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Abstract

We present the Infinite Latent Events Model,
a nonparametric hierarchical Bayesian dis-
tribution over infinite dimensional Dynamic
Bayesian Networks with binary state rep-
resentations and noisy-OR-like transitions.
The distribution can be used to learn struc-
ture in discrete timeseries data by simultane-
ously inferring a set of latent events, which
events fired at each timestep, and how those
events are causally linked. We illustrate the
model on a sound factorization task, a net-
work topology identification task, and a video
game task.

1 INTRODUCTION

Inferring latent structure in temporal data is an impor-
tant timeseries modeling problem. Consider the task
of using fMRI data to recognize coherent brain activity
(latent events), discover which brain activity leads to
other activity (causal structure), and determine the re-
lationship between latent brain activity and observed
brain scans (observation model). As this example
suggests, sequences of high-dimensional observations
are often generated as the result of latent events in
the external world, where events at time t interact to
cause events at time t + 1. Given the observations, we
wish to recover a factored representation of the latent
state space and learn a structured representation of
the transition probabilities governing the evolution of
the state. Thus, we must simultaneously address the
state-space learning problem and the structure learn-
ing problem of factored probabilistic models.

For various reasons, traditional state space models are
inadequate for this setting. Many timeseries models
descend from the Hidden Markov Model (or HMM)
[13], which assumes that an unobserved Markov chain
of latent states exists, and that the observation at time

t is conditionally independent of all other observations
and states given the latent state at time t. A typi-
cal parametric Bayesian prior for an HMM fixes the
number of latent states and places no restriction on
the structure of the transition probabilities, render-
ing these models ineffective for data sets where the
number of latent states far exceeds the amount of ob-
served data, as would be the case in the combinatorial
examples that motivate this work. The Hierarchical
Dirichlet Process (HDP) HMM [1, 14] relaxes the as-
sumption of a fixed, finite number of states, instead
positing a countably infinite number of latent states
and a random transition kernel where transitions to a
finite number of states account for all but a tiny frac-
tion of the probability mass. However, like paramet-
ric HMMs, the nonparametric HDP-HMM does not
provide adequate inductive bias in combinatorial state
spaces in the face of limited data.

This issue was one of the motivations behind the Fac-
torial HMM [6], which assumes that the state space
factors into K components that evolve as independent
Markov chains. The nonparametric Infinite Factorial
HMM (IFHMM) [4] eliminates the need to specify K.
While the additional structure in the Factorial HMM
produces a strong inductive bias and can significantly
reduce sample complexity, the independence assump-
tion is inappropriate as we expect there to be interac-
tions between the latent factors.

Instead, we wish to model structured causal interac-
tions between latent events. Dynamic Bayesian Net-
works (DBNs) relax the independence assumption of
Factorial HMMs, assuming only that the distribution
of states at time t+1 factors when conditioned on the
state at time t.

We present the Infinite Latent Events Model (ILEM),
which can be seen as a nonparametric distribution over
a restricted class of DBNs. We use the ILEM as a prior
in a hierarchical Bayesian timeseries model to simul-
taneously address the state-space estimation problem
and the structure learning problem: MAP inference in
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Figure 1: The ILEM can learn timeseries structure.
Given observations (represented here as images) it in-
fers latent events, actual causes, and prototypical la-
tent observations.

the ILEM learns a latent state sequence and its prop-
erties, including the number of relevant latent factors
in the state space, the values of those factors at each
timestep, and the causal structure between those fac-
tors. The ILEM combines elements of classical mod-
els and their nonparametric counterparts: we assume
that observations are generated through a combina-
tion of latent events (like an IFHMM), which are cou-
pled through a hierarchy of Dirichlet processes (like the
HDP-HMM), and that there is a factored dependence
structure relating successive events (like a DBN).

