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Executive Summary 

1. The purpose of this report was to establish the effect of reduced nutrient loading from the two 

wastewater treatment works (WwTW) at Ambleside and Tower Wood on the amount and 

types of phytoplankton in the two basins of Windermere. A secondary objective was to assess 

the likely impact of reduced grazing pressure by zooplankton on phytoplankton amount. 

2. The nutrient loads from the catchment and the WwTWs were estimated in previous reports for 

the whole lake (Maberly 2008, 2009) but basin-specific loads were calculated here. The 

modelling work was carried out using the algal lake model PROTECH based on the year 

1998. The model produced a good representation of the seasonal changes in phytoplankton 

chlorophyll a and also successfully simulated the types of algae present. 

3. The mean contribution of direct discharge of SRP from WwTW between 1997 and 2007 was 

30% of the total load in the North Basin but 52% of the total load in the South Basin of 

Windermere. In 1998, the year used for the modelling exercise, this difference was even 

greater at 15% and 62% for the North and South Basin respectively.  

4. The differential contribution of the WwTWs to their respective basin translated across to the 

responsiveness of each basin to reductions in SRP loading from the WwTW. In the North 

Basin, even complete removal of the SRP load from the WwTW at Ambleside only caused an 

11% decrease in annual mean phytoplankton chlorophyll a. In contrast, in the South Basin 

complete removal of the SRP load from the Windermere WwTW would cause a 54% 

decrease in annual mean phytoplankton chlorophyll a. However, these differences are 

consistent with the observed minimal reduction in winter concentrations of SRP and TP in the 

North Basin following tertiary treatment in 1992, while substantial reductions have been 

recorded in the South Basin. 

5. Further removal of SRP from the Ambleside WwTW, while beneficial, will not be sufficient 

to cause a marked further improvement in water quality in the North Basin. More effort will 

be needed to tackle other sources of phosphorus including smaller point sources and diffuse 

sources from the catchment. In contrast, severely reducing the SRP load from WwTW 

discharging to the South Basin should have a further benefit in reducing phytoplankton. 

6. The limited modelling of the effect of zooplankton grazing on phytoplankton did not show a 

large effect but a more sophisticated zooplankton grazing module is needed (and is currently 

being developed) before we can be confident about the magnitude of this effect. Further work 

addressing the effect of climate change will also need to be included in future models and the 

forecasts could be made more robust by modelling additional years. 



 

2 

Table of contents 
 

Section Page number 

1. Introduction 3 

2. Objectives 6 

3. PROTECH simulation procedure 7 

4. PROTECH validation procedure 11 

5. Model validation 12 

6. Phytoplankton responses to nutrient reduction scenarios 16 

7. Phytoplankton responses to removal of grazing pressure 21 

8. Interpretation of model results 23 

9. Future work 26 

10. References 27 



 

3 

1. Introduction 

Windermere is England’s largest lake and is situated in the English Lake District. It is among 

the most intensively studied lakes in the world with some records extending back to the 

1930s. However, the more consistent data that formed what became the long-term monitoring 

programme were initiated by John W.G. Lund in 1945. For a description of the history of the 

long-term monitoring programme see Elliott (1990). The earliest data were collected by the 

Freshwater Biological Association at their laboratories based at Wray Castle and, from about 

1950, The Ferry House. Since 1989, the monitoring work has been undertaken by the directly 

NERC-controlled Institute of Freshwater Ecology which later became a component of the 

Centre for Ecology & Hydrology.  

 

Windermere lies at an altitude of 39 m (Talling, 1999) and comprises two basins, the North 

Basin and the South Basin, that are partially separated by several islands and an area of 

shallow water. The two basins differ in size and depth: the North Basin has a larger area, 

volume, maximum depth and mean depth than the smaller South Basin (Table 1). The 

catchment of the North Basin has a higher altitude than the catchment that links directly to the 

South Basin (mean altitude 270 vs 116 m Table 1) and the preponderance of upland, nutrient-

poor land is one of the reasons for the lower nutrient status of the North Basin which is 

currently mesotrophic, while the South Basin is mesotrophic to eutrophic. With a 

palaeolimnological perspective, however, both basins were oligotrophic in the period before 

human activity had a major effect on the lake ecology (Pennington 1943). A major review of 

Windermere was undertaken by Talling (1986) that documents, inter alia, the response of the 

two basins to nutrient enrichment. Since then a number of major changes have taken place. 

