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A
utomorphic forms are generalizations

of periodic functions; they are func-

tions on a group that are invariant

under a discrete subgroup. A natural

way to arrange this invariance is by

averaging. Eisenstein series are an important class

of functions obtained in this way. It is possible to

give explicit formulas for their Fourier coefficients.

Such formulas can provide clues to deep connec-

tions with other fields. As an example, Langlands’s

study of Eisenstein series inspired his far-reaching

conjectures that dictate the role of automorphic

forms in modern number theory.

In this article, we present two new explicit

formulas for the Fourier coefficients of (certain)

Eisenstein series, each given in terms of a com-

binatorial model: crystal graphs and square ice.

Crystal graphs encode important data associated

to Lie group representations, whereas ice models

arise in the study of statistical mechanics. Both will

be described from scratch in subsequent sections.

We were led to these surprising combinatorial

connections by studying Eisenstein series not just

on a group but more generally on a family of

covers of the group. We will present formulas

for their Fourier coefficients that hold even in

this generality. In the simplest case, the Fourier

coefficients of Eisenstein series are described in

terms of symmetric functions known as Schur

polynomials, so that is where our story begins.
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Schur Polynomials
The symmetric group on n letters, Sn, acts on

the ring of polynomials Z[x1, . . . , xn] by permuting

the variables. A polynomial is symmetric if it is
invariant under this action. Classical examples are

the familiar elementary symmetric functions

ej =
∑

1≤i1<···<ij≤n

xi1 · · ·xij .

Since the property of being symmetric is preserved

by sums and products, the symmetric polynomials

make up a subring Λn of Z[x1, . . . , xn]. The ej ,
1 ≤ j ≤ n, generate this subring.

Since Λn is also an abelian group under poly-

nomial addition, it is natural to seek a set that

generates Λn as an abelian group. One such set is

given by the Schur polynomials (first considered

by Jacobi), which are indexed by partitions. A
partition of a positive integer k is a nonincreasing

sequence of nonnegative integers λ = (λ1, λ2, . . .)
such that k =

∑
λi ; necessarily only a finite number

of terms in the sequence are nonzero. Partitions

are added componentwise. If λ = (λi) is a partition
with λi = 0 for i > n, letρ = (n−1, n−2, . . . ,0, . . .),
and let

aλ+ρ = det(x
λj+n−j
i )1≤i,j≤n.

Then aρ divides aλ+ρ , and the quotient sλ :=
aλ+ρ/aρ is the Schur polynomial. It is a homo-

geneous, symmetric polynomial of degree k. For

example, we have

s(k,0)(x1, x2) = x
k
1 + x

k−1
1 x2 + · · ·(1)

+ x1x
k−1
2 + xk2

s(2,1,0)(x1, x2, x3) = x
2
1x2 + x

2
1x3 + x1x

2
2(2)

+ 2x1x2x3 + x1x
2
3

+ x2
2x3 + x2x

2
3.

The sλ, running over all partitions λ with λi = 0
for i > n, form a basis for Λn. Schur showed that

these polynomials describe the characters of rep-

resentations of the symmetric and general linear

groups. (See Macdonald [17] for more details.) As
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we will see in subsequent sections, these charac-

ters are connected to the Fourier coefficients of

Eisenstein series.

Eisenstein Series on SL(2)
Let H = {z = x + iy ∈ C | y > 0} denote the
complex upper half plane. The group SL2(R) acts

on H by linear fractional transformation:

γ(z)=
az + b

cz + d
, where γ=

(
a b
c d

)
∈SL2(R).

It is of interest to find functions that are auto-

morphic—invariant under the action of a discrete
subgroup of SL2(R). The modular group Γ = SL2(Z)
is of particular importance. One may create a fam-
ily of automorphic functions on Γ by averaging.

To this end, for each s ∈ C with Re(s) > 1, define
the unnormalized Eisenstein series

E(z, s) =
∑

γ∈Γ∞\Γ
Im(γ(z))s ,

where

Γ∞ =
{(

1 n
0 1

) ∣∣∣∣∣ n ∈ Z
}
.1

Note that we must quotient out by the subgroup
Γ∞ since this is an infinite group that stabilizes

the imaginary part of z. The definition makes
clear that the Eisenstein series is automorphic—

E(γ(z), s) = E(z, s) for all γ ∈ Γ . Using the identity
Im(γz) = y/|cz + d|2, we may reparameterize the

sum in terms of integer pairs (c, d). Indeed, each
pair of relatively prime integers (c, d) is the bottom

row of a matrix in Γ , and two matricesγ1 andγ2 ∈ Γ
have the same bottom row if and only ifγ1γ

−1
2 ∈ Γ∞.