The problem of structure learning in DBNs is a diffi-
cult one. Ghahramani [5], for example, assumes that
the dependencies between states is known and dis-
cusses learning maximum likelihood parameter esti-
mates of HMM, factorial and tree-structured latent
state spaces using variational, sampling and EM al-
gorithms; more recent work has focused on learning
the structure itself [10], but most algorithms assume
that data is fully observed [3, 2].

Our contribution is a novel perspective on what it
means to learn causal structure. In contrast to other
methods which explicitly attempt to describe a tran-
sition network that holds between t and t + 1 for all t,
we leave the causal network latent, and instead reason
about causality in actual cause form: we explicitly
represent which actual event at time t caused which
actual event at time t + 1, implicitly integrating out
the latent causal network.

This has the effect of introducing more latent variables
(there is now one for each possible cause/effect rela-
tionship at every timestep), which we couple together
via a hierarchy of Dirichlet processes (DPs). The DPs
allow the variables to share statistical strength, and
their distributed nature softens inference and allows
for emergent causal structure. Our model uses a hi-
erarchy of DPs to capture the idea that there is al-
ways the possibility of a new dimension in the state
representation that was heretofore unknown, or a new

causal link in the DBN that was heretofore unused.

This addresses an important open question for many
timeseries models: how to infer their dimension (e.g.,
the number of latent states (HMM), chains (Facto-
rial HMM), or factors (DBN)). While the dimension
of the latent space under this nonparametric prior is
countably infinite, the model balances its preference
to utilize as few dimensions as possible with the need
to explain the data. Given data, we can determine the
distribution of the number of dimensions actually used
by the observed data.

2 THE INFINITE LATENT

EVENTS MODEL

The ILEM is a nonparametric distribution over a state
sequence with a latent causal structure governing state
transitions. States are represented as binary vectors,
with each active bit representing an event. Transi-
tion probabilities between states are defined by bitwise
noisy-ORs, with parent events causing child events (or
effects). The ILEM is a distribution p(X, C) over two
objects: X , representing events, and C, representing
actual causes. Figure 1 illustrates this: observations
are shown as images, states are represented as a bi-
nary vectors, and actual causes are represented as the
arrows between events.

2.1 THE LATENT EVENTS

Events are represented as a matrix X ∈ {0, 1}T×∞,
where Xt,i indicates whether or not event i was active
at time t (similar to the IFHMM and the Indian Buf-
fet process (IBP) [7]). The total number of triggered
events is potentially unbounded. As an example, the
matrix

X =













1 0 0 1
1 0 1 0
1 1 0 1 · · ·
0 1 1 0
0 0 0 1













represents the latent events in Fig. 1 with T = 5. Only
four latent events are observed here.

2.2 THE CAUSAL STRUCTURE

To represent actual causes, we use a tensor C ∈
N

T×∞×∞, where Ct,i,j represents the number of times
event i triggered event j, causing event j to be active
at time t. C is constrained such that Ct,i,j > 0 iff
Xt,i = 1 and Xt+1,j = 1. Importantly, note that C
does not specify a connection topology in the usual
sense—entries in C should not be considered edges
in a graphical model which govern state transitions.
Rather, they should be viewed as evidence of an edge.



The ILEM

β ∼ GEM(αbase)

πk ∼ DP(αtrans, β)

πbkg ∼ DP(αbkg, β)

Nt,bkg ∼ Poisson(λbkg)

Nt,k ∼ Poisson(λbase)

Dt,k,i ∼ πk

Ct,k = {Dt,k,i : i ≤ Nt,k}

X1 = C1,bkg

Xt =
⋃

k∈Xt−1∪{bkg}

Ct,k

The HDP-HMM

β ∼ GEM(αbase)

πk ∼ DP(αtrans, β)

Nt,k = 1

Dt,k,i ∼ πk

Ct,k = {Dt,k,i : i ≤ Nt,k}

X1 ∼ β

Xt =
⋃

k∈Xt−1

Ct,k
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Figure 2: Generative processes for the ILEM (left) and HDP-HMM (middle), and graphical model of the ILEM
(right). Here β is drawn from a GEM distribution, which is a distribution over the integers [12]; πk are the
individual transition DPs for each possible latent event, Nt,k are the counts of the number of child events caused
by each parent event k at each time t, and {Dt,k,i}i≥0 is the set of all possible events generated by event k at
time t. The derived random variables Ct,k and Xt select the actual causes and events at every time t.

