
Secrecy and Authenticity in Mobile Ad-Hoc
Networks
Master's Thesis

Willard Þór Rafnsson

10th June 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60683027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Department of Computer Science
Aalborg University

Title:
Secrecy and Authenticity in Mobile
Ad-Hoc Networks

Topic:
Process Algebra, Static Analysis,
Logic Programming, Cryptographic
Protocols, Mobile Ad-hoc Networks.

Group:
d603a

Group Members:
Willard Þór Rafnsson

Supervisor:
Hans Hüttel

Project Period:
DAT6 semester,
February 1st 2008 - June 10th 2008

Number of Copies: 5

Number of Pages: 125

Completed on:
10th June 2008

Abstract:
This thesis documents a framework for ver-
ifying secrecy and authenticity properties
of Mobile Ad-hoc Networks. We present
the Distributed Applied π Calculus with
Broadcast, which is a simple, yet generic,
expressive, and conceptually simple exten-
sion to the well-established Applied π calcu-
lus consisting of connectivity graphs, broad-
cast primitives, and explicit locations. The
calculus can be instantiated by an arbitrary
Term Rewrite System, and the semantics of
the calculus is largely alike that of Applied
π. We inherit key definitions of secrecy and
authenticity from Applied π to our calcu-
lus, as well as those of frames and static
equivalence.

We prove a powerful teorem express-
ing a syntactic relationship between Horn
clauses generated from a process in the
calculus of Abadi and Blanchet, and the
source process. Several interesting corol-
laries follow from this theorem, including
that Horn clause deduction overapproxi-
mates active syntactic secrecy, and that
claims of message-passing deduced from the
Horn clauses are sound with regards to
the messages passed in the source process.
During the process of this proof, we ob-
serve a frequently overlooked assumption in
the Dolev-Yao threat model which causes
frames to become inconsistent if particu-
lar internal reductions are performed. To
address this, we give a (easily generalised)
revelation semantics which ensures frames
are consistent in the presense of such reduc-
tions.

At last, specifying how to extend the
Horn clause generator to take into account
connectivity graphs, We inherit a proof of
soundness of deduction from Horn clauses
for our calculus, thus clearing the way for
the application of automated Horn clause
constraint solvers.

Preface

This master's thesis documents the work we have made during the specialisation year in
the Distributed Systems and Semantics unit, Department of Computer Science, Aalborg
University, Denmark. The thesis is based on a project proposal by Hans Hüttel, who was
my thesis adviser during my specialisation year.
While the thesis is otherwise self-contained, it is assumed that the reader has at least

the Mathematical skills corresponding to a bachelor level in computer science. Further-
more, familiar with process calculi, in particular, with the π-calculus, would be advan-
tagous. At last, it is assumed that the reader can grasp the basics of propositional- and
predicate logic, abstract algebra, and is familiar with mathematical induction.
The work presented herein is largely written in the latter semester of the specialisation

year. However, a few sections are derived on the work presented in the DAT5 project
entitled Knowledge in An Applied π Calculus With Locations. While they have all seen
change, they do deserve mentioning. These are parts of Chapter 1, Sections 2.2, 2.3, 4.5
and 1.1.3, and much of 3.1.

Acknowledgements

I would like to take this opportunity to thank my thesis supervisor for his insights and
our stimulating discussions. While some might argue that he was merely doing his job,
I am fairly certain that he spent signi�cantly more hours on me than allotted.
While working on my thesis, I had many inspiring discussions with my fellow computer

science students. For this I would like to thank Arild Martin Møller Haugstad, Robert
Olesen Engdahl, Anders Franz Terkelsen, and Simon Kongshøj, with special thanks going
to the last two for reading and nit-picking a draft of my thesis.
Finally, I would like to thank none other than my mother, for suggesting that we try

living in Denmark, to which I responded back then, �of all places. . . �. If not for her, I
would most likely not have experienced the wonders of this wonderful country, and would
not have met the good friends and colleagues I have today.

Willard Þór Rafnsson

4

Contents

List of Tables 9

1 Introduction 11
1.1 Background . 12

1.1.1 Secrecy and Authenticity . 12
1.1.2 MANETs . 14
1.1.3 Process Calculi . 15
1.1.4 Static Analysis . 17

1.2 Objective . 18
1.3 Related Work . 18
1.4 Outline . 19

2 Preliminaries 21
2.1 Notation . 21
2.2 Universal Algebra . 22
2.3 Term Rewrite Systems . 25
2.4 Syntactic Uni�cation . 27
2.5 Horn Clauses . 28

2.5.1 Propositional Logic Setting . 29
2.5.2 Predicate Logic Setting . 31

2.6 Graph Theory . 32
2.7 Labelled Transition System . 33

3 Related Protocol Analysis Frameworks 35
3.1 The Applied π Calculus . 35

3.1.1 Syntax and Semantics . 36
3.1.2 Equivalences . 42
3.1.3 Secrecy . 45

5

Contents

3.2 Abadi/Blanchet Calculus . 47

3.2.1 Syntax and Semantics . 47

3.2.2 Secrecy . 49

3.2.3 Static Analysis . 49

3.2.4 Authenticity Extension . 51

3.3 CBS] . 53

3.3.1 Syntax and Semantics . 53

3.3.2 Control Flow Analysis . 56

3.4 CMAN . 60

3.4.1 Syntax and Semantics . 61

3.4.2 Equivalence . 67

3.5 Summary . 68

4 Distributed Applied π Calculus with Broadcast 73
4.1 Syntax . 74

4.1.1 Contexts . 75

4.2 Connectivity Graphs . 76

4.3 Semantics . 77

4.4 Examples . 79

4.5 Normal Forms . 81

4.6 Frames and Static Equivalence . 83

4.7 Summary . 85

5 Enriching ABπ and H, and Revelation Semantics 87
5.1 Extending ABπ with Active Substitutions and Sessions 88

5.1.1 Syntax and Semantics of ABπ′ . 89

5.1.2 Syntactic Consistency and Canonicalisation 93

5.1.3 Session Enrichment and Horn Clause Generation 98

5.2 Revelation Semantics . 100

5.3 Summary . 102

6 Soundness of H 105
6.1 H Overapproximates All Reachable Frames 106

6.2 Soundness Theorem . 107

6.3 Corollaries . 112

7 Secrecy and Authenticity Analysis Framework 113
7.1 Overview . 113

7.2 H and Broadcast . 115

7.3 H in DAπβ . 116

7.4 Routing Example: ARAN . 116

8 Conclusion 117
8.1 Contribution . 118

6

Contents

8.2 Future Work . 118

Bibliography 121

7

List of Tables

3 Related Protocol Analysis Frameworks 35
3.1 Syntax of Aπ. 36

3.2 Contexts of Aπ. 39

3.3 Structural equivalence in Aπ. 40

3.4 Internal Reduction in Aπ. 41

3.5 Structural equivalence in Aπ. 42

3.6 Syntax of ABπ. 47

3.7 Structural equivalence in ABπ. 48

3.8 Internal reduction relation in ABπ. 48

3.9 Patterns in Horn clauses . 49

3.10 Predicates in Horn clauses . 50

3.11 Horn clauses for control �ow. 51

3.12 Syntax of CBS]. 53

3.13 Labeled Transition in CBS]. 55

3.14 Mode Identi�ers in CBS]. 56

3.15 Reduction in CBS]. 56

3.16 Structural Equivalence in CBS]. 57

3.17 Control Flow Analysis in CBS], excerpt. 58

3.18 Syntax of CMAN. 61

3.19 Structural Congruence on P in CMAN. 62

3.20 Structural Congruence on N in CMAN. 63

3.21 Reduction in CMAN. 63

3.22 Labeled Transition for P in CMAN. 64

3.23 Labelled Transition for N for broadcast in CMAN 65

3.24 Labelled Transition for N for mobility in CMAN 66

3.25 Connection operator, ⊕, in CMAN . 67

9

List of Tables

4 Distributed Applied π Calculus with Broadcast 73
4.1 Syntax of DAπ. 75
4.2 Contexts of DAπβ . 76
4.3 Dotted Transition in DAπβ . 79
4.4 Labelled Transition in DAπβ . 80

5 Enriching ABπ and H, and Revelation Semantics 87
5.1 Syntax of ABπ′. 90
5.2 Structural equivalence in ABπ′. 91
5.3 Internal Reduction relation in ABπ′. 91
5.4 Labeled Reduction in ABπ′. 92
5.5 Encoding to Syntactically Consistent Form. 94
5.6 Canonicalising the Structural Equivalence of ABπ′. 97
5.7 Canonicalising the Internal Reduction relation in ABπ′. 97
5.8 Canonicalising the Labelled Reduction relation of ABπ′. 98
5.9 Session-introducing Encoding. 99
5.10 Horn clauses for the protocol, extended. 100
5.11 Revelation Semantics in ABπ. 101

10

CHAPTER 1

Introduction

Increasingly, our society relies more on the functioning of software systems, as these
systems take on the responsibility of more safety-critical tasks. Today, we see examples
of software systems being applied to monitor and control nuclear power plants, to assist
in maneuvering otherwise unpilotable aircraft, to control medical equipment, and to
control subway trains without a human operator. It is therefore of utmost importance
that software behaves as expected, to avoid potential catastrophes. Examples of said
catastrophes include the failed Ariane-5 launch in 1996, the loss of the NASA Mars
Climate Orbiter in 1999, and the Therac-25 radiation therapy machine which caused 6
cancer patients to die from radiation overdose during a two-year period late in the 1980s.
The cause of all of these grave mishaps has been traced to unforeseen software behaviour.

Security and correct behaviour is also of great importance in the world of �nance,
where software errors can result in the loss of millions, or worse, in bankruptcy. Between
1993 and 1994, an error in the baggage delivery system at Denver international airport
caused a 9 month delay of the opening of the airport, at the cost of $1.1 million, per day.

For correct operation, software systems often rely heavily on properties guaranteed by
various protocols. As such, it is crucial that the correctness of these protocols be veri�ed.
Of particular interest in this regard in both research and practice is the correctness of
cryptographic protocols1, which are widely applied to guarantee privacy of information
exchange, for instance, during online shopping and when bank records are transferred
over the Internet. Clearly, a weakness in such a protocol could have grave consequences.
Verifying the correctness of cryptographic prototols has proven to be quite a challenge,
however; for instance, a vulnerability in the Needham-Shroeder public-key protocol was
published in 1995 [Low95], 17 years after its development.

In particular, surprisingly little research has been done on verifying protocols for se-

1Also referred to as security protocols.

11

1 Introduction

cure routing in mobile ad-hoc networks [NH04, God06], even in the dawn of ubiquitous
computing [HM05] and the ever-increasing use of communicating mobile devices.
For all these reasons, researching formal methods for modelling software systems to

verify beyond doubt that they work as intended is paramount.

1.1 Background

Here we give a brief account on the key subjects which this thesis regards, and hint at
the objective of this thesis as we go.

1.1.1 Secrecy and Authenticity

Cryptographic protocols have been around since ancient times, the most famous ex-
amples of ancient times being the Caesar's Shift and the Atbash substitution cyphers,
applied by Romans and Hebrews, respectively. Substitution cyphers involve displacing
the alphabet in a written message by a �xed constant. These �pen-and-paper� codes
are, provided an unintended viewer is familiar with the encryption scheme, quite easy to
break, particularly by use of modern-day computers.
Since the early 20th century, however, machines and computers have been applied as

an aid in the encryption process, making code-breaking signi�cantly more di�cult. To-
day's encryption primitives are based on the inherent complexity of some computational
problems which, without the proper information, commonly referred to as the encryption
key, makes code-breaking immensely time-consuming to the point of futility2.
However, while strong cryptographic primitives are indeed important, the integrity

of the cryptographic protocol itself is of at least equal importance. During the second
world war, the Allies were capable of decrypting a large number of messages encoded by
the German Enigma cipher machines, largely due to the Allies capturing machines and
codebooks.
Veri�cation of cryptographic protocols is thus the act of ensuring that an attacker on

the protocol never learns enough information to violate the protocol guarantee. What we
mean by a cryptographic protocol is the agreed method of encrypted or authenticated
information exchange. Typically, in protocol veri�cation, perfect encryption is assumed,
as the task of verifying the integrity of encryption primitives is the subject of another
�eld3. The protocol guarantees typically come in two forms:

Secrecy properties express to which extent a given program maintains the secrecy of
some information from potential attackers. There are two general types of secrecy
properties. Syntactic secrecy expresses that a principal A does not directly expose
a message M . Strong secrecy expresses that, even if A does not expose M , an
observer should not be capable to seeing any change in the subsequent behaviour
of A for di�erent values of M [CRZ06].

2Typically, using today's computers to break modern codes would take longer than the lifespan of earth,
many times over.

3Coding and Information Theory.

12

1.1 Background

Authentication properties express whether a pair of participants A and B are capable
of performing authenticated sessions. That is, any time B ends a session, then A
must have begun the session prior [Bla02]. Typically, this property is obtained by
A secretly notifying B of the initiated session (through encrypted message passing,
or on a secure communication medium). If the secret applied is compromised, an
attacker can notify B of an initiated session, thus violating the property.

So, on one hand, the interest is in analysing authentication protocols, which involve
�setting up� for future authenticated or encrypted information exchange. This usually
involves two participants obtaining a secret key to use for encryption. On the other hand,
the interest is in verifying that crucial information is not leaked to the environment, even
when using encryption of messages.

When verifying cryptographic protocols, we do so with regards to a threat model ex-
pressing our assumtions on the capabilities of attackers. A commonly used threat model
in this regard is the Dolev-Yao threat model [DY81], proposed in 1981 by Danny Dolev
and Andrew C. Yao. In the Dolev-Yao threat model, the communication medium is
considered a sophisticated attacker which can intercept, redirect, alter and send new
messages based on anything he could deduce from common knowledge and previously
sent messages.

In fact, this is the underlying assumption in the secrecy de�nition in Sπ [AG97], and in
static equivalence in Aπ [AF01]; common to both these concepts is the fact that a message
M in principal A is no longer considered secret if there exists an evaluation context4 C[·]
such that C[·] learns message M in C[A]. These have tried-and-true assumptions, and
any protocol which keeps secret in this scenario is indeed robust.

As an example, we model the Needham-Shroeder authenticatino protocol with shared
keys in the Burrows-Abadi-Needham logic (BAN logic for short) [AT91, BAN89] � a
monumental, albeit much debated [AT91, Syv91, WK96, BM97], framework for formal-
ising and analysing informal protocol speci�cations, which has revealed subtleties and
severe errors in several published protocols [BAN89]. A run of a protocol provides two
principals, A and B, with a secure authentication key they can use to sign and share
messages, provided they know of each other's existence, that they know a key server
S, and trust S to create secure keys. In brief, A asks for and subsequently receives an
encryption key from S to use for communicating with B, forwards it to B with an authen-
ticity guarantee, and, lastly, A and B establish trust. This is illustrated in Figure 7.1.
There, A → B denotes a message passed from A to B, containing what is written after
the colon �:�. A principal name in a message is merely that principal's GUID5. Na is a
nonce6 created by principal A, Kab is a key made for A and B, and {X}Kab is message
X encrypted under that key. The function of Nb, a(Nb), makes no signi�cant change to
Nb; it is merely present so B can tell his Nb message apart from the Nb message sent
back to B by A, as B stores sent and received messages in the same pool.

4Basically, an arbitrary attacker in the presense of A
5Globally Unique IDenti�er
6A random fresh token used as a freshness guarantee

13

1 Introduction

S

A B

1: A,B,Na 2: {Na, B,Kab, {Kab, A}Kbs}Kas

3: {Kab, A}Kbs
4: {Nb}Kab

5: {a(Nb)}Kab

Figure 1.1: The Needham-Shroeder protocol, illustrated.

When modelled (idealised) in the BAN-logic, a protocol run becomes the following
exchange of messages7.

Message 2 S → A : {Na, B,Kab, {Kab, A}Kbs}Kas
Message 3 A→ B : {Kab, A}Kbs
Message 4 B → A : {Nb}Kab
Message 5 A→ B : {a(Nb)}Kab

With this idealisation, a protocol designer/veri�er can more easily see which assumptions
the protocol makes to work, model these in the BAN-logic language, and subsequently
analyse the knowledge inferred by participants. One assumption for the Needham-

Shroeder protocol is �B believes fresh(A K→ B)�, meaning B believes that any shared
key Kab is fresh. This anomalous assumption is required for the protocol to work, and
prior to idealising the protocol in the BAN-logic, the protocol designers were unaware
they were making this assumption. It is also this assumption which is the source of the
attack discovered by Gavin Lowe mentioned earlier, which involves the re-use of out-
dated shared keys. The main reason why this was not discovered by Burrows, Abadi and
Needham in 1989 is because of the underlying assumptions of their logic; they assume
all participants are trustworthy, and thus do not model attackers on the protocol. While
several formalisms have been proposed since [AG97, AF01, AB02], �nding formalisms for
the veri�cation of cryptographic protocols remains an active �eld of research.

1.1.2 MANETs

A Mobile Ad-hoc Network, or MANET for short, is a decentralised, self-con�guring net-
work of mobile broadcasting nodes, connected in a wireless manner, having an arbitrary
network topology. The last remark implies that there is no pre-deployed network infras-
tructure. Because of this, and the fact that nodes in the network are mobile, routing is a

7Message 1 is not present in the idealisation, as it is of no cryptographic relevance in our analysis.

14

1.1 Background

central issue in MANETs, as messages will frequently need to be routed from one node
to another through several �hop�s. Frequently, node A will not even know of a route to
node B through the arbitrary, ever-changing network topology, and will need to establish
one prior to exchanging information with B.

There are several examples of MANETs. One example is the wireless sensor network,
which consist of tiny, battery-powered, radio-linked nodes which are distributed in the
wilderness to collectively monitor forests for �res, or to search the landscape in search-
and-resque operations. Other examples include battle�eld surveilance, wireless mesh
networks, wireless personal area networks for on-person digital devices, peer-to-peer net-
works8, and notebook computers.

Due to the inherent nature of MANETs, these networks are very vulnerable to tra�c
redirecting attacks, such as denial-of-service- and tunneling-attacks, to spoo�ng attacks,
and attacks using fabricated routing messages. Since most network services abstract from
routing of messages, and thus rely on routing protocols for convenience, securing these
protocols becomes an utmost importance.

To address this, several secure routing protocols have been proposed. These include
Ariadne, SAODV, ARAN, and several others which are either standardised, or in the
process of being standardised. However, despite their apparent claims of security, the
ARAN protocol [God06] and the SAODV protocol [NH06] have been proven faulty.

1.1.3 Process Calculi

The study of process calculi, also referred to as process algebra9, is a well established
�eld within theoretical computer science, which mainly concerns reasoning about the
behaviour of concurrent systems. The �eld was established in 1982 by Robin Milner,
in his book on the Calculus of Communicating Systems (CCS for short) [Mil82]. In
CCS, software systems and protocols can be modelled and reasoned about abstractly
as processes which communicate through point-to-point synchronisation across named
channels.

Some years later, in 1989, Robin Milner, together with Joachim Parrow and David
Walker, developed CCS into the π-calculus [MPW92, Mil99]. The π-calculus extends
the CCS calculus by adding name-passing and scope-restrictions on names. The e�ect,
and the purpose, of this extension, was to be capable of expressing mobility, thus greatly
increasing the expressiveness of their calculus. For an example on how the π-calculus
expresses mobility, consider the three parallel components P , Q and R, in Figure 1.2,
where P and Q share between them the communication channel a, and P and R share
the channel b. In π-calculus notation, this can be expressed as follows.

P
def= b〈a〉.a.b.0 Q

def= a.a.0 R
def= b(y).y.b.0

The mobility of channel a in Figure 1.2 can then be expressed by the following two

8Although not wireless, the principles of peer-to-peer networks are the same as that of a MANET.
9We shall use these terms interchangeably.

15

1 Introduction

P

Q

R

a

b
P'

Q

R'

a

b
P�

Q'

R'

a

b

Figure 1.2: Mobility in the π-calculus.

synchronisation steps.

P | Q | R = b〈a〉.a.b.0 | a.a.0 | b(y).y.b.0

→ a.b.0 | a.a.0 | (y.b.0){a/y}
= a.b.0 | a.a.0 | a.b.0 = P ′ | Q | R′

→ b.0 | a.0 | a.b.0 = P ′′ | Q′ | R′′

The channel a �rst becomes a common resource to the three nodes in Figure 1.2, where-
after it becomes accessible only to Q and (the reduced) R. In e�ect, during these two
reduction steps, the nodes have moved from P to Q being capable of delivering messages
on communication medium a, to Q and R being capable of delivering messages on a.
Although the π-calculus is still used extensively today, the fact that the π-calculus is

easily modi�ed has resulted in a vast amount � a whole family � of subcalculi and
calculi extensions to the π-calculus, to achieve a framework better suited for a particular
scenario [SW01]. Of particular interest in this regard is the Polyadic π-calculus [Mil93]
which allows the sending of tuples of names across channels, The locality-extension of
the π-calculus by Chothia and Stark [CS01], the Distributed π calculus10 [HR98] which
extends the Polyadic π-calculus with value-passing and explicit locations, or nodes, and
the Asynchronous π-calculus [HT91], which is easier to implement and wherein various
behavioural equivalences coincide.
A well-established calculus in the context of cryptographic protocols is the Sπ calcu-

lus by Martín Abadi and Andrew D. Gordon [AG97]. The Sπ calculus11 extends the
π-calculus by adding cryptographic primitives, thus allowing the formal description and
analysis of cryptographic protocols in a process calculus. In the Sπ calculus, security
guarantees are expressed as equivalences between Sπ calculus processes. For instance,
secrecy of some informationM can be expressed in terms of indistinguishability ; protocol
P containing information M is said to keep M secret if P is equivalent in the eyes of
an arbitrary environment to P with M replaced by any other M ′. Interestingly, these
added abstractions have been proven to be expressible in the pure π-calculus [BPV05].
The Applied π calculus12 by Martín Abadi and Cédric Fournet [AF01] generalises the

10Sometimes referred to here as Distributed π, or merely Dπ,
11Sometimes referred to here as Sπ.
12Sometimes referred to here as Applied π, or merely Aπ.

16

1.1 Background

Sπ calculus by giving a uniform extension to the π-calculus in the form of value-passing,
functions, equations and conditionals. The result is a calculus where only concurrency-
speci�c actions are modelled using traditional π-calculus abstractions. This shifts the
focus of modelling a scenario away from encoding everything to π-calculus abstractions,
to providing your own abstractions with which the scenario can be expressed more intu-
itively. Examples of abstractions easily expressed in Aπ are �let� expressions, pairs (and
thereby lists, trees, and any other datastructure), nonces, hashing functions, encoding
and decoding primitives, and so on.

Of particular interest to us are calculi related to the Calculus of Broadcasting Systems
(CBS for short), which was developed in 1995 by K. V. S. Prasad [Pra95]. CBS di�ers
signi�cantly from CCS in that sending of messages occurs as an asynchronous broadcast
over a shared medium, such that when one process sends, any number of listening pro-
cesses can receive. CBS has inspired both CBS] and CMAN, both of which are scoped
broadcast calculi with explicit locations [NH06, God07]. These broadcast calculi are
of particular interest to us since pure broadcast primitives cannot be modelled in the
π-calculus [EM99].

1.1.4 Static Analysis

Static analysis is the act of analysing a program speci�cation to obtain approximations
of the behaviour of the program, without executing the program in question13. Tradi-
tionally, static analysis has been applied in the construction of e�cient implementations
of programming languages. More recently, static analysis has been applied for pro-

gram veri�cation, and, in the process calculi setting, security protocol veri�cation. Ap-
proaches to static analysis include type checking, which involves annotating a language
with types, and developing a type system for verifying type correctness of a program.
The type correctness criteriae vary from setting to setting, ranging from termination
guarantee to correct operator use to, in our setting, secrecy and authenticity guaran-
tees [AB02, GJ01, Aba99]. Another approach is control �ow analysis, which involves
static prediction of safe and computable approximations to sets of values which may
arise during program execution in functional programming languages [Shi88]. Control
�ow analysis has been applied to various other programming paradigms, including calculi
for concurrency and security [BDNN01].

Recent work has seen an increasing interest in generating Horn clause constraints for
representing the analysis of cryptographic protocols [BDNN01, Nan06, AB02, BAF08,
Bla08]. Generating Horn clause constraints has certain appeal, as Horn clauses are simply
formulae in predicate logic, and are the subject of logic programming languages such as
Prolog [SS94]. However, the satis�ability problem of Horn clauses in predicate logic
is undecidable in general, while it is decidable for Horn clauses in propositional logic.
Because of this, much work has been invested in developing automatic solvers which, by
imposing some limit to the predicate Horn clauses, can guarantee termination in some

13The counterpart of static analysis, dynamic analysis, involves analysing simulations of program exe-
cutions.

17

1 Introduction

select cases, or at least �nd a solution quickly in most success cases. Various such solvers
exist; examples include ProVerif [Bla01], and the Succinct Solver Suite [NNS+04].

1.2 Objective

Our goal is to address the apparent need for formalisms and proof techniques for Mobile
Ad-hoc Networks. Speci�cally, to:

Develop a framework for verifying secrecy and authenticity properties of (se-
cure) Mobile Ad-hoc Network Protocols.

To achieve this, we set out to:

• Develop a process calculus within which to model security protocols for Mobile
Ad-hoc Networks, and

• Provide an automatic veri�cation technique for models in our language. We shall
do this by providing a soundness result for deduction from Horn clauses generated
from process speci�cation expressed in our new calculus.

Together, these results pave the way for, with minimal e�ort, to apply automated Horn
clause constraint solvers such as ProVerif and the Succinct Solver Suite to reason soundly
about the validity of the modelled secure Mobile Ad-hoc Network protocols.

1.3 Related Work

A vastness of results and automated veri�cation techniques for secrecy and authenticity
have been published for the Sπ-calculus and the Aπ-like calculi [AG97, Aba99, GJ01,
AF01, AB02, AC04, AC05, CRZ06, BAF08, Bla08]. While the inherent lack of a broad-
cast primitive makes these calculi inappropriate for veri�cation of secure routing protocols
for MANETs, then none the less, our work has been greatly inspired by these results.
Nanz presents the language CBS] in [NH06] for modelling secure routing protocols. How-
ever, the pattern-matching mechanism for terms therein is inappropriate for accurately
expressing cryptographic primitives. In [God07], Godskesen provides CMAN for mod-
elling secure routing protocols for MANETs, wherein veri�cation is performed manually
by use of behavioural equivalences.

As for automated veri�cation using Horn clause constraints, Bodei et al apply Horn
clause constraints in their analysis in [BDNN01]. In [Nan06], Nanz, using an anal-
ysis technique similar to [BDNN01], generates Horn clause constraints for automatic
veri�cation of security properties in the Succinct Solver Suite [NNS+04]. Finally, in
[AB02, Bla02, BAF08, Bla08], Abadi, Blanchet, and later Fournet, generate Horn clause
constraints for automatic veri�cation of secrecy and authenticity in ProVerif [Bla01].

18

1.4 Outline

1.4 Outline

In Chapter 2 we present the basic elements of theory on which our work is based, including
term rewrite system and uni�cation. Next we provide an overview in Chapter 3 of well-
established theory in the sub�eld of security protocol veri�cation, as well as frameworks
for verifying security properties of protocols for MANETs. Notable is the summary in the
end of the chapter wherein we compare the presented formalisms, to see which features
are desirable in our calculus, and which are not. We then come to our calculus, DAπβ ,
in Chapter 4, giving an operational semantics for it, and inhereting several results and
de�nitions from previous work. In Chapters 5 and 6, we prove the key result of soundness
of deduction from Horn clauses, with regards to the process the clauses were deduced
from (which is a calculus di�erent from DAπ). At last, in Chapters 7, we give the
soundness of the Horn clauses generated from a network. In it we omit a few trivialities,
for readability, and due to space constraints. Thereafter, we conclude our work, and
provide some insight into which directions this project can proceed to.

19

CHAPTER 2

Preliminaries

We will start o� by reviewing the foundation on which our work is based. First, in Sec-
tion 2.1, we clarify the nonstandard notation applied in this thesis. Sections 2.2 and 2.3
brie�y summarise Universal Algebra and Term Rewrite Systems, respectively, both of
which are crucial elements in the process calculi reviewed in Chapter 3. In Section 2.4,
we explain the concept of syntactic uni�cation, which will be of key importance in our
proofs later in the thesis. Next we give the key de�nitions and results regarding Horn
clauses in Section 2.5. Finally, in Sections 2.6 and 2.7, we give the basic de�nitions of
graphs and transition systems, for easy reference.

2.1 Notation

Tuples as lists as sets: We sometimes consider lists as (multi) sets, so that we inherit set
theoretic operators to apply on them. For instance, a, b, b, c, d, e ∩ d, e, e, f, g, h =
d, e. When convenient, we also sometimes represent the list a, b, b, c, d, e as the
tuple (a, b, b, c, d, e), on which we also apply set-theoretic operators, in particular
set-membership (to denote tuple- and list-membership).

Enumerated list x̃: We de�ne the tilde-operator as the enumerated list x̃ = x1, . . . , x|x̃|
of �nite, context-speci�c length.

Identifier reservations: When we state that a �nite list of syntactic elements, for in-
stance, a, b, c, range over some possibly in�nite set, we are �type-declaring� the
syntactic elements a, b, and c, and any annotations thereof, as being members of
that set (within the context of the de�nition). For instance, when a, b ranges over
the set S, then a, b, a′, b′, a′′, b′′, . . . , a1, b1, . . . a

′′
3, . . . b

h, . . . , aγend . . . ∈ S. In cases
where some annotation has a speci�c meaning, this will be made clear in the text.

21

2 Preliminaries

Objects as singleton sets: When it improves readability, we consider any object x as a
singleton set {x}, and vice versa.

Relations as functions: Any in�x relation operator R mapping X to X ′ can be consid-
ered a pre�x operator R : X −→ X ′.

Functions as sets: When appropriate, we consider a function f : X −→ X ′ as a set
f ⊆ X ×X ′.

Omitted list concatenation: Sometimes we write x̃x for x̃ ·x (where, here, · denotes list
concatenation). Note also that unless de�ned otherwise, Yy is the concatenation of
y to the list-interpretation of the set Y, that is, resulting in Y∪{y} (or Y∪ y, when
y itself is not a set).

Relation composition: For two relations, R, R′, we de�ne R·R′ as the relation R′′, where

R′′(x) = R′(R(x)).

