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An iterative approach has been used to ex-
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priorities. In addition some focus has been put on
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execution as a test generation technique.
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test generation for the .NET-platform have been
identified. This includes the merit of random
testing as a fast and easy to implement test
solution, difficulties of creating a plug-in for
Visual Studio and most importantly the need for
a proper analysis/instrumentation library for CIL
code if symbolic execution should be used as a test
generation technique.
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Preface

This master thesis is written by group d620a and documents the effort done as part
of a 10th semester Software Engineering project at the Department of Computer
Science, Aalborg University. It was written during spring 2008 under the Program-
ming Technology group and the theme for the project is Software Testing.

The report documents the development of a prototype tool for automatic generation
of unit tests on the .NET platform, and the additional efforts needed in order to
provide a complete implementation. It is assumed that the reader is familiar with
basic concepts of unit testing, the .NET framework and computer science in general
as some of the discussed concepts are not described in detail.

Reading Guide

As an aid to the reader the parts of this report along with a short description of the
content is provided below.

Chapter 1 (Introduction) Introduces the problems related to unit testing and doc-
ument why automating the process would be beneficial.

Chapter 2 (Previous Work) Summarizes the results achieved through our previ-
ous work that was a survey of tools and techniques used for automated unit
testing.

Chapter 3 (Project Goals) Defines the overall goals of the project and methodol-
ogy used during the project period.

Chapter 4 (Initial Analysis) Describes the initial analysis and gives an overview
of the overall architecture and design of the prototype.

Chapter 5 (Stage 1) Describes the work done during stage 1. This includes analyz-
ing and implementing the initial random testing technique and considerations
regarding IDE integration.



Chapter 6 (Stage 2) Describes the work done during stage 2. This includes the
implementation of an IDE plug-in and an analysis of symbolic execution.
This chapter also revisits the implementation of random testing.

Chapter 7 (Stage 3) Describes the work done during stage 3. Describes the practi-
cal experiences gained during the work on implementing symbolic execution
into the prototype.

Chapter 8 (Discussion) Discusses and reflects upon the experiences archived dur-
ing the project period.

Chapter 9 (Conclusion) Concludes upon the experiences and knowledge achieved
working with automated test generation.

When using references the type of the reference is capitalized followed by the rank,
e.g., Chapter 2 or Figure 1.1. A list of figures, and appendices may be found in the
back matter.

Citations refer to the bibliography found in the back matter and are written as a
number encapsulated by brackets, e.g., [1]. The entries in the bibliography contain
the author of the citation, the title, how it was published, the year of publishing, and
other relevant information, respectively.

Acronyms and abbreviations are only used after the term has been written in its
entirety. The acronym or abbreviation will be written in parentheses after the first
time the term is used, and afterwards it is solely the acronym or abbreviation, which
is used, e.g., Control Flow Graph (CFG) the first time and henceforth just CFG.

Content of CD

On the accompanying CD the following content can be found:

• A copy of this report in PDF format

• Source code for the various experiments

It should be noted that, due to the issues found during the course of this project,
none of the projects found on the CD will produce a working executable. The
source code is only attached as documentation for the work done.
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CHAPTER 1

INTRODUCTION

Ensuring reliability and correctness of software by testing or verification is a vital
part of the software development process, but it is also a costly and time-consuming
activity. An activity which according to several studies can account for as much as
50% of the development time[2].

An important step in reducing this cost is minimizing the time before a defect is
detected. The longer a defect is left to propagate through the various stages of the
development process before it is found, the more expensive it is to repair. This can
be seen from Figure 1.1 which also shows that the majority of errors are introduced
during the programming phase.
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Figure 1.1: System life-cycle: Error introduction, detection and cost of repairing
(Source: Liggesmeyer 1998[3]).

From this it should be clear, that whatever can be done to find defects early, and



means to minimize the time spent on testing, can have a substantial financial value
to both the developers and the customers.

One of the most effective ways to minimize the number of defects that propagate
beyond the programming stage is to do unit testing. Detecting and correcting unit-
level defects during the programming phase not only reduces cost, but also lets the
testers in Quality Assurance (QA) focus on their prime concern, namely integration
and system testing.

Usually unit tests are written manually and only automated in special cases. The
problem with this is that manual unit testing it is time-consuming, error-prone and
usually not exhaustive. The time factor can to some extent be mitigated by using
a unit testing framework such as JUnit[4], which has become the de facto standard
when writing unit tests for Java code, or one of the numerous other frameworks
available for various languages.

These frameworks usually provide much of the boiler-plate code associated with
writing unit tests, as well as an execution framework to run the tests. In many
cases the ability to output reports in various formats is also available. While this
alleviates the programmer from manually running the test suites and provides for
good integration into the build process, in the form of automated regression testing
during nightly builds, etc., the programmer is still required to manually write the
individual test cases.

This still leaves most of the mentioned problems unsolved:

Time-consuming: The quality of the test is largely dependent on the time used by
the developer on a given test case. For any piece of complex code this can be
a time-consuming activity.

Error-prone: The prime objective of unit tests is to break code. If the same
programmer that writes the code is not intent on finding errors in the code,
the unit tests will reflect this.

Exhaustive: Even if the programmer writes a lot of test cases he might not be able
to achieve a high degree of coverage. This will diminish the confidence in the
code-base.

Automatically generating test cases can solve a lot of these problems, especially if
it can be done within a reasonable time. The idea of automatically generating the
tests is not new, but many of the program analysis techniques required is compu-
tationally expensive and has not been tractable for real-world applications. In the
last decade, however, the advances in hardware, constraint-solving techniques, and
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1. Introduction

the popularization of strongly typed languages such as Java and C# has spiked a
renewed interest in this area and a number of research and commercial tools has
been developed.

Most of these techniques and tools have been developed in the context of the Java
language and to the authors knowledge only two existing tools target the .NET
framework: .Test which is a commercial tool developed by Parasoft and Pex which
is currently in development at Microsoft.

This report documents the efforts needed to create a tool to automate the generation
of unit tests from .NET assemblies. The work is focused on creating a complete
tool for automating the creation of unit tests. This includes trying to examine ex-
isting techniques in order to determine how to combine them in order to achieve
better error detection, but also how the tool can be integrated into the development
environment in order to provide better feedback to the developer.
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CHAPTER 2

PREVIOUS WORK

In our previous work[5] we analyzed the current research directions in the field, and
surveyed a selection of existing tools. Much of what is described here builds on that
work, with the addition of a few new articles which were published more recently.

The chapter is divided into two sections, each dealing with the two major problem
areas in automated unit testing:

Test Case Generation: This is the process of determining the input to use when
testing a given program. Automatically generating input can roughly be clas-
sified into black-box techniques (heuristics, random) and white-box tech-
niques (program analysis) known from the standard literature on software
testing.

Generation of Test Oracles: This is the problem of how to automatically generate
a heuristic/procedure that can determine whether or not a test case passed
or failed. In manual testing this is the done by the programmer, usually in
the form of assertions inserted into the test case to check certain program
properties, but when automatically generating test cases this becomes much
harder as the programmers knowledge of program behavior and specifications
is usually not known.

In addition to this a survey of some of the existing tools was also made. These find-
ings will not be described in this chapter, but will be elaborated on in the analysis
in Section 5.2.



Test Case Generation

2.1 Test Case Generation

The generation of test case input is the most researched area of automated test gener-
ation and several advances have been made in the recent years. There are especially
two techniques that have received a lot of attention: random testing and symbolic
execution. Random testing because it is simple and fast, and symbolic execution be-
cause it is able to achieve a high degree of coverage and thereby potentially discover
more errors.

2.1.1 Random Testing

Random testing has several advantages that make it attractive in the context of au-
tomatic test generation: It is relatively easy to implement, it is very efficient with
respect to execution time, and because it is a black box technique, i.e. does not
depend on the complexity of the code, it scales well to large code bases.

Several tools have implemented random testing, both as a standalone technique as
used in JCrasher[6], AutoTest[7], and Randoop[8] or in conjunction with more so-
phisticated and systematic techniques as implemented in DSD-Crasher[9], Eclat[10],
DART[1], CUTE[11] and the commercial tools Jtest[12] and AgitarOne[13]. The
following gives a short overview of the tools that only rely on random testing. The
tools that use more than one technique either use very similar approaches, in the
case of the commercial tools, it is not known exactly how it is implemented.

The implementation in JCrasher[6] generates random input by constructing a map-
ping from types to methods returning objects of that type. This mapping is then used
to generate a graph for each method under test where the nodes represent methods
and their arguments, and edges goes from types (arguments) to methods and repre-
sent a way to create a value of that type. Creating input for a test case is then done
by selecting a random path through the graph.

While the paper provides a thorough description of the method it lacks a good com-
parison with other techniques making it difficult to judge the effectiveness of the
method in practice.

Ciupa et al.[7] implements a random testing strategy in the tool AutoTest. AutoTest
maintains a pool of already constructed objects. Based on a probability it chooses
whether to create a new object or use one of the existing ones from the pool when
an object of a given type is needed. Before an object is added back to the pool
there is also a probability that the object will be diversified, i.e. by calling random
procedures in order to try to reach new program states. The motivation for this is
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2. Previous Work

that some bugs in object oriented software are first found after an object has been
used and mutated. Like JCrasher the algorithm used by AutoTest also starts out
from the method under test and tries to construct input by recursively creating the
needed objects.

In their results they both report that random testing can in fact be very effective at
finding bugs, but also makes the important observation that random testing finds a
large number of bugs within the first few minutes of testing.

Pacheco and Ernst[8] describes the work on the tool Randoop. Randoop also gen-
erates random test cases, but unlike JCrasher and AutoTest, the test cases are built
by creating sequences of method calls starting with sequences only containing pre-
defined values for primitive types. Each iteration of the algorithm picks a random
method from the classes under test and tries to construct a new sequence by using
values from previously constructed sequences as input. If it succeeds the sequence
is added to the pool and can be used to construct new sequences. Randoop, like
AutoTest, also tries to introduce mutation of objects. This is done by introducing
a probability that a method call can be added to a sequence more than once when
selected.

According to the paper this approach is, in some cases, able to achieve both better
error detection and coverage than more systematic techniques. The authors also
conclude, like Ciupa et al. in [7], that random testing, while effective, can be even
more useful when combined with other more systematic techniques.

There are, however, one serious drawback to random testing namely that it fails
to exercise program behavior for a large portion of the input domain[2, 14]. The
implication of this is that random testing is unlikely to find errors at singularities
in the code, i.e. randomly generating test cases is unlikely to find division by zero
errors, etc. This does not mean that random testing should be discarded but rather,
as several of the papers above conclude that it should be used in conjunction with
other, more systematic, techniques in order to improve error detection. The same
papers also show, by using simple heuristics in order to mutate program state, that
random testing can be viable even when not combined with more computationally
expensive techniques.

2.1.2 Symbolic Execution

The most widely recognized technique for systematically generating test input[15]
is symbolic execution[16]. Instead of concrete input a symbolic execution engine
is supplied with symbolic constants for inputs. As the program is executed assign-
ments along a path updates the program state with symbolic expressions, and every
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Test Case Generation

conditional generates a constraint in terms of the symbolic inputs. These constraints
can then be solved, using a constraint solver, in order to generate concrete input val-
ues that are guaranteed to execute along the given path.

The advantage of systematic techniques like symbolic execution is that they solve
the problem of not testing corner cases, which is the main problem of random test-
ing. There are however several drawbacks to this technique, of which the largest is
its inability to scale due to its computationally expensive nature. This is a problem
that is also inherit in other systematic techniques such as model checking, i.e. the
state explosion problem. Other problems include detection of infeasible paths and
how to handle loops. These problems and others are discussed in greater detail in
Section 6.2.

There are several tools that uses symbolic execution in order to generate test cases
such as Symstra[17], which exhaustively explores the method sequences with sym-
bolic arguments up to a given length. In order to speed up the exploration Symstra
employs pruning of the state space based on state subsumption. Results show that
Symstra is able to generate method sequences that reach a high degree of branch
and intra-method path coverage for a number of complex data structures.

