
Error Correction of Logistical Data
- Using a Distributed Viterbi Approach

5 T 10

5? 10?

Studyboard for Electronics and Information Technology
Aalborg University

M.Sc. Thesis
Group 1033
2007-2008

Aalborg Universitet
Studienævn for Elektronik og Informations Teknologi

TITEL:
Error Correction of Logistical Data
- Using a Distributed Viterbi Approach

PROJEKTPERIODE:
3. september 2007 - 4. juni 2008

GRUPPE:
1033

MEDLEMMER:
Tom Nørgaard Jensen
Mads Philipsen

VEJLEDERE:
Jakob Stoustrup
Henrik Schiøler

OPLAG: 5

SIDER: 79

APPENDICES: 10

AFSLUTTET: 4. juni 2008

SYNOPSIS:

Rapporten omhandler et distributions system,
hvor adskillige aktiver cirkulerer mellem flere
forskellige parter. Aktiverne bliver registr-
eret når de bliver modtaget eller afsendt af
en af parterne i systemet. Denne registrering
foregår ved hjælp af RFID teknologi, hvilket
betyder at registreringerne kan være fejlbe-
hæftede. Da parterne i systemet er forpligtet
til at betale pant for aktiverne, er det vigtigt
at panten er beregnet på et korrekt grundlag.
Derfor er det ønskeligt at rette data, således
aktivernes lokation kan bestemmes selv hvis
nogle registreringer er manglende.
Til dette formål er der blevet konstrueret en
estimator, der kan estimere aktivernes sekvens
af lokationer baseret på de fejlbehæftede data.
Denne estimator er baseret på de statistiske
egenskaber ved systemet, som kan modelleres
som en skjult Markov kæde.
Derudover er en simulerings model blevet kon-
strueret, således det er muligt at teste om es-
timatoren får bestemt den korrekte sekvens af
lokationer.
Estimatoren er blevet testet med et setup i
mindre målestok og resultaterne herfra er ek-
strapoleret til et fuld skala system. Bereg-
ningstiden for systemet viser at algoritmen
er brugbar, såfremt den distribueres imellem
flere processorer. Software til et distribueret
system, bestående af elleve lokationer er blevet
designet og implementeret i C++. Test resul-
tater indikerer at estimatoren ikke er i stand
til at opfylde kravet til fejl procent i sin nu-
værende tilstand.

Aalborg University
Studyboard for Electronics and Information Technology

TITLE:
Error Correction of Logistical Data
- Using a Distributed Viterbi Approach

PROJECTPERIOD:
September 3 2007 - June 4 2008

GROUP:
1033

PARTICIPANTS:
Tom Nørgaard Jensen
Mads Philipsen

SUPERVISORS:
Jakob Stoustrup
Henrik Schiøler

NUMBER PRINTED:5

NUMBER OF PAGES: 79

NUMBER OF APPENDICES: 10

CONCLUDED: 4th of June 2008

ABSTRACT:

The report deals with a distribution system,
where several assets circulate between multi-
ple parties. The assets are registered when
being received or returned by one of the par-
ties in the system. This registration is done
using RFID technology, which means that the
registrations are prone to error. Since the par-
ties in the system are obliged to pay deposit
for the assets, it is important that the deposits
are calculated on the correct basis. Therefor,
it is desirable to correct the data, such that
the whereabouts of the assets can be deter-
mined even if some registrations are missing.
For this purpose an estimator, which can esti-
mate the location sequence of the assets based
on the erroneous data, has been developed.
The estimator is based on the statistical prop-
erties of the distribution system, which can be
modelled as a hidden Markov chain.
Furthermore, a simulation model of the distri-
bution system has been constructed, in order
to test if the estimator is able to determine the
correct location sequence.
The estimator has been tested in a small scale
system. The results have been extrapolated to
cover a full scale system. The computational
time for the large scale system, show that the
algorithm is only usable when distributed be-
tween multiple processors. Software for a dis-
tributed setup consisting of eleven locations
has been designed and implemented in C++.
Test results indicate that the estimator in its
current condition is not able to fulfil the re-
quirement to its error percentage.

Preface

This project has been carried out by group 1033, during the 9th and 10th semester at the section of
’Automation and Control’ at Aalborg University, in cooperation with Lyngsoe Systems. The work
has been carried out between 3rd of September 2007 and 4th of June 2008.

The project proposal has been provided by Lyngsoe Systems, where the contact have been Section
Manager Jørgen Albøge.

The report uses the Harvard Reference System, where the reference in the report consists of a (Last
name, Year). On page 79 a complete bibliography can be found. In references to tables, figures and
equations, the first digit specifies the chapter. For instance; Table: 2.1 is the first table in chapter
two. Appendices referenced throughout the report, are found at the end of the report.

