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Introduction

In June 1994 the United Kingdom government signed the European sulphur protocol which committed
them to a 70% reduction in SO2 emissions by the year 2005 and 80% by 2010, based on 1980 levels.
This was the first instance of international legislation being formulated using the critical load concept.
Notwithstanding the anticipated benefits to the environment of such reductions it was also recognised
that such improvements could be diminished unless a similar approach was used to address the problem
of increasing nitrogen emissions.

The Freshwater Sub-group of the UK Critical Loads Advisory Group (CLAG) has responsibility for
evaluating available techniques for calculating critical loads for nitrogen and for establishing a scientific
programme to address key issues and gaps in our knowledge of nitrogen dynamics. This paper summa-
rises the preliminary findings of the Freshwater Group with respect to the nitrogen status and critical
loads of UK freshwater.

General Considerations

At its peak in the 1970's, the deposition of sulphur compounds accounted for about two thirds of the
total acidic deposition in the UK. During the past 20 yrs this deposition has declined by up to 30%
while emissions of oxidised nitrogen (NO) have increased by nearly 20% as a result of emissions from
motor vehicles. Ammonia emissions, especially from agricultural sources, have also increased signifi-
cantly in recent years. When this situation and the projected future large (60-80%) reductions on S
depositions are considered, it is clear that the relative importance of N deposition will increase dramati-
cally.

Because the processes and pathways of nitrogen utilisation by vegetation, soils and water are far more
complicated than for sulphur a more complex set of questions must be addressed, for example:

a) Will different forms of N deposition (NO3-, NH,*) contribute equally and via similar processes
to the acidification and eutrophication status of freshwaters?

b) Can both acidification and eutrophication potential be quantified using similar models?

c) How can seasonal variability in nitrate leaching be incorporated into critical load models?

d) Is there a direct link between N inputs and surface water nitrate concentrations, and if so, how can
the extent of N limitation be quantified?
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Finally, bearing in mind the many complexities noted above, do we have acceptable methods to map

critical loads and exceedance valves for nitrogen (or total acidity).

Current Nitrogen Status of UK Freshwaters

A preliminary evaluation of the current nitrogen status of UK Freshwaters has been made using the

recently developed critical load database. This report will shortly be presented to the Department of

Environment by the Freshwater Group. Although the relative contributions of NO3- and NF14+ in

precipitation are approximately equal in the UK, ammonium ions are rarely detected in surface water

run-off in non-agricultural areas. Consequently only nitrate (and organic N) have been considered at

the present time although this situation could change in the future.

The pattern of nitrate concentrations in UK surface waters (INDITE 1994) clearly reveals agricultural

and urban influences in southern and eastern regions. However, by screening sites to include only those

of high sensitivity (Ca** < 300 eql-'), and excluding those with agricultural catchments, a clearer

picture emerges which reveals two major features. Firstly, significant nitrate concentrations (>20 eql-

I) occur in areas (eg Pennines and Cumbria) where S critical loads are already exceeded (See Harriman

and Christie, 1993) and secondly, some sites (especially in central and north west Scotland) exhibit

negligible nitrate leaching even though N inputs are quite large. To quantify the relationship between

leaching and deposition a matrix was derived for all 584 UK sites which fitted the above sensitivity/

land-use criteria (Table I). While the general trend is for greater nitrate leaching at higher N inputs

about 50% of these sites still retain most of the deposited N in the terrestrial ecosystem, even at some

sites where N deposition exceeds 1.0 K eq ha-' yr'.

A preliminary assessment of the factors which determine the seasonal pattern of nitrate levels was made

using monthly data from sensitive, high-elevation lochs in Galloway, south west Scotland, where veg-

etation, soil type and N inputs were as similar as possible. Even under these circumstances significant

differences were found in the pattern of nitrate leaching at these sites (Fig. 1), suggesting that each was

at a different stage of nitrogen saturation. Stoddard (1994) suggested a four stage saturation classifi-

cation (0-3) ranging from stage 0 when concentrations remained low all year, with little or no seasonality,

to stage 3 when concentrations remained high all year, again with little or no seasonal change. The

Galloway lochs appear to exhibit all the stages of saturation apart from stage 3 as shown by the distinct

groups of lochs in Figure 1. Superficially the main differences between these systems appear to be soil

depth, lake depth, flushing rate and lake to catchment area which suggests that hydrological and physi-

cal properties of systems may also be important.

Calculating Critical Load and Exceedance Values for Nitrogen

The following models are being used by the Freshwater Group to determine critical load and exceedance

values for UK freshwater. Some preliminary maps are presented but at this early stage many caveats

must be applied.
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Figure 1 Seasonal patterns of nitrate run-off in Galloway lochs, south-west Scotland.



