
Security Made Easy

- Proving Security using Type Inference

Morten Dahl
Department of Computer Science

Aalborg University

June 6, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60682915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

In this paper we give a type inference algorithm for a type system for a pi calculus. The
effect type system with dependent types guarantees that well-typed processes respect an
authenticity property expressed as correspondences. Given a process and a type context we
generate constraints that are satisfiable if and only if the process can be made well-typed
under the context. Unification is used to solve type constraints and a non-deterministic
algorithm is used to solve effect constraints. Effects capture correspondences and effect
solving is essentially correspondence matching. The output of the algorithm can be used to
efficiently construct a proof of safety in the form of a derivation tree. Experiments with a
Caml implementation have shown that the algorithm performs well in praxis.

3

Preface

The following work constitutes the authors master thesis as part of the Masters Degree in
Computer Science at Aalborg University. The thesis is largely self contained but the reader
may want to be familiar with the pi calculus and type systems beforehand. The only real
prerequisites are familiarity and comfort with mathematical formulation and presentation.
Specifically, graduate students of computer science should have no trouble picking up this
work.

Over the years I have developed a strong dislike to the fact that friends and family quite
naturally have no clue about what I am working on. As a consequence, Chapter 1 accom-
panied by Appendix B hopefully provide a soft introduction to basic concepts.

Preparation for this work began while visiting the Laboratory for Foundations of Computer
Science at the University of Edinburgh in fall 2007. The experience exceeded my expecta-
tion by any measure and my gratitude goes to Ian Stark for making it possible and having
me as a visitor, for helping me make the most out of the stay, and for motivation and
supervision.

This work was done at Aalborg University in spring 2008 under supervision of Hans Hüttel.
I am grateful to Hans for his impressive dedication, motivation, and help in regards to the
thesis, and for suggesting and making possible my visit to Scotland.

Finally, friends and family have made the less exciting experiences in the past five years
much easier and enjoyable. My greatest gratitude goes to my parents for helping me in
every way possible and for their endless support and understanding; it has without a doubt
made a difference.

4

Contents

1 Introduction 7
1.1 Type Systems . 8
1.2 Security Protocols . 9
1.3 Verifying Security Protocols . 11
1.4 Automated Proof Generation . 12

2 Typed Calculus 13
2.1 A Pi Calculus with Correspondences . 13
2.2 Correspondence Certifying Type System . 18
2.3 Name-less Formulation of the Type System 24

3 Type Inference 29
3.1 Introducing Variables . 29
3.2 Constraint Generation . 34
3.3 Solving Type Constraints . 39
3.4 Solving Effect Constraints . 45
3.5 The Type Inference Algorithm . 52
3.6 Example . 53

4 Conclusion 57
4.1 Summary . 57
4.2 Related Work . 58
4.3 Future Work . 60

A Proofs 63
A.1 Message Constraints . 63
A.2 Process Constraints . 65
A.3 Solving . 68

B Basic Type System Concepts 73
B.1 Simple Type System: Arithmetic Expressions 73
B.2 Type Inference: The Simply Typed Lambda Calculus 75

5

6

Chapter 1

Introduction

In many areas, not limited to the world of computer science, we are interested in making
sure our creations behave as we intend them to i.e. that they are correct and satisfy certain
correctness properties. In computer science such a property could be that an algorithm
produces the right output or that a program never enters a state of error. For many soft-
ware programs, ensuring correctness is mostly done in the head of the programmer using
informal methods, perhaps aided by a simple type system. Obviously, this leads to false
proofs of correctness and has resulted in several formal methods being suggested over the
years with the hope that they clarify and leave less space for hidden errors, or in some
cases even give way to automated proof validation. Some of the formal methods are logics,
denotational semantics, (bisimulation) equivalence, and model checking.

This paper will concentrate on another formal method, namely statically enforced type sys-
tems. In contrast to dynamically enforced methods, static methods determine if a system
is well-behaved by examining the syntax without ever running it. In this paper we will use
a type system to show how to statically ensure that security protocols do not go wrong.
Our main result shows how type inference can be performed for this type system, effectively
giving an algorithm for automated generation of proof of authenticity.

The aim of this chapter is to get things off the ground by providing a context for the dis-
cussion in the following chapters. We keep a focus on background ideas, principles, and
intuition instead of technical details and formal descriptions. Concepts dealt with in the
rest of this work are presented in a simple manner (see also Appendix B).

Chapter 2 introduces the calculus used for expressing protocols and the type system used
to certify correspondences. Chapter 3 gives a type inference algorithm for the type system.
Chapter 4 summaries our results, discusses related work and gives ideas for future work.

For this chapter we first introduce the general concept of a type system and a security
protocol. In Section 1.3 and 1.4 we briefly discuss ways of verifying security protocols.

7

1.1 Type Systems

Type systems [10, 37] can be used as a way of restricting a set of expressions to a fragment
or subset that is in some specific sense well-behaved, or equivalently, as a way of classifying
data. We say that expressions allowed by the type system are well-typed, and type sys-
tems can be are used to guarantee that if an expression is well-typed then it has a certain
desired property, e.g. no error state is reached during execution. Type systems typically
also classify data by assigning the same type to similar expressions. A classical example is
found in programming languages where type systems are used to reject expressions adding
anything but numbers as well as to separate numbers from e.g. strings by giving numbers
one type and strings another. Examples of other properties expressible by type systems
are termination and containment within array bounds. Also, type systems can provide ex-
plicit documentation in the form of annotations, showing the classification of and relation
between expressions as in ”they are both integers” or ”they are both objects exposing an
operation with signature X”.

Besides containing types some type systems also include effects [31] in order to capture what
is perhaps not naturally expressed by a type. For instance, effects can be used to describe
the intensional information about what takes place during evaluation of the program by
e.g. collecting the set of storage cells written or read during execution [39], and collecting
the regions in which evaluation takes place [40]; we see that effects in these cases are used
to capture the side effects of the evaluation. Effects are the central idea in our type system
so we shall see plenty more of them later.

From a more concrete point of view, a type system consist of a set of types (and effects) and
a set of rules identifying just the set of well-typed expressions, and how types (and effects)
can be assigned to these expressions. In this paper we will focus on formal type systems
taking the form of a formal proof system. As we will see, automated type checking and
type inference are possible in some systems.

An often important and desirable property of type systems is soundness (or safety). Sound-
ness is defined upon evaluation rules and state two properties in regard to these: progress
and preservation. Progress ensures that a well-typed expression is not in a deadlocked or
error state (”finished” states are not deadlocked). Preservation (or subject reduction) en-
sures that a well-typed expression never evolves or take steps to a non-well-typed state.

Because of well-known undecidability results it is in general impossible for a computer to
determine anything interesting about programs in finite time and without ever lying∗. For
instance, no computer can in the general case determine if a program terminates on not. For
this reason no automated method can never be both sound and complete, and in particular
no machine verifiable type system can be both sound and complete. This implies that sound
type systems will always be incomplete and reject some well-behaved expressions (but also
ensuring an endless stream of research in making methods less incomplete). This is known
as the slack of a type system. Figure 1.1 show the relationship between well-behaved and

∗A requirement is that Turing complete programs can be expressed in the analysed language.

8

Well-behaved expressions
Well-typed expressions

All expressions

Figure 1.1: Relationship between well-behaved and well-typed expressions

well-typed expressions; the grey area is the slack of the type system, i.e. the wrongly
rejected expressions.

1.2 Security Protocols

A protocol is an algorithm for two or more parties to perform a task in collaboration
including a description of the communication between the parties. Whenever we set to
download a webpage from the Internet the HTTP protocol is at work dictating how our
computer and the server hosting the webpage should work together to perform the transfer.
In the context of this paper, a more relevant protocol would be one that dictates how Alice
can transfer an amount of currency, say £10, to Bob using a digital network. One way to
build such a protocol would be to have Alice simply send a message to her bank telling
them to ”transfer £10 from Alice’s account to Bob’s”. We write this as

A → T : Transfer £10 to B
T → B : Aquired £10 from A

with the meaning that Alice (A) sends a message ”Transfer £10 to B” to her bank T to
transfer the amount to Bob (B). The last message is a notification from the bank to Bob
to let him know about his newly gained credit. While this protocol can be used to settle
debts it has a serious flaw: if Bob is dishonest he will record Alice’s message on its way to
the bank, so that whenever he is in need of money he simply replays the recorded message
thereby gaining £10 each time.

This ability of Bob’s to record messages sent from Alice to the bank is a typical assumption
made by the security community known as the Dolev-Yao assumption [12]. Our threat
model allows an attacker to not only listen in on conversations taking place between other
parties but also to synthesise any message as will, limited only by the constraints of the
cryptographic methods used. In other words, the attacker is the network so the protocol
must alone provide the required security.

9

Returning to the sample protocol, we see that what the bank is lacking is a way to tell if
it is Bob replaying Alice’s old messages or if it really is Alice sending a transfer message, a
property known as authenticity. One way to fix the above protocol would be to introduce a
unique value N different for each message sent and whose only purpose is to ensure freshness
of messages. Using such a nonce (”number used once”) we get

T → A : N
A → T : {Transfer £10 to B,N}K

T → B : Aquired £10 from A

where {. . . }A means that Alice encrypts the message using a key K shared only by the bank
and Alice. Upon receiving a transfer-message the bank verifies it by decrypting it using K
and continues with the transfer (and the notification) only if verification succeeds and the
nonce N matched what the bank sent in the first step. Note that encryption alone is not
enough nor is the use of only a nonce: the nonce has to be attached to the message in a
way that associates it with Alice.

Other interesting properties besides authenticity are secrecy (preventing eavesdropping), in-
tegrity (preventing modification), and authorisation (controlling access). Protocols whose
main focus is on these properties are security protocols and typically employ some form
of cryptography such as encryption or commitment. The main focus of this work is on
ensuring authenticity.

The notation used above for specifying protocols are standard for informal specifications.
As our work focuses on formal verification we need a formal specification. A language for
this is the pi calculus [32] and its descendant the spi calculus [3, 4]. While the pi calculus can
be used for expressing protocols in general, the spi calculus is designed specifically for the
purpose of expressing security protocols by providing operations modelling cryptography
such as encryption and decryption. Many details of cryptography are abstracted away. For
instance, a message M is encrypted under key K by {M}K without giving any attention to
the actually encryption function. Both calculi come in many different versions and both aim
to be an executable specification fairly close to implementation. In Chapter 2 we present
the variant of the pi calculus used for our analysis.

Expressed in the spi calculus the protocol from above could look like

A (Alice) =
in net nonce;
new transfer ;
out net {transfer ,nonce}A

T (Bank) =
new nonce;
out net nonce;
in net ctext ;
decrypt ctext using K as msg ;
perform checks on msg . . .

where the system is A | T , i.e. A running in parallel with T .

10

1.3 Verifying Security Protocols

If the first step in building a security protocol is to design it to ensure e.g. authenticity,
then the next step is to make sure it really satisfies this property, i.e. that the protocol
does not contain a design flaw. An often used approach to ensure no such flaw exists is
a thorough argumentation but with no formal definition of the protocol nor of the desired
properties. In these cases both definitions and statements can be thought valid for an ex-
tended period of time and still turn out to be insufficient or wrong. One example is the
Needham-Schroeder public-key authentication protocol [33] which was thought safe for sev-
eral years before discovering that it contained a security flaw [30]. More serious methods
turn to mathematics and give somewhat formal definitions but informal proofs. Examples
of these include a method based on belief logic [9] and the notion of zero-knowledge [11].

Highly formal methods model the protocol in a formal language with a formal semantics,
and give formal definitions of security. One common method is to model the protocol in
a process calculus such as pi, spi, or applied pi [2, 15], and define, say, secrecy using may
testing or other forms of behavioural equivalence. More relevant to this work, authenticity
can be specified and verified using correspondences in the form of begin- and end-events as
suggested by Woo and Lam [41]. End-events capture the idea of asserting that we believe
an action from other part of the protocol has occurred. By proving that each end-event
has a matching begin-event we prove that the action was in fact caused by the protocol.
Consider the simple protocol

new msg ;
begin sent(msg);
out net msg

in net x ;
end sent(x)

with a sender (left) and a receiver (right) running in parallel. With the begin- and end-events
annotations we have expressed the authenticity property that when the receiver receives a
message it should have been sent by the sender. For the protocol to satisfy the authenticity
property it must ensure that for every run of the protocol the correspondence property is
respected, i.e. whenever an end-event is encountered there must have been a matching and
preceeding begin-event. In the example, if net is a public network then the property is not
satisfied since anyone could have sent the message and hence in some runs the end sent(x)
is not preceded by a begin-event. If, however, the network were shared only by the sender
and the receiver the property would be satisfied.

Correspondences can be injective or non-injective [21]. Authenticity properties expressed
using injective correspondences state that each begin-event can only be used to match one
end-event, whereas non-injective correspondences allow a begin-event to match and hence
satisfy one or more end-event.

No matter how formal the definitions of security are, informal proofs can still turn out to be
wrong. To combat this, formal methods allowing computer verification of proofs have been
suggested, some of which are mentioned in Section 4.2. As we shall see, type systems can
be used to provide a highly formal method that in some cases allow for automated proof

11

verification in the form of type checking. Gordon and Jeffrey [18] pioneered the verification
of correspondences using type systems and we return to this Section 4.2 on related work.

1.4 Automated Proof Generation

While some type systems allow for automated verification in the form of automated type
checking, producing the proof in form of a type assignment can be time consuming and
clutter the language with annotations. In programming languages the ML family is a prime
example of avoiding annotations: while the language has a statically enforced type system,
no type annotations are needed. Instead the compiler inferes a type assignment during
compilation.

A common way of doing type inference (i.e. proof generation) is via constraint generation
and solving. For constraint generation the type checking algorithm is run in a reversed or-
der recording type checks as constraints instead of doing actual checks. The goal is for the
generated constraints to have a solution if and only if a type assignment exists. A solving
algorithm is then invoked on the generated constraint with the goal of yielding a solution if
such exist. In the best case a principal solution, i.e. a most general solution satisfying the
type rules, is produced. As we shall see, unification in the form of a rewrite system can in
some cases be used for solving constraints.

As mentioned above, the main contribution of this paper is how to perform type inference for
a type system ensuring authenticity. In our method, constraints either express relationship
between types or between effects. Unification is used for solving type constraints and a non-
deterministic method is used for solving effect constraints, giving a sound and complete type
inference algorithm. Ultimately we provide a method rejecting all flawed protocol (and some
safe protocols as well due to incompleteness in the type system). Chapter 2 and 3 goes into
more detail.

12

Chapter 2

Typed Calculus

This chapter presents our calculus and type system of choice. Both are taken from [17] with
a few minor modifications. Though not formally proved we conjecture that the results, in
particular the safety results hold for this modified version as well.

The calculus in Section 2.1 is a variant of the pi calculus with non-injective (one-to-many)
correspondences. The type system in Section 2.2 includes name binding pair types and
ok types with effects and messages. Section 2.3 gives an equivalent but more manageable
formulation of the type system.

On a technical note, we follow standard terminology and say that a relation ∼ is an equiva-
lence if it is reflexive (x ∼ x), symmetric (if x ∼ y then y ∼ x), and transitive (if x ∼ y and
y ∼ z then x ∼ z). Furthermore, an equivalence ∼ is a congruence on a set if it is closed
under the contexts of the set.

2.1 A Pi Calculus with Correspondences

In this section we introduce the calculus for expressing protocols. We start by defining
messages, followed by effects used in correspondence annotations. The section ends by
defining processes and process safety.

2.1.1 Messages

The most primitive part of the calculus is that of a message. We assume two countable
disjoint sets of names and variables and let the set of messages be given by:

M ::= message
n, m name
x, y variable
fst M projection of first component
snd M projection of second component
(M1,M2) message pair
ok ok annotation

13

Besides the standard names n and variables x we have pairs (M1,M2) and operators fst M
and snd M for projecting the first and second component, respectively, of a pair. In addition
we also have a special ok message. As in previous systems, the only purpose of this construct
is as annotation for the type system, allowing the transfer of begin correspondence events
(by populating Ok(S) types as introduced in Section 2.2). As no types are specified on ok
messages it is not a type annotation in the traditional sense, and since the type system is
statically enforced ok messages have no influence on the evaluation of a process and can be
ignored after type checking.

Note, that only in this section do we make a distinction between names and variables (unless
otherwise stated). For our analysis message names and variables are treated the same so in
the rest of this paper we use names to mean both names and variables.

To match messages, i.e. determine if two messages are equivalent, we need an equivalence
relation that, besides respecting the standard equivalence rules, also captures the semantics
of the projection messages; for instance, we should have fst (M1,M2) ≡ M1.

Definition 1 (Message Equivalence: M1 ≡ M2). Define message equivalence ≡ to be
the least congruence on messages closed under projection rewrite rules

fst (M1,M2) > M1
mr-fst

snd (M1,M2) > M2
mr-snd

We say messages M1 and M2 are equivalent if M1 ≡ M2.

As we shall see messages equivalence is used both for matching channel names as well as
for matching correspondence events. Note that the rewrite rules are strongly normalising
so ≡ is decidable.

For the type system introduced in the next section we need a way to substitute message
variables inside types that contain messages. We introduce a message instantiation oper-
ation → that recursively applies a message substitution 〈M/x〉 to a message M ′ with the
indend of replacing all occurences of x in M ′ with M :

n〈M/x〉 → n

x′〈M/x〉 →

{
M if x = x′

x′ otherwise

ok〈M/x〉 → ok

(fst M ′)〈M/x〉 → fst (M ′〈M/x〉)
(snd M ′)〈M/x〉 → snd (M ′〈M/x〉)
(M1,M2)〈M/x〉 → (M1〈M/x〉,M2〈M/x〉)

Messages have no binding constructs so the set of free names and variables fn(M ′) in a

14

message M ′ is trivially defined as:

fn(n) = {n}
fn(x) = {x}

fn(ok) = ∅
fn(fst M) = fn(M)

fn(snd M) = fn(M)
fn((M1,M2)) = fn(M1) ∪ fn(M2)

2.1.2 Effects

Next we define the objects to be used in correspondence events. We assume a countable set
of labels distinct from the set of messages, and denoted members by l. We also assume a
decidable equivalence relation = on labels. Let an atomic effect be a pair (l,M) written as
l(M) and let an effect S be a set of atomic effects {l1(M1), . . . , ln(Mn)}. We shall sometimes
refer to effects as credit.

We say atomic effect l1(M1) and l2(M2) are equivalent if l1 = l2 and M1 ≡ M2 and denote
this l1(M1) ≡ l2(M2). This is the central relation in corresponding matching. We extend
equivalence to effects by the normal rules of set equality and write S1 ≡ S2.

Message instantiation is extended to atomic effects in the obvious ways and to effects point-
wise. Similar for fn(l(M)) and fn(S).

2.1.3 Processes

Using messages and effects we can define processes. Let the set of processes be given by:

P ::= process
in M x; P input of n on M
!in M x; P repeated input
out M1 M2 output of M2 on M1

new n; P restriction of n
P1 | P2 parallel composition
nil inactivity
if M1 = M2 then P1 else P2 conditional
exercise M ;P exercise an ok
begin l(M) begin-event
end l(M) end-event

Most of the constructs are well-known [32] perhaps with the exception of exercise M ;P and
the correspondence events begin l(M) and end l(M). Neither the exercise construct nor
the events have any influence during process evaluation. Events are used as annotations in
specifying the authenticity property and exercise is an annotation used by the type system
to verify the property. Note that replicated input !in M x; P is enough to encode general
replication.

15

Consider process
new n;

begin sent(n) |
out net (n, ok)

in net x;
exercise snd x;
end sent(fst x)

consisting of a sender (left) and a receiver (right) running in parallel. The sender generates
a message n and outputs this on the shared network net . The receiver simply inputs from
the shared network. The end-event at the receiver is matched by the begin-event at the
sender. Because of the ok message the type of net will dictate that it ”costs” sent(n) to
send on the network, which the sender can pay for by begin sent(n). The exercise snd x in
the receiver uses the credit paid for by the sender to match end-event end sent(fst x). We
shall return to this in Section 2.2.

