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The summary. Effects of two parameters on enhancement of the time-dependent fracture manifested by a 

slow stable crack propagation that precedes catastrophic failure in ductile materials have been studied. One of 

these parameters is related to the material ductility ρ, and the other describes the geometry (roughness) of crack 

surface and is measured by the degree of fractality represented by the fractal exponent α, or – equivalently – by 

the Hausdorff fractal dimension D for a self-similar crack. These studies of early stages of ductile fracture are 

preceded by a brief summary of modeling the phenomenon of delayed fracture in polymeric materials, 

sometimes referred to as “creep rupture”. Despite different physical mechanisms involved in the preliminary 

stable crack extension and despite different mathematical representations, a remarkable similarity of the end 

results pertaining to the two phenomena of slow crack growth (SCG) that occur either in viscoelastic or in 

ductile media has been demonstrated. 
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МЕХАНІКА УПОВІЛЬНЕНОГО РУЙНУВАННЯ В'ЯЗКОПРУЖНИХ 
І ПЛАСТИЧНИХ ТІЛ 

 

Резюме. Досліджуються ефекти двох параметрів тривалості руйнування, яке характеризується 

повільним, стабільним поширенням тріщини, що передує  катастрофічниму руйнуванню пластичних 

матеріалів. Один з цих параметрів пов'язаний з пластичністю матеріалу ρ, а інший - описує геометрію 

(шорсткість) поверхні тріщини і визначається ступенем фрактальності, що оцінюється фрактальним 

показником α, або, рівнозначно, фрактальним показником Гаусдорфа D для автомодельної тріщини. 

Цим дослідженням ранніх стадій пластичного руйнування передує короткий виклад моделювання явища 

уповільненого руйнування в полімерних матеріалах, яке іноді називають «повзучим розривом». 

Незважаючи на різні фізичні механізми, які реалізуються при попередньому стабільному поширенні 

тріщин, демонструється подібність отриманих результатів, що відносяться до явищ повільного 

поширення тріщини (ППТ), що виникають у в’язкопружних або пластичних тілах  

Ключові слова: поширення тріщини, пластичні тіла, в'язкопружне середовище, ступінь 

фрактальності, уповільнене руйнування. 

 

1. Crack motion in a viscoelastic medium 
In late sixties and early seventies of the past century a number of physical models and 

mathematical theories have been developed to provide a better insight and a quantitative 

description of the early stages of fracture in polymeric materials. In particular two phases of 

fracture initiation and subsequent growth have been considered: (1) the incubation phase 

during which the displacements of the crack surfaces are subject to creep process but the 

crack remains dormant; and (2) slow propagation of a crack embedded in a viscoelastic 

medium. According to the linear theory of viscoelastic solids, the material response to the 

deformation process obeys the following constitutive relations  
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Here sij is the deviatoric part of the stress tensor, s denotes the spherical stress tensor, 

while G1(t) and G2(t) are time dependent relaxation moduli for shear and dilatation, 

respectively. The inverse relations read 
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Symbols eij and e are used to denote the deviatoric and spherical strain tensors and 

J1(t) and J2(t) are the two creep compliance functions. For a uniaxial state of stress these last 

two equations reduce to a simple form 
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The relaxation moduli G1(t), G2(t) and the creep compliance functions J1(t) and J2(t) 

satisfy the following integral equations 
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For a uniaxial state of stress these equations reduce to a single relation between the 

relaxation modulus Erel(t) and the creep compliance function J(t) 
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 Atomistic model of delayed fracture was considered by Zhurkov (1965) [1,2], but this 

molecular theory had no great impact on the further development of the theories based in the 

Continuum Mechanics approaches. Inspired by Max Williams W. G. Knauss of Caltech in his 

doctoral thesis considered time dependent fracture of viscoelastic materials, Knauss (1965) 

[5]. Similar research was done by Willis (1967) [4] followed by simultaneous researches of 

Williams (1967, 1968, and 1969) [6-9], Wnuk and Knauss (1970) [16], Field (1971) [14], 

Wnuk and Sih (1968a,1968b 1969, 1970a, 1970b, 1971, and 1972) [19-21,25-30], and also by 

Knauss and Dietmann (1970) [22], Mueller and Knauss (1971a, 1971b) [23,24], Berry (1961) 

[11] Graham (1968, 1969) [12,13], Kostrov and Nikitin (1970) [18], Mueller (1971) [17], 

Knauss (1973) [31] and Schapery (1973) [32]. 

What follows in this section is an attempt to present a brief summary of the essential 

results, which have had a permanent impact on the development of the mechanics of time 

dependent fracture. After this review is completed we shall point out an interesting analogy 

of delayed fracture in polymers (intricately related to the ability to creep) with the “slow 

crack growth” (SCG) occurring in ductile solids due to the redistribution of strains within the 
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yielded zone preceding the front of a propagating crack. 