2.2 Universal Algebra

Universal algebra is the study of commonalities in all algebraic structures. It abstracts the
features common to mathematical structures, like groups, rings, vector space and metric
spaces, such that they can all be de�ned as an algebraic theory, consisting of a structure,
and axioms on these in the form of equational laws. We will follow the treatment of
universal algebra provided in [Joh96]. We start o� with (algebraic) structures.

De�nition 2.1 (Structure)
A structure is a pair (A,O), where A is a set and O is a set of operations on A. 2

In literature, a structure is also referred to as an algebraic structure, or simply an algebra.

De�nition 2.2 (Signature)
A signature is a pair, (Σ, α), where Σ is a set of operational symbols, and α : Σ −→ N,
the arity function, is a total function assigning to each operational symbol in Σ its arity.2

In litterature, a signature is also referred to as an operational type (and then often denoted
by Ω). Note that we consider 0 to be a natural number. We often omit the arity function
α and just write that Σ is a signature.

De�nition 2.3 (Σ-structure)
Given a set A and a signature (Σ, α), let ΣA = {ωA : Aα(ω) −→ A | ω ∈ Σ} be the set of
interpretations of all ω ∈ Σ on A. The pair (A,ΣA) is then a Σ-structure. 2

In litterature, a Σ-structure is sometimes refered to as a structure of type (Σ, α), or
Σ-algebra. We also refer to ΣA as an Σ-structure on the set A. We sometimes omit ΣA

and just write that A is a Σ-structure.

22

2.2 Universal Algebra

De�nition 2.4 (Σ-terms in X)
Let Σ be a signature, and let X, where Σ ∩ X = ∅, be the set of variables. Then the
set FΣ(X) of Σ-terms in X is the smallest set of �nite strings over Σ ∪X satisfying the
following inductive de�nition.

a) If x ∈ X, then x ∈ FΣ(X),

b) If ω ∈ Σ, α(ω) = n and t1, . . . , tn ∈ FΣ(X), then ωt1 · · · tn ∈ FΣ(X). 2

Lemma 2.1
For any X,

FΣ(X) =
⋃
{FΣ(X ′) | X ′ ⊆ X,X ′ is �nite}.

Proof

Trivial, as the union iterates all possible (�nite) subsets of X. �

De�nition 2.5 (Derived Operation)
For a given �nite set Xn = {x1, . . . , xn} of variables, a set of Σ-terms FΣ(Xn) and a
Σ-structure A, we de�ne for each term t ∈ FΣ(Xn) its corresponding derived operation

tA : An −→ A inductively as follows.

i) if t = xi, where 1 ≤ i ≤ n, then tA is a projection onto the ith factor. That is,

tA(t1, . . . , tn) = ti

ii) if t = ωt1 · · · tm, where α(ω) = m, then tA is the composite

An
(t1A ,...,tmA)
−−−−−−−−→ Am

ωA−−→ A.

That is,
tA(t′1,t

′
n) = ωA(t1A(t′1, . . . , t

′
n), . . . , tmA(t′1, . . . , t

′
n)). 2

Note that if t = ωx1 · · ·xn, where α(ω) = n, then tA = ωA. We also call tA the
interpretation in A of the n-ary derived operation corresponding to the term t.
We now turn our attention to equations.

De�nition 2.6 (n-ary Equation in Signature Σ)
An n-ary equation in a signature Σ is an expression (s = t), where s, t ∈ FΣ(Xn). 2

De�nition 2.7 (Equation Satisfaction in a Structure)
An equation (s = t) is satis�ed in a structure A if sA = tA. 2

Note that sA, tA are derived operators from the terms s, t, and that the equality sA = tA
is an equality on function de�nitions.

23

2 Preliminaries

De�nition 2.8 (Algebraic Theory)
An algebraic theory is a pair T = (Σ, E), where Σ is a signature, and E the set of
equations in Σ. 2

De�nition 2.9 (Model for T)
A model for an algebraic theory T = (Σ, E) is a Σ-structure satisfying all the equations
in E. 2

In litterature, a model of T is also referred to as a T -algebra.

Example 2.2 (Groups)
Recall that a group is a set G equipped with a single binary operation ◦ : G×G −→ G
(composition) satisfying the axioms

∀s1, s2, s3 ∈ G[s1 ◦ (s2 ◦ s3) = (s1 ◦ s2) ◦ s3)],(associativity)

∃e ∈ G∀s ∈ G[s ◦ e = s ∧ e ◦ s = s],(identity)

∀s ∈ G∃i ∈ G[s ◦ i = e ∧ i ◦ s = e],(inverse)

where e is the identity of G (also called a neutral element) [Lau05, De�nition 2.1.1].

In terms of universal algebra, the de�nition of a group can be expressed as the algebraic
theory T = ((Σ, α), E), where Σ = {c, i, e}, α(c) = 2, α(i) = 1, α(e) = 0, and

E =

(cx1cx2x3 = ccx1x2x3),
(cex1 = x1), (cx1e = x1),
(cix1x1 = e), (cx1ix1 = e)

 .

Any T -algebra is then a group. One example of a T -algebra (and thus a group) is the set
Q with the interpretation of c as +. Two other examples are the sets R\{0} and Q\{0}
with the interpretation of c as ·. 2

Example 2.3 (Symmetric Key Cryptography)
Expressing an algebraic theory T = ((Σ, α), E) for symmetric key cryptography proves to
be surprisingly simple: Let Σ = {e, d}, where e and d denote encryption and decryption
respectively, α(e) = 2, α(d) = 2, and E = {dexyy = x}. A typical example of a T -
algebra is the in�nite set N ∪ V of channel names and variables in Aπ1. An interesting
remark here is that FΣ(N ∪ V) is the set of all possible terms in an application of Aπ
with Σ being the signature in the application, and E as an equational theory. 2

Example 2.4 (Equation Satisfaction)
To see what role De�nition 2.7 plays, consider our expression of groups in universal
algebra from Example 2.2 before, and consider the Q\{0}-structure with c interpreted as
·. Now consider the term x1 · x2 · x3, where x1, x2, x3 ∈ Q\{0}. We know · is associative,
so the terms τ1 = x1 · (x2 · x3) and τ2 = (x1 · x2) · x3 are equal. To show that Q\{0}
satis�es the �rst equation in E, we check whether the derived operators τ1Q\{0} and

1Explained in more detail in Chapter 3.

24

2.3 Term Rewrite Systems

τ2Q\{0} of τ1 and τ2, are equal. Let X3 = {x1, x2, x3}. Then τ1, τ2 ∈ FΣ(X3). We get
from De�nition 2.5 that

τ1Q\{0}(t1, t2, t3) = cQ\{0}

(
t1

cQ\{0}(t2, t3)

)
= t1 · (t2 · t3)

τ2Q\{0}(t1, t2, t3) = cQ\{0}

(
cQ\{0}(t1, t2)

t3

)
= (t1 · t2) · t3.

As · is associative, we get that τ1Q\{0} = τ2Q\{0} , and thus that Q\{0} satis�es the �rst
equation in E. 2

2.3 Term Rewrite Systems

A term rewrite system, also referred to as a rewrite system, or a rewriting system, consists
of a set of terms, and a set of rules describing how to reduce said terms. Simpli�cation of
logical formulae, set expressions, and algebraic operations can all be performed by use of
a term rewrite system. Here we will follow the treatment of term rewrite systems given
in [BN98] and [AC04], the latter when we de�ne convergent subterm theories.
Let X be a given (�nite or in�nite) set, and let FΣ(X) be the set of Σ-terms in X. A

rewrite rule r is on the form Tl > Tr, where Tl, Tr ∈ FΣ(X) and v(Tr) ⊆ v(Tl). We call
Tl and Tr the left- and right-hand side of r, respectively, and we refer to the outermost
operator symbol in Tl as the destructor.
A term rewrite system R is then a set of rewrite rules. A term T1 reduces primitively

to T2 using a rule r := Tl > Tr , written T1 >r T2, if T1 = σTl and T2 = σT2 for
some substitution σ. Furthermore, we say T1 reduces to T2, written T1 > T2 i� there
is a rule r := Tl > Tr and a substitution σ for which Tl = σT ′1 where C[T ′1] = T1, and
T2 = C[σTr]2.
We adopt the following notation for >. [BN98]

>0 := {(x, x) | x ∈ FΣ(X)}(identity)

>i+1 :=>i ◦ > ; i ≥ 0(fold composition)

>+ :=
⋃
i>0

>i(transitive closure)

>∗ :=>+ ∪ >0(re�exive transitive closure)

>= :=> ∪ >0(re�exive closure)

>−1 := {(y, x) | x > y}(inverse)

<> :=< ∪ >(symmetric closure)

<>+ := (<>)+(transitive closure)

<>∗ := (<>)∗(transitive symmetric closure)

2here, C is a term missing a substring, such that C[T] is a well-formed term, for any well-formed term
T

25

2 Preliminaries

De�nition 2.10 (Terminology)
For terms x, y we have that

i) x is reducible if ∃y[x > y] holds.

ii) x is on normal form3 i� it is not reducible.

iii) y is a normal form of x i� x <>∗ y and y is in normal form. If x has a uniquely
determined normal form, we denote it by x ↓.

iv) y is a direct successor of x i� x > y.

v) y is a successor of x i� x >+ y.

vi) x, y are joinable i� ∃z[x >∗ z <∗ y] holds, in which case we write x ↓ y. 2

De�nition 2.11 (Reduction Types)
A reduction > is said to be

i) con�uent i� y1 <
∗ x >∗ y2 =⇒ y1 ↓ y2.

ii) terminating i� there is no in�nite descending chain a0 > a1 >

iii) normalising i� every element has a normal form.

iv) convergent i� it is con�uent and terminating. 2

Any terminating relation is normalising, but note that the converse is not necessarily
true. Note also that x can be reduced to its normal form ambiguously if there exist y1, y2

such that x >∗ y1, x >
∗ y2 and y1 ↓ y2. When y1 ↓ y2 holds for any two reductions from

x via. y1 and y2, then > is con�uent. Note here the usage of ∗, and not +.

Example 2.5
The symmetric key cryptographic protocol modelled as an algebraic theory in Exam-
ple 2.3 easily becomes a term rewrite system by adopting the single equation directly as
a rewrite rule: Er = {dec(enc(x, y), y) >r1 x}. An example equality valid in =Er is

dec(enc(enc(x, y), z), z) =Er enc(x, y) 2

Lastly, the class of equational theories subject in [AC04], for which deduction and
static equivalence is computationally solvable.

De�nition 2.12 (Convergent Subterm Theory [AC04])
An equational theory is a convergent subterm theory if it is generated from a convergent
term rewrite system R =

⋃n
i=1{tli >ri tri}, where each tri is a proper subterm of tli . 2

3also said to be irreducible

26

2.4 Syntactic Uni�cation

2.4 Syntactic Unification

Syntactic uni�cation is central in our work, as it is the heart in tools for deducing truths
from a set of Horn clauses, like Prolog interpreters, ProVerif, and the Succinct Solver.
Here we will follow the treatment of syntactic uni�cation in [BN98], unless otherwise

noted. Here, = will denote the assertion of syntactic identity, while s
?= t will be an

equation of potential uni�ability.
A substitution σ is a mapping from variables in some set V, to terms in FΣ(V). We

write Tσ for the term T with each variable occuring in T synactically replaced by its
value in σ, if de�ned.

De�nition 2.13
A substitution σ is more general than σ′ if there is a substitution σ′′ such that σσ′′ = σ′.
Here, we say σ′ is an instance of σ, and denote this by σ . σ′. 2

Lemma 2.6
. is a quasi-order on substitutions.

Proof

We get that . is re�exive by letting σ = I (the identity map). To prove transitivity,
suppose that σ2 = σ′1σ1 and σ3 = σ′2σ2. Then σ3 = σ′2σ2 = σ′2(σ′1σ1) = (σ′2σ

′
1)σ1

(composition of substitutions is associative). �

We write σ ∼ σ′ if σ . σ′ or σ′ . σ. We say the substitution ρ is a renaming if ρ is a
bijection on V (and thus also on FΣ(V))

Lemma 2.7
σ ∼ σ′ i� there exists a renaming ρ st. σ = ρσ′. 2

De�nition 2.14 (Uni�cation)
A uni�cation problem is a �nite set of equations S = {t1

?= t′1, . . . , tn
?= t′n}. A uni�er,

or solution, of S is a substitution σ such that ti = t′i; 1 ≤ i ≤ n. U(S) is the set of all
uni�ers of S. S is uni�able, or solvable, if U(S) 6= ∅. 2

Example 2.8
Consider the simple uni�cation problem

S
def= {enc(pair(x, y), z) ?= enc(pair(a, h(a)), b)},

with uni�cation variables {x, y, z}. A solution to this problem is the substitution map
σ = {x 7→ a, y 7→ h(a), z 7→ b}, as (enc(pair(x, y), z))σ = enc(pair(a, h(a)), b). 2

De�nition 2.15
A substitution σ is idempotent if σ = σσ. 2

We wish to avoid nonidempotent substitutions, as these are cumbersome in practice.
To identify nonidempotent substitutions, we use the following lemma.

27

2 Preliminaries

Lemma 2.9
σ is idempotent i� dom(σ) ∩

⋃
T∈im(σ) v(T) = ∅. 2

Now this theorem states that never need to consider nonidempotent substitutions, as
our uni�ers are idempotent.

Theorem 2.10
If a uni�cation problem S has a solution σ, then σ is an idempotent most general uni�er.2

That is, most general uni�ers are unique only up to renaming. We typically identify
α-equivalent most general uni�ers. This justi�es their name, as any other less-general
uni�cation must be an instance of the most general uni�er.

We are now ready to present the uni�cation algorithm.

De�nition 2.16
A uni�cation problem S = {x1

?= t1, . . . , x2
?= tn} is in solved form if the xi are pairwise

distinct variables, none of which occur in any tj . In this case we de�ne S = {x1 7→
t1, . . . , xn 7→ tn}. 2

Lemma 2.11
If S is in solved form then σ = σS, for all σ ∈ U(S).

Proof

Let S = {x1
?= t1, . . . , x2

?= tn}. We show by case distinction that ∀x ∈ V.σx = σSx.

i) x = xk; 1 ≤ k ≤ n: Then σx = σtk = σStk, as σ ∈ U(S).

ii) x 6∈ x̃: Since Sx = x, we have σx = σSx. �

Lemma 2.12
If S is in solved form, then S is an idempotent most general uni�er of S.

Proof

Idempotence follows directly from Lemma 2.9, as, since S is on closed form, no xi occurs

in a tj . For the same reason we get Sxi = ti, that is, S ∈ U(S). Finally, S is a most
general uni�er because by Lemma 2.11, S . σ for all σ ∈ U(S). �

Now we can extract idempotent most general uni�ers from an S on solved form. We
conclude with Algorithm 2.1, which transforms any S into solved form.

2.5 Horn Clauses

Here we shall follow the treatment of Horn clauses in [Bur98], until we reach SLD-
Resolution, which we have from [SS94, Fer04]. First, we look at Horn clauses in the
propositional logic setting.

28

2.5 Horn Clauses

Algorithm 2.1: Uni�cation algorithm, U(S).

Input: A uni�cation problem, S1

Result: S on solved form, S, if S is uni�able. Failure otherwise.2

Recursively apply the following transformation rules in a pattern-matching manner3

until none can be applied. If a failure is reached, the algorithm terminates with an
appropriate error.

{f(s1, . . . , sn) ?= f(t1, . . . , tn)} ∪ E → {s1
?= t1, . . . , sn

?= tn} ∪ E

{f(s1, . . . , sn) ?= g(t1, . . . , tm)} ∪ E → failure

{x ?= x} ∪ E → E

{T ?= x} ∪ E → {x ?= T} ∪ E

{x ?= T} ∪ E → {x ?= T} ∪ E, if x 6∈ v(T) ∧ x ∈ v(E)

{x ?= T} ∪ E → failure if x ∈ v(T) ∧ x 6= T

This yields S.
return S.4

2.5.1 Propositional Logic Setting

De�nition 2.17 (Clause)
We let literals be ranged over by l, de�ned by the grammar

l ::= p | ¬p,

where p is a propositional variable. Finite sets of literals, {l1, . . . , ln}, are called clauses.
The literals of a clause are the members of the clause. 2

Traditionally, the clauses are on the form
∨

1≤i≤n li for the clause {li}1≤i≤n, but by
representing them as a set, we ignore repetition and orderings amongst literals.

De�nition 2.18 (Satis�ability)
A clause {li}1≤i≤n is satis�able by a truth evaluation e i� the formula

∨
1≤i≤n li is satis-

�able by e. A set S of clauses is satis�able i� there is a truth evaluation e that satis�es
each clause in S. By de�nition, ∅ is not satis�able. 2

We let the literal complement function · be de�ned as

l =
{
p, if l = ¬p
¬p, if l =

.

Note that these identities are syntactic.

29

2 Preliminaries

De�nition 2.19 (Resolution)
Resolution is de�ned by the inference rule

cl1 ∪ {l} cl2 ∪ {l}
cl1 ∪ cl2

,(resolution)

where cl1, cl2 are clauses. We say we are resolving cl1, cl2 over l, and that cl1 ∪ cl2 is the
resolvent. 2

Example 2.13
A resolution derivation of the empty clause ∅ from

S = {{¬p, q}, {¬q,¬r, s}, {p}, {r}, {¬s}}

is

1. {¬s} given

2. {¬q,¬r, s} given

3. {¬q,¬r} resolvent of resolution (1, 2) over s

4. {r} given

5. {¬q} resolvent of resolution (3, 4) over r

6. {¬p, q} given

7. {¬p} resolvent of resolution (5, 6) over q

8. {p} given

9. ∅ resolvent of resolution (7, 8) over p 2

Lemma 2.14 (Resolution preserves Satis�ability)
If S is satis�able by truth evaluation e, then any resolvent of any pair of clauses in S is

satis�able by e. 2

Theorem 2.15 (Soundness and Completeness of Resolution)
A nonempty set S of clauses is unsatis�able i� there is a derivation of the empty clause

∅ using (resolution). 2

De�nition 2.20 (Horn Clause)
A Horn clause is a clause with at most one positive literal. 2

For instance, {¬p,¬q,¬r,¬s} and {p,¬q,¬r,¬s} are Horn clauses, while {p,¬q, r,¬s} is
not.
Traditionally, Horn clauses which have exactly one positive literal, {¬li}1≤i≤n ∪ {l},

which as explained before can be written as l ∨
∨

1≤i≤n ¬li, are written on the form∧
1≤i≤n li =⇒ l; these formulae are logically equivalent.

Lemma 2.16
A resolvent of two Horn clauses is always a Horn clause. 2

30

2.5 Horn Clauses

De�nition 2.21 (Unit Resolution)
A unit clause is a clause {l} with a single literal. Unit resolution refers to resolution
derivations in which at least one of the clauses being resolved is a unit clause. 2

Theorem 2.17
Unit resolution is sound and complete for Horn clauses. 2

This theorem follows from the important fact that if we cannot derive the empty clause
∅ by unit resolution from some set S of Horn clauses, then S is satis�able, that is, there
exists a truth evaluation e satisfying S.
Clearly, the advantage of unit resolution is that the resolvents never grow in size.

Unit resolution on Horn clauses thus always terminates, and is in fact polynomial-time
computable.

Theorem 2.18
Resolution of Horn clauses in propositional logic is polynomial-time decidable. 2

We now move on to the predicate logic setting.

2.5.2 Predicate Logic Setting

The basic de�nitions, like that of a clause and a Horn clause remain unchanged in this
setting, with the exception of a literal. Recall that literals in predicate logic are not
propositional variables, but atomic formulae, which are strings on the form rt1 · · · tn,
where ti are terms in the algebra of the predicate logic (speci�ed, for instance, as a
boolean equational logic in universal algebra), and r is a relational symbol of arity n.
We say a Horn clause is a de�nite clause if it has exactly one positive literal. We call

it a goal clause if it has no positive literal.

De�nition 2.22 (SLD Resolution)
SLD resolution (Selective Linear resolution for De�nite clauses) is de�ned by the inference
rule

{¬li}1≤i≤n ∪ {¬l} {¬l′j}1≤j≤m ∪ {l′}
({¬li}1≤i≤n ∪ {¬l′j}1≤j≤m)σ

where σ uni�es {l ?
= l′}(SLD) 2

Notice that the �rst premise in (SLD) is a goal clause, while the second is a de�nite
clause.
Given a set of de�nite clauses S, and a goal clause clgoal = {¬li}1≤i≤n, determining

whether clgoal is satis�able in S follows the following SLD resolution procedure: Pick a
de�nite clause {¬l′j}1≤j≤m ∪ {l′} ∈ S which (only) positive literal l′ uni�es with some
select literal li, where ¬li ∈ clgoal. Call this uni�er σ. This operation results in a new goal
clause cl′goal = ({¬l1, . . . ,¬li−1,¬li+1, . . . ,¬ln} ∪ {¬l′j}1≤j≤m)σ. Repeat this procedure
until you reach the unsatis�able goal clause ∅. Then compose the computed uni�ers into
one big uni�er σsolution, which becomes the solution to clgoal in S.
Note, however, that this process can reach a goal clause clfail wherein there are no

de�nite clauses in S which positive literal uni�es with a literal in the goal clause. In this

31

2 Preliminaries

case, the procedure �backtracks� until it reaches a point where it can select a di�erent

de�nite clause.

Again, note that this process is not guaranteed to terminate! 4 Consider, for instance,

clgoal
def= p

S
def= {{¬p, p}},

where p is a relational constant (arity 0). With the empty substitution, the SLD Reso-
lution algorithm will, by selecting the (only possible) de�nite clause {¬p, p}, reach the
�new� goal clause cl′goal = p. The analogous program speci�cation in Prolog is

p :- p.

p.

This example can function as a counterexample for the proof of the following.

Theorem 2.19
Resolution of Horn clauses in predicate logic is undecidable in general. 2

On a last note, we de�ne derivation of a predicate from a set of Horn clauses as follows.

De�nition 2.23 (Derivation from Horn clauses)
Given a set of Horn clauses S and a predicate p, We say that p is derivable from S if the
goal clause p is satis�able in S. 2

2.6 Graph Theory

We present here some of the basic de�nitions and notation of graph theory, which will
be of use later in this thesis. We follow the treatment in [Die06].

De�nition 2.24 (Graph)
A graph is a pair (V,E), where V is a set, called the set of vertices, and E, the set of
edges, is de�ned by

• E ⊆ V 2, in which case G is a directed graph, or

• E ⊆ {v ⊆ V | v 6= ∅ ∧ |v| ≤ 2}, in which case G is an undirected graph.

For a graph G = (VG, EG), we de�ne V(G) = VG and E(G) = EG. 2

De�nition 2.25 (Subgraph, Supergraph)
Let G = (V,E), G′ = (V ′, E′) be graphs. G′ is a subgraph of G (and G a supergraph of
G′ if V ′ ⊆ V and E′ ⊆ E. 2

4In fact, if resolutions always terminated, then Prolog would not be Turing-complete.

32

2.7 Labelled Transition System

De�nition 2.26 (Path)
A path is a nonempty graph P = (V,E) on the form V = {x0, . . . , xk} and E = {xixi+1 |
0 ≤ i ≤ k − 1}. 2

De�nition 2.27 (Complete graph)
A graph G is complete when all vertices in G are connected. That is, when G is undi-
rected,

∀l, n ∈ V(G) .∃{l, n} ∈ E(G) ∧ {l}, {n} ∈ E(G)

holds, and when G is directed,

∀l, n ∈ V(G) .∃(l, n) ∈ E(G)

holds. 2

2.7 Labelled Transition System

Transition systems are a clear and concise way of specifying operational semantics of
process calculi. As this will be done in the next two chapters, the de�nitions of labelled
and unlabelled transition systems merit a recap.

The basic de�nition of a transition system comes from [Hü05].

De�nition 2.28 (Transition System)
A transition system is a pair (P,→), where P is a set of states, ranged over by s, and
→⊆P ×P is a transition relation. 2

Here, we call s a �nal state, if there exists no s′ such that s→ s′.

The remaining de�nitions are as de�ned in [AILS07].

De�nition 2.29 (Labelled Transition System)
A labelled transition system is a triple (P,A, { a−→| a ∈ A}), where P is a set of states,

ranged over by s, A is a set of actions ranged over by a, and
a−→⊆P×P is a transition

relation, for every a ∈ A. 2

When
α−→⊆ (P ×A)×A, we will simply write that (P,A, α−→) is a labelled transition

system. We write s
a−→ s′ when (s, s′) ∈ a−→ (and when ((s, a), s′) ∈ α−→). We write s X a−→ s′

when (s, s′) 6∈ a−→ (and when ((s, a), s′) 6∈ α−→), and in that case, say s refuses s′.

De�nition 2.30 (Strong Bisimilarity)
A binary relation R over the set of states of a labelled transition system is a simulation

i� whenever s1Rs2 and a is an action, when it holds that

s1
a−→ s′1 =⇒ ∃s′2 . s2

a−→ s′2 ∧ s′1Rs′2.

R is a bisimulation if R−1 is a simulation as well. s and s′ are bisimilar, written s ∼ s′,
if there is a bisimulation that relates them. Thus, ∼ is the largest bisimulation. 2

33

2 Preliminaries

We denote the unobservable action by τ . We de�ne

(a=⇒) def= (τ−→∗· a−→ · τ−→∗)

De�nition 2.31 (Weak Bisimilarity)
A binary relation R over the set of states of a labelled transition system is a weak

simulation i� whenever s1Rs2 and a is an action, when it holds that

s1
a−→ s′1 =⇒ ∃s′2 . s2

a=⇒ s′2 ∧ s′1Rs′2.

R is a weak bisimulation if R−1 is a weak simulation as well. s and s′ are weakly bisimilar

(observationally equivalent), written s ≈ s′, if there is a bisimulation that relates them.
Thus, ≈ is the largest weak bisimulation. 2

34

CHAPTER 3

Related Protocol Analysis Frameworks

In this chapter we present the key results to which the work of this thesis relates, and
subsequently re�ect upon it, considering how adequate they are for the purpose of mod-
elling secure routing protocols for MANETs. We begin in Section 3.1 with the Applied π
calculus of Abadi and Fournet, by which our framework is greatly inspired. Here we will
be very thorough in explaining various concepts, as we shall subsequently assume these
to be known when we reach the other calculi. We then move on to the closely-related
calculus in Section 3.2 by Abadi and Blanchet, which we call ABπ in this thesis. Next we
switch over towards the two broadcast calculi, CBS] and CMAN, in Sections 3.3 and 3.4,
respectively, noting carefully the semantics of these two di�erent framework proposals.

To elevate readability, we take the liberty of altering the syntax in the presented calculi
such that conceptually similar syntactic element resemble each other syntactically across
the various calculi presented in this chapter.

3.1 The Applied π Calculus

We now present the highlights of the Applied π calculus. We will start o� by giving the
syntax of Aπ and explaining the various terminology. Next we will see the semantics of
Aπ in the form of congruence rules and reduction relations. Following this, some proof
techniques to reason about processes expressed in Aπ are given. Finally we present the
de�nitions of secrecy we typically see in work on the Applied π calculus.

The semantics de�nitions in terms of transition systems are ours. Everything else,
unless otherwise noted, comes from [AF01].

35

3 Related Protocol Analysis Frameworks

3.1.1 Syntax and Semantics

Syntax

Let N be the set of names ranged over by a, . . . , c,m, . . . , t, and V be the set of variables
ranged over by x, . . . , z (both sets being in�nite). Let N ∪ V be the set of identi�ers
ranged over by u, . . . , w. The syntax of Aπ is then given by the grammar speci�cation
in Table 3.11.

P ::= 0
| u(x).P
| u〈T 〉.P
| P | P
| !P
| (νa)P
| if T = T then P else P

A ::= P
| A | A
| (νu)A
| {T/x}

T ::= u

| f(T̃)

Table 3.1: Syntax of Aπ.

The syntax of Aπ is broken down into three syntactic categories, and we now consider
them all separately.

Terms: Recall from Section 2.2 that a signature is a �nite set of function symbols, or
operators, each assigned an arity. The set of terms T, which elements are ranged over by
T, . . . , V , is then de�ned by the syntactic category T , where, for any term on the form
f(T1, . . . , Tk), we have α(f) = k. In universal algebra terms, the set of terms becomes the
set FΣ(N∪V) of Σ-terms in N∪V, being the least set of strings over Σ∪N∪V satisfying
the constraints in De�nition 2.4.
As Aπ has implemented value-passing which performs exactly like name-passing, one

could imagine problems arising, for instance, when a process receives a term which is
the number 5, instead of an expected channel name, and attempts to synchronise over
the received term. For this reason, the Applied π calculus relies on a Milner-like sort

system [Mil99]. It consists of the pair (T,Γ). Here, T is a basic set of types, consisting
of for instance the type Integer, Key, Data for any data, and Channel〈τ〉, where τ is
any basic type. Γ, however, is a mapping Γ : N −→ T associating each name with its
sort. For instance, Γ(a) = Channel〈Data〉 means that it is only possible to pass other
channels of any type across a (for instance, channels of type Integer. You can even pass
a across itself.). We deem it su�cient to know of the presence of the sort system, and
shall therefore not consider it in further detail for the remainder of this thesis.
Each application of Aπ is equipped with an algebraic theory2, (Σ, E), consisting of

1The observant reader will notice that the syntax presented here deviates slightly from the syntax
originally provided in [AF01]; restrictions are represented in the traditional paranthesised manner,
as opposed to being terminated by a full stop �.�.

2Sometimes called equational theory

36

3.1 The Applied π Calculus

operators, and equations on these. These operators need to be de�ned on all possible
terms in T, and need to satisfy the equations in E. In Universal Algebra terms, we observe
that we can accomplish this as follows: Given an algebraic theory, (Σ, E), interpret Σ on
the set of Σ-terms in N ∪ V, FΣ(N ∪ V), in such a manner that the obtained Σ-structure
(FΣ(N∪V),ΣFΣ(N∪V)) satis�es the equations in E. The result is a (FΣ(N∪V),ΣFΣ(N∪V))-
algebra on terms. That is, the operators in Σ, de�ned on terms, satisfying the equations
in E.

Primitive Processes: Primitive processes are represented by the syntactic category P ,
and ranged over by P, . . . , R ∈ P. The syntax speci�cation of a primitive process is
identical to that of an ordinary process in the π-calculus, with the exception of primitive
processes being capable of performing a match. A short description of the syntax follows.

1) 0: the inactive null process.

2) u(x).P : receive a term T over u, and binds it to the new, private variable x, and
then proceed as P with T bound to x.

3) u〈T 〉.P : outputs the term T on channel u. Then behave like P .

