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Abstract
Task-free brain activity exhibits spontaneous fluctuations between functional states, characterized by synchronized acti-

vation patterns in distributed resting-state (RS) brain networks. The temporal dynamics of the networks’ electrophysio-

logical signatures reflect individual variations in brain activity and connectivity linked to mental states and cognitive

functions and can predict or monitor vulnerability to develop psychiatric or neurological disorders. In particular, RS alpha

fluctuations modulate perceptual sensitivity, attentional shifts, and cognitive control, and could therefore reflect a neural

correlate of increased vulnerability to sensory distortions, including the proneness to hallucinatory experiences. We

recorded 5 min of RS EEG from 33 non-clinical individuals varying in hallucination proneness (HP) to investigate links

between task-free alpha dynamics and vulnerability to hallucinations. To this end, we used a dynamic brain state allocation

method to identify five recurrent alpha states together with their spatiotemporal dynamics and most active brain areas

through source reconstruction. The dynamical features of a state marked by activation in somatosensory, auditory, and

posterior default-mode network areas predicted auditory and auditory-verbal HP, but not general HP, such that individuals

with higher vulnerability to auditory hallucinations spent more time in this state. The temporal dynamics of spontaneous

alpha activity might reflect individual differences in attention to internally generated sensory events and altered auditory

perceptual sensitivity. Altered RS alpha dynamics could therefore instantiate a neural marker of increased vulnerability to

auditory hallucinations.

Keywords Alpha � EEG resting state � Hallucination proneness � Hidden semi-Markov modeling � Risk assessment �
Temporal dynamics

Introduction

In the absence of a cognitive task, the brain spontaneously

fluctuates between large-scale functional networks—the

resting state networks (RSNs). The temporal dynamics of

the resting state (RS) can be characterized by a sequence of

recurring brain states with unique functional connectivity

(FC) and spatiotemporal characteristics (Baker et al. 2014;

Hutchison et al. 2013; Trujillo-Barreto et al. 2024;

Vidaurre et al. 2016; Woolrich et al. 2013). The dynamical

features of the states, such as their dwell time and transi-

tioning behavior relate to cognition and behavior in

& H. Honcamp

h.honcamp@maastrichtuniversity.nl

1 Department of Neuropsychology and Psychopharmacology,

Faculty of Psychology and Neuroscience, Maastricht

University, Universiteitssingel 40, 6229 ER Maastricht, The

Netherlands

2 Brain Dynamics Laboratory, Universidad de Valparaı́so,

Valparaiso, Chile

3 NICM Health Research Institute, Western Sydney University,

Penrith, NSW, Australia

4 School of Health Sciences, University of Manchester,

Manchester, UK

5 Department of Psychiatry and Neuropsychology, School of

Mental Health and Neuroscience, Maastricht University

Medical Center, Maastricht, The Netherlands

6 Centro de Investigación y Desarrollo en Ingenierı́a en Salud,

Universidad de Valparaı́so, Valparaiso, Chile

123

Cognitive Neurodynamics
https://doi.org/10.1007/s11571-024-10093-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0009-0001-3373-9368
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-024-10093-1&amp;domain=pdf
https://doi.org/10.1007/s11571-024-10093-1


neurotypical and patient populations and could therefore

inform about early vulnerability to psychopathology

(Damoiseaux et al. 2006; Kottaram et al. 2019; Nishida

et al. 2013; Vidaurre et al. 2016). However, these states

cannot be directly observed in functional imaging or

electrophysiological recordings and must be inferred. State

allocation methods have been developed to identify the

brain states and their dynamical features and relate them to

task performance and cognitive and mental states (Baker

et al. 2014; Trujillo-Barreto et al. 2024).

Auditory verbal hallucinations (AVH), the untriggered

experience of voices in the absence of external stimulation,

display in neuropsychiatric disorders with psychotic fea-

tures as well as in the general population (Bartels-Velthuis

et al. 2010; Linszen et al. 2022). Thus, AVH are not nec-

essarily related to the need for care but lie on a continuum

of vulnerability, called hallucination proneness (HP) (Johns

et al. 2014; Johns and Van Os 2001). The continuum

perspective suggests that the underlying cognitive mecha-

nisms and neuronal changes associated with AVH in neu-

rotypical individuals are an attenuated version of those

seen in clinically diagnosed individuals (Allen et al. 2005;

Badcock and Hugdahl 2012; Diederen et al. 2012; Mar-

schall et al. 2023; Paulik et al. 2008; Pinheiro et al. 2019).

Interestingly, auditory, but not visual, perceptual aberran-

cies predict conversion to psychosis, suggesting distinct

neurocognitive substrates underlying hallucinatory experi-

ences across different modalities (Lehembre-Shiah et al.

2017).

