

Citation for published version:

Baltramonaityte, V, Zavitsanou, G, Waldren, L & Walton, E 2024, 'The Role of Loneliness and Social Isolation in Mediating the Relationship Between Childhood Maltreatment and Schizophrenia: A Genetically Informed Approach', Journal of Psychopathology and Clinical Science. https://doi.org/10.1037/abn0000902

DOI: 10.1037/abn0000902

Publication date: 2024

Document Version Peer reviewed version

Link to publication

University of Bath

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	
2	
3	
4	The Role of Loneliness and Social Isolation in Mediating
5	the Relationship Between Childhood Maltreatment and Schizophrenia:
6	A Genetically Informed Approach
7	
8	Georgia Zavitsanou ¹ , Lucy H Waldren ¹ , Esther Walton ¹ , & Vilte Baltramonaityte ¹
9	¹ Department of Psychology, University of Bath, Bath, UK
10	
11	Author Note
12	VB, GZ and EW conceived the study, GZ compiled the data and GZ and VB
13	conducted the analyses. LHW provided critical feedback on the draft. All authors drafted and
14	approved the final manuscript. LHW is supported by a doctoral studentship from the
15	Economic and Social Research Council. VB and EW are supported by the European Union's
16	Horizon 2020 research and innovation programme (EarlyCause, grant n° 848158). EW also
17	received funding from UK Research and Innovation (UKRI) under the UK government's
18	Horizon Europe / ERC Frontier Research Guarantee [BrainHealth, grant number
19	EP/Y015037/1]. We have no conflict of interest to disclose. The code behind this analysis has
20	been made publicly available on GitHub at https://github.com/VilteBaltra/loneliness-
21	mediation. Some of the results in the manuscript have previously been presented in
22	preliminary form at the European Neuropsychopharmacology conference (2022).
23	Correspondence concerning this article should be addressed to Vilte Baltramonaityte,
24	10 West, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom. Email:

25 <u>vb506@bath.ac.uk</u>

26	Abstract	
27	Observational studies have found loneliness and social isolation to mediate the relationship	
28	between childhood maltreatment and schizophrenia. Limitations with observational studies	
29	(e.g., confounding and reverse causation), however, have meant the robustness of these	
30	relationships has thus far not been explored. To address this gap, the current study utilised	
31	genomic structural equation modelling (Genomic SEM) and Mendelian randomisation (MR)	
32	to perform a genetic mediation analysis between childhood maltreatment,	
33	loneliness/isolation, and schizophrenia, using summary statistics from three genome-wide	
34	association studies (sample sizes 105,318-487,647). Whilst we observed a putative effect of	
35	both childhood maltreatment (inverse variance weighted [IVW] $OR = 3.44$ per standard	
36	deviation [SD] increase, 95% confidence interval [CI] 1.66 to 7.13, $p < 0.001$) and	
37	loneliness/isolation (OR = 2.98, 95% CI 1.37 to 6.46, $p = 0.006$) on schizophrenia, our	
38	hypothesis that loneliness/isolation would mediate the relationship between childhood	
39	maltreatment and schizophrenia was not supported (Genomic SEM indirect effect = -0.05, SE	
40	= 0.05, p = 0.255; MR indirect effect = 0.10, SE = 0.11, p = 0.369). Furthermore, reverse	
41	mediation analysis indicated that the effect may be in the opposite direction (Genomic SEM	
42	indirect effect = 0.11, $SE = 0.02$, $p < 0.001$; MR indirect effect = 0.01, $SE = 0.00$, $p < 0.001$),	
43	accounting for 20.3%-28.9% of the total effect. The current results suggest that intervening	
44	upon loneliness/isolation in individuals with a history of childhood maltreatment is unlikely	
45	to reduce schizophrenia risk. In contrary, targeting loneliness/isolation in individuals with a	
46	genetic predisposition towards schizophrenia may diminish childhood maltreatment risk.	
47	Keywords: Childhood Maltreatment, Social Isolation, Loneliness, Schizophrenia,	
48	Mediation	

51 General Scientific Summary

This study suggests that loneliness/social isolation does not mediate the relationship between childhood maltreatment and schizophrenia. Contrary to previous research, our results indicate that targeting loneliness and social isolation in individuals with a history of childhood maltreatment is unlikely to diminish schizophrenia risk. In fact, we find evidence of mediation in the reverse direction, whereby a genetic predisposition to schizophrenia increases the risk of loneliness/social isolation, which in turn increases childhood

- 58 maltreatment risk.
- 59

60	The Role of Loneliness and Social Isolation in Mediating the Relationship Between
61	Childhood Maltreatment and Schizophrenia: A Genetically Informed Approach
62	Childhood maltreatment, defined as the physical, sexual, or emotional abuse or
63	neglect of a child by a care figure (Stoltenborgh, Bakermans-Kranenburg, & van IJzendoorn,
64	2013; Stoltenborgh et al., 2011), is a major global concern affecting up to 36% of the
65	population worldwide (Gilbert et al., 2009; Stoltenborgh et al., 2015). It is thought to be a
66	risk factor for psychopathology in adulthood, including the development and maintenance of
67	schizophrenia (Agnew-Blais & Danese, 2016; Bonoldi et al., 2013; Mayo et al., 2017;
68	Velikonja et al., 2015; Warrier et al., 2021), a chronic mental health condition pathologized
69	by persistent psychotic symptoms, including hallucinations, delusions, impaired social and
70	interpersonal functioning (Galderisi et al., 2014; Roehr, 2013). Importantly, schizophrenia is
71	also associated with high rates of unemployment, homelessness, and low quality of life (Eack
72	& Newhill, 2007; Jin & Mosweu, 2017), calling for more research to better understand the
73	risk factors for schizophrenia.
74	Observational studies have identified loneliness as a potential mediator of the
75	relationship between childhood maltreatment and schizophrenia (Shevlin et al., 2015;
76	Steenkamp et al., 2022). Loneliness, defined as the subjective dissatisfaction felt from one's
77	perceived level of social connection being less than what is desired, and social isolation, the
78	objective lack of social connections (Perlman, 1982), have prevalence rates of 10.5% (Beutel
79	et al., 2017; operationalised as being frequently alone or having few contacts) and 20.8%
80	(d'Hombres et al., 2021; operationalised as engaging in social activities once a month or less)
81	respectively. Surveys indicate that individuals with schizophrenia have approximately 2.3
82	times higher rates of loneliness than the general population (Badcock et al., 2015; Eglit et al.,
83	2018; Stain et al., 2012). Whilst limited research has explored the role of loneliness in the
84	association between childhood maltreatment and psychosis, it has consistently been identified

85	as a mediator of this relationship. For example, Shevlin et al. (2015) observed that loneliness
86	mediated the relationship between childhood abuse and psychosis, even when controlling for
87	background risk factors such as sex, age, ethnicity, cannabis use, and education. Similarly,
88	Steenkamp et al. (2022) found that loneliness mediated the association between childhood
89	abuse and the severity of psychosis. Comparable findings were also observed when
90	examining social functioning and loneliness in individuals with sub-clinical psychosis levels
91	(Boyda & McFeeters, 2015). A plausible explanation for this relationship has been proposed,
92	whereby victims of childhood maltreatment may become sensitised to feelings of loneliness,
93	which, as a result, could increase positive symptoms of psychosis (Steenkamp et al., 2022).
94	If loneliness does mediate the association between maltreatment and schizophrenia,
95	targeted interventions aimed at reducing feelings of loneliness/isolation could be offered to
96	victims of childhood maltreatment, as a preventative measure for later life psychosis.
97	However, limitations with observational studies (e.g., unmeasured confounding and reverse
98	causation) have meant that the robustness of this mediatory relationship has thus far not been
99	explored. Employing genetically informed methods, such as Mendelian randomisation - that
100	are less susceptible to confounding, reverse causation, and measurement error - may help to
101	address these challenges and provide insights into putative causal effects (Davey Smith &
102	Ebrahim, 2005; Pingault et al., 2018). This is because (1) genetic variants are fixed at
103	conception and therefore cannot be modified by disease onset, and (2) genetic variants are
104	randomly allocated during meiosis, which minimizes confounding and measurement biases
105	when these are being used as instrumental variables for modifiable risk factors (Davey Smith
106	et al., 2007; Pingault et al., 2018).
107	As such, to address limitations of observational research, the current study

investigated the extent to which the relationship between childhood maltreatment andschizophrenia is mediated by a combined phenotype of loneliness and social isolation