Two stages of delayed fracture in viscoelastic media, incubation and propagation, are 

described respectively by two governing equations: (1) Wnuk-Knauss equation [15] and (2) 

Mueller-Knauss-Schapery equation [23,24]. The duration of the incubation stage can be 

predicted from the Wnuk-Knauss equation [15] 
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Mueller-Knauss-Schapery equation [23,24] relates the rate of crack growth 
o

a  to the 

applied constant load σ0 and the material properties such as the unit step growth ∆, usually 

identified with the process zone size, and the Griffith stress 
0
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For a constant crack length equal the length of the initial crack a0, the right hand side 

in (1.5) reduces to the square of the ratio of the Griffith stress to the applied stress 
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This quantity is sometimes referred to as “crack length quotient” – it determines how 

many times the actual crack is smaller than the critical Griffith crack [3]. Therefore, the 

larger is the number “n”, the further away is the initial defect from the critical point of 

unstable propagation predicted for a Griffith crack embedded in a brittle solid. For large “n” 

the crack is too short to initiate the delayed fracture process, see expression (1.13a) for the 

definition of the nmax. Beyond nmax growth of the crack cannot take place. For n > nmax one 

can assume that theses are stable cracks, which – according to the theory presented here – 

will never propagate. These are so-called “dormant cracks” that belong to a “no-growth” 

domain, see Appendix. 

When crack length “a” is not constant, but it can vary with time a = a(t), then the right 

side in (1.6) reads 
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Here x denotes the non-dimensional crack length, x=a/a0. It is noteworthy that the 

physical meaning of the argument /
o

a∆  appearing in (1.6) is the time interval needed for the 

tip of a moving crack to traverse the process zone adjacent to the crack tip, say 

 

/
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The location of the process zone with respect to the cohesive zone which precedes a 

propagating crack is shown in Fig. 1. 

 

 
Figure 1. Structured cohesive zone crack model of Wnuk (1972,1974) [30,33]. Note that of the two length 

parameters ∆ and R the latter is time dependent analogous to length a, which denotes the length of the moving 

crack. Process zone size ∆ is the material property and it remains constant during the crack growth process. 

Ratio R/ ∆ serves as a measure of material ductility; for R/ ∆>>1 material is ductile, while for R/ ∆ -> 1, material 

is brittle 

 

 To illustrate applications of the equations (1.5) and (1.7) we shall use the constitutive 

equations valid for the standard linear solid, see Fig. 2.  

 

  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Schematic diagram of the standard linear solid model 

 

With β1 denoting the ratio of the moduli E1/E2 the creep compliance function for this 

solid is given as 
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E
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Therefore, the nondimensional creep compliance function Ψ (t)=J(t)/J(0) reads 

 

[ ]1 2( ) 1 1 exp( / )t tβ τΨ = + − −      (1.11) 

 



 
МЕХАНІКА ТА МАТЕРІАЛОЗНАВСТВО 

 
 

 

 

 

45 

Substituting this expression into (1.5) one obtains 

 

[ ]1 1 21 1 exp( / )t nβ τ+ − − =      (1.12) 

Solving for t1 one obtains the following prediction for the incubation time valid for a 

material  

represented by standard linear solid 
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Inspection of (1.13) reveals that the quotient “n” should not exceed a certain limiting 

level 

 

max 11n β= +       (1.13a) 

 

Physical interpretation of this relation can be stated as follows: for short cracks, when 

n>nmax, there is no danger of initiating the delayed fracture process. These subcritical cracks 

are permanently dormant and they do not propagate. 

Fig. 3a illustrates the relationship between the incubation time and the loading parameter 

given either as n or s(=1/ n = σ0/σG).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3a. Logarithm of the incubation time in units of τ2 shown as a function of the loading parameter s for two 

different values of the material constant β1 = E1/E2 

 

Fig. 3b shows an analogous relation between the time used in the process of crack 

propagation and the loading parameter s. 
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Figure 3b. Logarithm of the time-to-failure used during the crack propagation phase, in units of τ2, shown as a 

function of the loading parameter s for two different values of the material constant β1 = E1/E2 

 

Note that the incubation time is expressed in units of the relaxation time τ2, while the 

time measured during the crack propagation phase of the delayed fracture is expressed in 

units of (τ2/δ), in where the constant δ contains the initial crack length a0 and the 

characteristic material length ∆, cf. (1.16). When the variable s is used on the vertical axis 

and the pertinent function is plotted against the logarithm of time, then it is seen that a 

substantial portion of the curve appears as a straight line. This confirms the experimental 

results of Knauss and Dietmann (1970) [22] used also by Schapery (1973) [32] and Mohanty 

(1972) [38]. 

To describe motion of a crack embedded in viscoelastic solid represented by the 

standard linear model one needs to insert (1.10) into the governing equation (1.6). The 

equation of motion reads then 
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t
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Solving it for the time interval δt/τ2 (= 2/
o

aτ∆ ) yields 
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It is seen from (1.15) that for the motion to exist, the quotient n should not exceed the 

maximum value defined by (1.13a). For n>nmax the cracks are too small to propagate. 

If nondimensional notation for the length and time variables is introduced 
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the left hand side of (1.15) can be reduced as follows 
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When this is inserted into (1.15) and with δ = ∆/a0, the following differential equation 

results 
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or, after separation of variables 
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Motion begins at the first critical time t1, which designates the end of the incubation 

period. Therefore, the lower limit for the integral applied to the left hand side of (1.19) should 

be θ1 = t1/τ2, while the upper limit is the current nondimensional time θ = t/τ2. The 

corresponding upper limit to the integral on the right hand side of (1.19) is the current crack 

length x = a/a0, while the lower limit is one. Upon integration one obtains  
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The resulting expression relates the crack length x to time t, namely 
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If the closed form solution for the integral in (1.21) is used, then this formula can be 

cast in the following final form 
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- This equation has been used in constructing the graphs shown in Fig. 4.  
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Figure 4.  Slow crack propagation occurring in a linear viscoelastic solid represented by the standard linear 

model depicted in Fig. 2 at β1 = 10. Crack length is shown as a function of time; points marked on the negative 

time axis designate the incubation times corresponding to the given level of the applied constant load n and 

expressed in units of τ2. The time interval between the specific point t1 and the origin of the coordinates provides 

the duration of the incubation period. Crack propagation begins at t = 0. Symbol t2 denotes time-to-failure, which 

is the time used during the quasi-static phase of crack extension and it is expressed in units of (τ2/δ). Constant δ 

is related to the characteristic material length, the so-called “unit growth step” ∆ 

