalent to solving the
polygonal version).

We claim that we can merge the two solutions in O(n log n) time. Each solu-
tion is a set of disjoint triangles and inverted pairs or triples. Refer to Figure 5.

Let A and B be two solved sub-problems of size k. We construct a standard
point-location data structure on each in O(k) time [23] by first triangulating A
and B using Chazelle’s linear-time triangulation algorithm [9]. Now, for every
point pi in B, we locate pi in A to determine if it is inside a unit in A. Note that
pi can be in at most one unit. If it is, we determine if ∆i reduces this unit by
case (2). Likewise, for every point pj in A, we locate pj in B to determine if it
is inside a unit in B and apply the appropriate reductions. Note that if at some
moment ∆i (belonging to B) gets reduced, this will not affect its corresponding
unit in A; the same holds for all ∆j in A that get reduced.

Of course, it is possible that ∆i will be inverted with a triangle in A. In this
case we simply determine if there are reductions and, if applicable, we merge
the two units. Therefore a constant number of reductions are applied per point,
which means we spend O(log k) time per point for the point-location step.



The only unresolved issue is to detect if case (4) will occur between triangles
of A and B (see Figure 5-right). Given that all triangles have been reduced and
merged into units, essentially we are verifying that no segments intersect. For
this we can use the Bentley-Ottmann line segment intersection algorithm and
stop as soon as a bad intersection is found [6]. For k segments, such queries
take O(log k + h log k) time, where h is the number of intersections reported.
As we stop as soon as we report one intersection, h = 1 and hence the total
time is O(log k) per point. Thus our merge procedure takes O(k log k) time.
By a simple recurrence analysis, we determine that the entire algorithm takes
O(n log2 n) time. ut

The algorithm described in the proof of Theorem 5 either decides that no
solution exists, or otherwise produces a final set of reduced triangles that repre-
sents all valid solutions to the problem. In the latter case, every resulting unit is
disjoint and thus independent of all others. So in each triangle we can easily pick
the shortest joining segment, and in each inverted pair/triple, we try out the two
possible choices and take the best matching. Therefore, after the algorithm finds
a solution, the min-max and min-sum optimization problems can be solved in
linear time.

5 Matching Points with Segments on a Line

As another special case of matching points to line segments, we now consider
the case when the input line segments belong to one single line L. Throughout
this section we will assume, without loss of generality, that L is horizontal. As
no matching edge will cross over L, our problem is split into two disjoint sub-
problems, and we focus on points above L. We consider two cases, depending on
whether the segments are disjoint or not.

5.1 Matching points with disjoint segments on a line

Theorem 6. Given an ordered set P of points above a horizontal line L and an
ordered set T of disjoint line segments belonging to L, deciding whether (P, T )

Fig. 5. Merging two solved sub-problems. In the left diagram, the grey regions in the
left (black) sub-problem cannot contain points from the right (blue) sub-problem if
there is a valid solution. In the right diagram, we see the type of event that we must
check for after some initial reductions.



aa

p


bb b b baa a aa

p


p


p


p


p


bb b b baa a

p


p


p


p


Fig. 6. Leftmost non-crossing matching (right) obtained from an initial non-crossing
matching (left).

admits a non-crossing matching can be done in linear time. In the affirmative,
the matching that minimizes the sum of the lengths of the edges can be found
within the same time bound.

Proof. We denote by [ai, bi] the interval corresponding to segment ti, for i =
1, ..., n. Since the intervals are given in sorted order, we have a1 ≤ b1 < a2 ≤
b2 < ... < an ≤ bn.

If (P, T ) admits some non-crossing matching {p1m1, p2m2, . . . , pnmn}, where
ai ≤ mi ≤ bi for all i = 1, 2, . . . , n, we can always slide the point mi inside ti to
a position mL

i as far to the left as possible (see Figure 6). This gives the unique
leftmost non-crossing matching for (P, T ), {p1m

L
1 , p2m

L
2 , . . . , pnm

L
n}. Notice that

either mL
i = ai, or pi and mL

i are collinear with some pj with j < i.
Next we describe an algorithm for finding the leftmost non-crossing matching,

if it exists. The algorithm considers points in a sequential greedy fashion, in the
left-to-right order of the corresponding segments.

For p1, the leftmost matching is simply given by the segment p1a1. We then
consider the rays from the endpoints of this segment in the direction of the neg-
ative semiaxis of abscissae; their points at infinity can be symbolically described
as q0 = (−∞, 0) and q1 = (−∞, y(p1)).