Thus the Eisenstein series may be expressed in

the form

(3) E(z, s) =
∑

(c,d)∈Z2

gcd(c,d)=1

ys

|cz + d|2s
,

from which one may deduce that the series

converges absolutely for Re(s) > 1.
The series E(z, s) has many spectacular an-

alytic properties. To describe them, define the
normalized Eisenstein series,

(4) E∗(z, s) = 1

2
π−sΓ(s)ζ(2s)E(z, s),

where ζ(s) is the Riemann zeta function and Γ(s)
is the gamma function. One can show that E∗(z, s)
has analytic continuation to a meromorphic func-

tion for s ∈ C and satisfies the functional equation

1In the first line of this article, we described auto-

morphic forms as functions on groups, but here

we’ve defined E(z, s) as a function on the upper

half plane H . The resolution of this apparent dis-

crepancy is that H ≃ SL2(R)/SO2(R) where

SO2(R) =
{(

cosθ sinθ
− sinθ cosθ

) ∣∣∣ θ ∈ [0,2π)
}
. Indeed, SL2(R)

acts transitively on the point i by linear fractional

transformation with stabilizer SO2(R).

E∗(z, s) = E∗(z,1−s). This may be proved by spec-

tral methods, as E(z, s) is an eigenfunction of the

Laplace-Beltrami operator on H .

This fact has far-reaching consequences for the

theory of automorphic forms. As an illustration

in our present case, observe that the invariance

underγ =
(

1 1
0 1

)
implies thatE∗(z+1, s) = E∗(z, s).

Hence the Eisenstein series admits a Fourier series

with respect to the real variable x as follows:

E∗(z, s) =
∞∑

r=−∞

a(r , y, s)e2πinx,

where

a(r , y, s) =

∫ 1

0

E∗(x+ iy, s)e−2πirx dx.

In the special case r = 0, one can show that

a(0, y, s) = ysξ(2s)+ y1−sξ(2− 2s),

where ξ(2s) = π−sΓ(s)ζ(2s). Because a(0, y, s)
inherits the analytic properties of the Fourier

series, the analytic continuation and functional

equation of the Riemann zeta function follow.
What about the remaining Fourier coefficients?

A calculation (see, for example [7], Section 1.6)
shows that if r ≠ 0, then

a(r ,y, s) = 2|r |s−1/2σ1−2s(|r |)y
1/2Ks−1/2(2π|r |y)

where

σ1−2s(r) =
∑

m|r

m1−2s

and K denotes a K-Bessel function.

Let us shift s to s+ 1

2
and examine the “arithmetic

parts” of the nonconstant Fourier coefficients of

E∗(z, s + 1

2
):

a(r)
def
= |r |sσ−2s(|r |).

They are multiplicative. That is, if gcd(r1, r2) = 1,

then a(r1r2) = a(r1)a(r2). Thus they are com-

pletely determined by their values at prime powers

r = pk. Moreover,

a(pk) = pks + p(k−2)s + · · · + p−ks .

A fundamental theme of automorphic forms iden-

tifies these coefficients with values of characters

of a representation. Let V denote the standard

representation of SL2(C) and let ∨kV denote

the kth symmetric power. Thus if A ∈ SL2(C)
has eigenvalues α,β, then ∨kA has eigenvalues

αk, αk−1β, . . . , αβk−1, βk. The character χk of the

representation ∨kV is given by

χk(A) = tr(∨k(A)) =
∑

k1+k2=k

αk1βk2 .

Comparing this with our earlier expression for the

arithmetic piece a(pk), we find

(5) a(pk) = χk

((
ps

p−s

))
.
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Notice that a(pk) is thus the Schur polynomial in
(1) evaluated at (x1, x2) = (ps , p−s):

(6) a(pk) = s(k,0)(p
s , p−s).

This identity has substantial generalizations.
Indeed, one can define Eisenstein series analogous
to E(z, s) for any reductive group G. In this
generality, the notion of Fourier coefficient is
replaced by that of Whittaker coefficient. The
Casselman-Shalika formula [8], first proved for
GL(n) by Shintani [18], states that the values
on prime powers of these coefficients may be
captured by characters of a representation. For
GL(n), these characters are expressed in terms of
Schur polynomials. For more general groups, the
representation is not of the complex points of G,
but rather a representation of the Langlands dual

group2 of G.
These generalizations are usually stated in a

different language. The coefficients a(pk) above
are expressible as integrals on groups over p-adic
fields known as p-adic Whittaker functions. The
local version of the Eisenstein series is an induced
representation, and the Whittaker function is a
p-adic integral evaluated on a canonical vector in
the representation space. Similarly, one may study
the Whittaker functions attached to more general
Eisenstein series, corresponding to more general
induced representations. These may be shown to
be products of Langlands L-functions, and this
observation is important in the study of those
L-functions.