 

At β1 = 10 three values of n have been used (4.00, 6.25 and 8.16, which corresponds to 

the following values of s: 0.5, 0.4 and 0.35). It can be observed that at x approaching n the 

phase of the slow crack propagation is transformed into unrestrained crack extension 

tantamount to the catastrophic fracture. The point in time, at which this transition occurs, can 

be easily seen on the horizontal axis of Fig. 4. This point of transition into unstable 

propagation can also be predicted from (1.22); substituting n for x we obtain the time to 

fracture 
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If the incubation time t1 given by (1.13) is now added to (1.23), one obtains the total 

life time of the component, namely 

1 2 1 1
1 2 2

1 1 1 1

1
ln ln ln

1 1 1
cr

n nn
T t t

n n

β τ β β
τ

β δ β β β

      + −  = + = + +       + − + + −        
 (1.24) 

 

 Summarizing the results of this section we can state that the delayed fracture in a 

viscoelastic solid can be mathematically represented by four expressions: 

- time of incubation t1 given by (1.13) for standard linear model; 

- equation of motion given by (1.22) for the same material model and defining x as a 

function of time, x = x(t); 

- time to fracture t2 due to crack propagation given by (1.23);  
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- life time Tcr equal to the sum t1 + t2, as given by (1.24). 

It is noted that while the first term in the expression (1.24) involves the relaxation time, 

material constant β1 and the quotient n, the second term in (1.24) contains also the internal 

structural constant δ. It is also noted that for the quotient n approaching one, both terms in 

(1.24) are zero, while for n exceeding nmax, the expression looses the physical sense (since in 

that case there is no propagation). With the constant δ being on the order of magnitude 

varying within the range 10
-3

 to 10
-6

 the second term in (1.24) is substantially greater than the 

first term which represents the incubation time, see also Appendix. 

For β1 = 10 and three different levels of n, the resulting functional relationships 

between the crack length x and time t are shown in Fig. 4 along with the values of the 

incubation times, expressed in units of (τ2), and the times-to-failure expressed in units of 

(τ2/δ). A numerical example is given in the Appendix. 

 Example described here, involving the standard linear solid, serves as an illustration 

of the mathematical procedures necessary in predicting the delayed fracture in polymeric 

materials. Knauss and Dietmann (1970) [22] and Schapery (1973) [32] have shown how the 

real viscoelastic materials, for which the relaxation modulus G(t) and the creep compliance 

function J(t) are measured (or calculated from equation (1.4)) and then used in the governing 

equations of motion discussed above can provide a good approximation of the experimental 

data.  

 

2. Quasi-static stable crack propagation in ductile solids 
Crack embedded in a ductile material will tend to propagate well below the threshold 

level indicated by the ASTM standards. This phenomenon of slow crack growth (SCG) is 

sometimes referred to as “subcritical” or “quasi-static” crack propagation and it is caused by 

the redistribution of elasto-plastic strains induced at the front of the propagating crack. The 

higher is the ductility of the material, the more pronounced is the preliminary crack extension 

associated with the early stages of fracture. For brittle solids this effect vanishes. 

 Ductility of the material is defined as the ratio of two characteristic strains, namely 
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= = +       (2.1) 

Here ε
f
 denotes strain at fracture, and it can be expressed as the sum of the yield strain 

εY and the plastic component of the strain at fracture ε
f
pl. We will refer to the material 

property defined by (2.1) as ductility index and we shall relate it to the parameters inherent in 

the structured cohesive zone crack model, cf. Wnuk (1972, 1974, 1990) [30,33,41] – see also 

Fig. 1. According to Wnuk and Mura (1981, 1983) [39,40] the relation is as follows 

 

iniR
ρ =

∆
      (2.2) 

 

Here the symbol Rini denotes the length of the cohesive zone at the onset of crack 

growth, while ∆ is the process zone size or the so-called “unit growth step” for a propagating 

crack. In order to mathematically describe motion of a quasi-static crack one needs to know 

the distribution of the opening displacement within the cohesive zone of the crack shown in 

Fig. 1. When the cohesive zone is much smaller than the crack length (this is the so-called 

Barenblatt’s condition) according to Rice (1968) [34] and Wnuk (1974) [33] this distribution 

is established as follows 
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Here x1 denotes the distance measured from the physical crack tip, E1 is the Young 

modulus E for the case of plane stress, while for the plane strain it is E(1-ν
2
)
-1

 where ν is the 

Poisson ratio. Symbol σY denotes the yield stress present within the end zone. For a moving 

crack both x1 and R are certain functions of time – or, equivalently – of the crack length a, 

which can be used here as a time-like variable. In agreement with Wnuk’s “final stretch 

criterion”, cf. Wnuk (1972, 1974) [30,33], two adjacent states of the time-dependent 

structured cohesive zone should be examined simultaneously, as shown in Fig. 5.  