110 (hereafter loneliness/isolation) using two complementary, genetically informed methods: genomic structural equation modelling and multivariable Mendelian randomisation. We 111 hypothesised that the relationship between childhood maltreatment and schizophrenia would 112 be mediated by loneliness/isolation. 113 114 Methods Sources of Data 115 116 Ethical approval was granted by the local ethics committee (Project: 21-108). Openly 117 accessible genome-wide summary statistics were selected for each trait from the most recent and largest GWASs at the time of data analysis (see Table 1). To reduce the likelihood of 118 false positive results due to differing allele frequencies across admixed populations (Caliebe 119 et al., 2022; Patterson et al., 2006), only studies of European ancestry were selected. 120 Childhood Maltreatment summary statistics were obtained from Warrier et al.'s 121 122 (Warrier et al., 2021) meta-analysis, which included GWAS summary statistics from the Psychiatric Genomics Consortium (PGC; n = 26,290) as well as individual-level data from 123 124 four cohort studies: the UK Biobank (UKBB; n =143,473), Avon Longitudinal Study of 125 Parents and Children (ALSPAC; n = 8346), Adolescent Brain Cognitive Development Study 126 (ABCD; n = 5400), and Generation R (GenR: n = 1905). Childhood maltreatment was defined as emotional and physical neglect, and emotional, physical, and sexual abuse. 127 Prospective reports of childhood maltreatment were largely reported by a parent or caregiver, 128 whereas retrospective reports were self-reported. Mean age ranged from 10-64 years. 129 Association testing was conducted using linear mixed-effects models in the UKBB, 130 131 ALSPAC, and ABCD, which accounted for both relatedness and population stratification. 132 Additionally, in the UKBB and ABCD, 20 genetic principal components (PCs) were included to further control for population stratification. In GenR, a linear regression was employed for 133

association analyses, with five PCs included as covariates. 134

135	Loneliness/Isolation summary statistics were obtained from Day, Ong, and Perry's
136	(2018) multi-trait GWAS (MTAG), which looked at a combined loneliness and social
137	isolation phenotype using UK Biobank data (effective $N = 487,647$). Loneliness/isolation
138	was defined based on self-reported responses to the following questions: (1) 'Do you often
139	feel lonely?'; (2) 'Including yourself, how many people are living together in your
140	household?' and 'How often do you visit friends or family or have them visit you?'; and (3)
141	'How often are you able to confide in someone close to you?'. Cases were defined as those
142	who (a) perceived themselves as lonely, (b) lived alone and never visited family or friends
143	outside their household, or (c) could never or almost never confide in someone. The multi-
144	trait GWAS combined summary statistics from three GWASs based on each of these three
145	questions. Relatedness and cryptic population structure were accounted for by using a linear
146	mixed model in association analyses.
147	Schizophrenia summary statistics for autosomal SNPs were obtained from
148	Trubetskoy et al. (2022) PGC Wave 3 GWAS meta-analysis of European ancestry cohorts
149	(53,386 cases and 77,258 controls). Cases were defined as individuals with schizophrenia,
150	schizoaffective disorder, or schizophrenia spectrum disorder. Controls consisted of screened
151	and unscreened individuals for schizophrenia and other psychoses. Cases were recruited from
152	community-based samples, hospital settings with ascertainment for clozapine treatment, or
153	mixed (i.e., community/hospital) setting. Diagnostic strategy included research diagnostic

interview, review of medical records, consensus diagnosis, and mixed strategy. Detailed

diagnostic strategy and case-control sample description for approximately 75 European

156 cohorts included in this meta-analysis are available in the original study (Trubetskoy et al.,

157 2022). Within each cohort, a subset of the first 20 genetic PCs were included as covariates in

158 GWAS analyses. By default, all cohorts included the first four PCs and any additional PC

159 associated with case-control status.

154

160 **Genetic Mediation using Genomic SEM** To perform a genetic mediation analysis, we used genomic structural equation 161 modelling (Genomic SEM; Grotzinger et al., 2019), which uses summary statistics to model 162 the genetic covariance structure of complex traits. The data were analysed in R (v4.0.3; R 163 164 Core Team, 2020) as per developer instructions (https://gist.github.com/MichelNivard/04bf4ddcf3c32f905175de3058ca967a). 165 166 First, summary statistics underwent quality control, whereby only high-quality, common single nucleotide polymorphisms (SNPs) (INFO > 0.9 with minor allele frequency > 167 0.01) that were also available in HapMap3 reference panel were retained. The formatted files 168 were used as input to Linkage Disequilibrium (LD) score regression (Bulik-Sullivan et al., 169 2015a,b), which estimated the genetic correlation between each pair of traits and returned the 170 genetic covariance and its associated sampling covariance matrices. Subsequently, the genetic 171 172 mediation model was specified using diagonally weighted least squares estimation 173 (Grotzinger et al., 2019), whereby childhood maltreatment was included as the predictor, 174 schizophrenia as the outcome and loneliness/isolation as the mediator. 175 Mediation analysis enabled us to decompose the total effect of childhood 176 maltreatment on schizophrenia into direct and indirect effects. The direct effect represented the effect of childhood maltreatment on schizophrenia controlling for loneliness/isolation, 177 whereas the indirect effect captured the portion of the total effect that is mediated by 178 loneliness/isolation. To account for the presence of potential bidirectional effects, we ran a 179 subsequent genetic mediation, in which schizophrenia was included as the predictor, 180 181 loneliness/isolation as the mediator, and childhood maltreatment as the outcome. **Genetic Mediation using Mendelian Randomisation** 182 To gain insights into putatively causal effects, we performed Mendelian 183

184 randomisation (MR) mediation analysis using the TwoSample MR package (version 0.5.6;

e that uses genetic	
atia varianta ara	

185	Hemani, Tilling, & Davey Smith, 2017). MR is a causal inference technique that uses genetic
186	variants as instrumental variables for an exposure of interest. To ensure genetic variants are
187	valid instrumental variables, three key MR assumptions need to be satisfied: (1) genetic
188	variants should be associated with the exposure, (2) genetic variants should not be associated
189	with any confounders of the exposure-outcome relationship, (3) genetic variants should not
190	affect the outcome via any other path than the modelled exposure (i.e., there should be no
191	horizontal pleiotropy) (Lawlor et al., 2008). The latter assumption is what sets MR analysis
192	apart from Genomic SEM. Specifically, unlike Genomic SEM which uses genetic covariance
193	structure to analyse pleiotropy involving multiple genes and traits, MR assumes the absence
194	of horizontal pleiotropy and includes sensitivity analyses, such as MR-Egger intercept test, to
195	test for it. The advantage of using MR over conventional observational epidemiology
196	techniques is that it offers some protection from reverse causality and unmeasured
197	confounding (Davey Smith, 2004). In the present study, we used two-sample univariable MR
198	to estimate the total effect of childhood maltreatment on (i) schizophrenia and (ii)
199	loneliness/isolation (i.e., path <i>a</i> ; Figure 1a). Two-sample multivariable MR was used to
200	estimate the direct effect of childhood maltreatment on schizophrenia controlling for
201	loneliness/isolation, and the <i>direct effect</i> of loneliness/isolation on schizophrenia controlling
202	for childhood maltreatment (i.e., path b; Figure 1b). The total effect of loneliness/isolation on
203	schizophrenia was also estimated, although it was not of primary interest. All analyses were
204	performed in R (version 4.2.1; R Core Team, 2020). Post hoc power calculation for the MR
205	analyses was conducted separately for each exposure-outcome combination using a web-
206	based tool (https://sb452.shinyapps.io/power/; Burgess, 2014). Power to detect an indirect
207	effect was obtained by multiplying the power for path <i>a</i> (maltreatment->loneliness/isolation)

and path b (loneliness/isolation->schizophrenia) (Kenny & Judd, 2014). 208

Commented [VB1]: added path *a* (unchanged analysis, previously reported in the supplements)

