Сяський А. Пружна рівновага пластинки з криволінійним контуром, частково підсиленим системою пружних ребер / Сяський А., Кот В. // Вісник ТНТУ. — 2012. — Том 65. — № 1. — С.7-13. — (механіка та матеріалознавство).

УДК 539. 3

А. Сяський, докт. техн. наук; В. Кот

Рівненський державний гуманітарний університет

ПРУЖНА РІВНОВАГА ПЛАСТИНКИ З КРИВОЛІНІЙНИМ КОНТУРОМ, ЧАСТКОВО ПІДСИЛЕНИМ СИСТЕМОЮ ПРУЖНИХ РЕБЕР

Резюме. Розглянуто задачу циліндричного згину на нескінченності пластини з криволінійним отвором, контур якого частково підсилений системою двох пружних ребер, наділених жорсткістю на згин та кручення. Побудовано математичну модель задачі у вигляді системи інтегро-диференціальних рівнянь з логарифмічними ядрами. Методом колокації досліджено вплив жорсткості підсилювальних ребер на розподіл напружень на контурі трикутного отвору.

Ключові слова: ізотропна пластинка, напружено-деформований стан, сингулярні інтегродиференціальні рівняння, часткове підсилення.

A. Syasky, V. Kot

ELASTIC EQUILIBRIUM PLATE WITH CURVILINEAR CONTOUR, PARTLY REINFORCED RIBS ELASTIC SYSTEM

The summary. The problem of cylindrical bending and infinite plate with a curvilinear hole, the path is partially reinforced system of two elastic ribs, endowed with stiffness in bending and torsion is shown. As well mathematical model of a problem as a system-integrated diferential equations whith logarithmic kernel is built. Collocation method of amplifying the impact stiffness of ribs on the stress distribution on the circuit opening is being investigated.

Key words: isotropic plate, the stress-strain state, singular integro-differential equations, partial reinforcement.

Вступ. Деталі пластинчастого типу, що послаблені отворами найчастіше у формі правильних многокутників із закругленими кутами, знаходять широке застосування в різних галузях техніки. Такі деталі, як ланки складних механізмів набули широкого використання в машинобудуванні та авіабудуванні. При їх циліндричному згині на контурі отвору виникають зони високої концентрації напружень. Ці напруження можна зменшити, підсилюючи контур отвору тонкими ребрами, що мають незначну вагу в порівнянні з вагою пластинки. Поряд з цим, на контурі отвору існують зони, де концентрація напружень незначна і їх підсилення є малоефективним. Тому використання часткового підсилення є найоптимальнішим рішенням.

Задачі циліндричного згину пластин з отворами, контури яких підсилені розімкненими пружними ребрами змінної жорсткості на згин, розглянуто в роботах [1–3]. Моделюючи підсилення пружними лініями, досліджено вплив їх жорсткості та положення на напружено-деформований стан пластинки. Що стосується задач згину пластин, підкріплених пружними ребрами змінної жорсткості на згин та кручення, то вони вивчені недостатньо. У спрощеній постановці окремі з них розглядаються у [4–5].

Постановка задачі. Розглянемо нескінченну ізотропну пластинку товщиною 2h, послаблену криволінійним отвором, обмеженим гладким контуром L у формі правильного N-кутника із закругленими кутами, яка згинається рівномірно розподіленими моментами M_1 та M_2 , прикладеними на нескінченності. В середній площині пластинки виберемо систему декартових координат (Oxy) так, щоб вісь Ox співпадала з віссю симетрії отвору. Початок відліку сумістимо з центром отвору. В цій

же площині розмістимо полярну систему координат (r, δ) із центром у точці O і полярною віссю Ox (рис. 1).

Рисунок 1. Розрахункова схема пластинки

Нехай на ділянках $L_1 = [\alpha_0^*; \beta_0^*]$ та $L_2 = [\alpha_1^* + \pi; \beta_1^* + \pi]$ контур отвору підсилено системою двох пружних ребер змінної жорсткості на згин $g_1(s)$ і кручення $g_2(s)$ (s – дуга на контурі L; $\alpha_0^*, \beta_0^*, \alpha_1^*, \beta_1^*$ – полярні кути, що визначають зони підсилення). Зовнішнє навантаження на контурі отвору та підсиленнях відсутнє. Розв'язок задачі полягає у визначенні контактних моментів M_{ρ}, P у зонах підсилення та кільцевих M_{λ} і крутних $H_{\rho\lambda}$ моментів на контурі отвору.