At the instant t (state 2 in Fig. 5) the opening displacement uy(x1(t),R(t)) measured at 

the control point P, say u2(P), equals 

 

[ ] [ ]
1 1

0 0
2 0

1 1

4 4
( )

x x

dR
u P R R

E E da

σ σ
π π= =∆

 = = + ∆ 
 

    (2.4) 

 

Expansion of the variable R(x1) into a Taylor series is justified, since both states 

considered are in close proximity. For simplicity the entity [ ]
1x

R
=∆

 shall be referred to as 

R(∆). Note that at the preceding instant “t-δt” then (state 1 in Fig. 5) the vertical displacement 

uy within the cohesive zone, measured at the control point P,  located at x1 = ∆ for state 1, 

equals 

 

0
1

1

( ) ( )4
( ) ( )( ( ) ) ln

2 ( ) ( )

R R
u P R R

E R R

σ
π

  ∆ + ∆ −∆∆ 
= ∆ ∆ −∆ −   

∆ − ∆ −∆    
 (2.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Distribution of the COD within the cohesive zone corresponding to two subsequent states 
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represented by instants “t” and “t-δt” in the course of quasi-static crack extension as required in Wnuk's criterion 

of delta COD; [v2(t) – v1(t- δt)]P = final stretch 

 

According to Wnuk’s “delta COD” or “final stretch” criterion for crack motion to 

occur it is necessary that the difference between (2.4) and (2.5) is maintained constant and 

equal to the material parameter / 2δ
∧

, where δ
∧

 is the final stretch regarded invariant during 

the crack growth process. Note that a similar requirement is postulated for the size of the 

process zone or unit growth step, ∆ = const. Therefore, the final stretch criterion reads  

2 1( ) ( ) / 2u P u P δ
∧

− =        (2.6) 
 

Substituting (2.4) and (2.5) into the criterion of subcritical motion (2.6) and naming 

R(∆) by R, one obtains the following differential equation 

 

1( ) ln
2 2 4 Y

EdR R R
R R R

da R R

πδ
σ

∧
   ∆ + −∆

+ ∆ − −∆ + =   
− −∆   

   (2.7) 

 

We note that while both δ
∧

 and ∆ are constant, the entity R is a certain unknown 

function of the crack length a. Using the nondimensional length of the cohesive zone, Y and 

the nondimensional crack length X 

ini

ini

R
Y

R

a
X

R

=

=
       (2.8) 

 

and denoting the group of material constants on the right hand side of (2.7) by M and 

referring to it in the sequel as “tearing modulus” 

 

1

2 4 Y

E
M

πδ
σ

∧

 
=  

 
      (2.9) 

we rewrite the governing differential equation (2.7) in this form 

 

11
( 1) ln

2 1

Y YdY
M Y Y Y

dX Y Y

ρ ρ
ρ ρ ρ

ρ ρ

 + −
= − + − −  

− −  
   (2.10) 

 

 

This equation can be further reduced if it is assumed that we focus the attention on the 

ductile material behavior, when R>>∆, and therefore consider the case when the ductility 

index ρ substantially exceeds one. Physically it means that the process zone ∆ is much 

smaller than the length of the cohesive zone. With such an assumption and some algebraic 

manipulations involving expansion of the pertinent functions into power series one may 

reduce the right hand side of (2.10) to the following simple form, cf. Wnuk (1972, 1974) 

[30,33]  and Rice et al. (1978 and 1980) [35-37] 

 

1 1
ln(4 )

2 2

dY
M Y

dX
ρ= − −       (2.11) 
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Slow crack growth is possible only if the initial slope of (2.11) is positive, i.e., 

 

1

0
Y

dY

dX =

  ≥  
      (2.12) 

 

This condition imposes a certain restriction on the tearing modulus M. For motion to 

take place M must be greater than a certain minimum tearing modulus, i.e., 

 

min

1 1
ln(4 )

2 2
M ρ= +       (2.13) 

 

To illustrate applications of the governing equation (2.11) we shall assume in what 

follows that the tearing modulus M(ρ) is 10% higher than the minimum modulus defined by 

(2.13) 

 

1 1
( ) 1.1 ln(4 )

2 2
M ρ ρ = +  

      (2.14) 

 

 

Now we focus attention on the differential equation (2.11) amended by the condition 

(2.14), namely 

 

1 1
( ) ln(4 )

2 2

dY
M Y

dX
ρ ρ= − −       (2.15) 

 

 

It is noteworthy that according to the cohesive crack model the length R differs only 

by a multiplicative constant from Rice’s J-integral and from the Wells (1963) [52] opening 

displacement”, COD. Denoting the COD by δtip, we recall the following well-known relations 

valid for a cohesive crack model under the restriction of small scale yielding when the 

Barenblatt condition applies 
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8
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Y
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Y

Y

J

R
E
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E

a R a Y X
a

a X

σ δ

σ
δ

π

σ
π

σ
β

σ π π

=

 
=  
 

 
=  
 

= = =

    (2.16) 

 

The last equation in (2.16) represents the Dugdale relation between the length of the 

cohesive zone R and the applied load σ valid for a propagating crack for which both σ and R 

are certain functions of the crack length, while R is subjected to the Barenblatt condition 