Currently, little is known about the underlying neuro-

physiology of the non-clinical (auditory) HP continuum

where marked symptoms are absent, but individuals may

be at risk of developing them. Considering the fluctuating

and unprovoked nature of hallucinatory experiences, the

temporal dynamics of the resting brain might be a suit-

able target to elucidate their neural basis (Alderson-Day

et al. 2015). The ‘resting state hypothesis of AVH’ suggests

that AVH result from a dysfunctional interaction, i.e.,

aberrant bottom-up and top-down processes between the

Default-Mode Network (DMN) and other RSNs, including

the salience, cognitive control, and auditory networks

(Northoff and Qin 2011). The DMN is known to drive

spontaneous, internally directed thoughts and perceptions

(Damoiseaux et al. 2006; Raichle 2015). Thus, altered

temporal dynamics of the DMN and other networks could

result in an increased focus on, and altered sensory sensi-

tivity to internally generated cues (e.g., spontaneously

retrieved memories or intrusive inner speech). If addi-

tionally combined with altered auditory processing, this

could underlie self-monitoring and source attribution dif-

ficulties in hallucination-prone individuals and those with

AVH (Brookwell et al. 2013; Horga et al. 2014; van Lut-

terveld et al. 2014). Moreover, it was reported that

disturbed sensory responsiveness to internally generated

stimuli is related to the presence of auditory hallucinations

rather than to the diagnosis of a psychotic disorder

(Blakemore et al. 2000; Lewis-Hanna et al. 2011).

Electroencephalography (EEG) alpha band activity

(8–12 Hz) is associated with cortical excitability and

selective attention across sensory domains (Hindriks et al.

2017). Alpha power fluctuations modulate the sensitivity to

sensory experiences, altering the perception threshold for

visual, tactile, and pain stimuli (Craddock et al. 2017; Ecsy

et al. 2017; Klimesch et al. 2007). Alpha activity further

influences the temporal and spatial grouping of sensory

information when perceiving ambiguous stimuli, indicating

that alpha activity shapes the way sensory information is

attended to and perceived (Shen et al. 2019). Alpha fluc-

tuations are also associated with cognitive control (Cle-

ments et al. 2021), and deficits in cognitive control such as

intrusive thoughts and impaired reality-checking are rela-

ted to HP, psychosis proneness, and schizotypy (Alderson-

Day et al. 2019; Paulik et al. 2008; Waters et al. 2012).

Although not exclusively mapped, alpha activity has been

linked to the DMN (Hillebrand et al. 2012; Samogin et al.

2020). Hence, aberrant alpha dynamics may inform about

individual variability in sensory responsiveness underlying

the self-monitoring difficulties related to AVH in clinical

and non-clinical individuals and HP (Blakemore et al.

2000; Lewis-Hanna et al. 2011).

Given the time-varying nature of RS brain activity, the

importance of alpha activity in attention and sensory

responsiveness, and its link to DMN activation, analyzing

RS alpha dynamics can uncover neural correlates along the

HP continuum. To accurately characterize these dynamics

on a sub-second scale, we used the Hidden semi-Markov

Model (HsMM), a Brain State allocation method that

identifies quasi-stable activity patterns with distinct tem-

poral properties (Baker et al. 2014). The HsMM thereby

reveals relevant information about network connectivity

and switching dynamics (Baker et al. 2014; Hunyadi et al.

2019; Trujillo-Barreto et al. 2024; Woolrich et al. 2013).

The HsMM is a generalization of the classic Hidden

Markov Model (HMM) and allows incorporating more

realistic assumptions about long-range dependencies of

M/EEG time series and network switching behavior by

explicit modeling of the state durations (Trujillo-Barreto

et al. 2024). Thus, it provides a means to accurately assess

the electrophysiological spatiotemporal characteristics

underlying spontaneous, dynamic, and transient phenom-

ena, such as hallucinatory experiences. The increased

temporal sensitivity of the HsMM facilitates detecting

subtle alterations in RS dynamics in non-clinical halluci-

nation-prone individuals that might have been missed by

alternative, less temporally sensitive methods (Honcamp

et al. 2022). Hence, the application of the HsMM might
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inform about early vulnerability and corresponding neu-

rophysiological HP correlates.

Here, we applied the HsMM to the temporally con-

catenated RS EEG alpha envelope of non-clinical indi-

viduals to analyze the predictive value of state durations

and occupancy for general, auditory, and auditory-verbal

HP. Additionally, we identified the neural sources that

correspond to each state through frequency-domain source

localization to confirm correspondence with RSNs impli-

cated in hallucinatory predisposition.