We give a formal definition of the evaluation semantics of processes as a standard reduction
semantics. To do this we first introduce the notion of free names and variables in a process
and a equivalence relation on processes.

Let the free names and variables fn(P) of a process P be defined by

fn(in M x; P) = fn(M) ∪ (fn(P)− {x})
fn(!in M x; P) = fn(M) ∪ (fn(P)− {x})
fn(out M1 M2) = fn(M1) ∪ fn(M2)
fn(new n; P) = fn(P)− {n}

fn(P1 | P2) = fn(P1) ∪ fn(P2)
fn(nil) = ∅

fn(if M1 = M2 then P1 else P2) = fn(M1) ∪ fn(M2) ∪ fn(P1) ∪ fn(P2)
fn(exercise M ;P) = fn(M) ∪ fn(P)

fn(begin l(M)) = fn(M)
fn(end l(M)) = fn(M)

where we see that only input and restriction bind variables and names; we say that a bound
name in a process is a name or variable bound by input or restriction.

We want the renaming of bound names and variables to make no difference. For instance,
processes

new n1; end l(n1) and new n2; end l(n2)

should be equivalent as the bound names (n1 and n2, respectively) are local. For this reason
we make process equivalence respect alpha conversion:

Definition 2 (Structural Congruence: P1 ≡ P2). Define structural congruence ≡ to be
the least congruence on processes closed under alpha conversion and axioms in Table 2.1.

We can now give the process evaluation semantics in the form of a reduction semantics:

Definition 3 (Process Reduction: P1 → P2). Define process reduction → to be the least
relation on processes closed under axioms in Table 2.2.

16

P ≡ P | nil pe-par-nil

P1 | P2 ≡ P2 | P1 pe-par-comm

P1 | (P2 | P3) ≡ (P1 | P2) | P3 pe-par-assoc

n 6∈ fn(P1)
new n; (P1 | P2) ≡ P1 | (new n; P2) pe-res-par

new n; nil ≡ nil pe-res-nil

new n1; new n2; P ≡ new n2; new n1; P pe-res-order

Table 2.1: Structural congruence rules

P ≡ P ′ P ′ → P ′′ P ′′ ≡ P ′′′

P → P ′′′ pr-eq

exercise M ;P → P pr-ex

P1 → P ′
1

P1 | P2 → P ′
1 | P2 pr-par

P → P ′

new n; P → new n; P ′ pr-res

M1 ≡ M ′
1

out M1 M2 | in M ′
1 x; P → P{M2/x} pr-comm

M1 ≡ M ′
1

out M1 M2 | !in M ′
1 x; P → P{M2/x} | !in M ′

1 x; P pr-rcomm

M ≡ M ′

if M = M ′ then P1 else P2 → P1 pr-if-t

M 6≡ M ′

if M = M ′ then P1 else P2 → P2 pr-if-f

Table 2.2: Process reduction rules

Note that rule pr-ex simply ignore the exercise process exercise M ;P and skips to P . In
the next section we shall see that it plays a central part in the type system.

17

Let →∗ be the transitive closure of → and write P →∗
≡ P ′ if P →∗ P ′ or P ≡ P ′. We define

safety as

Definition 4 (Safety). A process P is safe if whenever P →∗
≡ new ñ; (end l(M) | P ′) we

have M ′ and P ′′ such that P ′ ≡ begin l(M ′) | P ′′ and M ≡ M ′.

where new ñ; P is short for zero or more restrictions in front of P and part of the definition
in order to allow events to contain restricted names.

2.2 Correspondence Certifying Type System

In this section we present the type system for statically verifying that a process is safe
with respect to the correspondence events occuring in it. We first define types and type
equivalence. Then we define typing contexts used during type checking to provide a type
for free names as well as to store effects. All judgments are relative to a typing context.
After presenting the typing rules we state the main property of the type system, namely
that well-typed processes are safe. In the next section we provide an alternative but equiva-
lent definition of the type system avoiding the need for alpha conversion in type equivalence.

Starting from this section we assume the uniqueness of name declarations, e.g. no occur-
rences of new n; new n; P or (new n; P1) | (new n; P2). This is of no loss of generality as
any process can be transformed to one with unique names using alpha conversion.

2.2.1 Types

Let the set of types be defined by:

T ::= type
A base type
Ch(T) channel for messages of type T
Pair(x : T1, T2) pair type
Ok(S) effect carrier type

Types A and Ch(T) are standard: A is an element from a set of base or atomic types, i.e.
a set of unspecified types with no operations of importance in the context of this work.
Obvious members of this set could be Un (i.e. ”untrusted” from [1]), Data, or Int. Ch(T)
denotes a channel type for sending messages of type T .

Type Ok(S) is a dependent type containing effects and in turn messages. It is inhabited
only by the special ok message and a popular phrasing of its purpose is ”to transfer credit
gained from begin-events (from one place to another)”. For instance, type Ok({l(M)}) can
be assigned to message ok only if the process containing ok has a l(M) at its disposal. In
other terms, it ”costs” l(M) to type the message. By exercising a typed ok message we
gain the credit stored in the type and paid for when typing the message. Note that this use
of effects differs from how they are typically employed in type systems, where they are not
contained in the types (as they are in the ok types of our system) but appear outside and

18

in addition to the types.

Type Pair(x : T1, T2) is a pair type. It binds a message variable x and is used for typing
message pairs (M1,M2) with the first projection M1 having type T1 and the second projec-
tion M2 having type T2 with x replaced by M1. As always with binding we want to be able
to rename bound variables without it making any difference. For instance, type

Pair(x : A,Ok({l(x)})) and type Pair(y : A,Ok({l(y)}))

should be equivalent. This is reflected in the definition of type equivalence below by the
fact that alpha conversion is respected∗.

We extend the message instantiation operation → to types:

A〈M/x〉 → A

Ch(T)〈M/x〉 → Ch(T 〈M/x〉)
Pair(y : T1, T2)〈M/x〉 → Pair(y : T1〈M/x〉, T2〈M/x〉) where x 6≡ y

Ok(S)〈M/x〉 → Ok(S〈M/x〉)

Note that since pair types bind variables we may need to alpha convert the bound variable
in the pair type before applying the substitution to the second component in order to avoid
capture. This is no restriction since the bound variable can always be renamed using alpha
conversion of types.

Let us look at an example. Recall that we chose to only consider processes with unique
name declarations. We did this as to not confuse messages with each other during the
static analysis. Furthermore, note that event matching relies on message equivalence and is
hence highly syntax oriented (a begin event l(M1) matches an end event l(M2) if and only if
M1 ≡ M2). This is also because we are doing a static analysis. Now, having messages insides
types imposes problems. One is that these messages may use local names which would be
unbound if the containing type is used outside the scope of the names. For instance, in the
protocol from earlier

new n;
begin sent(n) |
out net (n, ok)

in net x;
exercise snd x;
end sent(fst x)

the first projection of the message pair sent across the network is known syntactically as
n to the sender while it is known as fst x to the receiver. In typing net we cannot use n
nor x as both are local. And even if we could, we would have a problem matching end
event sent(fst x) with sent(n). To remedy this we need a mechanism for temporarily ab-
stracting out of types the static identity of messages inside effects so that they can later be
given an identity suitable for the scope in which they are used. This is done using pair types.

∗The additional β and η rules found in the definition of λ-term equivalence are not needed since we
cannot apply a type to a type.

19

Using pair type we can give name net type Ch(Pair(y : A,Ok({sent(y)}))). Then (n, ok)
and x can both be typed Pair(y : A,Ok({sent(y)})). However, in ”building up” and ”break-
ing down” the type of the message pair, the message in the first component of the pair
is respectively abstracted out of and instantiated into the type of the second component.
Concretely, we have that ok on the side of the sender can be typed as Ok({sent(y)})〈n/y〉 →
Ok({sent(n)}) and snd x on the side of the receiver as Ok({sent(y)})〈fst x/y〉 → Ok({sent(fst x)}).
This is done in the typing rules for pairs and second projections respectively.

Since types can contain messages which in turn have free names we define the free names
fn(T) of a type T by:

fn(A) = ∅
fn(Ch(T)) = fn(T)

fn(Pair(x : T1, T2)) = fn(T1) ∪ (fn(T2)− {x})
fn(Ok(S)) = fn(S)

where we see that pair types bind a variable in the second component.

Type equivalence is the relation used for type checking and hence the relation type inference
aim to agree with. We define:

Definition 5 (Type Equivalence: T1 ≡ T2). Let type equivalence be the least congruence
on types closed under alpha conversion and axiom

S1 ≡ S2

Ok(S1) ≡ Ok(S2)
te-ok

Intuitively, type equivalence relates identitical types up to message equivalence. All rela-
tions, in particular matching of events, respect message equivalence and hence equivalent
types can be interchanged in all important aspects.

2.2.2 Typing Contexts

All judgments are relative to a typing context providing types for free names as well as
keeping account of effects. Let a typing context Γ be defined by:

Γ ::= typing context
∅ empty context
Γ, n : T name typing
Γ, S effect

and let the domain of a typing context dom(Γ) be defined by:

dom(∅) = ∅
dom(Γ, n : T) = dom(Γ) ∪ {n}

dom(Γ, S) = dom(Γ)

20

We use a function effects(Γ) to collect effects stored in a typing context Γ:

effects(∅) = ∅
effects(Γ, n : T) = effects(Γ)

effects(Γ, S) = effects(Γ) ∪ S

Finally, we say that a context Γ is well-formed if Γ ` � can be inferred from the rules in
Table 2.3. Rule we-ty requires that well-formed contexts only have one binding for each
name (n 6∈ dom(Γ)). This is no restriction as we have assumed uniqueness of bound names.
Well-formed contexts furthermore ensure that any free names occuring in types and effects
in the context are accounted for in earlier bindings.

∅ ` � wf-emp

Γ ` � fn(S) ⊆ dom(Γ)
Γ, S ` � wf-ef

Γ ` � n 6∈ dom(Γ) fn(T) ⊆ dom(Γ)
Γ, n : T ` � wf-ty

Table 2.3: Rules for well-formed typing contexts

2.2.3 Typing Rules for Messages

The first part of the typing rules is concerned with assigning types to messages. We type
messages according to rules in Table 2.4 and say that a message M is well-typed relative to
Γ if a derivation tree with root Γ ` M : T can be inferred for some type T using the rules.

Γ ` � n : T ∈ Γ
Γ ` n : T mt-name

Γ ` � S ⊆ effects(Γ)
Γ ` ok : Ok(S) mt-ok

Γ ` M : Pair(x : T1, T2)
Γ ` fst M : T1 mt-fst

Γ ` M : Pair(x : T1, T2)
Γ ` snd M : T2〈fst M/x〉 mt-snd

Γ ` M1 : T1 Γ ` M2 : T2〈M1/x〉
Γ ` (M1,M2) : Pair(x : T1, T2) mt-pair

Table 2.4: Typing rules for messages

21

Rule mt-pair allows a message M1 to be abstracted out of type T2 in the sense that message
(M1,M2) is typable with type Pair(x : T1, T2) if M2 is typable with T2 instantiated with M1.
Dually, in rule mt-snd message snd M is typable with type T2 instantiated with message
fst M (for x). Rule mt-ok allows an ok to be typed with an Ok(S) only if all of S can be
found in the context; intuitively, if the context can pay for S.

Observe that we used application to describe both an application (mt-snd) and abstrac-
tion (mt-pair) relation between types. Alternatively we could have used an abstraction
operation (x)M and expressed the type equivalence in rule mt-pair as (M1,M2) : Pair(x :
T1, T2(x)M) for M1 : T1 and M2 : T2. Contrary to application, the abstraction opera-
tion is non-deterministic in the general case since it may choose to abstract out only some
occurrences of the message. For instance, to type (n, (n, ok)) we would have

Pair
(
x : N,Pair

(
y : N,O(y)n

)
(x)n

)
where O is Ok({l((n, n))}). Both abstraction operations abstract away the same message
n so we would have to non-deterministically guess what the resulting atomic effect in the
type is: l((x, y)), l((y, x)), l((y, y)), etc. are all possibilities. To remedy this we could
assume the principle of maximal abstraction where the abstraction operation abstracts as
much as possible by replacing all occurences of the message with the variable. Abstraction
becomes deterministic and we have that the only option for

(
O(y)n

)
(x)n is Ok({l((y, y))}).

For describing the type system and for type checking we stick to only using application.
For type inference we need to also perform abstraction, and we provide a general algorithm
supporting both non-deterministic and deterministic abstraction. We return to this in the
next chapter.

2.2.4 Typing Rules for Processes

For the typing of processes we replace construct new n; P with an annotated version
new n : T ; P . Input processes get the type of the input from the type of the channel so no
annotated version is needed here.

Before giving the process typing rules we need a function to collect credit available for a
process. Let the accessible credit begins(P) for a process P be defined by:

begins(begin l(M)) = {l(M)}
begins(end l(M)) = ∅

begins(new n : T ; P) = {l(M) ∈ begins(P) | n 6∈ fn(M)}
begins(P1 | P2) = begins(P1) ∪ begins(P2)

begins(P) = ∅ for any other P

Let a type T be generative if and only if it is a channel type, i.e. T = Ch(T ′) for some type
T ′. We can now present the typing rules for processes in Table 2.5. Rule pt-par is seen to
collect credit in parallel processes. Rule pt-ex makes the credit stored in the type of M
available to P , and rule pt-end requires that l(M) is among the available credit.

22

Γ ` M : Ch(T) Γ, n : T ` P

Γ ` in M n; P pt-in

Γ ` M : Ch(T) Γ, n : T ` P

Γ `!in M n; P pt-rein

Γ ` M1 : Ch(T) Γ ` M2 : T

Γ ` out M1 M2 pt-out

Γ, n : T ` P T generative
Γ ` new n : T ; P pt-new

Γ, begins(P2) ` P1 Γ, begins(P1) ` P2

Γ ` P1 | P2 pt-par

Γ ` M : Ok(S) Γ, S ` P

Γ ` exercise M ;P pt-ex

Γ ` M1 : T1 Γ ` M2 : T2 Γ ` P3 Γ ` P4

Γ ` if M1 = M2 then P3 else P4 pt-if

Γ ` �
Γ ` nil pt-nil

Γ ` M : T

Γ ` begin l(M) pt-begin

Γ ` M : T l(M) ∈ effects(Γ)
Γ ` end l(M) pt-end

Table 2.5: Typing rules for processes

With these rules we can now state the main result of the type system, that well-typed
processes are safe. Let a context Γ be generative if all types T such that x : T ∈ Γ are
generative.

Theorem 6. Assume typing context Γ is generative and effect(Γ) = ∅. If Γ ` P then P is
safe.

The intuition of the proof is that the typability of any end-event ensures that it is matched
by a parallel begin event. Also, having effects in types allows for the transfer of credit in
the sense that channel types can now state a price for what it costs to send on the channel.
Typability ensures that a process can afford to send on a channel. We refer to [17] for a
detailed proof of the theorem.

23

2.3 Name-less Formulation of the Type System

In order to avoid having to deal with alpha conversion in type equivalence we now give an
alternative but equivalent definition of the type system based on the well-known de Bruijn
formulation of the λ-calculus [37]. The main difference is that pair types now bind holes
in the form of natural numbers instead of message variables. This has an impact on effects
and messages since these occur inside pair types. Also, the typing rules for messages need
to reflect the modification as well.

Despite great similarity with previous definitions we give the new definitions with holes in
full for completeness and for showing the differences. Important changes are highlighted.

2.3.1 Messages and Effects with Holes

Holes can only occur in messages within dependent types so we need to maintain two sets
of messages: one without holes for use in specifying the protocol (as defined in the previous
section), and one for use in describing dependent types. Messages with holes are a proper
superset of messages without so it is no loss of generality to assume messages with holes
are always used in types.

We let the set of message with holes be identical to the set of message from the previous
section but extended with holes drawn from the set of natural numbers. We denote a mes-
sage from this new set of messages by Ṁ and denote a hole by ω. Equality of messages
with holes is similar to that for messages without, the only addition being equality of holes
which is the standard equality of natural numbers.

The message instantiation operation → now recursively applies a message substitution
〈M/ω〉 consisting of a message M and a hole ω to a message Ṁ :

n〈M/ω〉 → n

x〈M/ω〉 → x

ω′〈M/ω〉 →

{
M if ω = ω′

ω′ otherwise

ok〈M/ω〉 → ok

(fst Ṁ)〈M/ω〉 → fst (Ṁ〈M/ω〉)
(snd Ṁ)〈M/ω〉 → snd (Ṁ〈M/ω〉)

(Ṁ1, Ṁ2)〈M/ω〉 → (Ṁ1〈M/ω〉, Ṁ2〈M/ω〉)

Note that messages M inside message substitutions cannot themself contain holes as mes-
sages with holes only occur in types and cannot be used as messages in the calculus.†

Atomic effects with holes are pairs l(Ṁ) (i.e. the same as atomic effects but based on
messages with holes instead) and an effect with holes is a set of atomic effects with holes.

†Combining that substituted messages have no holes and that messages have no binding constructs we
see that de Bruijn substitution collapses to the very simple substitution just defined.

24

We denote an effect with holes as Ṡ. Message application and equivalence are extended to
atomic effects and effects with holes in the obvious ways.

Finally, define a function fi(Ṁ) to be the largest index occurring in Ṁ , 0 if it is index free.
Extend this to atomic effects in the obvious way and to effects by taking the largest index
occuring in the set of atomic effects.

2.3.2 Types with Holes

Let the set of types be defined by:

T ::= type
A base type
Ch(T) channel for messages of type T
Pair(T1, T2) pair type
Ok(Ṡ) effect carrier type

The important difference in this formulation is evident in the definition of pair types
Pair(T1, T2) where a message variable is no longer bound. Instead, pair types can be said to
”bind” holes or indices in the form of numbers. The innermost pair type binds 1, the second
inner most 2, and so on. For instance, Pair(x : A,Pair(y : A,Ok({l((x, y))}))) is represented
as Pair(A,Pair(A,Ok({l((2, 1))})))). To keep with tradition we call this the name-less (or
index-based) presentation.

The main advantage of the name-less representation is that alpha conversion becomes un-
necessary. Recall types Pair(x : A,Ok({l(x)})) and Pair(y : A,Ok({l(y)})) from earlier. We
have that both are now represented as Pair(A,Ok({l(1)}))) and hence clearly equivalent. It
is easy to convert back and forth between the two representations and we have:

Proposition 7. Types T1 and T2 and alpha equivalent if and only if their name-less pre-
sentation is the same.

The message instantiation operation → for types becomes:

A〈M/ω〉 → A

Ch(T)〈M/ω〉 → Ch(T 〈M/ω〉)
Pair(T1, T2)〈M/ω〉 → Pair(T1〈M/ω〉, T2〈M/ω + 1〉)

Ok(Ṡ)〈M/ω〉 → Ok(Ṡ〈M/ω〉)

Note that since pair types bind a hole we have to increase the index of the application by
one when applying it to the second type of a pair. As the substituted message M cannot
contain holes we need not shift any holes in it (as done in the standard formulation of de
Bruijn indices).

The only difference in the definition of type equivalence is that alpha conversion is no longer
necessary:

25

Definition 8 (Type Equivalence: T1 ≡ T2). Let type equivalence be the least congruence
on types closed under axiom

Ṡ1 ≡ Ṡ2

Ok(Ṡ1) ≡ Ok(Ṡ2)
te-ok

2.3.3 Typing Rules

The introduction of holes means that the set of free names fn(T) of a type T is now defined
as:

fn(A) = ∅
fn(Ch(T)) = fn(T)

fn(Pair(T1, T2)) = fn(T1) ∪ fn(T2)
fn(Ok(S)) = fn(S)

where we see that pair types no longer bind a variable in the second component. Having
removed this we need to introduce another function in order to express well-formed typing
contexts. Intuitively, function fi(T) expresses the number of encapsulating pair types a type
T must be inside in order to have no free holes. We have:

fi(A) = 0
fi(Ch(T)) = fi(T)

fi(Pair(T1, T2)) = max
(
fi(T1),fi(T2)− 1

)
fi(Ok(S)) = fi(S)

where we see that the number is decreased by one in the second projecting for pair types.