These constructions have been known for many
years. The goal of this article is to put them in a new
context, by considering a group together with its
covers. When we do this, we find that the formula
(5) and its generalizations may be reinterpreted in
terms of crystal graphs, which are combinatorial
structures introduced by Kashiwara in the context
of representations of quantum groups. We begin
by illustrating this for covers of SL(2) before
discussing higher rank.

Eisenstein Series on Covers of SL(2)
The classical metaplectic group is a two-sheeted
cover of a symplectic group over either the reals or
a p-adic field. This group was introduced by Weil
and explains the transformation formulas for theta
functions. More generally, Kubota and Matsumoto,
working over a number field L containing a full set
of nth roots of unity, defined a family of n-sheeted
covers of SL(2) (or any simply connected group)
for each n á 1. Informally, we may think of such a
cover as follows: it is ann-sheeted cover, where the
sheets are indexed by the nth roots of unity. The

2In fact, the dual group enters subtly into the computa-

tion above. The Eisenstein series E(z, s) may be regarded

as a function on PGL2, and the Langlands dual of this

group is SL2(C).

group law requires moving between the sheets,

and the nth root of unity that arises in taking the
product of two group elements is computed using

the arithmetic of the field L.3 In fact, the existence
of this group is closely related to the nth power

reciprocity law.
For these groups, one may define an Eisenstein

series En(z, s) as an average, similar to (3). The
definition is modified by adding an extra factor in

the average that keeps track of the sheets of the
cover. The Fourier coefficients of En(z, s) turn out
to be of great interest: they are Dirichlet series
made with Gauss sums.

A Gauss sum is a discrete analogue of the

gamma integral Γ(s) =
∫∞
0 y

se−y dy
y

—a product of

multiplicative and additive characters summed
over the invertible elements of a finite ring. For
example, if the cover degree is n = 3, we may take
L = Q(e2πi/3) with ring of integers oL = Z[e2πi/3].
Let e(·) be an additive character of L that is
trivial on oL but no larger fractional ideal. Then
for integers m,c ∈ oL with c 6= 0, let

(7) g3(m, c) =
∑

t(mod c)
gcd(t,c)=1

(
t

c

)

3
e(mt/c),

where the sum is over t ∈ oL that are invertible
mod c and (−)3 is the cubic residue symbol.4

For general n and L, we may define a Gauss sum

gn(m, c)made with nth power residue symbols. To
do so, we must pass from the ring of integers oL to
a localization oL,S where denominators are allowed
at a finite set of places S, and some additional

technicalities result.
Kubota computed the Fourier expansion of

En(z, s), whose mth coefficient is a K-Bessel func-
tion times an arithmetic part a(m). In the special

case n = 3, for m ≠ 0

(8) a(m) = ‖m‖s−1/2
∑

c∈oL
c≡1 (mod 3)

g3(m, c)

‖c‖2s
,

where ‖ ‖ denotes the absolute norm. The form
for general n is much the same, with an arithmetic

part involving gn(m, c) in place of g3. The series is
easily seen to converge absolute for ℜ(s) > 3/4,
and since E(z, s) has analytic continuation and
functional equation, a(m) inherits these proper-
ties as well. This series (and its generalizations)

are basic objects of interest.

3In more detail, letAL denote the adèles, an appropriately

restricted product over all completions of L. Then an n-

fold metaplectic group is a central extension of SL2(AL)
by µn: 1 -→ µn -→ G̃ -→ SL2(AL) -→ 1. This extension

is described by means of a two-cocycle that is constructed

using the n-power Hilbert symbols of completions of L. (It

is not the adelic points of an algebraic group). See [4] for

further information.
4Thus (t/c)3 is a cube root of unity and is 1 if c is a cube,

and (t1t2/c)3 = (t1/c)3(t2/c)3.

December 2011 Notices of the AMS 1565



Let us recall two properties of Gauss sums

valid for any n ≥ 1. Using the Chinese Remainder
Theorem, one may show that if gcd(c1, c2) = 1,
then

(9)

gn(m, c1c2) =

(
c1

c2

)

n

(
c2

c1

)

n

gn(m, c1)gn(m, c2),

and if gcd(m1, c) = 1, then an easy change of
variables shows that for any integer m2

gn(m1m2, c) =

(
m1

c

)−1

n
gn(m2, c).

In particular, (9) shows that the Dirichlet series
in (8) is not expressible as an Euler product—a

product over primes—when n > 2. This is quite
different from the situation for n = 1,2 and, more
generally, for Langlands L-functions. Instead, we
see that to combine contributions from relatively

prime c1 and c2, we must introduce nth roots of
unity depending on arithmetic. For these reasons,
we call series with such a property twisted Euler

products. See [12] for more information and further
examples.