Methods and materials

Participants and procedure

The current study is part of a research line into brain

mechanisms of hallucinations and hallucination proneness

at Maastricht University, the Netherlands. Ethical approval

was granted by the medical ethics committee responsible

(METC-20 035; the study was ended early due to recruit-

ment difficulties). Inclusion criteria for participation were

age between 16 and 65 years, normal or corrected hearing,

no neurological disorder (e.g., epilepsy, tumor, lesion), and

no earlier head or brain injury. We recorded RS EEG data

of 38 participants from the general population. Based on

standard data quality assessment, five participants were

excluded due to remaining, excessive muscle and move-

ment-related artifacts. Hence, 33 individuals (10 males, 22

females, 1 other; mean age = 23,36; SD = 2.65, range =

20–31) were selected for the current study. The sample

consisted of university students (one recent graduate), who

were either rewarded monetarily or by study credits. All

participants provided written informed consent before

participation.

Data acquisition and pre-processing

Participants were invited to two sessions, a neuropsycho-

logical assessment, and the EEG recording. HP was

assessed by the Launay-Slade Hallucination Scale (LSHS),

a 16-item questionnaire designed to probe non-clinical

hallucinatory predisposition (Larøi and Van Der Linden

2005; Launay and Slade 1981). For each participant, we

obtained the total HP score as well as scores of the 5-item

auditory HP (A-HP) and the 3-item auditory verbal HP

(AV-HP) subscales following (Pinheiro et al. 2020). See

Supplementary Material A for details.

Ten minutes (5 min eyes-open, EO; 5 min eyes-closed,

EC; same order for all participants) of RS EEG data were

recorded using a 128-channel actiCHAMP active system

(Brain Products GmbH, Gilching, Germany). Electrodes

were placed according to the international 10–20 system.

The data were recorded at a sampling rate of 1000 Hz and

FCz served as an online reference electrode while partici-

pants were sitting comfortably in an acoustically shielded

EEG-booth. Electrode impedances were kept below 10 kX.
Participants were asked to stay awake and to minimize

body movements including blinking. EEG data were pre-

processed using the MATLAB-based toolbox EEGLAB

v2021 (Delorme and Makeig 2004) according to standard

procedures for EEG RS data (Supplementary Material B).

Only EC data were used for later data analyses as attention-

induced alpha modulations are stronger in EC than in EO

conditions (Wöstmann et al. 2020).

Data preparation and feature extraction

We divided the dataset based on participants’ LSHS scores

into two subsets: A ‘‘normative’’ set comprising the lower

two-thirds of the total HP scores, (N = 26; 7 males, 18

females, 1 other), which we used to train the Brain State

allocation model. This served to provide a normative and

robust distribution of the dynamical features of the alpha

fluctuations. The upper third of the total HP scores (N = 7;

3 males, 4 females) formed a ‘‘deviant’’ set, which was

applied to the trained model to infer how the higher scores

alter the distribution of the dynamical features. The split-

ting of the dataset was not to perform a group comparison

but to obtain a realistic and robust model solution. There-

fore, individual variability in state dynamics and HP of all

participants was considered in the statistical analysis to

account for the continuum perspective on HP. See Sup-

plementary Material C for details on the splitting

procedure.

For data preparation prior to modeling, we followed

standard HMM/HsMM data preparation pipelines (Baker

et al. 2014), including envelope extraction of the alpha

frequency (Supplementary Material D). See Fig. 1 for a

schematic visualization of our pipeline, including major

data processing and analysis steps.

Dynamic Brain State allocation using a Hidden
semi-Markov Model

We used the variational Bayes framework of the HsMM

(Trujillo-Barreto et al. 2024). The HsMM is used to model

fluctuations in the temporally concatenated RS EEG alpha

envelope of all participants, in which a brain state is

defined as recurrent and distinct periods of time during

which the statistical properties of the data (mean and

covariance) of the multichannel envelope are stable (Baker

et al. 2014; Trujillo-Barreto et al. 2024). Accordingly, the

state transitions mark the points at which the statistical

properties of the data change and have been paralleled with

the dynamic and systematic switching between underlying
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RSNs (Baker et al. 2014; Quinn et al. 2018). While the

states are estimated at the group level, participant-specific

post-hoc state metrics can be obtained directly from the

state sequence. This provides insight into individual tem-

poral dynamics of FC, which, in turn, allows between-

participant comparisons.