The definition of well-formed typing contexts Γ ` � is now given by the rules in Table 2.6
where the fi(·) = 0 intuitively means that all holes are accounted for.

∅ ` � wf-emp

Γ ` � fn(S) ⊆ dom(Γ) fi(S) = 0
Γ, S ` � wf-ef

Γ ` � n 6∈ dom(Γ) fn(T) ⊆ dom(Γ) fi(T) = 0
Γ, n : T ` � wf-ty

Table 2.6: Rules for well-formed typing contexts

Only the typing rules for messages are changed and only in rules mt-snd and mt-pair.
Table 2.7 lists all rules. We see that rules t-snd and t-pair now substitute a hole 1 instead
of a message variable.

26

Γ ` � n : T ∈ Γ
Γ ` n : T mt-name

Γ ` � S ⊆ effects(Γ)
Γ ` ok : Ok(S) mt-ok

Γ ` M : Pair(T1, T2)
Γ ` fst M : T1 mt-fst

Γ ` M : Pair(T1, T2)
Γ ` snd M : T2〈fst M/1〉 mt-snd

Γ ` M1 : T1 Γ ` M2 : T2〈M1/1〉
Γ ` (M1,M2) : Pair(T1, T2) mt-pair

Table 2.7: Typing rules for messages

2.3.4 Important Properties

The most important property is that the new formulation of the type system matches the
old. Since process typing rules are the same it suffices to have that any typing context is
well-formed in the old formulation exactly when it is well-formed in the new, and that any
message is well-typed in the old formulation exactly when it is in the new:

Lemma 9. For any typing context Γ we have Γ `old � if and only if Γ `new �. For any
message M we have M `old : Told if and only if M `new : Tnew .

Proof. In the old formulation, all variables bound by pair types are instantiated when
”breaking down” a pair type and hence the typing context never holds variables coming
from a pair type. This is only made explicit in the new formulation where a distinction is
made between variables bound by processes and variables bound by pair types. As for the
message typing rules, we have that the old and new derivation trees are isomorphic with
the only difference being pair types. Since it is easy to switch back and forth between a
pair type without holes and one with, any derivation tree in one formulation can easily be
turned into a derivation tree in the other.

An important part of being able to do type checking and type inference is being able to do
type equivalence. We have

Lemma 10. Type equivalence is decidable.

Proof. All relations used by the type equivalence relation are easily seen to be decidable.

Theorem 11. Type checking is decidable.

Proof. Given a type derivation tree, a type checking algorithm need only do instantiation
and type equivalence check. Since we assumed an decidable equality on labels we have that
all relations are decidable.

27

Furthermore, if label equivalence is decidable in polynomial time we have

Remark 12. Type checking can be performed in polynomial time (in the size of the type
derivation tree).

28

Chapter 3

Type Inference

In this chapter we answer the question posed in the previous chapter: is process P typable?
If this is the case then Theorem 6 yields that P is safe. Doing one better, we not only give
an algorithm that can answer the question with yes or no, but an algorithm that gives a
machine checkable proof in the form of a type derivation tree for P if the answer is yes.

For type inference (or type reconstruction) we turn to the well-known praxis of generating
and solving constraints. Constraint generation is done by more or less ”running the typing
rules backwards” and constraint solving is done via unification for type contraints and via
propagation for effect constraints.

In Section 3.1 we introduce type variables as placeholders for yet-unknown types and type
schemes, and effect variables as placeholders for yet-unknown effects. To capture the rela-
tionship between types in the presence of message instantiation we need a new formulation
of these with explicit substitutions. In Section 3.2 we discuss constraint generation, and
constraint solving in Section 3.3 and 3.4. Section 3.5 gives the combined type inference
algorithm and Section 3.6 shows an example inference.

Note that this chapter is based on the formulation of the type system using name-less pair
types.

3.1 Introducing Variables

The naive mixture of (meta) type and effect variables with message instantiation does not
work since it is not well-defined to instantiate a variable with a message substitution: in-
stantiation depends on the kind of the type or effect and whether or not it has a matching
hole.

To remedy this we give a slightly different formulation of types using explicit substitutions
inspired by [13]. For variable-free types and effects this new formulation coincides with the
one from Chapter 2. Furthermore, explicit substitutions allow us to express a minimal type
scheme.

29

Effect (meta) variables cannot be used in process annotations but only in contexts or types.
Also, note that there are no (meta) message variables so we adapt the definition of messages
Ṁ from Chapter 2 without modification.

3.1.1 Effects with Variables

Define effects with holes Ṡ by

Ṡ ::= effect with holes
{l1(Ṁ1), . . . , ln(Ṁn)} set of atomic effects with holes
E effect variable
Ṡ〈M/ω〉 explicit substitution

where E is from a distinct set EVars of (meta) effect variables. By the underlying effect of
an effect under explicit substitution Ṡ〈M/ω〉 we mean the maximal constituent of Ṡ that is
not an effect under explicit substitution.

Note that we can form effects Ṡ〈M1/ω1〉〈M2/ω2〉 . . . for any finite number of substitutions.
As a notational convenience we shall sometimes denote a list of one or more substitutions
as µ. For instance, Ṡ〈M1/ω1〉〈M2/ω2〉 is denoted Ṡ µ with µ = 〈M1/ω1〉〈M2/ω2〉.

A key difference in this new formulation of effects with holes is in the definition of how
an effect is instantiated with a message substitution. In the old formulation we defined an
operation taking an effect Ṡ and a substitution 〈M/ω〉 as input and yielding a new effect Ṡ′

with the substitution applied as output. In the new formulation we simply form the explicit
substitution effect Ṡ〈M/ω〉 and then have a instantiation relation →:

Definition 13 (Effect Instantiation: Ṡ → Ṡ′). Let effect instantiation → be the least
relation on effects closed under transitivity and rule

Ṁi〈M/ω〉 → Ṁ ′
i for all i

{l1(Ṁ1), . . . , ln(Ṁn)}〈M/ω〉 → {l1(Ṁ ′
1), . . . , ln(Ṁ ′

n)}
ei-ae

We say Ṡ instantiates to Ṡ′ if Ṡ → Ṡ′.

By this definition we see that the order of explicit substitutions in a list µ is important.
Indeed, for M1 6≡ M2 we see that

{l(ω)}〈M1/ω〉〈M2/ω〉

is not the same effect as
{l(ω)}〈M2/ω〉〈M1/ω〉

since the first reduces to {l(M1)} whereas the second reduces to {l(M2)}. By the determin-
istic nature of application this also shows that any substitution for a hole ω behind another
substitution for ω has no impact and can be removed. In the above example 〈M2/ω〉 has
no impact in the first case and 〈M1/ω〉 no impact in the second.

30

Furthermore, note that no effect variable under substitution can be instantiated (as the
relation is not closed under reflexivity). Intuitively Ṡ〈M/ω〉 can be though of as a delayed
substitution waiting to be applied: if Ṡ is a variable (with or without other substitutions)
then nothing can be instantiated; on the other hand, if Ṡ is something else then the substi-
tutions can be applied by the instantiation rules. We see that Ṡ〈M/ω〉 captures the effect
Ṡ′ obtained by applying 〈M/ω〉 to Ṡ in accordance with the old definition.

Definition 14 (Effect Equivalence: Ṡ1 ≡ Ṡ2). Let effect equivalence ≡ be the least
equivalence on effects closed under effect instantiation.

By this definition we have e.g. {l(1)}〈M/1〉 ≡ {l(M)} and {l(1)}〈M/1〉 ≡ {l(2)}〈M/2〉
even though {l(1)} 6≡ {l(2)}.

Denote by FEV (Ṡ) the set of effect variables in effect Ṡ:

FEV (E) = {E}
FEV ({l1(Ṁ1), . . . , ln(Ṁn)}) = ∅

FEV (Ṡ〈M/ω〉) = FEV (Ṡ)

A ground effect is an effect Ṡ with no effect variables, i.e. FEV (Ṡ) = ∅.

Let the opening of an effect Ṡ be a similar effect but with fresh variables and no substitutions:

open(E) = fresh variable E′

open(Ṡ〈M/ω〉) = open(Ṡ)
open({l1(Ṁ1), . . . , ln(Ṁn)}) = ({l1(Ṁ1), . . . , ln(Ṁn)}

In the later context where we need to open an effect, the effect is instantiated as much as
possible before opening. This means that substitutions are only thrown away when we are
opening a variable under explicit substitutions.

3.1.2 Types with Variables

Types are extended with type variables and explicit substitutions:

T ::= type
X type variable
A base type
Ch(T) channel for messages of type T
Pair(T1, T2) pair type
Ok(Ṡ) effect carrier type
T 〈M/ω〉 explicit substitution

where X is from a distinct set TVars of (meta) type variables. By the underlying type of
a type under explicit substitution T 〈M/ω〉 we mean the maximal constituent of T that is
not an type under explicit substitution. As for effects we shall sometimes denote a list of

31

one or more substitutions as µ.

Denote by FV (T) the set of type and effect variables in type T :

FV (X) = {X}
FV (A) = ∅

FV (Ch(T)) = FV (T)
FV (Pair(T1, T2)) = FV (T1) ∪ FV (T2)

FV (Ok(Ṡ)) = FEV (Ṡ)
FV (T 〈M/ω〉) = FV (T)

and by FTV (T) the set of type variables in type T , i.e. FTV (T) = FV (T) ∩ TVars. A
ground type is a type T with no type nor effect variables, i.e. FV (T) = ∅.

As we did with effects we defined a type instantiation relation:

Definition 15 (Type Instantiation: T1 → T2). Let type instantiation → be the least
relation on types closed under transitivity and rules of congruence for type constructors,
along with axioms in Table 3.1. We say T instantiates to T ′ if T → T ′.

A〈M/ω〉 → A ti-base

Ch(T)〈M/ω〉 → Ch(T 〈M/ω〉) ti-base

Ok(Ṡ)〈M/ω〉 → Ok(Ṡ〈M/ω〉) ti-ok

Pair(T1, T2)〈M/ω〉 → Pair(T1〈M/ω〉, T2〈M/ω + 1〉) ti-pair

Table 3.1: Type instantiation rules

As in the old formulation of type instantiation, rule ti-pair increases the index of the
hole by one in the second component. Otherwise the intuition is the same as for effect
instantiation.

Lemma 16. The instantiation relation → is strongly normalising.

To control explicit substitutions we define a normal form for types where explicit substitu-
tions are either applied if possible thereby disappering, or pushed as far down into types as
possible (before hitting a type or effect variable). Formally we have

Definition 17 (Type Normal Form). The normal form of a type T is the type T ′

obtained by instantiating T so that no further instantiation is possible, i.e. T → T ′ and
T ′ 6→. Denote by nf (T) the normal form of T . We shall sometimes write T̂ for a type T on
normal form.

32

As an example, the normal form of

T1 = Ch(Pair(Ch(X), Y)〈M/ω〉)

is
T ′

1 = Ch(Pair(Ch(X〈M/ω〉), Y 〈M/ω + 1〉))

since T1 → T ′
1 and no further instantiation is possible.

We see that the set of normalised types coincides with the set of types generated by rules

T̂ ::=
A

Ch(T̂)
Pair(T̂1, T̂2)
Ok(Ṡ)
X
X µ

where the underlying type of explicit substitutions is always a type variable. With this
definition of normalised types it is easy to see the relationship with the old formulation of
types

Remark 18. The set of normalised ground types coincides with the old definition of the
set of types (i.e. without variables).

Definition 19 (Type Equivalence: T1 ≡ T2). Let type equivalence ≡ be the least con-
gruence on types closed under type instantiation and axiom

Ṡ1 ≡ Ṡ2

Ok(Ṡ1) ≡ Ok(Ṡ2)
te-ok

Note that we can have

T1 = Ch(Ok({(l, (1, 2))})) and T2 = Ch(Ok({(l, (2, 1))}))

such that T1 6≡ T2 but T1µ1 ≡ T2µ2 for µ1 = 〈M1/1〉〈M2/2〉 and µ2 = 〈M1/2〉〈M2/1〉.

Not surprisingly we have that type equivalence is preserved by normal forms:

Lemma 20. T1 ≡ T2 if and only if nf (T1) ≡ nf (T2).

Proof. By Definition 17 and since T → T ′ implies T ≡ T ′. Desired result follows by
transitivity of ≡.

In order to compare types that may have different effects but same type constructor struc-
ture, we define a relation that ignores all effects and in turn messages occurring in types:

33

Definition 21 (Structural Constructor Equivalence: T1 ' T2). Let structural con-
structor equivalence ' be the least congruence on types closed under axioms

X1 ' X2
tc-var

Ok(Ṡ1) ' Ok(Ṡ2)
tc-ok

T1〈M/ω〉 ' T1
tc-subst

We say that T1 and T2 have equivalent constructor structure if T1 ' T2.

Since structural constructor equivalence clearly ignores any effects and messages, we see
that instantiation cannot change the constructor structure of a type. Formally we have

Lemma 22. If T 〈M/ω〉 → T ′ then T ' T ′

Proof. Induction in the derivation of →.

The main motivation for structural constructor equivalence is to justify the opening oper-
ation of a type. Define function open(T) by:

open(X) = fresh variable X ′

open(A) = A

open(Ch(T1)) = Ch(open(T1))
open(Pair(T1, T2)) = Pair(open(T1), open(T2))

open(Ok(Ṡ)) = Ok(open(Ṡ))
open(T 〈M/ω〉) = open(T)

which follows ' in the sense that a type and its opening have equivalent constructor struc-
ture (T ' open(T)), the difference being that the opening has a fresh set of variables and
no explicit substitutions. Intuitively we have that the opening of a type is the minimally
constrained type (relative to a set of constraints) with the same structure. As is also the
case for effects, when we in a later context use opening of types, these types are always in-
stantiated as much as possible beforehand. For this reason substitutions are only discarded
if the underlying type is a variable.

The relationship between type equivalence and structural constructor equivalence is evident.
We have that two types cannot be equivalent and have different constructor structure so
when testing if T1 ≡ T2 we can stop if T1 6' T2.

Lemma 23. If T1 ≡ T2 then T1 ' T2

Proof. Induction in the derivation of T1 ≡ T2.

3.2 Constraint Generation

The purpose of this section is to give an algorithm that on input Γ and P generates a set
of constraints which is satisfiable if and only if Γ ` P . The algorithm takes the form of a
set of rules matching closely the typing rules of the type system. In the next section on
constraint solving we shall see how to determine if a set of constraints are satisfiable.

34

Definition 24 (Type and Effect Substitution). A (partial) substitution σ is a finite
map from type and effect variables to types and effects, i.e. σ : TVars ∪ EVars → T ∪ Ṡ.
Let dom(σ) be the set of type and effect variables assigned to by σ and let ran(σ) be the
set of types and effects assigned by σ. Let σ\V be the substitution σ′ undefined for all
variables in V but otherwise matching σ, and let σ|V be σ restricted to V . A substitution
σ is a ground substitution if ran(σ) only contains ground types and ground effects. The
composition σ1◦σ2 of substitutions σ1 and σ2 forms a new substitution as in normal function
composition.

Definition 25 (Application of Type and Effect Substitution). Application of a type
and effect substitution is done simultaneously and according to rules:

σX =

{
T if X 7→ T ∈ σ

X otherwise
σA = A

σCh(T) = Ch(σT)
σPair(T1, T2) = Pair(σT1, σT2)

σOk(E) = Ok(σE)
σ(T 〈M/ω〉) = (σT)〈M/ω〉

σE =

{
Ṡ if E 7→ Ṡ ∈ σ

E otherwise

σ{l1(M1), · · · , ln(Mn)} = {l1(M1), . . . , ln(Mn)}
σ(Ṡ〈M/ω〉) = (σṠ)〈M/ω〉

σ(new n : T ; P) = new n : σT ; σP

σ(in M n; P) = in M n; σP

σ(!in M n; P) = !in M n; σP

σ(exercise M ;P) = exercise M ;σP

σ(if M1 = M2 then P3 else P4) = if M1 = M2 then σP3 else σP4

σ(P1 | P2) = σP1 | σP2

σP = P for any other P

Application is extended to a typing context Γ by point-wise application.

For ensuring well-formedness of typing contexts we introduce boundaries. Intuitively, a set
of boundaries is respected if and only if the typing context from which they are derived is
well-formed.

Definition 26 (Boundaries). A boundary is of the following kind:

� name boundary : T � N or Ṡ � N , where N is a set of message names
� index boundary : T ≤ ω or Ṡ ≤ ω

We use B to denote a set of boundaries.

35

We then define when a substitution stays within a set of boundaries. Note that this is only
defined for ground substitutions since fn and fi is not defined for type and effect variables:

Definition 27 (Staying within Boundaries). A ground substitution σ stays within a
boundary:

� name boundary: σ stays within T � N if fn(σT) ⊆ N , similar for Ṡ � N
� index boundary: σ stays within T ≤ ω if fi(σT) ≤ ω, similar for Ṡ ≤ ω

Substitution σ stays within a boundary set B if it stays within all boundaries in B.

Using boundaries we can characterise a well-formed typing context Γ:

Definition 28 (Well-formed Boundaries). Let the well-formed boundaries for a typing
context Γ be defined by rules in Table 3.2.

∅ ` � ∅ wb-emp

Γ ` � B1 B = {T � dom(Γ), T ≤ 0} ∪B1

Γ, n : T ` � B wb-ty

Γ ` � B1 B = {Ṡ � dom(Γ), Ṡ ≤ 0} ∪B1

Γ, Ṡ ` � B wb-ef

Table 3.2: Boundary generation rules

Not surprisingly we have that these rules characterise the rules of well-formed typing con-
texts:

Lemma 29. Suppose Γ ` � B. Ground substitution σ stays within boundary set B if
and only if σΓ ` �.

Given a boundary set, say, {Pair(T1, T2) � N}, we can equate this with bound set {T1 �
N , T2 � N} due to the definition of fn and fi . Also, {Pair(T1, T2) ≤ ω} is equivalent to
bound set {T1 ≤ ω, T2 ≤ ω + 1}. Formally we have

Definition 30 (Boundary Reduction). Let boundary reduction → be the least relation on
boundary sets closed under transitivity and type and effect instantiation, along with axioms
in Table 3.3. We say B reduces to B′ if B → B′.

As a simple consequence of boundary reduction we have

Lemma 31. Suppose B → B′. Ground substitution σ stays within B if and only if it stays
within B′.

With this in mind we notice that it is safe to assume that no type constructors occurs in a
boundary set, i.e. any boundary set contains only type variables X or type variables under
explicit substitutions Xµ along with effects Ṡ.

Having captured well-formed typing contexts we next focus on constraints for characterising
the typing rules for messages and processes. We start with a definition of constraints on
types and effects:

36

{Ch(T) � N} ∪B → {T � N} ∪B br-ch-n

{Ch(T) ≤ ω} ∪B → {T ≤ ω} ∪B br-ch-i

{Pair(T1, T2) � N} ∪B → {T1 � N , T2 � N} ∪B br-p-n

{Pair(T1, T2) ≤ ω} ∪B → {T1 ≤ ω, T1 ≤ ω + 1} ∪B br-p-i

{Ok(Ṡ) � N} ∪B → {Ṡ � N} ∪B br-ok-n

{Ok(Ṡ) ≤ ω} ∪B → {Ṡ ≤ ω} ∪B br-ok-i

Table 3.3: Bound reduction rules

Definition 32 (Constraints). A constraint is of the following kind:

� type equality : T1
.= T2

� type requirement : T generative
� effect equality : Ṡ1

.= Ṡ2

� effect requirement : l(M) ∈ Ṡ1, . . . , Ṡn

� effect bound : Ṡ v Ṡ1, . . . , Ṡn

A constraint set C is a set of constraints.