Though not strictly multiplicative, these two
properties allow us to reconstructgn(m, c) from its

values at prime powers gn(pa, pb) for nonnegative
integers a, b. Thus we may restrict ourselves to
these simpler cases in describing the Fourier

coefficients.
Let us consider the coefficients gn(pa, pb) at a

given prime p. Here a is fixed (it is the order of m
at p) and b is varying. These coefficients come in
three flavors. First, there is the case b = 0, where
the coefficient is simply 1 = pb. Second, there are
the coefficients for 1 ≤ b ≤ a. The inequality b ≤ a
makes the additive character in (7) trivial, and so
this coefficient is the function

hn(b) =

{
φ(pb) if n|b,
0 otherwise,

where φ(pb) = |(oL,S/pboL,S)×| is the Euler phi

function for oL,S . Finally, there is the case b = a+1.
In this case, the Gauss sum is always nonzero, and
it is not possible to evaluate it in closed form
except in special cases. We write this sum simply

as gn(a+1) for short. For b ≥ a+2, the Gauss sum
is zero (which follows from expressing the sum
in terms of a nontrivial character over a group).

Hence the entire contribution to the path Fourier
coefficient can be summarized in the following
diagram:

(10)
b = 0 1 2 a a+ 1

· · ·

g = 1 hn(1) hn(2) hn(a) gn(a+ 1).

We have circled the location b = 0 and boxed

the location b = a + 1 since the contributions are
special at these locations, while at b such that

1 ≤ b ≤ a, the contribution is hn(b). This is the
most common situation. Notice that the diagram
is the same for any n; it is only the functions gn
and hn that depend on n.

For the nonmetaplectic Eisenstein series (the
special case n = 1), we saw in the section “Eisen-
stein Series on SL(2)” that the coefficients at
powers of p may also be described in terms of
Schur polynomials. The connection to the sums
of Gauss sums presented here is as follows. We
work over Q for convenience. The residue symbol
(t/c)1 is trivial, and

(11)

h1(a) = φ(p
a),

g1(a + 1) =
∑

t(mod pa+1)
gcd(t,p)=1

e(t/p) = −pa.

Thus the arithmetic part a(pk) of the pkth Fourier
coefficient described in this section has the form

pk(s−1/2)
(
1+φ(p)p−2s + · · · +φ(pk)p−2ks

−pkp−2(k+1)s
)

= (1− p−2s)s(k,0)(p
s−1/2, p−(s−1/2)).

After sending s ֏ s+1/2 as before, this coincides
with the formula (6) above. Note that the Eisenstein
series defined in (4) was normalized by a zeta
function, which explains the extra factor (1−p−2s)
here.

Returning to the case of general n, the descrip-
tion of the Fourier coefficient as a sum of Gauss
sums governed by (10) above has broad general-
izations. Indeed, the underlying graph in (10) may
be viewed as a crystal graph associated with a
highest weight representation of SL2. In the next
section, we will discuss crystal graphs in more
detail and explain how they may be used to give
a generalization to covers of SLr+1 for any r and
any cover degree n.

Eisenstein Series on Covers of SLr+1 and
Crystal Graphs
We continue to work over a number field L con-
taining n nth roots of unity. One can define an
n-fold cover of (the adelic points of) SLr+1 for any
r and a corresponding Eisenstein series En for this
group. It is an average of a suitable function, this
time a function of r complex variables s1, . . . , sr ,
over a discrete subgroup.5

Fourier coefficients generalize to Whittaker co-
efficients. These are defined by integrating En
against a character of U , the subgroup of upper
triangular unipotent matrices of SLr+1(AL). The
necessary characters of U are indexed by r -tuples
m = (m1, . . . ,mr) of elements of oL. (Indeed, a
character of U depends only on the r locations

5There are more general Eisenstein series built from au-

tomorphic forms on lower rank groups, but we do not

consider them here.

1566 Notices of the AMS Volume 58, Number 11



just above the main diagonal since everything else

is in [U,U].) Then the Whittaker coefficients are

defined by integration against this character.

The main theorem of [4] expresses the arith-

metic part a(m) of these Whittaker coefficients

for mi ≠ 0 as ‖m1‖
s1−1/2 · · · ‖mr‖

sr−1/2 times the

multiple Dirichlet series

∑

c1,...,cr

Hn(m; c1, . . . , cr)

‖c1‖2s1 · · · ‖cr‖2sr
.

This is a generalization of (8). The coefficients

Hn are once again twisted multiplicative, and this

allows one to reduce their study to that of the

coefficients Hn(pℓ1 , . . . , pℓr ;pk1 , . . . , pkr ) attached

to a given prime p of oL. Here the ℓi and ki are

nonnegative integers. The coefficients H turn out

to be built out of the functions gn, hn, and powers

of ‖p‖ that already appeared in the previous

section for the n-fold cover of SL(2). However, the

exact description is considerably more subtle. It

involves the theory of crystal graphs.