DART[1] and similar projects such as CUTE and jCUTE[18] uses a combination
of concrete and symbolic execution (concolic). Symbolic execution is used to gen-
erate input that directs the program through new paths. If the symbolic state for a
path is too complex to be handled by the constraint solver, the symbolic values are
substituted by concrete values allowing the tool to continue. More recently several
improvements to the original algorithms have been proposed in order to make them
more scalable. SMART[19] extends DART with interprocedural analysis combined
with summaries of the pre- and post conditions on methods, and Majumdar[11] adds
a random testing step to CUTE in order to drive the analysis until no new paths is
found after which symbolic execution takes over.

Other tools using symbolic execution to generate test cases include the Java PathFinder
project (JPF)[20], a model checker for Java programs, which combines symbolic
execution with its model checking capabilities[21]. The commercial tools Jtest[12]
and AgitarOne[13] also uses symbolic execution to some extent, although the specifics
is not publicly available. The, not yet released, Pex[22] tool from Microsoft also
uses a form of symbolic execution similar the work done in DART/SMART.

2.1.3 Other Techniques

There are a number of other techniques for creating unit tests. One of the ap-
proaches is to statically analyze the source code and look for specific patterns.
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2. Previous Work

This is used in both FindBugs[23] and in the two commercial offerings Jtest and
AgitarOne.

Trying to automatically infer invariants for the program under test is also a tech-
nique that is employed by a large number of tools. Usually this is done with the help
of an external tool such as Daikon[24] or DySy[25], and requires a driver program
that will exercise the code. The invariant detector then instruments and monitors
the program during execution in order to infer likely invariants. The output, in the
form of invariants, can then be used by other tools in order to improve test selection
and oracles.

DSD-Crasher[9], the successor to JCrasher, uses Daikon to annotate the program
using Java Modeling Language (JML)[26]. The annotated program is then pro-
cessed by the static checker ESC/Java[27]. If ESC/Java finds an error it is reported
in the form of a constraint system which DSD-Crasher then solves in order to pro-
duce a concrete test case. The generated test case is then executed in order to verify
that the reported error is indeed an error. This step is necessary because ESC/Java is
unsound and may produce false positives. A similar approach is also used by Jtest
and AgitarOne.

2.2 Test Oracles

A test oracle is, as described in the beginning of the chapter, a procedure that given
a test case can determine if the test passed or failed. This is closely related to the
problem of determining if input for a given test case is valid or not, and is a question
of whether or not a specification exists for the program under test.

Consider the example in Listing 2.1. The comments contain the informal spec-
ifications for the method which may not even be present, but can be an implicit
understanding of how the code is supposed to be used. When manually generating
test cases for this method a programmer might write a single test case as shown in
Listing 2.2.

� �
1 // Assumes that b != null and b.x > 0
2 // Returns 10 divided by b.x
3 int foo(Bar b) {
4 int z = 10 / b.x;
5 return z;
6 }� �

Listing 2.1: Example method with informal specifications.
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Test Oracles

� �
1 void testFoo()
2 {
3 Bar b = new Bar(); // Create input
4 b.x = 2;
5
6 int result = foo(b); // Call method under test
7
8 Assert.AreEqual(result , 5); // Oracle: make sure we get the
9 // expected result

10 }� �
Listing 2.2: Manual unit test for the code in Listing 2.1

The test case uses the implicit knowledge that the programmer has in order to create
legal input and construct a proper oracle. When automatically generating the test
cases either an operational specification for the program has to be present, or the
tool has to use heuristics or other means to infer as much as possible about the
code.

2.2.1 Specification Languages

An operational specification could be in the form of an embedded specification
language such as JML[26] for Java or, as is the case for Eiffel, a part of the core
language. The specification can then be consumed by other analysis tools or com-
piled into the code in form of assertions which are checked on each method call.
Listing 2.3 shows Listing 2.1 with JML annotations added.� �

1 // @require b != null and b.x > 0
2 // @ensure \result == 10 / b.x
3 int foo(Bar b) {...}� �

Listing 2.3: JML specifications added to Listing 2.1

In these cases a tool would be able to generate test cases very similar to the one
shown in Listing 2.1 except that the test tool would not have to generate the assert
statement in line 8. This assertion would already be a part of the normal code.

Generating input that does not produce illegal test cases, i.e. that does not violate
the preconditions of the method, also becomes easier. A test tool could either try
to create input that would not violate the constraint system expressed by the pre-
condition or simply try to run the test and see if a pre-condition violation occurs.

In the case of AutoTest which is developed for Eiffel this is used with great suc-
cess[7] and has allowed them to test several large real-world applications using
random testing.

10
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In the case of JML the situation is somewhat different. Research conducted by the
developers of JML indicate that Java developers in general is very reluctant to add
the specifications[?]. This could indicate that relying on the user to annotate the
code with specifications is not a viable solution for languages which does not have
built-in support. For tools that automatically try to generate the specifications, i.e.
invariant detection, this is of course not a problem.

It should also be noted that the type of project is a factor. Certain projects such as
mission critical software are more likely to use specifications, because of the high
cost associated with program failure, while joe-programmer’s notepad might not
even have informal specifications apart from ’being able to enter text’.

2.3 Other Approaches

In the absence of specifications a test tool is left with the errors reported by the
language. In this case the tool can either consider all exceptions as failed test cases
or try to infer the invariants or use heuristics in order to determine if a test case
passed/failed or indeed is a valid test. Listing 2.4 shows a test case for the method
in Listing 2.1 which could be generated randomly by a tool such as JCrasher.� �

1 @test
2 void testFoo()
3 {
4 Bar b = new Bar(); // Illegal input
5 // b.x == 0
6
7 int result = foo(b); // Error: division by zero
8 }� �

Listing 2.4: Manual unit test for the code in Listing 2.1

This test generates a ArithmeticException in Java. At the language level it is
perfectly valid to consider this a failed test case, in fact there are several tools such
as DART and CUTE/jCUTE, that uses this approach.

The problem here is that, for any larger program, this can generate a large amount
of test cases. Test cases which the programmer has to inspect in order to determine
if it really is an error in the context of the program. The last point here is important
because at the user level this is not a failed test, but an illegal one, i.e. the informal
specification states that b.x is always greater than 0.

JCrasher handles this by filtering the exceptions based on a heuristic. Exceptions
are classified and depending on their type and where they originate it is determined
whether or not the error is propagated to the user. While this reduces the number
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of produced test cases, and in many cases is consistent with what the user expects,
there are still cases where the tool reports errors which would be a false positive at
the user level. In the case of the example the ArithmeticException would be sup-
pressed, but if foo is called with a null argument the error would be propagated
to the user, and this is clearly not an error according to the (informal) specification.

The commercial tools Jtest and AgitarOne uses a large range of techniques such as
invariant detection, static analysis, symbolic execution in order to produce a set of
observations about the code. These observations can then be promoted to assertions
by the programmer, the tools does therefore not try to solve the oracle problem, but
delegates it to the programmer. In the case of the previous example Jtest/AgitarOne
would report the observation that b.x > 0 and b != null . It would then be up to
the programmer to actually mark these as valid assertions.

Pex[22] uses an approach called Parameterized Unit Tests (PUT)[28] which is a
generalized version of the standard parameterless test method. The PUT acts as a
specification of the behavior of the code under test and describes a set of normal
unit tests which can be obtained by instantiating the PUT with different arguments.
The PUT for Listing 2.1 is shown in Listing 2.5.� �

1 [PexMethod]
2 void TestFoo(Bar b)
3 {
4 PexAssume.NotNull(b); // Specification is part of test
5 PexAssume.AreNotEqual(0, b.x);
6
7 int result = foo(b); // Call method under test
8
9 Assert.AreEqual(10, ((10 % b.x) + (b.x * result))) // Oracle

10 }� �
Listing 2.5: Parameterized unit test for the code in Listing 2.1

Pex then uses symbolic execution in order to generate normal unit tests which call
the parameterized unit test with different input. This way the creation of the oracle
and specifications is still done by the programmer, but it is done in the context of
a unit test which may be more intuitive for people not used to writing operational
specifications in languages like JML.

2.4 Summary

Automatically generating test cases has seen a number of advances in the recent
years. Random testing and symbolic execution is two of the techniques which show
the greatest potential, especially if they can be combined in order to complement

12
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each other and make up for the individual weaknesses. This has already been done
with good results in CUTE, and the commercial tools Jtest and AgitarOne takes
this even further and combines almost all of the discussed techniques, i.e. random
testing, symbolic execution, static analysis, pattern analysis, etc.

Test oracles are a harder to generate automatically. In order to do this properly,
either some form of operational specification is needed or the programmer has to be
consulted. The latter approach is taken by all the commercial tools; Pex uses param-
eterized unit tests which can act as a specification, AgitarOne and Jtest both uses
the concept of observations which can be promoted to assertions, and in addition
Jtest also has its own specification language JContract.

The tools that are a result of research projects either try to infer invariants auto-
matically, which is the case for DSD-Crasher, Eclat, etc. Another approach is to
use heuristics in order to filter based the type of errors like JCrasher does. The
last approach is to simply disregard the issue and only concentrate on errors at the
language level, i.e. like DART and CUTE.

Currently there is no conclusive evidence as to which approach is better (if any), and
it also comes down to preference and project constraints. The only conclusion that
can be made is therefore that any serious testing tool would do well to accommodate
for several different ways to treat the oracle creation problem.
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CHAPTER 3

PROJECT GOALS

During the research documented in the previous chapter several observations was
made. The first was that there is only one tool that currently targets the .NET frame-
work namely .TEST from Parasoft. Although this particular tool was not surveyed
in[5], the information available at their website indicates that the product has the
same features as Jtest tool. Pex from Microsoft is another tool that targets the .NET
framework, but this tool is at the time of writing still in development and the feature
set and release date is not known. Both of these are commercial products and to the
authors knowledge no research or open-source implementations exist.

It is the authors’ opinion that such a tool would be a valuable contribution. Both as
an alternative to the commercial offerings but also as a research platform for future
development of testing solutions for the .NET platform.

The second observation was that, except from the commercial offerings, many of
the tools either only ran as a command line tool or produced error messages that
were hard to decipher. This does not mean that the tools themselves were poor, but
it does take the programmer a longer time to switch between tools in order to get the
needed information. The only tool, apart from the commercial ones, that provided
good information about errors and fixes was FindBugs.

The authors argue that in order to maximize the time and development effort that
can be saved by using an automated tool, and in order to encourage its use, it is
essential that a tool provides good integration into the development process. This
includes proper error messages, solutions to fixes, reports, etc. This information
should be provided to the programmer while he is coding so possible defects can
be handled as quickly as possible. Integrating the testing tool into an Integrated
Development Environment (IDE) could provide all of this, but would also allow the
tool to provide visual clues and automatic refactoring in order to fix bugs.



Prototype

The last observation was that only the commercial tools provided a wide range of
techniques and options in order to maximize the number and types of bugs found.
This is of course understandable as many of the tools are research projects and
therefore focuses on one or two techniques, but as our previous research concluded
it would be preferable if several different techniques could be combined.

If the development-time of any of the existing tools for Java is any indication, cre-
ating such a tool is a multi man-year effort, and clearly outside of the scope for a
semester project. The goals of this project are therefore to develop a simple pro-
totype in order to uncover any potential problems with creating such a tool for the
.NET platform, and provide a basis for further development. The prototype should
still incorporate all of the mentioned elements, but with reduced functionality.

3.1 Prototype

The prototype should both be able to function as a command line tool and as a plug-
in for an IDE. As a command line tool the output should be in the form of NUnit
test cases and when running under an IDE the output should be in the form of visual
clues in the interface. In order to generate the test cases the prototype will combine
random testing with symbolic execution.

The motivation for choosing a combination of random testing and symbolic execu-
tion has several aspects. The first is that the results from our previous works showed
that this is a very promising combination, that could provide very high error detec-
tion rate as well as good coverage.