These include implementation of phosphate stripping (tertiary treatment) at the two 

wastewater treatment works (WwTW) that discharge directly into the lake, detectable effects 

of climate change and major increases in a non-native fish, the roach. Numerous scientific 

papers and reports have been written on Windermere: the two most recent being a review of 

the phosphorus inputs from the two WwTW on the lake shore (Maberly 2008) and an analysis 

of long-term changes in the lake (Maberly et al. 2008). 
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Table 1. Key physical and geographical features of the two basins of Windermere and the 

whole lake (largely based on Talling 1999). 

Feature (unit) Windermere 

North Basin 

Windermere  

South Basin  

Whole Lake 

Catchment area (km2) 187 63 250 

Mean catchment altitude (m) 270 116 231 

Lake length (km) 7.0 9.8 16.8 

Max. width (km) 1.6 1.0 1.6 

Area (km2) 8.1 6.7 14.8 

Volume (m3 x 106) 201.8 112.7 314.5 

Mean depth (m) 25.1 16.8 21.3 

Max. depth (m) 64.0 42.0 64 

Approx. mean retention time 

(days) 

180 100 280 

Mean total phosphorus (2007, 

mg m-3) 

16 21 - 

 

Like most lowland lakes in this region, phosphorus is the main resource that limits 

productivity. For example, the 2005 Lakes Tour showed that the mean concentration of 

phytoplankton chlorophyll a was strongly related to mean concentration of total phosphorus 

(Fig. 1). Although part of this relationship is the result of chlorophyll contributing to total 

phosphorus, the strong relationship is good evidence for the potent controlling effect of 

phosphorus on phytoplankton. 
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The report of Maberly et al. (2008) undertook a detailed analysis of the patterns of long-term 

change in Windermere. It demonstrated the beneficial effect that the tertiary phosphorus 

removal had had when it was first instigated in 1992 (Fig. 2).  
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The analysis identified an increase in concentrations of phytoplankton chlorophyll a in recent 

years that occurred despite no apparent change in the in-lake concentrations of total 

phosphorus or in external loading from the two directly-discharging WwTW (Maberly 2008). 

Figure 1. The relationship between mean 

phytoplankton and mean total phosphorus 

in the 20 lakes that constitute the Lakes 

Tour.  Note that both scales are 

logarithmic and that Windermere North 

Basin is indicated as a blue and the South 

Basin as a green circle. Redrawn from 

Maberly et al. (2006). 

Figure 2. Changes in annual mean 

concentration of phytoplankton 

chlorophyll a in Windermere. The vertical  

line shows the start of the tertiary 

treatment in 1992 at the two WwTWs that 

discharge directly into the lake. Figure 

derived from Maberly et al. (2008). 
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As a consequence, the amount of chlorophyll per unit of total phosphorus has increased (Fig. 

3a). The density of summer zooplankton has decreased (Fig. 3b), suggesting that the increase 

in phytoplankton may have resulted from decreasing density of zooplankton. In recent years, 

roach, which are zooplanktivorous, have increased and this could, in turn, be the cause of the 

lower summer zooplankton. 

 

Figure 3. Long-term changes in the annual mean ratio of phytoplankton chlorophyll a to 

concentration of total phosphorus (a) and zooplankton density in summer (JJA) (b) in the 

North and South Basins of Windermere. The vertical line shows the start of the tertiary 

treatment in 1992 at the two WwTWs that discharge directly into Windermere. Figure derived 

from Maberly et al. (2008). 

 

2. Objectives 

The first objective of this work was to undertake PROTECH modelling of Windermere for 

three scenarios of phosphorus removal: 

• Phosphorus removal to 1 mg L-1 (g m-3) at the Windermere (Tower Wood) and 
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• Phosphorus removal to 0.5 mg L-1 at both WwTW 

• Complete removal of WwTW discharge outside the Windermere catchment 

Secondly, PROTECH will be used to explore the effect of zooplankton grazing on 

phytoplankton populations. 