4) P | Q: a parallel composition (concurrent execution) of two primitive processes.

5) !P : an in�nite number of copies of P running in parallel.

6) (νn)P : a process which introduces a new, private name n, and then behaves as P .

7) if T = U then P else Q: a conditional construct, which will behave as P if the
equality T = U holds, and as Q otherwise.

Extended Processes: Last and most important are extended processes, represented by
the syntactic category A and ranged over by A,B ∈ A . Extended processes are primitive
processes extended with the notion an active substitution, which plays a crucial role in
Aπ. An active substitution {T/x} functions as a �let�3, enabling access to the value
T of the variable x, to everything within the scope of the variable x. We often write
a parallel composition of active substitutions

∏k
i=1{Ti/xi} into one active substitution

{T1/x1, . . . , Tk/xk}, or {T̃/x̃} for short, and often denote such a parallel composition as σ.
For a more formal treatment, we can consider an active substitution as a total function
σ : V −→ FΣ(N ∪ V) mapping variables to terms in the following manner

σ(x) =
{
Ti if ∃xi ∈ dom(σ)[xi = x]
x otherwise,

where dom(σ) and im(σ)4 denote the domain and the image of σ, respectively. To aid
in the reasoning of Aπ processes, it is assumed that active substitutions are cycle-free,

3See Example 3.1 for how an actual �let� is expressed in Aπ.
4These will be de�ned more formally in Section 3.1.2

37

3 Related Protocol Analysis Frameworks

that there is at most one active substitution for each variable, and that there is exactly
one active substitution within the scope of a restricted variable. We write fv(A), bv(A),
fn(A), bn(A), fu(A), and bu(A) for the sets of free and bound variables, free and bound
names, and free and bound identi�ers in A, respectively We de�ne fn(A) inductively by

fn(0) = ∅
fn(A | B) = fn(A) ∪ fn(B)

fn(!P) = fn(P)
fn((νa)P) = fn(P)\{a}

fn(if T = U then P else Q) = n(T) ∪ n(U) ∪ fn(P) ∪ fn(Q)
fn(a(x).)P = {a} ∪ fn(P)
fn(a〈T 〉.P) = {a} ∪ fn(T) ∪ fn(P)

fn({T/x}) = fn(T),

and bn(A) by,

bn(0) = ∅
bn(A | B) = bn(A) ∪ bn(B)

bn(!P) = bn(P)
bn((νa)P) = {a} ∪ bn(P)

bn(if T = U then P else Q) = bn(P) ∪ bn(Q)
bn(a(x).P) = bn(P)
bn(a〈T 〉.P) = bn(P)

bn({T/x}) = ∅.

fv(A) and bv(A) are then de�ned in a similar manner, and fu(A), bu(A) are de�ned in
the obvious manner. We de�ne the functions

n(A) = fn(A) ∪ bn(A)
v(A) = fv(A) ∪ bv(A)
u(A) = fu(A) ∪ bu(A),

which represent all the names, variables, and identi�ers occurring in a process, respec-
tively.
We say that an extended process is closed when every variable occurring in it is either

bound (in which case it is either yet to be instantiated, or de�ned by an active sub-
stitution) or de�ned by an active substitution. This is another way of saying that any
variable name in use must have a value which is apparent in the syntax speci�cation of
the process. We consider only these kind of extended processes from now on.

Context: At last, we shall frequently make use of the concept of contexts. Essentially,
a context is a process with a �hole� in it, that is, a process with a parameterised subtree.

38

3.1 The Applied π Calculus

Non-Evaluation Contexts:
C[R] ::= C[R] | A

| A | C[R]
| (νu)C[R]
| C ′[R]

C ′[R] ::= R
| C ′[R] | P
| P | C ′[R]
| (νa)C ′[R]
| !C ′[R]
| if T = T then C ′[R] else P
| if T = T then P else C ′[R]
| u(x).C ′[R]
| u〈T 〉.C ′[R]

Evaluation Contexts:
C[B] ::= B

| C[B] | A
| A | C[B]
| (νu)C[B]

Table 3.2: Contexts of Aπ.

Table 3.2 contains our grammar speci�cation of a context. Contexts come in two variants:
evaluation context, and non-evaluation contexts. In evaluation contexts, the �hole� may
not be pre�xed by actions of any form (input, output, replication, and conditionals).
Since only primitive processes are allowed to be pre�xed with these actions, then any
context designed to be parameterised with extended processes is an evaluation context.
Any such a context can also be parameterised with primitive processes. It isn't until
the intent is to pre�x the hole with actions that the non-evaluation contexts syntactic
category, which enables pre�xing the hole with actions, becomes relevant.

A context C[·] is said to close A when C[A] is closed.

Semantics

Next we give an overview of the semantics of Aπ. It is de�ned in terms of an operational

semantics, expressed in terms of a structural equivalence relation, and an internal re-

duction relation. A labelled operational semantics has also been presented in [AF01], to
reason about processes interacting to their surroundings. We shall summarise all these
in the subsequent paragraphs.

Structural Equivalence: The structural equivalence relation for Aπ is de�ned as follows.

De�nition 3.1 (Structural Equivalence)
Structural Equivalence, ≡, is the smallest equivalence relation on A that is closed by
α-conversion on both names and variables, by application of evaluation contexts, and
satisfying the equalities in Table 3.3. 2

39

3 Related Protocol Analysis Frameworks

A ≡ A | 0(par-0)

A | (B | C) ≡ (A | B) | C(par-A)

A | B ≡ B | A(par-C)

!P ≡ P |!P(repl)

(νn)0 ≡ 0(new-0)

(νu)(νv)A ≡ (νv)(νu)A(new-C)

A | (νu)B ≡ (νu)(A | B), if u 6∈ fv(A) ∪ fn(A)(new-par)

(νx){T/x} ≡ 0(alias)

{T/x} | A ≡ {T/x} | A{T/x}(subst)

{T/x} ≡ {U/x}, if Σ ` T =E U(rewrite)

Table 3.3: Structural equivalence in Aπ.

The (par)-rules express that ≡ satis�es the commutative monoid laws w.r.t. (|,0). (repl)
expresses precicely the de�nition of replication in the syntax speci�cation. The rules
for restriction are fairly self-explanatory. (alias) expresses that an active substitution
which scope encompasses only itself is equivalent with the null process, meaning that
arbitrary active substitutions can be added to a process (and expired ones removed).
(subst) expresses how an active substitution a�ects everything in contact with it5. The
rules (alias) and (subst) play a key role in the expression of �let�, as is shown in the
following example.

Example 3.1 (�Let� expressions in Aπ [AF01])
The following equivalence shows that a restricted active substitution functions like a �let�.

(νx)({T/x} | A) ≡ (νx)({T/x} | A{T/x}) by (subst)

≡ (νx)({T/x}) | A{T/x} by (new-par)

≡ 0 | A{T/x} by (alias)

≡ A{T/x} | 0 by (par-C)

≡ A{T/x} by (par-0). 2

A last note, (rewrite) deals with equational rewriting, which can be used to remove
redundant, duplicate active substitutions.

Proposition 3.2 (Normal Form of Extended Processes)
Let A be a closed extended process. Then there exists an extended process nf(A) on the

form

nf(A) def= (νã)(σ | P),

where σ = {T̃/x̃}, fv(P) = ∅, fv(T̃) = ∅, and ã ⊆ fn(T̃). 2

5Through an active substitution.

40

3.1 The Applied π Calculus

Informally, fv(T̃) = ∅ is achieved by substituting the occurrence of variables in the terms
with the terms bound to those variables. fv(P) = ∅ is obtained from the �let� equivalence
in Example 3.1. That is, by replacing the occurrence of bound variables with the term
bound to those variables, whereafter the variable and the associated restriction and active
substitution disappear. Lastly, ã ⊆ fn(T̃) makes sense since any other name occurring in
A can be factored into P .
We sometimes also refer to nf(A) as the inner normal form of A, as it involves substi-

tuting all values of all active substitutions �into� the process.

Internal Reduction: Internal reduction expresses the actual computation and behaviour
of a process, and is de�ned as follows.

De�nition 3.2 (Internal Reduction [AF01])
Internal reduction, →, is the smallest relation on A closed by ≡ and application of
evaluation contexts, satisfying the relations in Table 3.4. 2

a〈x〉.P | a(x).Q→ P | Q(comm)

if T = U then P else Q→ P(then)

if T = U then P else Q→ Q, ifΣ 6` T = U(else)

Table 3.4: Internal Reduction in Aπ.

Notice how quaint the (comm) reduction rule is; it may at �rst glance seem as if the
semantics does not de�ne message-passing at all. However, by clever application of
(alias) and (subst), the following reduction can be performed

a〈T 〉.P | a(x).Q ≡ (νx){T/x} | a〈x〉.P | a(x).Q
→ (νx){T/x} | P | Q
≡ P | Q{M/x},

provided x 6∈ fv(M) ∪ fv(P), which is a problem easily avoided by use of α-conversion.
We are now ready to de�ne the operational semantics of Aπ.

De�nition 3.3 (Operational Semantics of Aπ)
The operational semantics of Aπ is de�ned by the transition system (A ,→), where
→⊆ A ×A . 2

Labelled Operational Semantics: The labelled operational semantics extends the op-
erational semantics detailed in De�nition 3.3, with a labelled reduction relation such
that synchronisations between a process and its environment can be observed. It does
so with a new relation A

α−→ A′, where α ranges over the set of labels A, generated by
the grammar

α ::= a(T) | a〈u〉 | (νu)a〈u〉 | τ.

41

3 Related Protocol Analysis Frameworks

Here, a(T) is an input action, denoting message receival from the environment, a〈u〉 and
(νu)a〈u〉 are actions denoting output to the environment, where the latter expresses that
the previously unexposed variable u now becomes exposed. τ denotes internal reduction.

De�nition 3.4 (Labelled Reduction)
Labelled reduction,

α−→, extends the rules of → with the rules in Table 3.5 2

a(x).P
a(M)−−−−→ P{M/x}(in)

a〈u〉 a〈u〉−−−→ P(out-atom)

A
a〈u〉−−−→ A′, u 6= a

(νu)A
(νu)a〈u〉−−−−−−→ A′

(open-atom)

A
α−→ A′, u does not occur in α

(νu)A
(νu)a〈u〉−−−−−−→ A′

(scope)

A
α−→ A′, bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B α−→ A′ | B
(par)

A ≡ B, B
α−→ B′, B′ ≡ A′

A
α−→ A′

(struct)

Table 3.5: Structural equivalence in Aπ.

De�nition 3.5 (Labelled Operational Semantics of Aπ)
The labelled operational semantics of Aπ is a triple (A ,A, α−→ ∪ →), where α−→ ∪ →⊆
A ×A . 2

3.1.2 Equivalences

Here we introduce three equivalence relations; two behavioural equivalence relations,
namely Observational Equivalence and Labelled Bisimilarity, and one knowledge indis-
tinguishability relation, called Static Equivalence. These de�nitions are central in the
secrecy de�nitions in Aπ.

Observational Equivalence

Here we de�ne the behavioural equivalence of interest in our setting, namely observational
equivalence. It is more interesting than strong bisimilarity in our setting because what
we are interested in is whether two processes have observably di�erent behaviour.
Before we de�ne observational equivalence, we de�ne the observables, or barbs, of a

process. Let τ , as tradition, represent an internal reduction in a process, and let =⇒

42

3.1 The Applied π Calculus

represent the re�exive and transitive closure of
τ−→. Furthermore, denote =⇒ µ−→=⇒ by

µ
=⇒.
Internal actions (or τ , to the environment) are considered unobservable by the envi-

ronment. The next de�nition de�nes the observables of a process.

De�nition 3.6 (Barbs of π-calculus processes [CM02])
We de�ne the observatility predicates, called barbs, of π-calculus processes, as follows.

P ↓a
def= ∃y,Q[P

a(y)−−−→ Q] P ⇓a
def= ∃R[P =⇒ R ∧R ↓a]

P ↓a
def= ∃y,Q[P

a〈y〉−−−→ Q] P ⇓a
def= ∃R[P =⇒ R ∧R ↓a]

P ↓ def= ∃a[P ↓a ∨P ↓a] P ⇓ def= ∃a[P ↓a ∨P ↓a]
2

We are now ready to de�ne observational equivalence.

De�nition 3.7 (Observational Equivalence [AF01])
Observational equivalence, denoted ≈, is the largest binary symmetric relation R over
closed extended processes with the same domain s.t. A ≈ B implies that

1) A ⇓a =⇒ B ⇓a,

2) A→∗ A′ =⇒ ∃B′[B →∗ B′ ∧A′RB′],

3) ∀C[·][C[·] closing evaluation context =⇒ C[A]RC[B]]

holds. 2

An example of how observational equivalence could be used in practice is to ensure that
when replacing an old implementation with a new, improved inplementation (perfor-
mance wise), that this can be done without notice (and thus without consequence) to
the environment. This would be done by comparing the models of both implementations
A and A′, to see if A ≈ A′ holds.

Static Equivalence

In the Aπ calculus, a frame is an extended process built only from 0, active substitutions,
parallel composition and name restriction. This is expressed in the following grammar.

ϕ ::= (νa)ϕ
| {T/x} | ϕ
| 0

By substituting each active substitution in an extended process A into each primitive
process in contact with the substitution, eliminating redundant restrictions and active
substitutions by use of (new-) rules, (alias), (subst), and (rewrite), and deleting all
primitive processes, A is e�ectively mapped to its frame. We denote this mapping by

43

3 Related Protocol Analysis Frameworks

ϕ(A). For an extended process on normal form, this mapping becomes straightforward;
say nf(A) = (νã)(σ | P). Then

ϕ(nf(A)) = (νã)σ,

which is structurally equivalent with ϕ(A). In fact, we will from now on write ϕ(A)
as a shorthand for ϕ(nf(A)). The active substitutions of a frame, like active substitu-
tions themselves, can be considered a function which maps variable names to the term
associated with it: The domain of a frame, written dom(ϕ), is recursively de�ned as

dom((νa)ϕ) def= dom(ϕ)

dom({T/x} | ϕ) def= {x} ∪ dom(ϕ)

dom(0) def= ∅

and denotes the set of variables ϕ exports, while the image of a frame, written im(ϕ), is
recursively de�ned as

im((νa)ϕ) def= im(ϕ)

im({T/x} | ϕ) def= {T} ∪ im(ϕ)

im(0) def= ∅

and denotes the set of terms written in the variables which ϕ exports.
A frame ϕ(A) of an extended process A can be viewed as an account for the static

knowledge exposed by A to its environment, and not the dynamic behaviour of A, or the
knowledge bound to A.

De�nition 3.8 (Term Equality in a Frame)
The terms T and U are equal in frame ϕ, written (T =E U)ϕ, if and only if ϕ ≡ (νã)σ,
Tσ =E Uσ, and ã ∩ (fn(T) ∪ fn(U)) = ∅. 2

De�nition 3.9 (Static Equivalence)
Two closed frames ϕ and ψ are statically equivalent, written ϕ ≈s ψ, if dom(ϕ) =
dom(ψ), and ∀T,U [(T =E U)ϕ ⇐⇒ (T =E U)ψ] holds. Two closed extended processes
A and B are statically equivalent, written A ≈s B, if ϕ(A) ≈s ϕ(B). 2

Informally, two frames ϕ and ψ are statically equivalent if they expose the same infor-
mation to their environment.
We end this section with the statement of a couple of very useful lemmas from [AF01].

Lemma 3.3 (Closure Properties of ≈s)
Static equivalence is closed by structural equivalence, bu reduction, and by application of

closing evaluation contexts. 2

Lemma 3.4 (Static- and Observational Equivalence Relationship)
Observational equivalence and static equivalence coincide on frames. Observational equiv-

alence is strictly �ner than static equivalence on extended processes. 2

44

3.1 The Applied π Calculus

Labelled Bisimilarity

At last, we de�ne labelled bisimilarity in Aπ, and mention the key result there is in its
regard.

De�nition 3.10 (Labelled Bisimilarity)
Labelled bisimilarity, denoted ≈l, is the largest symmetric relation R on closed extended
processes s.t. ARB implies

1. A ≈s B.

2. if A→ A′, then B →∗ B′ and A′RB′ for some B′.

3. if A
α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩ fn(B) = ∅, then B α=⇒ B′ and A′RB′ for

some B′. 2

Theorem 3.5
Observational equivalence is labelled bisimilarity. 2

The advantage of using static equivalence to check for behavioural equivalence of pro-
cesses is because the universal quanti�cation present in the de�nition of observational
equivalence makes it hard at best to prove that two processes are related with that
relation.

3.1.3 Secrecy

We now present the key de�nitions of secrecy in Aπ, as presented in [CRZ06]. There,
Cortier et al consider secrecy in two settings.

Passive Case

This setting involves analysing the information leaked from a system at a given point in
time, typically immediately after a protocol execution.

De�nition 3.11 (Deduction from a Frame)
For a given equational theory E, we say T may be deduced from ϕ, written ϕ ` T , when
that fact is derivable using the axioms

(νñ)σ ` xσ
where x ∈ dom(σ)(ax1)

(νñ)σ ` s
where s 6∈ ñ(ax2)

ϕ ` T1 · · ·ϕ ` Tl
ϕ ` f(T1, . . . , Tl)

where f ∈ Σ(ax3)

ϕ ` T T =E T
′

ϕ ` T ′
(ax4) 2

45

3 Related Protocol Analysis Frameworks

It is worth mentioning now that Abadi and Cortier have proven in [AC04, AC05] that
deduction from a frame and static equivalence are not only decidable for convergent
subterm theories, but up to associativity and commutativity of the equational theory.

De�nition 3.12 (Syntactic Secrecy)
T is syntactically secret in ϕ if ϕ 6` T . 2

De�nition 3.13 (Strong Secrecy)
For s free in ϕ = (νñ)σ, s is strongly secret in ϕ if

∀T, T ′ closed w.r.t. ϕ [ϕ (T/s) ≈s ϕ (T ′/s)] 2

Here it is helpful to consider s as a �placeholder� for any given term. Abadi and Cortier
take this approach because they are not interested in that the term which �replaces� s
appear as an active substitution, but rather, that it is �written into� the process speci�-
cation directly, in place of s.
Examples of where strong secrecy is a very sound de�nition of secrecy is if the process

being veri�ed A represents a vote counter between two candidates. While the observer
does not see the value of the actual votes, he may observe di�erent behaviour in A for
di�erent for the receival of the respective votes.

Active Case

This setting involves analysing security protocols for any number of executions. While
these are indeed very robust de�nitions, they are signi�cantly more di�cult to guarantee.
Let P be a closed process without variables as channels, and s ∈ fn(P), but not a

channel name. We say a frame ϕ is valid in A if there exists a process A′ to which A
reduces through 0 or more reduction steps, where ϕ is the frame of A′.

De�nition 3.14 (Syntactic Secrecy)
s is syntactically secret in P if

∀ϕ valid w.r.t. P [νs.ϕ 6` s] 2

De�nition 3.15 (Strong Secrecy)
s is strongly secret in P if

∀T, T ′ closed[
bn(P) ∩ (fn(T) ∪ fn(T ′)) = ∅ =⇒ P (T/s) ≈l P (T ′/s)

]
2

The way the condition bn(P) ∩ (fn(T) ∪ fn(T ′)) = ∅ should be understood is that T , T ′

are terms which the environment is capable of constructing.
The �valid� frames of a process can be considered as the reachable frames of said

process. We shall use the terms �valid� and �reachable� frame interchangeably.
As a �nal remark, Cortier, Rusinowitch and Zälinescu have proven in [CRZ06] that in

some select (and quite constrained) cases, syntactic secrecy implies strong secrecy. They
provide an automated technique for verifying whether a protocol speci�cation satis�es
the constraints, though.

46

3.2 Abadi/Blanchet Calculus

3.2 Abadi/Blanchet Calculus

Next up is the calculus of Abadi and Blanchet, which we refer to here as ABπ. We present
the syntax, semantics, and the Horn clause generation technique detailed in [AB02], the
latter enriched with sessions as in [Bla02]. Afterwards we summarise the authenticicty
extensions Blanchet makes to ABπ and the Horn clause generator, and which e�ect this
has [Bla02].

3.2.1 Syntax and Semantics

Syntax

We let N be the set of names ranged over by a, . . . , c,m, . . . , t, and V be the set of
variables ranged over by x, . . . , z. Furthermore, let U = N ∪ V be the set of identi�ers,
ranged over by u, . . . , w. Let F be the set of constructors, ranged over by f, and G be the
set of destructors, ranged over by g. The syntax of ABπ is then given by the grammar
speci�cation in Table 3.6, where P is a process, which are ranged over by P, . . . , R ∈P,

P ::= T (x).P
| T 〈T 〉.P
| !P
| (νa)P
| P | P
| let x = g(T1, . . . , Tn) in P else P
| 0

T ::= u
| f(T, . . . , T)

Table 3.6: Syntax of ABπ.

and T is a term, which are ranged over by T, . . . , V ∈ T.

The semantics of destructors in ABπ is given in terms of a particular term rewrite

system: For each destructor g of arity n, there is a set def(g) of reduction rules on the
form g(T1, . . . , Tn) > T , where T1, . . . , Tn, T are closed terms. For each such a rule, if
there exists a substitution σ such that Tiσ = T ′i and Tσ = T ′ for some closed terms
T ′1, . . . , T

′
n, T

′, then the reduction rule g(T ′1, . . . , T
′
n) > T ′ is also contained in def(g).

The term rewrite system in ABπ has fairly common Sπ-like cryptographic primitives.
As opposed to Aπ, the data language is not directly replaceable. We are fairly con�dent,
however, that replacing the term rewrite system with another one would result in a
functioning calculus.

The only datatype in ABπ, like in the π-calculus, is the channel name. Notice that
terms cannot be built from destructor applications. Rather, destructors are opera-
tions which processes can explicitly apply on terms. This is expressed by the process
let x = g(T1, . . . , Tn) in P else Q: Here, if g(T1, . . . , Tn) is the left-side of any reduction

47

3 Related Protocol Analysis Frameworks

rule in def(g), then x is bound to the right-side of one of those rules (chosen nondeter-
ministically), whereafter P{T/x} is executed. If not, then Q is executed.
All other syntactic constructs should be familiar from the π-calculus. Moreover, we

let let x = T in P be syntactic sugar for P{T/x}, and if T = U then P else Q be a
shorthand for let x = equal(T,U) in P else Q, where x does not occur in P and Q, with
equal(T, T) > T ∈ def(equal).
The semantics of ABπ is de�ned in terms of structural equivalence and internal reduc-

tion, as usual.

De�nition 3.16 (Structural Equivalence in ABπ)
Structural equivalence, denoted by ≡, is the smallest equivalence relation over P that
is closed by α-conversions, by application of evaluation contexts, and which satis�es the
axioms in Table 3.7 2

P ≡ P | 0(nil)

P | Q ≡ Q | P(parcom)

P | Q | R ≡ P | Q | R(parass)

(νa1)(νa2)P ≡ (νa2)(νa1)P(newcom)

(νa)(P | Q) ≡ P | (νa)Q, ifa 6∈ fn(P)(newexp)

Table 3.7: Structural equivalence in ABπ.

Since, by rules (nil), (parcom) and (parass), ≡ is associative, commutative, and has an
identity element, (P, |) is an abelian monoid.

De�nition 3.17
Internal reduction, denoted by →, is the least precongruence on processes closed by
structural equivalence and evaluation contexts, and satisfying the axioms in Table 3.8.2

let x = g(T1, . . . , Tn) in P else Q→ P{T/x},(destr1)

if g(T1, . . . , Tn) > T ∈ def(g)
let x = g(T1, . . . , Tn) in P else Q→ P{T/x},(destr2)

if 6 ∃T [g(T1, . . . , Tn) > T ∈ def(g)]
a〈T 〉.Q | a(x).P → Q | P{T/x}(sync)

!P → P |!P(repl)

Table 3.8: Internal reduction relation in ABπ.

We can now de�ne the operational semantics of ABπ as a transition system.

48

3.2 Abadi/Blanchet Calculus

De�nition 3.18 (Operational Semantics of ABπ)
The operational semantics of ABπ is given as the transition system (P,→), where →⊆
P ×P. 2

3.2.2 Secrecy

When performing secrecy analysis on processes in ABπ, the Dolev-Yao threat model is
applied. In that model, the environment is considered an adversary, which implicitly
receives any sent message, and can send any message it knows, that is, any term built
from free names and what could be deduced from prior received messages. In ABπ, the
environment is expressed as an arbitrary adversary.

De�nition 3.19 (Adversary)
Let S be a �nite set of names. The closed process Q is an S-adversary if and only if
fn(Q) ⊆ S. 2

De�nition 3.20 (Secrecy)
We say that the closed process P outputs T on c if and only if P −→∗ C[c〈T 〉.R] for some
process R and some context C which does not pre�x its hole with actions. P preserves
the secrecy of T from S if and only if P | Q does not output T on c, for any S-adversary
Q and any c ∈ S. 2

These de�nitions contrast to the secrecy de�nitions in Aπ in that in Aπ, any name that
becomes free during reduction is considered �compromised�, whereas here, we always
consider a static set S.

3.2.3 Static Analysis

We now present the approach to static analysis of secrecy constraints in ABπ. An
initial process, P0, is a process on which no reductions have been performed. Names in
P0 are treated as function symbols in the Horn clauses generated by the Horn clause
generation algorithm. This is done to ensure that names that di�er semantically in P0

di�er in the Horn clauses. Terms thus instead become patterns, which are given by the
grammar speci�cation in Table 3.9. The notation a[p1, . . . , pn, i1, . . . , in′], as opposed

p ::= x, i
| a[p1, . . . , pn, i1, . . . , in′]
| f(p1, . . . , pn)

Table 3.9: Patterns in Horn clauses

to a(p1, . . . , pn, i1, . . . , in′), is merely used to distinguish names from constructors. If
a is a free name in P0, then its corresponding function arity in the Horn clauses is
0, and it encodes simply to a[]. If a is bound, however, then the arity is the total

49

3 Related Protocol Analysis Frameworks

number of input statements, destructor applications and replications above restriction
on a. In a[p1, . . . , pn, i1, . . . , in′], p1, . . . , pn correspond to input statements and destructor
applications, while i1, . . . , in′ are session identi�ers � integers or variables taken from
the set Vs disjoint from the set Vo or ordinary variables. There is one session identi�er
for each replication above the restriction on a in P0.
The Horn clause generation algorithm uses the predicates given in Table 3.10. The

F ::= att(p)
| msg(p, p′)

Table 3.10: Predicates in Horn clauses

msg(p, p′) predicate expresses that a message p′ has been sent on channel p, while att(p)
expresses that the attacker knows p.
The Horn clauses for a security analysis on P0 are split into two categories: The

learning capabilities of the attacker, and the control �ow in P0. The former, which we
denote Hatt(P0, S), a function of P0 and the designated unsafe names of P0, is de�ned by
Algorithm 3.1. Note the use of variables in the Horn clauses; this essentially means that
the Horn clause is valid for any value assignment of these variables.

Algorithm 3.1: Horn clauses for the attacker, Hatt(P0, S).

Input: Set of names S, and a process P0.1

Result: Set of Horn clauses Hatt, expressing learning capability of attacker.2

Hatt:= ∅3

foreach a ∈ S do4

Hatt:= Hatt ∪ {att(a[])}5

Hatt:= Hatt ∪ {att(b[i])} for some nondeterministically chosen b 6∈ n(P0)6

foreach f ∈ Σ do7

Hatt := Hatt ∪ {
∧

1≤i≤α(f) att(xi) =⇒ att(f(x1, . . . , xα(f)))}8

foreach g ∈ Σ do9

foreach g(T1, . . . , Tn) > T ∈ def(g) do10

Hatt := Hatt ∪ {
∧

1≤i≤n att(Ti) =⇒ att(T)}11

Hatt:= Hatt ∪ {msg(x, y) ∧ att(x) =⇒ att(y)}12

Hatt:= Hatt ∪ {att(x) ∧ att(y) =⇒ msg(x, y)}13

return Hatt14

The latter, which we denote Hprot(P0), a function of P0, is de�ned in terms of the en-
coding in Table 3.11. There, ρ is a map which maps names and variables in P0 during en-
coding, to corresponding patterns. Notice that ρ is a homomorphism: ρ(f(T1, . . . , Tn)) =
f(ρ(T1), . . . , ρ(Tn)). Also, ρ(Vo) is a shorthand for ρ(x1), . . . , ρ(xm), where xi are pair-

50

3.2 Abadi/Blanchet Calculus

wise di�erent and {xi}1≤i≤m dom(ρ)∩Vo. Now, h, the �history�, is a conjunction of input
predicates encountered during the traversal of a branch in the encoding.

[[0]]ρh = ∅
[[P | Q]]ρh = [[P]]ρh ∪ [[Q]]ρh

[[!P]]ρh = [[P]]ρ[i 7→i]h, where i is a new session identi�er

[[(νa)P]]ρh = [[P]](ρ[a7→a[ρ(Vo),ρ(Vs)]])h

[[T (x).P]]ρh = [[P]](ρ[x 7→x])(h∧msg(ρ(T),x))

[[T 〈U〉.P]]ρh = [[P]]ρh ∪ {h =⇒ msg(ρ(T), ρ(U))}let x = g(T1, . . . , Tn)
in P
else Q

ρh

=
⋃[[P]]((σρ)[x 7→σ′p′])(σh) |

g(p′1, . . . , p
′
n) > p′ ∈ def(g),

and (σ, σ′) is the most gene-
ral pair of substitutions
st. σρ(Ti) = σ′p′i; 1 ≤ i ≤ n

∪ [[Q]]ρh

Table 3.11: Horn clauses for control �ow.

Let ρinit = {a 7→ a[] | a ∈ fn(P0)}. Then Hprot(P0) = [[P0]]ρinit∅. For each replication
above a certain point in the parse tree of P0, the set ρ(Vs) will contain one unique session
variable. The idea is then that replicating a process corresponds to assigning a di�erent
value to the corresponding session variable. This can be expressed by changing (repl) to
!i≥nP → P{n/i} |!i≥n+1P , where !i≥nP represents copies of P for each i ≥ n.
The full set of Horn clauses for a security analysis on P0 with S as the designated

unsafe names is de�ned as H(P0, S) = Hatt(P0, S)∪Hprot(P0). When the actual P0 and S
are obvious from the context, we let H, Hatt, and Hprot, abbreviate H(P0, S), Hatt(P0, S),
and Hprot(P0), respectively.
Finally, we de�ne the following.