The model was trained on the data of the 26 lower-

scoring participants (i.e., the training set). The number of

states was set to five for two main reasons: (i) Preliminary

data screening of both individual and group-based HsMMs

revealed that five states adequately characterize temporal

state dynamics in the alpha band; (ii) Increasing the num-

ber of states may result in unreliable parameter estimates,

which poses the risk of model overfitting (Trujillo-Barreto

et al. 2024). Hence, given the ample between-participant

variability and computational costs, a five-states HsMM

was deemed a good compromise. We used a Multivariate

Normal (MVN) distribution to model states’ emissions and

a log-normal distribution to model the state durations. This

implies that the hidden states generate normally distributed

data at each time point with variable lengths following a

log-normal distribution. The variational inference

Fig. 1 Schematic visualization of the analysis pipeline. a Data

preparation. Pre-processed EEG RS data segments are filtered to the

alpha band (8–12 Hz), Hilbert transformed, normalized, and log-

transformed (log not shown here). Signals were then subjected to

PCA with (30 components), downsampled to 64 Hz, and concate-

nated in time. b HsMM training. Concatenated data were trained

using a Multivariate Normal (MVN) emission model and a lognormal

duration model to decompose the data into 5 states c State segmen-

tation. Data segments of each state were extracted and concatenated.

d Source localization. (i) Data segments per state and participant

were localized using the Dynamic Imaging of Coherent Sources

(DICS) beamformer implementation in Fieldtrip. Sources were then

parcellated into 116 areas using the Automated Anatomical Labeling

(AAL) atlas (Tzourio-Mazoyer et al. 2002). (ii) The individual source

activity maps were averaged across participants to create mean source

maps of each state (iii) Mean source maps were z-transformed and

thresholded to only keep the highest 25% of active sources
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algorithm was randomly initialized and repeated ten times

to avoid dependence on initial conditions (Trujillo-Barreto

et al. 2024).

State sequence, calculation of state dynamics,
and generation of state topographies

The state sequences of all individuals of the ‘‘normative’’

training set were directly obtained as the model output. The

state sequences of the ‘‘deviant’’ test set were decoded by

applying the already estimated model parameters from the

training procedure to the unseen data, which results in a

sequence of probabilities of each state being active at each

time point. The state with the highest probability was

chosen for the state sequence. The states’ fractional occu-

pancy (FO: the total time occupied by a state compared to

the total recording time) and mean duration (MD: average

time a state is active) were extracted to describe the tem-

poral dynamics per state and participant. State MD values

were obtained by fitting a lognormal curve to the histogram

of empirical state durations of each participant and state to

extract the location (mu) and scale (sigma) parameters of

the lognormal distribution. The lognormal mu values were

then transformed to a normal scale to obtain inter-

pretable duration values in milliseconds. The FO values

were calculated by summing up each individual activation

duration divided by the total recording time (i.e., 5 min)

and are expressed as a percentage. The states’ topographies

were obtained by projecting the mean of the estimated

emission distributions from the HsMM back to the sensor

space. To this end, the mean vector of the estimated MVN

distribution for each state was multiplied by the PCA

coefficients obtained during the data preparation (Supple-

mentary Material D).

Source reconstruction of alpha Brain States

To assess whether the HsMM alpha states correspond to

well-known RSNs, we used source localization of the

original EEG data since the localization of envelope data is

not directly interpretable. Spectral analyses and later

source localization were performed using the MATLAB-

based Fieldtrip toolbox (v20210914) (Baillet et al. 2011;

Oostenveld et al. 2011). Source reconstruction of the par-

ticipant-state data blocks in the frequency domain was

carried out using the Dynamic Imaging of Coherent

Sources (DICS) method (Gross et al. 2001) as implemented

in Fieldtrip. DICS uses a spatial filter to detect and localize

coherent sources, i.e., voxels that show functional syn-

chrony, and is especially suited for the source reconstruc-

tion of oscillatory components in continuously recorded

M/EEG signals (Drakesmith et al. 2013; Gross et al. 2001).

The individual source images were parcellated using the

Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer

et al. 2002) into 116 cortical and sub-cortical areas. The

parcellated sources were then averaged across participants

to obtain one mean source image per state. To assess the

areas of highest source activation per state, the mean

source images were z-transformed and thresholded to keep

only source points exceeding the 75-th percentile (z-

score = .675). The preparation of state-specific data seg-

ments and details of the source reconstruction are outlined

in Supplementary Material E.

Statistical analyses

Statistical analyses were performed in IBM Statistics SPSS

v26 (IBM Corp., 2019). We tested for the predictive value

of the Brain States’ dynamical features FO and MD for

total HP and the two subscales, A-HP and AV-HP. Six

hierarchical linear regression analyses were performed, two

for each scale as a dependent variable (DV) with the states’

FO or MD as predictors. To find specific state dynamics

that most accurately predict the DV, we used a backward

elimination where the criterion for exclusion of predictors

was set to the probability of F[/ = .1 in all models. We

additionally computed bias-corrected accelerated (BCa)

confidence intervals. The significance threshold for all

statistical analyses was set at .05.