In the current type system a type is generative if and only if it is a channel type so we can
express a type requirement on, say type T , by a type equality constraint T

.= Ch(X) for a
fresh variable X.

Definition 33 (Constraint Satisfaction). A substitution σ satisfies a constraint as fol-
lows:

� type equality: T1
.= T2 is satisfied if σT1 ≡ σT2

� type requirement: T generative is satisfied if σT is generative
� effect equality: Ṡ1

.= Ṡ2 is satisfied if σṠ1 ≡ σṠ2

� effect requirement: l(M) ∈ Ṡ1, . . . , Ṡn is satisfied if l(M) ∈ σṠ1 ∪ · · · ∪ σṠn

� effect bound: Ṡ v Ṡ1, . . . , Ṡn is satisfied if σṠ ⊆ σṠ1 ∪ · · · ∪ σṠn

Substitution σ satisfies constraint set C if σ satisfies all constraints in C.

We first represent constraint generation rules for messages which are later used in the
constraint generation rules for processes. The rules can be interpreted as an algorithm
taking (Γ,M) as input and yielding (T,C, V, B) as output where T is the type (or type
variable) of M , C is the generated constraint set, B is a set of boundaries needed for
ensuring well-formed typing contexts, and the set V is used during constraint generation
to keep account of fresh variables. It is implicitly understood that when choosing a new
variable it has to be fresh in respect to the set V . Also, when the union of two sets V1 and
V2 is formed, we assume that the sets are disjoint.

37

Definition 34 (Message Constraints). Let the constraint derivation tree Γ ` M
T,C,B, V for a message M under a context Γ be defined by rules in Table 3.4.

n : T ∈ Γ Γ ` � B1

Γ ` n T, ∅, B1, ∅ mc-name

C = {X .= Ok(E), E v effects(Γ)} Γ ` � B1 V = {X, E}
Γ ` ok X, C,B1, V mc-ok

Γ ` M1 T1, C1, B1, V1 V = {X1, X2}] V1

C = {T1
.= Pair(X1, X2)} ∪ C1

Γ ` fst M1 X1, C, B1, V mc-fst

Γ ` M1 T1, C1, B1, V1 V = {X1, X2, X
′
2}] V1

C = {T1
.= Pair(X1, X2), X ′

2
.= X2〈fst M1/1〉} ∪ C1

Γ ` snd M1 X ′
2, C, B1, V mc-snd

Γ ` M1 T1, C1, B1, V1 Γ ` M2 T2, C2, B2, V2

C = {X .= Pair(T1, X
′
2), T2

.= X ′
2〈M1/1〉} ∪ C1 ∪ C2

B = B1 ∪B2 V = {X, X ′
2}] V1] V2

Γ ` (M1,M2) X, C,B, V mc-pair

Table 3.4: Message constraint generation rules

Note that effects(Γ) now returns a list of effects with holes Ṡ1, . . . , Ṡn instead of a set of
atomic effects.

Intuitively, the rules generate a constraint derivation tree collecting constraints to be sat-
isfied in C. It is not hard to see that this constraint derivation tree is isomorphic to any
type derivation tree there might exists for M under Γ. Due to the high resemblance to the
typing rules it should come as no surprise that the constraint rules are sound and complete
in respect to the typing rules.

Lemma 35 (Soundness of constraints for messages). Suppose we have constraint
derivation tree Γ ` M T,C,B, V . If a ground substitution σ satisfies C and stays within
B then there exist a type derivation tree with root σΓ ` M : σT . Furthermore, the type
derivation tree can be efficiently constructed.

Proof. The proof is by induction in the constraint derivation tree of Γ ` M T,C,B, V .
Using that the constraint derivation tree is isomorphic to any type derivation tree we built a
type derivation tree using assignments found in σ. Since σ is a ground substitution we have
that all variables are assigned a ground type as required by the type system. See Section
A.1 for full proof.

Notice that since we are building a full-typed type derivation tree we can say more than
just ”yes, the message is typable” and actually provide a proof of this in the form of a type
derivation tree checkable by the type checker.

38

Lemma 36 (Completeness of constraints for messages). Suppose we have constraint
derivation tree Γ ` M T,C,B, V . If there exist a type derivation tree with root σΓ ` M :
U for some type U and substitution σ with dom(σ)∩ V = ∅ then there exist a substitution
σ′ satisfying C and staying within B and where σ′T ≡ U and σ′\V = σ.

Proof. Induction in the derivation of Γ ` M T,C,B, V . Using the assignments found in
σ we construct the extended substitution σ′ satisfying C. See Section A.1 for full proof.

Definition 37 (Process Constraints). Let the constraint derivation tree for a process P
under context Γ be defined by rules in Table 3.5.

Not surprisingly we have that these rules are sound and complete with respect to the process
typing rules.

Lemma 38 (Soundness of constraints for processes). Suppose we have constraint
derivation tree Γ ` P C,B, V . If a ground substitution σ satisfies C and stays within
B then there exists a type derivation tree with root σΓ ` σP . Furthermore, the type
derivation tree can be efficiently constructed.

Proof. The proof is by induction in the derivation of Γ ` P C,B, V . Using that the
constraint derivation tree is isomorphic to any type derivation tree we built a type derivation
tree using assignments found in σ and Lemma 35. Since σ is a ground substitution we have
that all variables are assigned a ground type as required by the type system. See section
A.2 for full proof.

Lemma 39 (Completeness of constraints for processes). Suppose we have constraint
derivation tree Γ ` P C,B, V . If there exists a type derivation tree with root σΓ ` σP
for some substitution σ with dom(σ) ∩ V = ∅ then there exists a substitution σ′ satisfying
C and staying within B and with σ′\V = σ.

Proof. Induction in the derivation of Γ ` P C,B, V . Using the assignments found in σ
we construct the extended substitution σ′ satisfying C. See Section A.2 for full proof.

Theorem 40 (Completeness and soundness of constraints). Suppose we have con-
straint derivation tree Γ ` P C,B, V . Process P has a type derivation tree under Γ if
and only if there exists a ground substitution σ satisfying C and staying within B. A type
derivation tree is efficiently constructable given the substitution.

Proof. Follows at once by Lemma 38 and 39.

3.3 Solving Type Constraints

Having seen in the previous section that the generation of a type derivation tree for a mes-
sage or process can be reduced to the generation of a substitution σ satisfying a constraint
set, we now consider how to find such a substitution. We split this substitution generation
into two steps, dealing with type constraints in this section and with effect constraints in
Section 3.4. The two algorithms are combined in Section 3.5 to form the type inference
algorithm.

39

Γ ` M T,C1, B1, V1 Γ, n : X ` P C2, B2, V2

C = {T .= Ch(X)} ∪ C1 ∪ C2 B = B1 ∪B2 V = {X}] V1] V2

Γ ` in M n; P C,B, V pc-in

Γ ` M T,C1, B1, V1 Γ, n : X ` P C2, B2, V2

C = {T .= Ch(X)} ∪ C1 ∪ C2 B = B1 ∪B2 V = {X}] V1] V2

Γ `!in M n; P C,B, V pc-rein

Γ ` M1 T1, C1, B1, V1 Γ ` M2 T2, C2, B2, V2

C = {T1
.= Ch(T2)} ∪ C1 ∪ C2 B = B1 ∪B2 V = V1] V2

Γ ` out M1 M2 C,B, V pc-out

Γ, n : T ` P C1, B1, V1 C = {T generative} ∪ C1

Γ ` new n : T ; P C,B1, V1 pc-new

Γ, begins(P2) ` P1 C1, B1, V1 Γ, begins(P1) ` P2 C2, B2, V2

C = C1 ∪ C2 B = B1 ∪B2 V = V1] V2

Γ ` P1 | P2 C,B, V pc-par

Γ ` M1 T1, C1, B1, V1 Γ ` M2 T2, C2, B2, V2

Γ ` P3 C3, B3, V3 Γ ` P4 C4, B4, V4

C = C1 ∪ · · · ∪ C4 B = B1 ∪ · · · ∪B4 V = V1] · · ·] V4

Γ ` if M1 = M2 then P3 else P4 C,B, V pc-if

Γ ` M T,C1, B1, V1 Γ, E ` P C2, B2, V2

C = {T .= Ok(E)} ∪ C1 ∪ C2 B = B1 ∪B2 V = {E}] V1] V2

Γ ` exercise M ;P C,B, V pc-ex

Γ ` M T,C,B, V

Γ ` begin l(M) C,B, V pc-begin

Γ ` M T,C1, B1, V1 C = {l(M) ∈ effects(Γ)} ∪ C1

Γ ` end l(M) C,B1, V1 pc-end

Γ ` � B

Γ ` nil ∅, B, ∅ pc-nil

Table 3.5: Process constraint generation rules

We first give an informal presentation of the algorithm for solving type constraints and
the principles behind it. We then give a formal definition and proofs of correctness. In
the informal description we ignore boundaries. Note that by Lemma 20 we have T1 ≡ T2

if and only if nf (T1) ≡ nf (T2), and in the following we assume all types to be on normal form.

40

Given a constraint set C the algorithm either fails or outputs a substitution σ and a con-
straint set Cef containing only effect constraints. σ partially satisfies C in the sense that
if another substitution satisfies Cef then the two substitutions can be combined to satisfy
C. Effect constraints in C are ignored during type solving and end up in Cef together with
any additional effect constraints generated during solving. Furthermore, in the interest of
generating a minimal substitution the algorithm does not always create a full substitution
in that σ might not assign to all type variables in C. Since there can be constraints on these
variables the algorithm also returns a set Cty of type constraints that must be satisfied by
any substitution assigning to the left-over type variables. However, for any Cty there exists
a trivial extension to σ assigning types to all type variables and satisfying Cty . We shall
return to this briefly. The two constraint sets can be combined so the algorithm returns a
substitution and a single constraint set.

The algorithm can be seen as standard unification up to a set of ignored constraints. In
outline, given a constraint set C the recursive algorithm proceeds with steps

1. Normalise all types in C (using type instantiation)

2. Pick a type constraint T1
.= T2 not on form X

.= Xµ nor Xµ
.= X ′µ′; if there are

none then return the empty substitution along with C; otherwise let C ′ be the set of
remaining constraints and continue to the next step

3. Apply the rule matching the picked type constraint; fail in no rule applies

� If T1 and T2 have the same top-most type constructor then break them down
and recursively solve C ′ unioned with the immediate constituents. For instance,
if T1 = Ch(T ′

1) and T2 = Ch(T ′
2) then recursively solve {T ′

1
.= T ′

2} ∪ C ′.

� If T1 is X then recursively solve C ′ with X replaced by T2. The recursive call
returns a substitution σ which is extended with X 7→ T2 by forming σ◦[X 7→ T2].
Note the usage of explicit message substitution in types; having them allows us
to define the variable to be whatever is on the right hand side, even if it is a type
under message substitution. An occur-check is performed to make sure X does
not occur in T2.

� If T1 is Xµ then the constraint can only be satisfied if T1 have the same construc-
tion as T2 since message substitutions cannot change the construction of a type.
This is captured by stating that X must match the opening of T2, i.e. recursively
solve C (and not C ′ as in the previous rule) but with X replaced by open(T2).
The recursive call returns a substitution σ which is extended with X 7→ open(T2)
by forming σ ◦ [X 7→ open(T2)]. Note that T2 cannot be a variable nor a variable
under substitution but must consist of at least one type constructor; if T2 were
a variable the opening would also be a variable and the algorithm would not
terminate. An occur-check is performed to make sure X does not occur in T2.

4. Return the (possibly extended) substitution from the recursive call along with the set
of effect and ignored constraints also produced by the recursive call.

The algorithm only fails if one of the following type constraints occur

41

� X
.= T and X ∈ FV (T) (with T 6= X and T 6= Xµ)

� Xµ
.= T and X ∈ FV (T) (with T 6= X ′µ′)

� T1
.= T2 and T1 6' T2

The occur-check X ∈ FV (T) causes the first two cases to fail since no type assignment
to X would satisfy the equation∗. The last case causes failure since no types of different
construction can be equivalent by Lemma 23.

We see that the algorithm ignores constraints on form X
.= Xµ. As mentioned above this

is to keep the substitution minimal. To satisfy the constraint, any type substituted for X
must clearly ignore message substitutions µ by not containing any holes occurring in µ.
Also, as nothing is known about X there are clearly many correct assignments, one such
being X 7→ A for any base type A. However, to keep the substitution minimal the constraint
is ignored when solving but kept as a requirement that must be satisfied by any extending
substitution assigning to X, but at this point assign nothing to X. Note that it has to be
the same variable on both sides of the equality; for X

.= X ′µ with X 6= X ′ the algorithm
proceed as normal.

Constraints on form Xµ
.= X ′µ′ are also ignored during solving but kept in the constraint

set. By the same argument as above the substitution is kept minimal by not assigning to X
nor X ′. The variables do not have to be different (in the special case where the constraint
is on identical types we can remove the constraint).

Note that the ignored type equality constraint cannot be discarded completely. For instance,
in constraint set

C =

X〈M/ω〉 .= X ′〈M ′/ω′〉
X

.= Ch(T1)
X ′ .= Pair(T2, T3)

we cannot simply throw away X〈M/ω〉 .= X ′〈M ′/ω′〉 as this is the equation relating X
and X ′, in turn making C unsatisfiable. Instead, the equation is ignored until one of the
variables is assigned to. As noted, if there are only ignored equations left in the constraint
set C the algorithm returns them as the set of constraints that must be satisfied by any
extending substitutions along with the produced substitution.

Moving on to the formal definition, we say that a type equality constraint T1
.= T2 is obvi-

ously unsatisfiable if T1 and T2 have different type constructors or if T1 is a variable X and
X ∈ FV (T2) when T2 is not a variable nor a variable under substitution; similar for the
symmetric case.

Formally we present the algorithm as a reduction relation on a triple (C, σ)B consisting
of a constraint set C, a substitution σ, and a boundary set B. It is assumed that all
types in constraint set C are normalised before rule application and that B contain no
type constructors. To solve a constraint set C simply reduce (C, [])B using the rules until
no more reduction is possible (where [] is the empty substitution). The resulting triple

∗A recursive type would satisfy the equation but the type system allows no such.

42

(C ′, σ′)B′ has the property that if C ′ does not contain an obviously unsatisfiable constraint
then a solution for C depends only on the satisfiability of the remaining effect constraints:
if the effect constraints are satisfiable under B′ then there exists a substitution satisfying
C.

Definition 41 (Type Solving Rules). Let T−→ be the least transitive relation on triples
(C, σ)B closed under the rules in Table 3.6. We say (C, σ)B reduces to (C ′, σ′)B′ if (C, σ)B

T−→
(C ′, σ′)B′ .

T1 ≡ T2(
{C, T1

.= T2}, σ
)
B

T−→
(
C, σ

)
B

ts-triv

(
{C,Ch(T1)

.= Ch(T2)}, σ
)
B

T−→
(
{C, T1

.= T2}, σ
)
B

ts-ch

(
{C,Pair(T1, T2)

.= Pair(T ′
1, T

′
2)}, σ

)
B

T−→
(
{C, T1

.= T ′
1, T2

.= T ′
2}, σ

)
B

ts-pair

(
{C,Ok(Ṡ1)

.= Ok(Ṡ2)}, σ
)
B

T−→
(
{C, Ṡ1

.= Ṡ2}, σ
)
B

ts-ok

X 6∈ FV (T)(
{C,X

.= T}, σ
)
B

T−→
(
[X 7→ T]C, [X 7→ T] ◦ σ

)
[X 7→T]B ts-var1

T 6= X ′ T 6= X ′µ′ X 6∈ FV (T) T ′ = open(T)(
{C,Xµ

.= T}, σ
)
B

T−→
(
[X 7→ T ′]{C,Xµ

.= T}, [X 7→ T ′] ◦ σ
)
[X 7→T ′]B ts-var2

Table 3.6: Type constraint solving rules

X 6∈ FV (T) in rules ts-var1 and ts-var2 are the occur-checks and also prevent solving
equations on form X

.= Xµ. Condition T 6= Y and T 6= Y µ′ prevent ts-var2 from being
applied if ts-var1 can be applied, as well as prevent solving equations on form Xµ

.= X ′µ′.
The extension of σ in ts-var1 and ts-var2 is by composition, and the update of B is by
replacement. We write {C, T1

.= T2} in place of C ∪ {T1
.= T2}.

To each constraint set C we can associate a pair of natural numbers (nv, ns) where nv is
the number of distinct type variables occuring in C, and ns is the sum of the number of
type constructors used in types in C. For all cases but ts-var2 this pair is seen to decrease
lexicographically by each rule. However, for ts-var2 the opening T ′ may introduce new
variables (and increase the sum of type constructors) thereby breaking the lexicographical
descend. We might argue that since we never open just a variable but only types with
at least one type constructor, any variables occurring in T ′ are in some sense placeholders
for types with a smaller ”height” than the variable X being substituted. Since all types
have a finite ”height” it can only be decreased a finite number of times, and since X is
substituted immediately after opening it can only be opened once. Unfortunately, we do

43

not know if this can be turned into a proof and can only conjecture that the type solving
rules terminates. We return briefly to this in Section 4.3.

Conjecture 42 (Termination). A triple (C, σ)B can be reduced only a finite number of
times.

Lemma 43. If (C, σ)B cannot be reduced then any constraint in C is either on the form
X

.= Xµ, Xµ
.= X ′µ′, an effect constraint, or an obvious non-satisfiable type constraint.

Proof. By case analysis of the types T1 and T2 occurring in any type constraint T1
.= T2 in

C. See Section A.3 for proof details.

Lemma 44. Assume constraint set C only contains type constraints on form X
.= Xµ or

Xµ
.= X ′µ′. Then there exist a substitution σ satisfying C. In particular, for any boundary

set B containing only boundaries on type variables there exists a ground substitution σ
satisfying C and staying within B.

Proof. If we assign only types unaffected by any explicit substitution occurring in any type
in C we can forget any explicit substitution occurring in C. Having only simple type
equations on form X

.= X ′ left we can easily produce a substitution σ satisfying C. Note
that it is easy to find types unaffected by any explicit substitution, for instance base types
or ok types with no holes. In particular, it is easy to produce a ground substitution that also
stays within B. In the simplest case the same base type A is assigned to all variables.

Lemma 45. If (C, σ)B
T−→ (C ′, σ′)B′ then there exists a substitution σ′′ such that σ′ = σ′′◦σ

and for all substitutions σ′′′ satisfying C ′ we have that σ′′′ ◦σ′′ satisfying C. Furthermore, if
σ′′′ is a ground substitution staying within B′ then σ′′′ ◦σ′′ is a ground substitution staying
within B.

Proof. The proof is by induction in the length of the derivation of T−→. See Section A.3 for
proof details.

Lemma 46 (Soundness). Assume (C, σ)B
T−→ (C ′, σ′)B′ where no further reduction is pos-

sible. If C ′ is not obviously unsatisfiable and there exists σE satisfying all effect constraints
in C ′ then there exists a substitution σ′′′ satisfying C. Furthermore, if σE is a ground
substitution staying within effect boundaries in B′ then there exists a ground substitution
σ′′′ satisfying C and staying within B.

Proof. We only show the case with ground substitutions. Since C ′ is not obviously unsatis-
fiable Lemma 43 gives that C ′ only contains type constraint on form X

.= Xµ or Xµ
.= X ′µ′

together with any effect constraints. Partition B′ into a set B′
T of boundaries on types and

a set B′
E of boundaries on effects so that B′ = B′

T ∪ B′
E . By Lemma 44 there exists a

ground substitution σT satisfying all type constraints in C ′ and staying within B′
T . Also,

by assumption there exists a ground substitution σE satisfying all effect constraints in C ′

and staying within B′
E . We can assume without loss of generality that σE only assign to

effect variables, i.e. that dom(σE) ⊆ EVar . Now let σtriv = σT ◦ σE which is clearly a
ground substitution satisfying C ′ and staying within B′. By Lemma 45 there exists σ′′ such
that σ′ = σ′′ ◦ σ. Furthermore, σtriv ◦ σ′′ is a ground substitution satisfying C and staying
within B.