Steady-state Water Chemistry model (SSWC)

This method was developed by Kämäri  et al.  (1992) and uses the same methodology as that applied to

sulphur

i.e. CL Ac = Q ([BC*10 -[ANC10 - BC*,kp (1)

This only differs from the sulphur value in that a lower BC0 concentration is obtained to account for the

extra base cation losses due to N leaching. The critical load values derived from equation (1) are

effectively the true total acidity loading as they reflect both N and S leaching. One important advantage

of this method is that N input data are not required to calculate exceedance values because nitrate

leaching is assumed to equal N sources minus N sinks.

i.e. Nwo, = Nd,p - Ns  (2)

where  Ns  represents all sinks of N in the catchment.

The formulation in equation 2 represents a generalised situation where current N leaching is a conse-

quence of long-term N deposition. Nevertheless it should be appreciated that current N leaching can

change significantly in the short-term, independent of N deposition. This situation is usually caused by

changes in the N dynamics of soils and vegetation, especially in managed catchments.

Consequently exceedance of the critical load of total acidity can be derived from

ExAc = Sckp -  11„0,- BC*d„, - CLAC (3)

No individual critical loads of N and S can be assigned by this method.

Provisional exceedance maps produced by this model for UK fresh waters (Fig. 2) are similar to those

for sulphur indicating that N impacted sites are generally in the same areas of the UK as those affected

by S inputs (i.e. Upland Wales, Pennines, Lake District and south west Scotland). Therefore, although

the distribution of exceeded squares remains relatively unchanged the number of sites in the high

exceedance band (> 1.0 Keqha-1yr') increases.

Diatom Critical Loads Model (DCL)

The DCL model is complementary to the SSWC model and is based on the general observation that

diatom flora retained in sediment profiles show little or no change in species composition prior to the

onset of anthropogenic acidification. Any shift to a more acidophilous diatom flora can be considered

as a "point of change" which is analagous to exceedance of the critical load for that specific and usually

very sensitive biological indicator. Development of the methodology for calculating critical loads is

described by Battarbee  et al. (1993)  but essentially the model uses relationships between pre-acidifica-

tion calcium concentrations in water (as a measure of site sensitivity) and present day sulphur and

nitrogen loadings. This relationship was derived from 41 UK lakes which gave accurate diatom records

and calibrated using logistic regression to calculate the probability of acidification for different calcium

to loading ratios.At the optimum dicrimination, giving a probability of acidification of 50%, a ratio of

94:1 was found. The model is currently being adapted to provide critical loads, and critical load

exceedances, for total acidity (sulphur and nitrogen). Exceedance values for total acidity require a

measure of the fraction of deposited nitrogen leached into the surface waters. This is calculated from
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Figure 2: Exceedance of critical loads for total acidity for UK freshwaters (revised SSWC
model)
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the differences between the proportions of sulphate/nitrate in the water and sulphur/nitrogen deposi-

tion modelled for the site. In this way the fraction of the nitrogen deposition contributing to acidifica-

tion can be added to the value of sulphur deposition to provide total "effective" acid deposition. The

critical ratio used in the diatom model has also been recalibrated using total effective deposition rather

than sulphur deposition, giving a ratio of 89:1. Critical loads for total acidity are calculated using this

ratio.

A preliminary map of UK critical load exceedances for total acidity has been prepared using the diatom

model (Fig. 3). Superficially this mirrors the exceedance map for sulphur deposition alone as the areas

most severely impacted by nitrogen deposition are also those with high exceedances for sulphur. How-

ever, calculations of the increase in exceedance due to the inclusion of leached nitrogen deposition

demonstrate that for large parts of the UK (e.g. Cumbria,the Pennines, Galloway) nitrogen deposition

by itself could account for significant exceedances. This finding has implications not only for the

regional extent of acidification, but also for the extent of recovery at these sites if only sulphur deposi-

tion is reduced.

First Order Acidity Balance (FAB) Model

The  SSWC  and DCL models only provide information on present day exceedances of critical loads.

For estimates of potential future exceedances the  FAB  model should be used. This model is based on

an acidity mass balance and includes rate-limited processes for denitrification and in-lake retention

which are assumed to increase with increasing N inputs.

The full charge balance for a lake and its catchment can be described as follows:

Nde, + +(l-r)(N,+Nde)+rN,e,+rS,e,+BC,-ANCI

where
Ndep = deposition of N

Sdep = deposition of S

1%1= net growth uptake of N by vegetation

N, = immobilisation of N in the catchment soils

Nde = N denitrified in the catchment soils

= in-lake retention of N

See, = in-lake retention of S

BC,  = base cations leaching from the catchment

ANC, = ANC leaching from the catchment

=fraction of forested area in the catchment

=  lake: catchment area ratio
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Full details of the development of this model are given by Kamari et al. (1992) and Posch et al. (1993)
and further modifications are described by Henriksen et al. (1993). The key derivations for mapping
requirements are discussed below. By incorporating relationships for denitrification and in-lake reten-



tion equation (3) can be modified to give:

aNNd,p+LISS d, p = b11\1b2N,+Q([BC.]0-1ANCI) (4)

where the dimensionless constants  as, a, b., and  b2 are all smaller than one and depend on lake and

catchment properties alone:

as =  (1 -fd,(1-r))(1-pN)

as =1-ps

bi = f(1  -fd)(1-pN)

b2 = (1-r)(1-fd,)(1-pN)

By choosing an appropriate ANC limit, equation (4) then converts to the critical load expression:

aNCL(N)+asCL(S)= biNu+b2N,+Q(03C10-[ANC1hm) (5)

Exceedance of critical load can now be calculated by subtracting the right side of equation (5) from the

left side of equation (4)

Ex(Nd„„Sd,) =  (6)

where L., = QUBC10-LANClh1)

which is the same formulation as the SSWC model.