2.3 THE STOCHASTIC GENERATIVE

PROCESS FOR THE ILEM

We now describe p(X, C) via its generative process
(see Fig. 2 for the graphical model). In the following,
we assume that there is a distinguished background
event, which is always active and which has its own
hyperparameters, but which is otherwise identical to
all other events.

Imagine that we have generated a sequence of latent
states X1, · · · , Xt−1, recording which events caused
which other events in the C tensor. To generate Xt,
we iterate over each active event i at time t − 1 and
sample child events as follows:

• Sample Nt,i ∼ Poisson(λbase), which is the number
of child events that i actually causes at time t.

• Sample Nt,i child events from a private Dirichlet
process for parent event i.

To sample child events from event i’s private DP:

• Sample an event from a multinomial distribution
over previously caused events. With probability
Ci,j/(Ci + αtrans), cause event j, which event i has
previously caused Ci,j times. The total number of
events previously caused by i is Ci =

∑

j Ci,j .

• With probability αtrans/(Ci + αtrans), cause a new
event.

To cause a new event:

• With probability Bj/(B + αbase), parent i causes
an event that has been previously caused by other
events (or the background). Bj is the number
of events which have ever caused j, so that B =

∑

j Bj is the number of events caused by any la-
tent event.

• With probability αbase/(B+αbase), parent i causes
a new event that has never been caused by any
other event or the background.

Finally, we increment Ct,i,j every time event j triggers
event i. We set Xt,i = 1 if Ct,i,j ≥ 1 for any event
j. (Note that C can be more than 1, which could
be interpreted in different ways for different causation
and/or observation models; most likely, it would rep-
resent a strength of causation. We will only consider
observations models that depend on X .)

Thus, like the HDP-HMM and other stochastic pro-
cesses based on DPs, each latent event prefers to cause
events which it has already caused before, but there is
always some probability it will cause a new event which
others have caused, or a completely new event which
has never been caused before.

The parameters of the model are the concentration
parameters αbase, αtrans and αbkg, which govern the
DPs, and the Poisson parameters λbase and λbkg.

2.4 PROPERTIES OF THE PARAMETERS

The ILEM can exhibit qualitatively different inductive
biases depending on the hyperparameter settings. For
example, the three concentration parameters αbase,
αtrans and αbkg each control different DPs. For any
given DP and its parameter α, the expected number
of distinct values sampled is proportional to α.

This implies that we can control how much the model
favors determinism by setting αtrans to be small. This



effectively controls the number of unique successor
events for any given latent factor xi. We can sim-
ilarly influence how many unique events are allowed
to be used overall (via αbase) and how many are ex-
plained by the background (via αbkg). The parameter
λbase influences the expected number of child events
caused by a given latent factor at any time t, while
λbkg similarly controls the expected number of child
events caused by the background.

2.5 COMPUTING THE LIKELIHOOD

Given the generative process described previously, the
joint probability density of a particular X and C is:

p(X, C) =
(

K
∏

k=1

CRP(Bk, αbase) CRP(Cbkg,k, αbkg)

)

(

K
∏

i=1

K
∏

k=1

CRP(Ci,k, αtrans)

)

(1)

(

T
∏

t=1

Poisson(Nt,bkg, λbkg)
∏

i∈Xt

Poisson(Nt,i, λbase)

)

where K is the total number of latent events used,
active(t) is the set of active events at time t, Nt,i is
the number of child events of parent event i at time t,
Nt,bkg is the number of child events of the background
event at time t, and

CRP(x, α) = αK Γ(α)

Γ(α +
∑

i xi)

K
∏

i=1

Γ(xi)

is the likelihood of a set of counts under a Chinese
Restaurant process with concentration parameter α.