44

Lemma 47. If there exists a substitution σ satisfying {Xµ
.= T} ∪ C then there exists σ′

satisfying {X .= T ′, Xµ
.= T} ∪C for T ′ = open(T). Furthermore, for any boundary set B,

if σ stays within B then σ′ also stays within B.

Proof. The opening of a type respects the structure and introduces fresh variables, so since
σ satisfies Xµ

.= T we can use type σX to construct σ′ such that σ′\FV (T ′) = σ and
σ′T ′ ≡ σ′X. σ′ clearly satisfies {X .= T ′, Xµ

.= T} ∪ C. Assume σ stays within B. Since
σ′ is σ extended with values for fresh variables FV (T ′) we have that σ′ also stays within
B.

Lemma 48. Assume (C, σ)B
T−→ (C ′, σ′)B′ . If substitution δ satisfies C then there exists a

substitution δ′ satisfying C ′. Furthermore, if δ stays within B then δ′ stays within B′.

Proof. By induction in the length of the derivation of T−→. The only interesting case is
ts-var2 where we apply Lemma 47. See Section A.3 for proof details.

Lemma 49 (Completeness). Assume (C, σ)B
T−→ (C ′, σ′)B′ where no further reduction

is possible. If substitution δ satisfyies C then there exists a substitution δ′ satisfying C ′.
Also, C ′ contains only type constraints on form X

.= Xµ, Xµ
.= X ′µ, or effect constraints.

Furthermore, if δ stays within B then δ′ stays within B′.

Proof. Follows at once by Lemma 48 and Lemma 43.

3.4 Solving Effect Constraints

Since the previous sections showed that the problem of type inference can be reduced to
the problem of solving effect constraints we next consider how to do this.

We start with a general algorithm suitable for the non-deterministic abstraction used in
our type system and show that it is sound and complete with respect to the typing rules.
The algorithm needs to make choices or guesses during computation and, as is often the
case with choices, this leads to a high (computational) complexity. The general algorithm
can be adapted to support different abstraction strategies and we next discuss how it can
be made more efficient by assuming the principle of maximal abstraction thereby making
abstraction deterministic. We end the section by mentioning an alternative approach based
on a least fixed-point logic.

3.4.1 The General Algorithm

The main idea behind the algorithm is simply to recursively pick an effect constraint not
satisfied by the current effect substitution and update the substitution to satisfy the con-
straint. The update may give raise to new unsatisfied constraints so the algorithm proceeds
recursively until either a substitution satisfying all constraints is produced or it finds that
the constraints cannot be satisfied. The algorithm is very simple and very brute force,
consisting fundamentally of a fixed-point algorithm with choices.

45

For instance, to solve constraint set

C =
{

l(n) ∈ E1

E1
.= E2

}
with the empty effect currently assigned to E1 and E2, we update the substitution such
that E1 contains l(n). To satisfy the constraints under the updated substitution l(n) ∈ E2

must further be satisfied and hence the substitution is updated such that both E1 and E2

contains l(n). Had the constraint set furthermore contained constraint

E2 v ∅

we see that l(n) ∈ E2 cannot be satisfied and hence no solution exist for the constraint set.

Note that requirements can be solved independently of each other. For instance, in con-
straint set

C =
{

l(M) ∈ E
l′(M ′) ∈ E′

}
it makes no difference if we make sure the former requirement is satisfied before satisfying
the latter or vice versa†.

All but very few simple constraint sets contain one or more constraints with explicit sub-
stituions or unions. In these cases there may be several possible updates satisfying a re-
quirement and some opdates may lead to unsatisfiability. In the general algorithm we
non-deterministically ”guess” which update leads to a solution (if one exist) by simply try-
ing all possibilities. Since the failure of one choice does not imply no good choice exists we
cannot report failure if one choice turns out to be unsatisfyable but may have to backtrack
and try another option.

For instance, in solving constraint set

C =
{

l(n) ∈ E1 ∪ E2〈n/1〉
E1 v ∅

}
we might first try to satisfy l(n) ∈ E1 ∪ E2〈n/1〉 by updating E1 to contain l(n). This
leads to the unsatisfiable l(n) v ∅ and hence we have to backtrack and try to satisfy the
requirement by updating E2 to contain l(n). Since E2 has no upper bound this leads to a
solution. Note that there were two updates of E2 that would satisfy the requirement: l(n)
and l(1). Had C also contained

E3
.= E2〈m/1〉

E3 v {l(m)}

we get that only update l(1) leads to a solution since l(n) in E2 would propagate to E3 and
n 6≡ m.

†It would make a difference though if effects could have size limits in which case one atomic effect could
block for another.

46

The substitution we are looking for must also stay within the boundaries given. For instance,
process

new n : N ;
new m : M ; in n x;

begin l(m) | exercise snd x;
out n (m, ok) end l(fst x)

under the empty typing context yields effect constraints C and boundaries B

C =

E0

.= E2〈m/1〉
E1

.= E2〈fst x/1〉
E0 v {l(m)}
l(fst x) ∈ E1

 B =
{

E2 � ∅
E2 ≤ 1

}

Assume σ assigns the empty effect to E0 and E2, and l(fst x) to E1 in order to satisfy
l(fst x) ∈ E1. For σ to satisfy E1

.= E2〈fst x/1〉 we must extend E2. However, because of
the boundaries, the only option is to let E2 include l(1) as l(fst x) would not stay within
the boundary E2 � ∅.

In the spirit of this paper let us formally define the effect solving algorithm as a relation
between triples consisting of a constraint set C, a boundary set B, and a substitution σ.
Since C and B remain fixed during the computation we denote relationship between two
triples as C,B ` σ

S−→ σ′ instead of (C, σ)B
S−→ (C, σ′)B.

Let a ground substitution σ be too big relative to a number n if σ maps some effect variable
E to an effect with cardinality greater than n, i.e. |σE| > n for some E ∈ dom(σ).

Definition 50 (Effect Solving Rules). Let S−→ be the least transitive relation on triples
(C, σ)B closed under the rules in Table 3.7. We say there is a path from σ to σ′ under con-
straint set C and boundary set B if C,B ` σ

S−→ σ′. We assume the rules are parameterised
by a number n and have as a general premise (not mentioned in the rules) that σ′ must not
be too big relative to n. Also, σ′ must stay within B. If σ′ violates either general premise
no rule applies.

Note that, contrary to the type solving rules, substitutions are extended by updates and
not composition. Function UV (Ṡ) gives the underlying type of Ṡ if it is a variable or a
variable under explicit substitution and is undefined otherwise. We write {e, C} in place of
{e} ∪ C for effect constraint e.

Intuitively, the rules can be seen as propagation of requirements or as saturation of the
substitution. This is closely related to fixed-point theory, the only difference being that
backtracking can occur due to the non-deterministic guesses that must be made. More
precisely, the rules can be interpreted as a function taking as input a substitution and ex-
tending this substitution if needed to ”better” satisfy C. For instance, rule es-eq1 extend
σ to ”better” match the requirement that Ṡ1 and Ṡ2 must contain the same atomic effects;
which is not currently satisfied since Ṡ2 contains an atomic effect l(Ṁ) not found in Ṡ1. A
fixed-point of the function is a substitution requiring more no updates, i.e. a substitution

47

l(Ṁ) ∈ σṠ2 l(Ṁ) 6∈ σṠ1 UV (Ṡ1) = E1

l(Ṁ ′) ∈ E1 ⇒ l(Ṁ) ∈ σṠ1 σ′ = [E1 7→ {l(Ṁ ′)} ∪ σE1]σ

{Ṡ1
.= Ṡ2, C}, B ` σ

S−→ σ′ es-eq1

l(Ṁ) ∈ σṠ1 l(Ṁ) 6∈ σṠ2 UV (Ṡ2) = E2

l(Ṁ ′) ∈ E2 ⇒ l(Ṁ) ∈ σṠ2 σ′ = [E2 7→ {l(Ṁ ′)} ∪ σE2]σ

{Ṡ1
.= Ṡ2, C}, B ` σ

S−→ σ′ es-eq2

l(M) 6∈
⋃

σṠi UV (Ṡj) = Ej

l(Ṁ ′) ∈ Ej ⇒ l(M) ∈ σṠj σ′ = [Ej 7→ {l(Ṁ ′)} ∪ σEj]σ

{l(M) ∈ Ṡ1, . . . , Ṡn, C}, B ` σ
S−→ σ′ es-in

l(Ṁ) ∈ σṠ l(Ṁ) 6∈
⋃

σṠi UV (Ṡj) = Ej

l(Ṁ ′) ∈ Ej ⇒ l(Ṁ) ∈ σṠj σ′ = [Ej 7→ {l(Ṁ ′)} ∪ σEj]σ

{Ṡ v Ṡ1, . . . , Ṡn, C}, B ` σ
S−→ σ′ es-sub

Table 3.7: Effect constraint solving rules

satisfying all constraints in C.

Non-deterministic choices occur in all rules either in the form of guessing which Ṁ ′ to ex-
tend the assignment with or in the form of guessing which effect Ej in a union to extend.
As argued, picking which rule to apply next can be done independently and hence cannot
require backtracking. In praxis it would make the algorithm faster if each effect require-
ment l(M) ∈ Ṡ1, . . . , Ṡn (corresponding to each end event) is solved separately one at a
time. Doing this decreases the amount of work wasted if backtracking is required. Also, to
improve the expected running time the algorithm could try most likely paths first; one such
heuristic would be to make maximal abstraction the first choice.

For any set of effect variables let [∅] be the substitution assigning the empty effect to all.
To compute a substitution satisfying C and staying within B the algorithm proceeds with
steps

1. instantiate the rules with the number of effect requirements l(M) ∈ Ṡ1, . . . , Ṡn occur-
ring in C

2. test if [∅] stays within B; fail if not

3. look for a path from [∅] to a substitution σ satisfying C; fail is none found

A path exists in step 3 if and only if there exists a substitution satisfying C and staying
with B. We have that the algorithm is sound and complete and terminates:

Lemma 51. If there exists a substitution staying within boundary set B then [∅] stays
within B.

48

Lemma 52. If σ stays within boundary set B and C,B ` σ
S−→ σ′ then σ′ stays within B.

Lemma 53 (Soundness). Assume the algorithm produces a substitution σ. Then σ
satisfies C and stays within B.

Proof. By definition of the algorithm we have C,B ` [∅] S−→ σ where σ satisfies C. Since the
algorithm does not fail we have that [∅] stays within B and the result follows by Lemma 51
and Lemma 52.

Lemma 54. If there exists a substitution σ satisfying C and staying within B then there
exists a substitution σ′ satisfying C and staying within B and which is not too big relative
to the number of effect requirements in C.

Proof. Follows from the fact that if the process P from which C and B are generated is
typable, then the type derivation tree does not need to include any effects whose cardinality
is larger than the number of end-events occurring in the process as only one begin-event is
needed to match an end-event. In the worst case, each end-event requires a distinct begin
event and they all need to be transfered by the same channel. In this case the effect of
the channel is the number of end-events in the process. Finally, the constraint generation
rules ensures that the number of effect requirements in C is the same as the number of
end-events.

Completeness is a consequence of the previous lemma and the systematic exploration of all
possible substitutions performed by the algorithm:

Lemma 55 (Completeness). Assume there exists a substitution satisfying C and staying
within B. Then the algorithm does not fail.

Proof. By Lemma 51 the first test will not fail, and by Lemma 54 there is a satisfying
substitution not too big relative to the limit. That the satisfying substituion is in the
search space of the algorithm is implied by the fact that the algorithm tries all possible
ways to satisfy the effect requirements in the constraint set.

Due to the size limit termination is an easy consequence:

Lemma 56 (Termination). There are only finitely many paths from [∅].

Proof. Every application of a rule extends the substitution so since there are only finitely
many effect variables we have that only finitely long paths exists. The number of effects in
unions is finite, and the number of possible messages Ṁ ′ to extend an effect with is finite;
the only slightly non-trivial case is when abstraction is performed but here we have that
there are only finitely many ways to abstract a message out of another message. Combined
we get the desired result. Relating to the algorithm we have that it will always find a
satisfying substitution, run out of choices, or hit the size limit; in the latter two cases it
fails.

Let us compute a limit on the size of the search space, i.e. the set of all substitutions not
too big relative to the limit. Note that this can be larger than the search space since the
algorithm will not consider substitutions which does not help in satisfying the constraints.

49

We first need to introduce a few functions. Let the height h(M) of a message M be the
number of message pair constructors occuring in M :

h(n) = 0
h(ok) = 0

h(fst M) = h(M)
h(snd M) = h(M)

h((M1,M2)) = max
(
h(M1), h(M2)

)
+ 1

and let the type height i(M) of message M be the number of pair types indicated by M :

i(n) = 0
i(ok) = 0

i(fst M) = i(M) + 1
i(snd M) = i(M) + 1

i((M1,M2)) = max
(
i(M1), i(M2)

)
+ 1

Lemma 57. The number of different messages to consider in effect assignments is limited
by 2pO(log p) where p is the size of the process from which the constraint set is generated.

Proof. At most p messages appear in the process. Message instantiation can only increase
the height of a message as a hole is filled by a message and messages occuring in events are
fully instantiated since they cannot contain holes. These facts imply that any message in
an effect higher than a maximal height message occuring in an event makes no difference
in matching events and hence the height hm of a maximal height message occuring in an
event provides an upper limit on the height of messages in effects. Function i gives an upper
limit im on the maximal index used in effects by taking the maximum over all messages
appearing in events. We see that the number of possible effect messages is limited by
Σ0≤j≤hm(p + im)j+1 ≤ (p + im)hm+1 · hm. Furthermore, since hm ≤ O(log p) and im ≤ p
the number of possible effect messages is limited by 2pO(log p).

Lemma 58. For any number n and finite set V of effect variables there are only finitely
many substitutions σ with dom(σ) = V such that σ is not too big relative to n. Moreover,
this number is limited by 2O(log2p)·n·v where p is the size of the process from which constraints
are generated and v is the cardinality of V .

Proof. By Lemma 57 the number of different messages to consider is limited by 2pO(log p).
Then the number of different substitutions to consider is limited by 2pO(log p)·v·n ≤ 2O(log2p)·n·v.

Each effect requirement in C corresponds exactly to one end event in the process from which
C is generated, so since we chose the limit n to be the number of effect requirements in C
we have that n is limited by p: n ≤ p. By the above lemma we have that the number of
substitutions in the search space is limited by 2O(log2p)·p·v ≤ 2O(p3)·v.

50

Besides being non-deterministic the algorithm also has the disadvantage that a produced
assignment is not necessarily the smallest nor a minimal solution. Indeed, for

C =

l(n) ∈ E1

l(m) ∈ E2

E1
.= E3〈n/1〉

E2
.= E3〈m/1〉

and an empty bound set the algorithm may output either

E1 : l(n)
E2 : l(m)
E3 : l(1)

or
E1 : l(n), l(m)
E2 : l(n), l(m)
E3 : l(n), l(m)

which are both solutions.

3.4.2 Maximal Abstraction Variant

The problem with the general algorithm is that a triple (C,B, σ) may have several next
steps according to S−→ and some of these may lead to failure while others do not; moreover,
we have to find a successful next step before declaring victory and we have to try all next
steps before accepting (overall) defeat. Without any guidance on which union to choose or
which abstraction to perform this path exploration becomes expensive.

The algorithm can be made more efficient if we can remove guessing, effectively making the
algorithm capable of generating its own guidance. This means the algorithm must deter-
ministically determine which effect in a union to update as well as which message Ṁ ′ to
update the effect with in order to satisfy a constraint. In this configuration there is no need
for the algorithm to backtrack so after at most O(p · v) updates, where v is the number
of effect variables, the algorithm terminates as each effect is limited in size by the size p
of the process. We have that by removing the choices we obtain a simpler fixed-point-only
algorithm running in low polynomial time (relative to the number of effect variables).

One way to make the choice of message to update with deterministic would be to assume
the principle of maximal abstraction. For instance, to satisfy requirement l(n) ∈ E〈n/1〉
we only consider the option of adding l(1) to E (and not the option of adding l(n)). More
generally, we assume that there is only one option for Ṁ ′ thereby making an exponential
reduction of the number of paths. While it is easy to construct a constraint set solvable by
the general algorithm but not by this adaption, it remains an open problem whether or not
the adaption is incompleteness relative to the typing rules and the constraints generated
by processes. At any rate, making the maximal abstraction the first choice for the general
algorithm to try might turn out to match the expected behaviour and reduce the expected
running time.

We leave deterministic union choice for future work.

51

3.4.3 Alternating Least Fixed-Point Logic

To end the section let us mention an alternative method for solving effect constraints that
could turn out to be fruitful. We leave the investigation of this for future work.

The method based on Alternating Least Fixed-Point (ALFP) logic [34] expresses constraints
as formulae over a proper subset of first-order logic which are then solved using e.g. the Suc-
cinct Solver [34]. This is the approach used in [17]. A model of a formula is an assignment to
the relations used in the formula, and the advantage of ALFP is that if a formula is satisfi-
able then a minimal model of it can be constructed in low polynomial time; if the formula is
not satisfiable then failure is reported. Expressing effects as relations and effect constraints
as formulae between the relations, a minimal effect assignment could be constructed in low
polynomial time. However, at the moment there seems to be some obstacles down this road.

First off, the Succinct Solver cannot do backtracking but must deal with the union of an
effect bound constraint. Semantical restrictions require a ranking of relations dictating in
which order the relations are populated by the Succinct Solver. The effect relations on the
right hand side of an effect bound constraint could be ranked lower than the effect relation
on the left hand side but it might be a problem that a process such as

new n : N ; in n x;
exercise snd x;
begin l(m) | out n (fst x, ok)

currently leads to effect constraint set

C =

E0

.= E2〈fst x/1〉
E1

.= E2〈fst x/1〉
E1 v {l(fst x)}, E0

containing a cyclic dependency.

Secondly, it may be a problem to express union choices. However, if the relations on the
right hand side of an effect bound are fully populated before the left hand side relation then
union choice is not an issue since only a check of containment is needed in this case.

Finally, deterministic abstraction seems to be required to avoid backtracking. To satisfy
this the principle of maximal abstraction could be employed. However, as mentioned above
this might lead to incompleteness (if we insist on expressing type relationship using only
application).

3.5 The Type Inference Algorithm

From the algorithms developed in the last sections the full type inference algorithm is
defined as:

Definition 59 (Type Inference Algorithm). Let the type inference algorithm operating
on input (Γ, P) where Γ is a typing context and P a process be defined by steps:

52

1. Generate boundaries and type and effect constraints for (Γ, P) using the rules from
Section 3.2. This yields a constraint set C and a boundary set B such that there exists
a substitution satisfying C and staying within B if and only if P is typable under Γ.

2. Reduce the triple (C, [])B using type solving rules from Section 3.3 until no further
reduction is possible. This gives a triple (C ′, σT)B′ consisting of unsolved constraints,
a boundary set, and a type substitution; formally we have (C, [])B

T−→ (C ′, σT)B′ 6 T−→.
Fail if C ′ contain obviously unsatisfiable constraints or B′ contain a ground type or
effect not staying within the boundaries.

3. Let CS be the set of effect constraints in C ′ and let BS be the set of effect boundaries
in B′. Use the effect solving algorithm from Section 3.4 to search for a substitution
σS such that CS , BS ` [∅] S−→ σS and σS satisfies CS . Fail if no such substitution can
be found.

4. Form σ = σS ◦ σT and return (C ′ − CS , σ).

The following results are consequences of the results of this chapter:

Theorem 60 (Soundness). If the type inference algorithm on input (Γ, P) gives an output
then P is typable under Γ. Moreover, the output of the algorithm can be used to efficiently
construct a type derivation tree for P under Γ.