De�nition 3.21 (Deduction from a set of Horn clauses)
We say that predicate p is deducible from a set of Horn clauses H, written H ` p, if p
can be derived from H. 2

Recall that derivation of a predicate from a set of Horn clauses is de�ned in De�ni-
tion 2.23.

3.2.4 Authenticity Extension

In [Bla02], Blanchet extends on the work they made in [AB02] by adding primitives to
ABπ for expressing beginnig and ending of authenticated sessions, for the purpose of
verifying authentication properties in security protocols.

51

3 Related Protocol Analysis Frameworks

The syntax of ABπ is extended with the following authentication primitives.

P ::= begin(T).P
| end(T).P
| begin_ex(T)
| end_ex(T)

Here, begin(T).P and end(T).P denote the act of initiating and ending an authenticated
session, respectively, and then behaving like P . After these actions are performed, a
�oating begin begin_ex(T), and a �oating end indicator, end_ex(T), respectively, will
appear as a parallel component. This is expressed in the following addition the primitive
reduction relation.

begin(T).P → begin_ex(T) | P
end(T).P → end_ex(T) | P

Blanchet then proceeds to de�ne noninjective agreement.

De�nition 3.22 (Non-injective Agreement)
The closed starting process P0 satis�es non-injective agreemenet with respect to S-
adversaries i� for any S-adversary Q, for any P ′0 such that P0 | Q(≡ ∪ →)∗P ′0, for
any T , if end_ex(T) occurs in P ′0, then begin_ex(T) also occurs in P ′0 (Assumption:
di�erent names in P ′0 all di�er syntactically). 2

De�nition 3.23 (Injective Agreement)
The closed starting process P0 satis�es injective agreemenet with respect to S-adversaries
i� for any S-adversary Q, for any P ′0 such that P0 | Q(≡ ∪ →)∗P ′0, for any T , number of
occurrences of end_ex(T) in P ′0is less than or equal the number of begin_ex(T) in P ′0
(Assumption: di�erent names in P ′0 all di�er syntactically). 2

To verify these properties, Blanchet then extends the predicates,

F ::= begin(p, ρ)
| end(p, s)

[[begin(T).P]]ρh = [[P]]ρh∧begin(ρ(T),ρ)

[[end(T).P]]ρh = [[P]]ρh ∪ {h =⇒ end(ρ(T), ρ(VS))},

Theorem 3.6
Assume that, for any set Bb of permitted begin actions, if end(T, s) is derivable from

H(P0, S) ∪ Bb, then begin(T, ρ) ∈ Bb. Then P0 satis�es non-injective agreement with

respect to S-adversaries. 2

Blanchet has a similar theorem for injective agreement in [Bla02].
On a �nal note, in [BP05], Blanchet and Podelski guarantee termination of the reso-

lution algorithm for H in an attacker-free setting, through a technique they refer to as
�tagging�.

52

3.3 CBS]

3.3 CBS]

CBS] [NH06, Nan06] is a broadcast calculus developed by Sebastian Nanz as part of his
PhD (supervised by Chris Hankin), developed for the purpose of modelling and verifying
protocols for mobile wireless networks. CBS] is a further development of their previous
work [NH04] on extending CBS with locations and locality6. In CBS], a protocol is
expressed as a network of locations, each containing a sequential process, or a parallel
composition thereof, similar to Dπ. Unlike Dπ, processes cannot move from location to
location, and CBS] employs an asynchronous send broadcast semantics. Broadcasting a
message is a lossy, atomic transmission step. Each location has its own (in�nite) memory
for (a monotonely increasing) storage of terms, which a process within the location can
read from and add terms to, at runtime. Connectivity of locations is expressed as a set of
undirected graphs, each graph representing the connectivity of locations at a given point
in time (when a process is broadcasting). The connectivity graphs dictate the scope of
broadcasts.

3.3.1 Syntax and Semantics

Syntax

Let N be the set of names ranged over by a, . . . , c, o, . . . , t, with nodes ranged over by
m, . . . , n ∈ Nloc ⊆ N, and V be the set of variables ranged over by x, . . . , z (both sets
being in�nite). Let N ∪ V = U be ranged over by u, . . . , w. Let F be the set of function
symbols, ranged over by f. The syntax of CBS] is then given by the grammar speci�cation
in Table 3.12, where the syntactic category N represents networks, which are ranged over

P ::= 0
| (x).P
| 〈T 〉.P
| !P
| P | P
| case T of f(T̃ ; x̃) P else P
| read x.P
| store T.P

T ::= u

| f(T̃)

N ::= n[P, S]
| N | N

Table 3.12: Syntax of CBS].

by M, . . . , N ∈ N , the syntactic category T represents terms, which are ranged over by
T, . . . , V ∈ T, and the syntactic category P represents processes, which are ranged over
by P, . . . , R ∈P.

6However, while locality in their prior extension to CBS is probabilistic, then this is not the case for
CBS].

53

3 Related Protocol Analysis Frameworks

Connectivity Graphs

We let V(N) denote the locations in a the network N . Network connectivity (locality of
locations) is expressed by connectivity graphs.

De�nition 3.24 (Connectivity Graph)
A graph G is a connectivity graph if V(G) is a �nite set, V(G) ⊆ Nloc and ∀n,m ∈
V(G)[(n,m) ∈ E(G) =⇒ n 6= m] holds. We say G is admissible on a network N if
V(N) ⊆ V(G). 2

That is, a connectivity graph is a directed graph which vertices are a �nite set of locations
where no location has an edge to itself. For an admissible connectivity graph G, all the
locations which appear inN appear amongst the locations inG. As such, the connectivity
graph expresses the connectivity of locations in the model N , as well as other (potentially
unsafe) locations which are not part of the speci�ed network N .

De�nition 3.25 (Network Topology)
A network topology τ is a set of connectivity graphs. We say τ is admissible to a network
N when all the graphs in τ are. 2

Typically, we use network topologies to specify invariants on the connectivity of locations
in our networks, such as

τ = {G | (n,m) ∈ E(G), (m,n) ∈ E(G)},

which is the set of all graphs wherein the vertices m and n are connected.

We de�ne τmax as the set containing all graphs on Nloc. Any network topology is thus
a subset of τmax.

Semantics

We are now ready to give the operational semantics of CBS]. It is de�ned by three
relations: A labelled transition relation, a reduction relation, and a structural equiva-
lence. We start o� with the labelled transition relation, which expresses the semantics
of message-passing in CBS].

De�nition 3.26 (Labelled Transition Relation)
The labelled transition relation, denoted by

α−→, is the least relation on N satisfying the
axioms in Table 3.13 2

To de�ne the interaction between input and output, the semantics of the labelled tran-
sition relation makes use of an algebra of modes.

De�nition 3.27 (Mode Identi�ers)
The set {!, ?, :} is the set of mode identi�ers, which elements are ranged over by the
meta variable]. Mode identi�ers can be composed with the ◦ operator according to the
algebra in Table 3.14, where ⊥ denotes that ! cannot be combined with itself. 2

54

3.3 CBS]

n[0, S]
(T,m):−−−−→G n[0, S]

(nil)

n[〈T 〉.P, S]
(T,n)!−−−−→G n[P, S]

(out1)

n[〈T 〉.P, S]
(U,m):−−−−→G n[〈T 〉.P, S]

(out2)

(m,n) ∈ E(G)

n[(x).P, S]
(T,m)?−−−−−→G n[P{T/x}, S]

(in1)

(m,n) 6∈ E(G)

n[(x).P, S]
(T,m):−−−−→G n[(x).P, S]

(in2)

n[!P, S]
(T,m):−−−−→G n[!P, S]

(repl1)

N1
(T,m)]1−−−−−→G N

′
1 N2

(T,m)]2−−−−−→G N
′
2

N1 | N2
(T,m)(]1◦]2)−−−−−−−−→G N

′
1 | N ′2

(ppar)

N ≡M M
(T,m)]−−−−→G M

′ M ′ ≡ N ′

N
(T,m)]−−−−→G N

′
(struct)

Table 3.13: Labeled Transition in CBS].

We usually perform transitions in a network in accordance to a given network topology.
To emphasise this fact, we de�ne the following.

De�nition 3.28 (τ -faithfulness)
A reduction

(T,m)]−−−−→G is said to be τ -faithful if and only if G ∈ τ . We denote this fact

by
(T,m)]−−−−→G∈τ . 2

We de�ne −→ ∗τ as the re�exive, transitive closure of τ -faithful output transitions. For
instance, the transition sequence

N
(T1,m1)!−−−−−−→G1∈τ N1

(T2,m2)!−−−−−−→G2∈τ N2 · · ·
(Tk,mk)!−−−−−−→Gk∈τ N

′

can be written as N −→∗τN ′ (if G1, . . . , Gk ∈ τ).
Next we have the reduction relation, which expresses computation in processes.

De�nition 3.29 (Reduction Relation)
The reduction relation, denoted →, is the least relation on N satisfying the axioms in
Table 3.15. 2

At last, we have the traditional structural equivalence relation.

55

3 Related Protocol Analysis Frameworks

◦ ! ? :
! ⊥ ! !
? ! ? ?
: ! ? :

Table 3.14: Mode Identi�ers in CBS].

n[!P, S]→ n[P |!P, S]
(repl2)

n[store T.P, S]→ n[P, S ∪ T]
(store)

T ∈ S
n[read x.P, S]→ n[P{T/x}, S]

(read)

T = f(T̃ ; Ũ) |Ũ | = |x̃|
n[case T of f(T̃ ; x̃) P else Q,S]→ n[P{T̃/x̃};S]

(case1)

6 ∃Ũ .T = f(T̃ ; Ũ) ∧ |Ũ | = |x̃|
n[case T of f(T̃ ; x̃) P else Q,S]→ n[Q;S]

(case2)

Table 3.15: Reduction in CBS].

De�nition 3.30 (Structural Equivalence)
The structural equivalence relation, denoted ≡, is the least relation on N satisfying the
axioms in Table 3.16. 2

We have by (re�), (sym) and (trans) that ≡ is an equivalence relation. However, ≡ is
not an abelian monoid with respect to parallel composition, even though ≡ is associative
and commutative with respect to parallel composition as per (assoc) and (comm) (there
is no identity element in N). (N , |) is a semigroup, though.

3.3.2 Control Flow Analysis

Overview

In the analysis of CBS], we make use of an abstract network topology G(τ) of a topology
τ as

G(τ) def=

(⋃
G∈τ

V(G),
⋃
G∈τ

E(G)

)
,

which is a static abstraction which contains all G ∈ τ as subgraphs. G(τ) is a useful
overapproximation when performing control �ow analysis, as it avoids state-space explo-
sion problems associated with analysing each possible message �ow with regards to any
possible network connectivity.

56

3.3 CBS]

N1 | N2 ≡ N2 | N1
(comm)

N1 | (N2 | N3) ≡ (N1 | N2) | N3
(assoc)

N ≡ N(re�)

N ≡ N ′
N ′ ≡ N

(sym)

N ≡ N ′′ N ′′ ≡ N
N ≡ N ′

(trans)

N1 ≡ N ′1
N1 | N2 ≡ N ′1 | N2

(comp)

N → N ′

N ≡ N ′
(red)

n[P1 | P2, S1 ∪ S2] ≡ n[P1, S1] | n[P2, S2]
(par)

Table 3.16: Structural Equivalence in CBS].

The control �ow analysis is speci�ed as a �ow logic; an approach to static analysis
where the speci�cation of the acceptability of an analysis estimate is separated from the
computation of the analysis. There are two judgements in the �ow logic:

(κ, σ) |=Gτ N Judgement for networks.

(κ, σ) |=θ
Gτ ,n P Judgement for processes.

where

κ ⊆ T ×Nloc Network cache.

σ ⊆ T ×Nloc Store cache.

The overapproximation occurs in the computation of the sets κ and σ, representing which
terms may be output in N from where, and which terms may be stored in N and where,
respectively.

The judgements should be read �(κ, σ) is a valid analysis estimate describing the be-
haviour of N under G(τ)� and �(κ, σ) is a valid analysis estimate describing the behaviour
of P at n under G(τ)�, respectively. The latter makes use of a substitution θ, which keeps
track of possible instantiations of variables in P .

Excerpt

An excerpt from the control �ow analysis of CBS] is contained in Table 3.3.2. The
judgement for networks states (in brief) that (κ, σ) is a valid analysis result describing

57

3 Related Protocol Analysis Frameworks

Judgement for Networks:

(κ, σ) |=G(τ) n[Pθ, S](node)

i� (κ, σ) |=θ
G(τ),n P ∧ ∀T ∈ S.(T, n) ∈ σ

(κ, σ) |=G(τ) N1 | N2(ppar)

i� (κ, σ) |=G(τ) N1 ∧ (κ, σ) |=G(τ) N2

Judgement for Processes:

(κ, σ) |=θ
G(τ),n 〈T 〉.P(out)

i� (Tθ, n) ∈ κ ∧ (κ, σ) |=θ
G(τ) P

(κ, σ) |=θ
G(τ),n (x).P(in)

i� ∀(T,m) ∈ κ . (m,n) ∈ E(G(τ)) =⇒ (κ, σ) |=θ{T/x}
G(τ) P

(κ, σ) |=θ
G(τ),n store T.P(store)

i� (Tθ, n) ∈ σ ∧ (κ, σ) |=θ
G(τ) P

(κ, σ) |=θ
G(τ),n read x.P(read)

i� ∀(Tθ, n) ∈ σ . (κ, σ) |=θ{T/x}
G(τ) P

(κ, σ) |=θ
G(τ),n case T of f(T1 . . . Tj ;xj+1 . . . xk) P1 else P2(case)

i�

(
Tθ = f(V1 . . . Vk) ∧

j∧
i=1

Tiθ = Vi =⇒ (κ, σ) |=θ{Vi/xi}j+1≤i≤k
G(τ),n P1

)
∧ (κ, σ) |=θ

G(τ),n P2

Table 3.17: Control Flow Analysis in CBS], excerpt.

the behaviour of a network if and only if the same holds for each process in each parallel
network component.

In the judgement of processes, (out) states that (κ, σ) |=θ
G(τ),n 〈T 〉.P holds if and

only if κ accounts for the output (T, n), and (κ, σ) |=θ
G(τ),n P holds. (in) states that

(κ, σ) |=θ
G(τ),n (x).P holds if and only if (κ, σ) |=θ{T/x}

G(τ),n P holds for any T that can be sent

to n (and thus may be written to x). The judgements for (store) and (read) are analogous.
Lastly, (case) states that (κ, σ) |=θ

G(τ),n case T of f(T1 . . . Tj ;xj+1 . . . xk) P1 else P2 holds

58

3.3 CBS]

if θ is a uni�er for the system of equations

S = {T ?= f(V1 . . . Vk)} ∪ {Ti
?= Vi}1≤i≤j

with variables v(T) ∪
⋃

1≤i≤j v(Ti) = dom(θ), (κ, σ) |=θ{Vi/xi}j+1≤i≤k
G(τ),n P1 holds (with θ

extended with the proper pattern-matching instantiation of xj+1 . . . xk), and the failure
case (κ, σ) |=θ

G(τ),n P2 holds. There are also judgements for the process constructs P1 | P2,

!P , and 0 (the remainder of the grammar of P), and they are fairly straightforward (see
[NH06]).

Soundness Results

The judgement of networks and processes, respectively, is then proven sound [NH06].

Theorem 3.7 (Soundness of (κ, σ) w.r.t. N)
If N −→∗τN ′

(T,n)!−−−−→G∈τ N
′′ and (κ, σ) |=G(τ) N , then (T, n) ∈ κ. 2

Theorem 3.8 (Soundness of (κ, σ) w.r.t. P)
For any T 6= ε, we have that if N ⇓τn T and (κ, σ) |=G(τ) N , then (T, n) ∈ σ. 2

Here, N ⇓τn T denotes that �in network N , T can at some point be stored in location n
under network topology τ �.

Implementation

The control �ow analysis for CBS] has been implemented using the Succinct Solver

constraint solving tool [NNS+04], version 1.0 [NH06, Nan06]. Constraints are speci�ed
in ALFP logic, a Horn-like fragment of �rst-order predicate logic.

Security Model for Routing Protocols

At last, a security model for routing protocols is given in [NH06]. It is based on the
concept of mediated equivalence. There, a mediator is a function on terms (that is,
µ : T −→ T). Typically, µ functions as a ��lter�, which maps undesired terms to ε (ε can
always be stored, everywhere), and any other term to itself (such mediators are called
simple).

De�nition 3.31 (Mediated Equivalence)
Given a network topology τ and a mediator µ, we write N vµτ M if

∀T .∀n ∈ V(N) ∩ V(M) .N ⇓τn T =⇒ M ⇓τn µ(T)

holds. Two networks N and M are mediated equivalent, written N 'µτ M , if and only if
N vµτ M and M vµτ N . 2

59

3 Related Protocol Analysis Frameworks

The idea with 'µτ is that we are not concerned with whether �false routing information�
is communicated from one node to another or not (in which case we would consider the
more classic notion of bisimilarity), but rather whether that false routing information is
stored in that which corresponds to a routing table in CBS]: The local storage S.
In the context of routing protocols, a consistency mediator µτ : T −→ T maps µτ (T)

to ε when τ is �correctly represented�, and to T otherwise. The �correctly represented�
condition varies from protocol to protocol.

Example 3.9 (Consistency Mediator in the SAODV protocol)
In the Secure Ad-hoc On-demand Distance Vector (SAODV) routing protocol, µSAODVτ

could be de�ned as

µSAODVτ (U) =

 ε,
if for U = Route(nd, n1, n2) there exist locations n3, . . . , nk s.t.
nk = nd and ∀1 ≤ i ≤ k − 1∃G ∈ τ . (ni, ni + 1) ∈ G

U otherwise.

Here, Route(nd, n, n′) is a term (a predicate) expressing that whenever n receives a mes-
sage addressed to nd, then n will forward that message to n′. Thus, µSAODVτ �lters out
unwanted routing information (false routes). 2

De�nition 3.32 (Topology Consistency)
Given a network N and a network topology τ , let µτ be the consistency mediator for N .
N is said to be topology consistent under network M (an attacker) if N 'µττ N |M . 2

Due to a result in [NH06] stating that N vµτ N | M for any two networks N,M and
simple mediators µ (and since the converse is false in general), then we can note that in
De�nition 3.32, M can store anything, while if N |M stores undesired data (de�ned by
µτ) in the nodes of N , then N 'µττ N |M cannot be established.
At last, we have that

Theorem 3.10 (Soundness of (κ, σ) w.r.t. Topological Consistency)
For all networks N,M and simple mediators µ, if (κ, σ) |=G(τ) N | M and ∀(T, n) ∈
σ .µ(T) = ε, then N 'µτ N |M . 2

It is then proven in [NH06] by use of this result that the modelled SAODV protocol is
vulnerable to spoo�ng attacks.

3.4 CMAN

The Calculus for Mobile Ad-hoc Networks (CMAN) [God07] is a broadcast calculus
developed by Jens Chr. Godskesen, for the purpose of modelling cryptographic routing
protocols. In CMAN, a protocol is modelled as a network of locations, each containing
a single sequential process. While a process can never leave its location, a process can
actively manipulate the network topology, and as such, obtain a form of migration. The
network topology is two-way, and is expressed explicitly in the syntax of the model, with
each location having a set of adjacent locations associated with it. CMAN employs an

60

3.4 CMAN

asynchronous send broadcast semantics, where a broadcast action is lossy and atomic. A
broadcast of a message is scoped by the network topology in the sense that only locations
adjacent to the broadcasting location receive the message.

3.4.1 Syntax and Semantics

Syntax

Let N be the set of names ranged over by a, b, c, o, . . . , t, with nodes (also referred to
as locations) ranged over by k, l, n ∈ Nloc, where N ∩ Nloc = ∅. Let names and nodes
be ranged over by m ∈ N ∪ Nloc, and V be the set of variables ranged over by x, . . . , y
(both sets being in�nite). Let N∪V = U be ranged over by u, . . . , w. Let Z be the set of
process variables, ranged over by z. Let F be the set of function symbols, ranged over by
f, and G be the set of destructors, ranged over by g. The syntax of CMAN is then given
by the grammar speci�cation in Table 3.18, where the syntactic category N represents

P ::= 0
| (x).P
| 〈T 〉.P
| (νa)P
| let x = g(T̃) in P else P
| let x = T in P
| if T = U then P else P
| rec z.P
| z

T ::= u

| f(T̃)

N ::= 0
| n[P]σ

| (νm)N
| N | N

Table 3.18: Syntax of CMAN.

networks, which are ranged over by M, . . . , N ∈ N , the syntactic category T represents
terms, which are ranged over by T, . . . , V ∈ T, and the syntactic category P represents
processes, which are ranged over by P, . . . , R ∈P.
The recursion operator, which is the only new syntactic element compared to the calculi

reviewed prior, is de�ned as recursion is normally de�ned. This also makes sense since a
process variable z can appear nowhere else than in the end of a process speci�cation (as
z cannot be post�xed).
Worth noting also is that there is no parallel composition of processes; only of networks.

The σ in the syntax denotes the (symmetric) connection of n to all the nodes with names
in σ.
We de�ne fl(N) and bl(N) to be the free and bound locations in N , respec�vely, and

de�ne l(N) = fn(N) ∪ bn(U).
We assume that all networks are well-formed, which is de�ned as follows.

De�nition 3.33 (Well-formedness)
We de�ne well-formedness of networks inductively as follows.

61

3 Related Protocol Analysis Frameworks

i) n[P]σ is well-formed if l 6∈ σ.

ii) N |M is well-formed if N and M are, and if fl(N) ∩ fl(M) = ∅.

iii) (νm)N is well-formed if N is. 2

As we are solely interested in well-formed, and variable-closed networks, we shall hence-
forth let N denote the set of these networks.

Rewrite System

As Aπ does with algebraic theories, CMAN generalises the data language to term rewrite

systems, which can vary from application to application.

Semantics
De�nition 3.34 (Structural Congruence on P)
The structural congruence relation on processes, denoted ≡P , is the least congruence
and equivalence relation on P that is closed under α-conversion and satis�es the axioms
in Table 3.19. 2

rec z.P ≡P P{rec z.P/z}
(rec)

let x = T in P ≡P P{T/x}
(assign)

if T = T then P else Q ≡P P
(if1)

T 6= U

if T = U then P else Q ≡P Q
(if2)

g(T̃) > T

let x = g(T̃) in P else Q ≡P P{T/x}
(let1)

6 ∃T . g(T̃) > T

let x = g(T̃) in P else Q ≡P Q
(let2)

Table 3.19: Structural Congruence on P in CMAN.

Here, a relation R on P is said to be congruent if, for any evaluation context C[·] and
any processes P,Q, we have PRQ =⇒ C[P]RC[Q].

De�nition 3.35 (Structural Congruence on N)
The structural congruence relation on networks, denoted ≡, is the least congruence and
equivalence relation on N that is closed under α-conversion and satis�es the axioms in
Table 3.20. 2

62

3.4 CMAN

N | 0 ≡ N
(nil)

N |M ≡M | N
(comm)

(N1 | N2) | N3 ≡ N1 | (N2 | N3)
(assoc)

P ≡P Q

n[P]σ ≡ n[Q]σ
(congP)

n[(νa)P]σ ≡ (νa)n[P]σ
(new-ext)

(νm)(νm′)N ≡ (νm′)(νm)N
(new-C)

m 6∈ fn(Q) ∪ fl(Q)
(νm)N |M ≡ (νm)(N |M)

(new-par)

Table 3.20: Structural Congruence on N in CMAN.

Here, a relation R on N is said to be congruent if NRN ′ implies that (νm)NR(νm)N ′

for all m, and N |MRN ′ |M , for all M with fl(M) ∩ (fl(N) ∪ fl(N ′)) = ∅.
Next we have the reduction relation, which expresses computation in processes.

De�nition 3.36 (Reduction Relation)
The reduction relation, denoted →, is the least relation on N closed under ≡ and |, and
satisfying the axioms in Table 3.21. 2

n[P]σ | l[Q]σ
′ → n[P]σl | l[Q]σ

′n
(conn)

n[P]σl | l[Q]σ
′n → n[P]σ | l[Q]σ

′(disc)

n[〈T 〉.P]σσ
′ |
∏
l∈σ l[(x).Pl]σln →n n[P]σσ

′ |
∏
l∈σ l[Pl{T/x}]σln

(bc)

N →n N
′

(νm)N →n (νm)N ′
where m 6= n(scope)

N →n N
′

(νn)N → (νn)N ′
(hide)

Table 3.21: Reduction in CMAN.

Recall that σ is a set of location names. We denote the set σ ∪{n}, where n 6∈ σ, by σn.
De�nition 3.37 (Labelled Transition Relation for P [NH06])
The labelled transition relation for processes, denoted by

λ−→P , is the least relation on P
closed by ≡P and satisfying the axioms in Table 3.22 2

63

3 Related Protocol Analysis Frameworks

〈T 〉.P 〈T 〉−−→P P

(out)

(x).P
(T)−−→P P{T/x}

(in)

P
λ−→P P ′

(νa)P λ−→P (νa)P ′
where a 6∈ n(λ)(scope)

P
(νã)〈T 〉−−−−−→P P ′

(νa)P
(νaã)〈T 〉−−−−−−→P P ′

where a ∈ fn(T) \ ã(open)

Table 3.22: Labeled Transition for P in CMAN.

Here, λ ranges over the set of process actions, AP , de�ned by the grammar

λ ::= (T) | (νã)〈T 〉,

where we abreviate (ν∅)〈T 〉 by 〈T 〉. We then have that the operational semantics for

processes is de�ned as the labelled transition system (P,AP ,
λ−→P), where λ−→P⊆ (P×

AP)×P.

De�nition 3.38 (Labelled Transition Relation for N [NH06])
The labelled transition relation for networks, denoted by

α−→N , is the least relation on
N satisfying the axioms in Tables 3.23 and 3.24. 2

Here, α ranges over the set of network actions, AN , de�ned by the grammar

α ::= β | γ β ::= n | n.σ(νã)〈T 〉 | n.σ(T) | τ γ ::= n. | (νn)n. | n/ l | τ

The syntactic category β represents broadcast actions. Here, when considering these la-
bels, it is helpful to consider the labelled reduction as occuring in some speci�ed network
N , and that these labelled reduction symbolise the interaction of N with some environ-
ment, in the form of an unspeci�ed evaluation context C[·] (that is, where any labelled
reduction in N is an (internal) reduction in C[N]). In β, n means that the process in
location n in N broadcasts a message, and that this message does not reach the envi-
ronment. By only looking at the label n, and without looking inside N7, we cannot say
from this point of view which location(s) received the message broadcast by n, if any
at all. The action n.σ(νã)〈T 〉 is an output action, meaning that the process at location
n has broadcast the message T , containing names ã, which is receivable by locations in
σ. σ is always a subset of the names associated with n in N as the locations which can
receive from n. Lastly, n.σ(T) is an input action, meaning that the process at location n
broadcasts the message T which can be received by locations in σ. Again, σ is a subset

7and without monitoring changes in behaviour ofN , and without comparingN toN ′, whereN
n−→N N ′

64

3.4 CMAN

P
(νã)〈T 〉−−−−−→P P ′

n[P]σ
n.σ(νã)〈T 〉−−−−−−−→N n[P ′]σ

(bc)

N
n.(σσ′)(νã)〈T 〉−−−−−−−−−→N N ′

N
n.σ(νã)〈T 〉−−−−−−−→N N ′

(lose)

P
(T)−−→P P ′

n[P]σl
l.n(T)−−−−→N n[P ′]σl

(rec1)

N
n.σ(T)−−−−→N N ′ M

n.σ′(T)−−−−−→N M ′

N |M n.σσ′(T)−−−−−−→N N ′ |M ′
where σ ∩ σ′ = ∅(rec2)

N
nε(νã)〈T 〉−−−−−−→N N ′

N
n−→N (νã)N ′

where T is some term.(close)

N
n−→N N ′

(νn)N τ−→N (νn)N ′
(hide)

N
n.σ(νã)〈T 〉−−−−−−−→N N ′

(νa)N
n.σ(νãa)〈T 〉−−−−−−−−→N N ′

where a ∈ fn(T) \ ã(open1)

N
n.σσ′(νã)〈T 〉−−−−−−−−→N N ′ M

n.σ′(T)−−−−−→N M ′

N |M n.σ(νã)〈T 〉−−−−−−−→N N ′ |M ′
where ñ ∩ fn(M) = σ ∩ fl(M) = ∅(sync)

N
β−→N N ′

N |M β−→N N ′ |M
where l(Q) ∩ l(β) = ∅(par1)

N
β−→N N ′

(νm)N
β−→N (νm)N ′

where m 6∈ n(β) ∪ fl(β)(res1)

Table 3.23: Labelled Transition for N for broadcast in CMAN

of the location names associated with n as the locations within broadcast range. Note
that n need not be part of N ; n could be a location in the environment C[·], to which
some locations in N are connected.

Thus, the role of σ is to keep track of possible, and legitimate, receivers of a broad-
cast message. Since the network topology is explicit in the syntax, as opposed to being
provided alongside the network speci�cation, like the graphs in CBS], we cannot per-
form a �look up� in the network topology on demand in the labelled reduction rules in
Table 3.23. Instead, σ is �carried around� during derivation, travelling up from the leaf
in the abstract syntax tree of N where the broadcast stems from, and parted up and

65

3 Related Protocol Analysis Frameworks

n[P]σ n.−−→N n[P]σ
(con1)

n[P]σl n/ l−−→N n[P]σ
(dis1)

N
(νñ)n.−−−−−→N N ′ N

(νl̃)l.−−−−→N N ′

N |M τ−→N (νñ)(νl̃)(N ′ |M ′)n⊕l
where (*)(con2)

ñ ∩ l̃ = ñ ∩ fl(N) = l̃ ∩ fl(M) = ∅, and ñ ∈ {{n}, ∅}, l̃ ∈ {{l}, ∅}(*)

N
n/ l−−→N N ′ M

l/n−−→N M ′

N |M τ−→N N ′ | N ′
where n ∈ l(N), l ∈ l(M)(dis2)

N
n.−−→N N ′

(νn)N
(νn)n.−−−−−→N N ′

(open2)

N
γ−→N N ′

(νm)N
γ−→N (νm)N ′

where m 6∈ l(γ)(res2)

N
γ−→N N ′

N |M γ−→N N ′ |M
where bl(γ) ∩ fl(M) = ∅(par2)

Table 3.24: Labelled Transition for N for mobility in CMAN

�sent down� the branches down to nodes which can hear n, along the way up the abstract
syntax tree. This is expressed in the rules (bc), (lose), (rec1), (rec2), and (sync)8. The
purpose of (close) and (open1) is to move the scope of restricted names as necessary
(sometimes beyond the scope of N , e�ectively �free�ing them). The remaining rules are
structural.