The second is that random testing will allow a fast initial implementation. This can
be used when implementing the functionality in the IDE to identify problems with
the interface between the backend tool and the IDE frontend as early as possible.

The next is that it is assessed that symbolic execution is the most difficult of the
testing techniques to implement. Not only is there a lot of inherent problems in the
technique, but it also requires a lot of auxiliary functionality in order to work, i.e.
code instrumentation, constraint solving, etc. Identifying these as early as possible
in order to find or build the needed functionality could provide a framework that
future extension can build on, as it is not expected to be able to do a full working
implementation.

The prototype will not cover the creation of oracles or any advanced functionality
in the IDE. Furthermore the prototype will only be implemented to handle very
basic programming constructs and types, but a description and analysis of the more
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advanced problems will be provided where appropriate.

3.2 Project Stages

In order to structure the development of the prototype the project was divided into
several stages. The motivation for this is that while the authors’ previous survey
and work on the subject provided a good overview, there are still a lot of areas that
need further analysis and research in order to provide an implementation.

Using an iterative model and using prototyping would allow research for the next
stage to be conducted in parallel with the implementation of the prototype for the
current stage. The initial plan is summarized in the following:

Initial Analysis: Initial analysis in order to see how much of the needed function-
ality can be taken from existing libraries. This also contains the initial design
of the architecture.

Stage 1: The design and development of a prototype implementation of a random
testing tool. In parallel to this the analysis and design of the IDE plug-in is
conducted.

Stage 2: This stage should see the implementation of the IDE plug-in and the
analysis of symbolic execution module.

Stage 3: The implementation and integration of symbolic execution into the pro-
totype.

As the rest of this report will show there were several implications and problems,
which resulted in development not being able to follow this initial plan. These were
mostly related to the implementation of the IDE plug-in and symbolic execution
and ultimately resulted in not being able to produce a working prototype. This will
be discussed and reflected upon in Chapter 8.
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CHAPTER 4

INITIAL ANALYSIS

Before the development of the prototype started an initial analysis was conducted.
The purpose of doing this analysis was to examine if some of the needed function-
ality could be provided by already existing libraries.

Many of the tools for Java depend on existing libraries for specific functionality
such as reflection, instrumentation, and byte code analysis which can be done via
libraries/projects such as Soot[29] and BCEL[30]. Even whole parts of the program
such as symbolic execution could possibly be provided in the form of JPF[31].

The assessment was that in order to develop a tool for .NET it would also be nec-
essary to depend on external libraries for at least some of the functionality. Partly
because implementing the functionality would be too time-consuming, but also be-
cause it would remove focus from the goal of creating an automated testing tool.

Most of the functionality needed is related to symbolic execution, so the ideal situa-
tion would be if that entire part of the program could be provided as an off the shelf
component. Unfortunately no such library was found. It was concluded that in order
to perform symbolic execution at least code instrumentation had to be performed.
A constraint solver also had to be at hand to help solving the path constraints gen-
erated by symbolic execution.

In order to do symbolic execution it is necessary to instrument the code, and there-
fore a proper library for instrumentation/analysis is needed. By investigating tools
and libraries available for the .NET platform the following was found:

• Phoenix[32] (Microsoft Research)

• RAIL[33] (University of Coimbra)

• .NET profiling API[34] (Microsoft)
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In addition to instrumentation a constraint solver is also needed. Many of the Java
projects use the Simplify-solver[35], but several other solvers are available including
a solver developed by Microsoft Research called Z3[36] that provides a managed
API.

Due to these observations the assessment was made, that despite the lack of a tool
able of performing actual symbolic execution, it would still be possible to integrate
already existing libraries into a tool in order to gain the functionality needed for
symbolic execution.

4.1 Architecture and Design

In this section the overall architecture of the tool is described. The architecture
mainly consists in two parts. The first part consists of a command line interface and
a plug-in for Visual Studio. These elements are the top layer of the architecture, the
frontend. The other part describes the actual tool and all of the elements needed for
supporting automatic test generation. This part is the lower layer of the architecture,
the backend. This can be seen in Figure 4.1.

Command Line Driver Visual Studio Plug-in

Test Tool

Test Writer Test Generator

Random SymbolicNUnit ...

Instrumentation

Execution Engine
Solver

Figure 4.1: Overview of the test tool.

The design focuses on the elements in the backend of the tool. The analysis of
the plug-in part will be described through the analysis of graphical elements seen
in other tools and designed based on these observations. The description of this
process can be found in Section 5.2.

Figure 4.2 shows the package diagram of the packages identified to be essential
in the test tool. As implied from the figure the package called Tool is the central
package of the tool. It is through this package all the functionalities are linked
together and exposed to the world.
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Tool

Plug-inCommandline

Test Phoenix

Solver

Output

«uses»

«uses» «uses»

«uses»

«uses»

«uses»

Figure 4.2: Package diagram of the tool.

The two packages associated with the user interfaces Commandline and Plug-in
makes use of the functionalities exposed by the tool-package. The packages Phoenix
and Solver contains functionalities associated to symbolic execution. Subjects re-
lated to these packages will be explained in Section 6.2 and Chapter 7.

The main focus of this section is the packages enclosed by the dashed line in Figure
4.2. The goal of the architecture is to create a solid foundation both facilitating
a fast implementation of a prototype supporting basic functionality, and allowing
future extensions.

A class diagram illustrating the design of the packages Tool, Test and Output can be
seen in Figure 4.3. The plan is to base the implementation on this design, and then
change the design if needed based on how the project evolves.

In the following the main purpose of the classes in Figure 4.3 is briefly described.

TestTool This is the main class of the tool. It exposes the functionality of the tool
to the outside world and handles initialization tasks.

Testee This is mainly a container class holding information needed to handle a test
project like output path etc. The class also contains the Class- and TestCase-
objects associated to the assembly under test.

Class This is a wrapper for the reflected type of a class. Also holds a list of
Methods.
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TestTool

TestWriter

NUnitWriter

Testee

Class

Method TestCase RandomSymbolicExecution Hybrid

TestTechnique

TestGenerator

1

0..*

1
0..*

1

0..*

1

0..*

1
1

1

1

1

1

...

Figure 4.3: Preliminary class diagram of the test tool.

Method Wrapper class for the methods and constructors found in Class through
reflection.

TestCase Represents a constructed test case. Can either be serialized to a file or
executed directly.

TestWriter This abstract class that facilitates writing TestCases to files. Concrete
test writers for various languages/frameworks inherit this class.

NUnitWriter Example of a concrete test writer. It writes NUnit test cases to a file.
Other variants could be implemented.

TestGenerator This class is responsible of generating tests based on the technique
of choice. The generated tests can then be executed by the tool or serialized
to disk.

TestTechnique This abstract class holds general information needed to execute
concrete a TestTechnique. A concrete TestTechnique inherits form this class.

Random The concrete implementation of a random test generation technique, that
can be executed by the TestGenerator.

SymbolicExecution This class is not initially implemented but should contain an
concrete implementation of a test technique based on symbolic execution.
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Hybrid This class is not initially implemented but should contain an concrete im-
plementation of a test technique based on a hybrid of a random- and symbolic
technique.
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CHAPTER 5

STAGE1

This chapter describes the research and work done during the first stage of develop-
ment on the prototype. The goals of this stage is to create an initial implementation
of the tool using one of the random testing algorithms and to analyze and design the
interface portion of the IDE plug-in.

5.1 Random Testing - Design and Implementation

In the process of selecting a random testing algorithm for the tool the techniques
employed by the JCrasher[6], AutoTest[7] and Randoop[8] were examined.

The advantage of the JCrasher approach is that it creates a graph of the input space
up front. This allows the testing process to limit the number of generated test cases
for a method either by limiting the depth of the graph or by counting the number
of possible parameter combinations and only selecting a subset. This can be done
before actually creating or running any of the test cases. The disadvantage is that
the technique is very simple and does not try to mutate objects in order to reach new
states that could produce errors.

AutoTest uses an approach very similar to JCrasher, but uses heuristics that for each
iteration of the algorithm determines if an object is reuse or mutated. The drawback
of the algorithm used by AutoTest is that it only allows limiting the running-time
based on a time limit.

Randoop, like AutoTest, also reuses objects and provides mutation, but instead of
working backwards from the method under test like JCrasher and AutoTest, it works
its way forwards, and only appends a method to a sequence if it can be constructed
from previously constructed objects.
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The results from the Randoop project show that they get a high degree of coverage.
Unfortunately Ciupa et. al. used error discovery rate as a metric in the AutoTest
paper, making it difficult to compare the two techniques.

The reason for focusing on the mutation of program state is that it creates better
coverage, i.e. different states explore different program paths. This is important
when combining random testing with symbolic execution, because one of the ob-
jectives of doing this is to explore as much of the program as fast as possible, and
only switching to symbolic execution when no new paths are explored.

For this reason it was decided to implement random testing as described in Ran-
doop[8] in the prototype tool. During the analysis of symbolic execution in stage
2 of the project this decision proved to be less than optimal because of interface
problems between the random and symbolic modules. This will be elaborated on in
Section 6.3.

5.1.1 Randoop Algorithm

The Randoop algorithm builds the test cases by constructing sequences of method
calls. It starts out with a number of sequences containing predefined values for
primitive types and built-in types such as arrays. For each iteration of the algorithm
a random method from the classes under test is chosen. If the method can be called
using any of the values from the existing sequences, the sequences are concatenated
and the method call is appended producing a new sequence.

The new sequence is then executed and if no error is found it is added to the pool of
sequences that can be used on subsequent iterations. Listing 5.1 shows the pseudo
code for the base algorithm. It should be noted that this is a reduced version of the
algorithm, where anything related to oracles/contracts is left out. The full algorithm
can be found in [8].

The execute() method in Listing 5.1 simply executes a sequence and returns the
result, the other methods related to the selection and construction of a new sequence
is described below.

selectRandomMethod : This method first selects a random class from the set
of classes under test. From this class a random public method or constructor
is selected.

randomSequences: This method takes a list of existing sequences and a list
of types representing the input arguments if any. For each of the arguments
it adds a sequence to sequences and an index specifying the value to use
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� �
1 GenerateSequences(classes , contracts , filters , timeLimit)
2 {
3 errorSequences := {} // Contract violation or exception thrown
4 normalSequences := {} // No contract violations or exceptions
5
6 while(time() < timeLimit)
7 {
8 // Create new sequence
9 m(T1...Tk) := selectRandomMethod(classes)

10 <sequences , indexes > := randomSequences(normalSequences ,
T1...Tk)

11 newSequence := extend(m, sequences , indexes)
12
13 // Discard duplicates
14 if(isDuplicate(newSequence))
15 continue;
16
17 // Run sequence and check for errors
18 outcome := execute(newSequence)
19
20 if(isError(outcome))
21 errorSequences += newSequence
22 else
23 normalSequences += newSequence
24 }
25 }� �

Listing 5.1: Pseudo code for the algorithm used by Randoop[8]

for the argument is added to indexes . If the argument is a primitive type
the sequence is selected from a fixed pool of sequences that only contain
one primitive value. If the argument is a reference type either a sequence
containing the null value is used or a value produced by one of the previous
sequences.

extend: The extend method produces a new sequence by concatenating the
sequences in the order they appear and appending the method m .

5.1.2 Implementation

The implementation of the randoop algorithm closely follows the description in the
previous section. There is however two issues related to the representation of the
sequences that warrant some consideration.

The first is how to represent sequences so that they are easily serialized by the
TestWriter , i.e. written as NUnit test cases, but also in a way so they can be easily
executed. The second is how to represent input as a the output from a previously
executed statement in the sequence.

27



Random Testing - Design and Implementation

Sequence Representation

In the prototype a sequence is represented by the TestCase class found in the
class diagram in Figure 4.3 which holds a list of Statements , i.e. a test case is a
sequence of statements. The Statement class is then specialized based on the type
of statement. This can be seen in the class diagram in Figure 5.1.

TestCase Statement

MethodCall ArrayDeclarationPrimitiveDeclaration

1 0..*

ConstructorCall

Figure 5.1: Class diagram for the TestCase class.