Proof. The results of this chapter show how to find a substitution satisfying the generated
constraints and staying within the generated boundaries, and furthermore show how to build
a type derivation tree using the substitution: Lemma 53 shows that the effect substitution
is sound, Lemma 46 shows how to construct a substitution satisfying the initial constraint
set, and Lemma 38 shows how to construct a type derivation tree.

Theorem 61 (Completeness). If process P is not typable under typing context Γ then
the type inference algorithm fails.

Proof. The results of this chapter rejects the generated constraints if P is not typable under
Γ by Lemma 39, 49, and 55.

As for termination, it is easy to see that constraint generation terminates and we have by
Lemma 56 that effect constraint solving terminates. Unfortunately, we lack a proof that
type constraint solving terminates and have only conjectured that it does in Conjecture 42.
Hence, we can only conjecture that the type inference algorithm terminates:

Conjecture 62 (Termination). The type inference algorithm terminates.

3.6 Example

To give an example of the type inference algorithm we have a process P consisting of three
parallel processes sharing two networks:

new opennet : O;
new safenet : S; new m : M ;

out opennet m

!in opennet y;
begin confirmed(y) |
out safenet (y, ok)

!in safenet z;
exercise snd z;
end confirmed(fst z)

53

The left process is the client, the middle process a proxy, and the right process the server.
The client wants to send a message m to the server but cannot do so directly. This would
be the case for instance if the server needs to be protected from bad messages. Instead,
the client must first send m to the proxy which will relay good message to the server (code
performing a check on messages is not included). This is modelled by the client sending
on opennet while the proxy is communicating with the server on safenet . To verify the au-
thenticity property the process is annotated with confirmed events requiring any message
received by the server to be confirmed. We see intuitively that the protocol satisfies the
correspondence property and that it would not if the client were to send on safenet instead
of opennet .

Running the constraint generation rules on the empty typing context and P we get a
constraint set C which includes the following constrains (and some not shown):

C =

S
.= Ch(Z)

S
.= Ch(X1)

O
.= Ch(Y)

O
.= Ch(M)

X1
.= Pair(Y, X2)

X ′
2

.= X2〈y/1〉
X ′

2
.= Ok(E0)

E0 v {confirmed(y)}

Z
.= Pair(X3, X4)

X ′
4

.= X4〈fst z/1〉
X ′

4
.= Ok(E1)

confirmed(fst z) ∈ E1
...

where Y is the type of y, X1 the type of (y, ok), Ok(E0) the type of ok, Z the type of z,
and X ′

4 the type of snd z. We also get boundary set B:

B =

O � ∅
S � {opennet}
M � {opennet , safenet}
Y � {opennet , safenet}
Z � {opennet , safenet}
E1 � {opennet , safenet , z}

O ≤ 0
S ≤ 0
M ≤ 0
Y ≤ 0
Z ≤ 0
E1 ≤ 0

Reducing the triple (C, [], B) using the type solving rules we get a triple (C ′, B′, σ′) where
σ′ includes

σ′ =

O 7→ Ch(M)
S 7→ Ch(Pair(M,Ok(E2)))
Y 7→ M
Z 7→ Pair(M,Ok(E2))
X1 7→ Pair(M,Ok(E2))

X ′
2 7→ Ok(E0)

X2 7→ Ok(E2)
X ′

4 7→ Ok(E1)
X4 7→ Ok(E2)
X3 7→ M

...

C ′ contains the remaining (effect) constrains

C ′ =

E0

.= E2〈y/1〉
E1

.= E2〈fst z/1〉
E0 v {confirmed(y)}
confirmed(fst z) ∈ E1

54

and B′ the updated boundary set

B′ =

M � ∅
E2 � {opennet}
M � {opennet , safenet}
E1 � {opennet , safenet , z}

M ≤ 0
E2 ≤ 1
M ≤ 0
E1 ≤ 0

...

Note that a fresh effect variable E2 was introduced because an opening was performed dur-
ing the reduction, and that it is allowed to have one hole in it. Note also that B′ contain
more than one name boundary entry for M (in this case the later less restrictive entry can
be removed).

Solving C ′ using the effect solving algorithm we get a substitution σE

σE =

E0 : confirmed(fst z)
E1 : confirmed(y)
E2 : confirmed(1)

We end up with a substitution satisfying C and staying within B, and hence ensuring
that P is well-typed. Had the client tried to send (m, ok) on safenet , there would be an
unsatisfiable effect bound constraint

E v ∅

since no begin events occur in the client, in turn making the algorithm report failure.

55

56

Chapter 4

Conclusion

The goal of this thesis has been to research type inference for a complex type system. This
has been done in a context of verification of security protocols. Specifically, the type sys-
tem ensures that well-typed protocols in the form of pi calculus processes always respect an
authenticity property expressed by correspondence events. Our approach is the product of
a desire to make a simple and intuitive type inference algorithm.

Section 4.1 summarises our results, Section 4.2 discuss related work, and Section 4.3 lists
some ideas for future work.

4.1 Summary

We have presented a correspondence certifying type system with dependent types and ef-
fects. Our main contribution is a constraint based type inference algorithm for the type
system, using a unification algorithm to solve type constraints, and a non-deterministic
algorithm for solving effect constraints. The output of the algorithm can be used to create
a derivation tree for the analysed process, i.e. a proof that the process respects the specified
authenticity property. We have implemented the algorithm in Caml and found that it per-
forms efficiently in praxis; specifically, we experienced that backtracking is rarely required.

Besides showing that type inference is possible, our work also illustrates how to do type
inference in the presence of bound names and dependent types with application and ab-
straction. Using explicit substitutions and de Bruijn indices we get that only the effect
solving algorithm needs to deal with application and abstraction. Also, separation of type
and effect constraint solving allow the search for more efficient inference algorithms to be
focused on more efficient algorithms for solving effect constraints. We have furthermore
presented a general effect solving algorithm supporting various abstraction strategies. Our
constraints are expressed in a language very similar to the checks performed by the type
checker, and being intuitive they allow for easy proofs of correctness. The same holds for
boundaries for managing bound names, and it is our hope that this approach will make
extending the type system and the inference algorithm easier.

Of concrete theoretical results, we have proved that our constraints and boundaries are

57

sound and complete relative to the type system; that our algorithms for solving type and
effect constraint are sound and complete relative to the constraints; and that our algo-
rithm for solving effect constraint terminates. We trust that the algorithm for solving type
constraints also terminates but lack a formal proof (we elaborate on this below).

4.2 Related Work

For the pi and spi calculus there exist type systems for secrecy, authentication, and au-
thorisation. Common for these type systems is that they are all sound but incomplete.
Furthermore, while a type checker may verify the proof, they require manual proof genera-
tion in the form of a type assignment as no type inference algorithm is provided.

Type systems for secrecy [1, 24] classify data based on different privacy levels. For instance,
for the spi calculus the type system in [1] will classify messages as either public, secret or
any. Public messages can be communicated to anyone while secret messages should not
be leaked. Given a type assignment the type checker certifies that this is ensured by the
protocol. The type system in [24] for the pi calculus extends this, allowing for multiple and
dynamically-generated security levels.

There are several type system for authentication [26, 22, 19, 20, 21, 23] ranging from being
based on the pi calculus to the spi calculus, from injective to non-injective correspondences,
and from using symmetric to asymmetric encryption. All use effects for collecting and
matching correspondence events. As for secrecy, options exist for assigning types to mes-
sages, ordered under a subtype relation. Most notable is the Un (untrusted) type which the
typing rules always permits and which is used for typing an adversary and unsafe messages.
The Cryptyc tool [25] is an implementation of a type checker for some of these type systems
based on the spi calculus. The tool verify safety via type checking but relies on the user to
create the type annotation.

For authorisation, the type system in [16] verifies if a protocol correctly implements a se-
curity policy. Annotations marking the grant and the requirement of an access right can
be checked by ensuring that each required right can be inferred from the granted rights.
These statements and expectations generalise the begin- and end-events of correspondences.

Of course, there exist methods not based on type systems, one of which is ProVerif [7].
ProVerif allows for automated (proof generation and) verification of authenticity and se-
crecy properties via correspondences. Based on applied pi, it covers various cryptographic
primitives including shared-key and public-key encryption, signatures, one-way hash func-
tions, and Diffie-Hellman key agreements. A process is translated into a set of Horn clauses
which is solved. It is a sound but incomplete method and without guarantee of termination.
An implementation is available from [14].

Bodei et al. [8] developed a static analysis for a pi calculus that shows how names will
be bound to actual channels at run time. The analysis establishes an upper bound on
the set of channels to which a given name may be bound and on the set of channels that

58

may be sent along a given channel. The analysis runs in low polynomial time and can be
used for establishing two simple security properties: that a process do not leak its secret
channels and that a process preserves security clearance levels. Although their analysis is
not formulated as a type system there are strong similarities, both in solution verification
and construction. Solution construction is based on constraint generation and fixed-point
solving.

The method proposal by our type system is inferior in expressive power to the methods
mentioned above. First, ProVerif allow more properties and more operations to be mod-
elled. However, ProVerif is not guaranteed to terminate; a property we believe our inference
algorithm has although lacking a formal proof. Compared to the other type systems for au-
thenticity, ours is weaker in that it does not support modelling of any form of cryptography
as well as not guaranteeing robust safety, i.e. safety in the presence of any adversary. We
believe our system can be extended to support these but leave this for future work.

The motivation for our ”weak” type system, of course, is that it allows us to do sound
and complete type inference. In this field of type reconstruction, related work includes the
classical algorithm for type inference for the simply typed lambda calculus and the ML
programming language [37]. While our algorithm is inspired by these type systems, they
do not include, and hence not address, dependent types or effect types as do ours.

The work by Lhoussaine [29] on type inference for a type system with dependent types
(similar to record types) for the distributed pi calculus [27] resembles our work but dif-
fers in that the dependent types do not bind names and have no instantiation of types.
Our system furthermore contains effects for matching of begin- and end-events. Because of
these differences it appears that solving for our effect types is more involved than solving for
record types. Our formal presentation of algorithms as reduction relations is inspired by [29].

Closer to our work is that of Kobayashi et al. [28] describing type inference for a correspon-
dence type system for a polyadic pi calculus. Based on an early type system by Gordon et
al. their type system contains only dependent channel types with latent effects. While we
consider non-injective correspondences theirs are injective with a twist: effects are ratio-
nal numbers yielding constraints in the form of inequalities over rational numbers, thereby
making the inference algorithm fundamentally different from ours. They obtain polynomial
running time due to the fractional effects and show that the same type inference problem
for natural numbers is NP-hard. As in our work, the type system only guarantees safety
and not robust safety.

Type inference for a correspondence certifying type system with dependent types and effects
is described in [17]. The type system and all constraints are expressed as formulae in the
Alternating Least Fixed-Point (ALFP) logic and solved using the Succinct Solver [34]. Prop-
erties of the logic and solver ensure that a solution is produced in low polynomial time and
with a minimal effect assignment. Since our work is based on [17] there is of course a strong
relationship between the two. In particular, our pi calculus and type system is borrowed
from [17] along with some of the insights used for type inference. We believe our constraints
are easier to reason about since they are not expressed in the ALFP logic. Also, the more

59

natural constraint formulation may ease the task of extending the inference algorithm to
more expressive type systems including for instance, type systems with injective correspon-
dences (where effect are multi-sets and not sets) and systems with several possible types
for messages (as used for typing robust safety). In general, not relying on the ALFP logic
may allow for greater flexibility as we are not restricted to problems solvable by fixed-point
computations. Contrary to [17], our method is not guaranteed to give a minimal solution
and the running time is not guaranteed to be low polynomial. However, our algorithm is
parameterisable and we believe it can be instantiated to match the low polynomial running
time (at least for effect solving). It may also be possible to use the ALFP logic to solve ef-
fect constraints and gain the desirable properties but reducing the use and need of the logic.

As a final, more general note, observe that dependent types occur in many type systems,
sometimes breaking decidability of type checking. Strong dependent types allow for e.g.
lambda terms or first order predicate formulae inside types, leading to undecidability of
type checking [6, 36, 38]. Other type systems with dependent types (such as [42]) stay
within the decidability boundary by restricting the terms inside types. Our dependent
types fit in the latter decidable category since only message terms occur inside dependent
types and equivalence of message terms is decidable.

4.3 Future Work

A next step would be to find a better effect solving algorithm and investigate the impact
of maximal abstraction. A deeper study of the ALFP logic and its solver might also prove
useful, as could a study in the possibility of expressing effect constraints in the logic. An
analysis of worst case computational complexity would also be beneficial. Based on expe-
rience with the implementation the average case complexity of type solving (and of effect
solving) appears to be low. However, it also seems that processes such as

new n0;
new n1;

. . .
new nk;

out n0 (n1, n1) |
out n1 (n2, n2) |
. . .
out nk−1 (nk, nk)

leads to type solving taking exponential time (in the size of the process). Though this might
imply that overall exponential time worst case complexity is unavoidable it would still be
beneficial with low worst case complexity algorithms for effect solving.

While we cannot currently express principal types for the type system due to the effects
inside ok types, the type solving rules actually produce ”principal types up to effects”. By
finding a notion of principal effect the inference algorithm could perhaps be modified to
produce a principal substitution.

60

One natural next step is to extend the type system and the inference algorithm to support
robust safety. Here, safety is guaranteed in the presence of any adversary process running
in parallel. Existing type systems for robust safety use an untrusted type Un to type ad-
versaries and public data. An additional set of typing rules is also introduced allowing for
different typings of messages and processes. The type inference algorithm would have to be
extended to cope with these additions. One options might be to have ”may” and ”must”
constraints along with a notion of types in an uncertain states; encountering a must con-
straint collapsed any uncertain state and makes a type concrete.

The type system could also be extended to support cryptographic operations such as sym-
metric and asymmetric. Some existing system model the latter using a subtyping relation
on types. Another approach is to encode asymmetric encryption in a polarised version of
the pi calculus. In either case, the type inference algorithm would have to be extended.

On a more fundamental note, our model is based on the Woo-Lam notion of correspondences
for security. However, many definitions of security exist and it would be interesting to see
if some of these other forms of security can be expressed and proven using type systems.
Considering the gap between the symbolic and the computational view of cryptography [5]
would also be interesting.

Ending our ideas for future work we have the most important one: to show that the type
solving rules terminate. For Conjecture 42 we argued that associating a pair of natural
numbers (nv, ns) does not seem to be strong enough (nv is the number of distinct type
variables occurring in constraint set C and ns is the number of type constructors in types
in C). One idea is to partition the variables by some notion of ”height potential”. More
concretely, suppose we had a height potential pX in the form for a number for each variable
X in C. There must be a maximal height potential m among these and we can form a tuple(

#m,#m−1, . . . #0, ns

)
where #i is the number of variables with height potential i. If the height potential fur-
thermore respects that the variables in an opening should be lesser height potential-wise
than the variable being substitution, we get that the tuple decreases lexicographically by
an opening (and by any of the other rules). We must be able to compute the pX values in
a deterministic manner so that e.g. variables unmodified by a transition obtain the same
height potential. Section A.3.1 briefly returns to this.

61

62

Appendix A

Proofs

A.1 Message Constraints

In the proofs we shall sometimes denote a type by U in order to keep confusion to a minimal.

Lemma 63 (Soundness of constraints for messages). Suppose we have constraint
derivation tree Γ ` M T,C,B, V . If a ground substitution σ satisfies C and stays within
B then there exists a type derivation tree with root σΓ ` M : σT . Furthermore, the type
derivation tree can be efficiently constructed.

Proof. The proof is by induction in the derivation of Γ ` M T,C,B, V .

case mc-name: M = n C = ∅ B = B1

By premise n : T ∈ Γ we have Γ = Γ′, n : T,Γ′′ and σΓ = σΓ′, n : σT, σΓ′′ and hence
n : σT ∈ Γ. Since σ stays within B we have by Lemma 29 that σΓ ` �. We then get
σΓ ` n : σT by rule mt-name as required.

case mc-ok: M = ok C = {X .= Ok(E), E v effects(Γ)} B = B1

Since σ satisfies C we have σX ≡ Ok(σE) and σE ⊆ effects(σΓ). Also, since σ stays within
B Lemma 29 tells us that σΓ ` �. Combined we can type ok as σΓ ` ok : σX by rule
mt-ok as required.

case mc-fst: M = fst M1 C = {T1
.= Pair(X1, X2)} ∪ C1 B = B1

Suppose Γ ` M1 T1, C1, B1, V1. Since σ satisfies C1 and stays within B1 we have by
the induction hypothesis that there exist a type derivation tree with root σΓ ` M1 : σT1.
Since σ furthermore satisfies T1

.= Pair(X1, X2) we get σT1 ≡ Pair(σX1, σX2). We have
σΓ ` fst M1 : σX1 by mt-fst as required.

case mc-snd: M = snd M1 C = {T1
.= Pair(X1, X2), X ′

2
.= X2〈fst M/1〉} ∪ C1 B =

B1

Suppose Γ ` M1 T1, C1, B1, V1. Since σ satisfies C1 and stays within B1 we have by the
induction hypothesis that there exist a type derivation tree with root σΓ ` M1 : σT1. Since
σ furthermore satisfies T1

.= Pair(X1, X2) we get σT1 ≡ Pair(σX1, σX2). As σ also satisfies
X ′

2
.= X2〈fst M/1〉 we have σX ′

2 ≡ (σX2)〈fst M/1〉. We can then apply rule mt-snd to get
σΓ ` snd M1 : σX ′

2 as required.

63

case mc-pair: M = (M1,M2) C = {X .= Pair(T1, X
′
2), T2

.= X ′
2〈M1/1〉} ∪ C1 ∪

C2 B = B1 ∪B2

Suppose Γ ` M1 T1, C1, B1, V1 and Γ ` M2 T2, C2, B2, V2. Since σ satisfies C1 and C2

and stays within B1 and B2 we have by induction hypothesis that there exist type derivation
trees with roots σΓ ` M1 : σT1 and σΓ ` M2 : σT2. Since σ satisfies T2

.= X ′
2〈M1/1〉 we get

σT2 ≡ (σX ′
2)〈M1/1〉. Furthermore, σ satisfies X

.= Pair(T1, X
′
2) so σX ≡ Pair(σT1, σX ′

2).
We can then type (M1,M2) by rule tm-pair as required.

Lemma 64 (Completeness of constraints for messages). Suppose we have constraint
derivation tree Γ ` M T,C,B, V . If there exist a type derivation tree with root σΓ ` M :
U for some substitution σ with dom(σ)∩ V = ∅ and type U then there exist a substitution
σ′ satisfying C and staying within B and where σ′T ≡ U and σ′\V = σ.