The syntactic category γ represents migration. There, the actions n. and (νn)n. mean
that n might migrate. The action n/ l expresses that the nodes n and l disconnect from
one another. An important rule to note in Table 3.24 is (con2), which, while it does not
seem so from its premises, connects two locations. The connection occurs by using the
connection operator, n ⊕ l, on N | M , which connects n and l in N | M . Formally, for
any N , l, and n, we de�ne Nn⊕l inductively in Table 3.25. There is also a disconnection

operator, n	 l, which separates n and l in the a�ected network.

We then have that the operational semantics for networks is de�ned as the labelled
transition system (N ,AN ,

α−→N), where α−→N ⊆ (N ×AN)×N .

8If the choice of σs in the inference rules seems �precognitive�, then try looking at the rules as described
previously in this paragraph: Top-down for output rules like (bc) and (lose), until you match the
premise of a rule which has an input premise, like (sync). Match these in a bottom-up manner, and
see what happens to the σs.

66

3.4 CMAN

0n⊕l = 0

(n[P]σ)n⊕l = n[P]σl

(l[P]σ)n⊕l = l[P]σn

(k[P]σ)n⊕l = k[P]σ, if k 6∈ {n, l}
(N |M)n⊕l = Nn⊕l |Mn⊕l

((νm)N)n⊕l = (νm)(Nn⊕l), if m 6∈ {n, l}

Table 3.25: Connection operator, ⊕, in CMAN

3.4.2 Equivalence

At last we present the notion of strong bisimilarity for CMAN. First, let

(x).Aσ⊕l =
∏
k∈σ

k[(x).Pk]σkl.

We then, for any (x).Aσ⊕l, write

Aσ⊕l{T/x} =
∏
k∈σ

k[Pk{T/x}]σkl.

De�nition 3.39 (Strong Bisimilarity)
A binary relation R on N is a strong simulation if NRM implies fl(N) = fl(M), and for
all P ∈P,

i) if N
τ−→ N ′, then ∃M ′ such that

M
τ−→M ′ ∧N ′RM ′

ii) if N
l.σ(νñ)〈T 〉−−−−−−−→ N ′, then ∀σ′ ⊆ σ .∀(x).Aσ′⊕l . ñ ∩ fn((x).Aσ′⊕l) = ∅, we have

M | (x).Aσ′⊕l
l−→M ′ ∧ (νñ)(N ′ | Aσ⊕l{T/x})RM ′

iii) if N
l.σ(T)−−−−→ N ′, then ∀σ′ .σ′ ∩ σl = ∅ .∃M ′, such that

M | l[〈T 〉P]σσ
′ l−→M ′ ∧N ′ | l[〈T 〉P]σσ

′
RM ′

iv) if N
(νm)l.−−−−−→ N ′, then ∀k . k 6∈ fl(N) ∪ m̃ .∀σ .σ ∩ m̃k = ∅ .∃M ′, such that

M | k[P]σ τ−→M ′ ∧ (νm̃)(N ′ | k[P]σl⊕k)RM
′

67

3 Related Protocol Analysis Frameworks

v) if N
l/k−−→ N ′, then ∀σ . k 6∈ σ .∃M ′, such that

M | k[P]σl τ−→M ′ ∧N ′ | k[P]σRM ′

R is then a strong bisimilarity if R−1 is also a strong simulation. 2

A corresponding de�nition for weak bisimilarity can be found in [God07].
Due to the contextuality of his bisimilarity de�nition, Godskesen restricts his attention

to connection-closed networks.

De�nition 3.40 (Connection-closed Network)
A network N is closed when each node in N is connected only to other nodes in N . 2

Godskesen then applies his framework to recapture the �aw in the ARAN protocol he
discovered in [God06]. This is done manually by use of behavioural equivalence checks
of the ARAN model with and without a speci�c attacker.

3.5 Summary

We now thoroughly re�ect upon the related frameworks presented in this chapter, com-
paring them to each other and to our objective, and emphasise what we desire from our
framework as we go.

Aπ: The Aπ calculus is indeed a well-established, very �exible framework for the ver-
i�cation of security protocols. Secrecy and authenticity properties assume the
tried-and-true Dolev-Yao threat model, which we deem to be a fairly sound set
of assumptions. The appeal of concept of a frame, and deduction from a frame, is
also that we are capable of expressing the knowledge that an arbitrary, unspeci�ed,
attacker can achieve, simply by analysing the syntax speci�cation of our protocol
model. This thus leads to a sound set of secrecy and authenticity de�nitions, which
we would like to inherit to our calculus. The generalisation of the applied data lan-
guage greatly increases the applicability of Aπ, as we can simply instantiate it as
we see �t for a given modelling scenario.

However, were we to attempt to apply Aπ directly for the veri�cation of MANETs,
we encounter a few problems. First and foremost, the message-passing semantics
of Aπ is point-to-point. Since we are interested in a broadcast semantics, and since
it has been proven that true broadcast cannot be expressed in the π-calculus, and
thus not in Aπ [EM99], we will need to at least give a broadcast semantics to Aπ.

However, we will soon discover that broadcast alone is not su�cient, since not all
network topologies can be expressed neatly as a tree structure. For instance, let
the names a and b represent links between the pairs of processes A1 and A2, and
A2 and A3, respectively. Now, it is impossible to specify such a process such that
none of A1, A2, and A3 are caught under both restrictions a and b. As such, we
will need to �nd a di�erent approach towards representing the network topology.

68

3.5 Summary

ABπ: While ABπ bears much resemblance to Aπ, it has a couple of limitations in com-
parison. First, the data language is not arbitrary. However, we are fairly convinced
that this is simply because Abadi and Blanchet are proving speci�c secrecy and
authenticity results, and therefore regard a speci�c data language which provides
the necessary primitives. Therefore, the data language could be replaced by any
term rewrite system, altough doing so might make some of the results from [AB02]
void.

The other peculiarity we note is that subjects of input and output are speci�ed as
being terms. In [AB02], the authors explain that when synchronisation occurs over
subjects written as a term other than a name, the term must reduce to a name, or
else the process fails. However, since destructors are never present in terms, any
term which is not a name cannot reduce to a name, without applying destructors
on the terms. This is not permitted in the semantics of ABπ.

Despite this, the automated veri�cation technique provided in [AB02, Bla02] is very
appealing, as we feel that it can be generalised to reason not only about secrecy,
but about any conditions one would like to place on the control �ow of a process.

CMAN: The arbitrary term rewrite system which can be applied as a data language in
CMAN makes CMAN quite applicable, as most interesting data languages, partic-
ularly in our focus of secrecy and authenticity, can be formulated as such. Also,
the neighbourhood-extension to network nodes allows the nodes to move during
computation, thus dynamically changing the network topology.

In CMAN, we note that let x = T in P is really just syntactic sugar for let x =
dummy(T) in P else 0, where dummy is de�ned by the rule r := dummy(x) > x.
Also, like in ABπ, the conditional if T = U then P else Q is really just syntactic
sugar for let x = equals(T,U) in P else Q, where equals is de�ned by the rule
r := equals(x, x) > x, and where x 6∈ fv(P). If these syntactic elements were
de�ned as syntactic sugar instead, it would make the semantics of CMAN slightly
easier to specify and understand.

Which brings us to our �rst critique of CMAN. We �nd that the semantics, while
capturing all the intended network reductions of interest, is unappealling. This
is due to the number of relations and the number of inference rules associated
with each relation. The two main reasons for the vastness of the semantics of
CMAN is the neighbourhood relation, and the fact that arbitrary terms are sent
instead of variable names. The former, since the network topology is explicit in
the syntax and thus not known at the start of reduction, requires that network
topology information be carried along during reduction. This introduces undesired
overhead, particularly since veri�cation with CMAN is done manually. The latter
requires that any restrictions associated with potential names in a broadcast term
be moved to an appropriate location in the abstract syntax tree of the resulting
network. However, if we regard the labelled reduction relation of Aπ, we see that
restrictions are only extruded in the event that the element sent is the restricted
object in question, in which case the restriction is simply removed. This (very

69

3 Related Protocol Analysis Frameworks

desirable) simplicity is obtained by only permitting a name or a variable to be sent
to the environment during a labelled reduction.

Our next comment involves the network layer of CMAN. Since parallel composition
is not permittet in a process embedded in a network, the expressiveness of embedded
processes is reduced signi�cantly. For instance, making an embedded process which
is always ready to receive input, even when computing on some input, is not always
possible. Such a process P would need to be parted up into di�erent locations.
However, since di�erent locations represent two nodes separated in space in CMAN,
the parallel components of P can �drift� to such extent that they cannot send
messages between each other.

Also, as Godskesen notes in the conclusion of [God07], the complexity of the labels
of CMAN causes the bisimilarity de�nitions of CMAN to be di�cult to handle
and apply. While this can partly be solved by regarding only connection-closed
networks, this makes it impossible to regard the environment as an attacker. As
such, attackers must be speci�ed in the analysis, which we wish to avoid. Instead,
we are interested in being able to regard the environment as a hostile entity sending
messages into the network, and receiving messages from the network.

CBS]: This calculus treats knowledge in a notably di�erent manner than most other
calculi applied for secrecy and authenticity analysis, in that each node has its own
local memory storage for pooling of data terms. Nanz then de�nes his routing

correctness properties as being that no node stores invalid routing information,
where the invalidity property varies from protocol to protocol. Nanz also separates
the network topology from the syntax of the protocol speci�cation into connectivity
graphs, which makes de�ning his operational semantics considerably easier. Also
this means that the mobility of nodes is passive, which is the usual case in by far
the most of the applications of MANETs mentioned in the introduction of this
thesis.

However, we argue that while CBS] is excellent for verifying routing correctness

properties, the same does not hold for secrecy and authenticity properties, despite
what is written in [NH06]. The reason is the data language applied in CBS].
Pattern-matching in this manner is ill-suited for treating cryptographic primitives,
as the pattern-matching mechanism does not limit the manner in which terms can
be destroyed, like term rewrite systems and universal algebrae do.

For instance, this network (possibly an attacker) can decode any message it receives,
thus revealing its contents to anyone within communication range.

n[!(x).case x of enc(;xmsg, xpubkey) 〈xmsg〉.0 else 0, ∅]

The next network, being able to obtain the seed used to generate a public key,
recreates the private key and reveals it.

n[!(x).case x of pubkey(;xseed) 〈privkey(xseed)〉.0 else 0, ∅]

70

3.5 Summary

We deem that these unconstrained term destructions as unacceptable for secrecy
and authenticity analysis of protocols.

Furthermore, in the static analysis of CBS], since there is but a single, public,
broadcast channel, the assumption must be made that any input pre�x in any
location n can bind any message broadcast on the network from a location which
broadcast range n is in.

At last, all participants in a protocol in CBS] are considered trusted. This is
apparent in the de�nition of topology consistency, where the equivalence requires
that V(N) ∩ V(N | Nattacker) = ∅.

To summarise, what we desire from our calculus is:

• That it should be closely related Aπ, with key di�erences being the use of explicit
locations, mobility, and broadcast.

• To inherit key de�nitions from Aπ and other related work, particularly the de�ni-
tions of secrecy and authenticity.

• To avoid the semantic complexity present in CMAN,

Lastly, we would like to obtain an automated veri�cation technique similar to that of
[AB02, Bla02].

71

CHAPTER 4

Distributed Applied π Calculus with Broadcast

We now present the Distributed Applied π Calculus with Broadcast, abreviated DAπβ .
Essentially, DAπβ is Aπ, with broadcast channels, an added abstraction layer (networks)
similar to that of Dπ, and connectivity graphs, akin to those in CBS]. The modelling and
veri�cation of routing and security protocols for MANETs has been a driving motivation
for the development of DAπβ .

These modi�cations enable a more �ne-grained set of criteria for process synchronisa-
tion, as is the case in MANET. For a process A within location l to be able to receive a
message T across channel a from l′, the following conditions must hold:

i) There must be an edge from l′ to l in the connectivity graph,

ii) A must be within the scope of a,

iii) A must be listening on a.

By letting the broadcast medium and locations be names, we obtain several new features.
For instance, we can have multiple broadcast frequencies by representing each as a channel
name. By using restriction on channel names, we obtain secret channels, known to a select
few locations, or just one location, to model synchronisation within a location.

By restricting a location name l in a given speci�cation N , we have a guarantee that
an environmental context C cannot impersonate l by sending a message T from l. This
is desirable when we wish to express that the behaviour of l is fully trusted, and that
the behaviour of l cannot be intruded upon by external factors. By not restricting l, we
express that the behaviour of l can be intruded upon by an attacker, in the sense that
the attacker can send/receive messages from/at location l.

Typically, when performing secrecy analysis of an Aπ speci�cation A, all messages
which have been sent are assumed to have been obtained by an attacker. For any given

73

4 Distributed Applied π Calculus with Broadcast

environment context C[·] in which A is placed, this assumption is an overapproximation
in the secrecy analysis, as there may be cases where C[·] cannot obtain a given message
passed by A. By using connectivity graphs in DAπβ , we can reduce this overapproxi-
mation, as the connectivity graph expresses the connectivity of the entire network, thus
scoping the range of a broadcast on free channels.

Note that the environment is assumed to receive all messages sent on free channels
implicitly, even those headed for a parallel component within the protocol speci�cation
(and thus not �physically� ending up in the environment). This is a property which
is slightly bothersome to express in point-to-point calculi semantics, particularly in the
presense of internal reduction, like in Aπ. Consider for instance the following example
from [CRZ06].

A
def= (νs, k, r)(c〈enc(s, k, r)〉. | c(z).if dec(z, k) = a then c〈ok〉)

In [CRZ06], the authors claim that

A′ → (νs, k, r){enc(s,k,r)/z} | if s = a then c〈ok〉.

Notice the lack of the restriction (νz). The authors proceed to assume this curious prop-
erty of→ in the proof of one of their lemmas, which is applied to prove their main result.
We presume that the authors assume this propety to ensure that the frame of A during
reduction is consistent with the Dolev-Yao threat model. However, as the π-calculus
family abstracts away from routing by specifying message-passing as a direct synchroni-
sation between two processes, the environment cannot implicitly receive messages. Thus,
to model implicit message leakage in the simulation of the process speci�cation, the mes-
sage must be explicitly routed to a process beyond the scope of the speci�cation by use
of labelled reduction. As DAπβ uses broadcast as a communication primitive, expressing
this property becomes considerably easier than in point-to-point calculi, and we shall see
how this is done later.

We start o� by giving the syntax of DAπβ , along with a de�nition of contexts in this
new setting. Next we de�ne connectivity graphs in our setting, which di�er mainly from
those in CBS] in that each node is connected to itself. We then give an operational
semantics, and a labelled operational semantics, where each reduction conditions on
admissible graphs. We give a couple of examples, which at the same time provide us with
some new structural equivalences. After that we prove a couple of normal forms, which
purpose is to bring terms in active substitutions into, and out of locations, respectively.
The normal forms enable us to at last present the key notion of frames in this new
setting, which gives us an indistinguishability relation, and the de�nitions from Aπ in
Section 3.1.3 de�ned solely in terms of deduction from frames, and indistinguishability.

4.1 Syntax

We let N be the set of names ranged over by a, . . . , c,m, . . . , t, and V be the set of
variables ranged over by x, . . . , z, as before, and let U = N ∪ V be the set of identi�ers,

74

4.1 Syntax

ranged over by u, . . . , w. Let F be the set of constructors, ranged over by f, and G

be the set of destructors, ranged over by g. The syntax of DAπβ is then given by the
grammar speci�cation in Table 4.1, where P is a primitive process, which are ranged over

T ::= u
| f(T, . . . , T)

P ::= u(x).P
| u〈T 〉.P
| !P
| (νa)P
| P | P
| let x = g(T̃) in P else P
| 0

A ::= P
| A | A
| (νu)A
| {T/x}

N ::= l[A]
| N | N
| (νu)N
| {T/x}
| 0

Table 4.1: Syntax of DAπ.

by P, . . . , R ∈ P, A is an extended process, which are ranged over by A,B ∈ A , N is
a network, which are ranged over by M, . . . , O ∈ N , and T is a term, which are ranged
over by T, . . . , V ∈ T.
The syntax should all be familiar from the syntax speci�cation of the calculi presented

in Chapter 3. Like in Aπ, we assume that active substitutions are cycle-free, that there
is at most one active substitution for each variable, and that there is exactly one active
substitution for a restricted variable.
Similarly to Aπ, we assume the presense of a term rewrite system, specifying how

destructors reduce constructed terms.
Notice here that, and unlike ABπ, we require that subjects of input and output pre�xes

are identi�ers. If the subject is intended to be a subterm of a term received during
reduction, then this forces us to apply �let� to destroy the received term to yield the
name. We shall see later, in the semantics of DAπβ , that input and output is only
de�ned on names. We assume that terms which are not names are never substituted in
place of a variable subject1. As such, if the value of a variable subject pre�xing a parallel
component is not a name, then that parallel component is incapable of reduction.

4.1.1 Contexts

We de�ne contexts in DAπβ by the grammar speci�cation in Table4.2, which is in many
ways similar to the de�nition of contexts we gave for Aπ, earlier. The only thing new here
is that each syntactic category has gotten a new �layer� in the grammar speci�cation.

1This can be de�ned by adding a battery of stuctural equivalence rules for select evaluation contexts to
our semantics. For instance, we would have {a/x} | C[x(y).P] ≡ {a/x} | C[a(y).P] for variables in input
pre�xes. For variables in output objects we would have, {T/x} | C[u〈V [x]〉.P] ≡ {T/x} | C[u〈V [T]〉.P]
where V is a term context, and so on. These rules would then replace (subst).

75

4 Distributed Applied π Calculus with Broadcast

Non-Evaluation Contexts:
C[P] ::= C[P] |M

| M | C[P]
| (νu)C[P]
| l[C ′[P]]

C ′[P] ::= C ′[P] | A
| A | C ′[P]
| (νu)C ′[P]
| C ′′[P]

C ′′[P] ::= P
| C ′′[P] | Q
| Q | C ′′[P]
| (νa)C ′′[P]
| !C ′′[P]
| let x = T in C ′′[P] else Q
| let x = T in Q else C ′′[P]
| u(x).C ′′[P]
| u〈T 〉.C ′′[P]

Evaluation Contexts:
C[A] ::= C[A] |M

| M | C[A]
| (νu)C[A]
| l[C ′[A]]

C ′[A] ::= C ′[A] | A
| A | C ′[A]
| (νu)C ′[A]
| A

Network Contexts:
C[N] ::= N

| C[N] |M
| M | C[N]
| (νu)C[N]

Table 4.2: Contexts of DAπβ .

Network contexts are simply contexts parameterised by networks. Evaluation contexts
and non-evaluation contexts are as de�ned in Aπ.

4.2 Connectivity Graphs

We adopt the notion of connectivity graphs from CBS], except that our graphs are �nite,
directed, with each node being connected to itself (to allow internal reduction).

De�nition 4.1 (Connectivity Graph)
A directed graph G is a connectivity graph if V(G) is a �nite set, V(G) ⊆ Nloc and
∀l ∈ V(G)[(l, l) ∈ E(G)] holds. 2

De�nition 4.2 (Admissibility of Connectivity Graphs)
A connectivity graph G is admissible on a network N if l(N) ⊆ V(G). 2

That is, all the locations which appear in N appear amongst the locations in G. As such,
the connectivity graph expresses the connectivity of locations in the model N , as well as
other (potentially unsafe) locations which are not part of N .

De�nition 4.3 (Network Topology)
A network topology τ is a set of connectivity graphs. 2

76

4.3 Semantics

Typically, we use network topologies to specify invariants on the connectivity of locations
in our networks, such as

{G | (l, l′) ∈ E(G), (l′, l) ∈ E(G)},

which is the set of all connectivity graphs wherein the vertices l and l′ are connected.

De�nition 4.4 (Admissibility of Network Topologies)
A network topology τ is admissible to a network N if each graph in τ is. 2

We de�ne τmax as the set containing all graphs on Nloc. Any network topology is thus
a subset of τmax. Like in CBS], we also de�ne an abstract network topology G(τ) of a
topology τ as

G(τ) def=

(⋃
G∈τ

V(G),
⋃
G∈τ

E(G)

)
.

Lastly, when we wish to disregard connectivity graphs, we use the graph abstraction
GN , which is a complete graph on l(N). When we wish to model a hostile environment
in a graph abstraction, we use GAtt

N , which is a complete graph on l(N) ∪ {l} for some
l 6∈ l(N).

4.3 Semantics

Here we inherit the operational semantics of Aπ and ABπ to our calculus in the natural
way.

De�nition 4.5 (Structural Equivalence in DAπβ)
Structural equivalence, denoted ≡, de�ned on N , extends the structural equivalence
rules of Aπ in Table 3.3, except for (repl) and (rewrite), (with A's replaced by N 's), with
the following rules.

l[0] ≡ 0(nil)

l[A | B] ≡ l[A] | l[B](split)

l[!P] ≡ l[P] | l[!P](repl)

l[(νu)A] ≡ (νu)l[A], if u 6= l(newexp)

{T/x} | l[A] ≡ {T/x} | l[A{T/x}](subst)

l[{T/x}] ≡ {T/x}(exit) 2

De�nition 4.6 (Internal Reduction in DAπβ)
Internal reduction, denoted by →G, is the least preorder on N closed by structural
equivalence and evaluation contexts, and satisfying the following rules.∏

i∈I
li[a(x).Pi] | l[a〈x〉.P]→G

∏
i∈I

li[Pi] | l[P], if ∀i ∈ I∃(l, li) ∈ E(G)(sync)

l[let x = g(T1, . . . , Tn) in P else Q]→G l[(νx)({T/x} | P)], if g(T1, . . . , Tn) > T(lt1)

l[let x = g(T1, . . . , Tn) in P else Q]→G l[Q], if g(T1, . . . , Tn) 6> T(lt2)

l[!P]→G l[P |!P](repl) 2

77

4 Distributed Applied π Calculus with Broadcast

Note that in our semantics, we are really only interested in reducing network N success-
fully, when the graph G we reduce N with regards to is admissible to N . We impose
this limit now. Let G be the set of all connectivity graphs, and de�ne the higher-order
function

admit : (N ×G −→ N) −→ (N ×G −→ N),

where admit(→) =→′, where

→′(N,G) =
{
→(N,G), if G is admissible to N
unde�ned otherwise.

We are now ready to de�ne the operational semantics of Aπ.

De�nition 4.7 (Operational Semantics of DAπβ)
The operational semantics of DAπβ is de�ned by the labelled transition system

(N ,G, admit(≡ · →G≡)),

where admit(≡ · →G≡) ⊆ (N ×G)×N . 2

We proceed to de�ning the labelled reduction relation
l,α−−→G, where α is the same

syntactic category as the α in Aπ.

De�nition 4.8 (Labelled Reduction Relation in DAπβ)
The labelled reduction relation, denoted

l,α−−→G, extends →G with the rules in Table 4.4.2

Notice that
l,α−−→G is de�ned in terms of

l,α−−→•G, de�ned in Table 4.3. Basically,
l,α−−→•G

consists of the labelled reduction rules from Aπ, adapted to networks, with a couple of
modi�cations. The �rst is (par1), which is a consequence of our broadcast semantics;
even when the network N broadcasts from location l to the environment, there may still
be locations within N , connected to l, and capable of receiving messages. The other
is the slightly-peculiar (out-locscope) rule. (out-locscope) expresses that broadcasting a
message does not in�uence the scope of the broadcasting location. Notice that location
names do not scope the range of the broadcast message! Broadcast range is dictated by
the connectivity graph, which the (in) rule conditions on. A restriction on a location
name thus only functions as a security from intrusion from the environment, since when
a location k is free, the environment can send messages from k. When k is bound, the
rule (input) prevents the environment from sending from k.

Notice the choice of k in the rules (output), (leak), and (input) in Table 4.4. Here, k is
either a name that is free in N , or not present in N . If there is such an k, we must assume
that the environment is capable of receiving messages there, and sending messages from
there.

De�ne the higher-order function

admitlab : (N ×G×NlocA −→ N) −→ (N ×G×NlocA −→ N),

78

4.4 Examples

l[a(x).P]
l′,a(T)−−−−→•G l[(νx)({T/x} | P)]

where (l′, l) ∈ E(G)(in)

l[a〈u〉.P]
l,a〈u〉−−−−→•G l[P]

(out)

N
l,a(u)−−−−→•G N ′ M

l,a〈u〉−−−−→•G M ′

N |M l,a〈u〉−−−−→•G N ′ |M ′
(par1)

N
l,α−−→•G N ′ u 6∈ {l} ∪ n(α)

(νu)N
l,α−−→•G (νu)N ′

(scope)

N
l,a〈u〉−−−−→•G N ′

(νl)N
l,a〈u〉−−−−→•G (νl)N ′

(out-locscope)

N
l,a〈u〉−−−−→•G N ′ u 6= a

(νu)N
l,(νu)a〈u〉−−−−−−→•G (νu)N ′

(open-atom)

N
l,α−−→•G N ′ bu(α) ∩ fu(M) = ∅

N |M l,α−−→•G N ′ |M
(par2)

Table 4.3: Dotted Transition in DAπβ .

where admitlab(→) =→′, where

→′(N,G, l, α) =
{
→(N,G, l, α), if G is admissible to N
unde�ned otherwise.

We are now ready to de�ne the labelled operational semantics of Aπ.

De�nition 4.9 (Labelled Operational Semantics of DAπβ)
The labelled operational semantics of DAπβ is de�ned by the labelled transition system

(N , (G×Nloc ×A), admitlab(≡ · α−→G · ≡)),

where admitlab(≡ · α−→G≡) ⊆ (N ×G×Nloc ×A)×N . 2

4.4 Examples

We now give a few examples of applying the semantics rules of DAπβ , while at the
same time derive some useful reductions and equivalences. First, we derive a couple of
structural equivalences familiar from Aπ.

79

4 Distributed Applied π Calculus with Broadcast

N
k,a(T)−−−−→•G N ′ k 6∈ bl(N) ∃l ∈ l(N) . (k, l) ∈ E(G)

N
k,a(T)−−−−→G N

′
(input)

N
l,a〈T 〉−−−−→•G N ′ ∃k 6∈ bl(N) . (l, k) ∈ E(G)

N
l,a〈T 〉−−−−→G N

′
(output)

N
l,(νu)a〈T 〉−−−−−−−→•G N ′ ∃k 6∈ bl(N) . (l, k) ∈ E(G)

N
l,(νu)a〈T 〉−−−−−−−→G N

′
(leak)

Table 4.4: Labelled Transition in DAπβ .

Example 4.1 (Local (alias) and (subst) equivalence)
We show that

l[(νx){T/x}] ≡ l[0](aliasloc)

l[{T/x} | A] ≡ l[{T/x} | A{T/x}].(substloc)

The �rst congruence follows from

l[0] ≡ 0 | l[0] by (nil), (par-C)

≡ (νx){T/x} | l[0] by (alias)

≡ (νx)({T/x} | l[0{T/x}]) by (new-par), (subst)

≡ (νx)({T/x} | l[(νx)({T/x} | 0)]) by Example 3.1

≡ (νx){T/x} | (νx)l[{T/x} | 0] by (new-par), (newexp)

≡ 0 | (νx)(l[{T/x}] | l[0]) by (alias), (split)

≡ (νx)l[{T/x}] | l[0] by (par-C), (nil), (par-0)

≡ l[(νx){T/x}] by (nil), (par-0), (newexp),

while the second follows from

l[{T/x} | A] ≡ l[{T/x}] | l[A] by (split)
≡ {T/x} | l[A] by (exit)
≡ {T/x} | l[A{T/x}] by (subst)
≡ l[{T/x}] | l[A{T/x}] by (exit)
≡ l[{T/x} | A{T/x}] by (split). 2

Next we show how (sync) and the structural equivalence rules can be used to express
sending actual terms over a name, similar to what was shown for Aπ in Section 3.1.1.

80

4.5 Normal Forms

Example 4.2
We show that

l[a〈T 〉.P] | l[a(x).Q] −→ l[P] | l[Q{T/x}],(comm)

where x 6∈ fv(T) ∪ fv(P).

l[a〈T 〉.P] | l[a(x).Q] ≡ l[a〈T 〉.P] | l[a(x).Q] | 0 by (par-0)

≡ l[a〈T 〉.P] | l[a(x).Q] | l[0] by (nil)

≡ l[0] | l[a〈T 〉.P] | l[a(x).Q] by (par-C)

≡ (νx){T/x} | l[a〈T 〉.P] | l[a(x).Q] by (alias)

≡ (νx)({T/x} | l[a〈T 〉.P]) | l[a(x).Q] by (new-par)

≡ (νx)({T/x} | l[a〈x〉.P]) | l[a(x).Q] by (subst)

≡ (νx)({T/x} | l[a〈x〉.P] | l[a(x).Q]) by (new-par)

→ (νx)({T/x} | l[P] | l[Q]) by (sync)

≡ (νx)({T/x} | l[P] | l[Q{T/x}]) by (subst)

≡ (νx)({T/x}) | l[P] | l[Q{T/x}] by (new-par)

≡ 0 | l[P] | l[Q{T/x}] by (alias)

≡ l[P] | l[Q{T/x}] by (par-0)

2

4.5 Normal Forms

We consider two extreme normal forms with regard to the distribution of active substitu-
tions and name restrictions in a network; one where all active substitutions are factored
out of all locations to the network level, and one where all active substitutions have been
factored into all locations in contact with it.

Proposition 4.3 (Outer Normal Form)
Let N be a network. Then there exists a network nfo(N) on the form

nfo(N) def= (νx̃)(νã)(σ | (νb̃)
k∏
i=1

li[Pi]),

such that N ≡ nfo(N), and

a) the locations li are pairwise di�erent,

b) ã ⊆ n(σ), b̃ ∩ n(σ) = ∅, x̃ ⊆ dom(σ), ∀1 ≤ i ≤ k[bv(Pi) = ∅],

c) ∀b ∈ b̃∃1 ≤ i < j ≤ k[b ∈ fn(Pi) ∩ fn(Pj)]

hold.

81

4 Distributed Applied π Calculus with Broadcast

Proof

By induction on the structure of N .

Basis: Three cases to consider.

N = 0: Set |ã| = |b̃| = k = 0 and dom(σ) = ∅. Then nfo(N) ≡ 0 = N .

N = {T/x}: Set |ã| = |b̃| = k = 0 and σ = {T/x}. Then N ≡ nfo(N).