Основні рівняння задачі. За допомогою раціональної функції [6]

$$z = \omega(\xi) = R_0(\xi + \frac{\varepsilon}{\xi^{N-1}}) \tag{1}$$

здійснимо конформне відображення зовнішності одиничного кола Γ у площині $\xi = \rho e^{i\lambda}$ на область z = x + iy, яку займає середня площина пластинки; $i = \sqrt{-1}$; R_0 – характерний розмір отвору; ε – параметр, який характеризує відхилення форми многокутника від кола.

Моделюючи підсилення тонкими пружними лініями граничні умови задачі [7] можна перетворити до вигляду

$$\frac{\partial w}{\partial x} = \int_{\beta_0}^{\lambda} \frac{\sqrt{\alpha^2(t) + \beta^2(t)}}{g_1} \left\{ f_2(t) \left[R_2^2(t) + \frac{g_1}{g_2} R_1^2(t) \right] + f_1(t) R_1(t) R_2(t) \left(1 - \frac{g_1}{g_2} \right) \right\} dt + c_1;$$

$$\frac{\partial w}{\partial y} = \int_{\beta_0}^{\lambda} \frac{\sqrt{\alpha^2(t) + \beta^2(t)}}{g_1} \left\{ f_2(t) R_1(t) R_2(t) \left(\frac{g_1}{g_2} - 1 \right) - f_1(t) \left[R_1^2(t) + \frac{g_1}{g_2} R_2^2(t) \right] \right\} dt + c_2,$$

$$\lambda \in [\alpha_0; \beta_0];$$
(2)

$$\frac{\partial w}{\partial x} = \int_{\pi+\beta_1}^{\lambda} \frac{\sqrt{\alpha^2(t) + \beta^2(t)}}{g_1} \left\{ f_2(t) \left[R_2^2(t) + \frac{g_1}{g_2} R_1^2(t) \right] + f_1(t) R_1(t) R_2(t) \left(1 - \frac{g_1}{g_2} \right) \right\} dt + c_3;$$

$$\frac{\partial w}{\partial y} = \int_{\pi+\beta_1}^{\lambda} \frac{\sqrt{\alpha^2(t) + \beta^2(t)}}{g_1} \left\{ f_2(t) R_1(t) R_2(t) \left(\frac{g_1}{g_2} - 1\right) - f_1(t) \left[R_1^2(t) + \frac{g_1}{g_2} R_2^2(t) \right] \right\} dt + c_4,$$

 $\lambda \in [\alpha_1 + \pi; \beta_1 + \pi],$

де

$$f_{1} + if_{2} = i\int_{\alpha_{0}}^{\lambda} \{M_{\rho}^{*} + iP^{*}\}e^{it}dt = \begin{cases} f_{1}^{0} + if_{2}^{0}, \lambda \in [\alpha_{0}; \beta_{0}] \\ \widetilde{f}_{1} + i\widetilde{f}_{2}, \lambda \in [\alpha_{1} + \pi; \beta_{1} + \pi] \end{cases}; g_{1} + ig_{2} = \begin{cases} g_{1}^{0} + ig_{2}^{0}, \lambda \in [\alpha_{0}; \beta_{0}] \\ \widetilde{g}_{1} + i\widetilde{g}_{1}, \lambda \in [\alpha_{1} + \pi; \beta_{1} + \pi] \end{cases};$$

 $R_1 + iR_2 = e^{i\theta}; \quad M_{\rho}^* + iP^* = (M_{\rho} + iP)\omega'(\sigma); \quad \omega'(\sigma) = \alpha + i\beta; \quad [\alpha_0, \beta_0] \cup [\alpha_1 + \pi, \beta_1 + \pi] -$ образ ділянки $[\alpha_0^*, \beta_0^*] \cup [\alpha_1^* + \pi, \beta_1^* + \pi]$ при відображенні (1); $c_1, c_2, c_3, c_4 -$ дійсні сталі. Решта позначень такі ж, як і в [7].