Proof. The proof is by induction in the derivation of Γ ` M T,C,B, V .

case mc-name: M = n C = ∅ V = ∅
Suppose Γ ` � B1. Since σΓ ` � we have that σ stays within B1 by Lemma 29. Since
n : U ∈ σΓ we get σT ≡ U . By letting σ′ = σ we trivially have that σ′ satisfies C = ∅,
stays within B1, and σ′T ≡ U and σ′\V =∅ = σ as required.

case mc-ok: M = ok C = {X .= Ok(E), E v effects(Γ)} V = {X, E}
Suppose Γ ` � B1. Only rule mt-ok can be used to type ok so σΓ ` ok : U implies
σΓ ` � which in turn implies that σ stays within B1 by Lemma 29. Also, U ≡ Ok(S) and
S ⊆ effects(σΓ). By letting σ′ = [X 7→ U,E 7→ S]◦σ we get that σ′ satisfies C, stays within
B, and σ′X ≡ U and σ′\V = σ as required.

case mc-fst: M = fst M1 C = {T1
.= Pair(X1, X2)} ∪ C1 V = {X1, X2}] V1

Suppose Γ ` M1 T1, C1, B1, V1. Since σΓ ` fst M1 : U can only be caused by rule tm-fst
we must have σΓ ` M1 : U1 where U1 ≡ Pair(U ′, U ′′) and U ≡ U ′ for some types U1, U ′

and U ′′. By the induction hypothesis there exist σ′1 satisfying C1 and staying within B1

and where σ′1T1 ≡ U1 and σ′1\V1 = σ. Let σ′ = [X1 7→ U ′, X2 7→ U ′′] ◦ σ′1. Then σ′ satisfies
T1

.= Pair(X1, X2) and hence C. Also, since σ′1 stays within B1 we have that σ′ stays within
B1. Finally, σ′X1 ≡ U and σ′\V = σ as required.

case mc-snd: M = snd M1 C = {T1
.= Pair(X1, X2), X ′

2
.= X2〈fst M/1〉} ∪ C1 V =

{X1, X2, X
′
2}] V1

Suppose Γ ` M1 T1, C1, B1, V1. Since σΓ ` snd M1 : U can only be caused by rule tm-
snd we must have σΓ ` M1 : U1 where U1 ≡ Pair(U ′, U ′′) and U ≡ U ′′〈fst M1/1〉 for some
types U1, U ′ and U ′′. By the induction hypothesis there exist σ′1 satisfying C1 and staying
within B1 and where σ′1T1 ≡ U1 and σ′1\V1 = σ. Let σ′ = [X1 7→ U ′, X2 7→ U ′′, X ′

2 7→ U]◦σ′1.
Then σ′ satisfies T1

.= Pair(X1, X2) and X ′
2

.= X2〈fst M/1〉 and hence C. Also, since σ′1
stays within B1 we have that σ′ stays within B1. Finally, σ′X ′

2 ≡ U and σ′\V = σ as
required.

64

case mc-pair: M = (M1,M2) C = {X .= Pair(T1, X
′
2), T2

.= X ′
2〈M1/1〉} ∪ C1 ∪

C2 B = B1 ∪B2 V = {X, X ′
2}] V1] V2

Suppose Γ ` M1 T1, C1, B1, V1 and Γ ` M2 T2, C2, B2, V2. Only rule tm-pair can
type (M1,M2) so σΓ ` M1 : U1 and σΓ ` M2 : U2 where U ≡ Pair(U1, U2) and U1 ≡ U ′

and U2 ≡ U ′′〈M1/1〉. By the induction hypothesis there exist σ′1 satisfying C1 and staying
within B1 with σ′1T1 ≡ U1, and there exist σ′2 satisfying C2 and staying within B2 with
σ′2T2 ≡ U2. Let σ′ = [X 7→ U,X ′

2 7→ U ′′] ◦ σ′1|V1 ◦ σ′2|V2 ◦ σ. This is well-defined since
dom(σ) ∩ V1 = ∅ and dom(σ) ∩ V2 = ∅, and σ′1\V1 = σ, σ′2\V2 = σ, and V1 ∩ V2 = ∅. Then
σ′ satisfies C and stays within B, and σ′X ≡ U and σ′\V = σ as required.

A.2 Process Constraints

For the process constraints proofs it is convenient to consider an annotated version of pro-
cesses. In particular, we replace process construct in M1 n; P2 with in M1 n : T ; P2 where
T is the type of n, and exercise M1;P2 with exercise M1 : Ṡ;P2 where Ṡ is the effect hiding
inside the type of M1. Since T and Ṡ can be chosen to be respectively a type variable
and a effect variable, it is straightforward to switch from the unannotated to the annotated
version by simply annotating the process with fresh variables. In comparison with the old
formulation of constraint generation we now first annotate the process with fresh variables
before doing constraint generation.

We redefine the application of a substitution σ to a process to match the annotated version:

σ(new n : T ; P) = new n : σT ; σP

σ(in M n : T ; P) = in M n : σT ; σP

σ(!in M n : T ; P) = !in M n : σT ; σP

σ(exercise M : Ṡ;P) = exercise M : σṠ;σP

and redefine the process constraint generation rules to those in Table A.1.

Note that the annotated version lets us assume we know what to extend the typing context
with in rules pc-in, pc-rein, pc-ex and pc-new. Had we extended the context with fresh
variables during constraint generation these variables would be added to V . However, bound
generation would obviously mention the variables, in turn causing a conflict in the proof of
completeness between our induction assumption that dom(σ) ∩ V = ∅ and the assumption
that σ respects the bound set.

Lemma 65 (Soundness of constraints for processes). Suppose we have constraint
derivation tree Γ ` P C,B, V . If a ground substitution σ satisfies C and stays within
B then there exists a type derivation tree with root σΓ ` σP . Furthermore, the type
derivation tree can be efficiently constructed.

Proof. The proof is by induction in the derivation of Γ ` P C,B, V . We will only give a
proof for cases pc-in, pc-new, pc-ex, pc-end, and pc-nil since the rest are either similar
or trivial.

65

Γ ` M1 T1, C1, B1, V1 Γ, n : T ` P2 C2, B2, V2

C = {T1
.= Ch(T)} ∪ C1 ∪ C2 B = B1 ∪B2 V = V1] V2

Γ ` in M1 n : T ; P2 C,B, V pc-in

Γ ` M1 T1, C1, B1, V1 Γ, n : T ` P2 C2, B2, V2

C = {T1
.= Ch(T)} ∪ C1 ∪ C2 B = B1 ∪B2 V = V1] V2

Γ `!in M1 n : T ; P2 C,B, V pc-rein

Γ, n : T ` P1 C1, B1, V1

C = {T generative} ∪ C1

Γ ` new n : T ; P C,B1, V1 pc-new

Γ ` M1 T1, C1, B1, V1 Γ, Ṡ ` P2 C2, B2, V2

C = {T1
.= Ok(Ṡ)} ∪ C1 ∪ C2 B = B1 ∪B2 V = V1] V2

Γ ` exercise M1 : Ṡ;P2 C,B, V pc-ex

Table A.1: Annotated process constraint generation rules

case pc-in: P = in M1 n : T ; P2 C = {T1
.= Ch(T)} ∪ C1 ∪ C2 B = B1 ∪B2

Suppose Γ ` M1 T1, C1, B1, V1 and Γ, n : T ` P2 C2, B2, V2. By Lemma 35 we have
type derivation tree σΓ ` M1 : σT1 and by the induction hypothesis we have type derivation
tree σΓ, n : σT ` σP2. Since σ satisfies T1

.= Ch(T) we have σT1 ≡ Ch(σT) and can apply
rule pt-in.

case pc-new: P = new n : T ; P1 C = {T generative} ∪ C1

Suppose Γ, n : T ` P1 C1, B1, V1. By the induction hypothesis we have type derivation
tree σΓ, n : σT ` σP1. Since σ satisfies T generative we have that σT is generative and can
apply rule pt-new.

case pc-ex: P = exercise M1 : Ṡ;P2 C = {T1
.= Ok(Ṡ)} ∪ C1 ∪ C2

Suppose Γ ` M1 T1, C1, B1, V1 and Γ, Ṡ ` P2 C2, B2, V2. By Lemma 35 we have type
derivation tree σΓ ` M1 : σT1 and by the induction hypothesis we have type derivation
tree σΓ, σṠ ` σP2. Since σ satisfies T1

.= Ok(Ṡ) we have σT1 ≡ Ok(σṠ) and can apply rule
pt-ex.

case pc-end: P = end l(M1) C = {l(M) ∈ effects(Γ)} ∪ C1

Suppose Γ ` M1 T1, C1, B1, V1. By Lemma 35 we have type derivation tree σΓ ` M1 :
σT1. Furthermore, since σ satisfies l(M) ∈ effects(Γ) we have l(M) ∈ effects(σΓ). Applying
pt-end we get the desired result.

case pc-nil: P = nil C = ∅
Suppose Γ ` � B1. Since σ stays within B1 we have by Lemma 29 that σΓ ` � and can
apply rule pt-nil.

66

Lemma 66 (Completeness of constraints for processes). Suppose we have constraint
derivation tree Γ ` P C,B, V . If there exists a type derivation tree with root σΓ ` σP
for some substitution σ with dom(σ) ∩ V = ∅ then there exists a substitution σ′ satisfying
C and staying within B and with σ′\V = σ.

Proof. The proof is by induction in the derivation of Γ ` P C,B, V . We will only give a
proof for cases pc-in, pc-new, pc-ex, pc-end, and pc-nil since the rest are either similar
or trivial.

case pc-in: P = in M1 n : T ; P2 C = {T1
.= Ch(T)} ∪ C1 ∪ C2 B = B1 ∪ B2 V =

V1] V2

Suppose Γ ` M1 T1, C1, B1, V1 and Γ, n : T ` P2 C2, B2, V2. Since σΓ ` σP can
only be typed by rule tp-in we must have σΓ ` M1 : U1 and σΓ, n : σT ` σP2 for some
type U1. Furthermore, U1 ≡ Ch(σT). By Lemma 36 there exist substitution σ′1 satisfying
C1 and staying within B1 with U1 ≡ σ′1T1, and by the induction hypothesis there exist
σ′2 satisfying C2 and staying within B2. Let σ′ = σ′1|V1 ◦ σ′2|V2 ◦ σ. This is well-defined
since dom(σ) ∩ V1 = dom(σ) ∩ V2 = ∅, V1 ∩ V2 = ∅, and σ′1\V1 = σ′2\V2 = σ. We have
σ′T1 ≡ U1 ≡ Ch(σT) ≡ Ch(σ′T) so σ′ satisfies C. Also, σ′ stays within B and σ′\V = σ as
required.

case pc-new: P = new n : T ; P1 C = {T generative} ∪ C1 B = B1 V = V1

Suppose Γ, n : T ` P1 C1, B1, V1. Since σΓ ` σP can only be typed by rule tp-new
we must have σΓ, n : σT ` σP1 where σT is generative. By the induction hypothesis there
exist σ′1 satisfying C1 and staying within B1 with σ′1\V1 = σ. Let σ′ = σ′1. Then σ′ satisfy
C and stays within B and σ′\V = σ as required.

case pc-ex: P = exercise M1 : Ṡ;P2 C = {T1
.= Ok(Ṡ)}∪C1∪C2 B = B1∪B2 V =

V1] V2

Suppose Γ ` M1 T1, C1, B1, V1 and Γ, Ṡ ` P2 C2, B2, V2. Since σΓ ` σP can only be
typed by rule tp-ex we must have σΓ ` M1 : U1 for some type U1 and σΓ, σṠ ` σP2 where
U1 ≡ Ok(σṠ). By Lemma 36 there exist substitution σ′1 satisfying C1 and staying within B1

with σ′1T1 ≡ U1, and by the induction hypothesis there exist σ′2 satisfying C2 and staying
within B2. Let σ′ = σ′1|V1◦σ′2|V2◦σ. This is well-defined since dom(σ)∩V1 = dom(σ)∩V2 = ∅,
V1 ∩ V2 = ∅, and σ′1\V1 = σ′2\V2 = σ. We have σ′T1 ≡ U1 ≡ Ok(σṠ) ≡ Ok(σ′Ṡ) so σ′ satisfy
C. Also, σ′ stays within B and σ′\V = σ as required.

case pc-end: P = end l(M1) C = {l(M1) ∈ effects(Γ)} ∪ C1 B = B1 V = V1

Suppose Γ ` M1 T,C1, B1, V1. Since σΓ ` σP can only be typed by rule tp-end we
must have σΓ ` M1 : U1 and l(M1) ∈ effects(σΓ). By Lemma 36 there exist substitution
σ′1 satisfying C1 and staying within B1 with σ′1T1 ≡ U1 and σ′1\V1 = σ. Let σ′ = σ′1. Then
σ′ satisfy C and stays within B and σ′\V = σ as required.

case pc-nil: P = nil C = ∅ B = B1 V = ∅
Suppose Γ ` � B1. Since σΓ ` σP can only be typed by rule tp-nil we must have
σΓ ` �. By Lemma 29 σ stays within B1 = B. By letting σ′ = σ we trivially have that σ′

satisfies C = ∅ and σ′\V =∅ = σ as required.

67

A.3 Solving

Lemma 67. If (C, σ)B cannot be reduced then any constraint in C is either on the form
X

.= Xµ, Xµ
.= X ′µ′, an effect constraint, or an obvious non-satisfiable type constraint.

Proof. By case analysis of the types T1 and T2 occurring in any type constraint T1
.= T2 in

C.

� Suppose that neither T1 nor T2 is a variable or a variable under explicit substitution.
If rule ts-triv, ts-ch, ts-pair, or ts-ok applies we reach a contradiction since
(C, σ)B can be further reduced. Hence we can only have T1 6' T2 which is obvious
non-satisfiable.

� Suppose T1 = X. First consider the case where T2 = X ′. If X = X ′ then rule
ts-triv applies and we reach a contradiction. If X 6= X ′ then rule ts-var1 applies
and we reach a contradiction. Secondly, consider the case where T2 = X ′µ. If X =
X ′ then we ignore the constraint. If X 6= X ′ then rule ts-var1 applies and we
reach a contradiction. Finally, consider the case where T2 is neither a variable nor a
variable under substitution. If X 6∈ FV (T2) then rule ts-var1 applies and we have a
contradiction. If X ∈ FV (T2) we have an obvious non-satisfiable constraint.

� Suppose T1 = Xµ. First consider the case where T2 = X ′. If X = X ′ then we ignore
the constraint. If X 6= X ′ then rule ts-var1 applies and we reach a contradiction.
Secondly, consider the case where T2 = X ′µ′. In this case the constraint is ignored.
Finally, consider the case where T2 is neither a variable nor a variable under substi-
tution. If X 6∈ FV (T2) then rule ts-var2 applies and we have a contradiction. If
X ∈ FV (T2) we have an obvious non-satisfiable constraint.

Lemma 68. If substitution σ satisfies [X 7→ T]C then σ ◦ [X 7→ T] satisfies C for any C.
If ground substitution σ stays within [X 7→ T]B then σ ◦ [X 7→ T] stays within B for any
B.

Lemma 69. If (C, σ)B
T−→ (C ′, σ′)B′ then there exists a substitution σ′′ such that σ′ = σ′′◦σ

and for all substitutions σ′′′ satisfying C ′ we have that σ′′′ ◦ σ′′ satisfies C. Furthermore, if
σ′′′ is a ground substitution staying within B′ then σ′′′ ◦σ′′ is a ground substitution staying
within B.

Proof. The proof is by induction in the length of the derivation of T−→ using Lemma 68.

case ts-triv: Trivial since σ′′ = [] and any σ′′′ satisfies T1 ≡ T2.

case ts-ch: σ′′ = [] and if σ′′′ satisfy C ′ then σ′′′T1 ≡ σ′′′T2 implies that σ′′′Ch(T1) ≡
σ′′′Ch(T2).

68

case ts-pair: Similar to ts-ch.

case ts-ok: Similar to ts-ch.

case ts-var1: Let σ′′ = [X 7→ T]. Since σ′′′ satisfies C ′ = [X 7→ T]C ′′ we have by
Lemma 68 that σ′′′ ◦ [X 7→ T] = σ′′′ ◦ σ′′ satisfies C ′′. We get that σ′′′ ◦ σ′′ satisfies
{X .= T} ∪C ′′ = C. Furthermore, since σ′′′ stays within B′ = [X 7→ T]B Lemma 68 shows
that σ′′′ ◦ [X 7→ T] = σ′′′ ◦ σ′′ stays within B.

case ts-var2: Let σ′′ = [X 7→ T ′] and the result follows by Lemma 68.

Lemma 70. If σ satisfies C and σX ≡ σT then σ satisfies [X 7→ T]C. If σ stays within B
and σX ≡ σT then σ stays within [X 7→ T]B.

Proof. For the first part, assume σ satisfies C and σX ≡ σT . Then, for any type T ′′

we have σT ′′ ≡ σ([X 7→ T]T ′′); in particular, since σ satisfies C it must also satisfy
[X 7→ T]C. For the second part, first note that T1 ≡ T2 implies fn(T1) = fn(T2) and
fi(T1) = fi(T2). Assume σ stays within B and σX ≡ σT . Then, for any type T ′′ we have
fn(σT ′′) = fn(σ([X 7→ T]T ′′)) and similar for fi ; in particular, since σ stays within B it
must also stay within [X 7→ T]B.

Lemma 71. Assume (C, σ)B
T−→ (C ′, σ′)B′ . If δ satisfies C then there is δ′ satisfying C ′.

Furthermore, if δ stays within B then δ′ stays within B′.

Proof. We prove this by induction in the length of the derivation of T−→.

case ts-triv: Suppose substitution δ satisfies C = {T1
.= T2} ∪ C ′ with T1 ≡ T2. Then

it also trivially satisfies C ′.

case ts-ch: Suppose substitution δ satisfies C = {Ch(T1)
.= Ch(T2)} ∪ C ′′. But this is

the case if and only if δ satisfies {T1
.= T2} ∪ C ′′ = C ′.

case ts-pair: Similar to ts-ch.

case ts-ok: Similar to ts-ch.

case ts-var1: Suppose substitution δ satisfies C = {X .= T} ∪ C ′′. Since δ satisfies
X

.= T we have δX ≡ δT . By Lemma 70 δ satisfies [X 7→ T]C ′′ = C ′. Furthermore, if δ
stays within B then by Lemma 70 it also stays within [X 7→ T]B = B′.

case ts-var2: Suppose substitution δ satisfies C = {Xµ
.= T}∪C ′′. By Lemma 47 there

exist substitution δ′ satisfying {X .= T ′, Xµ
.= T} ∪ C ′′ for T ′ = open(T). Since δ′ satisfies

X
.= T ′ we have δ′X ≡ δ′T ′. By Lemma 70 δ′ satisfies [X 7→ T ′]({Xµ

.= T} ∪ C ′′) = C ′.
Furthermore, if δ stays within B then δ′ stays within B and by Lemma 70 it also stays
within [X 7→ T ′]B = B′.

69

A.3.1 Idea for proving termination of type solving rules

We have argued that associating a pair of natural numbers (nv, ns) to a constraint set C
does not seem to be strong enough. Rather, we might partition the variables by some notion
of ”height potential”. For instance, for

C =

X〈n/1〉 .= Ch(Y)
Y

.= Pair(Y1, Y2)
X

.= Z

we have that in any substitution σ satifying C the type σX consist of one more type con-
structor than σY . Similar, σY have one more type constructor than σY1 and σY2. So, if
the opening of Ch(Y) is Ch(Y ′) then Y ′ have lesser ”height potential” than X.

More concretely, we could define a height function h measuring the number of type con-
structors in a ground type:

h(A) = 0
h(Ok(Ṡ)) = 0
h(Ch(T)) = h(T) + 1

h(Pair(T1, T2)) = max
(
h(T1), h(T2)

)
+ 1

For types with variables we could introduce a set of potential variables pX and extend h
with

h(X) = pX

h(Xµ) = pX

For T1 ≡ T2 we must have h(T1) = h(T2), so for C from above we could generate a set of
equations capturing the relative potential height between the types in the constraints:

pX = pY + 1
pY = max (pY1 , pY2) + 1
pX = pZ

Furthermore, if we can find an assignment to the potential variables there must be a variable
with a maximal value. Let m be the maximal value and let #v be the number of type
variables X with pX = v. We can form a tuple(

#m,#m−1, . . . #0, ns

)
which decreases by an opening. For instance, assume pY1 = pY2 = 0, pY = 1, pX = pZ = 2.
Then we have tuple (

2, 1, 2, 2
)

for C. If X is substituted with Ch(Y ′) we get

C ′ =

Ch(Y ′〈n/1〉) .= Ch(Y)
Y

.= Pair(Y1, Y2)
Ch(Y ′) .= Z

70

which have the lexicographical lesser tuple(
1, 2, 2, 4

)
At this point we do not know if termination can be proved based on this idea, nor do
we have no algorithm for computing an assignment to the pontential variables. In some
cases an assignment does not exists: Xµ

.= Ch(X) is an example since no assignment to
pX equates pX = pX + 1, so we have to show that the algorithm also terminates if no
assignment can be found; note that the algorithm would fail because of occur-checks if set
to solve {Xµ

.= Ch(X)}.