N = l[A]: We have from Proposition 3.2 that A ≡ (νc̃)(σ | P). Factor c̃ out of
l by use of (new-C). Apply (split) and (exit) to factor σ out of l. We get
N ≡ (νc̃)(σ | l[P]). For all c ∈ c̃ s.t. c 6∈ n(σ), apply (new-C), (new-par),
and (newexp) to factor c into l. The resulting network has the form (νc̃′)(σ |
l[(νc̃′′)P]) ≡ N , where c̃ = c̃′ ∪ c̃′′. By setting ã = c̃′ and k = 1, we get
N ≡ nfo(N).

Step: Assume N ′, where nfo(N ′) = (νx̃′)(νã′)(σ′ | (νb̃′)
∏k′

i=1 l
′
i[P
′
i]), satis�es the propo-

sition. Three cases to consider.

N = (νy)N ′: Safe to assume that there is an active substitution {T/y} on y in σ′,
as (νy)N ′ is only valid in that case2. (νy)N ′ then satis�es conditions a, b, and
c, is on the proposed form, and since N = (νy)N ′, N satis�es the proposition.

N = (νc)N ′: We have that N ≡ (νc) nfo(N ′). If c ∈ n(σ′), then applying (new-C)
to factor c in amongst ã′ yields a network congruent with (νc) nfo(N ′) which is
on the proposed form and satis�es conditions a, b, and c. Thus N satis�es the
proposition. If ∃i[c ∈ fn(Pi)], then apply (new-C) and (new-par) to get N ≡
(νã′)(σ′ | (ν(b̃′ ∪ {c}))

∏k′

i=1 l
′
i[P
′
i]) =: N ′′. If ∃j[j 6= i ∧ c ∈ fn(Pj)], then N ′′

satis�es conditions a, b, and c, and since N ≡ N ′′ and N ′′ is on the proposed
form, we then get that N satis�es the proposition. If 6 ∃j[j 6= i ∧ c ∈ fn(Pj)],
then apply (new-C), (new-par), and (newexp) to factor c into l′i. The result
will be congruent with N , be on the proposed form and satisfy conditions a,
b, and c. Thus N satis�es the proposition. Lastly, if 6 ∃i[c ∈ fn(Pi)], then
(νc)N ′ ≡ N ′, and thereby, N satis�es the proposition.

N = N ′ | N ′′: We can assume N ′′ satis�es the proposition, as we have proven so for
any N which contains no parallel composition. Let nfo(N ′′) = (νx̃′′)(νã′′)(σ′′ |
(νb̃′′)

∏k′′

i=1 l
′′
i [P ′′i]). We have that N ≡ nfo(N ′) | nfo(N ′′) =: N ′′′. For all

c ∈ (ã′′ ∪ b̃′′) ∩ n(N ′), α-convert c in N ′′ to a name c′ 6∈ n(N ′) ∪ n(N ′′). For
all y ∈ x̃′′ ∩ v(N ′), α-convert y in N ′′ to a variable y′ 6∈ v(N ′) ∪ v(N ′′). We
can now assume dom(σ′) ∩ dom(σ′′) = ∅3. Next, apply (new-par) on ã′′, ã′,
x̃′′, and x̃′ in this order on network N ′′′. Let ã = ã′ ∪ ã′′ and x̃ = x̃′ ∪ x̃′′.
This yields (νx̃)(νã)((σ′ | (νb̃′)

∏k′

i=1 l
′
i[P
′
i]) | (σ′′ | (νb̃′′)

∏k′′

i=1 l
′′
i [P ′′i])) ≡ N ′′′.

We get (νx̃)(νã)(σ | (νb̃′)
∏k′

i=1 l
′
i[P
′
i] | (νb̃′′)

∏k′′

i=1 l
′′
i [P ′′i])) ≡ N ′′′ by using

(par-C), (par-A), and (par-0) and letting σ = σ′ | σ′′. Next, apply (new-par)

on b̃′′ followed by b̃′ and let b̃ = b̃′∪ b̃′′ to obtain (νx̃)(νã)(σ | (νb̃)(
∏k′

i=1 l
′
i[P
′
i] |

2Violating our assumptions in Section ?? otherwise.
3Otherwise N ′ | N ′′ would violate our assumptions in Section ??

82

4.6 Frames and Static Equivalence

∏k′′

i=1 l
′′
i [P ′′i])) ≡ N ′′′. We get (νx̃)(νã)(σ | (νb̃)(

∏k′+k′′

i=1 l′′′i [P ′′′i])) ≡ N ′′′ by
combining the products, where l̃′′′ = l̃′ · l̃′′ (concatenated sequence), P ′′′i = P ′i
for 1 ≤ i ≤ k′ and P ′′′i = P ′′i for k′ + 1 ≤ i ≤ k′′. Finally, let k be the
number of distinct l′′′i . Apply (split) k′ + k′′ − k times to obtain (νx̃)(νã)(σ |
(νb̃)(

∏k
i=1 li[Pi])) ≡ N ′′′ where all li are distinct and Pi =

∏
j∈{j′|l′′′

j′=li}
P ′′′j .

N ′′′ is congruent to a network on the proposed form satisfying conditions a,
b, and c. Since N ′′′ ≡ N , we conclude that N satis�es the proposition. �

Proposition 4.4 (Inner Normal Form)
Let N be a network. Then there exists a network nfi(N) on the form

nfi(N) def= (νã)(σ | (νb̃)
k∏
i=1

li[(νc̃i)(νx̃i)(σi | Pi)]),

such that N ≡ nfi(N) and

a) the locations li are pairwise di�erent,

b) ã ⊆ σ, c̃i ⊆ n(σi), x̃i = dom(σi), ∀1 ≤ i ≤ k[bv(Pi) = ∅],

c) ∀b ∈ b̃∃1 ≤ i < j ≤ k[b ∈ (fn(Pj) ∪ n(σj))\c̃j ∧ b ∈ (fn(Pi) ∪ n(σi))\c̃i]

hold.

Proof

Let nfo(N) = (νx̃′)(νã′)(σ′ | (νb̃′)
∏k
i=1 li[Pi]). We have by Proposition 4.3 that N ≡

nfo(N). For each {T ′/x′} in σ′, apply (new-par) s.t. the restriction of b̃′ also encompasses
{T ′/x′} and apply (par-C) and (subst) to substitute {T ′/x′} into each location. Apply
(new-par), (alias), (par-0) and (par-C) on each {T ′/x′} in σ′ where x′ ∈ x̃′ to remove them
from the network. Apply (new-par) on the remaining {T ′/x′} in σ′ s.t. the restriction of
b̃′ no longer encompasses {T ′/x′}. This yields (νã′)(σ′′ | (νb̃′)

∏k
i=1 li[Piσ

′]) ≡ N , where
dom(σ′′) ⊆ dom(σ′). For each location li, apply (par-C), (new-par), (split), (aliasloc),
(nil) and (par-0) on each {T ′/x′} in σ′ within li where x

′ 6∈ v(Pi) to {T ′/x′} from li.
For each a′ ∈ ã′ where a′ appears free in only one location, apply (new-C), (new-par)
and (newexp) to move a′ into the location it solely appears in. This yields (νã)(σ′′ |
(νb̃′)

∏k
i=1 li[(νc̃i)(Piσ

′′′
i)]) ≡ (νã)(σ′′ | (νb̃′)

∏k
i=1 li[(νc̃i)(νx̃i)(σ

′′′
i | Pi)]), which is on the

proposed form, satis�es conditions a, b, and c, and is congruent with N . Thus N satis�es
the proposition. Since N was arbitrary, the proposition holds for any network. �

4.6 Frames and Static Equivalence

At last we express the concepts of a frame and indistinguishability thereof in DAπβ . We
start with frames. While the de�nition of a frame in Aπ is indeed valid within locations

83

4 Distributed Applied π Calculus with Broadcast

in DAπβ , we will need to extend the de�nition to make frames account for the network
abstractions in DAπβ . We extend the de�nition of a frame to a network in the natural
way, as illustrated in the following grammar.

ϕN ::= (νa)ϕN
| l[ϕ] | ϕN
| {T/x} | ϕN
| 0

To distinguish these two types of frames, we shall refer to ϕN as a network frame, and
ϕ as a location frame. When it is either irrelevant or obvious from the context whether
the frame is a network frame or a location frame, we simply refer to it as a frame.

As before, we map a network N to its frame ϕN (N), by substituting all active substi-
tutions in N into each location in contact with it, eliminating bound active substitutions
not a�ecting a location by use of the Aπ structural equivalence rules (new-par), (par-C),
(alias) and (par-0) at each location, and replacing all plain processes occuring in N with
0. Again, as in Aπ, this mapping becomes straightforward when N is on inner normal
form. Let nfi(N) = (νã)(σ | (νb̃)

∏k
i=1 li[(νc̃i)(νx̃i)(σi | Pi)]). Then

ϕN (nfi(N)) = (νã)σ,

which is structurally equivalent with ϕN (N), which is why we from now on write ϕN (N)
as a shorthand for ϕN (nfi(N)).
As locality has been removed in frames of networks on inner normal form, all the

information exposed by the frame is exposed to the same environment. We can thus apply
De�nition 3.9 on frames of networks on inner normal form to reason about environment
knowledge. This gives the following de�nition of static equivalence for networks.

De�nition 4.10 (Static Equivalence)
Two networks N and M are static equivalent, written N ≈s M , if

ϕN (N) ≈s ϕN (M)

holds. 2

Recall that ϕN (N) and ϕN (M) are Aπ frames. This is therefore merely an adoption of
static equivalence to networks.

Thus, we can now directly adopt the de�nitions in Section 3.1.3of the following con-
cepts, from Aπ, to DAπβ :

• Deduction in a frame,

• Syntactic, and strong, secrecy in the passive case,

• Syntactic secrecy, in the active case.

84

4.7 Summary

4.7 Summary

Besides replacing the general data language with a di�erent formalism, by making three
small changes to the Applied π calculus, we obtain the calculus Distributed Applied π
Calculus with Broadcast which is surprisingly expressive. The changes made are

The network layer, which essentially is one large Applied π-style evaluation context
CN [A1, . . . , An], with several holes, where CN [0, . . . ,0] is incapable of performing
any actions. Each Ai is then assigned a location name li, which is either open or
closed by the ith hole in CN .

Connectivity graphs, which purpose is, like name restrictions, to constrain synchronisa-
tion over named channels.

Broadcast semantics, perhaps being the most signi�cant change, replaces the point-to-
point semantics with a broadcasting one.

While one might think that these three concepts would signi�cantly increase the concep-
tual complexity of DAπβ , we deem this not to be the case. For one, the graph-, location-,
and broadcast concepts are fairly basic, and well understood, and commonly seen in the
context of distributed computing. Second, the semantics are very much alike the seman-
tics of Aπ. Yet, we can easily express di�erent overlaying broadcasting networks in the
same model, untrusted nodes, and a changing network topology.
To compared to the discussion in the summary of the last chapter, we can, like in

CBS], examine the behaviour of a process speci�cation in any network topology, without
changing the syntax of the process speci�cation. As opposed to CMAN, we have parallel
composition on the internal process layer, and by separating the topology from the process
syntax and only sending identi�ers, obtain a much briefer semantics speci�cation. We
can even split a location into several parts, one part capable of being under di�erent
name and variable restrictions than another.
The next logical step is to provide means of automatically verifying security properties

of process speci�cations in DAπβ , which is the purpose of the next two chapters. We
shall return to DAπβ in Chapter 7, with new, interesting results.

85

CHAPTER 5

Enriching ABπ and H, and Revelation Semantics

Recall the Horn clause generation for ABπ in Section 3.2.3, which Abadi and Blanchet
use for their static analysis of security properties of protocols modelled in their calculus.
In this chapter and the next, we prove a particular relationship between the Horn clauses
generated from the initial process P0, and transition sequences in P0. Namely that
performing a particular transition sequence corresponds to instantiating particular Horn
clauses. More speci�cally, for each message-passing transition, there occurs an output,
either in P0, or in the environment. That output then instantiates a conclusion of some
clause, which premises are instantiated by prior transitions.
Before we present the proof, there are two issues that need to be addressed. First,

we need to ensure that the names and variables occurring in the Horn clauses generated
from P0 remain syntactically consistent with the names and variables of P0 during re-
duction. This includes ensuring that P0 records sessions properly during reduction, and
in a manner comparable to the session variables in H. Also, we will need the state which
the Horn clause generator was in when it created each clause. Doing this requires minor
changes in the syntax, semantics, and Horn clause generation of ABπ. The modi�ed
calculus will be presented in Section 5.1.
Second, we need a way of explicitly specifying the output occurring in a message-

passing reduction in P0. Furthermore, we need to ensure that the knowledge of the
environment during reduction is consistent with what the applied threat model speci-
�es. While the former can be accomplished by using

α−→ for synchronisations with the
environment, and investigating the local knowledge of P0 before and after each internal
reduction step, the latter is not satis�ed by the semantics of ABπ. In [Bla02], Blanchet
explains that the environment implicitly receives messages sent on public channels, like
in the Dolev-Yao threat model. This is also made apparent in Algorithm 3.1, line 12.
As explained in the beginning of Chapter 4, since the source and destination of a mes-
sage communicated over a given channel in point-to-point calculi like ABπ is explicit,

87

5 Enriching ABπ and H, and Revelation Semantics

with 1 receiver per sender, and since information can only escape to the environment
trough message-passing, information does not �ow anywhere implicitly during internal
reduction.

To address this, we de�ne a new operational semantics for the modi�ed ABπ, which
we shall call the revelation semantics, in Secction 5.2.

5.1 Extending ABπ with Active Substitutions and Sessions

In this section we present the syntactic changes we make on the initial process enabling
us to prove the relation between transition sequences in the initial process, and the Horn
clauses generated from it. Before we begin, we wish to present one of the main cultprits
in making the Horn clauses generated from the initial process di�er syntactically from
the initial process, and how it does so: the �let� expression.

Remark 5.1
In Table 3.11, in the encoding rule

let x = g(T1, . . . , Tn)
in P
else Q

ρh

=
⋃[[P]]((σρ)[x 7→σ′p′])(σh) |

g(p′1, . . . , p
′
n) > p′ ∈ def(g),

and (σ, σ′) is the most gene-
ral pair of substitutions
st. σρ(Ti) = σ′p′i; 1 ≤ i ≤ n

 ,

the substitutions (σ, σ′) express a uni�cation problem. The equations in question are
{σρ(Ti) = p′i | 1 ≤ i ≤ n}, and the variables we unify with regards to are the variables
occurring in the p′i in the term rewrite rule g(p′1, . . . , p

′
n) > p′. The result of the uni�cation

is the substitution σ′, which has dom(σ′) =
⋃n
i=1 v(p′i) and which ranges over subterms

of the σρ(Ti) terms. 2

In the uni�cation in Remark 5.1, the purpose of σ is twofold, as we will illustrate in the
following two examples.

Example 5.2
σ ensures that the process variables in the Ti di�er syntactically from the rewrite variables
of the p′i. This is relevant in, for instance, the process

P
def= a(x).a(y).a〈y〉.let z = dec(enc(pair(x, a), y), y) in a〈z〉 else 0,

when we consider the rewrite rule dec(enc(x, y), y) > x. With σ = ∅, the uni�cation
problem becomes {enc(pair(x, a), y) = enc(x, y), y = y} (which variables are x and y),
which reduces to {pair(x, a) = x, y = y} and further to {x = pair(x, a), y = y}. By
Algorithm 2.1, the uni�cation fails, as x equals a term where x itself appears as a subterm.
The error here is that the x on the left side of the equality x = pair(x, a) is, semantically,
not the same x as the x on the right side of the equality (the x on the right is a 0-
ary function constant, and the x on the left is a variable, in the uni�cation problem).
However, if we introduce the substitution σ = {x′/x, y′/y}, we get the uni�cation problem

88

5.1 Extending ABπ with Active Substitutions and Sessions

{enc(pair(x′, a), y′) = enc(x, y), y′ = y} (again with uni�cation variables x and y), which
eventually reduces to {x = pair(x′, a), y = y′}, which is a successful uni�cation. Thus,

[[P]]ρinit∅ =
{

msg(a, x) ∧msg(a, y) =⇒ msg(a, y),
msg(a, x′) ∧msg(a, y′) =⇒ msg(a, pair(x′, a))

}
. 2

Notice in Example 5.2 that, although the required inputs for a〈y〉 and a〈z〉 to occur in
P are the same, the variables in the premises in [[P]]ρinit∅ are not the same syntactically.
This is not a problem for the static analysis of the Horn clauses, as [[P]]ρinit∅ abstracts
from the syntax of P . Thus, these variables are there only to express that the clause is
valid for any instantiation of x and y (and x′ and y′). We wish to avoid this abstraction
for the purpose of proving the soundness result, as we need to relate the variables in the
Horn clauses to the actual variables in the original process.

Example 5.3
When necessary, σ imposes a condition on the instantiation of the variables appearing
within the destructor context in the let expression. This is required in processes such as

P ′
def= a(x1).a(x2).a〈x2〉.let z = dec(x1, x2) in a〈z〉 else 0,

when we consider the rewrite rule dec(enc(z1, z2), z2) > z1. With σ = ∅, the uni�cation
problem becomes {x1 = enc(z1, z2), x2 = z2} (which variables are z1 and z2), which, by
Algorithm 2.1, fails, as x1 is a constant (a 0-ary function) in the uni�cation problem.
However, by imposing a limit on the structure of x1, say, σ = {enc(y1,x2)/x1}, where y1

does not appear in v(P ′) or in rewrite rules, we get the uni�cation problem {enc(y1, x2) =
enc(z1, z2), x2 = z2} (which variables are z1 and z2), which reduces to {y1 = z1, x2 =
z2, x2 = z2}, which eventually reduces to {z1 = y1, z2 = x2}. Thus,

[[P ′]]ρinit∅ =
{

msg(a, x1) ∧msg(a, x2) =⇒ msg(a, x2),
msg(a, enc(y1, x2)) ∧msg(a, x2) =⇒ msg(a, y1)

}
. 2

In Example 5.3, we have limited the possible instantiations of x1, and by doing so,
introduced a new variable y1. Again, in the Horn clauses, this variable simply expresses
that the latter Horn clause is true for any instantiation of y1 (and x2). When relating an
execution of P ′ to its Horn clauses, we need to ensure that y1 is instantiated properly.

5.1.1 Syntax and Semantics of ABπ′

We now present the syntax and semantics of the Extended Abadi/Blanchet calculus, or
ABπ′ for short. ABπ′ extends ABπ with an extended process layer, akin to Aπ (that is,
�oating active substitutions), and with a session-enriched replication directly inspired by
[Bla02].

Syntax

We let N be the set of names ranged over by a, . . . , c, o, . . . , t, and VA be the set of
(process) variables ranged over by x, . . . , z. Furthermore, let U = N ∪ VA be ranged

89

5 Enriching ABπ and H, and Revelation Semantics

over by u, . . . , w. Let F be the set of constructors, ranged over by f, and G be the set of
destructors, ranged over by g. Let n range over N. The syntax of ABπ′ is then given by
the grammar speci�cation in Table 5.1.

P ::= u(x).P
| u〈T 〉.P
| !i≥nP
| (νa)P
| P | P
| let x = g(T1, . . . , Tn) in P else P
| 0

T ::= u
| f(T, . . . , T)

A ::= P
| A | A
| (νu)A
| {T/x}

Table 5.1: Syntax of ABπ′.

Like in Aπ and ABπ, the syntactic category P represents primitive processes, which
are ranged over by P, . . . , R ∈ P, the syntactic category T represents term, which are
ranged over by T, . . . , V ∈ T, and the syntactic category A represents extended processes,
ranged over by A, . . . , B ∈ A .

The only new element in the syntax of ABπ′ compared to the syntax of Aπ and ABπ is
the treatment of replication. The idea is that to each replication, we associate a session

variable, i in the grammar speci�cation, which is chosen from the set VS of session
variables disjoint from VA , and a natural number, n in the grammar speci�cation, which
we increment each time the replication replicates. When the replication replicates, the
new parallel component instantiates i with the current value of n and binds i to its scope,
and the replication increments n, such that the next time the replication replicates, that
parallel component will instantiate its i to n + 1. This will be clear in the semantics
de�nitions below.

Notice that it is trivial to encode a ABπ process P to a ABπ′ process; simply replace
each replication ! in A with !i≥n for some session variable i (for instance, i, each time)
and integer n (for instance, 0). The result A is an ABπ′ process on normal form (as
de�ned in Aπ).

Rewrite System

In much the same way that Aπ can be instantiated with an arbitrary equational the-
ory, ABπ′ can be instantiated by an arbitrary rewrite system R. We can assume it is
instantiated in the same manner as it is in Abadi and Blanchet's work [AB02, Bla02].

Note, however, that we assume that the variables applied in the de�nition of the term
rewrite rules in R are all pairwise syntactically di�erent, and chosen from the set VR

of variables disjoint from VA ∪ VS . This will take care of the problem explained in
Example 5.2.

90

5.1 Extending ABπ with Active Substitutions and Sessions

Semantics

We give the operational semantics of ABπ′ in the form of a structural equivalence relation
and an internal reduction relation, as is tradition.

De�nition 5.1 (Structural Equivalence in ABπ′)
Structural equivalence, denoted by ≡, is the smallest equivalence relation over processes
that is closed by α-conversions, by application of evaluation contexts, and which satis�es
the axioms in Table 5.2 2

A ≡ A | 0(par-0)

A | (B | C) ≡ (A | B) | C(par-A)

A | B ≡ B | A(par-C)

!i≥nP ≡ P{n/i} |!i≥n+1P(repl-S)

(νn)0 ≡ 0(new-0)

(νu)(νv)A ≡ (νv)(νu)A(new-C)

A | (νu)B ≡ (νu)(A | B), if u 6∈ fv(A) ∪ fn(A)(new-par)

(νx){T/x} ≡ 0(alias)

{T/x} | A ≡ {T/x} | A{T/x}(subst)

Table 5.2: Structural equivalence in ABπ′.

De�nition 5.2 (Internal Reduction in ABπ′)
Internal reduction, denoted by →, is the smallest relation on extended processes closed
by ≡ and application of evaluation contexts, and satisfying the axioms in Table 5.3. 2

let x = g(T1, . . . , Tn) in P else Q→ (νx)({T/x} | P),(destr1)

if g(T1, . . . , Tn) > T ∈ def(g)
let x = g(T1, . . . , Tn) in P else Q→ Q,(destr2)

if 6 ∃T [g(T1, . . . , Tn) > T ∈ def(g)]
a〈T 〉.Q | a(x).P → Q | (νx)({T/x} | P)(sync)

Table 5.3: Internal Reduction relation in ABπ′.

The rule (sync) may look surprising after seeing the de�nition of → from Aπ. However,
as the structural equivalence (νx)({T/x} | P) ≡ P{T/x} also holds for ABπ′, we can,

91

5 Enriching ABπ and H, and Revelation Semantics

using the (sync) rule, derive

{T/x} | a〈x〉.P | a(x).Q ≡ {T/x} | a〈T 〉.P | a(x).Q
→ {T/x} | P | (νx)({T/x} | Q)
≡ {T/x} | P | Q{T/x}
≡ {T/x} | P | Q,

just like the reduction a〈T 〉.P | a(x).Q(≡∗ · → · ≡∗)P | Q{T/x} could be derived in Aπ
using the (comm) rule there.
We also inherit a labelled reduction relation for ABπ′ from Aπ.

De�nition 5.3 (Labelled Operational Semantics in ABπ′)
The Labelled Operational Semantics of ABπ′ extend the rules of ≡ and→ with a labelled

reduction relation, denoted by
α−⇁, which is de�ned by the rules in Table 5.4. 2

a(x).P
a(M)−−−−⇁ (νx)({M/x} | P)

(in)

a〈u〉 a〈u〉−−−⇁ P

(out-atom)

A
a〈u〉−−−⇁ A′, u 6= a

(νu)A
(νu)a〈u〉−−−−−−⇁ A′

(open-atom)

A
α−⇁ A′, u does not occur in α

(νu)A
(νu)a〈u〉−−−−−−⇁ A′

(scope)

A
α−⇁ A′, bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B α−⇁ A′ | B
(par)

Table 5.4: Labeled Reduction in ABπ′.

We then de�ne an extended labelled reduction relation as

(α−→) def= (≡ · α−⇁ · ≡),

a weak extended labelled reduction relation as

(α==⇒) def= (→∗ · α−→ · →∗),

where →∗ denotes the re�exive, transitive closure of →, and �nally, we let
α̃−→ denote

α1−−→ · · ·
α|α̃|−−−→, and similarly,

α̃==⇒ denote
α1==⇒ · · ·

α|α̃|
===⇒.

Notice that
α−⇁ is not closed by evaluation contexts, since the context may bind a

name which prohibits a labelled output1. Note also that we have in a sense �moved�

1This is in fact also true in Aπ.

92

5.1 Extending ABπ with Active Substitutions and Sessions

replication from being a reduction rule, to being a structural equivalence rule. This is
essentially a matter of how to interpret replication. As a reduction rule, replication is
considered a �process that replicates�, while as a structural equivalence rule, replication
is considered an �in�nite parallel composition of said process�. The latter is the way
replication is normally treated in point-to-point process calculi, like Aπ, and as → is
closed by structural equivalence, and as structural equivalence can be applied between
α−→-reductions, there will not be any processA′ which a given processA can reduce to with
replication as a reduction rule, but cannot with replication as a structural equivalence
rule, and vice versa (although the number of reduction steps to reach A′ might di�er).

Frames and Normal Forms

We can derive the same normal form in ABπ′ as the one we have in Aπ. As such, the
frame of a process in ABπ′ is de�ned in the same manner as the frame of an extended
process in Aπ.
Furthermore, we de�ne the process substitutions of a process A, ϕk(A), as the parallel

composition of every active substitution in A. For instance, for the process

A
def= (νã)(σ | (νx̃)(σ′ | P)),

we have
ϕk(A) def= σ | σ′.

We use this frame as a means of seeing what term was input after an input operation,
which is possible provided you compare ϕk(A) and ϕk(A′), where A′ is the immediate
process resulting from a single reduction in A.

5.1.2 Syntactic Consistency and Canonicalisation

We now present a property of extended processes which we will require to establish the
relation between transitions in an extended processes, and the Horn clauses generated
from it. We call this property syntactic consistency, and brie�y, it expresses that all
bound names and variables in an extended process A are pairwise di�erent from each
other, as well as from names and variables that are free in A.

De�nition 5.4 (Syntactic Consistency)
An extended process A is said to be syntactically consistent if it holds that

∀u ∈ u(A) 6 ∃C,B[A = C[(νu)B] ∧ u ∈ u(C[0])]. 2

Rewriting a process to syntactic consistent form is easy; simply apply α-conversions
selectively on bound names and variables until all bound names and variables di�er
syntactically from free ones, and each other. The encoding in Table 5.5 does exactly
this.
The encoding has a side e�ect in the function get, which we de�ne in Algorithm 5.1.

The purpose of get is to supply [[·]]cf with syntactically distinct names and variables, which

93

5 Enriching ABπ and H, and Revelation Semantics

[[0]]cf = 0

[[A | B]]cf = [[A]]cf | [[B]]cf

[[(νu)A]]cf =

{
(νu)[[A]]cf[u7→u], if u 6∈ dom(f)
(νv)[[A]]cf[u7→v] otherwise, where v = get(u)

[[{T/x}]]cf = {[[T]]cf/[[x]]cf }

[[T (u).P]]cf =

{
[[T]]cf (u).[[P]]cf[u7→u], if u 6∈ dom(f)
[[T]]cf (v).[[P]]cf[u7→v] otherwise, where v = get(u)

[[T 〈U〉.P]]cf = [[T]]cf 〈[[U]]cf 〉.[[P]]cf

[[!i≥nP]]cf =

{
!i≥n[[P]]cf[i 7→i], if i 6∈ dom(f)
!i
′≥n[[P]]cf[i 7→i′] otherwise, where i′ = get(i)

let z = g(T1, . . . , Tn)
in P
else Q

c
f

=

let z = g([[T1]]cf , . . . , [[Tn]]cf)
in [[P]]cf[z 7→z]
else [[Q]]cf[z 7→z]

 , if z 6∈ dom(f)

let z′ = g([[T1]]cf , . . . , [[Tn]]cf)
in [[P]]cf[z 7→z′]
else [[Q]]cf[z 7→z′]

 otherwise,
where z′ = get(z)

[[u]]cf = f(u)
[[f(T1, . . . , Tn)]]cf′ = f([[T1]]cf′ , . . . , [[T1]]cf′)

Table 5.5: Encoding to Syntactically Consistent Form.

do not occur in the process being encoded, and which have not been requested earlier
in the encoding process. That last part is the reason for the side e�ect, for to obtain
that property, get relies on the sets Nfresh, VSfresh and VAfresh

, which consist of names,
session variables, and process variables, respectively, which do not occur in the syntax
speci�cation of the original process, and updates these sets each time a fresh name or
variable is requested.

Thus, given an extended process A, then by �rst assigning Nfresh := N\n(A), VSfresh :=
VS \ (v(A) ∩ VS) and VAfresh

:= VA \ (v(A) ∩ VA), and then encoding A with [[·]]cfinit ,
where finit is a bijection on fu(A), we claim that we get a syntactically consistent process,
[[A]]cfinit .We writeAc as a shorthand for [[A]]cfinit when discussing bothA and its syntactically
consistent form.

As the sets N, VS and VA are in�nite, and n(A) and v(A) are �nite, the sets Nfresh,
VSfresh and VAfresh

will be in�nite, and as such, the get function will always be capable of
supplying the encoding with fresh names and variables. Lastly, we claim that applying
[[·]]cfinit to a process A corresponds to applying a sequence of α-conversions to A.As such,
we have that A ≡α Ac, and, since we have from [MPW92] that ≡α is a strong bisimula-

94

5.1 Extending ABπ with Active Substitutions and Sessions

Algorithm 5.1: Function used to get fresh names and variables, get(u).

Input: A name or a variable, u.1

Result: A fresh name or variable.2

Side-e�ect: A�ect the sets Nfresh, VSfresh
and VAfresh

denoting names, session3

variables, and process variables, respectively, not occurring in the syntax speci�cation of

the original process.

if u ∈ N then4

u′:= a for some a ∈ Nfresh5

Nfresh:= Nfresh \ {a}6

return u′7

else if u ∈ VS then8

u′:= i for some i ∈ VSfresh9

VSfresh:= VSfresh \ {i}10

return u′11

else12

u′:= v for some v ∈ VAfresh
13

VAfresh
:= VAfresh

\ {v}14

return u′15

tion, then A and Ac are strongly bisimilar.We illustrate how [[·]]cf works in the following
example.