Like other causal models, the sequence of latent events
is not fully exchangeable in time; rather it is Markov

exchangeable [1], meaning that events and their actual
causes can only be exchanged if they do not change the
DP counts. However, a weaker property of exchange-
ability is preserved: the posterior predictive transition
probabilities only depend on counts of observed tran-
sitions, and not when those transitions occurred.

2.6 RELATIONSHIP TO OTHER MODELS

The ILEM is closely related to two existing dynamical
system models: the HDP-HMM, and noisy-OR DBNs.

The HDP-HMM. The ILEM can be seen as a gener-
alization of the HDP-HMM. For comparison purposes,
Fig. 2 gives the generative model of the HDP-HMM
alongside the ILEM. There are two major differences
between the two models: first, the HDP-HMM does

not have a background event, and second, the HDP-
HMM sets Nt,k = 1. This implies that the HDP-HMM
models the evolution of a single sequence of states.
By sampling multiple effects for each event, the ILEM
naturally extends this to modeling the evolution of a
factored state sequences, with flexible causal depen-
dencies between successive states.

Noisy-OR DBNs. If any active parent event Xt,i

triggers event j, then Xt+1,j is activated. By taking
the stick-breaking view on the events’ private DPs, we
can view the ILEM as a noisy-OR DBN with an in-
finite set of binary nodes at each timestep, each fully
connected to the nodes at the next timestep. Using
the CRP representation of the DP implicitly integrates
out all of these connections, leaving just a few hy-
perparameters. This relationship to noisy-OR DBN’s
is formalized in Appendix A; similar connections be-
tween DPs, IBPs and noisy-OR models are described
by Wood et al. [16].

2.7 OBSERVATION MODELS

To complete the generative model, we must specify an
observation model p(Y |X, C). We now describe one
possible choice: the linear-Gaussian observation model
used by Griffiths & Ghahramani [7].

In this model, an observation yt is generated from
a Gaussian with mean Axt and covariance matrix
ΣY = σ2

Y I. Assuming D-dimensional observations,
the matrix A is D × K (where K is the maximum
number of events which are ever used). Each column
Ai can be thought of as a prototypical observation as-
sociated with latent event xi; the observation yt is a
linear combination of these prototypical observations
plus noise. In an image modeling context, for example,
each column Ai would correspond to a prototypical
sprite associated with latent event xi.

The prototypical representations are unknown, and so
the model places a matrix Gaussian prior (with vari-
ance σ2

A) on A, and then integrates out A. This yields
the following marginal density:

p(Y|X) =
1

Z
exp

{

−
1

2σ2
Y

tr(YT (I − XM−1XT )Y)

}

where Z = (2π)
ND

2 σ
(N−K)D
Y σKD

A |M|
D

2 is the Gaus-

sian normalization constant and M = XTX +
σ2

Y

σ2

A

I.

Under this observation model (see [7]), the means of
the Gaussians associated with each latent event can be
recovered in closed form as:

E[A|Y,X] = (XT X +
σ2

Y

σ2
A

I)−1XT Y

Later, we use this equation to recover the prototypical
latent observations associated with each event.



2.8 INFERENCE

We now describe our MCMC inference algorithm for
the ILEM using the linear-Gaussian observation model
(see Sec. 2.7).

To begin, we make a simplifying approximation. It is
the case that the linear-Gaussian observation is con-
ditionally independent of the actual cause matrix C
given the the binary event matrix X . Specifically, how
many times event i triggers event j has no effect on
the likelihood—only whether the event was triggered
or not affects the observation. To make inference ef-
ficient, we constrain our sampler to explore only the
space where C is binary-valued, sampling, in effect,
from a conditional distribution of the model. We still
score with Eq. 1, which is now only proportional to the
joint density; this presents no difficulty for the MCMC
sampler.