Компоненти кута повороту нормалі в контурних точках середньої площини пластинки при заданому навантаженні на підставі [7] запишемо так:

$$\frac{\partial w}{\partial x} = \frac{k}{3+\nu} \{(1+\nu)f_1(\lambda) - \frac{2}{\pi} \int_{\alpha_0}^{\beta_0} f_1^{\prime 0}(t) \ln \sin \frac{\lambda - t}{2} dt - \frac{2}{\pi} \int_{\alpha_1}^{\beta_1} \widetilde{f'}_2(\widetilde{t}) \ln \cos \frac{\lambda - \widetilde{t}}{2} d\widetilde{t} - \frac{3+\nu}{1+\nu} (M_1 + M_2) \cos \lambda - \frac{1-\nu}{1+\nu} (M_1 + M_2) \varepsilon \cos(N-1)\lambda + 2(M_2 - M_1) \cos \lambda - (1-\nu)\widetilde{C}_1 \varepsilon \sin(N-1)\lambda - (3+\nu)\widetilde{C}_1 \sin \lambda\} + C_1;$$
(3)
$$\frac{\partial w}{\partial y} = \frac{k}{3+\nu} \{(1+\nu)f_2(\lambda) + \frac{2}{\pi} \int_{\alpha_0}^{\beta_0} f_1^{\prime 0}(t) \ln \sin \frac{\lambda - t}{2} dt + \frac{2}{\pi} \int_{\alpha_1}^{\beta_1} \widetilde{f'}_1(\widetilde{t}) \ln \cos \frac{\lambda - \widetilde{t}}{2} d\widetilde{t} - \frac{3+\nu}{1+\nu} (M_1 + M_2) \sin \lambda + \frac{1-\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \sin \lambda + \frac{1-\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - 2(M_2 - M_1) \sin \lambda - \frac{3+\nu}{1+\nu} (M_1 + M_2) \varepsilon \sin(N-1)\lambda - \frac{3+\nu$$

$$-(1-\nu)\widetilde{C}_{1}\varepsilon\cos(N-1)\lambda + (3+\nu)\widetilde{C}_{1}\cos\lambda + C_{2}; \qquad \lambda \in \gamma.$$

Тут $k = \frac{1}{D(1-v)}$; $D = \frac{2Eh^3}{3(1-v^2)}$; *E*, v – модуль Юнга і коефіцієнт Пуассона матеріалу

пластинки; C_1, C_2, \tilde{C}_1 – дійсні сталі.

Підстановка (3) у граничні умови (2) призводить до системи чотирьох сингулярних інтегро-диференціальних рівнянь з логарифмічними ядрами для знаходження функцій $f_1^0, f_2^0, \tilde{f}_1, \tilde{f}_2$

$$\frac{k}{3+\nu} \{(1+\nu)f_{_{1}}^{_{0}}(\lambda) - \frac{2}{\pi} \int_{\alpha_{0}}^{\beta_{0}} f_{_{2}}^{_{0}}(t) \ln \sin \frac{\lambda-t}{2} dt - \frac{2}{\pi} \int_{\alpha_{1}}^{\beta_{1}} \widetilde{f}'_{_{2}}(\widetilde{t}) \ln \cos \frac{\lambda-\widetilde{t}}{2} d\widetilde{t} - \frac{3+\nu}{1+\nu} (M_{1}+M_{2}) \cos \lambda - \frac{1-\nu}{1+\nu} (M_{1}+M_{2}) \varepsilon \cos(N-1)\lambda + 2(M_{2}-M_{1}) \cos \lambda - (1-\nu)\widetilde{C}_{1} \varepsilon \sin(N-1)\lambda - (3+\nu)\widetilde{C}_{1} \sin \lambda\} + \breve{C}_{1} =$$