R<<a. When physical interpretation is applied to the equations listed in (2.16), one comes to 
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a conclusion that the material resistance JR(a) due to continuing crack growth can be readily 

represented by the resistance curve R =R(a), or Y = Y(X). Denoting the ratio σ/σY by β, we 

rewrite the last of the equations (2.16) as follows 
 

2 2 ( )
( )

Y X
X

X
β

π
=       (2.17) 

 

Of course, β defined by (2.17), is a function of X. Let us now denote the right hand 

side of the governing differential equation of a moving crack by F(Y,ρ). Equation (2.15) thus 

reads 
 

( , )
dY

F Y
dX

ρ=        (2.18) 

 

Solution of (2.18) is readily obtained by the separation of variables followed by the 

integration, namely 

 

0

1

1
( )

( , )

Y

X Y X dz
F z ρ

= + ∫      (2.19) 

 

Examples of the material resistance curves Y = Y(X), or JR = JR(a), that result from 

(2.19) are shown in Figure 6.  

It is seen that the level of material ductility ρ has a substantial influence on the slope 

and shape of such material resistance curves. Figure 7 shows the graphs illustrating 

dependence of the loading parameter β on the current crack length at various values of the 

ductility index ρ. Equation (2.17) has been used to construct these curves.  

At a certain value of X each such “beta-curve” attains a maximum. When the slope 

dβ/dX approaches zero, the stable crack growth can no longer be sustained. Effects of the 

specimen geometry and loading configuration on the instabilities in fracture governed by 

equations (2.18) and (2.19) were studied by Rouzbehani and Wnuk (2005) [46]. Some other 

aspects of the structured cohesive crack model (Wnuk – Legat (2002) [42] and Wnuk’s 

criterion for subcritical crack growth were described in Wnuk (2003a, 2003b, 2003c) [43-45]. 

Quasi-static crack extension is viewed as a sequence of the local instability states. 

Attainment of the terminal instability state, which is tantamount to the catastrophic fracture, 

is seen as the termination of the slow crack growth process. 
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Figure 6. Material resistance curves obtained for three different levels of material ductility ρ = 20, 40 and 80 and 

for the initial crack length a0 = 10Rini. Points of terminal instability for each case are marked with little circles. 

Compared to a brittle solid, for which ductility index approaches one, the following increases in the effective 

material toughness at the transition to catastrophic fracture are observed: 36.6% at ρ = 20, 45.2% at ρ = 40 and 

54.2% at ρ = 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Nondimensional loading parameter β (=σ/σY) shown as a function of the current crack length X = 

a/Rini. During the quasi-static crack extension the applied load increases with an increasing crack length up to the 

point of maximum on the beta-curve. At this point the slow crack growth process ends and the transition to 

unstable (catastrophic) crack propagation takes place. Thus, the curves shown in the figure loose their physical 

meaning beyond the points of maxima. Observed increases in the loading parameter β, compared to the case of 

ideally brittle solid, are as follows: 4.4% for ρ = 20, 8.3% for ρ = 40 and 10.4% for ρ = 80 

 

 There are several techniques to establish the exact location (load and crack length) of 

the terminal instability state. Perhaps the simplest approach is to seek the maximum on the 

beta-curve. 

To do just that let us rewrite (2.17) as follows 

2

2

4 2Y

X
β

π
 =  
 

       (2.20) 

 

Differentiating both sides with respect to Y one gets 
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8
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dX
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X
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π
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Hence 
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2

4 1 ( / )
1

d dX dY Y

dY X X

β
β

π
   = −      

     (2.22) 

 

In order to convert this expression to dβ/dX one needs to multiply it by dY/dX defined 

by (2.18), which yields 

 

2

4 1
( , )

d Y
F Y

dX X X

β
ρ

π β
 = −  

     (2.23) 

 

For convenience we shall refer to the quantity proportional to the derivative dβ/dX as 

the “stability index” S = S(X), namely 

 
2

( )
4

( ) ( , )

d
S X X

dX

Y
S X F Y

X

π β
β

ρ

=

= −

       (2.24) 

 

Examples of the plots S vs. X are given in Figure 8.  

As can be readily seen all curves intersect the axis S = 0, and it is easy to read (or 

evaluate numerically) those zero points present in the stability indices diagrams. The results 

Xmax, Ymax and βmax provide the coordinates characterizing the terminal instability states. It 

should be noted that the first term in the expression for the stability index S in (2.24) is 

proportional to the rate at which energy is absorbed by the ductile material, while the second 

term is proportional to the rate at which energy is supplied by the external force. Both terms 

can be shown to be related to the second derivatives of the potential energy of a solid 

weakened by a crack and subjected to certain kind of external loading configuration 

corresponding to either “fixed grips” or “constant load” boundary condition, cf. the 

Appendix. 

In order to demonstrate the crack propagation process the diagrams shown in Fig. 7 

have been re-plotted in the way shown in Fig. 9.  

Here the vertical axis represents the current crack length, while the horizontal axis 

shows a nondimensional variable proportional to time. To make these graphs as simple as 

possible a constant rate of load increase has been assumed. The graphs shown in this figure 

are remarkably similar to the graphs shown in Fig. 4 obtained for a crack propagating through 

a viscoelastic medium. 