Commented [VB2]: unchanged analysis, added for clarification

209	Instrument Selection . In univariable MR, we selected 14 independent ($r^2 < 0.1$
210	within a 1000 kb window size, as defined by the authors), genome-wide significant SNPs (p
211	$< 5 \text{ x } 10^{-8}$) associated with childhood maltreatment from the GWAS by Warrier et al. (2021)
212	and extracted these same SNPs from the schizophrenia outcome GWAS (Trubetskoy et al.,
213	2022). As four of the 14 SNPs were not available in the outcome GWAS and one of the 14
214	SNPs was palindromic with intermediate allele frequencies, our final set of instruments
215	included nine SNPs. For loneliness/isolation, all 15 independent SNPs ($p < 5 \ge 10^{-8}$) that were
216	associated with loneliness/isolation (Day et al., 2018) were extracted from the outcome
217	schizophrenia GWAS. In multivariable MR, we combined genome-wide significant SNPs
218	associated with childhood maltreatment or loneliness/isolation into a single set of
219	instruments, resulting in 24 SNPs. As only independent variants were retained (using default
220	multivariable MR settings of $r^2 < 0.001$ within a 10,000 kb window size), one of the 24 SNPs
221	was removed due to being in LD with another variant. This final set of 23 SNPs was then
222	extracted from the schizophrenia outcome GWAS (Trubetskoy et al., 2022). SNP effects for
223	the exposure and outcome data were harmonised to correspond to the same effect allele.
224	When dealing with palindromic SNPs, we attempted to infer positive strand alleles. When
225	this was not possible, SNPs with intermediate allele frequencies (MAF > 0.42) were
226	excluded.
227	Univariable MR. To estimate the genetically predicted effect of childhood
228	maltreatment on (1) schizophrenia and (2) loneliness/isolation, and (3) the genetically
229	predicted effect of loneliness/isolation on schizophrenia, we carried out a two-sample
230	univariable MR analysis using the inverse variance weighing (IVW) method (Burgess,
231	Butterworth, & Thompson, 2013) separately for each exposure-outcome combination. These
232	were followed by a range of sensitivity analyses, including MR Egger (Bowden, Davey

Smith, & Burgess, 2015), the weighted median (Bowden, Davey Smith, Haycock, & Burgess,

Commented [VB3]: adding path *a*

2016), the simple mode (Hartwig et al., 2017), the weighted mode (Burgess, Foley, Allara,
Staley, & Howson, 2020) and the leave-one-out (Burgess, Bowden, Fall, Ingelsson, &
Thompson, 2017) methods. The resulting logistic betas for schizophrenia risk were
exponentiated to obtain odds ratios (OR). Sensitivity analyses assessed the robustness of our
findings to the potential bias of horizontal pleiotropy, where the genetic variants affect the

11

risk of schizophrenia through other pathways than the modelled exposure. A discrepancy in 239

240 effect estimates from the primary IVW analysis and the range of sensitivity analyses were

indicative of potential violations of the MR assumptions. Instrument strength was assessed 241

using the *F*-statistic, where F < 10 was indicative of weak instruments (Burgess et al., 2011). 242

- 243 Heterogeneity of genetic variants was evaluated using Cochran's Q statistic (Bowden et al.,
- 2019). 244

234

235

236

237

238

Multivariable MR. Next, we used multivariable MR to estimate (1) the direct effect 245 246 of childhood maltreatment on the risk of schizophrenia while controlling for loneliness/isolation and (2) the direct effect of loneliness/isolation on schizophrenia, 247 248 controlling for childhood maltreatment. In multivariable MR, genetic variants can be 249 associated with more than one exposure, which enables the estimation of direct effects of 250 each exposure, conditional on the other modelled exposures (Burgess & Thompson, 2015; Carter et al., 2021). As before, MR-Egger regression was used as a sensitivity analysis 251 (Bowden et al., 2015) using the Mendelian randomisation package (version 0.6.0; Yavorska 252 & Burgess, 2017). Instrument strength was evaluated using a conditional F-statistic and 253 heterogeneity was assessed via a modified form of the Cochran's Q statistic (Sanderson et al., 254 255 2021), estimated using the MVMR package (version 0.3) with default settings (Sanderson, Davey Smith, Windmeijer, & Bowden, 2019). Logistic betas for schizophrenia risk were

256

257 exponentiated. Commented [VB4]: unchanged analysis, added for clarification

258	Mediation Analysis. To estimate the degree to which the effect of childhood	
259	maltreatment on schizophrenia risk is mediated by loneliness/isolation (i.e., the indirect	
260	effect), we applied the product of coefficients method (Burgess et al., 2015) by multiplying	(
261	the total effect of childhood maltreatment on loneliness/isolation obtained in univariable MR	Ľ
262	(i.e., path a) with the direct effect of loneliness/isolation on schizophrenia obtained in	
263	multivariable MR (i.e., path b). The standard errors (SE) for the indirect effect were estimated	
264	using the Delta method (Thompson et al., 2016); see Methods section of the Supplementary	
265	Material). Note that the product of coefficients method was applied on the non-exponentiated	
266	coefficients.	
267	Reverse MR. We tested for the presence of bidirectional effects by repeating the	
268	above analyses in the reverse direction. This permitted us to estimate the genetically	
269	predicted effect of schizophrenia on childhood maltreatment and loneliness/isolation, as well	
270	as to examine the reverse mediation pathway. Instrument selection for reverse MR is detailed	
271	in the Methods section of the Supplementary Material.	
272	Transparency and Openness	
273	All data and code on which study conclusions are based are publicly available and	
274	may be accessed via links included in the Data and Code Availability section. The data were	
275	analysed in R (version 4.0.3; R Core Team, 2020) using Genomic SEM (version 0.0.5;	
276	Grotzinger et al., 2019), TwoSampleMR (version 0.5.6; Hemani, Tilling, & Davey Smith,	
277	2017) and MVMR (version 0.3; Sanderson, Davey Smith, Windmeijer, & Bowden, 2019)	
278	packages. This study was not preregistered. Where applicable, JARS guidelines (Kazak,	
279	2018) were followed.	
280	Results	
281	All three phenotypes were genetically correlated. Childhood maltreatment was	
282	strongly correlated with loneliness/isolation ($r_g = 0.64$, $SE = 0.04$, $p < 0.001$) and moderately	

Commented [VB5]: Updated to product of coefficients method

283

correlated with schizophrenia ($r_g = 0.38$, SE = 0.03, p < 0.001). In contrast, only a weak

284	genetic correlation was observed between loneliness/isolation and schizophrenia ($r_g = 0.19$,
285	SE = .03, p < 0.001).
286	Genetic Mediation using Genomic SEM
287	Genetic mediation analysis revealed a significant total effect of childhood
288	maltreatment on schizophrenia (total effect = 0.38, $SE = 0.04$, $p < 0.001$; Figure 2).
289	Childhood maltreatment was also positively associated with loneliness/isolation (a path =
290	0.43, $SE = 0.05$, $p < 0.001$), while loneliness/isolation showed no association with
291	schizophrenia when controlling for childhood maltreatment (<i>b</i> path= -0.08, $SE = 0.05$, $p =$
292	0.108). The mediating effect of loneliness/isolation was not significant (indirect effect = -
293	0.05, $SE = 0.05$, $p = 0.255$). In line with this non-significant indirect effect, we continued to
294	observe a positive association between childhood maltreatment and schizophrenia after
295	controlling for loneliness/isolation (direct effect = 0.43, $SE = 0.07$, $p < 0.001$). Taken
296	together, these results suggest that loneliness/isolation does not mediate the relationship
297	between childhood maltreatment and schizophrenia (Figure 2).
298	In contrast to the findings above, mediation analysis in the reverse direction identified
299	a significant effect of genetic liability to schizophrenia on childhood maltreatment (total
300	effect = 0.38, $SE = 0.03$, $p < 0.001$) that attenuated after adjusting for loneliness/isolation
301	(direct effect = 0.27, $SE = 0.04$, $p < 0.001$). Additionally, the mediating effect of
302	schizophrenia liability on childhood maltreatment via loneliness/isolation was significant
303	(indirect effect = 0.11, $SE = 0.02$, $p < 0.001$), with 28.9% of the total effect being mediated
304	by loneliness/isolation (Supplementary Figure 1).
305	Genetic Mediation using Mendelian Randomisation
306	Results from univariable MR revealed an effect of childhood maltreatment on
307	schizophrenia (OR _{IVW} = 3.44 per standard deviation [SD] increase, 95% confidence interval