In order to explore the latent space, we use a
combination of single-site Gibbs sampling steps and
Metropolis-Hastings (MH) moves. In particular, we
sample each entry in the event matrix and actual cause
matrix using Gibbs updates, because the conditional
distributions have trivial closed forms given our bi-
nary assumption above. Changes to X and C only
change a few sufficient statistics within each DP and
Poisson, so changes to the likelihood can be computed
incrementally. Often, such incremental changes can
be propagated to the observation model; in the case of
the linear-Gaussian model, efficient rank-one updates
can be applied to the necessary matrix inverses and
determinants.

We found that certain MH moves improved mixing
considerably. One particularly useful MH move ran-
domly rewrites a candidate event Xt,i as a different
event Xt,k, rewiring causes and effects to the event’s
new label. For this move, we consider all possible
rewrites for all active latent events at a particular
timestep. Another useful MH move swaps parent
events, turning off Ct,i,k and turning on Ct,j,k simul-
taneously. Finally, we annealed the sampler during
burn-in using a geometric temperature schedule. For
MAP estimates, we continued to anneal the tempera-
ture towards zero.

3 EXPERIMENTS

We evaluate the ILEM on three different data sets de-
signed to illustrate different properties of the model:
a causal soundscape factorization task; a simple
video game task, and a network topology discovery
task. In each, our goal is to identify the maxi-
mum aposteriori parameter estimates of p(X, C|Y ) ∝
p(Y |X, C) p(X, C).

3.1 CAUSAL SOUNDSCAPE

FACTORIZATION

The linear-Gaussian observation is appropriate in situ-
ations where latent prototypical observations combine
linearly to produce a composite observation, which is
true of sound data. This is illustrated graphically in
the top of Figure 3. For this experiment, we con-
structed a simple “jungle soundscape,” in which differ-
ent jungle sounds caused other jungle sounds: jaguars
howling caused birds to twitter, elephants trumpeting
caused frogs to croak, crickets tended to stay on or
off for long periods of time, etc. 52 observations were
generated, each of which was an 8K sound sample.
This problem is closely related to blind source separa-
tion tasks, except that we are additionally interested
in the latent causal structure.

Figure 3 shows the results. The bottom left shows the
ground truth for which events were active at which
times, and the bottom right shows the learned events
and causal structure. In this case, the ILEM correctly
discovers the latent dimensionality of the data, the
causal network, and an almost perfect set of latent
events.

We chose this problem to illustrate a simple example
where the HMM would fail to find the correct struc-
ture because it was unable to represent the factored
nature of the state space and learn from only a limited
amount of data. A factorial HMM with independent
binary-valued Markov chains would also be unable to
represent the structure of the data because different
events interact.

3.2 SPACE INVADERS

Next, we experimented on a stylized version of space
invaders. A single alien travels back and forth while a
single turret moves back and forth, shooting bullets at
the alien. If the bullet hits the alien, the alien explodes
and resets to an initial position. Figure 4 on the left
shows typical images from the data set.

This problem was chosen to illustrate the need for both
factored state representations and flexible causal struc-
ture. In this case, we expect the HMM to fail because
of the combinatorics of the latent space, and we expect
a factorial HMM to fail because the different latent
factors interact with one another.

There are approximately 25 latent events in the data
set: there are six positions for the alien, three for the
turret, nine different bullet positions, three different
explosion positions, and four action indicators (repre-
sented as bars on the bottom of the image). Observa-
tions are 15x15 binary images. The ILEM was trained
on 400 observations. A good initialization greatly
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Figure 3: On the top: setup for the causal soundscape factorization task. Sound events are linearly combined to
form a composite observation. On the bottom left: the ground truth showing which events were active at which
times. Each row represents a single sound, such as a bird, elephant, tiger, etc. On the bottom right: the inferred
latent events and actual causes. Cricket (row 2) and frog (row 4) sounds evolve independently, lions roaring (row
7) cause birds to screech (row 1), elephants trumpeting (row 6) cause monkeys to howl (row 9), etc.

accelerated learning, so we initialized with a non-
negative matrix factorization algorithm [11], which ini-
tialized both the X matrix and the A matrix with 30
different events. Of the 30 events, 13 of them did not
correspond neatly to a single object – they lumped
multiple objects or parts of objects together. It was
then up to the ILEM to clean this up, by determining
exactly how many objects there were, and infer the
causal structure relating them.