 

3. PROTECH simulation procedure 

PROTECH (Phytoplankton RespOnses To Environmental CHange; Reynolds et al. (2001)) 

is a process-based model that simulates the daily growth of multiple phytoplankton species 

throughout the water column. The model has been developed and tested on a wide range of 

lakes and reservoirs around the world over the last two decades (e.g. Elliott et al. 2000; Lewis 

et al. 2002; Elliott & Thackeray 2004; Elliott et al. 2005, 2007; Bernhardt et al. 2008) and 

been used in over 20 peer-reviewed publications. Full details of the equations within the 

model can be found in Reynolds et al. (2001). 

 

In simulating Windermere, the approach was taken to model the two basins separately and 

therefore specific driving data files were created for each basin. The year 1998 was chosen as 

a baseline for testing because the seasonal pattern of phytoplankton development was typical 

of that seen in the last few decades e.g. with a bimodal bloom response. Meteorological data 

for this year, drawn from both Ambleside and Keswick, were used to provide observed values 

for daily cloud cover, wind speed and air temperature to drive the model. For each basin, 

daily estimates of loads were needed of soluble reactive phosphorus (SRP), dissolved 

inorganic nitrogen (DIN: the sum of ammonium, nitrate and nitrite) and silica (SiO2). 

Therefore, for the North Basin, the inflowing concentrations used were those from the rivers 

Brathay and Rothay, Trout Beck, Mill Beck and Blelham Beck plus 0.43 times the total 

‘missing catchment’ attributed to the North Basin (judged on the basis of area). These 
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concentrations were converted to loads by multiplying each by their appropriate discharge, 

and linear interpolation was used to produce daily estimates. For the WwTW at Ambleside, 

daily loads of SRP were generated by apportioning the annual load according to the mean 

proportion delivered each month. Loads of DIN were estimated as 13.87-times the load of 

SRP. No SiO2 load was assumed from the WwTW. 

 

For the South Basin, the main input was derived from water moving down from the North 

Basin. Inflow data for the North Basin could not be used for this, since the plankton will have 

processed some, or most, of these nutrients and modelled nutrient concentrations from 

PROTECH could not be used as this risked propagating model errors and so the fortnightly 

concentrations in the lake, measured by CEH, were interpolated to provide daily inflow 

concentrations. Daily loads were calculated from these concentrations and the measured daily 

Newby Bridge outflow multiplied by 0.8, the proportion of the hydraulic discharge of the 

South Basin deriving from the North Basin. To these loads were added the estimated loads 

from Cunsey Beck and that estimated from the missing part of the catchment (0.57 of the total 

from the missing catchment). Finally, the loads from the WwTW from Tower Woods were 

calculated using the same approach as outlined for the Ambleside WwTW but DIN was 

estimated at 14.95-times the SRP load (see Maberly 2009). 

 

The main focus of this report is the ecological effect of the main limiting nutrient, 

phosphorus. The calculated daily load of SRP to each basin is shown in Figure 4. Loads of 

SRP were generally slightly greater in the South than the North Basin. The values in the 

North Basin showed a very large peak (Fig. 4a) reaching nearly 130 kg d-1 on 10 September 

1998. This derived wholely from the R. Brathay where the estimated load on that date was 

122 kg d-1. In turn, this derived from a relatively high concentration (0.1 g SRP m-3, Maberly 
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2009), about 10-times higher than the long-term mean, at a time of relatively high hydraulic 

discharge. These peaks of elevated SRP are seen consistently in the data record (Maberly 

2009, Fig. 3). However, it is possible that because PROTECH needs data to be derived from 

these roughly monthly data, the interpolated, daily values will have exaggerated the effect of 

this peak on annual load. However, no data are available to check this possibility and we take 

this into account in our later interpretation of the model outputs. 
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Figure 4.  Calculated daily load of soluble reactive phosphorus (SRP) from various sources 

to the North Basin (A) and South Basin (B) of Windermere in 1998. Note the peak of the very 

high load to the North Basin from the R. Rothay is truncated for reasons of scaling (see text). 
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Table 2 estimates daily loads of SRP to the North Basin and South Basin of Windermere 

separately using mean data from the eleven years between 1997 and 2007 (Maberly 2009) and 

the data calculated here for 1998. In the North Basin, the load of SRP contributed by the 

WwTW was 30% of the total load in the eleven year period and 15% of the total load in 1998. 

The lower value in 1998 was caused by the higher catchment load, mainly from the R. 