308	[CI] 1.66 to 7.13, $p < 0.001$), with consistent direction of effect estimates across all
309	sensitivity analyses (Figure 3; Supplementary Table 1; Supplementary Figure 2). While MR-
310	Egger showed no evidence of horizontal pleiotropy (intercept = -0.09, $SE = 0.08$, $p = 0.331$),
311	some heterogeneity was detected ($Q_{IVW} = 56.51$, $p < 0.001$). A significant effect of
312	loneliness/isolation on schizophrenia was also observed ($OR_{IVW} = 2.98$ per SD increase, 95%
313	CI 1.37 to 6.46, $p = 0.006$), with consistent effect estimates across all sensitivity analyses
314	apart from MR-Egger, which was not significant and in the opposite direction (Figure 3;
315	Supplementary Table 1, Supplementary Figure 3). As before, MR-Egger showed no evidence
316	of horizontal pleiotropy (intercept = 0.05, $SE = 0.03$, $p = 0.103$). However, there was
317	heterogeneity among the genetic variants ($Q_{IVW} = 69.04$, $p < 0.001$), suggesting that one or
318	more of the loneliness/isolation-associated variants may be pleiotropic. The effect of
319	childhood maltreatment on loneliness/isolation (i.e., path <i>a</i>) was also significant (brvw = 0.23
320	per SD increase, 95% CI 0.13 to 0.32, $p < 0.001$), albeit only partly supported by the
321	sensitivity analyses (see Results section of the Supplementary Material; Supplementary Table
322	1; Supplementary Figure 4). Leave-one-out analysis suggested that no single SNP was
323	driving the IVW estimates for the above analyses (Supplementary Figures 5-7). No evidence
324	of weak instrument bias was detected (maltreatment $F = 40.39$; loneliness = 38.75;
325	Supplementary Tables 2 and 3).
326	Results from multivariable MR revealed a direct effect of childhood maltreatment on
327	schizophrenia (OR _{IVW} = 3.49 per SD increase, 95% CI 1.75 to 6.95, $p < 0.001$), which was
328	comparable in magnitude to its total effect ($OR_{IVW} = 3.44$). The MR-Egger estimate for the
329	direct effect was consistent with the estimate from the IVW analysis (OR = 3.98 per SD

increase, 95% CI 0.73 to 21.58, p = 0.109), albeit not significant. No evidence of horizontal

331 pleiotropy was detected as the MR-Egger intercept was close to zero (intercept = -0.00, SE =

0.03, p = 0.867). Conditional *F*-statistics for childhood maltreatment and loneliness/isolation

Commented [VB6]: unchanged results (Table S7), just reporting path *a* here for clarification (hence subsequent figure numbers changed)

333	were 10.16 and 12.27 respectively, suggesting no bias due to weak instruments. However, the
334	modified Cochran's Q statistic indicated presence of heterogeneity among the genetic
335	variants ($Q_{A-IVW} = 86.21, p < 0.001$).
336	Compared to the total effect of loneliness/isolation on schizophrenia, the direct effect
337	of loneliness/isolation (i.e., b path) attenuated from an OR of 2.98 to 1.55 (95% CI 0.61 to
338	3.94, $p = 0.360$), suggesting that the effect of loneliness/isolation was not independent from
339	childhood maltreatment. Correspondingly, the multivariable MR-Egger estimate was also not
340	significant (OR = 1.95 per SD increase, 95% CI 0.11 to 35.34, $p = 0.650$) (Figure 3;
341	Supplementary Table 1).
342	Mediation analysis using the product of coefficients method revealed that, in line with
343	findings using Genomic SEM, the indirect effect of childhood maltreatment was not
344	significant (indirect effect = 0.10, $SE = 0.11$, $p = 0.369$), indicating a lack of mediation.
345	Reverse MR. Results from univariable MR in the reverse direction revealed a modest
346	effect of schizophrenia liability on childhood maltreatment ($b_{IVW} = 0.05$ per SD increase,
347	95% CI 0.03 to 0.06, $p < 0.001$), with relatively consistent evidence across sensitivity
348	analyses (Figure 4; Supplementary Table 4; Supplementary Figure 8). The IVW estimate for
349	the effect of schizophrenia on loneliness/isolation (path a) was also significant (b _{IVW} = 0.02
350	per SD increase, 95% CI 0.01 to 0.03, $p < 0.001$); however, it was not robustly supported by
351	the sensitivity analyses (Figure 4; Supplementary Table 4; Supplementary Figure 9). Results
352	for the remaining sensitivity analyses are detailed in the Results section of the Supplementary
353	Material.
354	In MVMR analysis, we observed a direct effect of schizophrenia liability on
355	childhood maltreatment after controlling for loneliness/isolation ($b_{IVW} = 0.04$ per SD
352 353	for the remaining sensitivity analyses are detailed in the Results section of the Supplementar Material.

increase, 95% CI 0.02 to 0.05, p < 0.001; Figure 4), which was slightly smaller than the total

effect ($OR_{IVW} = 0.05$); and a direct effect of loneliness/isolation on childhood maltreatment

Commented [VB7]: Updated to product of coefficients method

358	after controlling for schizophrenia liability $(b_{IVW} = 0.44 \text{ per SD increase}, 95\% \text{ CI } 0.26 \text{ to})$	
359	0.62, $p < 0.001$; Supplementary Table 4). Sensitivity analyses for MVMR are reported in the	
360	Results section of the Supplementary Material. In line with findings from Genomic SEM,	
361	mediation analysis revealed a significant mediating effect of schizophrenia on childhood	
362	maltreatment via loneliness/isolation (indirect effect = 0.01, $SE = 0.00$, $p < 0.001$), which	
363	accounted for 20.3% of the total effect. Note that alternative mediation analysis	
364	(schizophrenia -> childhood maltreatment -> loneliness/isolation) was not performed given	
365	the lack of robust support for a total effect of schizophrenia on loneliness/isolation.	
366	Post hoc power calculation. At an alpha level of 0.05, we had over 80% power to	
367	detect small-to-medium sized effects in our univariable MR analyses. Our power to detect an	
368	indirect effect from childhood maltreatment to schizophrenia via loneliness/isolation was	
369	93.4% (calculated given 100% power for path a and 93.4% power for path b). Power for each	
370	exposure-outcome combination and detailed information regarding input parameters is	
371	provided in Supplementary Table 7.	
372	Discussion	
373	The current study explored the degree to which loneliness/isolation mediates the	
374	relationship between childhood maltreatment and schizophrenia using two genetically-	
375	informed methods: Genomic SEM and Mendelian randomisation. Positive genetic	
376	correlations were observed between all three traits, suggesting a shared genetic underpinning.	
377	However, contrary to our hypothesis, we found no support for the mediating role of	
378	loneliness/isolation, indicating that loneliness/isolation is not a robust mediatory factor. These	
379	findings suggest that the development of schizophrenia, which might be exacerbated by early	
380	life abuse or neglect, is unlikely to be explained through loneliness/isolation. In contrast, we	
381	find evidence of mediation in the reverse direction, whereby a genetic predisposition to	

Commented [VB8]: unchanged results, just added for clarification

Commented [VB9]: Updated to product of coefficients method (changed from 19.5% to 20.3%)

schizophrenia might increase loneliness/isolation, which in turn could increase childhood
maltreatment risk.
In line with a growing body of literature (Brown et al., 2014; Croft et al., 2019;
Schaefer et al., 2018; South et al., 2015), the present study found a bidirectional direct effect
between childhood maltreatment and schizophrenia, indicating that experiencing early life
abuse or neglect may increase risk of developing schizophrenia in later life. This also
corroborated findings from a recent Mendelian randomisation study that reported a
bidirectional effect between childhood maltreatment and schizophrenia (Warrier et al., 2021).
Additionally, a strong genetic association between childhood maltreatment and
loneliness/isolation was observed, which aligned with existing observational research, in
which victims of childhood maltreatment were found to present with lower levels of
interpersonal functioning due to mistrust and suspicion of others (Blanchard-Dallaire &
Hébert, 2014; Boyda & McFeeters, 2015). It is plausible that early life trauma predisposes
individuals to develop negative schemas about others, which can increase feelings of mistrust
(Cukor & McGinn, 2006; Karatzias et al., 2016; Tezel et al., 2015), and may in turn
compromise the development of long-lasting relationships (Blanchard-Dallaire & Hébert,
2014). Clinical interventions should therefore aim to reduce feelings of loneliness and social
isolation for individuals who have experienced childhood maltreatment (e.g., through
community groups).
Unexpectedly, when controlling for childhood maltreatment, we observed no
relationship between loneliness/isolation and schizophrenia. This finding contradicts previous
research, which reports a positive – and potentially causal – association between the two
traits (Andreu-Bernabeu et al., 2022; Boyda & McFeeters, 2015; Steenkamp et al., 2022).
The discrepancy in findings may be driven by differences in the type of data analysed (i.e.,

406 genetic instead of phenotypic), the type of mediator used (e.g., loneliness/isolation as