Despite very different physical interpretation of the mechanisms that make slow crack 

growth possible in the two considered cases, viscoelastic and ductile media, the end results 

are strikingly similar. 
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Figure 8. Stability index S shown as a function of the current length X of the propagating crack. It is noted that 

the function S passes through zero at the values of length X exactly coinciding with the location of the maxima 

observed on the beta-curves. The predicted increases in the crack length occurring due to the preliminary slow 

crack growth are as follows: 20.8% for ρ = 20, 23.7% for ρ = 40, and 26.5% for ρ = 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.  Crack length X during the quasi-static crack growth process shown as a function of the 

nondimensional time. In order to construct these graphs a constant rate of load increase was assumed. At the 

points where the slopes of these curves approach infinity the slow crack extension undergoes a transition into 

unstable (catastrophic) crack propagation. Note that this transition occurs at the values of X corresponding to the 

maxima on the beta-curves shown in Fig. 7, or – equivalently – the zeros of the S-functions shown in Fig. 8 

3. Effect of crack surface roughness on the extent of the quasi-static crack growth. 
Fractal fracture mechanics 

For almost all materials it is necessary to account for the roughness of the crack 

surfaces. Mathematically this can be achieved by application of the fractal model of a crack, 

cf. Wnuk and Yavari (2003, 2005, 2008 and 2009) [47-50] and Khezrzadeh et al. (2011) [51]. 

The degree of fractality – proportional to the degree of roughness of the crack surfaces – is 

suitably measured by the fractal exponent α, which appears in the expression for the near-tip 

stress field associated with a fractal crack, namely 

 

ij r ασ −
�       (3.1) 

 

The exponent α is related to the Hausdorff measure D of the fractal used to represent a 

self-similar crack 

 

D = 2(1- α)      (3.2) 
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Variation of the fractal dimension D from 1 (smooth crack) to 2 (two-dimensional 

void) corresponds to the variation of the exponent α from ½ to zero. Therefore, for α = ½ 

expression (3.1) yields the relation well-known in the Linear Elastic Fracture Mechanics 

(LEFM), while for the other extreme of α approaching zero, the singularity in (3.1) 

disappears. Wnuk and Yavari (2003) [47] model of an a crack embedded in the stress field 

due to a fractal geometry of the crack applies to the range of α close to 0.5 – corresponding to 

the range of the fractal dimension D close to 1.  

In what follows we shall study the effect of the degree of fractality (measured either by 

α or by D) on the quasi-static crack extension, which precedes catastrophic fracture. We shall 

apply the formula for the opening displacement within the cohesive zone associated with a 

structured cohesive crack model of Wnuk and extended to the fractal geometry, namely 

 

11
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1 1
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2

f f
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 − −   

  (3.3) 

 

where the cohesive zone length R
f
 associated with a fractal crack is related to R for the 

smooth crack by this expression, cf. Khezrzadeh et al. (2011) [51] 
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  (3.4) 

 

and the function κ is defined as follows 

 

1 ( 1)sin( )
( )

2 (1 )

α πα
κ α

α α
+ −

=
−

      (3.5) 

 

When all these expressions are substituted into the formula for the vertical component 

of the displacement within the cohesive zone associated with a fractal crack (3.3), and when 

the “final stretch” criterion for the subcritical crack (2.6) is applied within the restrictions of 

the Barenblatt’s condition R<<a, the following differential equation results 

 

[ ]1 1 1
( ) ln 4 ( , , ) /

( , , ) 2 2
ini

dR
M N X Y R R

da N X Y
ρ ρ α

α
 = − − 
 

   (3.6) 

 

Numerical integration of this equation yields the material resistance curves R = R(a) 

and the beta-curves shown respectively in Figures 10 and 11. The plots of stability indices 

corresponding to each value of the exponent α are shown in Fig. 12. All figures have been 
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drawn at the ductility index ρ = 20 and the initial crack length X0 = 10. Finally, diagrams 

depicted in Fig. 13 show the crack length as a function of time in an analogous way to the 

results presented in Fig. 4 (for cracks in viscoelastic media) and in Fig. 9 (for smooth cracks 

embedded in ductile solids). 

It is seen that the effect of the roughness of the crack surfaces on the process of slow 

stable crack growth is substantial. Rougher surfaces of a propagating crack tend to enhance 

the process of the slow stable crack growth, which precedes onset of the catastrophic fracture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10.  Material resistance curves R(a)/Rini obtained for a smooth crack (the lowest curve, α = 0.5) and two 

fractal cracks defined by the fractal exponent α equal .45 (or D = 1.1) and α = .40 (or D = 1.2). It is noted that 

increasing roughness of the crack surfaces, measured either by α, or the dimension D, enhances the effects of the 

slow crack growth on the effective material resistance. When the effective material resistance is compared with 

the one obtained for a smooth crack, one observes 57.4% increase for the fractal crack described by α = 0.40 and 

26.6% for the fractal crack with α = 0.45 
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Figure 11. Applied load shown as function of the current crack length. The lowest curve corresponds to a smooth 

crack, while the other two describe fractal cracks with rough surfaces. Degree of fractality is determined by the 

exponent α or the dimension D; for the intermediate curve α = 0.45 (or D = 1.1), while for the top curve α = 0.40 

(or D = 1.2). Enhancement of the critical load compared to that of the smooth crack attains 20.8% for fractal 

with α = 0.40 and 8.9% for fractal with α = 0.45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12.  Stability indices shown as functions of the current crack length for a smooth crack and two fractal 