If the potential nitrate leaching is required (for example, to compare with current N leaching or to insert

in the SSWC model to calculate future exceedances) this can be calculated by subtracting sources and

sinks of N.

i.e. N, = aNNdw-bIN-b2N, (7)

Alternatively the critical load for nutrient nitrogen can be calculated by fixing N, at a value which for

any system, would not cause eutrophication.

CL.(N)=  (blNu-i-b2N,+Nuri,)/aN (8)

Because of the substantial data requirements for different catchment types no provisional maps have

yet been produced using this model. A full description of the updated version of the FAB model is

given in Posch.
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A few general points should be emphasised when comparing the output from these models.

1. The potential nitrate leaching derived from the FAB model may not be directly transferable to
the SSWC model because the former model relates to leaching below the rooting zone while
the latter (SSWC model) uses nitrate values for water which has travelled through all soil and
geological pathways.

2. The minimum critical load of nitrogen CLmin(N) represents the point where nitrate will begin to
leach into freshwater (i.e. by setting Ni,n, at zero in equation (8). Conversely the maximum
critical load for nitrogen CL..(N) equa. tes to CL.N +

3. The key input parameter in the SSWC model is nitrate leaching, therefore to account for
seasonality some estimate of a flow weighted mean value should be used.

4. In the FAB model the key parameters are Nu (nitrogen growth uptake by vegetation) and even
more importantly, N. (nitrogen immobilisation in soils).

Accurate estimates of these parameters are urgently required for upland UK catchments of different
soil and vegetation type.

Level II Analysis  (Dynamic Models)

The requirements for a dynamic modeling approach to nitrogen is perhaps even more urgent than for
sulphur because of the complexity of nitrogen dynamics in the terrestrial ecosystem. Predicting long-
term changes requires a model which incorporates most of the key time-dependent variables. For
sulphur the Freshwater Group used the MAGIC model to assess the impacts of different deposition
scenarios while for nitrogen a derivative of MAGIC has been developed.

MAGIC-WAND (MAGIC-With Aggregated Nitrogen Dynamics) builds directly on MAGIC and al-
lows the main fluxes and transformations of nitrogen to be independently specified at each time-step.
MAGIC-WAND has been specifically developed for wide application and scenario assessment. It
maintains the sulphur based chemistry dynamics of MAGIC and considers reduced and oxidised nitro-
gen species. The model requires specification of nitrification, mineralisation, fixation and denitrification
rates and changes in these fluxes through time. Plant uptake is non-linear and dependent upon external
nitrogen concentrations. A wide range of data describing these rates and fluxes have been reported and
are reviewed to aid in model calibration.

The main sensitivity of the model lies in the selection of the parameters which describe the hyperbolic
uptake function. Literature data can provide ranges for these values but specific catchment related
values are not obtainable since the model is conceptual. Selection of uptake parameters must reflect
catchment vegetation and vegetation change through time. Further observational and experimental
work to determine nitrogen fluxes and dynamics at different ecosystems is required to facilitate site
specific and regional model applications. It is already clear that the data requirements for validation of
nitrogen models is extensive and will require detailed knowledge of the nitrogen status of UK catch-
ments.

Details of recent developments in nitrogen models and their use in calculating critical loads for nitrogen
are reported by Ferrier et al. (1995) in this volume.
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Conclusions and Recommendations

If the mass balance approach is the prefered method for mapping critical loads and exceedances for the

major ecosystem components, then the following studies are recommended, bearing in mind that many

upland catchments are leaking nitrate and may have already reached a critical saturation stage.

Priorities are:

1. To establish a programme of intensive nitrogen monitoring at a range of UK sites (e.g. Galloway,

Pennines, North Wales, SW Scotland and N Scotland) to assess spatial and temporal variability in

relation to N deposition and catchment characteristics so that appropriate N leaching values can

be obtained.

2. To determine the key catchment conditions that lead to N leaching by establishing a range of key

reference sites where simultaneous measurements of water, soils, vegetation and N deposition can

be made. This information is vital for the development of dynamic models that simulate N behav-

iour in catchments.

3. To assess the impact of elevated N concentrations on the biology of upland waters with regard to

acidification, eutrophication and species composition changes. Information on the extent of N

limitation (as opposed to P) in upland waters is essential and this may require N manipulation

experiments to speed up the interpretation of biological impacts.

4. Because many upland sites appear to be extremely sensitive and exceeded by nitrogen alone it may

be appropriate to make more extensive use of freshwater maps for N protocols.
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