Rothay, as discussed above, but partly because of a slightly lower annual load from the 

Ambleside WwTW. In the South Basin of Windermere, SRP inputs from WwTW were larger 

both in absolute terms and as a percentage of total load. The total SRP load contributed by the 

Tower Wood WwTW was 52% in the eleven-year period and 63% in 1998. 

 

Table 2. Estimate of daily load of SRP (kg d-1) to the North and South Basins of Windermere 

as a mean over eleven years between 1997 and 2007 and for 1998. Values in parentheses for 

the WwTWs are the contribution of each WwTW to the total SRP load to the basin. 

North Basin South Basin 
Site 1997-2007 1998 Site 1997-2007 1998 
R. Brathay 1.36 1.26 Inflow from 

North Basin 
4.57 4.57 

R. Rothay 3.94 11.07 Cunsey Beck 1.12 1.92 
Blelham Beck 0.16 0.17 ‘Missing 

catchment’ 
1.29 1.47 

Trout Beck 0.69 1.15 Tower Wood 
WwTW 

7.53 
(51.9%) 

13.29 
(62.6%) 

Mill Beck 0.91 1.15 TOTAL 14.51 21.24 
‘Missing 
catchment’ 

0.98 1.11    

Ambleside 
WwTW 

3.52 
(30.4%) 

2.87 
(15.3%) 

   

TOTAL 11.56 18.79    
 
To estimate loads for the reduced load-scenarios from the two WwTW, SRP load was reduced 

proportionally in relation to the outflowing SRP concentration. In 1998, the annual mean 

concentration was 1.26 g m-3 from the Ambleside WwTW and 1.99 from the Tower Wood 

WwTW. These were larger than the mean concentration in the eleven years between 1997 and 

2007 which were 1.55 and 1.15 g m-3 at Ambleside and Tower Wood respectively. For the 1 g 
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m-3 (1 mg L-1) scenario, loads from the WwTW were reduced by 1.256-times and 1.994-times 

for Ambleside and Tower Wood respectively. For the 0.5 g m-3 scenario loads from the 

WwTW were reduced by 2.512-times and 3.988-times for Ambleside and Tower Wood 

respectively. For the complete removal scenario, loads of P from the two WwTWs were set to 

zero. For all scenarios, loads of DIN from the two WwTWs and loads of all nutrients from the 

catchment were not altered. However, since for the South Basin the load from the North Basin 

inflow was derived from monitoring data and there is no way to predict how reductions in 

load from the Ambleside WwTW will affect this, the SRP load reduction scenarios were 

operated independently i.e. the reductions in the South Basin did not include any reduction in 

load from the North Basin and so this might slightly underestimate the effect on the South 

Basin of running, for example, the 0.5 g m-3 scenario at both WwTWs. 

 

4. PROTECH validation procedure 

For validation, fortnightly observed total chlorophyll a concentrations and counted species 

data were used. The most dominant (i.e. greatest contributors to the biomass throughout the 

year) 8 species in these data were selected to be simulated by PROTECH. As the model 

predicts ecological strategy types more successfully than individual species, both the observed 

species data and the PROTECH species output were classified according to their strategy 

group. This classification is based on Reynold’s (1989) proposed groupings established using 

the morphological dimensions of the phytoplankton (Fig. 5).  

 

In the classification, C-strategists are fast growing and small sized, favoured by high light and 

nutrients availability; interestingly, there are no representatives in this study as few such types 

produced any significant biomass in 1998. S-strategists are very slow growing, but tolerate 

relatively low nutrient availability and strong stratification (most are motile). The R-
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strategists, which tend to be long and thin, are adapted to low light and a mixed water column. 

In between these main groups there are sub-groups defined; e.g. CS-strategists, which have 

some characteristics of both C- and S-strategists and CR-types which straddle the C and R 

divide. Finally, because PROTECH expresses the species specific biomass in its simulations 

as a chlorophyll concentration and not cell counts, the observed count data were approximated 

as a relative proportion of the total cell numbers for each strategy group. These proportions 

where then used to estimated what proportion of the observed total chlorophyll was due to 

each strategy group. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.  CSR strategy classification for the eight PROTECH species simulated. Ana = 

Anabaena (CS); Aph = Aphanizomenon (CS); Ast = Asterionella (R); Aula = Aulacoseira (R); 

Cry = Cryptomonas (CS); Mono = Monoraphidium (CR); Paul = Paulschulzia (S) and Pla = 

Planktothrix (R). 
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5. Model validation 

The model was run for both Windermere basins and the output compared to the observed 

data. The North Basin simulation of total chlorophyll a compared favourably to the observed 

total chlorophyll a (Fig. 6) simulating the timing of the spring and summer peak. However, 

the simulated spring peak was a little lower for one observation (day 118) and the in the early 

autumn, there was an over estimate of biomass (around day 245). This latter point reduced the 

statistical correlation between the two data sets (R2 = 0.51; P < 0.01), but with its removal, the 

correlation increased markedly (R2 = 0.75; P < 0.01), indicating the overall good agreement 

between observation and simulation. 