Results

Alpha Brain States’ dynamical features

Figure 2 shows FO and MD for each participant in panels

A and B, respectively. All five states were represented in

all participants, but their FO and MD showed considerable

between-participant variability. For instance, state 4

showed mean durations of up to .5 s, while the durations of

the other states are mostly clustered around .2 s. Figure 3

panel A depicts the state maps, i.e., the most representative

topography for each state. The order of states is arbitrary.

State 4 and 5 showed a similar activity distribution,

although with opposite polarity, which may indicate com-

plementary states of high and low alpha power.

Results of the statistical analyses

Assumptions such as normality of residuals, linearity, and

homoscedasticity for the regression models for HP and

A-HP as DV were met. For the models with AV-HP as DV,

the residuals were not normally distributed, which may

compromise the generalizability of the results. The results

of the final models (i.e., after the exclusion of insignificant

predictors) are summarized in Table 1. The complete
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results of all regression models including all steps of the

backward elimination procedure can be found in Supple-

mentary Material G. The stepwise regression with A-HP as

DV resulted in a model with only state 1 FO as significant

predictor F(1,32) = 7.818, p = .009, which accounted for

20.1% of the variation in A-HP (R2 = .201). Similarly, the

model with A-HP as DV and duration values as predictors

indicated state 1 MD as only significant predictor

F(1,32) = 5.949, p = .021, accounting for 16.1% of the

variation (R2 = .161). Further, the final regression model

with AV-HP as DV also revealed state 1 FO as significant

predictor, F(1,32) = 5.219 p = .029, which accounted for

14.4% of the variation in AV-HP (R2 = .144). Finally, the

MD of state 1 significantly predicted AH-HP,

Fig. 2 Fractional occupancy and mean duration of all states and

participants. Distribution of Fractional Occupancy (FO, panel a) and
mean duration (panel b) of all participants. Participants are ordered

according to their total hallucination proneness (HP) scores from low

to high. FO is provided in percentage (%). Durations are given in

seconds

Fig. 3 State topographies and source activation of state 1. a The maps

depict the most representative topography for each state, obtained by

multiplying the mean vector of the estimated Multivariate Normal

(MVN) distribution of each state with the Principal Component

Analysis (PCA) coefficients obtained during the data preparation The

order of the states is arbitrary. The scale of the state maps depicts

microvolts. b. Cortical distribution of state 1 active sources.

Activation is expressed as Neural Activity Index (NAI) (Van Veen

et al. 1997). Images were generated by (i) parcellating the individual

source images using the Automated Anatomical Labeling (AAL) atlas

(Tzourio-Mazoyer et al. 2002) into 116 areas, (ii) averaging the

activity within each parcel across participants, (iii) thresholding the

mean sources images based on the 75-th percentile of source activity

([ / = z-value of .675), and (iv) interpolating the active sources onto

a template brain mesh
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F(1,32) = 5.070 p = .032, explaining 14.1% of the varia-

tion in AH-HP (R2 = .141). The two regression models

with HP as DV did not reveal any significant predictors.

In summary, state 1 FO and MD significantly predicted

both A-HP and AV-HP, but not general HP. This means

that individuals scoring higher on the auditory and audi-

tory-verbal subscales of the LSHS showed greater occu-

pancy and longer duration of state 1. This might show an

effect specific to the auditory modality of hallucinatory

experiences. The explained variance of the final models

ranged between 14.1 and 20.1%. These results were mostly

confirmed by the more robust bootstrapping procedure and

corresponding BCa confidence intervals, which are sum-

marized in Table 2.

Results of the source localization

All states’ highest active sources were localized in the

posterior part of the brain, spanning the superior and

inferior parietal cortex, cingulum, the cuneus and pre-

cuneus, parts of the operculum and of the occipital cortex.

Amongst others, state 1 was characterized by source

activity in the posterior cingulate cortex (PCC), precuneus,

and cuneus, which constitute major hubs of the DMN.

Additionally, state 1 sources were found in left and right

postcentral gyrus as well as superior and middle temporal

gyrus in both hemispheres, corresponding to the

somatosensory and auditory networks, respectively (Fig. 3

panel B). See Supplementary Material H for the mean

source images of states 2–5 and the labels of all active

areas surviving the thresholding per state.

Discussion

Hallucinatory experiences are spontaneous, transitory, and

dynamic false percepts that arise as a result of self-moni-

toring and source attribution difficulties (Blakemore et al.

2000; Brookwell et al. 2013). HP is associated with

heightened sensory sensitivity, which, in turn, is linked

with fluctuations in the alpha frequency band (Blakemore

et al. 2000; Craddock et al. 2017; Lewis-Hanna et al. 2011;

Shen et al. 2019). This study investigated if RS alpha brain

state dynamics predict non-clinical HP, A-HP, and AV-HP.