The abstract base class Statement holds the reflected type of the statement, a value
representing the outcome when executing the statement, and exposes two abstract
methods: Execute() and ToCode() wich is implemented by the sub-classes. The
specialized classes also holds additional information, such as method parameters in
the case of MethodCall .

When a TestCase is written to a file by the TestWriter this is simply a matter of
traversing the list of statements calling ToCode() to obtain a string representation.
In the case of PrimitiveType this would produce a string like int arg0 = 0;
or string arg1 = "Hello World" . The TestWriter is responsible for writing
the actual method bodies of the test cases.

Executing a TestCase is done in a similar manner, i.e. the list of Statemets is
traversed and Execute() is called on each statement. For a statement taking input,
such as a MethodCall , the value of the statements producing input for the method
is obtained from the previous statements and reflection is used to execute the call.
The value of a statement is the return value of the method call or in the case of
constructors a new instance of the enclosing type.

It should be noted that PrimitiveStatements cannot be executed and always
holds the value that was assigned at creation. Calling Execute() simply does
nothing.

The TestCase monitors the execution outcome of the entire sequence and records
if any exceptions was thrown or it was a normal run. This information is used by
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the algorithm as shown in Listing 5.1 to determine if the TestCase can be used to
produce further test cases (sequences).

Input Representation

There is one practical issue regarding the representation of input values as the result
of a previous statement in a sequences. This is when the extend operation from
Listing 5.1 is called it has to concatenate sequences. If the index is stored as a
normal index from the beginning of the sequence it would have to be recalculated
each time two sequences is concatenated.

The authors of Randoop notes this as a bottleneck and has proposed to store the
index as a relative negative value from the current position. The result of this is
that the concatenation operation is much cleaner as it does not need to modify any
indexes during concatenation.

5.2 IDE Plug-in - Analysis and Design

To encourage as many developers as possible to use an automated testing tool it
is of importance that the tool is fast, that it is easily accessible and that it is easy
to use. For this reason an integration of the prototype into an IDE has been found
beneficial.

This section will serve as the analysis and design of the IDE-plug-in. This includes
an analysis of already existing tools and the graphical elements they use. The ele-
ments desired in the implementation of the plug-in will be pointed out and described
in details.

5.2.1 Integrated Development Environment

Before the implementation of the plug-in can begin, the IDE to host the plug-in has
to be chosen. The investigation of potential candidates was conducted simultaneous
with the analysis and design of the plug-in. The requirement was that the IDE had
to support C# since the test cases produced by the tool are serialized as C#-files.

Below three tools that all supports C# are listed. They all have in common that they
are available in a free version. Several commercial IDEs are available but none of
them are mentioned here.
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Microsoft Visual Studio The most conspicuous product for developing .NET and
C# is at the moment Microsoft Visual Studio which in addition to being avail-
able is several different versions under a commercial license also comes in
a slimmer version targeting C# namely Microsoft Visual C# Express Edi-
tion[37]

SharpDevelop is an open source free to download IDE for C# written in C# by
ic#code[38]

MonoDevelop is an IDE that addresses the Mono implementation of .NET, which
allows .NET code to be executed on Linux[39]

It seems that Microsoft Visual Studio is the most widespread IDE targeting .NET
and C#. Although this could not be documented, it has been decided to target Visual
Studio. More specifically it was decided to target Visual Studio 2008 which is the
newest version in the series.

A screenshot of Visual Studio 2008 showing the different areas in the editor can be
seen in Figure 5.2.

Figure 5.2: This figure illustrates the Visual Studio 2008 IDE. Areas marked with
• are tool windows. Areas marked with • are editors and designers. Areas marked
with • are commandbars.

Basically Visual Studio offers three types of graphical user interfaces. These are
Menus and Toolbars, Tool Windows and Document Windows. Document windows
can be used to host editors such as graphical designers and text/source editors.
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When it is chosen to extend the functionality of Visual Studio, the programmer
has three ways of doing this. These are described in the following.

Macros can be used to record actions in Visual Studio. These are recorded as
Visual Basic code and can be saved and replayed. Macros can be bound to
menus and toolbars. [40]

Add-ins are more powerful than macros. They makes it possible for the program-
mer to interact with many of the features and tools in Visual Studio. This
includes code editors, the code model, output and debugging windows, edi-
tors, menus, and more.[40]

VSPackages are the most powerful way of extending the functionalities of Visual
Studio. Visual Studio itself is composed of VSPackages and they provide
deeper integration with the IDE. [40]

From the Visual Studio SDK webpage it appears that VSPackages are more com-
plex to integrate than add-ins because the rely on different extension models. It
would be preferable to use add-ins for the extension since these rely on a simpler
model, but because of contradictory information on what the different approaches
allows the programmer to gain access to, it was decided to go for the complex ap-
proach by using VSPackages. This approach however turned out to be somewhat
overkill, because it appeared that using add-ins would properly have been sufficient.
This will be discussed in Chapter 8.

5.2.2 Analysis of Existing Tools

The following section will serve as an analysis for the integration of the plug-in in an
IDE. The analysis should shed light on the elements needed for user interaction with
the plug-in, it will be conducted through the investigation on the visual elements
provided by existing tools.

In our previous work[5] three test-tools targeting Java were examined. The two
commercial tools AgitarOne[13] by Agitar and Jtest[12] by Parasoft both came as
plug-ins for Eclipse. The academic tool jCUTE[41] by Sen et al. has a standalone
Graphical User Unterfaces (GUI) allowing the user to run tests and view the result-
ing test cases and errors found. AgitarOne and Jtest are very similar and only Jtest
will be considered.

Beside these tools, a tool called FindBugs[23] described in Section 2.1 is also re-
viewed. FindBugs is available both as a standalone application and as a plug-in for
Eclipse.
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The main elements found during the analysis will next be described briefly and
listed. The analysis will not deal with testing algorithms or implementation details
it will only point out graphical elements.

Jtest

Figure 5.3 shows a screenshot of the Jtest perspective in Eclipse. The list below
explains how errors are highlighted and communicated to the user. The numbers in
the figure maps to the list.

Figure 5.3: Screenshot showing the Jtest perspective in Eclipse (Source: Parasoft
2007[12]).

1. In the package explorer pane packages and classes containing problems are
marked with a red icon.

2. In the code editor pane the lines containing errors are marked with an red
icon in the gutter. Icons illustrated as a light ball indicates that Jtest has a
proposition for a hot fix.

3. In the information pane in the bottom of the screen the programmer can view
a comprehensive list of all errors and problems found in the program.
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4. By selecting on one or more of the problems listed in 3, a tooltip appears
allowing the programmer to apply hot fixes suggested by Jtest. It is also
possible to suppress or delete problems.

Beside the functionality described her both Jtest and AgitarOne has coverage anal-
ysis capabilities. This is described in our previous work[5]. This functionality
consists in that every statement executed under test is marked with green color in
the source code editor to illustrate that the statements has been tested. After a test
run test reports are generated showing which parts of the program, that has been
tested, helping the programmers to gain the appropriate confidence in the program.

jCUTE

In Figure 5.4 a screenshot showing the jCUTE GUI can be seen. As mentioned
jCUTE hasn’t been integrated in an IDE. The numbers in the figure maps to the list.

Figure 5.4: Screenshot showing the jCUTE user interface.

1. The path pane shows a comprehensive list of the different paths tested by the
tool. By selecting a specific path the content in 2, 3 and 4 will change. If an
error has been found in a path, the path will be highlighted with yellow.
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2. The input pane show the initial input parameters used to drive the test case
through the specific path.

3. In the trace pane the programmer is able to explore the full call trace. If a call
results in an error, the specific call will be marked red. A red call will always
be the last call in the trace.

4. In the source code pane, the programmer can view the source code associated
with the different calls in the call trace.

By selecting a call in 3, the source code pane will change. The failing state-
ment will be highlighted with blue in the source code pane.

FindBugs

In Figure 5.5 a screenshot showing the FindBugs perspective in Eclipse can be seen.
The numbers in the figure maps to the list.

Figure 5.5: Screenshot showing the FindBugs perspective in Eclipse.

1. In the bug explorer pane all problems encountered are organized in a project
structure. For each project the problems are organized in different categories
like e.g. infinite recursive loops or possible null pointer references.

By selecting a specific problem the content of panes 2, 3 and 4 will change.
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2. In the source editor pane the source code is shown and is editable like in the
normal Java perspective. The problems found by running the FindBugs-tool
are enumerated with a small red bug in the left gutter.

By clicking this icon the content of panes 1, 3 and 4 will change.

3. In the bug details pane the programmer can see in which class, method and
line the selected bug is located.

4. In the bottom part of the bug details pane, the programmer can view a detailed
description of the selected problem.

In this case the problem is a method, that recursively keeps calling itself.

5.2.3 Desired Functionality

In this section some selected features and functionalities pointed out in the previous
section will be explained in more detail. These are considered as candidates for
implantation in the plug-in. Examples on how the IDE should communicate with the
programmer and vice versa will be illustrated through some mockups and examples
from existing tools.

Package Explorer

To help the programmer gaining an overview of which parts of the program that
contains errors, the folders and classes containing errors should be visually marked
in the package explorer window. This could be done as it was seen in FindBugs
and Jtest. An example on how this could look like is illustrated in Figure 5.6 which
shows a mockup of a package explorer.

Source Code Editor

Figure 5.7 shows a mockup of a source code editor. In this case a possible null-
reference error has been encountered. This is due to the fact that the method Move-
Point could be called with null as an argument.

The error is in this case marked with a red and black squiggly under the statement
as well as an error icon in the left gutter.

In the case illustrated in the figure only one error is marked. The reader would notice
that the statement following the first error contains an equivalent problem. The
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Figure 5.6: This figure is a mockup showing how errors should be visualized in the
package explorer. In this case an error has been encountered in the calss PointMa-
nipulator, which is located in the folder Points and is part of the project Test.

Figure 5.7: This figure is a mockup showing a source code editor.

reason for this is due to the fact that when checking the code a test case traversing
the specific path of the program and uses null as an argument to the MovePoint
method would throw an exception when the first statement is reached and thereby
the execution will never reach the second statement.

If the programmer is hovering the mouse over the icon or the underlined statement
a tooltip should appear applying some useful information on the problem. If the
tool has knowledge about an applicable hot fix to the problem, the user should be
able to apply this fix by answering yes to the question ”Would you like to add a
null-reference check?”. The tooltip functionality could also provide an easy way to
access the source code of the failing test case that triggered the error.
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Problem Details

It is important to provide the programmer with useful and understandable informa-
tion on the problems encountered during testing. It is not sufficient to print a line
number and inform that the line contains an error. Many programmers have expe-
rienced some of the less informative syntax-error messages provided by some SQL
engines that could say something like this: ”Query failed: ERROR: syntax error at
or near ”MyTable” LINE 42: SELECT. . . ”.

This problem is of course somewhat different because the mentioned message deals
with a syntax error and the errors found by the tool would be runtime errors. The
point is however that it would be much easier for the programmer to correct an error,
if it is known in details what kind of an error that has been found and where and
why that error caused an exception to be thrown.

In order to provide the programmer with useful information on the problems en-
countered, the IDE should offer a tool window that shows what kind of an error that
has been found e.g. like it is done in FindBugs.

Beside the detailed description of the problem FindBugs provide information on
which class, method and line the error is located in.

Quick Fix Functionality

Earlier the quick fix functionality of Jtest was mentioned. Such a feature would
help the programmer to easily modify some faulty source code.

The quick fix functionality could be based both on pattern matching and symbolic
execution. By using pattern matching, the system would be aware of bad/dangerous
patters and recognize these. Then the tool could offer to change the code to a known
solution to the problem. A simple example could be to check the nominator in a
division for zero and add a throw IllegalArgumentException statement to the source
code.

If the symbolic execution approach is used, the tool could use the different con-
straints and try to find a counterexample, which could either be promoted to a check
in the source code or a new test case. Something similar to this is used by AgitarOne
and Jtest.