 

 

 

 

 

 

 

 

 

 
Figure 6.  Comparison between observed (crosses) and PROTECH simulated (solid line) 
chlorophyll a concentrations (mg m-3) for Windermere North Basin, 1998. 

 

At the CSR strategy level, there was also good agreement during the two blooms periods (Fig. 

7) with R-type diatoms dominating in the spring and CS-types dominating the 

summer/autumn bloom (consisting mainly of Cyanobacteria species), although PROTECH 

did simulate an unobserved increase in R-types at the end of the bloom (from day 258 

onwards). 
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Figure 7.  Comparison between (a) observed and (b) simulated function groups, expressed as 

chlorophyll a, in Windermere North Basin, 1998. 

 

The South Basin simulation was also compared to observations to validate PROTECH (Fig. 

8) and it showed a reasonable fit for total chlorophyll a (R2 = 0.60; P < 0.01).  
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Figure 8.  Comparison between observed (crosses) and PROTECH simulated (solid line) 

chlorophyll a concentrations (mg m-3) for Windermere South Basin, 1998. 

 

The main areas of greatest deviation from the observed total chlorophyll a were the 

underestimated biomass during the spring peak (day 118) and the underestimate of biomass at 

the end of the summer/autumn bloom (particularly around day 272). 

 

Species strategy group comparison demonstrated that, although the observed overall pattern 

of total chlorophyll a was similar in timing and magnitude between the two basins, the 

functional characteristics greatly varied during the summer/autumn bloom. During this period, 

R-types dominated in the South Basin (Fig. 9a), compared to the dominance of CS-types in 

the North Basin (Fig. 7a). It was therefore encouraging that PROTECH also simulated the 

same pattern of dominance by R-types throughout the year (Fig. 9b). Furthermore, 

PROTECH captured the observed change in the R-types with diatoms dominant in the spring 

and Planktothrix dominating throughout the duration of the second bloom. 
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Figure 9. Comparison between (a) observed and (b) simulated function groups, expressed as 

chlorophyll a, in Windermere South Basin, 1998. 

 

6. Phytoplankton response to nutrient-reduction scenarios 

The three nutrient scenarios created for each basin (annual mean SRP concentration from the 

WwTW of 1, 0.5 and 0.0 g m-3) that characterized different hypothetical conditions of 

phosphorus loading to the lake via sewage inputs were used to drive PROTECH, using the 
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1998 simulations as their baseline. The differences between the two basins’ SRP inputs was 

marked (Fig. 10), reflecting the relative importance of the sewage input to the overall load. 

Thus, North Basin’s SRP input changed very little, compared to the South Basin. Note that 

the South Basin scenario assumes no beneficial effect of P-load reduction from the North 

Basin and so may underestimate the real response of the South Basin to reduction at both 

WwTWs. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 10.  Mean daily SRP inflow concentrations for the baseline (black line) and for the 

three scenarios: 1, 0.5 and 0.0 g m-3 SRP from the two WwTW (blue, orange and green 

respectively) in (a) Windermere North Basin, 1998 and (b) Windermere South Basin, 1998. 
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Figure 11.  Comparison between the baseline (black line) PROTECH total chlorophyll a and 

for the three scenarios: 1, 0.5 and 0.0 g m-3 SRP (blue, orange and green respectively) in (a) 

Windermere North Basin, 1998 and (b) Windermere South Basin, 1998. 

 

This difference between SRP inputs to the two basins was reflected in the PROTECH 

simulations of total chlorophyll a (Fig. 11). The North Basin total chlorophyll changed very 

little, with only a slight decline occurring in the summer (Fig. 11a). In contrast, the South 
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Basin chlorophyll a decreased markedly from the spring onwards, with very little 

phytoplankton biomass being simulated in the summer particularly in the 0.5 and 0.0 g m-3 

scenarios (Fig. 11b). Thus, the contrast in the nutrient inputs for the two basins was readily 

expressed in the phytoplankton biomass simulated, showing that the South Basin was 

considerably more sensitive to the decreased sewage input scenarios than the North Basin. 