To this end, five brain states and their temporal dynamics

(FO and MD) were estimated with a HsMM. Using fre-

quency-domain source reconstruction, we further localized

the sources of each state. The results showed that MD and

FO of a state corresponding to somatosensory, auditory,

and posterior DMN areas (here state 1) predicted individual

differences in A-HP and AV-HP, but not general HP. State

1 may reflect an attentional bias toward internally gener-

ated events and heightened awareness of and sensitivity for

auditory sensations. Together, this could suggest increased

vulnerability to hallucinatory experiences in the auditory

domain.

Table 1 Summary of significant

regression model results
Pred Coefficients Model summary

DV B B CI b t F R2 Adj. R2 p

S1 FO A-HP .210 [.065 .417] .449 2.796** 7.818 .201 .176 .009**

S1 MD A-HP 37.607 [6.160 69.053] .401 2.439* 5.949 .161 .134 .021*

S1 FO AV-HP .134 [.013 .255] .375 2.252* 5.070 .141 .113 .032*

S1 MD AV-HP 23.623 [.029 44.712] .380 2.285* 5.219 .144 .116 .029*

Each row contains the regression coefficients and model summary for each final model, i.e., after stepwise

exclusion of insignificant predictors

Pred., predictor variable; S1, state 1; DV, dependent variable; FO, fractional occupancy; MD, mean

duration; A-HP, auditory hallucination proneness; AV-HP, auditory-verbal hallucination proneness

N = 33; *p\ .05; **p\ .01

Table 2 Bootstrapping results for significant regression coefficients

BCa 95% CI

Pred DV B Std. error p Lower Upper

S1 FO A-HP .241 .089 .009** .062 .417

S1 MD A-HP 37.607 16.597 .018* 14.402 84.536

S1 FO AV-HP .134 .063 .039* .000 .280

S1 MD AV-HP 23.623 13.604 .062 5.184 62.618

Each row contains the bootstrapping results of significant regression

coefficients of the final models i.e., after stepwise exclusion of

insignificant predictors, including the bias-corrected accelerated

(BCa) 95% confidence interval (CI)

Pred., predictor variable; S1, state 1; DV, dependent variable; FO,

fractional occupancy; MD, mean duration; A-HP, auditory halluci-

nation proneness; AV-HP, auditory-verbal hallucination proneness.

Results are based on 2000 bootstrap samples

N = 33; *p\ .05; **p\ .01
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Resting state alpha dynamics might modulate
sensory sensitivity to internal stimuli

Consistent with the high between-participant variability in

state dynamics observed in the current study, previous

research found that the resting brain engages in stimulus-

independent activities like mind-wandering and autobio-

graphical memory retrieval with inter-individual differ-

ences in shifting patterns and preferences for a given

cognitive mode, or ‘‘phenotype’’ (Diaz et al. 2013; Raichle

2015). These so-called RS phenotypes are characterized by

distinct electrophysiological signatures of cognition and

behavior (Pipinis et al. 2017; Tarailis et al. 2021). The time-

varying FC signatures characterized by the HsMM state

sequence could thus reflect shifts between different cogni-

tive modes during rest that might coincide with modulations

in attention between specific sensory modalities.

In cognitive tasks, alpha activity is linked to selective

attention, cognitive control, and perceptual sensitivity

(Hindriks et al. 2017; Klimesch et al. 2007). Other studies

found that pre-stimulus alpha power is inversely related to

perceptual awareness but does not predict discrimination

accuracy (Benwell et al. 2022; Benwell et al. 2017).

Similarly, it was suggested that alpha power fluctuations

link to changes in neural baseline excitability and thus

influence neural responsiveness to both signal and noise

(Iemi and Busch 2018). In turn, alpha dynamics may reflect

criterion changes in an individual’s response behavior (i.e.,

heightened neural excitability leading to more liberal

responses), rather than perceptual accuracy (Iemi and

Busch 2018). Alpha activity modulations, especially in EC

conditions, were further suggested to reflect changes in

auditory attention through the inhibition of irrelevant, non-

salient sensory information (Strauß et al. 2014; Wöstmann

et al. 2020). These findings support the hypothesis that

alpha dynamics shape the allocation of attentional resour-

ces and the processing of sensory inconsistencies (Jensen

et al. 2012). However, most of these findings were task-

related and are thus not necessarily transferable to spon-

taneous, RS alpha fluctuations. Although a direct effect of

alpha modulations on cognition is difficult to show in pure

RS conditions, evidence supports the role of alpha in

attention, cognitive control, and perceptual stability (Bra-

boszcz and Delorme 2011; Katyal et al. 2019; Mahjoory

et al. 2019; Mathewson et al. 2009; Sadaghiani and

Kleinschmidt 2016). Given that the identified HsMM states

reflect recurrent signatures of alpha activity independent of

task demands, the states’ temporal dynamics could inform

about spontaneous shifts in attention from external to

internal stimuli and perceptual sensitivity thereof, rather

than perceptual accuracy per se (Craddock et al. 2017;

Klimesch et al. 2007; Wöstmann et al. 2020).