Example 5.4
Consider the process

P
def= (νb)(a(x).a〈pair(x, b)〉 | a(x).a〈enc(x, b)〉).

We have

Hprot(P) = [[P]]ρinit∅ =
{

msg(a, x) =⇒ msg(a, pair(x, b[x]))
msg(a, x) =⇒ msg(a, enc(x, b[x]))

}
.

The Horn clauses in Hprot(P) (correctly) state that, after any message (which we call x)
has been sent on channel a, it is possible that pair(x, b) and enc(x, b) may be sent on a.
Recall that we wish to make the Horn clauses in Hprot(P) syntactically comparable

to input/output pre�xes in P . The choice of x as the input variable for both parallel
components causes problems in that regard. Consider, for instance, the reduction

P
a(data)−−−−−→ (νb)(a(x).a〈pair(x, b)〉 | ((a〈enc(x, b)〉){data/x})) def= P ′.

While data was a message sent over a and stored in x, and it could have been the left-
most parallel component that received the message and stored it in its x, the fact of the
matter is that it was the right-most parallel component that received the message and

95

5 Enriching ABπ and H, and Revelation Semantics

stored it in its x. Thus, naïvely matching the
a(data)−−−−−→ input action with the premise in

the �rst clause in Hprot(P) and then concluding that a message pair(data, b) can now be
sent over a (without performing further input actions in P ′) would be fallacious.
Now, if we, before performing reductions in P , �rst run it through our syntactic con-

sistency encoding, [[P]]cfinit , with finit being a bijection on fu(P), and with the assignments
Nfresh := N \ n(P), VSfresh := VS \ (v(P) ∩ VS) and VAfresh

:= VA \ (v(P) ∩ VA) to yield
P c,

P c
def= [[P]]cfinit = (νa1)(a(x1).a〈pair(x1, a1)〉 | a(x2).a〈enc(x2, a1)〉),

we get the set of Horn clauses

Hprot(P c) = [[P c]]ρinit∅ =
{

msg(a, x1) =⇒ msg(a, pair(x1, a1[x1]))
msg(a, x2) =⇒ msg(a, enc(x2, a1[x1]))

}
.

Performing the same reduction,

P c
a(data)−−−−−→ (νa1)(a(x1).a〈pair(x1, a1)〉 | ((a〈enc(x2, a1)〉){data/x2})) = P c′,

we see that the input now only matches the premise of the second Horn clause, which
correctly states that without performing more input actions, P c′ can output enc(data, a1)
on a. 2

While the approach illustrated above takes care of transforming syntactically inconsis-
tent processes into syntactically consistent ones, there is still an issue with α-conversion
between reduction steps (which is allowed since ≡α⊆≡).

Example 5.5
Consider again the process P c de�ned in Example 5.4, and the Horn clauses Hprot(P c)
generated from P c. We have that

P c
a(data)−−−−−→ (νa1)(a(x1).a〈pair(x1, a1)〉 | ((a〈enc(x1, a1)〉){data/x1})) = Q

since

P c ≡α (νa1)(a(x1).a〈pair(x1, a1)〉 | a(x1).a〈enc(x1, a1)〉).

Now Q is syntactically inconsistent. We have received a message data and stored it in
a variable named x1, which is not the same variable as the x1 in the leftmost parallel
component. As such, concluding from the Horn clauses that the message pair(data, a1)
may be sent on a would be fallacious. 2

In Example 5.5, while x2 and the x1 it got α-converted into are conceptually the same,
they di�er syntactically, which is what causes problems when making the syntactic rela-
tion between P c reduced, and Hprot(P c).
We are interested in maintaining this �conceptual equality� in the presence of α-

conversion. There are two common ways of addressing this issue: de Bruijn indices
[dB72, Pie02], and Canonicalisation.

96

5.1 Extending ABπ with Active Substitutions and Sessions

Brie�y, de Bruijn indexing, originally introduced in the λ-calculus by Nicolaas Govert
de Bruijn [Pie02], involes identifying variables by a natural number denoting the distance
it has to its binder (with the distance being incremented for each binder occurring between
the variable and its binder). As such, a λ-term written using deBruijn indices is invariant
with respect to α-conversion, and as such, checking for α-equivalence amounts to checking
for syntactic equality.
Canonicalisation is a general term for making something canonical (on standard, or

normal, form). In the context of computer science, this involves converting data which
has many possible representations into a canonical representation. In the context of our
problem at hand, this would be ensuring that bound names and variables (identi�ers)
have a canonical �value�, which is associated with the identi�er. As such, α-converting
the name or variable would not change the �value� of the name or variable.
In [BDNN01], canonicalisation is accomplished by annotating input pre�xes and re-

strictions with binders and values, respectively, and by making a minor modi�cation to
the semantics of the π-calculus. For instance, consider these structural equivalence rules
for α-conversion.

a(xβ)P ≡α a(yβ)P{y/x}, if y 6∈ fv(P)
(νuχ)P ≡α (νvχ)P{v/u}, if v 6∈ fu(P)

In (νuχ), χ is the �value� associated with the identi�er u (we call such values χ-values
henceforth). In a(xβ), β is the �binder�, which gets instantiated with the �value� of the
identi�er stored in x (we call such binders β-binders henceforth). Free names and vari-
ables (which cannot be α-converted, by the way) are assumed to have χ-values' associated
with them. This can be represented by a map provided alongside the process speci�ca-
tion (as those χ-values cannot be read from the process speci�cation; the restrictions are
beyond the process speci�cation).
The other changes to the semantics of ABπ′ are fairly minor, as can be seen in Ta-

bles 5.6, 5.7, and 5.8. All the other rules are near-identical. Note that when applying

(νuχ1)(νvχ2)A ≡ (νvχ2)(νuχ1)A, if u 6= v(new-C)

(νxχ){T/x} ≡ 0(alias)

Table 5.6: Canonicalising the Structural Equivalence of ABπ′.

a〈u〉.Q | a(uβ).P → Q | P(sync)

Table 5.7: Canonicalising the Internal Reduction relation in ABπ′.

97

5 Enriching ABπ and H, and Revelation Semantics

u(xβ).P
u(T)−−−⇁ (νxχ) | P

(in)

A
a〈u〉−−−⇁ A′, u 6= a

(νuχ)A
(νu)a〈u〉−−−−−−⇁ A′

(open-atom)

Table 5.8: Canonicalising the Labelled Reduction relation of ABπ′.

(in), the χ-value must be a previously-unused χ-values, and when applying (open-atom),
the free identi�er-χ-value map may need to be updated. Note also that when applying
(alias), the χ-value chosen for x must be a previously-unused χ-value (we assume an
in�nite supply of χ-values). At last, the condition in (new-C) is required since if u = v,
then the χ-values of the us in A will change (which is not desired).

Assume that for a given process A, we �rst bring it to a syntactically consistent form
Ac, then canonicalise Ac by annotating each restriction and input pre�x with a unique
χ-value and β-binder, respectively, then supplying a map which maps free names and
variables to χ-values which are pairwise di�erent from χ-values already annotated to Ac

and each other, and at last ensuring that this map is kept consistent during reductions in
Ac annotated (which we denote Ac

c
). We claim that when generating the Horn clauses

from Ac, by registering the χ-values of each restricted name and variable, and the β-
binder of each input pre�x, instead of just registering the restrictions and input pre�xes,
then we can accurately associate names and inputs in Ac with their occurrences in Hprot.

5.1.3 Session Enrichment and Horn Clause Generation

Since we have insured that processes remain syntactically consistent, we can move on to
handle replication and variable replacement during Horn clause generation.

Session Enrichment

In [Bla02], Blanchet parameterises names and variables with session variables in his Horn
clause generation to ensure that all names and variables remain syntactically distinct,
even in the presense of replication. To make A0 (which is what we call the initial process
now, since they have become extended processes) comparable to H during reduction, we
introduce the same parameterisation in the session-introducing encoding [[·]]S

ĩ,f
, which is

de�ned in Table 5.9. We thus let [[A0]]S∅,I (where I is the identity map) be the session-

enriched A0. We write AS0 as a shorthand for [[A0]]S∅,I when discussing both A0 and its
session-enriched form.

98

5.1 Extending ABπ with Active Substitutions and Sessions

[[0]]S
ĩ,f

= 0

[[A | B]]S
ĩ,f

= [[A]]S
ĩ,f
| [[B]]S

ĩ,f

[[(νu)A]]S
ĩ,f

= (νu[̃i])[[A]]S
ĩ,f[u7→u[̃i]]

[[{T/x}]]S
ĩ,f

= {[[T]]S
ĩ,f/[[x]]S

ĩ,f
}

[[T (u).P]]S
ĩ,f

= [[T]]S
ĩ,f

([[u]]S
ĩ,f

).[[P]]S
ĩ,f

[[T 〈U〉.P]]S
ĩ,f

= [[T]]S
ĩ,f
〈[[U]]S

ĩ,f
〉.[[P]]S

ĩ,f

[[!i
′≥nP]]S

ĩ,f
=!i
′≥n[[P]]S

ĩi′,flet z = g(T1, . . . , Tn)
in P
else Q

S
ĩ,f

=

let [[z]]S
ĩ,f

= g([[T1]]S
ĩ,f
, . . . , [[Tn]]S

ĩ,f
)

in [[P]]S
ĩ,f

else [[Q]]S
ĩ,f

[[u]]S
ĩ,f

= f(u)

[[f(T1, . . . , Tn)]]S
ĩ,f′

= f([[T1]]S
ĩ,f′
, . . . , [[T1]]S

ĩ,f′
)

Table 5.9: Session-introducing Encoding.

Variable Consistency Enrichment

We can assume that session identi�ers are already present in the syntax of our initial
process, as we have just shown how to do so. As a �nal modi�cation to the static analysis
of Abadi and Bruno, we add means of keeping track of the original variable names of
those variables replaced with terms in ρ during the Horn clause generation. This occurs
when �let� expressions are encountered, as reductions in the process under a successful
�let� expression assigning x = g(T̃) are contingent on the pattern of the value of x which
made the �let� destruction possible.

We do this by adding mappings to the Horn clauses, which domain is the variable as
it appears in the initial process, and value is the condition we place on its instantiations.
The result is the Horn clause generator in Table 5.10. This, and the syntactic transfor-
mations presented prior in this chapter, are the key to enabling us to prove the relation
between Horn clauses and reductions in the initial process.

Recall that in substitution σh, σ does not substitute on the subject of the mapping
u 7→ T ; only the object. That is, σ(u 7→ T) = u 7→ σT .

We assume assume that new variables introduced by (σ, σ′) when a �let� is encountered
during Horn clause generation always di�er from all variables in A0, and in ρ. This can
be accomplished by an approach similar to the one applied to bring A0 to syntactically
consistent form.

99

5 Enriching ABπ and H, and Revelation Semantics

[[0]]ρh = ∅
[[P | Q]]ρh = [[P]]ρh ∪ [[Q]]ρh
[[!i≥nP]]ρh = [[P]]ρh
[[(νa)P]]ρh = [[P]](ρ[a7→a[ρ(Vo)]])h

[[u(x).P]]ρh = [[P]](ρ[x 7→x])(h∧msg(u7→ρ(u),x 7→x))

[[u〈v〉.P]]ρh = [[P]]ρh ∪ {((h =⇒ msg(u 7→ ρ(u), v 7→ ρ(v))), (ρ, h))}let x = g(T1, . . . , Tn)
in P
else Q

ρh

=
⋃[[P]]((σρ)[x 7→σ′p′])(σh) |

g(p′1, . . . , p
′
n) > p′ ∈ def(g),

and (σ, σ′) is the most gene-
ral pair of substitutions
st. σρ(Ti) = σ′p′i; 1 ≤ i ≤ n

∪ [[Q]]ρh

Table 5.10: Horn clauses for the protocol, extended.

5.2 Revelation Semantics

Recall the issue mentioned in the beginning of this chapter regarding internal reduction
and the consistency of the frame of a process. Also, to properly compare Horn clauses to
transitions, we need the name and term involved in synchronisation actions in internal
reductions. We address these two issues by de�ning a new semantics for ABπ′ which,
compared to the labelled reduction semantics of ABπ′, enriches labels and ensures that
frames remain consistent, even in the presence of internal reductions on free names.
Brie�y put, what we do is

• Remove the (sync) rule from →, and

• Add corresponding rules to
α−→, such that when A0 synchronises internally on a

free channel, the message is implicitly leaked.

We model implicit leakage by exposing the (bound) object sent during sychronisation,
thus making the object appear in the frame of the reduced process. The result is the
following two new relations.

De�nition 5.5 (Silent Reduction)
Silent reduction, denoted by ⇀, is the least preorder on processes closed by structural
equivalence and evaluation contexts, and satisfying the (destr1) and (destr2) axioms in
Table 5.3. 2

De�nition 5.6 (Revelation Reduction)
Revelation reduction, denoted

α−_, extends the rules of
α−⇁ with the rules in Table 5.11.2

Note that C and D in Table 5.11 are evaluation contexts. Also note the negation on the
transition in the last premise of rule (syncint) in Table 5.11. This does not cause problems,

100

5.2 Revelation Semantics

A = C[(νu)D[a〈u〉.P1, a(x).P2]] A
(νu)a〈u〉−−−−−−⇁ C[D[P1, a(x).P2]]

D[a〈u〉.P1, a(x).P2]
a(u)−−−⇁ D[a〈u〉.P1, (νx)({u/x} | P2)]

A
(νu)â(u)
−−−−−−_ C[D[P1, (νx)({u/x} | P2)]]

(syncleak)

A = C[B];B = D[a〈u〉.P1, a(x).P2] B
a〈u〉−−−⇁ D[P1, a(x).P2]

B
a(u)−−−⇁ D[a〈u〉.P1, (νx)({u/x} | P2)] A

(νu)a〈u〉−−−−−−⇁X

A
â(u)
−−−_ C[D[P1, (νx)({u/x} | P2)]]

(syncint)

Table 5.11: Revelation Semantics in ABπ.

since any given process speci�cation is a �nite strings, thus with a �nite number of output
pre�xes to check.

Finally, we de�ne some notation for our reduction relations. We let ⇀∗ denote the
re�exive and transitive closure of ⇀, and de�ne

(
α

==.) def= (⇀∗ · α−_ ·⇀∗)

(
α1···αn−−−−−_) def= (

α1−−_ · · · αn−−_)

(
α1···αn======.) def= (

α1===. · · · αn===.)

(α−−I) def= (≡ · α−_ · ≡).

Let
α̃−_∗

α̃
==.∗ denote the re�exive and transitive closure of

α−_ and
α

==., respectively. If
A

α1···αn−−−−−_ A′, then there exists a sequence A1, . . . , An−1 such that

A
α1−−_ A1 · · ·An−1

αn−−_ A′,

and likewise for A
α1···αn======. A′. Finally, let A →′ be some A′ where (A,A′) ∈→′, where

→′ is any one of the transition relations presented in this thesis.

Proposition 5.6 ((≡ ∪⇀ ∪ α−_) ⊆ (≡ ∪ → ∪ α−⇁)∗)
The labelled operational semantics of ABπ′ emulates the revelation operational semantics

of ABπ′. That is,

i) If A
α−_ A′, then A

α̃−→ A′.

ii) If A ⇀ A′, then A→ A′.

Proof

Follows from the fact that ⇀(→, and that
α−_ is de�ned in terms of

α−⇁. �

101

5 Enriching ABπ and H, and Revelation Semantics

Proposition 5.7 ((≡ ∪ → ∪ α−⇁) 6⊆ (≡ ∪⇀ ∪ α−_)∗)
The converse of Proposition 5.6 does not hold. That is, there exist extended processes A,

A′ such that A(≡ ∪ → ∪ α−⇁)A′, but not A(≡ ∪ → ∪ α−⇁)∗A′.

Proof

By counterexample. Assume the converse of Proposition 5.6 holds. Consider

A
def= (νx)({T/x} | a〈x〉.P | a(y).Q)→ (νx)({T/x} | P | (νx)({T/y} | Q)) def= A′,

for suitable T , P and Q. The combination that a is free and x is bound makes it
impossible to apply (syncleak) or (syncint) to reduce A to A′: For (syncleak) to not remove
the restriction on x, a must be bound. Since there is no �close�-rule in ≡, ⇀, and

α−→,
(syncleak) cannot be applied. For (syncint) to be applied, then either, x must be free, or
a must be bound, neither of which is true, and neither of which can be accomplished by
applying ≡ or ⇀.
As there are no rules in ≡ and ⇀ to handle reductions, and since applying ≡ or ⇀

rules does not enable the desired reduction, the result follows. �

In summary, while revelation reduction can be emulated by select labelled reductions,
the act of synchronising a bound object over a free subject, without exposing the object,
is impossible in the revelation semantics. This is, in fact, desired, as this ensures that
the frame of the process is kept up-to-date through reduction.

5.3 Summary

We have now overcome the issue with syntactically comparing an initial process A0 with
the Horn clauses H generated from it, and thus paved the way towards proving the
soundness of deduction from H. The issues we addressed can be summarised as follows.

(1) The initial process could contain restrictions on names and variables which were
syntactically (but not conceptually) equal.

(2) Replicated processes produced new name and variable restrictions which, again,
were syntactically (but not conceptually) equal.

(3) Restricted names and variables could be replaced through α-conversion.

(4) After a process received a message, the input variable disappeared from the process,
making it impossible to discover the value assigned to it during the input operation
(which we require to perform uni�cations in the proof). The same issue was present
in the semantics of successful �let� reductions in ABπ′.

(5) Variables could be replaced by terms during Horn clause generation, some terms
containing fresh variables which did not appear in the syntax of the initial process.

(6) The environment knowledge was not updated correctly during internal reduction
involving the sending of a bound object over a free subject.

102

5.3 Summary

We used the syntactic consistency encoding to address issues (1). Canonicalisation en-
ables us to safely disrecard issue (3). By using session enrichment, issue (2) is no longer
a problem, since, in the semantics of ABπ′, the session variables are instantiated during
replication in the enriched initial process. We addressed issue (4) through the semantics

of ABπ′. Since we have no analogue of the (subst) rule from Aπ, we can be certain that
the active substitution is still ��oating� in the process immediately after reduction. Issue
(5) we address with our variable consistency encoding, which makes sure to keep track
of the variables originally in place of the terms substituted into the Horn clauses due
to uni�cation in �let� destruction. Finally, issue (6) is taken care of by our revelation
semantics.
We note that the revelation semantics can, with slight variations, be applied in Aπ

and similar calculi, and doing so is particularly desirable when applying the Dolev-Yao
threat model.
We are now ready to commence the proof of soundness of H.

103

CHAPTER 6

Soundness of H

It is time to prove two of the main results of this thesis. Speci�cally, we prove that �for
any sequence of transitions in an initial process, there is a Horn clause in the Horn clauses
generated from the initial process which the transition sequence initialises�. From this,
we can deduce that performing transitions in the initial process has a clear relation to
performing resolution in the Horn clauses H generated from the initial process. It turns
out that deduction of truths from H is sound with regards to the behaviour of the initial
process. As such, if we cannot deduce from H that a message T can be sent on channel
a, then the same holds for the initial process.

To prove this fact, we impose the following restrictions on the Horn clause generation,
and the initial process p.

• We never α-convert names and input pre�xes during reduction.

• We assume p is syntactically-consistent, and session-enriched.

• We assume the Horn clauses were generated with the variable-consistent Horn
clause generator.

• We disregard parameterisation of restricted names and variables1.

• Perform reductions in p in the revelation semantics of ABπ′.

As explained in the summary of the previous chapter, imposing these restrictions will
not be harmful for the accuracy of our result.

1This will not cause problems for session identi�ers, since each parallel component which contains
names or variables parameterised with i, only has one value assignment to i. Thus, unifying session
variables in the Horn clauses with session variable instances in the process during reduction is trivial.

105

6 Soundness of H

We apply the following transition relations in the proofs.

(==⇀) def= (≡ ·⇀ · ≡)

(
α

==I) def= (==⇀∗ · α−−I · ==⇀∗)

6.1 H Overapproximates All Reachable Frames

We begin by proving an interesting consequence of our enriched calculus, and the rev-
elation semantics. Note that by P →, where → is any reduction relation, we mean a
process P ′ such that P → P ′.

Theorem 6.1 (Overapproximation of all reachable frames)
Let A ∈ A and S = fn(A), and assume the in�nite set of names used in the condition of

(ax2), De�nition 3.11, is de�ned by {b[i] | i ∈ N} for some b 6∈ n(A), and that this b is
the same b selected in Algorithm 3.1 during the creation of H. It holds for any sequence

of reductions
α1···αn−1

=======I
αn−−_ in A that

ϕ(A
α1···αn−1

=======I
αn−−_) ` T =⇒ H ` att(T).

Proof

By induction in n.

Basis: n = 0. Here we are considering ϕ(A). By Algorithm 3.1 lines 4, 6, 7, and 9, and
by the de�nition of a frame from Section 3.1.2, we see that deduction in Hatt is
exactly deduction in ϕ(A). That is, ϕ(A) ` T ⇐⇒ Hatt ` att(T). Since Hatt ⊆ H,
the result follows.

Induction: Assume the theorem holds for n. That is, the theorem holds for the transition

sequence
α1···αn−1

=======I
αn−−_. The theorem then also holds for the transition sequence

α1···αn======I, as no new messages have been passed since
α1···αn−1

=======I
αn−−_. We seek to

prove the theorem for the transition sequence
α1···αn======I

αn+1−−−−_.

By the de�nition of a frame from Section 3.1.2, the only time there is a term T st.

ϕ(A
α1···αn======I) 6` T but ϕ(A

α1···αn======I
αn+1−−−−_) ` T is if something new is exposed in

αn+1−−−−_ enabling this deduction. We can assume (without loss of generality) that T
is this exposed term (for then it follows from the autoepistemy of ` for Horn clauses

that if H ` att(T), then H ` att(U) for any U ∈ ϕ(A
α1···αn======I

αn+1−−−−_)\ϕ(A
α1···αn======I

)).

Terms are only exposed to the environment if αn+1 ∈ {(νu)a〈u〉, (νu)â(u)}, where
ϕk(A

α1···αn======I)(u) = T . By De�nition 5.6, since an exposing output occurs in
(νu)â(u)
−−−−−−_, it is enough to consider αn+1 = (νu)a〈u〉.

106

6.2 Soundness Theorem

From the validity of A
α1···αn======I

αn+1−−−−_ and by De�nition 5.6, we get that H ` att(a)
and H ` msg(a, u). Then by Algorithm 3.1, we get that H ` att(u), and thus,
H ` att(T). This completes the proof. �

This means that we can apply the Horn clauses generated from a process to (overapprox-
imately) prove whether a process satis�es active syntactic secrecy. We state (and prove)
this fact in Section 6.3.

6.2 Soundness Theorem

A couple of functions we use in the soundness proof:

Hatt(ϕ(A)) def= Hatt(A) ∪ {att(T) | T ∈ im(ϕ(A))}

in(A,B) def= dom(ϕk(B)) \ dom(ϕk(A))

Note that Hatt(ϕ(A
α̃

==I)) ` p =⇒ H(A) ` p, for any α̃, where by Hatt(ϕ(A
α̃

==I)) we

mean the set of Horn clauses obtained by converting any term deducible from ϕ(A
α̃

==I)
to predicates, and adding them to Hatt(0, fn(A)).

The idea with in(A,B) is that when A
â(y)
−−−_ B or A

a(T)−−−⇁ B, then in(A,B) will yield
which variable was written to (since no structural equivalence rules can be applied during

the input operation in
α−_ and

α−⇁ (we made sure of this in the semantics de�nition of
α−_ and

α−⇁), the input variable will still be present, with a �oating active substitution
present in B expressing its value). Then, if the input variable is x, ϕ(B)(in(A,B)) will
yield the value of x in B.

Theorem 6.2 (Soundness of H′ w.r.t. AS)
Let A be on syntactic consistent form, and on inner normal form. It holds that for any

transition sequence
α1···αn−1

=======I
αn−−_ from AS, then either

i) Hatt(ϕ(AS
α1···αn−1

=======I)) ` msg(a, T), where αn = a(T), or

ii) There exists a clause ∧
1≤i<m

msg(ui 7→ Ui, xi 7→ Ti) =⇒ msg(um 7→ Um, Tm)

 , (ρ, h)

 ∈ H′prot(A
S),

and a strictly increasing sequence f : N −→ N, such that the set of equations

S =

{
ϕk(AS

α1···αf(i)−1

========I
f(i)
−−_)(x′f(i)) = δTi,

af(i) = δUi

}

107

6 Soundness of H

is a system of syntactic identities, δ maps each u ∈
⋃
T∈im(ρ) v(T)\v(AS) to a closed

term, and where in(AS
α1···αf(i)−1

========I, AS
α1···αf(i)−1

========I
αf(i)

−−−_) =: x′f(i) = xi (last equality

being syntactic), αi ∈ {ai(Vi), âi(vi)}, αn ∈ {an〈vn〉, ân(vn)} for 1 ≤ i < n, and
f(m) = n. 2

Intuitively, the theorem states that for a given initial process A0, if we bring A0 to
syntactically consistent form Ac0 and extend Ac0 with sessions (yielding Ac0

S), then any
transition sequence in Ac0

S will have a matching function f which associates each pred-
icate in some Horn clause cl in H′(Ac0

S), with the transition in the transition sequence
instantiating the predicate (and do so in proper order).

Proof

By induction in n.

Basis: (n = 1). Five cases to consider.

AS ==⇀∗
a(T)−−−⇁ AS

′: Then ϕ(AS) ` a and ϕ(AS) ` T . It then follows from Theo-
rem 6.1 that H′ ` att(a) and H′ ` att(T), and thus by Algorithm 3.1 that
H′ ` msg(a, T).

AS ==⇀∗
â(u)
−−−_ AS

′: Then by De�nition 5.6, there exists an evaluation context C
such that A0 = C[a〈u〉.Q] for some Q. As h in [[·]]′ρh is only extended when an
input token is encountered in the parameterised process, we get by Table 5.10
that there is (at least one) Horn clause cl := (msg(u′, T ′), (ρ, h)) ∈ H′ with no
premises.

We now inductively �nd the values assigned during each �let� destruction in
the ==⇀∗ transition sequence (from A to A ==⇀∗): Let Cj [R] = C ′j [let zj =
gj(T̃j) in Cj+1[R] else Qj] for some Qj , and let Ck+1[R] have no successful
let above R, where C ′j for 1 ≤ j ≤ k and Ck+1 are evaluation contexts.

Then let k be the largest integer such that AS = C0[C1[v〈w〉.Q]] (with C0 an
evaluation context), where

C1[u〈v〉.Q] ==⇀∗ C ′1[(νz1)({T1/z1} | C ′2[(νz2)({T2/z2} | · · ·Ck+1[v〈w〉.Q] · · ·)])]
≡ C ′1[(νz1)({T1/z1} | C ′2[(νz2)({T2/z2} | · · ·Ck+1[a〈u〉.Q] · · ·)])]
a〈u〉−−−⇁ C ′1[(νz1)({T1/z1} | C ′2[(νz2)({T2/z2} | · · ·Ck+1[Q] · · ·)])]

=: P,

and

C0[0]
a(u)−−−⇁ C ′0[0]

C0[C1[v〈w〉.Q]] ==⇀∗
a(u)
−−−_ C ′0[P] ≡ AS ′.

108

6.2 Soundness Theorem

(and these contexts exist, as per De�nition 5.6 and De�nition 5.5). Let
A0 ==⇀∗= A0(≡ · ⇀)k, where (≡ · ⇀)k represents k sequential relation com-
positions of the (≡ ·⇀) relation. Now unify

S = {ϕk(A(≡ ·⇀)i)(z′i)
?= ρ(zi)}1≤i≤k

with regards to the variables ⋃
1≤i≤k

v(ρ(zi)) \ v(A),

where in(AS(≡ ·⇀)i−1, A
S(≡ ·⇀)i) =: z′i = zi (last equality being syntactic),

to yield a solution δ.

For at least one of the cl clauses, there must exist a solution δ; this follows
from Table 5.10, De�nition 5.5, and Theorem 2.10 (from the generality of
uni�cation; since the Horn clauses are as general as possible, and the reduction

==⇀∗
â(u)
−−−_ was possible in AS , then this sequence of reductions must instantiate

at least one cl). By picking a cl for which the uni�cation problem{
δu′

?= a,

δT ′
?= ϕk(A ==⇀∗)(u)

}

with regards to the variables v(T ′)\ v(A) has a solution σ1 = ∅ (the equations
in the uni�cation problem are syntactic equalities, thanks to δ), and by picking
f as the identity map, we are done.

AS ==⇀∗
(νu)â(u)
−−−−−−_ AS

′: same argument as AS ==⇀∗
â(u)
−−−_ A′.

AS ==⇀∗
a〈u〉−−−⇁ AS

′: same argument as AS ==⇀∗
â(u)
−−−_ A′.

AS ==⇀∗
(νu)â(u)−−−−−−⇁ AS

′: same argument as AS ==⇀∗
â(u)
−−−_ A′.

Induction: Assume the result holds for n. We now prove that it then holds for n + 1.
Five cases to consider.

AS
α1,...,αn

======I
a(T)−−−⇁ A′: Same argument as that of A0 ==⇀∗

a(T)
−−−_ AS

′
in the basis

step.

AS
α1,...,αn

======I
â(u)
−−−_ AS

′: We know by De�nition 5.6 that the abstract syntax tree
of AS has a subtree v〈w〉.Q for some Q where v〈w〉 is not executed during
α1,...,αn

======I
â(u)
−−−_ until the last action. Let AS = C[v〈w〉.Q] for some C, let

β1, . . . , βk′ be the input/output actions pre�xing the hole in C, and let C[R] =
C ′[βk′ .C ′′[R]].

We now apply the induction hypothesis to get closer to �nding f and the Horn
clause

∧
1≤i<m msg(ui 7→ Ui, xi 7→ Ti) =⇒ msg(um 7→ Um, Tm) ∈ H′prot(A

S).
We condition on βk′ .

109

6 Soundness of H

βk′ is an output: By induction hypothesis, we have (at least one) clause ∧
1≤i<m

msg(ui 7→ U ′i , xi 7→ T ′i) =⇒ msg(u′m 7→ U ′m, T
′
m), (ρ′, h′)

in H′prot(A

S), a function f ′, and a solution δpre satisfying the criteria in
this theorem for a pre�x of the sequence α1, . . . , αn.

By Table 5.10, Theorem 2.10, and De�nition 5.5, this Horn clause must
be more general than (at least one) clause ∧

1≤i<m
msg(ui 7→ Ui, xi 7→ Ti) =⇒ msg(um 7→ Um, Tm), (ρ, h)

which has the same premises (albeit in a less general form).