We evaluated the results in two ways. First, we exam-
ined the learned prototypical observations associated
with the latent events. Several of these prototypical
observations are shown in the upper-right of Fig. 4.
They correspond to objects in the world: an event
for the explosion in each position (top row), different
events for the different positions of the bullets (middle
row), and different events for the alien (bottom row).

We also examined the inferred causal network. On the
bottom of Fig. 4 are two chains of causal structure.
The top shows the alien looping from the upper-left
to the upper right and back again. The model suc-
cessfully distinguishes the fact that the alien stays in
the upper-right corner for two successive timesteps (al-
though it does not make the same prediction for the
upper-left corner). Just below is shown the progression
of events as a bullet is fired from the middle position.

3.3 NETWORK TOPOLOGY DISCOVERY

For these experiments, the ILEM was tasked with dis-
covering a causal network topology based loosely on
the SysAdmin problem [8]. In the SysAdmin problem,
a sysadmin must keep a network of computers working.
Machines crash periodically; when they do, they cause
a cascade of failures, which is governed by a network

topology. Our version of the problem is to discover the
network topology, given only the crash data.

We chose this problem to clearly illustrate how we can
infer latent nodes in a DBN, while also inferring the
causal structure of the network. We again expect the
IFHMM and HMM to fail for reasons similar to those
discussed previously.

We represent the data as a binary matrix with T rows,
and K columns, where T is the number of timepoints,
and K is the number of machines, and Xt,k = 1 iff
machine k has failed at time t.

First variant: known machines. For this variant,
the number of latent events is known – we have one for
each machine. We therefore fix that parameter of the
ILEM, and only attempt to infer the network topology.
(A nonparametric approach is still useful because we
do not know the number or strength of the edges.)

We tested the ILEM on four topologies: the three
shown in Figure 5, and a special fourth topology (ex-
plained below). For the three small topologies, we used
400 data points. The ILEM discovers almost perfect
topologies: for the four-node ring, the ILEM correctly
identifies 12/12 of the existing and missing links; for
the five-node star, it identifies 19/20 existing and miss-
ing links; for the seven-node tree, the ILEM identifies
40/42 existing and missing links. Note that the matri-
ces of one-step co-occurrence statistics is often largely
uninformative, as shown in the bottom of Figure 5. In
order to discover a reasonable causal network, we need
the ILEM’s bias towards a sparse connectivity.

For the fourth topology, we generated a randomly
connected network among 100 machines (with about
99.5% sparsity), and generated 1,000 data points.
The best network derived from the posterior ILEM



Figure 4: Results on space invaders. Top left: typical
observations. Top right: several of the prototypical
observations associated with each event: the top row
shows explosions, the middle row shows some bullet
events, and the bottom row shows the alien. Bot-
tom figure: two chains of causal events inferred by the
model. The alien moves back and forth, and a bullet
moves upward after being fired from the ship.

correctly inferred 9,982/10,000 existing and missing
links; in contrast, the best network inferred from co-
occurrence statistics missed twice that many.

Second variant: unknown machines. For this
variant, we hid one of the machines in each small net-
work (modeling a rogue machine that the system ad-
ministrator is unaware of; shown as a shaded node in
Fig. 5), and attempted to infer a complete network.
Now, both the number of machines and the topology
are unknown. The results were encouraging: for all
three networks, the ILEM was able to correctly in-
fer that a single rogue machine existed, and was able
to infer almost perfect network topologies; there were
more extraneous entries in the C tensor, representing
more uncertainty about the exact underlying network,
but the correct links almost always had the strongest
evidence for their existence.