Note again that this is a worse-case scenario as any possible benefits of reduced P-load from 

the North to the South Basin were not taken into account. 

 

There were also some shifts in the phytoplankton strategy groups simulated. For example in 

the North Basin of Windermere, for the most extreme nutrient-reduction scenario where the 

WwTW works ourflow was set to zero, there was an increase in the proportion of CS algae 

such as Aphanizomenon (Fig. 13a) compared to baseline conditions (Fig. 9a). In the South 

Basin of Windermere, where a reduction in phosphorus loading from the WwTW had a large 

effect on phytoplankton abundance, the phytoplankton became dominated by R-types such as 

Asterionella and Aulacoseira (Fig. 13b) whereas in the baseline runs (Fig. 9b), there was a 

contribution from other strategy groups.  

 

The annual mean concentrations of phytoplankton chlorophyll a for the different scenarios 

and the two basins are shown in Table 3. The mean concentration in the baseline simulation is 

close to that measured during the fortnightly sampling by CEH (Reynolds et al. 1999) in the 

North Basin. The measured concentrations in the South Basin were slightly greater than those 

modelled by PROTECH (6.8 vs 5.6 mg m-3, Table 3) which could indicate an additional 

source of phosphorus to this basin. This could result from internal load from phosphorus 

released from the sediment during summer anoxia since elevated concentrations of SRP are 

often measured in the South Basin at depth in summer (CEH unpublished information). Table 
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3 also shows that the South Basin is more responsive to P-removal from WwTW than is the 

North Basin. 
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Figure 12.  Simulated strategy groups for the 0.0 g m-3 SRP scenario for (a) Windermere 

North Basin 1998 and (b) Windermere South Basin, 1998. 

 



 

21 

Table 3.  Measured and simulated annual mean phytoplankton chlorophyll a concentration 

(mg m-3) for the different modelling scenarios in the North and South Basins of Windermere 

in 1998. Values in parenthesis are the percentage of the chlorophyll a concentration relative 

to the baseline concentration (see text for discussion).  Also shown are approximate estimates 

for 1997- 2007 based on mean SRP loads in Table 2 and the regressions in Figure 14. 

 North Basin South Basin 

Scenario 1998 Estimated mean 

1997-2007 

1998 Estimated mean 

1997-2007 

Measured 6.0 - 6.8 - 

Baseline 5.6 (100%) 4.0 (100%) 5.6 (100%) 4.0 (100%) 

1.0 g m-3 SRP 5.4 (97.8%) 3.9 (96.2%) 4.1 (73.2%) 3.1 (78.0%) 

0.5 g m-3 SRP 5.2 (93.4%) 3.6 (88.9%) 3.0 (53.6%) 2.7 (67.0%) 

0 g m-3 SRP 5.0 (89.1%) 3.3 (81.5%) 2.6 (46.4%) 2.2 (55.9%) 

 

 

 

 

7. Phytoplankton responses to removal of grazing pressure 

The effect of removing zooplankton grazing pressure was limited in these PROTECH 

simulations (Fig. 13). There was almost no response in spring and autumn in either basin and 

only a small effect in summer that was slightly greater in the South (Fig. 13b) than the North 

(Fig. 13a) Basin of Windermere. 
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Figure 13.  Comparison between chlorophyll a concentrations (mg m-3) baseline simulation 

with (blue line) and without zooplankton (black line) grazing functions active for (a) 

Windermere North Basin, 1998 and (b) Windermere South Basin, 1998. 
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8. Interpretation of model results 

The analysis of SRP loads to each basin from different sources show that the North and South 

Basin of Windermere are differentially influenced by SRP from WwTW. On average (1997 to 

2007) 30% of the SRP load to the lake was derived from WwTW in the North Basin but the 

equivalent figure for the South Basin was 52% (Table 2). This difference results in part from 

the much greater catchment area for the North Basin (187 km2) compared to the South Basin 

(63 km2, Table 1). This difference in the contribution of the two WwTWs to the total load of 