9

$$\begin{split} & \int_{R_{0}}^{2} \frac{\sqrt{\alpha^{2}(t) + \beta^{2}(t)}}{g_{1}^{0}} \Biggl\{ f_{2}^{0}(t) \Biggl[R_{2}^{2}(t) + \frac{g^{0}}{R_{2}^{0}} R_{1}^{2}(t) \Biggr] + f_{1}^{0}(t) R_{1}(t) R_{2}(t) \Biggl(1 - \frac{g^{0}}{g_{2}^{0}} \Biggr) \Biggr\} dt; \\ & \frac{k}{3 + \nu} \left\{ (1 + \nu) f_{1}^{0}(\lambda) + \frac{2}{\pi} \int_{\sigma_{0}}^{R_{0}} f_{1}^{0}(t) \ln \sin \frac{\lambda - t}{2} dt + \frac{2}{\pi} \int_{\sigma_{0}}^{R_{0}} f_{1}^{1}(t) \ln \cos \frac{\lambda - \tilde{t}}{2} dt - \\ & - \frac{3 + \nu}{1 + \nu} (M_{1} + M_{2}) \sin \lambda + \frac{1 - \nu}{1 + \nu} (M_{1} + M_{2}) \varepsilon \sin(N - 1) \lambda - 2(M_{2} - M_{1}) \sin \lambda - \\ & - (1 - \nu) \widetilde{C}_{1} \varepsilon \cos(N - 1) \lambda + (3 + \nu) \widetilde{C}_{1} \cos \lambda \right\} + \widetilde{C}_{2} = \\ & = \int_{R_{0}}^{\lambda} \sqrt{\frac{\alpha^{2}(t) + \beta^{2}(t)}{g_{1}^{0}}} \Biggl[f_{2}^{0}(t) R_{1}(t) R_{2}(t) \Biggl(\frac{g^{0}}{g_{2}^{0}} - 1 \Biggr) - f_{1}^{0}(t) \Biggl[R_{1}^{2}(t) + \frac{g^{0}}{g_{2}^{0}} R_{2}^{2}(t) \Biggr] \Biggr\} dt, \\ & \lambda \in [\alpha_{0}; \beta_{0}]; \end{split} (4) \\ & \frac{k}{3 + \nu} \left\{ (1 + \nu) \widetilde{f}_{1}(\tilde{\lambda}) - \frac{2}{\pi} \int_{\sigma_{0}}^{R_{0}} f_{1}^{0}(t) \ln \cos \frac{\tilde{\lambda} - t}{2} dt - \frac{2}{\pi} \int_{\sigma_{0}}^{R_{0}} \widetilde{f}_{1}^{1}(\tilde{t}) \ln \sin \frac{\tilde{\lambda} - \tilde{t}}{2} d\tilde{t} - \\ & - \frac{3 + \nu}{1 + \nu} (M_{1} + M_{2}) \cos(\tilde{\lambda} + \pi) - \frac{1 - \nu}{1 + \nu} (M_{1} + M_{2}) \varepsilon \cos(N - 1)(\tilde{\lambda} + \pi) + 2(M_{2} - M_{1}) \cos(\tilde{\lambda} + \pi) - \\ & - (1 - \nu) \widetilde{C}_{1} \varepsilon \sin(N - 1)(\tilde{\lambda} + \pi) - (3 + \nu) \widetilde{C}_{1} \sin(\tilde{\lambda} + \pi) \Biggr\} + \widetilde{C}_{3} = \\ & \frac{1}{\beta} \frac{\sqrt{\alpha^{2}(\tilde{t} + \pi) + \beta^{2}(\tilde{t} + \pi)}}{\tilde{g}_{1}} \Biggl\{ \tilde{f}_{1}^{1}(\tilde{t}) \Biggr\| \cos \frac{\tilde{\lambda} - t}{2} dt + \frac{2}{\pi} \int_{\sigma_{0}}^{R_{0}} \tilde{f}_{1}^{1}(\tilde{t}) \Biggr\| \sin \frac{\tilde{\lambda} - \tilde{t}}{2} d\tilde{t} - \\ & - \frac{1 - \nu}{1 + \nu} (M_{1} + M_{2}) \sin(\tilde{\lambda} + \pi) + \frac{1 - \nu}{1 + \nu} (M_{1} + M_{2}) \varepsilon \sin(N - 1)(\tilde{\lambda} + \pi) + 2(M_{2} - M_{1}) \cos(\tilde{\lambda} + \pi) - \\ & - (1 - \nu) \widetilde{C}_{1} \varepsilon \cos(N - 1)(\tilde{\lambda} + \pi) - (3 + \nu) \widetilde{C}_{1} \sin(\tilde{\lambda} + \pi) \Biggr\} + \widetilde{C}_{3} = \\ & \frac{1}{\beta} \frac{\sqrt{\alpha^{2}(\tilde{t} + \pi) + \beta^{2}(\tilde{t} + \pi)}}{\tilde{g}_{1}} \Biggr\{ \tilde{f}_{1}^{2}(\tilde{t}) \Biggr\| R_{1}^{1}(\tilde{t}) \Biggr\| \cos \frac{\tilde{\lambda} - t}{2} dt + \frac{2}{\pi} \int_{\sigma_{0}}^{R_{1}} \tilde{f}_{1}^{1}(\tilde{t}) \Biggr\| \sin \frac{\tilde{\lambda} - \tilde{t}}{2} d\tilde{t} - \\ & - \frac{3 + \nu}{1 + \nu} (M_{1} + M_{2}) \sin(\tilde{\lambda} + \pi) + \frac{1 - \nu}{1 + \nu} (M_{1} + M_{2}) \varepsilon \sin(N - 1)(\tilde{\lambda} + \pi) - 2(M_{2} - M_{1}) \sin(\tilde{\lambda} + \pi) - \\ & - \frac{1 - \nu}{1 + \nu} (M_{1} + M_{2}) \sin(\tilde{\lambda} + \pi) + \frac{1 - \nu}{1 + \nu} (M_{1} + M_{2}) \varepsilon \sin(N - 1)(\tilde{\lambda} +$$