Following the same approach as in AS ==⇀∗
â(u)
−−−_ AS

′
in the basis step to

�nd δ and σi, we unify

S′ = {ϕk(A
α1···αf′(m)

========I (≡ ·⇀)i)(z′i)
?= δpreρ(zi)}1≤i≤k

with regards to the variables⋃
1≤i≤k

v(ρ(zi)) \ v(A),

where in(AS
α1···αf′(m)

========I (≡ · ⇀)i−1, A
S

α1···αf′(m)

========I (≡ · ⇀)i) =: z′i = zi
(last equality being syntactic), to yield a solution δ, and use δ to solve
the system of uni�cation problems

Si =

 ϕk(AS
α1···αf(i)−1

========I
f(i)
−−_)(x′f(i))

?= σi−1,...,1δTi,

af(i)
?= σi−1,...,1δUi

 ,

each with solution σi = ∅ (again, δ makes the equations in each uni�cation
problem into syntactic equalities), where

in(AS
α1···αf(i)−1

========I, AS
α1···αf(i)−1

========I
αf(i)

−−−_) =: x′f(i) = xi

(again, the last equality is syntactic), αf(i) ∈ {ai(vi), âi(vi)}, for 1 ≤ i < n,
αn ∈ {an〈vn〉, ân(vn)}, and f := f ′[m 7→ n+ 1].

βk′ is an input: Recall that

A = C ′[βk′ .C ′′[a〈u〉.Q]].

110

6.2 Soundness Theorem

Now let

C ′[βk′ .C ′′[a〈u〉.Q]]
α1,...,αi−1

========I
αi−−_ C ′i[βk′ .C

′′[a〈u〉.Q]] = ASi ,

where ASi = AS
α1,...,αi−1

========I
αi−−_ for i ≤ l < n for some l. We now seek to

�nd l. Let AS
′ = C ′[0] and let C ′[0]

α1,...,αi−1
========I

αi−−_ C ′i[0] = ASi
′
. Let l

be the smallest integer s.t. either AS
′ α1,...,αl−1

========.
αl−−_X or C ′l in A

S
l di�ers

from C ′l in A
S
l
′
. We now know αl is the action matching βk′ . Let

AS
′′

= C ′[v〈device〉],

where device is a new function symbol (a proof device), and βk′ = v(w).
By induction hypothesis, there is (at least one) clause ∧

1≤i<m
msg(ui 7→ U ′i , xi 7→ T ′i) =⇒ msg(u′m−1 7→ U ′m−1, device), s′

in H′prot(A

S ′′) where s′ = (ρ′, h′), a function f ′, and a solution δpre satis-
fying the criteria in this theorem for the sequence α1, . . . , αl−1, v〈device〉.

By Table 5.10, Theorem 2.10, and De�nition 5.5, the m − 2 premises of
this Horn clause must be more general than (at least one) Horn clause in
H′(AS), ∧

1≤i<m
msg(ui 7→ Ui, xi 7→ Ti) =⇒ msg(um 7→ Um, Tm), (ρ, h)

with m− 1 premises (of which the �rst m− 2 are in a less general form),
where um−1 = v.

At last, if we add the equation

{ϕk(A
α1···αl−1

=======I
αl−−_)(w) ?= δpreρ(w)}

to the uni�cation problem S′ in the �βk′ is an output� case, then the rest
of this case will be the same argument as the �βk′ is an output� case,
where we furthermore extend f ′ with m− 1 7→ l.

AS
α1,...,αn

======I
(νu)â(u)
−−−−−−_ AS

′: Same argument as AS
α1,...,αn

======I
â(u)
−−−_ AS

′
.

AS
α1,...,αn

======I
a〈u〉−−−⇁ AS

′: Same argument as AS
α1,...,αn

======I
â(u)
−−−_ AS

′
.

AS
α1,...,αn

======I
(νu)a〈u〉−−−−−−⇁ AS

′: Same argument as AS
α1,...,αn

======I
â(u)
−−−_ AS

′
. �

111

6 Soundness of H

6.3 Corollaries

The two theorems proven in the prior two sections are quite powerful, as they directly
(syntactically) associate Horn clauses to reductions in the initial process. From these
theorems, we present a collection of useful corollaries. The �rst corollary is important
enough to state as a theorem, though.

Theorem 6.3 (Soundness of H w.r.t. A)
Deduction from H is sound with regards to any (syntactically consistent) initial process

A

Proof

Let→∗ be any sequence of transitions in A ending in an output action. State an analogue
of Theorem 6.2 for Horn clauses in H and un-enriched initial processes. Then, enrich A
and generate the appropriate H′. Let m be a map which associates clauses in H′ to their
corresponding un-enriched counterparts in H. By Theorem 6.2 we have a clause cl ∈ H′

and a δ satisfying the conditions in Theorem 6.2. By repeatedly applying Theorem 6.2
backwards for each premise of the Horn clause associated with → (and to each premise
of that clause, and so on) until you reach clauses with no premises (which is possible
from the induction hypothesis of Theorem 6.2), we obtain a logic proof of →∗ in H′.
The result now follows from applying δ on the corresponding clause m(cl) (and the other
clauses forming the proof), and since →∗ was arbitrary. �

We shall refer to this repeated application of the main result as the backwards proof path.
Recall that we usually identify processes up to α-conversion.

Theorem 6.4 (Secrecy)
P preserves the secrecy of T from S if ¬∃c ∈ S . H(P) ` msg(c, T) holds.

Proof

Since H(P) 6` msg(c, T), we have by Theorem 7.2 that

¬∃
α1···αn−1

=======I
αn−−_ .αn ∈ {ĉ(T), c〈T 〉} and P

α1···αn−1
=======I

αn−−_ .

Thus, P does not output T on c. The result now follows from the de�nition of secrecy
in [Bla02] since c is arbitrarily chosen from S. �

Corollary 6.5 (Syntactic Secrecy, in the active case)
If H(P, fn(P)) 6` att(s), then s is syntactically secret in P .

Proof

Follows from Theorem 6.1. �

112

CHAPTER 7

Secrecy and Authenticity Analysis Framework

The last phase of this thesis is to give the resolution-based automated veri�cation tech-
nique for the Distributed Applied π Calculus with Broadcast. While the results from
the last chapter make proving that deduction from Horn clauses generated from DAπβ
networks easy, the rigorous path to this result is a long one. Therefore, for convenience
and due to space constraints, we will permit ourselves to omit much of the trivial legwork.

Section 7.1 presents a much-needed overview of the proof, explains the steps involved,
and which steps will be skipped. Section 7.2 proves the central argument here that if we
replace the semantics of the ABπ calculus with a broadcast calculus, then deduction from
Horn clauses generated from processes will still be sound with regards to the broadcasting
revelation semantics. Section 7.3 explains what changes we need to make to the Horn
clause generation, and how we obtain a soundness proof for the Horn clause generator
for DAπβ . Finally, in Section 7.4 we present a small example as of how the exchangeable
network topology can be applied to recapture the spoo�ng attack on the ARAN protocol,
as proven originally by Jens Chr. Godskesen in [God06, God07]

7.1 Overview

Figure 7.1 illustrates the steps involved in proving the soundness of the Horn clauses
Hτ
β(N) generated from some DAπβ network N .

The darkened vertices are concepts that are already either de�ned or proven in previous
chapters. De�ning the enriched ABπ calculus with broadcast, (ABπ′β), and proving the
soundness of the enriched, and subsequently, unenriched Horn clauses for ABπ′β will be
brie�y presented in Section 7.2. Recall that DAπβ only di�ers from ABπ in that it has
a network level (which is really just a context), broadcast, and connectivity graphs. We
claim that by encoding the message passing constraints which a static abstraction of the

113

7 Secrecy and Authenticity Analysis Framework

DAπβ ABπ′ H′ Sound

ABπ′β H Sound

H′β Sound

Hβ Sound

Graph Clauses

Hτ ′
β Sound

Hτ
β Sound

Figure 7.1: Path of the soundness proof of Hτ
β for DAπβ .

network topology imposes as Horn clauses as graph clauses, and making otherwise minor
changes to the Horn clause generation, that we, through previously proven results, obtain
a sound automatic veri�cation technique. We present the idea behind this in Section 7.3.

114

7.2 H and Broadcast

7.2 H and Broadcast

We now establish that the Abadi/Blanchet Horn clause generator algorithm generalises
over point-to-point communication. As such, this resolution-based protocol veri�cation
technique can be applied to any broadcast calculus, provided it already can for a point-
to-point calculus with the same syntax. First, consider

P = (νb)(νa)(νk)
(
a〈k〉 | a(y1).b〈y1〉 | a(y2).b(y3).c〈oops(y2)〉

)
.

In a point-to-point calculus, this process would never output the term oops(y2). In
a broadcast calculus, however, it would. Now, most importantly, in both cases, the
predicate message(c, oops(y2)) is deducible from H.
Now assume a broadcast semantics for ABπ′1, and all the other restrictions we imposed

to A in the previous chapter. The following then holds.

Theorem 7.1 (Soundness of H′β w.r.t. AS)

Let A be on syntactic consistent form, and on inner normal form. It holds that for any

transition sequence
α1···αn−1

=======I
αn−−_ from AS, then either

i) H′attβ(ϕ(AS
α1···αn−1

=======I)) ` msg(a, T), where αn = a(T), or

ii) There exists a clause ∧
1≤i<m

msg(ui 7→ Ui, xi 7→ Ti) =⇒ msg(um 7→ Um, Tm)

 , (ρ, h)

 ∈ H′protβ
(AS),

and a strictly increasing sequence f : N −→ N, such that the set of equations

S =

{
ϕk(AS

α1···αf(i)−1

========I
f(i)
−−_)(x′f(i)) = δTi,

af(i) = δUi

}

is a system of syntactic identities, δ maps each u ∈
⋃
T∈im(ρ) v(T)\v(AS) to a closed

term, and where in(AS
α1···αf(i)−1

========I, AS
α1···αf(i)−1

========I
αf(i)

−−−_) =: x′f(i) = xi (last equality

being syntactic), αi ∈ {ai(Vi), âi(vi)}, αn ∈ {an〈vn〉, ân(vn)} for 1 ≤ i < n, and
f(m) = n.

Proof

Use the exact same proof as that of Theorem 6.2. �

Theorem 7.2 (Soundness of Hβ w.r.t. A)
Deduction from Hβ is sound with regards to any (syntactically consistent) initial process

A

Proof

Follows from Theorems 7.1 and 7.2. �

1Leave the syntax of ABπ′ unchanged.

115

7 Secrecy and Authenticity Analysis Framework

7.3 H in DAπβ

Obtaining a sound Horn clause generator for DAπβ processes is quite easy. First, we add
the restrictions imposed by the network topology into the rules of the protocol.

msg(x, y, z) ∧ connected(z, z′) =⇒ msg(x, y, z′) ∈ Hτ
β

∀(l, l′) ∈ G(τ) . connected(l, l′) ∈ Hτ
β

In the original Horn clause generation algorithm, update the msg predicates to also
account for the sending location.
Change the attacker clauses for receiving and sending messages as follows.

att(x) ∧ att(y) ∧ att(z) =⇒ msg(x, y, z)(send)

att(x) ∧ att(y) ∧msg(x, z, w) ∧ connected(w, y) =⇒ att(z)(receive)

Given these changes, we claim that the following is true.

Theorem 7.3 (Soundness of Hτβ w.r.t. A)

Deduction from Hτ
β is sound with regards to any (syntactically consistent) initial network

N

Proof

Follows from Theorems 7.1 and 7.2, and the Horn clause changes expressed above. �

7.4 Routing Example: ARAN

As a last act, we brie�y illustrate how useful the added connectivity graph abstraction
is. This example, although grossly simpli�ed, recaptures the essentials of the weakness
of the ARAN protocol, proven present by Jens Chr. Godskesen [God06].

Example 7.4 (ARAN (overapproximating idea))
Let L = {lS , l1, . . . , ln, lA, lD} be the locations occurring in a model N of the ARAN
protocol (except lA), where lS is the source of the route discovery message, lD is the
intended destination, and lA our unspeci�ed attacker, where lA 6∈ l(N), and consider the
network topology (admissible to N)

τ = {G | ∀l ∈ L\{lA}.(l, lD), (lD, l) 6∈ E(G)} .

Assume that upon completion (and only upon completion) of a route discovery, N per-

forms
lS ,ok(k)−−−−−→G(τ), where k is a nonce (unknown to the environment). If H(N,G(τ)) 6`

msg(lS , a, ok(k)) for all channels a, all is in order. This is, however, not the case: the
static graph abstraction G(τ) isolates the destination node in such a manner that only
the attacker can send messages to it. We claim that since Hτ

β(N) ` message(lS , a, ok(k)),
then that must mean that the route went via. the unauthenticated attacker lA. 2

116

CHAPTER 8

Conclusion

We have given a thorough overview of the various frameworks for veri�cation of secrecy,
authenticity and routing properties of security protocols. During this process, we ob-
served and argued that there was need for a generic, and conceptually simple framework
for automatic veri�cation of security protocols for MANETs. We proceeded to de�ne
the Distributed Applied π Calculus with Broadcast, which is a simple, yet expressive,
extension to the well-established Aπ calculus with a network layer, connectivity graphs,
and broadcast communication.

By making the observation that Horn clauses generated from a process speci�cation
relate to the process speci�cation in a very speci�c way, we proceed to de�ne a powerful
soundness theorem for deduction from Horn clauses, which to our knowledge has not been
done before in this manner. During this process we identi�ed the syntactic restrictions
we must impose to relate the Horn clauses to the process they were generated from.
Another important note in this regard is the resolution semantics, which we de�ned to
ensure that information in a frame is consistent with the learning capabilies of the hostile
environment in the Dolev-Yao threat model. An interesting fact about said Horn clauses
arose, stating that the Horn clauses overapproximate all reachable frames of a process,
and thus, the Horn clauses can be used to prove syntactic secrecy in the active case.
Worthy of noting is that Cortier, Rusinowitch and Zalinescu have proven in [CRZ06]
that in some select cases, syntactic secrecy implies strong secrecy.

Finally, we obtain a soundness theorem from the above-mentioned results, thus con-
cluding our intended goals. A biproduct of this, and the above-mentioned, results is that
Horn clauses generated from a process can be just as readily applied to a process with
broadcast semantics, as to process with point-to-point semantics. This may spark more
interest in resolution-based automated veri�cation of broadcasting systems.

117

8 Conclusion

8.1 Contribution

We brie�y summarise the key results in this thesis as follows.

DAπβ: A new, very simple, yet very �exible, broadcast calculus with explicit locations,
which is a natural extension to well-established work. This calculus is also capable
of expressing concepts which, while of great relevance in the veri�cation of security
protocols, have been in little focus. For instance, we can model untrusted locations
in DAπβ , and specify explicitly in our network speci�cation that the behaviour of
a given network is fully trusted.

Resolution-based automated verification for MANETs: Since veri�cation of security
protocols for MANETs is such a new research area, few formalisms and results
exist for that purpose. We feel that a new framework for this purpose, along with
a proven-sound automated veri�cation technique, is a signi�cant breakthrough in
this regard.

Powerful soundness proof: From how easy it was to generalise the soundness proof of
the Horn clauses generated from a process speci�cation to di�erent calculi, then
we think that this result can easily be adabted by other resarchers interested in
proving a similar soundness theorem in their own setting. Also, the only thing this
proof needs to work is a labelled reduction semantics, which is present in all process
calculi we know of. This is in contrast with Abadi and Blanchet's work [AB02],
where a correctness proof is proven in comparison to a general type system.

Horn clauses for syntactic active secrecy: Thanks to our proof that the Horn clauses
overapproximate all reachable frames of a process, we now have yet another (proven
sound) means of verifying whether a process ever leaks some given information.

Horn clauses for broadcasting systems: We argue through our many corollaries that
deduction from Horn clauses can just as easily be applied to broadcasting systems
as it can point-to-point systems.

Revelation semantics: In this semantics, we capture an important part of the learning
capabilities of the hostile environment in the Dolev-Yao threat model, which, from
what we have seen, has been largely overlooked to date. The semantics are de�ned
in terms of labelled reduction and evaluation contexts, making it convenient for
others to adabt this semantics extension to their work.

8.2 Future Work

There are several, very interesting, directions to which this work can be taken. We shall
summarise a few of them here.

Authenticity in DAπβ: While the de�nitions can surely be derived from Aπ, and tech-
niques such as the ones presented by Blanchet in [Bla02] can be applied to make

118

8.2 Future Work

authenticity easily computable, we have not paid much attention to authenticity,
let alone attempted at verifying authenticity properties of protocols. We do, how-
ever, have some ideas in this regard, and we shall now give an impression. By
extend the process syntax of DAπ with

P ::= begin(T).P
| end(T).P
| begin_ex(T)
| end_ex(T),

the predicates with
F ::= begin(p, ρ)
| end(p, s),

and the Horn clause generator in Table 5.10 with

[[begin(T).P]]ρh = [[P]]ρh∧begin(ρ(T),ρ) ∪ {h =⇒ begin(ρ(T), ρ)}
[[end(T).P]]ρh = [[P]]ρh ∪ {h =⇒ end(ρ(T), ρ(VS))},

we claim the following to follow from our soundness result.

Corollary 8.1 (Soundness of H′ w.r.t. Noninjective Agreement [Bla02])
If for any derivation of H(A) ` end(T, s), (for any end(T, s)), begin(T, ρ) is in the

backwards proof path of the derivation, then A satis�es non-injective agreement. 2

While computation based on this result is hardly feasible, we expect that we can
prove a result similar to that in Section 3.2.4 [Bla02].

Universal Algebra: While there are many interesting algebras we can express by use of
term rewrite systems, there exist algebras which cannot. To obtain utmost gener-
ality, it would be interesting to investigate the impact of using universal algebrae
as a data language, like in Aπ.

Bisimilarity: We have neglected the treatment of network equivalence, which can in-
deed be of great use for verifying properties of MANETs. An interesting direction
would be to obtain a de�nition of observational equivalence, which coincides with
labelled bisimilarity, thus enabling us to apply the result by Cortier, Rusinowitch
and Zälinescu to reason about strong secrecy in the active case.

Generalising the soundness proof: As of now, the proof of soundness of deduction from
Horn clauses is specialised to particular predicates, namely message passing. For
instance, during our work, we found the need to extend the Horn clause generator
with graph-conditioning clauses. Generalising our result to any, or a particular
class, of predicates would thus make our result much more applicable.

Encoding DAπ to Aπ with broadcast: To place DAπβ into �the hierarchy� of process
calculi, relating it to existing work is of great help to the scienti�c community.
This would also help us understand exactly how expressive DAπβ really is.

119

8 Conclusion

Logic for Local Knowledge: Since we have explicit locations to DAπβ , it might be of
interest to examine the knowledge present at speci�c locations in a network speci�-
cation. Furthermore, the concept of local knowledge could also be used to analyse
which location leaks a particular message, in contast to Aπ where we only see if the
whole system leaks information. Applying the logic for Aπ [Ped06, HP07] might
thus be an interesting study.

Implementation: In this thesis, we have supplied the theoretical foundation for an au-
tomated veri�cation tool for MANET protocols. To make use of this result, an im-
plementation of it should most de�nitely be made. A natural choice is, of course,
Blanchet's ProVerif, but another very interesting choice is the Succinct Solver,
which, by imposing some limitations on predicate logic to obtain the ALFP logic
obtains good performance and termination properties. Investigating whether the
Horn clauses can be modelled in ALFP would most certainly prove useful.

120

Bibliography

[AB02] Martín Abadi and Bruno Blanchet. Analyzing Security Protocols with Se-
crecy Types and Logic Programs. In 29th Annual ACM SIGPLAN - SIGACT

Symposium on Principles of Programming Languages (POPL 2002), pages
33�44, Portland, Oregon, January 2002. ACM Press.

[Aba99] Martín Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749�786, 1999.

[AC04] Martín Abadi and Véronique Cortier. Deciding knowledge in security proto-
cols under equational theories. In Proc. 31st Int. Coll. Automata, Languages,

and Programming (ICALP'2004), volume 3142 of Lecture Notes in Computer

Science, pages 46�58. Springer, 2004.

[AC05] Martin Abadi and Veronique Cortier. Deciding Knowledge in Security Pro-
tocols under (Many More) Equational Theories. In CSFW '05: Proceedings

of the 18th IEEE workshop on Computer Security Foundations, pages 62�76,
Washington, DC, USA, 2005. IEEE Computer Society.

[AF01] Martín Abadi and Cédric Fournet. Mobile Values, New Names, and Secure
Communication. 28th ACM Symposium on Principles of Programming Lan-

guages (POPL'01), pages 104�115, 2001.

[AG97] Martín Abadi and Andrew D. Gordon. A Calculus for Cryptographic Pro-
tocols: The Spi Calculus. In Fourth ACM Conference on Computer and

Communications Security, pages 36�47. ACM Press, 1997.

[AILS07] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reac-
tive Systems: Modelling, Speci�cation and Veri�cation. Cambridge University
Press, New York, NY, USA, 2007.

121

Bibliography

[AT91] Martín Abadi and Mark R. Tuttle. A semantics for a logic of authentication
(extended abstract). In PODC '91: Proceedings of the tenth annual ACM

symposium on Principles of distributed computing, pages 201�216, New York,
NY, USA, 1991. ACM.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated veri�cation
of selected equivalences for security protocols. Journal of Logic and Algebraic

Programming, 75(1):3�51, February�March 2008.

[BAN89] Michael Burrows, Martin Abadi, and Roger Needham. A Logic of Authentica-
tion. Technical Report 39, Digital Equipment Corporation, Systems Research
Centre, February 1989.

[BDNN01] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson.
Static analysis for the pi-calculus with application to security. INFCTRL:

Information and Computation (formerly Information and Control), 168, 2001.

[Bla01] Bruno Blanchet. An E�cient Cryptographic Protocol Veri�er Based on Pro-
log Rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-

14), pages 82�96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Com-
puter Society.

[Bla02] Bruno Blanchet. From secrecy to authenticity in security protocols. In SAS

'02: Proceedings of the 9th International Symposium on Static Analysis, pages
342�359, London, UK, 2002. Springer-Verlag.

[Bla08] Bruno Blanchet. Automatic veri�cation of correspondences for security pro-
tocols, 2008.

[BM97] Annette Bleeker and Lambert Meertens. A Semantics for BAN Logic. In Proc.
DIMACS Workshop on Design and Formal Veri�cation of Security Protocols,
New Brunswick, NJ, 1997.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, New York, NY, USA, 1998.

[BP05] Bruno Blanchet and Andreas Podelski. Veri�cation of Cryptographic Proto-
cols: Tagging Enforces Termination. Theoretical Computer Science, 333(1-
2):67�90, March 2005. Special issue FoSSaCS'03.

[BPV05] Michael Baldamus, Joachim Parrow, and Björn Victor. A Fully Abstract
Encoding of the i-Calculus with Data Terms. In Luís Caires, Giuseppe F.
Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
ICALP, volume 3580 of Lecture Notes in Computer Science, pages 1202�1213.
Springer, 2005.

[Bur98] Stanley N. Burris. Logic for Mathematics and Computer Science. Prentice
Hall, Upper Saddle River, New Jersey 07458, 1998.

122

Bibliography

[CM02] M. Carbone and S. Ma�eis. On the expressive power of polyadic synchroni-
sation in pi-calculus, 2002.

[CRZ06] Véronique Cortier, Michaël Rusinowitch, and Eugen Zalinescu. Relating two
standard notions of secrecy. In CSL, pages 303�318, 2006.

[CS01] Tom Chothia and Ian Stark. A Distributed Pi-Calculus with Local Areas of
Communication. In John Reppy and Peter Sewell, editors, Electronic Notes in
Theoretical Computer Science, volume 41. Elsevier Science Publishers, 2001.

[dB72] Nicolaas Govert de Bruijn. Lambda-Calculus Notation with Nameless Dum-
mies: a Tool for Automatic Formula Manipulation with Application to the
Church-Rosser Theorem. Indagationes Mathematicae, 34(5):381�392, 1972.

[Die06] Reinhard Diestel. Graph Theory. Springer-Verlag, Berlin and Heidelberg,
Germany, 2006.

[DY81] Danny Dolev and Andrew C. Yao. On The Security of Public Key Proto-
cols. Technical report, Department of Computer Science, Stanford University,
Stanford, CA, USA, 1981.

[EM99] Christian Ene and Traian Muntian. Expressiveness of Broadcast Communi-
cation. In Proceedings of FCT99, Springer LNCS, pages 258�268, 1999.

[Fer04] Maribel Fernández. Programming Languages and Operational Semantics.
King's College Publications, 2004.

[GJ01] A. Gordon and A. Je�rey. Authenticity by typing for security protocols, 2001.

[God06] Jens Chr. Godskesen. Formal Veri�cation of the ARAN Protocol Using the
Applied Pi-calculus. In Proceedings of the Sixth International IFIP WG 1.7

Workshop on Issues in the Theory of Security, pages 99�113, 2006.

[God07] Jens Chr. Godskesen. A Calculus for Mobile Wireless Networks. Technical
Report 39, ITU, Denmark, May 2007.

[HM05] Tony Hoare and Robin Milner. Grand Challenges for Computing Research.
Comput. J., 48(1):49�52, 2005.

[HP07] Hans Hüttel and Michael D. Pedersen. A logical characterisation of static
equivalence. Electron. Notes Theor. Comput. Sci., 173:139�157, 2007.

[HR98] Matthew Hennessy and James Riely. Resource Access Control in Systems of
Mobile Agents. In Proceedings of HLCL'98, volume 16(3) of Electronic Notes
in Theoretical Computer Science. Elsevier, 1998.

[HT91] Kohei Honda and Mario Tokoro. An Object Calculus for Asynchronous Com-
munication. Lecture Notes in Computer Science, 512:133�148, 1991.

123

Bibliography

[Hü05] Hans Hüttel. Pilen ved træets rod. Aalborg Universitet, Aalborg, Denmark,
2005.

[Joh96] P. T. Johnstone. Notes on Logic and Set Theory. Cambridge Mathematical
Textbooks. Cambridge University Press, 1996.

[Lau05] Niels Lauritzen. Concrete Abstract Algebra. Cambridge University Press,
2005.

[Low95] Gavin Lowe. An Attack on the Needham-Schroeder Public-Key Authentica-
tion Protocol. Information Processing Letters, 56(3):131�133, 1995.

[Mil82] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[Mil93] R. Milner. The Polyadic Pi-calculus: A Tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editors, Logic and Algebra of Speci�cation, pages
203�246. Springer-Verlag, 1993.

[Mil99] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cam-
bridge University Press, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, I and II. Inf. Comput., 100(1):1�77, 1992.

[Nan06] Sebastian Nanz. Speci�cation and Security Analysis of Mobile Ad-Hoc Net-

works. PhD thesis, Imperial College London, 2006.

[NH04] Sebastian Nanz and Chris Hankin. Static Analysis of Routing Protocols for
Ad-Hoc Networks. In Proceedings of the 2004 ACM SIGPLAN and IFIP WG

1.7 Workshop on Issues in the Theory of Security (WITS'04), pages 141�152,
2004.

[NH06] Sebastian Nanz and Chris Hankin. A Framework for Security Analysis of
Mobile Wireless Networks. Electronic Notes in Theoretical Computer Science,
367:207�227, 2006.

[NNS+04] F. Nielson, H. Riis Nielson, H. Sun, M. Buchholtz, R. R. Hansen, H. Pilegaard,
and H. Seidl. The succinct solver suite. In Andreas Podelski Kurt Jensen,
editor, Proc. TACAS'04, volume 2988 of Lecture Notes in Computer Science,
pages 251�265. Springer-Verlag, 2004.

[Ped06] Michael David Pedersen. Logics for The Applied Pi Calculus. Technical
report, BRICS, Denmark, 2006.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[Pra95] K. V. S. Prasad. A Calculus of Broadcasting Systems. Electronic Notes in

Theoretical Computer Science, 25:285�327, 1995.

124

Bibliography

[Shi88] O. Shivers. Control �ow analysis in scheme. In PLDI '88: Proceedings of

the ACM SIGPLAN 1988 conference on Programming Language design and

Implementation, pages 164�174, New York, NY, USA, 1988. ACM.

[SS94] Leon Sterling and Ehud Shapiro. The art of Prolog (2nd ed.): advanced

programming techniques. MIT Press, Cambridge, MA, USA, 1994.

[SW01] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Pro-

cesses. Cambridge University Press, 2001.

[Syv91] Paul Syversen. The Use of Logic in the Analysis of Cryptographic Protocols.
In 1991 IEEE Symposium on Security and Privacy, page 156, Oakland, CA.,
1991. IEEE Computer Society Press.

[WK96] Gabriele Wedel and Volker Kessler. Formal semantics for authentication log-
ics. In ESORICS '96: Proceedings of the 4th European Symposium on Re-

search in Computer Security, pages 219�241, London, UK, 1996. Springer-
Verlag.

125

	List of Tables
	Introduction
	Background
	Secrecy and Authenticity
	MANETs
	Process Calculi
	Static Analysis

	Objective
	Related Work
	Outline

	Preliminaries
	Notation
	Universal Algebra
	Term Rewrite Systems
	Syntactic Unification
	Horn Clauses
	Propositional Logic Setting
	Predicate Logic Setting

	Graph Theory
	Labelled Transition System

	Related Protocol Analysis Frameworks
	The Applied Calculus
	Syntax and Semantics
	Equivalences
	Secrecy

	Abadi/Blanchet Calculus
	Syntax and Semantics
	Secrecy
	Static Analysis
	Authenticity Extension

	CBS
	Syntax and Semantics
	Control Flow Analysis

	CMAN
	Syntax and Semantics
	Equivalence

	Summary

	Distributed Applied Calculus with Broadcast
	Syntax
	Contexts

	Connectivity Graphs
	Semantics
	Examples
	Normal Forms
	Frames and Static Equivalence
	Summary

	Enriching AB and H[], and Revelation Semantics
	Extending AB with Active Substitutions and Sessions
	Syntax and Semantics of AB'
	Syntactic Consistency and Canonicalisation
	Session Enrichment and Horn Clause Generation

	Revelation Semantics
	Summary

	Soundness of H[]
	H[] Overapproximates All Reachable Frames
	Soundness Theorem
	Corollaries

	Secrecy and Authenticity Analysis Framework
	Overview
	H[] and Broadcast
	H[] in DA
	Routing Example: ARAN

	Conclusion
	Contribution
	Future Work

	Bibliography