An example of how the user interface of the quick fix feature could be implemented
can be seen in figure Figure 5.7.
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Coverage Functionality

The commercial tools Jtest and AgitarOne discussed in our previous work[5] both
had some build in coverage functionality. Such a feature can be good because it can
help influence the programmer’s confidence in the program under test. Standalone
coverage tools are also available. Two examples are Clover[42] by Atlassian and
NCover[43] by Gnoso which respectively are used to generate coverage reports for
Java and .NET programs.

These tools typically generate coverage reports based on how many lines in a pro-
gram that have been executed. If a program has 100 lines of code and 80 of them
has been executed under test, the coverage report will show that 80% of the program
has been tested.

In our previous work different approaches for generating coverage reports were
discussed. It was found that predicate coverage provides a better impression on how
much of the program that has actually been tested. Predicate coverage is sometimes
referred to as path coverage. By using predicate coverage it is the number of paths
through the program that is basis of the coverage calculation.

Of course there are some problems when choosing predicate coverage. Like in
symbolic execution unbounded loops and recursive calls have to be handled in some
way. One way of doing this is to decide that one iteration of a loop or a recursive
function is sufficient to gain full coverage. That is if all statements in the body have
been executed at least once.

To visually support this functionality the code in the source editor could be high-
lighted like it is seen in e.g. Clover and base this highlighting on line coverage.
See Figure 5.8. Additionally the simple coverage highlighting could be supported
by the more specific predicate coverage. This could be done by listing the possi-
ble paths through the program like described next, and then highlight the paths that
have been traversed by the tests.

The user could be presented to the results by listing the coverage results by pro-
gram, package, class and method and do this for both statement coverage and path
coverage. This could be done something like shown in Table 5.1 on page 39

Program Path List

To support the coverage functionality just described a comprehensive list of possible
paths through the program would be of some use. The list would only be compre-
hensive in the manner that paths through recursive functions and unbounded loops

38



5. Stage1

Figure 5.8: Screenshot of showing some of the coverage functionalities in Clover.
(Source: Atlassian 2007[42])

Statement coverage 70% (70/100)
Path coverage 50% (20/40(∞))

Table 5.1: This table shows a possible outcome of a coverage report generated for
a method. The method has 100 lines of code and 40 different paths, when recursive
calls and unbounded loops are only counted once. The infinity symbol indicates
that the method in this case due to a loop has an unknown number of paths.

would only be counted once.

A list like the one implemented in jCUTE and illustrated on Figure 5.4 could be
used. Like just described this list could be highlighted and illustrate which paths of
the program that have been tested. By clicking on one of the paths the associated
test case(s) could be shown.

Other Elements

Beside the features and functionalities mentioned in the preceding sections some
additional elements have to be implemented in the IDE. These are mostly asso-
ciated with menu items. An example would be a settings window in which the
programmer would be able to change the configuration of the tool. As an example
the programmer should be able to change the folder structure of the output files and
change the settings for the testing algorithms.

The settings for the testing algorithms should be highly configurable to allow the
programmer to be in control of the memory and time needed for testing. This could
be done by allowing the user to specify the maximum depth of the graphs used
by the symbolic execution and the length of sequences used by the random testing
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library. The user should also be allowed to change other settings like turning on and
off an eventual test while typing feature.

In the following list desirable features for an IDE integration are listed. The com-
ment in parentheses indicates which kind of Microsoft Visual Studio 2008 compo-
nent that is needed for the implementation.

• Package explorer (Tool Window)

• Source code editor (Document Window)

• Problem details (Tool Window)

• Quick fix functionality (Document Window, Tool Window)

• Coverage functionality (Document Window)

• Program path list (Tool Window)

All the elements in the list of functionalities will not be immediate candidates
for implementation. The initially implementation should only treat the most basic
needs. Figure 5.7 illustrates this need. To proof the concept the Visual C#-source
code editor should be extended to visualize where an error has been encountered.
This should either be done by making a tag in the gutter or by underlining a state-
ment like shown in the figure.

The experiences gained during integrating with the Visual Studio IDE are described
in Section 6.1.

5.3 Summary

The GUI of the existing tools Jtest, jCUTE and FindBugs have been explored in
order to determine how encountered problems are reported. The graphical elements
used by these tools were identified and it was found that they all use individual
methods related to the way their algorithms works, but that they all maps the prob-
lems found to the source code editor to notify the programmer. The different visual
elements and how they could be used by the tool was also discussed.

Although an initial analysis indicated the integration of a tool in Visual Studio 2008
would be challenging it was decided to target the IDE integration to this environ-
ment. The different ways of doing integration with Visual Studio were briefly de-
scribed, and it was concluded that integrating the tool in a VSPackage would the
best way to ensure that the all needed functionality in Visual Studio was accessible.
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It was decided initially only to implement a very basic part of IDE related part of
the tool. The elements implemented were to be error-highlighting in the Visual
C#-editor. All other elements were left to be dealt with in future stages.
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CHAPTER 6

STAGE2

This chapter describes the research and work done during the second stage of devel-
opment on the prototype. The goals of this stage is to implement the Visual Studio
plug-in and do an analysis of symbolic execution. The analysis of symbolic exe-
cution also uncovered some problems regarding the implemenation of the random
testing technique which required some refactoring. This is described at the end of
the chapter.

6.1 IDE Plug-in - Implementation

In Section 5.2 the design of the desired features for the plug-in was described and a
set of elements to be integrated was selected. The intension is to develop a base set
of functionality in the IDE and then incrementally expand the functionality as the
tool becomes more sophisticated.

Broadly the creation of the plug-in for Visual Studio can be seen as consisting of
three parts. First the package that holds all the different visual elements such as
buttons and menus should be defined along with other elements such as icons also
used in the package. This part of creating a package for Visual Studio is somewhat
straight forward. Many manuals, tutorials and videos are available on the Visual
Studio SDK webpage and on the web in general.

The second part consists of hooking into the different services that Visual Studio
provides. This includes the C#-editor in order to draw squiggles and icons in the
editor and access to the user’s active solution and projects. This proved to be much
more laborious than first anticipated and eventually caused the project time schedule
to slip.
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The third is to define the interface that is needed in order to provide the interaction
between the backend of the prototype and the GUI. This also includes developing
extra functionality such as providing line numbers and type of error. This was never
implemented because of the problems encountered while implementing the second
part.

The next section describes the steps required in order to create the basic GUI ele-
ments such as buttons. This is followed by some general observations done while
trying to implement the actual functionality in the IDE.

6.1.1 Basic GUI Elements

Starting form Visual Studio 2008 Microsoft has changed the way how graphical
elements are integrated in Visual Studio. Now all graphical elements are defined in
a .vsct file. The extension is short for Visual Studio Command Table. The .vsct-file
has an XML-based structure and is used to define graphical elements and associate
these with commands.

In Listing 6.1 the basic outline of the .vsct-file is illustrated. The top-element in the
file is CommandTable . In the following description some of the child-elements of
CommandTable are shortly described.

Extern This element is used to reference elements from the Visual Studio IDE. If
a menu item is to be added to the Visual Studio main menu bar, the Globally
Unique Identifier (GUID) of the menu bar must be referenced. The Extern
-element is used for this purpose.

Commands This element is used to assign a commands to the owning VSPackage.
The GUID of the package is used for this.

VisibilityConstraints This element can be used to control in which context the
different elements should be visualized. As an example a VisibilityItem
which is a child of VisibilityConstraint can be set to the context-type
UICONTEXT SolutionHasSingleProjects which means that the item will only
be visible if the solution only has one project.

KeyBindings This element is used to bind keyboard shortcuts to the defined com-
mands.

Symbols These elements are used to link a GUID with a logical name so the pro-
grammer can reference a readable name instead of a GUID.
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� �
1 <?xml version="1.0" encoding="utf -8"?>
2 <CommandTable xmlns="http://schemas.microsoft.com/VisualStudio/

2005-10-18/CommandTable"
xmlns:xs="http://www.w3.org/2001/ XMLSchema">

3 <Extern href="stdidcmd.h"/>
4 <Extern href="vsshlids.h"/>
5 <Extern href="msobtnid.h"/>
6 <Commands>
7 <!-- ... -->
8 </Commands>
9 <VisibilityConstraints>

10 <!-- ... -->
11 </VisibilityConstraints>
12 <KeyBindings>
13 <!-- ... -->
14 </KeyBindings>
15 <Symbols>
16 <!-- ... -->
17 </Symbols>
18 </CommandTable>� �

Listing 6.1: Outline of the Visual Studio Command Table-file

In Listing 6.2 the definition of a top menu bar item can be seen. The XML in the
listing will be described hereunder. The resulting menu in Visual Studio can be
seen in the screenshot in Figure 6.1. The menu items in the screenshot are defined
as buttons.

In line 2 in Listing 6.2 a Menu -element is defined. This element has some different
attributes.

The guid - and id -attributes are used as element identifiers and are used to asso-
ciate the UI-element with the appropriate VSPackage.

The priority -attribute indicates the priority of elements grouped together and can
be used to control in which order the elements should be displayed. type describes
the stereotype of the element and helps the IDE to determine the behavior of the
element.

In line 2 the Parent -element is defined. This helps the IDE to place the menu
element in the right logical container. In this case the value guidSHLMainMenu
indicates that the menu-element should be placed in the main menu and the value
IDG VS MM BUILDDEBUGRUN indicates that the menu element should be placed
in the Build and Debug menu-group.

In line 5 and 6 the CommandName and ButtonText are set to Icarus. In the top-level
menu like in this case the CommandName -attribute isn’t used but the ButtonText is
used to define the visual name of the menu.
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The actual placement of the menu can be seen in Figure 6.1. The optional attribute
priority could be specified and be used to place the element very specific.

Figure 6.1: Screenshot showing visual elements integrated in Visual Studio.

� �
1 <Menus>
2 <Menu guid="guidIcarusPluginCmdSet" id="TopLevelMenu"

priority="0x100" type="Menu">
3 <Parent guid="guidSHLMainMenu" id="IDG_VS_MM_BUILDDEBUGRUN" />
4 <Strings>
5 <ButtonText>Icarus </ButtonText>
6 <CommandName>Icarus </CommandName>
7 </Strings>
8 </Menu>
9 </Menus>� �

Listing 6.2: The definition of a top menu bar item with the label Icarus

In Listing 6.3 the XML-definition for a button (menu-item) can be seen. Basically
the XML defining the button is the same as in Listing 6.2. However there are a few
differences.

In line 2 the parent GUID is associated to the package experimented with in this
project instead of a GUID associated with Visual Studio functionality.

The CommandFlags in line 3 and 4 sets the menu-item to be invisible if the package
hasn’t been loaded. In line 7 the text of the button is set to the value Settings and
finally in line 6 the button is associated to the user-defined command cmdidIcarus-
Tool. When the menu-item is pressed this command will trigger an event that will
be handled by our package.

The actual definition of the VSPackage is done in a C#-file that contains global
information on the package and some load-keys verified by Microsoft needed by
Visual Studio when loading a package.

The package definition will not be described here but the main functionality im-
plemented in the file consists in handling callback functions from the IDE, that are
associated with the e.g. the GUI-elements just described. The callback functions
can be used to trigger some user defined external functionality such as the tool de-
scribed in this paper.
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� �
1 <Button guid="guidIcarusPluginCmdSet" id="cmdidIcarusTool"

priority="0x0310" type="Button">
2 <Parent guid="guidIcarusPluginCmdSet" id="TopLevelMenuGroup" />
3 <CommandFlag>DefaultInvisible </CommandFlag>
4 <CommandFlag>DynamicVisibility </CommandFlag>
5 <Strings>
6 <CommandName>cmdidIcarusTool </CommandName>
7 <ButtonText>Settings </ButtonText>
8 </Strings>
9 </Button>� �
Listing 6.3: The definition of a button (menu-item) placed in a toplevel-menu

6.1.2 General Observations

In Section 5.2 it was mentioned that the VSPackage approach was the most com-
plex approach, and while this is true it was not the actual choice of plug-in type that
required the most effort. As mentioned in the beginning it was relatively easy to
implement the basic package setup. The only thing that caused some minor prob-
lems was the need to register the plug-in with Visual Studio before use. This could
be done via a command line script, but the authors chose to create a small installer
that registered the plug-in as part of the install process.