One possibility for computing the pX assignment could be to simply remove any explicit
substitutions in the constraint set and use the unification algorithm to create a substitution
σ. Since we have removed all explicit substitutions no opening will occur during this unifi-
cation. By assigning 0 to the potential variables of the type variables not assigned to by σ
we can use the equations generated by h to get values for all potential variables. A minimal
substitution property of unification general could perhaps be used to guarantee uniqueness
of the assignment as well as preservation of unmodified constraints. However, it has to be
shown that the type solving rules terminate even if unification for potentials fail. We do
not know if this leads to a solution.

71

72

Appendix B

Basic Type System Concepts

B.1 Simple Type System: Arithmetic Expressions

To get a better understanding of type systems let us start with a very simple one, namely
a small type systems for a small language with integers, strings and addition. Besides pre-
senting the idea of a type system it will also allow us to encounter reductions, safety, and
soundness.

The syntax of the language is
e := n | s | e1 ◦ e2

where n and s are two disjoint sets of constants denoting integers and strings respectively,
and e1 ◦ e2 an expression denoting an addition. For instance, constants 5 and 10 are mem-
bers of n and corresponds to integers 5 and 10 respectively. In s we have constants such
as kibblesworth and botley. Expression 5 ◦ 10 is intuitively meant to evaluate to 15 i.e. the
integer corresponding to 5 + 10 = 15.

We want to limit the set of expressions so that only integers are ever added together. For
this we introduce a type system with types Int and Str and rules

n : Int
t-int

s : Str
t-str

e1 : Int e2 : Int

e1 ◦ e2 : Int
t-add

As always, the conditions on top of the line are the premises, which, when satisfied, allows
us the draw the conclusion below the line. In this particular case, we see that rule t-int
permits us to give type Int to any integer constant n. Similarly, rule t-str give type Str
to any string constant s. The rule t-add specifies that an addition expression e1 ◦ e2 is
well-typed if each sub-expression e1 and e2 is an integer. Also, the result of an addition is
an integer.

If we introduce an evaluation strategy we can prove the type system sound relative to this.
We say an expression is a value if and only if it is a constant, i.e. a number or a string.
If an expression is not a value it must be an addition expression e1 ◦ e2. In this case the
strategy is to evaluate the two components e1 and e2 and add together the result. If we
at any point try to add anything but an integer to an integer we say that the evaluation

73

has reached an error state and is not well-behaved. With these definitions we want to prove
that the evaluation of well-typed expressions never reaches an error state, i.e. that only
integers are ever added together. That the set of well-typed expressions is a subset of the
set of well-behaved expressions is called the soundness of the type system.

For intuition let an evaluation strategy for expression e be defined by the function

eval(e) =

{
v if e is the member of n corresponding to integer v

v1 + v2 if e is e1 ◦ e2 with v1 = eval(e1) and v2 = eval(e2)

An expression e can then be said to be safe if eval(e) is defined; formally, predicate safe(e)
is true if eval(e) is defined, giving a charectarisation of the set of well-behaved expressions
as {e | safe(e)}.

In the systems presented in this paper the evaluation strategy is formulated in terms of a
reduction relation. For this reason we reformulate the strategy eval for arithmetic expression
as a reduction. Let the relation e → e′ be defined by rules

e1 → e
′
1

e1 ◦ e2 → e
′
1 ◦ e2

e-left
e2 → e

′
2

e1 ◦ e2 → e1 ◦ e
′
2

e-right
n = n1 + n2

n1 ◦ n2 → n
e-add

where n = n1+n2 in rule e-add should be read ”n corresponds to integer v where v = v1+v2

for n1 and n2 corresponding to integers v1 and v2 respectively”. As an example we have

(1 ◦ 2) ◦ (3 ◦ 4) e-right−−−−−→ (1 ◦ 2) ◦ 7
e-left−−−−→ 3 ◦ 7

e-add−−−→ 10

since 3 ◦ 4
e-add−−−→ 7 and 1 ◦ 2

e-add−−−→ 3. Note that we do normally not label the arrows with
the inference rule used.

From the rules we see that values cannot reduce, i.e. for any value n there does not exists
e′ such that n → e′. Also, bad expressions such as botley ◦ 10 cannot be reduced even
though they are not values; this is an example of an error state. The safety condition is
then that the reduction of an expression e never gets stuck by entering an error state, i.e.
an expression is safe if it is a value or reduces to a value. The new formulation can be
shown to match eval in the sense that eval(e) = v if and only if e reduces (perhaps under
several reductions) to a value n corresponding to v.

First we prove progress: if e : T then e is value or e → e′ for some e′.
We prove this by induction in the derivation of e : T . For the base case we consider rule
t-int and t-str. In both cases we get that e is a value. For the inductive step we consider
rule t-add. For this rule to apply we must have e = e1 ◦ e2 and e1 : T1 and e2 : T2 with
T1 = T2 = Int. The induction hypothesis then gives that e1 is a value or can be reduced, in
which case rule e-left applies. Similar for e2 and rule e-right. If both are values we use
T1 = T2 = Int and note that the only values having type Int are integer constants. Hence
we get e1 = n1 and e2 = n2 for some n1 and n2 in which case rule e-add applies. In all
cases do we have that there exists an e′ such that e → e′.

74

Next we prove preservation: if e : T and e → e′ then e′ : T .
Again we prove this by induction in the derivation of e : T . For the base case we consider
rule t-int and t-str and immediately have that since e is a value there do not exists any e′

such that e → e′ and the condition is trivially satisfied. For the inductive step we consider
rule t-add. For this rule to apply, we must have e = e1 ◦ e2 with e1 : Int and e2 : Int. Since
e → e′ we either have e1 → e′1, e2 → e′2, or e1 and e2 are both values. In the first two
cases the indution hypothesis yields respectively e′1 : Int and e′2 : Int and hence respectively
e′1 ◦e2 : Int and e1 ◦e′2 : Int as needed. In the last case the values are added and we obviously
get n : Int for n = n1 + n2 as needed.

These results, combined with the fact that any expression e can only be reduced a finite
number of times, implies that a well-typed expression is either a value or reduces to a value.
Hence safety is guaranteed.

Note that this type system has no slack: the set of well-typed expressions is identical to
the set of well-behaved (i.e. error-free) expressions. This is due to the extreme simplicity
of this toy example and we will quickly move one to a system with slack: the simply typed
lambda calculus.

B.2 Type Inference: The Simply Typed Lambda Calculus

Let us look at a more advanced and more useful type system. We illustrate the idea of
type checking and type inference (or type reconstruction). For this we consider the simply
typed lambda calculus which has the interesting property that well-typed terms terminate,
i.e. terms such as

(λx.xx)(λx.xx)

where we have a non-terminating reduction

(λx.xx)(λx.xx) → (λx.xx)(λx.xx)

are rejected by the type system. This section is inspired by [37] in which more details and
proofs can be found.

Let the set of terms in the language be given by

t := x | λx : T.t | t1 t2

where x is a variable, λx : T.t an abstraction (or function) with parameter x of type T and
body t, and t1 t2 the application of t1 on t2. Assume the standard evaluation rules∗ and let
the set of types be given by

T := O | T1 → T2

∗See [37] for details.

75

where O is some atomic base type and T1 → T2 is an arrow type describing functions from
T1 to T2. Adapt type rules

x : T ∈ Γ
Γ ` x : T

t-var
Γ, x : T1 ` t2 : T2

Γ ` λx : T1.t2 : T1 → T2
t-abs

Γ ` t1 : T2 → T Γ ` t2 : T2

Γ ` t1 t2 : T
t-app

As promised above this type system does indeed have slack. While it correctly rejects term
(λx.x x)(λx.x x), it also rejects term

(λy.z)(λx.x x)(λx.x x)

despite the fact that it allows only a finite (one) number of reductions

(λy.z)(λx.x x)(λx.x x) → z

This is due to the compositional structure of the type system: a term is well-typed if and
only if its immediate constituents are.

Having as safety predicate that terms terminate, i.e. give way to only a finite number of
reduction, it is a well known result [37] of this type system that well-typed terms are safe.
To see that the previous mentioned term (λx.x x)(λx.x x) is not well-typed note that for
a term to be typable its subterms must be typable. Assume there exists a types T1 and T
such that the first subterm can be typed as λx : T1.x x : T . According to the type rules
we must then have

Γ, x : T1 ` x : T3 → T2 Γ, x : T1 ` x : T3

Γ, x : T1 ` x x : T2

Γ ` λx : T1.x x : T = T1 → T2

for some type T2 and T3. For x to be well-typed we can only use rule t-var yielding
T1 = T3 → T2 and T1 = T3. This implies T1 = T1 → T2 but no type satisfies the recursive
occurence required in T1.

Having seen that well-typed terms are always safe (as illustrated above and proved for
the general case in [37]) it is natural to ask how we can check if a term is well-typed or
not. More precisely, if we are given a proof in the form of a type derivation tree such as
the one above, how can we make sure it is a valid proofs? This is called type checking and
is the process of recursively going through the derivation tree making sure all steps are valid.

To do type checking we need to compare types. Perhaps surprisingly this can be undecidable,
implying that type checking is not always possible by a machine. In the current system
however, type checking simply amounts to matching of arrow types and identities. For
instance, to validate proof

Γ, x : T → T ` x : T → T

Γ ` (λx : T → T.x) : (T → T) → (T → T)
Γ, y : T ` y : T

Γ ` (λy : T.y) : T → T

Γ ` (λx : T → T.x) (λy : T.y) : T → T

76

for some fixed type T we must compare T with T , T → T with T → T and so on. For this
system, type comparison is on the border of being too trivial.

Having seen how explicit the proof for type checking has to be we quite naturally wonder
if construction of the type derivation tree can be automated. Turning our attention to
type inference we want to algorithmically map an untyped term into a type derivation tree
thereby determining with what types the tree should be annoted. If no such types exists
the algorithm should fail, i.e. succeed if and only if the type checker will.

The first step is to introduce type variables, i.e. place holders for the types the algorithm
is to infer. Doing this we now get the set of types as

T := O | T1 → T2 | X

where X is a type variable. We keep the same terms and typing rules as before, and intro-
duce a set of constraint generation rules. The intuition behind this is to ”run the typing
rules backwards” recording checks done during type checking as constraints instead of ac-
tually performing them. Checking is then done when all constraints are gathered using an
unification algorithm unify . If the constraints can be satisfied, i.e. if there exists a assign-
ment to the type variables leading to successful type checking, unify also yields such an
assignment.

Let the constraint generation rules be

x : T ∈ Γ
Γ ` x T, ∅

c-var
Γ, x : T1 ` t2 : T2, C

Γ ` λx : T1.t2 T1 → T2, C
c-abs

Γ ` t1 T1, C1 Γ ` t2 T2, C2 C = C1 ∪ C2 ∪ {T1 = T2 → X}
Γ ` t1 t2 X, C

c-app

so that by ”running” the generation rules on a term we end up with a type X and a set of
constraints C. It is not hard to show that the term can be made to type check if and only
if the constraints are satisfied.

As an example let us run constraint generation on term (λx : T → T.x) (λy : T.y) from
above. We get

Γ, x : X ` x X, ∅
Γ ` (λx : X.x) X → X, ∅

Γ, y : Y ` y Y, ∅
Γ ` (λy : Y.y) Y → Y, ∅

Γ ` (λx : X.x) (λy : Y.y) Z, {X → X = (Y → Y) → Z}

and end up with one constraint, X → X = (Y → Y) → Z. The unification algorithm
solves this constraint by decomposing the arrow type thereby creating two new constraints
equating X = Y → Y and X = Z. The latter constraint is trivially satisfied if Z is replaced
by X, the former if X is furthermore replaced by Y → Y . Creating a type derivation tree

77

isomorphic to the one generated doing constraint generation and substituting our newfound
variable replacements we get

Γ, x : Y → Y ` x : Y → Y

Γ ` (λx : Y → Y.x) : (Y → Y) → (Y → Y)
Γ, y : Y ` y : Y

Γ ` (λy : Y.y) : Y → Y

Γ ` (λx : Y → Y.x) (λy : Y.y) : Y → Y

which is exactly the one from above if Y is replaced by the fixed T . Note that since Y is a
type variable, what we have found here is actually a type scheme with the property than any
typing of the term is an instantiation of the scheme, one possible instantiation being Y = T ,
another being Y = O → O and so one. In this light, we call Y the principal type of the term.

In full figure the unification algorithm solving constraints is defined by function unify :

l et rec unify C =
i f C = ∅ then []
else

let {S .= T} ∪ C ′ = C in
i f S = T then

unify C ′

else i f S = X and X 6∈ FV (T)
then unify([X 7→ T]C ′) ◦ [X 7→ T]

else i f T = X and X 6∈ FV (S)
then unify([X 7→ S]C ′) ◦ [X 7→ S]

else i f S = S1 → S2 and T = T1 → T2

then unify(C ′ ∪ {S1 = T1, S2 = T2})
else

fail

In view of what is done in the rest of this paper we can also give an equivalent definition of
the algorithm in terms of a reduction relation→ between pairs (C, σ) as defined in Table B.1.

We compute unify(C) by reducing (C, []) as much as possible, i.e. (C, []) →? (C ′, σ′) and
(C ′, σ′) 6→, where [] is the empty substitution. The output of the algorithm is σ′ if C ′ = ∅
and fail otherwise. It can be shown [37] that the algorithm is both sound and complete in
respect to the constraints, which in turn are sound and complete in respect to the typing
rules.

78

S = T(
{S .= T} ∪ C ′, σ

)
→

(
C ′, σ

)
u-eq

S = X X 6∈ FV (T)(
{S .= T} ∪ C ′, σ

)
→

(
[X 7→ T]C ′, [X 7→ T] ◦ σ

)
u-var1

T = X X 6∈ FV (S)(
{S .= T} ∪ C ′, σ

)
→

(
[X 7→ S]C ′, [X 7→ S] ◦ σ

)
u-var2

S = S1 → S2 T = T1 → T2(
{S .= T} ∪ C ′, σ

)
→

(
C ′ ∪ {S1 = T1, S2 = T2}, σ

)
u-arrow

Table B.1: Unification rules

79

80

References

[1] Mart́ın Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–
786, 1999.

[2] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure communi-
cation. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 104–115, New York, NY, USA, 2001.
ACM.

[3] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. In ACM Conference on Computer and Communications Security, pages
36–47, 1997.

[4] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Technical report, Digital Systems Research Center, 1998. 149.

[5] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption). In IFIP International Conference on Theo-
retical Computer Science (IFIP TCS2000), pages 3–22, Sendai, Japan, 2000. Springer-
Verlag, Berlin Germany.

[6] Lennart Augustsson. Cayenne - a language with dependent types. In S. Doaitse Swier-
stra, Pedro Rangel Henriques, and José N. Oliveira, editors, Advanced Functional Pro-
gramming, volume 1608 of Lecture Notes in Computer Science, pages 240–267. Springer,
1998.

[7] Bruno Blanchet. Automatic verification of correspondences for security protocols, 2008.

[8] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Static
analysis for the pi-calculus with application to security. Information and Computation,
168(1):68–92, 2001.

[9] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication. ACM
Transactions on Computer Systems (TOCS), 8(1):18–36, 1990.

[10] Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Computer Science and
Engineering Handbook, pages 2208–2236. CRC Press, 1997.

[11] Ivan Damgaard and Jesper Buus Nielsen. Commitment schemes and zero-knowledge
protocols. Lecture notes.

81

[12] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[13] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-order unification via
explicit substitutions. In D. Kozen, editor, Proceedings of the Tenth Annual Symposium
on Logic in Computer Science, pages 366–374, San Diego, California, June 1995. IEEE
Computer Society Press.

[14] Bruno Blanchet et al. Proverif: Cryptographic protocol verifier in the formal model.
http://www.proverif.ens.fr/.

[15] Cédric Fournet and Mart́ın Abadi. Hiding names: Private authentication in the applied
pi calculus. In Okada et al. [35], pages 317–338.

[16] Cédric Fournet and Andrew D. Gordon. A type discipline for authorization policies.
Technical report, Microsoft Research, 2005. MSR-TR-2005-01.

[17] Andrew D. Gordon, Hans Hüttel, and René Rydhof Hansen. Type inference for corre-
spondence types. Unpublished paper.

[18] Andrew D. Gordon and Alan Jeffrey. Typing correspondence assertions for communi-
cation protocols. Technical report, Microsoft Research, 2001. MSR-TR-2001-48.

[19] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic
protocols. In CSFW, pages 77–91. IEEE Computer Society, 2002.

[20] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic
protocols. Technical report, Microsoft Research, 2002. MSR-TR-2002-31.

[21] Andrew D. Gordon and Alan Jeffrey. Typing one-to-one and one-to-many correspon-
dences in security protocols. In Okada et al. [35], pages 263–282.

[22] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security protocols.
Journal of Computer Security, 11(4):451–519, 2003.

[23] Andrew D. Gordon and Alan Jeffrey. Typing correspondence assertions for communi-
cation protocols. Theoretical Computer Science, 300:379–409, 2003.

[24] Andrew D. Gordon and Alan Jeffrey. Secrecy despite compromise: Types, cryptog-
raphy, and the pi-calculus. In Mart́ın Abadi and Luca de Alfaro, editors, CONCUR,
volume 3653 of Lecture Notes in Computer Science, pages 186–201. Springer, 2005.

[25] Andrew D. Gordon, Alan Jeffrey, and Christian Haack. Cryptyc: Cryptographic pro-
tocol type checker. http://www.cryptyc.org/.

[26] Christian Haack and Alan Jeffrey. Pattern-matching spi-calculus. Information and
Computation, 204(8):1195–1263, 2006.

[27] Matthew Hennessy. A Distributed Pi-Calculus. Cambridge University Press, 2007.

82

[28] Daisuke Kikuchi and Naoki Kobayashi. Type-based verification of correspondence
assertions for communication protocols. In Zhong Shao, editor, APLAS, volume 4807
of Lecture Notes in Computer Science, pages 191–205. Springer, 2007.

[29] Cédric Lhoussaine. Type inference for a distributed π-calculus. Science of Computer
Programming, 50(1-3):225–251, 2004.

[30] Gavin Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters, 56(3):131–133, 1995.

[31] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In POPL ’88:
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 47–57, New York, NY, USA, 1988. ACM.

[32] Robin Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge
University Press, 1999.

[33] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[34] Flemming Nielson, Helmut Seidl, and Hanne Riis Nielson. A succinct solver for ALFP.
Nordic Journal of Computing, 9(4):335–372, 2002.

[35] Mitsuhiro Okada, Benjamin C. Pierce, Andre Scedrov, Hideyuki Tokuda, and Akinori
Yonezawa, editors. Software Security – Theories and Systems, Mext-NSF-JSPS Inter-
national Symposium, ISSS 2002, Tokyo, Japan, November 8-10, 2002, Revised Papers,
volume 2609 of Lecture Notes in Computer Science. Springer, 2003.

[36] Sam Owre, John Rushby, and N. Shankar. Integration in PVS: tables, types, and
model checking. In Ed Brinksma, editor, Tools and Algorithms for the Construction
and Analysis of Systems TACAS ’97, number 1217 in Lecture Notes in Computer
Science, pages 366–383, Enschede, The Netherlands, apr 1997. Springer-Verlag.

[37] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[38] Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. The MIT
Press, 2004.

[39] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information
and Computation, 111(2):245–296, 1994.

[40] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value lambda-
calculus using a stack of regions. In POPL, pages 188–201, 1994.

[41] Thomas Y.C. Woo and Simon S. Lam. A semantic model for authentication protocols.
In IEEE Computer Society Symposium on Research in Security and Privacy, pages
178–194, 1993.

[42] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 214–227, San Antonio, January 1999.

83

