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Abstract. Energy spectrum of a model of narrow-band metal into which the periodically 
spaced Anderson-Hubbard centers are introduced has been studied. Hybridization with 
conduction band results in the indirect exchange interaction which is different from the 
interactions between localized magnetic moments and strong on-site Coulomb interaction. To 
study effect of the lattice deformation under the external pressure (or the self-contraction of the 
lattice) on electrical properties of the system, the phonon term and elastic energy have been 
taken into account. The equilibrium values of lattice strain and chemical potential have been 
calculated self-consistently for non-zero temperatures. Within the Green function approach, the 
energy spectrum has been calculated as function of model parameters, temperature and external 
pressure. Our results show that there exists a threshold value of the external pressure above 
which energy gap value decreases rapidly with temperature and system becomes a correlated 
metal. 

1. Introduction 
 
In recent years the metal-insulator transition problem has been intensively studied in the framework of 
periodic Anderson model [1-4]. Methods developed for investigation of Hubbard model, namely 
dynamical mean field theory (DMFT) [1,2], Gutzwiller variational method [3,4], exact diagonalization 
[4], spectral density approximation and modified alloy analogy [5] have been applied to clarify the 
role of hybridization in destabilization of Mott insulator. It has been found that the width of the Mott 
gap is renormalized by hybridization effects [2], and the increase of temperature leads to the gap 
closure [1], however the pressure-temperature phase diagram has not been built so far. To complement 
the results cited above, we have considered a model of the periodically spaced Anderson-Hubbard 
centers hybridized with conduction band which takes into account the lattice elastic energy also and 
allows to describe the effect of the external pressure on energy spectrum of the system.  
 
2. The model Hamiltonian  
We start from the model of Anderson-Hubbard material which generalizes the models [6, 7] and take 
into account the peculiarities of correlation effects in narrow energy bands. The Hamiltonian contains 
terms describing localized (d) subsystem and band (s) subsystem as well as their hybridization 
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where 
id , id  are creation and annihilation operators for spin  electron on іth center in localized (d) 

state; 
ic , ic  are operators of band electron creation and annihilation, fqb  operators describe phonon 

subsystem. The parameters of hybridization of band and localized states   guVuV  and electron 

hopping   
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1 0 are renormalized due to the lattice strain u (values of parameters g, B, 

V0, C depend on the narrow-band compound [8]), other notations are usual. 
The model Hamiltonian (1) takes into account basic processes and interactions in a narrow non-
degenerate band, namely electron hoppings (Hs term), intra-site Coulomb repulsion (the fifth sum), 
interatomic exchange (the fourth sum), the hybridization of band and localzed states (Hsd term). The 
terms “localized” and “band” used here can have different sense depending on the peculiarities of the 
material under consideration. If a transition metal is studied then the localized subsystem are 3d-
electrons and band subsystem is formed by s-p-electrons. For the case of narrow band oxides, 3d 
electrons form the localized sybsystem and band states correspond to both 3d electrons of transition 
metal and 2p of oxygen sybsystem, in rare earth compounds one has localized f-electrons and band s-
p-d-electrons.  
 
3. Lattice self-contraction and metal-insulator transition  
We use the Green function method for calculation and write the equation for localised electron 


 pp dd  and band electron 

 pp cc  Green functions. To break off the chain of equation we 

apply a projection procedure [9] 
  ;;   
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  pppppp ddnddn  (4) 

and analogous decouplings in the equations for functions 
 pp dc  and 

 pp cd . Solving 

the equations with respect to band and localised electrons Green functions we obtain the energy 
spectrum 
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for localized electrons and standard band spectrum for itinerant ones. The spectrum (5), calculated 
using simple projection procedure, is equivalent to the corresponding results of Gutzwiller variational 



 
 
 
 
 
 

approach [3, 4]. The distinctive feature of the present result and results of papers [3, 4] from the results 
of paper [5] is the presence of  hybridization gap even in the formal limit of U=0. 
Both the bandwidth and band center position cal be changed by the external pressure application. The 
equilibrium value of the lattice strain can be found from a minimum condition for Gibbs function  

 uNPVFPVFG  10 , (6) 
as 
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To find  kk cc 
 , determined by the spectral function of band electrons, we first calculate the 

chemical potential from the condition   nNccdd
i

iikk  
 . For the transtion to be initiated 

the equilibrium value of lattice strain has to be equal 0)5.0()( 0  BVSwWu c .  
After numerical calculation with model rectangular density of states at non-zero temperature we obtain 
from equation (7) the monotonic dependence of equilibrium lattice strain on temperature. As lattice 
contracts at the increase of temperature, it induces the metallization of the system. Following the paper 
[8] we take parameter values 1

0 05.01  eVCV ; eVBV 30  , S=0.4 еV; W=2,2 eV; w 2 eV; U=5 
eV and obtain the pressure-temperature phase diagram shown in figure 1. 

 
Figure 1. The pressure-temperature phase diagram of metal-
insulator transition in the model. 

 

4. Conclusions 
In the simple model of narrow band compound with Anderson-Hubbard centers taking into account 
lattice elastic energy a destabilization of the low temperature insulator phase can be easily described. 
The increase of temperature leads to the transition from insulating to metallic state, contrary to the 
Hubbard model at integer filling. Qualitatively, the obtained temperature dependence of the 
hybridization gap agrees with the corresponding result of DMFT [1]. No matter how weak, the 
hybridization of band and localized states provide a sufficient mechanism for localization effects to 
dominate in a wide temperature-pressure ranges. Insulator or correlated metal phases in the phase 
diagram and the Coulomb repulsion-to-bandwidth or localized level energy-to-bandwith ratios, where 
both the bandwidth and localized levels position can be substantially changed by the external pressure 
or chemical substitution can in principle be estimated from the expreimental data on the basis of the 



 
 
 
 
 
 

considered model. There also exists a threshold value of the external pressure, above which the system 
is metallic to the lowest temperature. 
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