To explain further, we briefly recall several

important facts about finite-dimensional repre-

sentations of Lie groups and their crystal graphs.

A weight of GLr+1 is a rational character of the

diagonal torus T of GLr+1. The weights may be

identified with elements of the lattice Λ = Zr+1:

if µ = (µ1, . . . , µr+1) ∈ Λ, then t
µ :=

∏
t
µi
i with

t = diag(t1, . . . , tr+1) ∈ T is such a character. A

weight for a representation V of the associated Lie

algebra glr+1(C) is a weight µ such that there exists

a nonzero vector in V that transforms under the

torus by µ; it is highest if no larger weight satisfies

this property.6 Cartan’s Theorem of the Highest

Weight states that every finite-dimensional irre-

ducible complex representation of glr+1(C) (or any

complex semisimple finite-dimensional Lie alge-

bra) has a unique highest weight vector (up to

scalars) and that the highest weight classifies the

representation.

The quantum group Uq(glr+1(C)) is a defor-

mation of the universal enveloping algebra of

glr+1(C) that is obtained when a parameter q
is introduced into the relations that describe

the universal enveloping algebra. (See Hong and

Kang [14].) Finite-dimensional representations are

once again classified by highest weight. Let λ be

a dominant weight (that is, λ1 á λ2 á · · · á λr+1).

Then Kashiwara [15] associates with λ a crystal

graph Bλ, a directed graph whose vertices corre-

spond to basis vectors for the representation of

Uq(glr+1(C)) with highest weight λ. The edges of

this graph are colored with one color for each

6Recall that the weights are partially ordered as fol-

lows: λ á µ if λ − µ is a nonnegative linear com-

bination of simple roots. In terms of coordinates, λi =
µi + hi − hi+1 for each i, where the hi are nonnegative

integers and h0 = hr+2 = 0.

λ

v

w0λ

Figure 1. The crystal graph with highest
weight λ = (4,2,0)λ = (4,2,0)λ = (4,2,0).

simple root and describe the action of the unipo-
tents in the Lie algebra on this basis as q → 0. The

crystal graph Bλ comes endowed with a map “wt”
to the weight lattice Λ which is compatible with

the graph structure. Walking one step along an
edge of Bλ in the direction of the highest weight

vector (resp. lowest weight vector) corresponds
to increasing (resp. decreasing) the weight of the

vertex by the simple root with which it is labeled.7

Figure 1 depicts a gl3 crystal with highest weight

λ = (4,2,0) and lowest weight w0λ = (0,2,4). It
is drawn so that vertices of the same weight are

clustered together diagonally.
Berenstein and Zelevinsky [2] and Littel-

mann [16] associate paths with each vertex in Bλ.
8

To do this, choose a reduced factorization of the
long element w0 of the Weyl group into simple

reflections (i.e., one of minimal length). Walk the
graph toward the highest weight vector in the

order that the simple reflections appear in the
factorization, going as far in a given direction as

the graph will allow before changing to the next
color. It turns out that such a factorization always

leads to a path to the highest weight vector λ.
The sequence BZL(v) of path lengths so obtained

parameterizes the vertex v of Bλ. (Alternatively,
we could record path lengths toward the lowest

weight vector w0λ from v .)
For example, in Figure 1 we have indicated a

walk from a vertex v to the highest weight vector
λ. It corresponds to the factorization of the long

elementw0 = s1s2s1 of the symmetric group S3, the
Weyl group of GL3. Thus we walk along the graph

in order s1, s2, s1 (= blue, red, blue). The lengths of

7The map “wt” is such that
∑
v∈Bλ t

wt(v) is the charac-

ter of an irreducible representation of GLr+1(C) whose

associated Lie algebra representation has highest weight

λ.
8Berenstein and Zelevinsky refer to these paths as

“strings”.
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the corresponding paths are 1,3,2, respectively,

so BZL(v) = (1,3,2).
The main theorem of [4] computes the coef-

ficients Hn(pℓ1 , . . . , pℓr ;pk1 , . . . , pkr ) by attaching
products of Gauss sums to BZL sequences. Let
λr+1 = 0 and λi = ℓi +λi+1 when i ≤ r , and let λ be
the dominant weight λ = (λ1, λ2, . . . , λr+1).

9 Let ρ
denote the Weyl vector, that is, half the sum of the
positive roots, or in coordinates (r , r −1, . . . ,1,0).

Theorem 1. The coefficient Hn is given by

(12) Hn(p
ℓ1 , . . . , pℓr ;pk1 , . . . , pkr ) =

∑

v∈Bλ+ρ
wt(v)=µ

Gn(v),

where the function Gn(v) is described below and µ
is the weight related to (k1, . . . , kr) by the condition
that

∑r
i=1 kiαi = (λ+ρ)−µ where αi are the simple

roots.