SRP to each basin causes a crucial difference in the degree of phytoplankton response to 

reduced SRP load from the WwTWs. In the North Basin, even complete removal of the SRP 

input from the Ambleside WwTW only caused an 11% decrease in annual mean 

concentration of phytoplankton chlorophyll a (Table 3). In contrast, there was a forecast 54% 

decline in phytoplankton chlorophyll a in the South Basin (Table 3). This difference is not 

caused by a different sensitivity to phosphorus by the two basins, since if the annual mean 

chlorophyll a concentrations are plotted against daily SRP load for the different scenarios 

they show a very similar response (Fig. 14). The South Basin is slightly more responsive to 

increased SRP-load than the North Basin (a slope of 0.24 in South Basin vs 0.21 mg 

chlorophyll a m-3 kg-1 d in the North Basin). The greater intercept for the North Basin is 

probably an artefact caused by elevated summer chlorophyll resulting from an extreme pulse 

of SRP delivered in mid-summer (see above).  
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Figure 14.  Modelled response of mean annual phytoplankton  chlorophyll a to mean daily 

SRP load resulting from the different nutrient load scenarios for operating the WwTW. 

 

Figure 15.  Long-term changes in the mean winter concentration of total phosphorus (TP) 

and soluble reactive phosphorus (SRP) in the North and South Basins of Windermere. The 

vertical line shows the start of the tertiary treatment in 1992 at the two WwTWs that 

discharge directly into Windermere. Figure derived from Maberly et al. (2008). 
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There were not sufficient resources to run model simulations for several years and running a 

simulation for an ‘average year’ is not appropriate and there could be a concern that the 

results found her are influenced by the particular year, 1998, that had higher than average 

catchment inputs in the North Basin and higher than average inputs from the WwTW in the 

South Basin. Partially to check for this, the regressions in Figure 14 were used to estimate 

annual mean chlorophyll a concentrations based on the average loads 1997-2007 and the 

proportions of SRP reduction from each WwTW scenario as outlined above. While the 

average concentration of chlorophyll a produced was less than in the properly simulated 1998, 

the percentage reductions for the SRP-reduction scenarios were rather consistent for the 

average loads in both North and South Basin (Table 3). 

 

The recorded responses of the two basins to a reduction in SRP load on the initiation of 

tertiary treatment in 1992 also strongly supports the relatively low importance of WwTW to 

phosphorus load to the North Basin. There was a clear reduction in winter concentrations of 

TP and SRP in the South Basin but only a muted response in the North Basin (Fig. 15). 

However, a simulation of several other years with varying contribution from the catchment 

and the WwTW would further check the robustness of the conclusions. 

 

The lack of effect of removing zooplankton grazing on the phytoplankton chlorophyll is very 

interesting. At face value this suggests that zooplankton do not control phytoplankton 

abundance. While the evidence to the contrary is largely circumstantial, based on correlations 

between reduced summer zooplankton and increased summer phytoplankton there is intuitive 

support for this. A second possibility is that zooplankton abundance is suppressed by lack of 

suitable food. At present, the grazing routine in PROTECH is quite simple and probably not 

able to distinguish between control of phytoplankton by zooplankton or control of 
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zooplankton by phytoplankton.  

 

 

9. Future work 

 
Given the intriguing results highlighted in this study and the clear contrasting responses of the 

two basins, there are many possibilities for future work. Firstly, it would be perhaps wise to 

investigate other representative years using PROTECH, or at least review if the relative 

importance of SRP from the WwTW has changed for the two basins since 1998.  

 

Secondly, the effects of climate change have not been assessed. It is quite possible that, at 

least in terms of the composition of the phytoplankton community, warmer temperatures 

could select for Cyanobacteria species. Ultimately, though, the overall biomass will be greatly 

dependent on the nutrient supply to the lake.  

 

Thirdly, the secondary impacts of these changes have not been examined. For example, 

oxygen concentration will be added into PROTECH soon and this would allow the impact of 

these changes to be assessed on, for example, the habitat volume of the Arctic Charr. 

 

Finally, we are currently developing a more sophisticated grazing routine within PROTECH 

that should be able to distinguish more clearly between top-down or bottom-up interactions 

between zooplankton and phytoplankton and hence whether the recent observed worsening of 

water quality in Windermere, despite maintained phosphorus loads, is caused by trophic 

interactions within the lake. 
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