The forbidden region is the (unbounded) region enclosed by an alternating
sequence of horizontal line segments and subsegments of matched edges (See
Figure 7). This region is updated at every step of the algorithm. Initially, it is
described clockwise by its vertices, namely q1p1a1q0. Observe that if p2 is inside
the forbidden region, then a non-crossing matching (P, T ) would be impossible.
If p2 is outside the forbidden region, a matching is possible if and only if there is
some point m2 in the interval a2b2 such that the segment p2m2 does not cross the
forbidden region. In the affirmative, we slide m2 to its leftmost possible position,
and shoot a ray from p2 in the direction of the negative semiaxis of abscissae,
which may go to infinity, or stop by hitting the segment p1a1. The forbidden
region is updated in each case, and is always defined by alternating horizontal
edges with portions of segments from the matching.

Assume that, in a generic step, we have obtained the leftmost matching
{p1m

L
1 , p2m

L
2 , . . . , pj−1m

L
j−1} and we are processing pj . Let qi1pi1qi2pi2 ...qik

pik

mL
ik
q0 be the current forbidden region (refer to Figure 7). Observe that if there

is some mj ∈ [aj , bj ] such that the segment pjmj can be added to the edges



forbidden region

p
1i

p
2i

p
ki

p
j

q
1i

bjmjm
ki

q
0

q
2i

q
ki

L

Fig. 7. Forbidden region and incremental step.

p
j p

j

bjbj mjajaj
L

Fig. 8. Moving the new edge to the leftmost position.

found so far, getting a non-crossing matching, the segment pjbj is also valid. We
show next how to check the validity of pjbj .

We first check the y coordinates of the points mik
, pik

, pik−1 ..., which form
an increasing sequence, until we find that y(pit

) ≥ y(pj) ≥ y(pit+1) (the case in
which y(pj) is a maximum is completely analogous). Then, we check whether
the segment pjbj crosses the segments mik

pik
, qik−1pik−1 , ..., qit−1pit−1 . In the

affirmative, the algorithm is over, as no crossing-free matching is possible. Oth-
erwise, the segment pjbj is valid. We slide the point matched with pj as much
to the left as possible (Figure 8), which can be done by finding the angularly
closest point among pit+1 , pit+2 , ..., pik

, aj .
If we shoot a ray from pj in the direction of the negative semiaxis of abscissae,

we hit the boundary of the forbidden region in a point qj , possibly at infinity,
and the forbidden region is updated to be qi1pi1qi2pi2 ...pit

qjpjm
L
j q0.

The cost of the step for pj is proportional to the size of the forbidden polyg-
onal region that disappears, and that will never be processed again. Therefore,
the amortized cost of one step is constant and the global cost of the algorithm
is O(n). At the end we obtain the leftmost matching {p1m

L
1 , p2m

L
2 , . . . , pnm

L
n},

unless no matching is possible.
If (P, T ) admits a non-crossing matching, with a symmetrical algorithm we

can obtain the rightmost matching {p1m
R
1 , p2m

R
2 , . . . , pnm

R
n }. Then any points

mi in the intervals [mL
i ,m

R
i ] provide a non-crossing matching {p1m1, p2m2, . . . ,

pnmn}. In particular, in each interval [mL
i ,m

R
i ] we can pick the matching point

mi which is closest to pi, and hence obtain the matching that minimizes the sum
of the lengths of the edges in additional O(n) time. ut



5.2 Matching points with arbitrary segments on a line

In this section, we show that when the given segments are confined to a line and
possibly intersect, we can determine the existence of a non-crossing matching in
polynomial time. The proof first discretizes the problem, and then uses the same
approach as in the proof of Theorem 3 for k-tuples with k = O(n2). Details of
the proof are omitted from this version of the paper.

Theorem 7. Given an ordered set P of points above a horizontal line L and an
ordered set T of line segments belonging to L, deciding whether (P, T ) admits a
non-crossing matching can be done in O(n8) time.

6 Matching Points with Lines

In the case where points are matched with lines, it is easy to see that a non-
crossing matching always exists: choose an arbitrary direction, not parallel to
any line, and project each point on its corresponding line in that direction.

Here we consider the optimization problem of minimizing the maximum
length over all matching edges. The proof, omitted here due to space limitations,
uses a reduction from the problem of deciding the existence of a non-crossing
matching between a set of points and a set of segments.

Theorem 8. Given an ordered set P of points and an ordered set T of lines,
finding a min-max non-crossing matching of (P, T ) is NP-complete.

References

1. P. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the plane.
Algorithmica, 9(5):495–514, 1993.

2. O. Aichholzer, S. Bereg, A. Dumitrescu, A. Garca, C. Huemer, F. Hurtado,
M. Kano, A. Mrquez, D. Rappaport, S. Smorodinsky, D. Souvaine, J. Urrutia,
and D. R. Wood. Compatible geometric matchings. Computational Geometry:
Theory and Applications, 42:617–626, 2009.