407	opposed to difficulties in social engagement), and/or the choice of covariates (i.e., controlling
408	for childhood maltreatment or not). Our multivariable MR results indeed indicate that
409	covarying factors might play an important role. Specifically, in line with existing research
410	(Andreu-Bernabeu et al., 2022), univariable MR revealed a unidirectional effect of
411	loneliness/isolation on schizophrenia. However, this effect largely disappeared when
412	controlling for childhood maltreatment, suggesting that the relationship between
413	loneliness/isolation and schizophrenia is not independent from childhood maltreatment.
414	Most importantly, the hypothesis that loneliness/isolation would mediate the
415	relationship between childhood maltreatment and schizophrenia was not supported when
416	using Genomic SEM or MR. This finding contradicted previous phenotypic research which
417	argues that loneliness/isolation can mediate the relationship between childhood maltreatment
418	and schizophrenia (Boyda & McFeeters, 2015; Shevlin et al., 2015; Steenkamp et al., 2022),
419	and suggests instead that the emergence of schizophrenia, which may be aggravated by early
420	life maltreatment, is unlikely to be explained through loneliness/isolation. While previous
421	observational studies found evidence of mediation, they focused on different aspects of
422	psychosis and used a variety of different measures and definitions of childhood maltreatment.
423	For instance, two studies only considered positive symptoms of psychosis rather than
424	including the whole spectrum of symptoms commonly observed in schizophrenia (Boyda &
425	McFeeters, 2015; Steenkamp et al., 2022), while another only assessed the effects of physical
426	and sexual abuse (Shevlin et al., 2015), instead of including a more comprehensive measure
427	of childhood maltreatment that also accounts for emotional abuse and/or physical and
428	emotional neglect. Therefore, it is difficult to conclude to what extent differences in findings
429	were driven by the heterogeneity in study design (e.g., genetically informed vs phenotypic
430	designs) and/or differences in the type of measures used.

431	Interestingly, mediation analysis in the reverse direction identified loneliness/isolation
432	as lying on the pathway from schizophrenia liability to childhood maltreatment, with up to
433	29% of this relationship explained by loneliness/isolation. One way to interpret this finding is
434	that individuals with a genetic predisposition toward schizophrenia may experience
435	difficulties in forming and maintaining social connections. This may in turn lead to social
436	isolation, fewer protective factors (e.g., making individuals less likely or less able to seek
437	help in at-risk or abusive environments – and less likely to be identified by others as someone
438	in need of help) and consequently a greater risk for childhood maltreatment. Gene-
439	environment correlations provide alternative explanations: parents with a genetic
440	predisposition toward schizophrenia may create an environment for their children that
441	increases the risk of loneliness/isolation and childhood maltreatment (i.e., passive gene-
442	environment correlation); children's genetic make-up influences their behaviours and choice
443	of environments, which may foster loneliness/isolation and/or childhood maltreatment (i.e.,
444	active gene-environment correlation); and, children's genetic make-up impacts their
445	behaviour and characteristics, evoking reactions from others to that behaviour or
446	characteristic (i.e., reactive gene-environment correlation) (Griffiths, 2005; Jaffee & Price,
447	2007; Knafo & Jaffee, 2013; Plomin et al., 1977; Warrier et al., 2021).
448	Our study has to be seen in light of the following limitations. First, due to
449	methodological constraints, the current findings cannot be extrapolated to non-European
450	ancestry individuals. Secondly, the present study only modelled the shared genetic
451	architecture between childhood maltreatment, loneliness/isolation, and schizophrenia.
452	Additional genetic and phenotypic confounds (e.g., education, cannabis use, adult
453	victimisation) were not considered, which could inform our understanding of the gene-
454	environment correlations that may increase schizophrenia risk (Hernán et al., 2004; Lutz et
455	al., 2017; Warrier et al., 2021). Third, as alleles are assigned randomly only within but not

across families, the important MR assumption of no genetic confounding may be violated. 456 However, as all GWASs included here controlled for population stratification, we consider 457 this assumption to likely be upheld. 458 Lastly, our ability to draw strong causal inferences from our results is limited. This 459 460 largely stems from the difficulty in disentangling causality from pleiotropic effects, as observed associations may arise due to multiple scenarios, namely: (i) independent genetic 461 462 effects on trait 1 and 2 (i.e., horizontal pleiotropy), (ii) genetic effects on trait 1, which then causes trait 2 (the basis of MR), (iii) and/or genetic effects on trait 2, which then causes trait 1 463 (i.e., reverse MR). Considering that pleiotropy was not detected by our sensitivity analyses, it 464 is possible that our findings are driven by either one of the latter two scenarios. Nonetheless, 465 drawing strong causal environmental inferences from MR would be inappropriate, as the 466 crucial assumption on the absence of horizontal pleiotropy cannot be completely ruled out. 467 Despite these limitations, the fact that our results were consistent across two divergent 468 469 methods (Genomic SEM and MR) provides greater confidence in the robustness of our findings. Future studies should investigate alternative mediatory personality (e.g., 470 471 neuroticism) and lifestyle factors (e.g., smoking) in the relationship between childhood 472 maltreatment and schizophrenia to inform intervention-based treatment programmes. While observational studies have already identified factors such as perceived discrimination, 473 emotion dysregulation, mood symptoms, and the lack of social support as potential mediators 474 in the association between childhood abuse and psychosis (Sideli et al., 2020), little has been 475 476 done to assess the robustness of these relationships using genetically informed techniques. 477 To the best of our knowledge, the current study is the first to explore the mediating role of loneliness/isolation in the relationship between childhood maltreatment and 478 schizophrenia using genetic data. Using high powered GWAS summary statistics (N =479 105,318 - 487,647), our results suggest that loneliness/isolation does not mediate the 480

481	association between childhood maltreatment and schizophrenia. In fact, we find evidence of
482	mediation in the opposite direction. As such, whilst there may be merit in clinical
483	interventions targeting loneliness/isolation in individuals who have experienced childhood
484	maltreatment (e.g., social conditioning interventions; Shevlin et al., 2015), the current results
485	suggest that targeting loneliness/isolation in this group is unlikely to reduce the risk of
486	developing schizophrenia. Greater benefits may be observed by intervening upon
487	loneliness/isolation in individuals with a genetic predisposition towards schizophrenia, as this
488	may diminish childhood maltreatment risk. Taken together, these findings provide key novel
489	insights into the link between childhood maltreatment and schizophrenia, with significant
490	implications for targeted clinical interventions.
491	
491 492	Data and Code Availability
491 492 493	Data and Code Availability All datasets analysed in the present study are publicly available. Summary statistics
491 492 493 494	Data and Code Availability All datasets analysed in the present study are publicly available. Summary statistics for childhood maltreatment and loneliness/social isolation can be obtained from the
491 492 493 494 495	Data and Code Availability All datasets analysed in the present study are publicly available. Summary statistics for childhood maltreatment and loneliness/social isolation can be obtained from the University of Cambridge Apollo repository (childhood maltreatment:
491 492 493 494 495 496	Data and Code Availability All datasets analysed in the present study are publicly available. Summary statistics for childhood maltreatment and loneliness/social isolation can be obtained from the University of Cambridge Apollo repository (childhood maltreatment: https://www.repository.cam.ac.uk/handle/1810/318326; loneliness/social isolation:
491 492 493 494 495 496 497	Data and Code Availability All datasets analysed in the present study are publicly available. Summary statistics for childhood maltreatment and loneliness/social isolation can be obtained from the University of Cambridge Apollo repository (childhood maltreatment: https://www.repository.cam.ac.uk/handle/1810/318326; loneliness/social isolation: https://www.repository.cam.ac.uk/handle/1810/277812}). Summary statistics for
491 492 493 494 495 496 497 498	Data and Code Availability All datasets analysed in the present study are publicly available. Summary statistics for childhood maltreatment and loneliness/social isolation can be obtained from the University of Cambridge Apollo repository (childhood maltreatment: https://www.repository.cam.ac.uk/handle/1810/318326; loneliness/social isolation: https://www.repository.cam.ac.uk/handle/1810/277812}). Summary statistics for schizophrenia can be obtained from the Walters group data repository
491 492 493 494 495 496 497 498 499	Data and Code Availability All datasets analysed in the present study are publicly available. Summary statistics for childhood maltreatment and loneliness/social isolation can be obtained from the University of Cambridge Apollo repository (childhood maltreatment: https://www.repository.cam.ac.uk/handle/1810/318326; loneliness/social isolation: https://www.repository.cam.ac.uk/handle/1810/277812). Summary statistics for schizophrenia can be obtained from the Walters group data repository (https://walters.psycm.cf.ac.uk). Analysis code for this study has been made publicly

501 <u>mediation</u>.