The definition of Gn(v) depends on a recipe for
walking the graph, so it depends on the choice of a
reduced expression for w0 in the symmetric group
Sr+1. We will work with two different choices; these
give rise to two different functions Gn(v). In terms
of the simple reflections si (recorded by their index
i ∈ [1, r ]), let us fix either

(13) Σ = Σ1 := (r , r − 1, r , r − 2, r − 1,

r , . . . ,1,2,3, . . . , r )

or

(14) Σ=Σ2 :=(1,2,1,3,2,1, . . . , r , r−1, . . . ,3,2,1)

and take the associated path lengths BZL(v) =
(b1, . . . , bN) to the highest weight vector. (We
suppress the dependence on Σ.) We then decorate
the entries bi as follows. The length bi is boxed if

the ith leg of the path is maximal (i.e., contains
the entire root string). In Figure 1, with Σ = Σ2,
BZL(v) = (1,3,2), both the 1 and 2 are boxed while
the 3 is not (since it is part of an s2 root string of
length 4). An entry bi is circled if a corresponding
leg of the path to the lowest weight vector is
maximal (see [3], Ch. 3). Thus in Figure 1, the path
lengths to the lowest weight vector are (0,1,1),
none of which are maximal. Hence none of the

entries in the decorated BZL sequence ( 1 ,3, 2 )
are circled.

Then we prove that

Gn(v) = Gn,Σ(v)(15)

=
∏

bi∈BZL(v)





‖p‖bi if bi is circled

(but not boxed),

gn(bi) if bi is boxed

(but not circled),

hn(bi) if neither,

0 if both,

9By fixing λr+1 = 0, we parameterize representations of

SLr+1(C), the Langlands dual group of PGLr+1.

where gn(b) and hn(b) are the Gauss sum and

degenerate Gauss sum, respectively, described in

the previous section. Notice that this definition

exactly matches the description given above and

pictured in (10) in the special case of SL2.

In Figure 1, the vertex v belongs to a weight

space with multiplicity two. Again using Σ =

(1,2,1), the other vertex in the weight space

containing v has decorated BZL sequence (2, 3 ,1).
Thus applying Theorem 1 with Gn(v) as in (15),

we have

Hn(p
2, p;p3, p3) = Gn

(
1 ,3, 2

)
+Gn

(
2, 3 ,1

)

= gn(1)hn(3)gn(2)

+ hn(2)gn(3)hn(1).(16)

Since hn(b) = 0 unless n divides b, this term is

nonzero only for the cover degrees n = 1 or 3.

It is noteworthy that expressions like (16) for the

function Hn in terms of Gauss sums are uniform

in n.

Because we may use either Σ1 or Σ2 to define

Gn(v), these are two explicit formulas for the

Whittaker coefficient. The equality of the expres-

sion in (12) for Σ1 and Σ2 is not formal and is

established directly in [3] by an elaborate blend of

number-theoretic and combinatorial arguments. It

is an open problem to give a definition of Gn(v)
obtaining the Whittaker coefficient for an arbitrary

reduced decomposition of the long element w0 of

the Weyl group.

In closing this section, we mention that there

are not one but two distinct generalizations of

the Casselman-Shalika formula to the metaplectic

case. Chinta and Gunnells [9] and Chinta and

Offen [10] show that the p-parts of the Whittaker

coefficients of metaplectic Eisenstein series on

covers of SLr+1 can also be expressed as quotients

of sums over the Weyl group, directly analogous

to the Weyl character formula.

The Case n = 1: Tokuyama’s Deformation
Formula
When n = 1, we are concerned with Eisenstein

serieson an algebraic group and not a cover. In that

case, the Whittaker coefficients may be computed

in two different ways. First, Theorem 1 provides an

answer in terms of crystal graphs. This result holds

for any n ≥ 1. Second, the formula of Shintani [18]

and Casselman and Shalika [8] (which holds only

for n = 1) expresses the Whittaker coefficients

of normalized Eisenstein series as the values of

the characters of irreducible representations of

SLr+1(C). These characters are given by Schur

polynomials sλ, as described in the section “Schur

Polynomials”.

These two expressions for the Whittaker co-

efficients are related by the following result

(see [3], Ch. 5).
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Theorem 2. Let z = (z1, . . . , zr+1) and let q = ‖p‖.
For any dominant weight λ,

∏

i<j

(zi − q
−1zj)


 sλ(z)

=
∑

v∈Bρ+λ

G1(v)q
−〈λ+ρ−wt(v),ρ〉

z
wt(v),

where the G1(v) are computed as in (15) using the

reduced word Σ2.