CD-ROM Contents: The enclosed CD-ROM contains programs, source code and the correspond-
ing doxygen generated documentation. Measurement files, Matlab scripts, Matlab figures and the
Simulink models are also included on the CD-ROM. The CD-ROM is divided into folders correspond-
ing the chapters of the report. The contents includes README-files containing a description of the
files. The report is also included in PDF and Postscript formats.

Tom Nørgaard Jensen Mads Philipsen

viii

Contents

1 Introduction 11

1.1 Description of Distribution System . 11

1.2 Requirements for Estimator . 12

1.3 Limitations from Requirements . 13

1.4 Methods . 13

1.5 Outline of Report . 13

2 Modelling of System 15

2.1 Discrete Event Systems . 15

2.2 Markov Chains . 23

2.3 Validation of Simulation Model . 33

3 Simulink Model of System 37

3.1 Simulink Model . 37

3.2 Validation of Simulink Model . 42

4 Estimator Design 43

4.1 Viterbi Algorithm . 43

4.2 Customised Viterbi Algorithm . 47

4.3 Graphical User Interface . 54

5 Distribution of Algorithm 55

5.1 Distribution Paradigms . 55

5.2 Load Balancing . 56

6 Distributed Software 61

6.1 Description of Events . 61

6.2 Analysis of Distributed Software . 62

6.3 Implementation of Distributed Algorithm . 69

6.4 Test of Distributed Software . 71

10 CONTENTS

7 Conclusion 77

7.1 Future Work . 77

Bibliography 79

Appendices 79

A Rank-Sum Test 81

B Validation of Hidden Markov Model 83

C Validation of Simulink Model 87

D Simulink Model 89

E Test of Viterbi Implementation 95

F Test of Time Consumption of Viterbi Algorithm 99

G Test of Error Rate of Viterbi Algorithm 103

H Test of Time Consumption of Custom Viterbi Algorithm 105

I Test of C++ Implementation of Viterbi Algorithm 109

J Test of Load Balancing Algorithm 115

K Graphical User Interface for Model and Algorithms 119

Chapter 1
Introduction

This work treats the design of an model based estimator. Prior to the design of the estimator, the
system is modelled and validated. Afterwards an estimator is designed and tested in the following
chapters. This chapter a describes the distribution system, after which the requirements for the
estimator are listed and explained. This chapter is concluded with a section describing the various
methods used in this work.

1.1 Description of Distribution System

In a closed system, where assets circulate between multiple parties, it can be desirable to make a
registration, which can document the location of the assets as a function of time. This registration
can be used for multiple purposes. For instance; the calculation of the deposit of the assets, or to
ensure adequate stock at the participants. A practical example of such a system is the distribution
system of the cc container seen in Figure 1.1 and 1.2, which is a flower and pot plant trolley. These
trolleys are among others distributed between garden centres, auction houses and stores all over
Europe. The system consist of approximately 4e6 assets, and 20e3 locations. Part of the distribution
network is illustrated in Figure 1.3, where an example of a transportation of cc’s is shown. One part
of the figure indicates a number of random cc’s being transported from a garden centre to an auction
house. The other part indicates a transport of a new number of random cc’s being transported from
the auction house to a store that has bought plants from the auction house. More generally cc’s can
be transported between all the participants in the system.
The number of cc’s that a participant possess at a given time, can then form the basis for the payment
of deposit. The registration of when the containers are transported from one participant to another is
based on RFID technology. The system consists of one or more reading ports at a given participant,
and an RFID transmitter mounted on each of the cc’s in the system. The reading ports are placed such
that it is necessary to pass them when delivering or picking up cc’s at the participant.The registration
data consists of a port number an RFID tag number and a time stamp. These RFID data are collected
decentralised at the participants, and are from here transferred to a central server, every now and
then. The data can in some cases be prone to error, and these errors will result in wrong calculations
of the deposits.
In the system, the following sources of errors have been identified:

• The cc’s pass through the reading portal, without being registered. It is expected that more
than 95 % of the cc’s will be registered.

• The cc’s are registered without having passed through the reading portal. For instance if they
are placed close to a reading port without actually being transported.

• Some cc’s have a faulty RFID tag, due to this they are not registered or only registered rarely.
The RFID tag, will be equipped with a bar code, which will add the possibility for manual
registration of cc’s caring a faulty tag.

12 Introduction

Figure 1.1: The cc container Figure 1.2: A loaded cc container

• Cc’s introduced by third party suppliers, which can have identification coinciding with the
original cc’s.