References

- Agnew-Blais, J., & Danese, A. (2016). Childhood maltreatment and unfavourable clinical outcomes in bipolar disorder: A systematic review and meta-analysis. *The Lancet Psychiatry*, 3(4), 342–349. https://doi.org/10.1016/S2215-0366(15)00544-1
- Andreu-Bernabeu, Á., Díaz-Caneja, C. M., Costas, J., De Hoyos, L., Stella, C., Gurriarán, X.,
 Alloza, C., Fañanás, L., Bobes, J., González-Pinto, A., Crespo-Facorro, B., Martorell,
 L., Vilella, E., Muntané, G., Nacher, J., Molto, M. D., Aguilar, E. J., Parellada, M.,
 Arango, C., & González-Peñas, J. (2022). Polygenic contribution to the relationship
 of loneliness and social isolation with schizophrenia. *Nature Communications*, *13*(1),
 51. https://doi.org/10.1038/s41467-021-27598-6
- Badcock, J. C., Shah, S., Mackinnon, A., Stain, H. J., Galletly, C., Jablensky, A., & Morgan,
 V. A. (2015). Loneliness in psychotic disorders and its association with cognitive
 function and symptom profile. *Schizophrenia Research*, *169*(1–3), 268–273.
 https://doi.org/10.1016/j.schres.2015.10.027
- Beutel, M. E., Klein, E. M., Brähler, E., Reiner, I., Jünger, C., Michal, M., Wiltink, J., Wild,
 P. S., Münzel, T., Lackner, K. J., & Tibubos, A. N. (2017). Loneliness in the general population: Prevalence, determinants and relations to mental health. *BMC Psychiatry*, *17*(1), 97. https://doi.org/10.1186/s12888-017-1262-x
- Blanchard-Dallaire, C., & Hébert, M. (2014). Social Relationships in Sexually Abused Children: Self-Reports and Teachers' Evaluation. *Journal of Child Sexual Abuse*, 23(3), 326–344. https://doi.org/10.1080/10538712.2014.888123
- Bonoldi, I., Simeone, E., Rocchetti, M., Codjoe, L., Rossi, G., Gambi, F., Balottin, U., Caverzasi, E., Politi, P., & Fusar-Poli, P. (2013). Prevalence of self-reported childhood abuse in psychosis: A meta-analysis of retrospective studies. *Psychiatry Research*, 210(1), 8–15. https://doi.org/10.1016/j.psychres.2013.05.003

- Bowden, J., Davey Smith, G., & Burgess, S. (2015). Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. *International Journal of Epidemiology*, 44(2), 512–525. https://doi.org/10.1093/ije/dyv080
- Bowden, J., Davey Smith, G., Haycock, P. C., & Burgess, S. (2016). Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. *Genetic Epidemiology*, 40(4), 304–314. https://doi.org/10.1002/gepi.21965
- Bowden, J., Del Greco M, F., Minelli, C., Zhao, Q., Lawlor, D. A., Sheehan, N. A.,
 Thompson, J., & Davey Smith, G. (2019). Improving the accuracy of two-sample summary-data Mendelian randomization: Moving beyond the NOME assumption. *International Journal of Epidemiology*, 48(3), 728–742.
 https://doi.org/10.1093/ije/dyy258
- Boyda, D., & McFeeters, D. (2015). Childhood maltreatment and social functioning in adults with sub-clinical psychosis. *Psychiatry Research*, 226(1), 376–382. https://doi.org/10.1016/j.psychres.2015.01.023
- Brown, R. C., Berenz, E. C., Aggen, S. H., Gardner, C. O., Knudsen, G. P., Reichborn-Kjennerud, T., Kendler, K. S., & Amstadter, A. B. (2014). Trauma exposure and Axis I psychopathology: A cotwin control analysis in Norwegian young adults. *Psychological Trauma: Theory, Research, Practice, and Policy*, 6(6), 652–660. https://doi.org/10.1037/a0034326
- Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P.-R., Duncan,
 L., Perry, J. R. B., Patterson, N., Robinson, E. B., Daly, M. J., Price, A. L., & Neale,
 B. M. (2015). An atlas of genetic correlations across human diseases and traits. *Nature Genetics*, 47(11), 1236–1241. https://doi.org/10.1038/ng.3406

- Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., Daly,
 M. J., Price, A. L., & Neale, B. M. (2015). LD Score regression distinguishes
 confounding from polygenicity in genome-wide association studies. *Nature Genetics*, 47(3), 291–295. https://doi.org/10.1038/ng.3211
- Burgess, S. (2014). Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. *International Journal of Epidemiology*, 43(3), 922–929. https://doi.org/10.1093/ije/dyu005
- Burgess, S., Bowden, J., Fall, T., Ingelsson, E., & Thompson, S. G. (2017). Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. *Epidemiology*, 28(1), 30–42. https://doi.org/10.1097/EDE.000000000000559
- Burgess, S., Butterworth, A., & Thompson, S. G. (2013). Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. *Genetic Epidemiology*, 37(7), 658–665. https://doi.org/10.1002/gepi.21758
- Burgess, S., Daniel, R. M., Butterworth, A. S., Thompson, S. G., & the EPIC-InterAct Consortium. (2015). Network Mendelian randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways. *International Journal of Epidemiology*, 44(2), 484–495. https://doi.org/10.1093/ije/dyu176
- Burgess, S., Foley, C. N., Allara, E., Staley, J. R., & Howson, J. M. M. (2020). A robust and efficient method for Mendelian randomization with hundreds of genetic variants. *Nature Communications*, 11(1), 376. https://doi.org/10.1038/s41467-019-14156-4
- Burgess, S., & Thompson, S. G. (2015). Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. *American Journal of Epidemiology*, 181(4), 251–260. https://doi.org/10.1093/aje/kwu283

- Burgess, S., Thompson, S. G., & CRP CHD Genetics Collaboration. (2011). Avoiding bias from weak instruments in Mendelian randomization studies. *International Journal of Epidemiology*, 40(3), 755–764. https://doi.org/10.1093/ije/dyr036
- Caliebe, A., Tekola-Ayele, F., Darst, B. F., Wang, X., Song, Y. E., Gui, J., Sebro, R. A., Balding, D. J., Saad, M., Dubé, M., & IGES ELSI Committee. (2022). Including diverse and admixed populations in genetic epidemiology research. *Genetic Epidemiology*, 46(7), 347–371. https://doi.org/10.1002/gepi.22492
- Carter, A. R., Sanderson, E., Hammerton, G., Richmond, R. C., Davey Smith, G., Heron, J., Taylor, A. E., Davies, N. M., & Howe, L. D. (2021). Mendelian randomisation for mediation analysis: Current methods and challenges for implementation. *European Journal of Epidemiology*, *36*(5), 465–478. https://doi.org/10.1007/s10654-021-00757-1
- Croft, J., Heron, J., Teufel, C., Cannon, M., Wolke, D., Thompson, A., Houtepen, L., &
 Zammit, S. (2019). Association of Trauma Type, Age of Exposure, and Frequency in
 Childhood and Adolescence With Psychotic Experiences in Early Adulthood. *JAMA Psychiatry*, 76(1), 79. https://doi.org/10.1001/jamapsychiatry.2018.3155
- Cukor, D., & McGinn, L. K. (2006). History of Child Abuse and Severity of Adult Depression: The Mediating Role of Cognitive Schema. *Journal of Child Sexual Abuse*, 15(3), 19–34. https://doi.org/10.1300/J070v15n03_02
- d'Hombres, B., Barjaková, M., & Schnepf, S. V. (2021). Loneliness and Social Isolation: An Unequally Shared Burden in Europe. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3823612
- Davey Smith, G. (2004). Mendelian randomization: Prospects, potentials, and limitations. *International Journal of Epidemiology*, *33*(1), 30–42. https://doi.org/10.1093/ije/dyh132

- Davey Smith, G., & Ebrahim, S. (2005). What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? *BMJ*, 330(7499), 1076–1079. https://doi.org/10.1136/bmj.330.7499.1076
- Davey Smith, G., Lawlor, D. A., Harbord, R., Timpson, N., Day, I., & Ebrahim, S. (2007).
 Clustered Environments and Randomized Genes: A Fundamental Distinction between Conventional and Genetic Epidemiology. *PLoS Medicine*, 4(12), e352.
 https://doi.org/10.1371/journal.pmed.0040352
- Day, F. R., Ong, K. K., & Perry, J. R. B. (2018). Elucidating the genetic basis of social interaction and isolation. *Nature Communications*, 9(1), 2457. https://doi.org/10.1038/s41467-018-04930-1
- Eack, S. M., & Newhill, C. E. (2007). Psychiatric Symptoms and Quality of Life in Schizophrenia: A Meta-Analysis. *Schizophrenia Bulletin*, 33(5), 1225–1237. https://doi.org/10.1093/schbul/sbl071
- Eglit, G. M. L., Palmer, B. W., Martin, A. S., Tu, X., & Jeste, D. V. (2018). Loneliness in schizophrenia: Construct clarification, measurement, and clinical relevance. *PLOS ONE*, 13(3), e0194021. https://doi.org/10.1371/journal.pone.0194021
- Galderisi, S., Rossi, A., Rocca, P., Bertolino, A., Mucci, A., Bucci, P., Rucci, P., Gibertoni, D., Aguglia, E., Amore, M., Bellomo, A., Biondi, M., Brugnoli, R., Dell'Osso, L., De Ronchi, D., Di Emidio, G., Di Giannantonio, M., Fagiolini, A., Marchesi, C., ... Italian Network For Research on Psychoses. (2014). The influence of illness-related variables, personal resources and context-related factors on real-life functioning of people with schizophrenia. *World Psychiatry*, *13*(3), 275–287. https://doi.org/10.1002/wps.20167