We illustrate Theorem 2 with λ = (2,1,0), so

that λ + ρ = (4,2,0) and Bλ+ρ is the crystal

pictured earlier. Let us compare the monomials
z1z

2
2z

3
3 appearing on both sides of the theorem for

this choice of λ. The coefficient of this monomial

appearing on the right-hand side is (up to a power

of q) just the value of Hn(p2, p;p3, p3) computed
in (16) in the special casen = 1. After simplification

using (11),

H1(p
2, p;p3, p3) = qφ(p3)− q2φ(p2)φ(p)

= −q5 + 3q4 − 2q3.

Since 〈λ+ ρ −wt(v), ρ〉 = 6, these terms should
be multiplied by q−6 to obtain the complete contri-

bution to the monomial z1z
2
2z

3
3 on the right-hand

side.

The left-hand side is just (z1 − q−1z2)
(z1 − q−1z3)(z2 − q−1z3)s(2,1,0)(z1, z2, z3), where

s(2,1,0)(z) is given in (2). Expanding, we see that the

coefficients of z1z
2
2z

3
3 indeed match. For example,

terms with q−3 on the left can only come from
taking the term 2z1z2z3 in the Schur polynomial

and multiplying by q−3z2z
2
3 from the product.

In general, after taking into account the normal-
izing factors that appear in the Casselman-Shalika

formula, Theorem 2 shows that the Casselman-

Shalika formula and Theorem 1 in the case n = 1

are equivalent.
Theorem 2 is equivalent to an earlier result of

Tokuyama [19] and may be viewed as a deforma-

tion of the Weyl character formula (which results
from setting q = 1). Tokuyama’s formulation uses

combinatorial arrays called Gelfand-Tsetlin pat-

terns. We highlight the fact that the character with

highest weight λ is expressed as a combinatorial
sum over basis vectors of a crystal of highest

weight λ+ ρ.

Ice Models for Whittaker Coefficients
In this final section, we describe another combina-

torial representation of the p-parts of Whittaker

coefficients. These can be described using square
ice, a particular example of a two-dimensional lat-

tice model . We describe these in detail when n = 1;

that is, when the Whittaker coefficients at the
prime p are given in terms of Schur polynomials.

An ice model description for arbitrary covers is

presented in [6].

Two-dimensional lattice models arise in sta-
tistical mechanics, where they can be used to
represent thin sheets of matter such as ice. Any
such model has a certain set of admissible config-
urations called states, and each state is assigned
a value known as a Boltzmann weight. A primary
goal is to understand the behavior of the partition
function of the model, the sum of the Boltzmann

weights over all states.10 Lattice models for which
the partition function may be explicitly evaluated
are called exactly solved and are of particular in-
terest. See Baxter [1]. The study of ice models was
advanced by ideas of representation theory and
ultimately led to the discovery of quantum groups.
See Faddeev [11] for a history.

For the application to Whittaker functions,
a lattice model is given for any partition λ =
(λ1, . . . , λr+1) having λr+1 = 0 as follows. Form a
rectangular array of lattice points with r + 1 rows
(numbered r + 1 to 1 from top to bottom) and
λ1+r+1 columns numbered 0 to λ1+r from right
to left. Add vertical and horizontal edges from
each lattice point, so the points are embedded in
a rectangular array of line segments.

Each boundary edge of this configuration is
labeled with a fixed “spin” + or −. The left and
bottom edges are all assigned a + spin, and the
right edge spins are all −. The spins along the
top edges correspond to λ + ρ = (λ1 + r ,λ2 +
r − 1, . . . , λr + 1,0) as follows: place a − spin at
the top of a column numbered λi + (r + 1 − i)
for i ∈ [1, r + 1] and place a + spin above the
remaining columns. The figure in (17) illustrates
these boundary conditions associated with λ =
(2,1,0) so that λ + ρ = (4,2,0), our running
example.

(17)

4 3 2 1 0

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

The states of this model will be assignments
of spins to the internal edges, pictured with open
circles above. The only requirement on these spins
is that each vertex in the grid has adjacent spins
matching one of the six configurations in Figure
2 below: A model with this restriction is often
called a six-vertex model, or square ice.11 Given the

10The term “partition function” should not be confused

with our earlier use of “partition” of a positive integer.
11We may think of the vertices in the grid as oxygen

atoms, and the six possible choices of adjacent spins are

the
(

4
2

)
ways of arranging two nearby hydrogen atoms

on adjacent edges.
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Figure 2. Six-Vertex Ice Configurations

boundary conditions as above, (18) is one such
admissible filling (i.e., a state).

(18)

4 3 2 1 0

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

To describe the Boltzmann weight for a state,
we first assign a weight to each of the six types
of vertices (which is allowed to vary depending on
the row in which it appears). Then the Boltzmann
weight of the state is the product of all weights of
vertices appearing in the grid. Summing the Boltz-
mann weight over all states with fixed boundary
conditions gives the partition function for the
model.