(rough) cracks. Intersection points of the S-curves with the horizontal line drawn at S = 0 indicate the location of 

the terminal instability states resulting for a given degree of fractality. Enhancement in the terminal crack length 

compared to the result valid for a smooth crack is 7.77% for a fractal crack described by α = 0.40 and 5.53% for 

a fractal with α = 0.45 
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Figure 13.  Crack length shown as a function of nondimensional time parameter for a smooth crack (α = 0.5) 

and two fractal cracks (α = 0.45 and 0.40). It is seen that the increased roughness of the crack surfaces leads to a 

more pronounced quasi-static crack growth. Onset of growth process occurs at a certain threshold of the applied 

load βmin = 0.285, and it continues until the slopes of the curves approach infinity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14a.  Phases of crack development in a thick-wall welded pressure vessel 
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   I – no growth region, 

   II – stable quasi-static growth range of load, 

   III – unstable growth (catastrophic fracture) 

Figure 14b. Three ranges of crack growth in ductile solids 

 

4. Conclusions 
Effects of two parameters on enhancement of the time-dependent fracture manifested 

by a slow stable crack propagation that precedes catastrophic failure in ductile materials have 

been studied. One of these parameters is related to the material ductility (ρ) and the other 

describes the geometry (roughness) of crack surface and is measured by the degree of 

fractality represented by the fractal exponent α, or – equivalently – by the fractal dimension 

D. These studies of early stages of ductile fracture were preceded by a brief summary of 

modeling of the phenomenon of delayed fracture in polymeric materials, sometimes referred 

to as “creep rupture”. Despite different physical mechanisms involved in the preliminary 

stable crack extension and despite different mathematical representations, a remarkable 

similarity of the end results pertaining to the two phenomena of slow crack growth (SCG) 

that occur either in viscoelastic or in ductile media has been demonstrated. For the 

viscoelastic material the response to the deformation and fracture processes consists in the 

time-dependent nature of the constitutive equations that play the dominant role in 

determination of the stable crack extension. For the ductile materials, even though there is no 

explicit time-dependence in the first principles that govern behavior of these solids, the 

redistribution of plastic strains in the region adjacent to the front of a propagating crack 

enables quasi-static continuing crack growth. It has been shown that this process is very 

similar to a “creeping crack” that propagates through a polymer. 

 Figures 14a and 14b illustrate the three ranges of crack growth, namely 

 I, Region of no growth, 

 II, Region of stable crack extension, and 

III, Region of unstable propagation. 

Clearly, the existence of the incubation period followed by the propagation phase for a 

crack embedded in a viscoelastic medium resembles those three growth stages. Our study 

indicates that both material ductility and geometrical irregularities, such as roughness of the 

crack surface, enhance the period of slow stable crack extension and substantially influence 

the characteristics of the terminal instability state attained at the end of the slow crack growth 

process. For the purpose of fracture prevention both ductility and crack surface roughness are 

desirable properties. 

 

APPENDIX 
Delayed fracture occurring in a linearly viscoelastic solid such as the one discussed in 

Section 1, consists of two distinct stages: (1) incubation phase, during which the opening 

displacement associated with the crack increases in time, but the crack remains stationary, 

and (2) propagation phase, when the crack advances up to the critical length (Griffith length), 

at which transition to unstable crack extension takes place. Stage I (incubation) is described 

by the Wnuk-Knauss equation (1.5) and for the standard linear solid (see Fig. 2) the predicted 

duration of the incubation phase t1 is given as 
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The phase II (crack propagation) is governed by the Mueller-Knauss-Schapery 

equation (1.6). For the nondimensional creep compliance function Ψ (t) defined by (1.11) the 

resulting equation of motion, which relates crack length x to time t, is given by (1.22), while 

the duration of the propagation phase is predicted as follows 
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    + −  = +      + + −       
   (A.2) 

 

The total life time Tcr of the component manufactured of a polymeric material that 

obeys the constitutive equations described in Section 1 is obtained as the sum of (A.1) and 

(A.2), namely 
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 (A.3) 

 

For Solithane 50/50, a polymer which is used to model mechanical properties of the 

solid rocket fuel, the times t1, t2 and Tcr were evaluated by Knauss (1969) [10] and Mohanty 

(1972) [38]. The moduli E1 and E2 and the viscosity η2 involved in the standard linear solid 

that was applied in these studies are as follows 
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     (A.4) 

 

This leads to β1 = 1.8, the relaxation time τ2 = η2/E2=0.368 sec and the maximum 

crack length quotient nmax = 1+ β1 = 2.8. The structural length ∆ was estimated as 4.5x10
-4

 

inch, while the pre-cut cracks used in the experiments were on the order of 0.225 inch. This 

yielded the inner structural constant δ = 2x10
-3

. From (A.4) the “glassy” and the “rubbery” 

values of the creep compliance function can be readily calculated, namely 
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−

−

= =

= ∞ =
     (A.5) 

For detailed calculations the reader is referred to Knauss (1969) [10] and Mohanty 

(1972) [38]. 

The glassy (instantaneous) and rubbery (upon complete relaxation) compliance 

function values, as given in (A.5), allow one to establish the domains of the delayed fracture, 

such as “no growth”, incubation or the propagation domains. It should be noted that the creep 

compliance functions involved in these experimental investigations were obtained by use of 

the Staverman and Schwarzl (1952) [53] method, see also Halaunbrenner and Kubisz (1968) 

[54]. 