The task that proved to be much more complicated was finding the right services
and events that would allow us to interact with the C#-editor and solution explorer.
Examples that show how to create tools and interact with these are available through
Visual Studio SDK webpage. The problem with the examples is that I many cases
they show only trivial and very basic functionalities. These are helpful when used
to gain the larger overview, but lack in details when wanting to implement more
specific functionalities.

Furthermore we found that the documentation on the Visual Studio SDK libraries
in many cases needed to be described in greater details. The problem consists in
that many of the more important classes are very large and may contain more than
hundred different methods and properties. The detail level of the documentation on
these methods and properties are very low and leaves much unsaid. For this reason
it has been hard to understand what information and functionality that is available
through the classes and how exactly they are used and accessed.

The basic need of interacting with the C#-editor and the solutions and projects
hosted by the IDE is fundamental in order to achieve the desired functionality. Un-
fortunately the authors did not succeed in getting hold of the necessary documen-
tation and, after having spent the better part of two weeks without any significant
progress, it was decided that the integration had to be abandoned. This is further
discussed in Chapter 8.
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6.2 Symbolic Execution - Analysis

Symbolic execution is a method to symbolically execute a program opposite to exe-
cuting the program concretely as seen in normal execution of a program. Symbolic
execution according to testing were first purposed by James C. king in 1976 [16].

When a program is executed symbolically a Control Flow Graph (CFG) is obtained,
where the nodes represents the different program states, and the directed edges rep-
resents transitions between the states. Symbolic execution is a simulated run of a
program, where symbols, instead of values, are used to represent variables in the
program.

An example could be a function add , that takes two integers as input and returns
an integer that is the sum of the inputs. This could be represented with X and Y as
symbolic input-arguments and the symbolic output X +Y . This output could then
be used as input to a an other function.

The different possible states of the program are described by the symbolic variables,
a Path Condition (PC) and a program counter where the program counter describes
the next statement to be executed.

The path condition is described by a conjunction of boolean expressions on the
form: < e1∧ e2∧ . . . >, where the different conditions describing a given path are
accumulated. Initially the PC is true. If the expression describing the PC becomes
false it means that the path in question is infeasible. A tree representing the sym-
bolic execution of the program in Listing 6.4 can be seen in Figure 6.2. The PC
for each state is shown in the figure. The path condition marked with red text is
infeasible. The comments in Listing 6.4 illustrates a possible concrete exectution of
the program.

� �
1 int x, y; //x = 1, y = 0
2 if(x>y){ //is (1 > 0)? : YES
3 x = x + y; //x = 1 + 0 = 1
4 y = x - y; //y = 1 - 0 = 1
5 x = x - y; //x = 1 - 1 = 0
6 if(x - y > 0){ //is (0 - 1 > 0)? : NO
7 assert(false);
8 }
9 }� �

Listing 6.4: Concrete execution. Example from [21]

Symbolic execution is widely accepted as the most systematic way for automatically
generating an exhaustive set of test cases [15].

48



6. Stage2

X = X, y = Y

X > Y

[X > Y]
X – Y > 0

[X > Y]
x = X + Y – X = Y

[X > Y]
y = X + Y – Y = X

[X > Y]
x = X + Y

NO YES

NO YES

[X <= Y]
END

[ X > Y, Y – X <= 0 ] 
END

[ X > Y, Y – X > 0 ] 
END

Figure 6.2: Symbolic execution. Example from [21]

6.2.1 Problems

Through our previous work it was found out that several problems arises when
dealing with symbolic execution. Some of these are:

Computationally expensive Symbolic execution is an expensive technique because
of e.g. constraint solving and maintaining CFGs representing complex pro-
grams. This fact is one of the reasons that it is not until recently that symbolic
execution has been integrated in advanced test generation tools despite the
technique were suggested already in 1976.

Unbounded loops The presence of unbounded loops and recursive calls in a pro-
gram results in an infinite number of paths through a program[44]

Infeasible paths This problem consists in that some paths in a program may be
infeasible. The problem isn’t that some code is unreachable or dead, but the
fact that it can be impossible to find out if a path is in fact infeasible. If the
predicate in a conditional branch is linear, the problem is easy to solve. If on
the other hand the predicate is nonlinear like X3 +Y 2 = 5 there is no guarantee
that the problem can be solved[44]
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Aliasing Lee et al. in their works[15] specifies two related kinds of aliasing that
should be handled when performing symbolic execution. These are array
element aliasing and reference aliasing.

The array element aliasing arises when analyzing indexed arrays. The prob-
lem consists in, that in some situations the functionality of a method can be
changed significantly because of this problem. This is illustrated in Listing
6.5. The method reads two elements from the array, and writes their sum in
one of the elements and the difference in the other. The problem arises when
i = j . Then the sum eventually be set to 0.

� �
1 int butterfly(int[] a, int i, int j) {
2 int sum = a[i] + a[j];
3 int diff = a[i] - a[j];
4 a[i] = sum;
5 a[j] = diff;
6 return a[i];
7 }� �

Listing 6.5: This method illustrates the array element aliasing problem. The method
replaces a pair of elements with their sum and difference. Source: [15]

Different solutions have through time been proposed to these problems. Anand et
al.[45] suggests an approach targeting the computationally problem called Demand-
Driven Compositional Symbolic Execution which basically means the symbolic ex-
ecution will only be performed when needed and only on fractions of the program.

The unbounded loop problem is addressed by Anand et al with a method they call
Abstract Subsumption Checking. The method uses some state matching techniques
to minimize the state space search by checking if a symbolic state is subsumed by
another symbolic state[46].

The ability of constraint solving has to some extent evolved along with computers
getting more powerful. But in the end it all comes to that some problems can be
solved and some problems may not be solvable. In some systems like DART this
problem is approached by using an a technique called concolic testing, which means
that when the solver resigns the system replaces the symbolic value with a concrete
one and resumes the traversal of the path.

If one wants to generate concrete test cases to be used in an e.g. NUnit test suite
on background of symbolic execution it is necessary to transform the symbolic path
constraints and values generated through the symbolic execution to concrete values,
thereby ensuring that all feasible paths of the program under test are executed by
the test suite. For this purpose a constraint solver is necessary.
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The array element aliasing problem is addressed by Lee et al where an approach
that determines all possible values of each array index, which makes it possible to
generate equivalence classes for all possible combination of array element aliases.
[15]

6.2.2 Instrumentation

When using symbolic execution to generate tests it is necessary to instrument the
program under test. This is because it is necessary to enumerate the different paths
traversed in the CFG representing the program to monitor which paths in the pro-
gram that has been tested.

It is also necessary to gain control of the inputs to the program along with different
values used internally in the program. Therefore pieces of code have to be injected
in the program allowing monitoring and manipulating the variables in the program.

The approach taken in this project is meant to combine random testing with sym-
bolic execution, in the way that when the random part of the tool fails to improve
the test coverage the symbolic execution part gains control over the process of gen-
erating test cases. For this reason it is necessary to monitor which paths that have
been visited and to inject code to control and monitor the inputs, assignments and
branches in the program under test. The consequence of this is that a instrumenta-
tion/analysis library that is able to provide manipulation at the instruction level is
needed.

During the initial analysis in Chapter 4 three different libraries for .NET code in-
strumentation was found. In the following each of these libraries will be analysed
further in order to determine which one to use for the implementation of the sym-
bolic execution module.

RAIL

The Rail library[33] was one of the first libraries for .NET code manipulation. This
library supports analysis/instrumentation at the instruction level, and also seems to
have a simple interface. Unfortunately this library is no longer maintainted and has
not been updated since 2005, it is therefore not considered further.
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.NET Profiling API

The .NET Profiling API is an unmanaged API that hooks into the CLR and provides
callbacks for various events. One of these events is when the CLR is about to JIT
compile the CIL code. This allows an application to inspect and rewrite the code
before execution.

The advantage of this is that it allows for runtime instrumentation and therefore
does not need to modify the existing executable or create an instrumented copy.
Runtime instrumentation could possible also be an advantage in the presence of dy-
namic class loading, where the possible code paths cannot be determined statically,
although this is not something that has been studied.

The disadvantages of the Profiling API is that it has to be implemented as an in-
process COM server and cannot be implemented in a managed language. This
would mean that in addition to the actual COM server a managed library providing
callbacks via IPC mechanisms would have to be implemented. In addition to this
the Profiling API does not support instrumentation at the instruction level directly,
so this would also have to be implemented.

Phoenix

Phoenix is a software analysis and optimization framework in development at Mi-
crosoft. The goal of the project is to provide a basis for all of their future compiler
technologies. The framework is general and is not directly targeted at .NET, but
allows assemblies to be loaded and analyzed. The project has already been used in
several research projects such as the Phx.Morph library of Wicca[47].

The advantages of Phoenix is that it allows for full analysis and rewriting at the
instruction level. The framework also contains a lot of functionality that could help
other types of analyses, i.e. such as the code pattern-matching used by FindBugs.
Another advantage is that it is available now and does not require coding a full
component.

Disavantages include the complexity of the library and that it is still a research
project. This means that interfaces might change, and that all functionality might
not be available. Another disadvantage is that it introduces a dependency on a huge
library, with a restrictive license (non-commercial research).

For this project the Phoenix framework was chosen. This was mainly due to the
fact that implementing an instrumentation library on top of the Profiling API would
be too time consuming and remove focus from the real goal of doing symbolic
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execution. Since this is also a research project the disadvantages of Phoenix is less
of a problem, but if creating an open-source tool or a tool that was also intended to
run on the Mono implementation of .NET, these would not be acceptable.

6.2.3 Constraint Solver

Should concrete test cases needed to be generated on background of symbolic ex-
ecution e.g. for use in a NUnit test suite, it is necessary to transform the symbolic
path constraints and values generated through the symbolic execution to concrete
values, thereby ensuring that all feasible paths of the program under test are exe-
cuted by the test suite. For this purpose a constraint solver is necessary.

In the initial analysis the Simplify solver was mentioned as well as Z3[36]. For
this project the Z3 solver was chosen for the simple reason that it provides a well
documented .NET API which would make integration easy. The solver is still un-
der development but available through Microsoft research under a non-commercial
research license.

Regarding speed and capabilities the solver is used internally by Microsoft in sev-
eral applications including their own testing tool Pex. An earlier version was also
entered into the SMT-COMP’07 competition[48], which is a yearly competition for
SMT-solvers where it won several of the categories.

6.3 Random Testing - Refactoring

During the analysis of symbolic execution it became apparent that the first algorithm
chosen for random testing was not ideal. The reason for this is that the implemen-
tation builds test cases in a bottom-up fashion, starting from primitive types and
adding method calls. This was not considered until examining how to implement
symbolic execution.

When doing symbolic execution this is done in a top-down manner starting from
a method and exploring the paths. If random testing should drive the symbolic
execution a better approach would be the one proposed in JCrasher[6]. This would
allow the implementation to perform random testing on a specific method. The
algorithm is described in detail in the following section.
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6.3.1 JCrasher Algorithm

As briefly described in Section 2.1, JCrasher works by building a graph of input
generation methods and traversing this graph in order to create test-cases which is
then executed in a runtime environment.

When JCrasher fist loads a class, reflection is used to iterate over each of the public
methods. A mapping is then created which maps types to predefined values and
methods returning the type.

� �
1 class T
2 {
3 T()
4 {
5 ...
6 }
7
8 C f(A a, int b)
9 {

10 ...
11 }
12 }� �

Listing 6.6: Example class for JCrasher testing

When examining the class T in Listing 6.6 JCrasher would map the type T to the
constructor T() , i.e. in order to create a type T it knows that it can call the default
constructor for T . For the method T.f in JCrasher would map the type C to the
method T.f . This is done recursively for each of the arguments until all types
have been mapped. Generating a test case can now be done by selecting a path
through the graph. Figure 6.3 shows an example of a generated graph taken from
the JCrasher paper[6].