For example, choose weights for the vertices as
in (19),

(19)

Ice

Configuration
i i i

Weight 1 tizi 1

Ice

Configuration
i i i

Weight zi zi(ti + 1) 1

where the ti and zi are arbitrary parameters

corresponding to the row number i.12 Then the
Boltzmann weight of the state (18) is:

t3(1+ t3)z
3
3 · t2z

2
2 · z1.

Setting t2 = t3 = −1/q, this is precisely equal
to G1(v) q−〈λ+ρ−wt(v),ρ〉

z
wt(v), which appears in the

right-hand side of Theorem 2, where v is the vertex

12Note that these Boltzmann weights are not symmet-

ric under the interchange of + and −, in contrast to

the “field-free” situation that is often considered in the

literature.

pictured in the crystal graph of Figure 1. This is no

accident. There is a bijection between vertices v of

the crystal Bλ+ρ havingG1(v) 6= 0 and states of the

model with boundary conditions corresponding to

λ+ ρ as above. See [5] for details.

Hamel and King [13] evaluated the partition

function of an equivalent model and choice of

Boltzmann weights by means of tableaux com-

binatorics and showed that it exactly equals the

left-hand side of Tokuyama’s theorem. In [5], we

show that as long as the Boltzmann weights satisfy

a single algebraic relation (which includes the case

of Hamel and King), the resulting partition func-

tion may be given in terms of a Schur polynomial.

We also give a different approach to these results,

which we now sketch.

Let Sλ denote the set of states for the model

above with boundary conditions corresponding to

λ + ρ. Let Z(Sλ) be the partition function of the

model with Boltzmann weights assigned according

to the table in (19). We prove in [5] that

(20) Z(Sλ) =
∏

i<j

(tjzj + zi)sλ(z1, . . . , zn),

where the right-hand side has already appeared in

the statement of Theorem 2. The critical step of

the proof is to show that Z(Sλ)
∏
i<j(tjzj + zi)

−1 is
symmetric in the sense that it is unchanged if the

same permutation is applied to both (z1, . . . , zr+1)
and (t1, . . . , tr+1). Once this is known, it is possible

to show that it is a polynomial in the zi and ti
and, by comparing degrees, that it is independent

of the ti ; finally, taking ti = −1, one may invoke

the Weyl character formula and conclude that it is

equal to the Schur polynomial.

In order to prove the desired symmetry property

we use an instance of the Yang-Baxter equation. In

the context of a lattice model, given three fixed sets
of weights R,S, and T , the Yang-Baxter equation

is the identity of partition functions

(21)

Z




τ

σ

β

α

θ

ρ

R

S

T



=Z




τ

σ

β

α

θ

ρ

T

S

R



,

for all choices of boundary spins ± for

α,β,σ , τ, θ,ρ. Here the R vertices have been

rotated by 45◦ for ease in drawing the diagram.

Note that both sides of this identity are sums

over all states resulting from choices of the three

internal edge spins indicated by empty circles

above.13 Baxter first employed the Yang-Baxter

13This may be reformulated algebraically by regarding

the Boltzmann weights R, S, T as giving endomorphisms

of V ⊗ V for an abstract two-dimensional vector space V .

See [5] for an exposition. Then the Yang-Baxter equation
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equation as a method for obtaining exactly solved

models.

In the application at hand, S and T are weights

given in (19) for two rows. It may be shown (cf.

[5]) that there exists a choice of weights R such

that the Yang-Baxter equation holds. Attach this

vertex between the S and T rows thus:

(22)

S S

T T

-→ R

S S

T T

This multiplies the partition function by a weight

of R, which happens to be one of the linear

factors in (20). Then applying the Yang-Baxter

equation several times, thisR-vertex may be moved

rightward, leaving the partition function invariant.

Picking up from (22), this looks like:

-→ R

T S

S T

-→ R

T T

S S

Then discarding the R-vertex divides by another

Boltzmann weight of R, which is another one

of the linear factors in (20). Note that S and T
are interchanged, reflecting the symmetry of the

Schur function in (20) and leading to a proof of

that equation.

The Yang-Baxter equation can also be used

to directly establish the equivalence of the two

descriptions in Theorem 1 obtained from the

reduced decompositions (13) and (14) when n = 1.

See Chapter 19 of [3].

The Langlands program describes the role of

automorphic forms on reductive groups in number

theory. Automorphic forms on covering groups

have been used to prove cases of the Langlands

conjectures, but they themselves do not strictly fit

into its usual formulations. Studying automorphic

forms on covers reveals connections with crystals

and lattice models, which are mathematicalobjects

that first appeared in other contexts—quantum

groups and mathematical physics. The exploration

of these exciting connections is only beginning.

is the identity

R12S13T23 = T23S13R12,

where the notation Rij is the endomorphism of V ⊗ V ⊗
V in which R is applied to the ith and jth copies of V
and the identity map to the kth copy, where {i, j, k} =
{1,2,3}.
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