 In general, the propagation of a crack embedded in the viscoelastic medium will occur 

within a certain range of applied load. The two limiting values are (1) the Griffith stress 

evaluated for the initial crack size a0, which is 
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and (2) the propagation threshold stress 
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For the standard linear solid expression (A.7) reads 
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Using these relations one can predict the range of the applied loads for a successful 

delayed fracture test performed on Solithane 50/50 as being between 6/10 of the Griffith 

stress and the Griffith stress itself. 

Summarizing, for the loads below the threshold stress given in (A.7) and (A.8) one 

enters the “no growth” domain, where propagation does not take place and the cracks in this 

region remain dormant. The other extreme is attained when the applied constant stress σ0 

reaches the Griffith level σG. When σ0 approaches the Griffith stress we observe an 

instantaneous fracture as in a brittle medium with no delay effects. Therefore, one may 

conclude that the delayed fracture occurs only in the range 
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      (A.9) 

 

The second expression in (A.9) pertains to the standard linear model. 

 Let us now consider a numerical example for a polymer characterized by the 

following properties β1 = 10, τ2 = 1 sec and δ = 10
-4

. Pertinent calculations are performed for 

three levels of the applied load, measured either by the crack length quotient n (=σG
2
/σ0

2
) or 

by the load ratio s = σ0/σG, namely n = 8.16 (s =0.35), n = 6.25 (s=0.40) and n = 4 (s=0.50). 

Applying (A.1) and (A.2) we obtain the following incubation (t1) and time-to-failure (t2) 

values 
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     (A.10) 

 

It is noted that for this material the range of the applied stress for the delayed fracture 

to occur is contained within the interval (0.3 σG, σG). For applied stress less than the threshold 

stress of 0.3 σG the phenomenon of delayed fracture vanishes, and the crack remains 

stationary. 

 For ductile solids there are no time-dependent moduli present in the constitutive 

equations. Yet, the process of quasi-static continuing crack growth does manifest itself as 

“slow crack growth” (SCG), which in almost all cases precedes the terminal instability state 

tantamount to the catastrophic fracture. To understand this phenomenon it is essential to view 

each instant in the crack growth process as a state of the equilibrium maintained between the 

applied external effort, say the driving force G or the Rice’s J-integral or the stress intensity 

factor KI, and the material resistance to crack propagation designated by the index “R”. In 

mathematical terms this statement reads 
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      (A.11) 

 

Both measures of the external effort G and J are defined in the well-known manner; J 

= G = KI
2
/E1, while the entities on the right hand sides of (A.11) are defined by the governing 

equations (2.11) for a smooth crack and by (3.6) for a fractal crack. According to Wells 

(1963) [52] the J-criterion for fracture may be replaced by an equivalent COD (or δtip) 

criterion – just as it is predicted for the structured cohesive crack model, see equations (2.16). 

In this way all expressions in (A.11) may be replaced by just a single relation 

 

( , ) ( )APPL MATR a R aσ =       (A.12) 

 

For simplicity the symbol RMAT(a) is represented in Sections 2 and 3 by R(a) – or in 

its nondimensional version – by Y(X). In this way the equilibrium length of the cohesive 

zone R serves as a measure of the external effort 
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This is a well-known expression resulting for the small-scale yielding case (when the 

Barenblatt’s condition, R<<a, holds) from the Dugdale model. During the slow crack growth 

phase the quantity defined by (A.13) must be equal RMAT defined by the governing 

differential equations, either (2.11) for a smooth crack or (3.6) for a fractal crack. Attainment 

of the terminal instability state requires that two conditions are satisfied simultaneously  
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     (A.14) 

 

It should be noted that the derivative in the second expression of (A.14) is 

proportional to the second derivative of the total potential of the system, namely 
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Using (2.16) and recalling that the J-integral equals (2 )d d a− Π one can readily 

provide a constant of proportionality between RAPPL and the J-integral and their derivatives, 

which appear in (A.15). The potential of the cracked body Π(σ,a) is defined as follows 
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Symbol SE(a) denotes the surface energy term introduced by Griffith. Using (A.13) 

we evaluate the derivative needed in (A.14) 
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At the terminal instability point this expression should equal the derivative dY/dX 

defined in (2.11) and/or (3.6), namely 

 

transition transition

dY Y

dX X

   =      
     (A.18) 

 

The index “transition” refers to the attainment of the terminal instability state, which 

is tantamount to the transition from stable to unstable crack propagation. It is noted that the 

condition (A.18) is exactly equivalent to the requirement that the stability index defined in 

(2.24) equals zero. Fig. A1 illustrates how the condition (A.18) may be used to determine the 

state of the terminal instability. 

The intersection points shown in Fig. A1 coincide exactly with the results obtained in 

Section 2 for a smooth crack for three different levels of the material ductility, compare Fig.8. 

In an analogous way the case of the fractal crack can be resolved. Here one has 
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Figure A1. The nearly straight lines depict the functional relationship between the slope of the material R-curve, 

(dY/dX)MAT and the crack length X, while the other set of curves represents the measure of externally applied 

effort (Y/X)APPL. Points of intersection between these curves designate the terminal instability states, compare 

Figure 8 
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When these two entities representing the rate of the external effort and the rate of 

material resistance to continuing crack extension, the factor N(α,X,Y) cancels out, and one 

recovers the condition for the terminal instability expressed by (A.18). 
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