6.3.2 Implementation

Changing the existing prototype to use this approach would require that the graph
described in the previous section is constructed when the TestGenerator is load-
ing the classes. Other than this the change only affects the class acutally imple-
menting the random algorithm.

The design of the TestCase class done in the last section on random testing can
still be used. This only requires that the statements are constructed as a path in the
graph is traversed.
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Figure 6.3: Parameter-graph generated by the JCrasher algorithm.

6.4 Summary

Through stage 2 the random algorithm being implemented in stage 1 was changed
from the Randoop-algorithm to the JCrasher-algorithm. This was done because it
turned out that the nature of the JCrasher-algorithm seems better fit for integration
with symbolic execution.

An integration of the tool with the Visual Studio IDE was tried out and some expe-
riences were gained. The objective was to be able to illustrate errors found in the
IDE and more specific in the Visual C#-editor. This was to be done by drawing a
squiggly under the failing statement or by drawing an icon in the gutter of the editor.

Unfortunately the interoperation done with Visual Studio through VSPackages turned
out to be more complex than first expected. This hurdle entailed that the integration
with the IDE was abandoned.

An analysis of symbolic execution and the elements needed to accomplish this was
conducted. It turned out that no package solution providing the functionality needed
for symbolic execution is available on the .NET-platform. However different li-
braries are supporting subsets are available. It was chosen to focus on instrumenta-
tion since this part is essential to the rest of the process.
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Summary

For instrumentation the libraries Phoenix, RAIL and the .NET Profiling API were
identified. It was decided to use Phoenix since RAIL turned out to be a dead project.
Phoenix was chosen rather than the .NET Profiling API due to the reason that
Phoenix supports a rather comprehensive set of functionalities, and also because
it was assessed that the .NET Profiling API would involve a large amount additional
implementation.
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CHAPTER 7

STAGE3

This stage contains the initial implementation of the symbolic execution module.
The goal was to provide a simple implementation of symbolic execution that did
not handle any of the problems such as array aliasing described in Section 6.2 and
concentrate on the integration with random testing. However, due to problems with
the Phoenix framework that was chosen for code instrumentation this was never
achieved. The results of trying to implement the instrumentation is detailed in the
following section.

7.1 Symbolic Execution - Implementation

The purpose of combining random testing with symbolic execution is to use random
testing to quickly generate as much coverage as possible. When random testing does
not increase coverage, symbolic execution takes over and tries to generate input for
the paths not covered yet. Listing 7.1 illustrates the concept in pseudo-code.

� �
1 foreach(Method f in Testee.Methods)
2 {
3 Instrument(f);
4
5 while(coverageIncreased)
6 {
7 Input i = RandomInput();
8 ExecuteConcrete(f, i);
9 }

10
11 InterpretSymbolic(f);
12 }� �

Listing 7.1: Pseudo code for comined random/symbolic testing.



Symbolic Execution - Implementation

In order to do this it is necessary to both be able to monitor the program while
the concrete execution takes place in order to update the symbolic state, but also in
order to perform the acutal symbolic execution. This requires that the method under
test is instrumented in order update the symbolic environment.

7.1.1 Code Instrumentation

During the analysis of symbolic execution it was decided to use the Phoenix frame-
work for instrumentation. This is a rather large and complex framework, so it was
expected that there would be an initial learning curve associated with it. Unfortu-
nately many of the same problems that was experienced during the plug-in imple-
mentation (described in Section 6.1), i.e. missing or wrong documentation, made
this even harder.

Phoenix is also meant as a general compiler optimization framework, so it provides
its own internal intermediate representation for code and does not use use the Com-
mon Intermediate Language (CIL) that is used in .NET. This coupled with the fact
that the documentation was lacking made it mostly a process of trial and error.

During the work done in this stage a new version of the Phoenix framework became
available. This version updated the documentation and fixed a number of unim-
plemented features related to Phoenix’ internal processing of CIL code. It was not
until this update that the small example described in the following could be made
to work.

The following sections documents the work on a small test example that was made
to part of the initial effort to get familiar with Phoenix. The basic idea of the exam-
ple is to insert a call to the static TestClass.Test() method from the TestTool.dll
at the beginning of all mehtods in the instrumented assembly. The functionality in
the prototype would ofcourse require more advanced functionality at the granularity
of individual instructions, the example only serves as a proof of concept.

Initialization

In order to use the phoenix framework it has to be initialized to use the right sub-
components depending on the target achitecture and the runtime system. This is
shown in Listing 7.2.

There are several things to note in this example. The first is that Phoenix implements
a custom memory management scheme, so all objects are created by calling the
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� �
1 Phx.Targets.Architectures.Architecture msilArch =

Phx.Targets.Architectures.Msil.Architecture.New();
2 Phx.GlobalData.RegisterTargetArchitecture(msilArch);
3
4 Phx.Targets.Architectures.Architecture x86Arch =

Phx.Targets.Architectures.X86.Architecture.New();
5 Phx.GlobalData.RegisterTargetArchitecture(x86Arch);
6
7 Phx.Targets.Runtimes.Runtime msilRuntime =

Phx.Targets.Runtimes.Vccrt.Win.Msil.Runtime.New(msilArch);
8 Phx.GlobalData.RegisterTargetRuntime(msilRuntime);
9

10 Phx.Targets.Runtimes.Runtime x86Runtime =
Phx.Targets.Runtimes.Vccrt.Win32.X86.Runtime.New(x86Arch);

11 Phx.GlobalData.RegisterTargetRuntime(x86Runtime);� �
Listing 7.2: Phoenix initialization code.

static New() method. The second is that target architecture and runtime for x86
also have to be initialized even if we only handle CIL code.

This is not intuitive and was not properly explained in the documentation or exam-
ples, and manifests itself in a FatalError exception at runtime with no additional
information. When inspecting the stacktrace it can be seen that the failure occurs
when trying to load the global symbols. The authors guess is therefore that, since
Phoenix is a general framework for both managed and unmanaged code, the prob-
lem is related to the unmanaged startup code that was used on previous versions of
windows. In order to read and write the symbols and code for this part of the of the
file it is necessary to register the architecture and runtime for native x86.

Main Instrumentation

After Phoenix has been initialized and an assembly loaded it is now possible to loop
through the methods in order to do the instrumentation. The small test example
only requires that the first instruction is located and a method call is inserted at the
beginning. The code for this is shown in Listing 7.3, but has been simplified in
order to make it more readable.

There is one interesting thing to note here. Before the call instruction at line 30
can be created, the necessary symbol for the Test() method has to be created.
This involves adding the TestTool.dll to the import table of the instrumented
assembly and adding entries in the symbol and type tables.

The examples and documentation was very vague on this part and the only usable
example was an example of inserting a nop instruction into the beginning of a
function, and does not involve the symbol/type tables at all. A substantial amount
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� �
1 private static void Instrument(Phx.PEModuleUnit module)
2 {
3 // Import the symbol for the Test() method in TestTool.dll
4 Phx.Symbols.FunctionSymbol testFuncSymbol =

ImportTestFunc(module);
5
6 // Loop through the FunctionUnits in the module
7 foreach (Phx.FunctionUnit functionUnit in module.Functions)
8 {
9 // Raise code to Low Level IR.

10 functionUnit.DisassembleToBeforeLayout();
11
12 // Don’t care about unmanaged code
13 if (functionUnit.Name.Equals("UnmanagedEntryPoint"))
14 continue;
15
16 // Find the first instruction
17 Phx.IR.Instruction firstInstruction = null;
18 foreach(Phx.IR.Instruction instruction in

functionUnit.Instructions) {
19 if(instruction.IsReal) {
20 firstInstruction = instruction;
21 break;
22 }
23 }
24
25 // Create new call instruction and insert it before

firstInstruction
26 Phx.IR.CallInstruction callInstruction =

Phx.IR.CallInstruction.New(functionUnit ,
Phx.Targets.Architectures.Msil.Opcode.call ,
testFuncSymbol);

27 firstInstruction.InsertBefore(callInstruction);
28
29 // Make sure that instruction sequence is legal
30 functionUnit.Legalize.Instruction(callInstruction);
31 }
32 }� �

Listing 7.3: Code for the main instrumentation loop.

of time was therefore used to figure out how to do this.

Adding Assembly Imports

The code for adding the assembly import for the TestTool.dll is shown in Listing
7.4. First the import table is inspected to see if it already contains the import, if this
is the case the found symbol is returned. If the symbol is not found it needs to be
added to the table.

This is the point where it gets a little complicated. In order to add the symbol the
manifest of the assembly is needed, and the only way to obtain the manifest of
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an assembly is to load it. Since Phoenix already contains functionality to load an
assembly and get the manifest, this was used (line 9-11).

� �
1 private static Phx.Symbols.AssemblySymbol

AddAssemblyImport(Phx.PEModuleUnit module , string
assemblyNameString)

2 {
3 // Check to see if the import already exists
4 Phx.Symbols.AssemblySymbol assemblySymbol =

FindAssemblySymbol(assemblyNameString);
5 if(assemblySymbol != null)
6 return assemblySymbol;
7
8 // Load the TestTool.dll to obtain the manifest
9 Phx.PEModuleUnit library =

Phx.PEModuleUnit.Open("TestTool.dll");
10 library.LoadGlobalSymbols();
11 Phx.Manifest manifest = library.Manifest;
12
13 //Possible solution: Can only have one active PEModuleUnit
14 Phx.Threading.Context context =

Phx.Threading.Context.GetCurrent();
15 context.PopUnit();
16
17 // Create a assembly reference to library
18 Phx.Name libraryName = Phx.Name.New(module.Lifetime ,

"TestDll");
19 assemblySymbol = Phx.Symbols.AssemblySymbol.New(null, manifest ,

libraryName , module.SymbolTable);
20
21 return assemblySymbol;
22 }� �

Listing 7.4: Code for the assembly import method.

The problem here is that there can only be one active PEModuleUnit at a time, so
the newly loaded assembly has to be removed from the current thread’s context as
done in line 14-15. This did not manifest itself in any runtime errors, but had the
result that no instrumentation was added to the assembly.

This was completely undocumented and a lot of time was spent on debugging to find
the cause, before a fix was found as a side note in a forum thread discussing a topic
not related to this. After installing the new version of the framework line 14-15 is
no longer required so either this was a bug or the functionality was changed.

Creating a Function Symbol

After creating the code to add the assembly reference all that is needed is to imple-
ment the actual ImportTestFunc() that will be called from the main instrumen-
tation loop in Listing 7.5, line 4.
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� �
1 private static Phx.Symbols.FunctionSymbol

ImportTestFunc(Phx.PEModuleUnit moduleUnit)
2 {
3 // Holds the fuction symbol to be created
4 Phx.Symbols.FunctionSymbol testFuncSymbol = null;
5
6 // Get a reference to the TestTool.dll assembly.
7 Phx.Symbols.AssemblySymbol testToolSymbol =

AddAssemblyImport(moduleUnit , "TestTool");
8
9 // Create a class type for TestTool.TestClass

10 Phx.Name testClassTypeName =
Phx.Name.New(moduleUnit.Lifetime , "TestTool.TestClass");

11 Phx.Symbols.MsilTypeSymbol testClassTypeSymbol =
Phx.Symbols.MsilTypeSymbol.New(moduleUnit.SymbolTable ,
testClassTypeName , 0);

12 Phx.Types.AggregateType testClassType =
Phx.Types.AggregateType.NewDynamicSize(
moduleUnit.TypeTable , testClassTypeSymbol);

13 testClassType.IsDefinition = false;
14
15 // Now, attach the class type to the TestTool assembly

reference.
16 testToolSymbol.InsertInLexicalScope(testClassTypeSymbol ,

testClassTypeName);
17
18 // Build up a function symbol for the Test() method.
19 Phx.Types.FunctionType functionType =

moduleUnit.TypeTable.GetFunctionType(
Phx.Types.CallingConventionKind.ClrCall , 0,
moduleUnit.TypeTable.VoidType , null, null, null, null);

20 Phx.Name functionName = Phx.Name.New(moduleUnit.Lifetime ,
"Test");

21 testFuncSymbol =
Phx.Symbols.FunctionSymbol.New(moduleUnit.SymbolTable , 0,
functionName , functionType ,

Phx.Symbols.Visibility.GlobalReference);
22
23 // Add it as a method of the TestTool.
24 testClassType.AppendMethodSymbol(testFuncSymbol);
25 testClassTypeSymbol.InsertInLexicalScope(testFuncSymbol ,

functionName);
26
27 return testFuncSymbol;
28 }� �

Listing 7.5: Main instrumentation loop.