де $\tilde{\lambda} = \lambda - \pi; \, \breve{C}_1 = C_1 - c_1; \, \breve{C}_2 = C_2 - c_2; \, \breve{C}_3 = C_1 - c_3; \, \breve{C}_4 = C_2 - c_4; \, \breve{t} = t - \pi.$

До системи (4) необхідно додати умови рівноваги підсилень[1]

$$\int_{\alpha_0}^{\beta_0} f_1'^0(t) dt = 0, \quad \int_{\alpha_0}^{\beta_0} f_2'^0(t) dt = 0, \quad \int_{\alpha_1}^{\beta_1} \widetilde{f}_1'(t) d\widetilde{t} = 0, \quad \int_{\alpha_1}^{\beta_1} \widetilde{f}_2'(\widetilde{t}) d\widetilde{t} = 0$$
(5)

та умову однозначності прогину пластинки [6]

$$\frac{\varepsilon(1+\chi)}{2\pi} \int_{\gamma} [f_1'(t)\cos((N-1)t) - f_2'(t)\sin((N-1)t)]dt + (\varepsilon^2(N-1)+\chi)\widetilde{C}_1 = 0, \quad (6)$$

які служать для визначення сталих $\breve{C}_1, \breve{C}_2, \breve{C}_3, \breve{C}_4, \widetilde{C}_1$.

Контактні напруження через функції $f_1(\lambda)$, $f_2(\lambda)$ визначають такими співвідношеннями

$$M_{\rho} + iP = \frac{(f_{2}^{\prime 0} - if_{1}^{\prime 0})\alpha + (f_{1}^{\prime 0} - if_{2}^{\prime 0})\beta}{\alpha^{2} + \beta^{2}} e^{-i\lambda}, \ \lambda \in [\alpha_{0}; \beta_{0}];$$
(7)
$$M_{\rho} + iP = \frac{(\tilde{f}_{2}^{\prime} - i\tilde{f}_{1}^{\prime})\alpha + (\tilde{f}_{1}^{\prime} - i\tilde{f}_{2}^{\prime})\beta}{\alpha^{2} + \beta^{2}} e^{-i\lambda}, \ \lambda \in [\alpha_{1} + \pi; \beta_{1} + \pi].$$

Кільцеві і крутні моменти на контурі *L* визначають за формулами [2].

Розглянемо окремі випадки задачі (4)-(6):

- поклавши в (4)–(6) g₁→∞, g₂→∞, отримаємо систему рівнянь задачі для випадку підсилення контуру отвору двома абсолютно жорсткими ребрами загального положення;
- при g₁→0, g₂→0 (підкріплення відсутнє) із (4)–(6) знаходимо розв'язок задачі для нескінченної пластини з непідкріпленим криволінійним отвором [6];
- якщо є = 0, то система (4)–(6) визначає розв'язок задачі для кругового отвору;
- у випадку $g_2 \rightarrow 0$, із (4)–(6) отримуємо розв'язок задачі, коли кожне з підсилень має тільки згинальну жорсткість [1–3];
- якщо α₀ = α₁, β₀ = β₁, N = 2, то система (4)–(6) визначає розв'язок задачі про часткове підсилення контуру еліптичного отвору двома центральносиметричними ребрами змінної жорсткості;
- при $\alpha_0 = -(\beta_1 + \pi)$ і $\beta_0 = -(\alpha_1 + \pi)$ із (4)–(6) знаходимо розв'язок відповідної задачі для нескінченної пластинки з криволінійним контуром, частково підкріпленим двома симетричними відносно осі *Ox* ребрами змінної жорсткості;
- якщо підсилювальні елементи мають постійну ширину b_0 , то при $E_0/_F = 1$;

$$h_0/h = 1; \ \beta_0 \to (\alpha_1 + \pi) \ i \ \alpha_0 \to (\beta_1 + \pi) \ is (4)$$
-(6) отримаємо розв'язок задачі
про згин пластинки, послабленої вільним криволінійним отвором, на
контурі якого наявні два фізичні надрізи глибиною b_0 .