The current results suggest that specific RS alpha

dynamics (FO and MD of state 1) reveal individual differ-

ences in auditory HP. This relationship may be driven by

alpha modulations of neural excitability (Iemi and Busch

2018). Heightened baseline excitability is thought to

amplify both signal and noise, which may alter an individ-

ual’s tendency to ‘‘detect’’ stimuli in the absence of sensory

stimulation and confuse internally generated sensory events

as coming from an external source (Iemi and Busch 2018;

Ilankovic et al. 2011; Northoff and Qin 2011; Stephane et al.

2010). Hallucinating and hallucination-prone individuals

indeed show increased difficulties in source and reality

monitoring and an external attribution bias irrespective of a

clinical diagnosis (Blakemore et al. 2000; Brookwell et al.

2013; Levine et al. 2004). Interestingly, the relationship with

state 1 FO and MD was only found for the auditory and

auditory-verbal modality of hallucinatory experiences but

not for general HP. This raises the question of whether alpha

dynamics not only reflect fluctuations in attention and neural

responsiveness to internally generated information, but also

how attentional resources are distributed between sensory

modalities (Keller et al. 2017).

Alpha HsMM state sources and their functional
significance for hallucination proneness

The states’ source localization results further corroborate

earlier findings that linked alpha activity to posterior hubs of

the DMN (Hindriks et al. 2017; Mantini et al. 2007). Like-

wise, the current alpha HsMM states show similarities with a

‘‘posterior higher-order cognitive’’ state identified by

Vidaurre et al. (2018), associated with posterior nodes of the

DMN and high coherence and power in the alpha frequency.

Of note is that their approach considerably differs from the

current one, in that they used time-domain source-recon-

structed MEG data as input to a time-delay embedded Hid-

den Markov Model (TDE-HMM). The TDE-HMM allows

identification of both spectrally and temporally resolved

state characteristics. However, both approaches confirm that

spontaneous brain activity is organized into short-lived

recurrent brain states with specific spectral information and

spatial correspondence to well-known RSNs.

The source localization of state 1 specifically revealed

simultaneously active sources in bilateral pre-, para-, andpost-

central lobes, bilateral inferior and superior parietal lobes,

bilateral (pre-)cuneus, bilateral PCC, and bilateral superior

and middle temporal lobes. These regions are associated with

the somatosensory network, the auditory network, and pos-

terior hubs of the DMN (Damoiseaux et al. 2006; Raichle

2015), suggesting that HsMM brain states associate with a

mixture of RSNs (Chen et al. 2016; Hunyadi et al. 2019).

The active sources underlying state 1 could inform about

brain areas and networks that express a heightened
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vulnerability to hallucinatory experiences. Michael et al.

(2022) found that spontaneous oscillatory activity in

somatosensory cortices reflects individual differences in

bodily awareness. Further, subjective somatosensory

experiences in the absence of external stimulation are

thought to arise due to heightened levels of focused

attention (Bauer et al. 2014), which in turn, is likely

mediated by alpha power fluctuations (Benedek et al.

2014). One may speculate that such activity not only

manifests in distorted bodily perception but potentially also

in hallucinatory experiences in other sensory domains (e.g.,

auditory), particularly if paired with spontaneous activation

of the auditory network. Activation of the superior and

middle temporal lobes is commonly associated with the

processing of incoming auditory stimuli. However, these

activation patterns could be altered in individuals with

auditory hallucinations due to a reduced signal-to-noise

ratio of incoming sensory stimulation and abnormally

elevated resting activation of the auditory cortex (Northoff

and Qin 2011). In fact, abnormal untriggered engagement

of the primary and secondary auditory cortices has been

related to the experience of AVH (Kompus et al. 2011;

Northoff and Qin 2011). The DMN has been associated

with spontaneous, task-independent cognition, including

mind-wandering and daydreaming (Raichle 2015). The

PCC, a posterior hub of the DMN, is thought to play a key

role in internally directed cognition, autobiographical

memory, and reorienting attention. Further, functional

interactions between the PCC and other networks are cru-

cial for conscious awareness and perception (Leech and

Sharp 2014). Along with aberrant auditory cortex activa-

tion, many studies reported abnormally elevated DMN

activation in individuals with AVH, which may indicate an

attentional bias toward internally generated (auditory)

events and a failure in downregulating auditory processing

systems (Kompus et al. 2011; Northoff and Qin 2011).