The code to do this is shown in Listing 7.5 and is mostly here for completeness
as it is rather straight forward. It did however take some time to implement as the
documentation in the previous version lacked a proper description of some of these
concepts.

In particular that it was necessary to use the Phx.Symbols.MsilTypeSymbol in-
stead of the more general Phx.Symbols.TypeSymbol . This was not intuitive be-
cause the code had already been raised from CIL into the more general IR of the
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Phoenix framework. Fortunately some examples from the Phoenix forums provided
the missing information.

It should also be noted that the documentation on these classes in the newest ver-
sion of Phoenix has been updated which also provide several examples that use the
concepts.

7.2 Summary

The problems related to using the Phoenix framework meant that the time was spent
on figuring out how to perform the instrumentation of the test code. Because of
this work on the internal parts of symbolic execution such as how to represent the
symbolic state or how to monitor the concrete execution of a program in order to
update the symolic state was not started.

Using the phoenix framework for instrumentation of .NET code proved to be much
more complicated than initially assesed, and using Phoenix in its current state can-
not be recommended. Instrumentation of the code, however, is still needed, so other
approaches should be looked at. Implementing the necessary functionality on top of
the .NET profiling API would be the recommended solution, since instrumentation
can be done at runtime, but this is not something that has been analysed.
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CHAPTER 8

DISCUSSION

In this chapter the implementation of the different elements of prototype will be
discussed and reflected upon. The first sections contain a discussion of the testing
techniques and the IDE integration. The next discusses the iterative development
model used in the process, and the last section gives a general discussion of the
project and future directions.

8.1 Test Generation

The authors’ previous work[5] and initial research showed that combining tech-
niques is essential in order to create a tool that detects the largest possible range of
errors. The two techniques, random testing and symbolic execution, was selected
because research indicates that individually these are currently the most promising
techniques.

The implementation of random testing confirms this as a simple and easy to imple-
ment solution. Although the current implementation does not try to handle any of
the more complicated topics related to test oracles or filtering of test cases it still
gives a relative indication of this being a simple technique to implement.

Symbolic execution is a comprehensive and systematic technique that has a lot of
problems requiring special attention. In addition it also requires some external func-
tionality. Due to the factors described in Chapter 7 only the external dependencies
of symbolic execution was examined and the authors is therefore unable to provide
any insight into the implementation of the actual algorithm, but instead point to
work that must be completed before an actual implementation can take place.

In general the choice techniques proved to be a good example of both the ease and
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simplicity with which a tool could be made, but also the complexity introduced if a
more comprehensive solution is required. A discussion of the individual techniques
is provided in the following sections.

Random Testing

The initial implementation of random testing into the developed tool was as ex-
pected relatively easy and did not depend on any external functionality. After a
.NET assembly was loaded the built-in reflection capabilities of the .NET platform
could be used to traverse and introspect the types and methods in order build the
needed data structures. The biggest problem was to design a good representation of
the test cases that allowed for both easy serialization and execution.

During stage 2 of the development, however, the analysis of symbolic execution un-
covered one problem that required a refactoring of the random testing implementa-
tion. This was that the implementation of random testing (Randoop algorithm) used
a bottom-up approach to generating the test cases. This complicated the integration
with symbolic execution which works top-down and it was therefore decided to
re-implement the random testing module, using the approach used in JCrasher, in
order to accommodate this.

It could be argued that the choice to change implementation would degrade the
effectiveness of the system, because the motivation for choosing the Randoop ap-
proach was that it achieved a high degree of coverage. While this is true, it is a
situation that can be mitigated to some extent by incorporating some of the muta-
tion heuristics from AutoTest.

Unfortunately the problems related to the IDE integration and symbolic execution
forced the authors to stop the development of this module before it was complete.

Symbolic Execution

The basic idea of symbolic execution is rather simple, but there are a lot of special
cases that must be handled in order to provide a full implementation, i.e. array
aliasing, etc. There are also a number of components that is required in order to
implement a symbolic execution engine. These include the following:

• Instrumentation

• Constraint solver
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• Execution engine and main algorithm

During the analysis of the symbolic execution module it was decided to first im-
plement the instrumentation of the assemblies. This was partly because all of the
other components of symbolic execution depended on being able to instrument the
program, but also to become familiar with Phoenix, the framework chosen for the
task.

Phoenix is a large framework and provides a lot of functionality related to program
analysis. This was one of the reasons that it was chosen over simpler approaches
such as the .NET Profiling API or the Rail library. Unfortunately it was also the
main reason for not being able to finish, or even provide a partial implementation
of symbolic execution.

The fact that Phoenix is still in development, meant that documentation was miss-
ing or created for previous versions of the API. Since the framework uses its own
multilevel intermediate representation for the code a large amount of time was spent
trying to figure out how this worked. This coupled with the missing or out of date
documentation made it a very time consuming task to achieve even some very sim-
ple instrumentation. Even this was only possible very late in the development, when
a new version of Phoenix was released.

In retrospect it would have been better to use one of the other libraries and imple-
ment the missing functionality as explained in Section 6.2. This would also be a
time consuming task, but it would be on the basis of well documented interfaces,
and could be made much more light-weight.

A deeper investigation of the two additional modules never started although some
possible constraint solvers were taken into account.

8.2 IDE Integration

As mentioned earlier the focus in this report has been put on identifying function-
alities that is needed to implement all aspects of an automated test tool. In order to
develop a tool that is meant to be used by developers it has been emphasized that the
human computer interaction is an important aspect of the tool. This is important be-
cause previous experiences indicate that easy access and use of a tool or technique
to some point determines the adoption.

It was decided to target Microsoft Visual Studio 2008 as the platform for the plug-
in, as this IDE especially for .NET development is very widespread. Although the
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integration was halted due to implementation problems, the authors still believe that
the Visual Studio IDE is the best platform to use. It can be argued that integration
on another platform could have been chosen for a proof of concept but it was unex-
pected that the integration would be as time consuming as it turned out.

One reason that the estimation of the needed efforts for developing a plug-in for
Visual Studio was off is due to the fact that the estimate was based on previous
experiences with a different IDE. On an earlier semester the plug-in structure for
Eclipse was investigated and these experiences were used as measurement in this
project. It was of course risky to base the estimation on experiences made with a
different IDE, but it still came as a surprise that the differences in complexity were
that significant.

Mainly the issue consisted of problems with obtaining the proper amount of doc-
umentation for the Visual Studio SDK, so if a tool like the one described in this
report is to be integrated in an IDE in the future, it is recommended that the IDE
integration begins as early in the process as possible, and that an ample amount of
time and effort is reserved for this purpose. It should be noted that the authors did
not have any previous experience with writing plug-ins for Visual Studio so this
would also have to be factored in.

8.3 Iterative Development

The goal of the project was to develop a fully functional prototype of an automated
testing tool which could be used as a basis for further development, and provide
insight into potential problems, pitfalls or areas that need further development.

Because of this it was equally important to ensure that there was always a working
version of the tool and that all the aspects of the tool were touched during de-
velopment. For this reason the development of the prototype was divided into an
initial analysis phase and three development phases, where each of the development
phases should result in an increasingly more functional version of the tool.

This worked fine until late in stage 2, where the IDE integration proved to be more
difficult than first anticipated. The consequence was that the time schedule slipped
and shortened stage 3 by one week. This again meant that there was only enough
time to explore a single aspect of the implementation of symbolic execution. The
initial time schedule can be found in Chapter A.

It could be argued that doing more design from the beginning would have resulted
in a clearer overview of the entire application and could have prevented some of the
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encountered issues such as the reimplementation of the random module at the start
of stage 2. However, this would have taken focus away from the practical details
of developing the tool which was one of the project goals, and the authors therefore
argue that the iterative and more agile approach used was better in order to achieve
this goal.

The decision of postponing the final implementation of the random module resulted
in not having a working prototype at the end. In retrospect this can be seen as a
suboptimal decision, but it can also be argued that the time saved allowed for more
work on the IDE integration and symbolic execution. It is therefore a question of
whether having a functional prototype is deemed more important than fully explor-
ing all the initial problem areas. The authors weighted the latter more important
because of the explorative nature of the project.

8.4 Additional Considerations

The previous sections has discussed many of the aspects related to the development
of an automated unit testing tool, and has mainly focused on the practical aspects.
There are however also a number of more general considerations.

The choice of using Phoenix as an instrumentation and analysis library and Z3 as
a solver restrict the use of the project to non-commercial projects only because of
the license. Even if these eventually become a part of Visual Studio relying on
them will essentially lock the tool to the windows platform. This may, or may not,
be an issue depending on how important cross-platform support is, but should at
least warrant some consideration. This is only an issue for the base tool as the GUI
portion will necessarily be locked to a specific IDE.

During the late stages of the project a preview of the Pex tool from Microsoft was
released. The authors have not had the time to do a thorough analysis of the tool, but
it is clear that it tries to achieve many of same goals as this project, i.e. integration
of the testing process into the IDE and it employs an advanced form of symbolic
execution for test generation. More importantly it has an extensive API providing
many of the functionalities related to symbolic execution that has proven to be time-
consuming to implement. It would therefore be interesting to see if some of the
functionality could be used or if this could be used as a complete component for
symbolic execution.

It should also be noted that while this report documents many of the issues con-
cerning an implementation of the chosen techniques it also leaves out the problem
of generating oracles for the tests. This is an area that most likely will involve a
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large amount of interaction with the users through the IDE, but also introduce sev-
eral new modules in the back-end. It could therefore prove to be a significant task,
but would be necessary in order to produce a complete tool.

70



CHAPTER 9

CONCLUSION

This project report has documented an effort to create prototype tool for automated
unit testing on the .NET platform. Similar tools already exist both in academia and
on the commercial market. However, except from .TEST from Parasoft none of
the tools currently available targets the .NET platform. This limits testers either to
write their own test cases or use the commercial tool.

The main purpose of this project report has been twofold:

• To develop and implement a working prototype of an automated testing tool
targeting .NET. The tool should focus on the full spectrum of the implementa-
tion including advanced test generation algorithms, a command line interface
as well as integration with an IDE.

• To identify the different components needed for implementing the fully func-
tional automated testing tool targeting the .NET platform. This includes iden-
tifying which components are readily available for .NET and which ones that
potentially needs to be implemented.

Implementing a working prototype was not accomplished, but several aspects and
technical problems with creating such a tool for the .NET platform have been iden-
tified.

Several elements related to the interaction with the programmer through the GUI
were analyzed and designed. The effort needed to implement them however, was
greater than anticipated which means that nothing conclusive can be said.

The prototype also tried to combine random testing and symbolic execution as a test
generation technique. Due to problems with instrumentation of .NET assemblies
symbolic execution was never implemented and it was established that a proper



analysis/instrumentation library is needed. Such libraries are readily available in
different versions for Java, but are not for .NET to the same extent. It was also
established that the tools available were not mature enough and very complex to
use.

Even though an implementation of a running prototype was not accomplished the
main elements needed for an implementation on the .NET platform were identified
and we are still confident in that the development and implementation of an auto-
mated testing tool for .NET would be beneficial for software developers wanting to
deliver programs that have been well tested.
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APPENDIX A

PROJECT TIME SCHEDULE
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Figure A.1: Time schedule - February
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Figure A.2: Time schedule - March
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Figure A.3: Time schedule - April. The hachured area are overrun form the subse-
quent stage
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Figure A.4: Time schedule - May. The hachured area are overrun form the subse-
quent stage
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Figure A.5: Time schedule - June
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