Наближений розв'язок задачі. Оскільки характеристична частина системи (4)– (6) нічим не відрізняється від характеристичної частини системи [8], то числову реалізацію задачі проведено методом колокації [8], яким досліджено вплив жорсткості підсилювальних елементів на напружений стан пластинки. На рис. 2 наведено результати розрахунку контактних моментів на контурі трикутного ($N = 3, \varepsilon = 0.15$) отвору, який підсилений двома осесиметричними стержнями з параметрами $\alpha_0 = 30^{\circ}$ (*град*), $\beta_0 = 150^{\circ}$ (*град*), при $h_0/h = 1$, $b_0/\rho_0 = 1/20$, $b_0/h_0 = 1/3$, $M_1 = 1$, $M_2 = 0$, $R_0 = 1$ (*E*₀ – модуль Юнга матеріалу підсилення). На рис. 3. зображено епюри кільцевих і крутних моментів на контурі отвору.

Рисунок 2. Графіки розподілу моментів *M*₀,*P* у зоні підсилення

Рисунок 3. Графіки розподілу величин $H_{\rho\lambda}$, M_{λ} по контуру отвору

Висновки. Із наведених результатів випливає, що збільшення відносної жорсткості підсилень призводить до різкого зменшення на ділянках підсилення кільцевих моментів M_{λ} та зростання контактних моментів M_{ρ} і P. Величини M_{λ} , $H_{\rho\lambda}$ в околі торців підсилень з боку вільної зони та зони підсилення набувають необмежених значень. Максимальні моменти виникають на ділянках контуру з найбільшою кривиною та ділянках, вісь симетрії яких перпендикулярна до напрямку дії зовнішнього навантаження.

Список використаної літератури

- 1. Сяський, А. Основні інтегральні співвідношення в технічній теорії згину пластин з отворами [Текст] / А. Сяський, С. Гаврюсев // Вісник Тернопільського державного технічного університету. 2006. Т. 11. №1. С. 12–17.
- 2. Сяський, А. Контактна взаємодія пластин з криволінійними отворами і розімкнених несиметричних ребер змінної жорсткості [Текст] / А. Сяський, Н. Шевцова // Вісник Тернопільського державного технічного університету. 2006. Т. 11. №3. С. 20–26.
- Сяський, А.О. Дослідження несиметричності підсилення контуру пластинки розімкненим ребром змінної жорсткості [Текст] / А.О. Сяський, Н.В. Шевцова // Наукові нотатки. Міжвузівський збірник за напрямом «Інженерна механіка». – Луцьк, 2007. – Випуск 20 (2). – С. 205–210.
- 4. Сяський, А.А. Упругое равновесие пластинки с частично подкрепленным криволинейным отверстием [Текст] / А.А. Сяський // Прикл. математика и механика. 1986. Т. 50. №2. С. 247–254.
- 5. Сяський, А.А. Изгиб анизотропных пластин с криволинейными ребрами жест кости [Текст] / А.А. Сяський. Ровно, 1988. 14с. Деп. в УкрНИИНТИ 19.01.1989, №352-Ук 89.
- 6. Бережницкий, Л.Т. Изгиб тонких пластин с дефектами типа трещин [Текст] / Л.Т. Бережницкий, М.В. Делявский, В.В. Панасюк. Киев: Наукова думка, 1979. 400с.
- 7. Сяський, А. Напружений стан пластинки з частково підсиленим криволінійним контуром при її циліндричному згині [Текст] / А. Сяський, В. Кот // Вісник Тернопільського національного технічного університету. 2011. Т.16. №2. С.30–36.
- Трохимчук, О. Тиск жорсткого штампа з кутовими точками на частково підсилений контур криволінійного отвору в нескінченній ізотропній пластинці [Текст] / О. Трохимчук, А. Сяський // Вісник Тернопільського державного технічного університету – Тернопіль, 2009. – Т. 14. – №2. – С. 30–36.

Отримано 01.02.2012