Schizophrenia patients with AVH further show increased

connectivity between posterior parts of the DMN and

regions associated with auditory processing, which may

contribute to the misattribution of self-generated sensory

events to an external source, and thus the experience of

auditory hallucinations (Mannell et al. 2010; Northoff and

Qin 2011). Similarly, an fMRI network analysis revealed

that aberrant activation of the DMN and the auditory net-

work links to hallucinatory vulnerability in non-psychotic

individuals (van Lutterveld et al. 2014), suggesting that

changes in DMN dynamics are not unique to the clinical

population but may serve as an early marker of increased

HP in the general population. Lastly, Kottaram et al. (2019)

applied an HMM to fMRI BOLD hemodynamics to

investigate differences in RSN dynamics between patients

with schizophrenia and healthy control participants. They

found that patients spent a significantly shorter proportion

of time in a state characterized by high DMN and low

sensory network activation, however, once visited, the

duration of that state was significantly longer as compared

to the controls. These dynamics further correlated with the

severity of positive symptoms, including hallucinatory

experiences.

In summary, the current results suggest that non-clinical

A-HP and AV-HP link to changes in alpha temporal

dynamics of a state that is characterized by somatosensory,

auditory, and DMN activation. Thus, individuals who are

prone to auditory (verbal) hallucinatory experiences spend

longer time segments in a state that may reflect an

increased attentional bias toward internal events, poten-

tially as they are more salient by default (Kapur 2003),

combined with heightened neural responsiveness to (in-

ternally generated) auditory percepts. These results are

consistent with findings that linked hallucinatory experi-

ences with altered DMN-auditory network dynamics that,

in turn, contribute to the well-established source and reality

monitoring difficulties along the HP continuum (Allen

et al. 2006; Brookwell et al. 2013; Northoff and Qin 2011;

van Lutterveld et al. 2014).

Limitations and future directions

Given that this study’s objective was to investigate the

predictive value of alpha RS dynamics for non-clinical HP,

the generalizability of the current findings to the clinical

population is limited. Nevertheless, the continuity of psy-

chosis-like symptoms and corresponding increased clinical

risk has gained considerable weight through different

methodological approaches (Allen et al. 2006; Badcock

and Hugdahl 2012; Kusztrits et al. 2021). The current study

thus contributes to a better understanding of how electro-

physiological correlates can display possible changes in

participants along the postulated HP continuum and might

therefore critically inform early risk assessment of vul-

nerable individuals. However, is important to note that a

single continuum may not fully explain the heterogeneity

of neurocognitive changes and phenomenological charac-

teristics in non-clinical and clinical AVH (Badcock and

Hugdahl 2012; Corona-Hernández et al. 2022). Thus, the

question arises whether some qualitative differences of the

hallucinatory experiences between clinical and non-clinical

populations can be explained by the same continuum of

neural changes or whether so-called quasi-dimensional

models of psychosis better account for this heterogeneity

(Baumeister et al. 2017). Future research should therefore

explore whether similar changes in RS temporal dynamics

are also characteristic of individuals with AVH in the non-

clinical and clinical spectrum.

The modeling of temporal dynamics in the current study

was restricted to the alpha band, following its role in
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selective attention, cognitive control, and perceptual sen-

sitivity, as well as its association with the DMN (Craddock

et al. 2017; Hillebrand et al. 2012; Hindriks et al. 2017).

This narrow-band filtering approach may have influenced

the spatial overlap between states in the source space.

Broadband data may reflect a richer repertoire of the

electrophysiological signatures of the underlying RSNs

operating within different frequency bands (Mantini et al.

2007). Thus, the current approach yields a specific view on

RS dynamics through the lens of the alpha band frequency.

Future studies could therefore explore how brain state

temporal dynamics enfold in broadband data and how they

differ between frequency bands. This could offer further

insights into frequency-specific RS correlates of cognition

and behavior.

Lastly, it is important to note that the current focus was

on temporal dynamics and key sources of alpha brain states

as a function of HP. Accordingly, the chosen approach

revealed simultaneously and highly active sources of each

state but did not provide evidence for functionally con-

nected large-scale brain networks. Future research should

therefore aim to unveil interaction between (sub-)network

dynamics along the whole HP continuum, e.g., by using

adaptations of the H(s)MM method with a multivariate

autoregressive (MAR) emission model that model effective

connectivity based on both amplitude and phase dynamics

(Hernandez et al. 2022; Vidaurre et al. 2016).

In conclusion, the HsMM can be used to characterize

narrow-band alpha RS fluctuations on a sub-second time-

scale and derive meaningful neurophysiological correlates

of the HP continuum. Our findings suggest that an

increased attentional bias towards and increased sensory

sensitivity to internally generated auditory events, as it is

often found in clinical voice-hearers, might already be

characteristic of non-hallucinating but high-hallucination-

prone individuals.
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