3. O. Aichholzer, S. Cabello, R. Fabila-Monroy, D. Flores-Penaloza, T. Hackl, C. Hue-
mer, F. Hurtado, and D. Wood. Edge-Removal and Non-Crossing Configurations in
Geometric Graphs. In Proceedings of 24th European Conference on Computational
Geometry, pages 119–122, 2008.

4. H. Alt and L. Guibas. Discrete geometric shapes: Matching, interpolation, and
approximation. Handbook of computational geometry, pages 121–154, 1999.

5. E. Arkin, K. Kedem, J. Mitchell, J. Sprinzak, and M. Werman. Matching points
into noise regions: combinatorial bounds and algorithms. In Proceedings of the
second annual ACM-SIAM symposium on Discrete algorithms, pages 42–51, 1991.

6. J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Transactions on Computers, 28(9):643–647, 1979.

7. S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote. Matching point sets with
respect to the Earth Mover’s Distance. Computational Geometry: Theory and
Applications, 39(2):118–133, 2008.



8. D. Cardoze and L. Schulman. Pattern matching for spatial point sets. In Pro-
ceedings. 39th Annual Symposium on Foundations of Computer Science (FOCS),
1998, pages 156–165, 1998.

9. B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Compu-
tational Geometry, 6(1):485–542, 1991.

10. L. Chew, D. Dor, A. Efrat, and K. Kedem. Geometric pattern matching in d-
dimensional space. Discrete and Computational Geometry, 21(2):257–274, 1999.

11. L. Chew, M. Goodrich, D. Huttenlocher, K. Kedem, J. Kleinberg, and D. Kravets.
Geometric pattern matching under Euclidean motion. Computational Geometry:
Theory and Applications, 7(1-2):113–124, 1997.

12. L. Chew and K. Kedem. Improvements on geometric pattern matching problems.
In Proceedings of the Third Scandinavian Workshop on Algorithm Theory, pages
318–325. Springer, 1992.

13. S. Cohen. Finding color and shape patterns in images. PhD thesis, Stanford
University, Department of Computer Science, 1999.

14. J. Colannino, M. Damian, F. Hurtado, J. Iacono, H. Meijer, S. Ramaswami, and
G. Toussaint. An O(n logn)-time algorithm for the restriction scaffold assignment
problem. Journal of Computational Biology, 13(4):979–989, 2006.

15. A. Efrat, A. Itai, and M. Katz. Geometry helps in bottleneck matching and related
problems. Algorithmica, 31(1):1–28, 2001.

16. A. Formella. Approximate point set match for partial protein structure alignment.
Proceedings of Bioinformatics: Knowledge Discovery in Biology (BKDB2005). Fac-
ultade Ciencias Lisboa da Universidade de Lisboa, pages 53–57, 2005.

17. P. Giannopoulos and R. Veltkamp. A pseudo-metric for weighted point sets. In
Proc. of the 7th European Conf. Comp. Vision, 2002.

18. K. Grauman and T. Darrell. Fast contour matching using approximate earth
mover’s distance. In Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 220–227, 2004.

19. P. Heffernan. Generalized approximate algorithms for point set congruence. In
Proceedings of the 3rd Workshop on Algorithms and Data Structures, pages 373–
373, 1993.

20. P. Heffernan and S. Schirra. Approximate decision algorithms for point set congru-
ence. In Proceedings of the eighth annual Symposium on Computational geometry,
pages 93–101, 1992.

21. D. Huttenlocher and K. Kedem. Efficiently computing the Hausdorff distance for
point sets under translation. In Proceedings of the Sixth ACM Symposium on
Computational Geometry, pages 340–349, 1990.

22. A. Kaneko and M. Kano. Discrete geometry on red and blue points in the plane—a
survey. Discrete & Computational Geometry, 25:551–570, 2003.

23. D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Com-
puting, 12(1):28–35, 1983.

24. L. Lovász and M. D. Plummer. Matching theory. Elsevier Science Ltd, 1986.
25. D. Rappaport. Tight bounds for visibility matching of f -equal width objects. In

Proceedings of the Japanese Conference on Discrete and Computational Geometry
(JCDCG’02), pages 246–250, 2002.

26. R. Typke, P. Giannopoulos, R. Veltkamp, F. Wiering, and R. Van Oostrum. Using
transportation distances for measuring melodic similarity. In Proceedings of the
4th International Conference on Music Information Retrieval (ISMIR 2003), pages
107–114, 2003.

27. P. Vaidya. Geometry helps in matching. In STOC ’88: Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 422–425. ACM, 1988.