An approach for solving the above mentioned problems is to construct a model of the distribution
system. The model is used as a basis for the construction of an estimator. The estimator uses RFID
data to estimate the state of the system, which is used for error correction of the data.
A distribution system like this is inherently of the type Discrete Event System, where the state space
of the system is naturally described by a discrete set, and where state transitions are observed at
discrete points in time. In the distribution system described above, the state of the system could be
the number of cc’s possessed by the participants at a given time or it could be the location of a single
cc, depending on the level of abstraction. The events triggering the state transition in the system
could be the RFID readings or the transports between participants.

1.2 Requirements for Estimator

The main purpose of the estimator is to determine the amount of cc’s at each of the participants in
the distribution system at any given time, in order to make the deposit claims correct. This should be
done using the possibly faulty RFID readings from the RFID reader gates, which are placed at every
participant. From the supplier of the cc containers it is required that the data are correct in 98.75 %
of the cases.
Furthermore, the estimator should be able to detect if certain RFID tags are broken, and if possible
locate these such that it is possible to remove these tags from the system. The RFID tags which have
been copied and introduced by third party suppliers should likewise be detected and located with the
aim of removing them from the system. The estimator should be feasible to implement in a system
consisting of 4e6 assets and 20e3 locations, since this is the scale of the cc distribution system.

1.3 Limitations from Requirements 13

Figure 1.3: Illustration of part of the distribution system

1.3 Limitations from Requirements

It has been chosen to focus on the state estimation during the project work, since this issues can be
handled by a discrete event system model based estimator.The other issues, concerning error handling
in the system would require a fault detection and isolation (FDI) algorithm. Since it is assessed
that the design of an estimator for a system in the magnitude (4e6 assets and 20e3 parties) of the
distribution of cc containers throughout Europe is extensive enough to cover the entire project period,
there will not be focused on designing an FDI algorithm.

1.4 Methods

This section describes the methods used in the work presented in this master thesis. A problem has
been presented by Lygsoe Systems, concerning error correction of logistical data. An approach to
solve this problem has been analysed, and the solution is based on model based estimation, using a
customised Viterbi algorithm.

An analysis of the system in question has been carried out based on an interview of Jørgen Albøge from
Lyngsoe Systems, and a description of the properties of the distribution system has been constructed.
This description has been used to make a requirement description. Two simulation models of the
distribution system, has been made. First a hidden Markov model has been implemented in Matlab.
Secondly a simulation model has been constructed in Simulink based on the system properties. The
Simulink model models interdependent assets. The simulation models has been verified using a rank
sum test.

The customised Viterbi algorithm has been changed to support distribution on multiple processors.
Furthermore, software for the distributed algorithm has been analysed, using an OO software analysis
approach. UML diagrams has been constructed as documentation of the analysis and design of the
software. The software has been implemented in C++.

1.5 Outline of Report

Chapter 2: Discrete Event Systems The chapter covers the discrete event modelling frameworks,
automata, petri nets and hidden Markov models, and modelling of the distribution system as a hidden
Markov model.

Chapter 3: Modeling of Distribution System The chapter covers the description and validation
of the Simulink model.

14 Introduction

Chapter 4: Estimator Design The chapter describes the analysis and implementation of the
Viterbi algorithm, as well as the customised Viterbi. Various test comparing the two algorithms are
included in the chapter.

Chapter 5: Distribution of Algorithm The chapter describes the analysis and choice of
distribution paradigms, which is used in the distribution of the algorithm.

Chapter 6: Distributed software The chapter covers the analysis, design and implementation
of the software needed for the distribution of the algorithm.

Chapter 7: Conclusion The chapter includes the conclusion of the project, and a future work
section.

Chapter 2
Modelling of System

This chapter describes the modelling of the distribution system in question. The chapter starts with an
introduction to different modelling formalisms associated with the modelling of discrete event systems.
This leads to a choice of the appropriate modelling formalism for the distribution of cc containers.
The system is then modelled using the chosen formalism, and the model is then validated using output
from an actual system.

2.1 Discrete Event Systems

This section presents an analysis of two different modelling approaches for modelling discrete event
systems (DES). The section includes an introduction to the automata and petri net approach. After
the introduction to the different terminologies, which are used in the two approaches, different kinds
of modelling examples will be introduced, in order to find the approach which will be suitable for the
modelling of the cc container distribution system.

2.1.1 Automata

This section describes the automata concept, and the properties of automata, this will be used later
to determine which modelling approach is the most appropriate for modelling the distribution system.
The section is based on (Cassandras and Lafortune, 1999).