- Gilbert, R., Widom, C. S., Browne, K., Fergusson, D., Webb, E., & Janson, S. (2009). Burden and consequences of child maltreatment in high-income countries. *The Lancet*, 373(9657), 68–81. https://doi.org/10.1016/S0140-6736(08)61706-7
- Griffiths, L. J. (2005). Obesity and bullying: Different effects for boys and girls. Archives of Disease in Childhood, 91(2), 121–125. https://doi.org/10.1136/adc.2005.072314
- Grotzinger, A. D., Rhemtulla, M., de Vlaming, R., Ritchie, S. J., Mallard, T. T., Hill, W. D.,
 Ip, H. F., Marioni, R. E., McIntosh, A. M., Deary, I. J., Koellinger, P. D., Harden, K.
 P., Nivard, M. G., & Tucker-Drob, E. M. (2019). Genomic structural equation
 modelling provides insights into the multivariate genetic architecture of complex
 traits. *Nature Human Behaviour*, *3*(5), 513–525. https://doi.org/10.1038/s41562-019-0566-x
- Hartwig, F. P., Davey Smith, G., & Bowden, J. (2017). Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. *International Journal of Epidemiology*, 46(6), 1985–1998. https://doi.org/10.1093/ije/dyx102
- Hemani, G., Tilling, K., & Smith, G. D. (2017). Orienting the causal relationship between imprecisely measured traits using GWAS summary data. *PLoS Genetics*, 13(11), e1007081. https://doi.org/10.1371/journal.pgen.1007081
- Hernán, M. A., Hernández-Díaz, S., & Robins, J. M. (2004). A Structural Approach to Selection Bias: *Epidemiology*, 15(5), 615–625. https://doi.org/10.1097/01.ede.0000135174.63482.43
- Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. *Molecular Psychiatry*, 12(5), Article 5. https://doi.org/10.1038/sj.mp.4001950
- Jin, H., & Mosweu, I. (2017). The Societal Cost of Schizophrenia: A Systematic Review. *PharmacoEconomics*, 35(1), 25–42. https://doi.org/10.1007/s40273-016-0444-6

- Karatzias, T., Jowett, S., Begley, A., & Deas, S. (2016). Early maladaptive schemas in adult survivors of interpersonal trauma: Foundations for a cognitive theory of psychopathology. *European Journal of Psychotraumatology*, 7(1), 30713. https://doi.org/10.3402/ejpt.v7.30713
- Kazak, A. E. (2018). Editorial: Journal article reporting standards. *American Psychologist*, 73(1), 1–2. https://doi.org/10.1037/amp0000263
- Kenny, D. A., & Judd, C. M. (2014). Power Anomalies in Testing Mediation. Psychological Science, 25(2), 334–339. https://doi.org/10.1177/0956797613502676
- Knafo, A., & Jaffee, S. R. (2013). Gene–environment correlation in developmental psychopathology. *Development and Psychopathology*, 25(1), 1–6. https://doi.org/10.1017/S0954579412000855
- Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N., & Davey Smith, G. (2008). Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. *Statistics in Medicine*, 27(8), 1133–1163. https://doi.org/10.1002/sim.3034
- Lutz, S. M., Thwing, A., Schmiege, S., Kroehl, M., Baker, C. D., Starling, A. P., Hokanson,
 J. E., & Ghosh, D. (2017). Examining the role of unmeasured confounding in mediation analysis with genetic and genomic applications. *BMC Bioinformatics*, *18*(1), 344. https://doi.org/10.1186/s12859-017-1749-y
- Mayo, D., Corey, S., Kelly, L. H., Yohannes, S., Youngquist, A. L., Stuart, B. K., Niendam,
 T. A., & Loewy, R. L. (2017). The Role of Trauma and Stressful Life Events among
 Individuals at Clinical High Risk for Psychosis: A Review. *Frontiers in Psychiatry*, 8,
 55. https://doi.org/10.3389/fpsyt.2017.00055
- Patterson, N., Price, A. L., & Reich, D. (2006). Population Structure and Eigenanalysis. PLoS Genetics, 2(12), e190. https://doi.org/10.1371/journal.pgen.0020190

- Perlman, D. (1982). Loneliness: A sourcebook of current theory, research and therapy. Joh. Wil. & Son. Incor., 36.
- Pingault, J.-B., O'Reilly, P. F., Schoeler, T., Ploubidis, G. B., Rijsdijk, F., & Dudbridge, F.
 (2018). Using genetic data to strengthen causal inference in observational research. *Nature Reviews Genetics*, 19(9), 566–580. https://doi.org/10.1038/s41576-018-0020-3
- Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. *Psych. Bullet.*, 84(309.), Article 309.
- R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/. https://www.R-project.org/
- Roehr, B. (2013). American Psychiatric Association explains DSM-5. *BMJ*, 346(jun06 1), f3591–f3591. https://doi.org/10.1136/bmj.f3591
- Sanderson, E., Davey Smith, G., Windmeijer, F., & Bowden, J. (2019). An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. *International Journal of Epidemiology*, 48(3), 713–727. https://doi.org/10.1093/ije/dyy262
- Sanderson, E., Spiller, W., & Bowden, J. (2021). Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization. *Statistics in Medicine*, 40(25), 5434–5452. https://doi.org/10.1002/sim.9133
- Schaefer, J. D., Moffitt, T. E., Arseneault, L., Danese, A., Fisher, H. L., Houts, R., Sheridan, M. A., Wertz, J., & Caspi, A. (2018). Adolescent Victimization and Early-Adult
 Psychopathology: Approaching Causal Inference Using a Longitudinal Twin Study to
 Rule Out Noncausal Explanations. *Clinical Psychological Science*, 6(3), 352–371.
 https://doi.org/10.1177/2167702617741381

- Shevlin, M., McElroy, E., & Murphy, J. (2015). Loneliness mediates the relationship between childhood trauma and adult psychopathology: Evidence from the adult psychiatric morbidity survey. *Social Psychiatry and Psychiatric Epidemiology*, 50(4), 591–601. https://doi.org/10.1007/s00127-014-0951-8
- Sideli, L., Murray, R. M., Schimmenti, A., Corso, M., La Barbera, D., Trotta, A., & Fisher,
 H. L. (2020). Childhood adversity and psychosis: A systematic review of bio-psychosocial mediators and moderators. *Psychological Medicine*, 50(11), 1761–1782. https://doi.org/10.1017/S0033291720002172
- Slob, E. A. W., & Burgess, S. (2020). A comparison of robust Mendelian randomization methods using summary data. *Genetic Epidemiology*, 44(4), 313–329. https://doi.org/10.1002/gepi.22295
- South, S. C., Schafer, M. H., & Ferraro, K. F. (2015). Genetic and Environmental Overlap Between Childhood Maltreatment and Adult Physical Health. *Twin Research and Human Genetics*, 18(5), 533–544. https://doi.org/10.1017/thg.2015.62
- Stain, H. J., Galletly, C. A., Clark, S., Wilson, J., Killen, E. A., Anthes, L., Campbell, L. E., Hanlon, M.-C., & Harvey, C. (2012). Understanding the social costs of psychosis: The experience of adults affected by psychosis identified within the second Australian National Survey of Psychosis. *The Australian and New Zealand Journal of Psychiatry*, 46(9), 879–889. https://doi.org/10.1177/0004867412449060
- Steenkamp, L., Weijers, J., Gerrmann, J., Eurelings-Bontekoe, E., & Selten, J.-P. (2022). The relationship between childhood abuse and severity of psychosis is mediated by loneliness: An experience sampling study. *Schizophrenia Research*, 241, 306–311. https://doi.org/10.1016/j.schres.2019.03.021
- Stoltenborgh, M., Bakermans-Kranenburg, M. J., Alink, L. R. A., & van IJzendoorn, M. H. (2015). The Prevalence of Child Maltreatment across the Globe: Review of a Series of