4 CONCLUSIONS

We have presented the Infinite Latent Events Model,
a nonparametric Bayesian model capable of captur-
ing factored causal structure in timeseries data with
rich observations. The centerpiece of our model is an
actual-cause approach which leaves the DBN structure
latent. Using a Gibbs sampler to perform inference of
a hierarchy of Dirichlet processes, we have shown that
the model can infer an appropriate set of latent events

Figure 5: Setup and results for the SysAdmin prob-
lem. Top: network topologies tested. Bottom: co-
occurrence statistics (left) and the ILEM’s learnt net-
works (right).

and the causal structure connecting them.

Efficient inference in the ILEM on large data sets re-
mains an important open research problem; we believe
that some combination of slice sampling and dynamic
programming—like that employed for the IFHMMs
(see [4])—and/or particle filtering (e.g., Beal’s infinite
state particle filter [1]) are promising options. From
a modeling perspective, inhibitory (and more general)
causal link models, hierarchical structure, and semi-
Markov extensions appear to be straightforward ways
to extend the applicability of the ILEM to a wider
range of new data. For many timeseries data, espe-
cially those acquired by autonomous agents, we believe
that natural models will require a notion of objects; a
flexible prior with such an inductive bias is an impor-
tant next step.

A RELATION TO NOISY-OR DBNs

The active events Xt at time t are given by the union
over Poisson independent draws from πk for each ac-
tive event k ∈ Xt−1. Let Q denote the conditional
distribution of Xt given Xt−1 (treating the {πk} dis-
tributions as nonrandom). We show that Q is equiva-
lent to the marginal distribution of a random, infinite-
dimensional noisy-OR DBN. For each event i ≥ 0, let
pi = (pi→1, pi→2, . . . ), where pi→j is the probability
that event i causes event j at the next timestep, given
that event i is currently active.

Let Xt ⊆ N be the set of events active at time t. For
each event j ∈ N at time t, let the probability that
event j is active (i.e. j ∈ Xt) be

1 −
∏

i∈Xt−1∪{0}

(1 − pi→j),

where we have assumed that a distinguished back-
ground event i = 0 is always active. The above al-
ternative conditional distribution of Xt given Xt−1 is
a noisy-OR DBN parameterized by {pi}i≥0.



Theorem A.1. There is a distribution on probabil-

ities {pi}i≥0 such that the conditional distribution of

Xt given Xt−1 is Q.

Proof. We will show that a transformed beta pro-
cess prior [9] on pi achieves the desired result. Let
{qx}x∈R ∼ BP(c, λB0) be a draw from a beta process
with concentration parameter c = 1, mass parameter
λ = λbase and continuous base distribution B0(x) on
R. Then qx ∈ [0, 1] for all x ∈ R with probability one.

The set of random probabilities {qx}x∈R have the fol-
lowing relevant properties [15]: Let F = {x ∈ R :
qx > 0} be the set of x ∈ R assigned positive proba-
bility. Then F is a random, countably infinite subset
of R. Furthermore, the elements of F are themselves
i.i.d. draws from B0 and independent of the probabil-
ity values qx. Finally, let G ⊂ R be the random set of
successes among independent Bernoulli(qx) trials for
each x ∈ F . Then the mass parameter λ is the mean
number of successes |G|. In fact, the number of suc-
cesses has a Poisson(λ) distribution.

Fix an event k ≥ 0 and let πk be the corresponding
measure on events and let B0 be the uniform distri-
bution on [0, 1]. There exists a measurable mapping
ρk : R → N such that B0 ◦ ρ−1

k = πk. Because
each x ∈ G is i.i.d. B0, (ρ(x))x∈G are Poisson(λ)-
many independent draws from πk. This describes Q
and, furthermore, this process is equivalent to sam-
pling from the noisy-OR network with probabilities
pk→j = 1 −

∏

x∈ρ−1(j)(1 − qx).
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