Meta-Analyses: Prevalence of Child Maltreatment across the Globe. *Child Abuse Review*, 24(1), 37–50. https://doi.org/10.1002/car.2353

- Stoltenborgh, M., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2013). The neglect of child neglect: A meta-analytic review of the prevalence of neglect. *Social Psychiatry and Psychiatric Epidemiology*, 48(3), 345–355. https://doi.org/10.1007/s00127-012-0549-y
- Stoltenborgh, M., van IJzendoorn, M. H., Euser, E. M., & Bakermans-Kranenburg, M. J. (2011). A Global Perspective on Child Sexual Abuse: Meta-Analysis of Prevalence Around the World. *Child Maltreatment*, 16(2), 79–101. https://doi.org/10.1177/1077559511403920
- Tezel, F. K., Kislak, S. T., & Boysan, M. (2015). Relationships between Childhood Traumatic Experiences, Early Maladaptive Schemas and Interpersonal Styles. Noro Psikiyatri Arsivi, 52(3), 226–232. https://doi.org/10.5152/npa.2015.7118
- Thompson, J. R., Minelli, C., & Del Greco M, F. (2016). Mendelian Randomization using Public Data from Genetic Consortia. *The International Journal of Biostatistics*, 12(2), 20150074. https://doi.org/10.1515/ijb-2015-0074
- Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B.,
 Bryois, J., Chen, C.-Y., Dennison, C. A., Hall, L. S., Lam, M., Watanabe, K., Frei, O.,
 Ge, T., Harwood, J. C., Koopmans, F., Magnusson, S., Richards, A. L., Sidorenko, J.,
 ... Van Os, J. (2022). Mapping genomic loci implicates genes and synaptic biology in
 schizophrenia. *Nature*, 604(7906), 502–508. https://doi.org/10.1038/s41586-02204434-5
- Velikonja, T., Fisher, H. L., Mason, O., & Johnson, S. (2015). Childhood trauma and schizotypy: A systematic literature review. *Psychological Medicine*, 45(5), 947–963. https://doi.org/10.1017/S0033291714002086

- Warrier, V., Kwong, A. S. F., Luo, M., Dalvie, S., Croft, J., Sallis, H. M., Baldwin, J.,
 Munafò, M. R., Nievergelt, C. M., Grant, A. J., Burgess, S., Moore, T. M., Barzilay,
 R., McIntosh, A., van IJzendoorn, M. H., & Cecil, C. A. M. (2021). Gene–
 environment correlations and causal effects of childhood maltreatment on physical
 and mental health: A genetically informed approach. *The Lancet Psychiatry*, 8(5),
 373–386. https://doi.org/10.1016/S2215-0366(20)30569-1
- Yavorska, O. O., & Burgess, S. (2017). MendelianRandomization: An R package for performing Mendelian randomization analyses using summarized data. *International Journal of Epidemiology*, 46(6), 1734–1739. https://doi.org/10.1093/ije/dyx034

Table 1

Characteristics of the Contributing Genome-wide Association Studies

Phenotype	Assessment	N	Age	GWAS	$h^2_{\rm SNP}$
Childhood Maltreatment	Self-report / Parent-report	185,414	10-64	Warrier et al. (2021)	8%
Loneliness/Isolation	Self-report	487,647	40-69	Day et al. (2018)	4.2%
Schizophrenia	*Multiple sources	130,644	NA	Trubetskoy et al. (2022)	24%

Note. $h^2_{SNP} = SNP$ heritability reported in the respective GWASs; N = sample size; Age = mean age in years across contributing cohorts; GWAS = genome-wide association study. *Cases were ascertained based on multiple sources of information such as medical records, semi-structured interviews, and clinical evaluation by psychiatrists. More detailed information on assessment methods is included in the original study by Trubetskoy et al. (2022).

Figure 1

Estimation of the Total and Direct Effects from Mendelian Randomisation Analysis

a) Univariable MR

b) Multivariable MR

Note. The purple arrow represents the total effect of childhood maltreatment (exposure) on schizophrenia (outcome) and the total effect on loneliness/isolation (mediator; path *a*). Orange arrows represent (i) the direct effect of childhood maltreatment on schizophrenia and (ii) the direct effect of loneliness/isolation on schizophrenia (path *b*). MR = Mendelian randomisation; SNPs = single nucleotide polymorphisms.

Figure 2

Genetic Mediation Analysis Estimating the Mediating Effect of Loneliness/Isolation in the Relationship between Childhood Maltreatment and Schizophrenia

indirect effect = -0.05 (0.05)

Note. Standardised regression weights and the corresponding standard errors (in parentheses) are reported. *a* path = effect of the predictor (childhood maltreatment) on the mediator (loneliness/isolation); *b* path = effect of the mediator (loneliness/isolation) on the outcome (schizophrenia); c' path = direct effect of childhood maltreatment on schizophrenia; *c* path = total effect of childhood maltreatment on schizophrenia. *** p < 0.001.

Figure 3

Univariable and Multivariable Mendelian Randomisation Estimates for the Effect of

Genetically Predicted Childhood Maltreatment and Loneliness/Isolation on Schizophrenia

Risk

Exposure		Od ds ra	ntio (95% CI) P-	value	
Childhood Maltreatment					
Univariable MR					
Inverse variance weighted		⊢	3.44	(1.66, 7.13)	8.71e-04
MR Egger	•		133.85	(0.13, 133403.46)	2.07e-01
Weighted median		⊢−●──┤	2.67	(1.68, 4.25)	3.21e-05
Simple mode		⊢ →→	3.31	(1.53, 7.15)	1.60e-02
Weighted mode		⊢	3.31	(1.49, 7.35)	1.87e-02
Multivariable MR					
Inverse variance weighted		├──● ──	3.49	(1.75, 6.95)	3.68e-04
MR Egger	⊢	•	3.98	(0.73, 21.58)	1.09e-01
Loneliness / Isolation					
Univariable MR					
Inverse variance weighted		⊢	2.98	(1.37, 6.46)	5.67e-03
MR Egger	•		0.12	(0.00, 4.69)	2.75e-01
Weighted median			3.46	(1.93, 6.19)	2.95e-05
Simple mode		⊢	4.97	(1.85, 13.31)	6.60e-03
Weighted mode		⊢	4.97	(1.85, 13.36)	6.74e-03
Multivariable MR					
Inverse variance weighted			1.55	(0.61, 3.94)	3.60e-01
MR Egger	•	>	1.95	(0.11, 35.34)	6.50e-01
	0.5 1	2 4 8 16 32 Odds ratio			

Note. Error bars represent 95% confidence intervals. MR = Mendelian randomisation; CI = confidence interval. Confidence intervals of the MR-Egger estimate for childhood maltreatment are wider, consistent with the lower statistical power of this method (Slob & Burgess, 2020).

Figure 4

Univariable and Multivariable Mendelian Randomisation Estimates for the Effect of

Genetically Predicted Schizophrenia on Childhood Maltreatment and Loneliness/Isolation

Risk

Outcome		Beta	(95% CI)	P−v alue
Childhood Maltreatment				
Univariable MR				
Inverse variance weighted	⊢⊷⊣	0.05	(0.03, 0.06)	6.05e-10
MR Egger	· · · · · · · · · · · · · · · · · · ·	0.06	(-0.00, 0.11)	5.84e-02
Weighted median	┝━━┤	0.04	(0.03, 0.06)	1.06e-06
Simple mode		0.02	(-0.02, 0.06)	3.89e-01
Weighted mode	⊢ → − →	0.04	(0.01, 0.08)	1.37e-02
Multivariable MR				
Inverse variance weighted	⊢⊷⊣	0.04	(0.02, 0.05)	4.55e-07
MR Egger		0.03	(-0.02, 0.08)	1.96e-01
Loneliness / Isolation				
Univariable MR				
Inverse variance weighted	H●H	0.02	(0.01, 0.03)	1.96e-06
MR Egger		0.01	(-0.02, 0.05)	4.70e-01
Weighted median	⊦●⊣	0.01	(0.00, 0.02)	1.03e-02
Simple mode	⊢ ∔•−−1	0.01	(-0.03, 0.04)	6.81e-01
Weighted mode	⊢→ −−1	0.01	(-0.02, 0.04)	6.09e-01
	-0.1 -0.05 0 0.05 0.1 0.15 Beta			

Note. Error bars represent 95% confidence intervals. MR = Mendelian randomisation; CI =

confidence interval.