Definition of Automaton

The automaton is used to represent a DES both by a graph and by the use of equations. The graphical
representation of the DES is the simplest way to represent the automaton, an example of a graphical
representation is shown in Figure 2.1, which illustrate a state transition diagram. The nodes in the
diagram represent the state set X of the DES. The arcs between the nodes, represent state transitions,
where the labels on the arcs represent events from the event set E of the automaton. The arcs of the
state diagram represent the transition function of the automaton, which is denoted f : X × E → X .
The transition function, describes the trajectory from the current state based on the event set. The
automaton shown in Figure 2.1, correspond to the transition function f :

f(x,a) = x f(x,g) = z
f(y,a) = x f(y,b) = y
f(z,b) = z f(z,a) = f(z,g) = y

(2.1)

where f(y, a) = x means that if the automaton is in state y, and event a occurs, the automaton
will make a transition to the state x. The initial state of the automaton is denoted by x0, which
is illustrated by an arc, coming from nowhere. The diagram also includes a set of marked states
Xm, which is a subset of X . Marked states are acceptable final states. The marked states Xm are
illustrated by double circles.

16 Modelling of System

x a

z

 g

y

 a

 b

 a,g

 b

Figure 2.1: Illustration of automaton state transition diagram

Definition (Deterministic automaton) A deterministic automaton, G is defined as:

G = (X, E, f, Γ, x0, Xm) (2.2)

where:

X is the set of states
E is the finite set of events, which can cause transitions in G
f : X ×E → X is a transition function f(x, e) = y which means that there is a transition labelled by
event e from state x to state y
Γ : X → 2E is the active event function; Γ(x) is the set of all events e for which f(x, e) is defined and
it is called the active event set of G at x
x0 is the initial state
Xm ⊆ X is the set of marked states

The automaton G operates as follows. It starts in the initial state x0 and upon an occurrence of an
event e ∈ Γ(x0) ⊆ E it will make at transition to state f(x0, e) ∈ X . This process continues based on
the transitions for which f is defined. The automaton is called deterministic because f is a function
over X × E to X , which means that the transition from a state is uniquely determined by the event
that triggers the transition.

Definition (Non-deterministic automaton) A non-deterministic automaton, denoted by Gnd is
defined as

Gnd = (X, E ∪ {ε}, fnd, Γ, x0, Xm) (2.3)

where these element have the same interpretation as for the deterministic version, except for fnd and
x0

fnd is a function fnd : X × E ∪ {ε} → 2X ; that is: fnd(x, e) ⊆ X whenever it is defined. This
means that an event can lead to multiple different states.

The initial state x0 may itself be a set of states, that is x0 ⊆ X

The automaton is called non-deterministic because the transition from a state is not uniquely
determined by the event triggering the transition, since the output of f is set valued.
This concludes the basic principles used in automata, the next section deals with the modelling of
DES using petri nets.

2.1.2 Petri Nets

This sections focus is on a modelling formalism for discrete event systems known as petri nets. Petri
nets can represent a larger class of systems than finite state automata. On the other hand petri nets
does not have the advantage of having systematic rules or operations for combination of one or more
petri nets, as is the case with automata. (Cassandras and Lafortune, 1999)

2.1 Discrete Event Systems 17

Definition of a Petri Net

A petri net consists of three basic elements; places, transitions and the relations between them. In
petri nets events are related to the transitions, and places in the petri net are related to the given
conditions that has to be fulfilled in order for the event/transition to occur. A place in the petri
net can be both input and output to a transition. The relations between places and transitions are
indicated by arcs between them, the arcs can have different weights.
In Figure 2.2 an example of a petri net graph is illustrated. In the figure the places are symbolised
with a circle and the transitions are symbolised with a bar. The arcs in the figure symbolise the
relations between the places and the transitions. The weight of the arcs are illustrated by writing
them on top of the arc, hence the arc between place p1 and transition t1 in Figure 2.2 has the weight
2. If the weight is 1 no number is written as in the case of the weight of the arc between transition
t1 and place p2 in Figure 2.2. As an alternative the petri net in Figure 2.2 can also be illustrated as
in Figure 2.3, where the weights are indicated by the number of arcs between places and transitions.
The two petri net graphs are thereby equivalent. A petri net structure PN is defined as a four tuple

2

p1 t1 p2

Figure 2.2: Example petri net graph

p1 t1 p2

Figure 2.3: Example petri net graph equivalent to Figure 2.2

in the following way:

PN = (P, T, A, w) (2.4)

Where:
P is the set of places
T is the set of transitions
A is the set of arcs
w is the set of weights on the arcs

The set P of places and the set T of transitions in the petri net structure PN is represented by:

P = {p1, p2, · · · , pn−1, pn} (2.5)

T = {t1, t2, · · · , tm−1, tm} (2.6)

The set A of arcs in the petri net structure is represented by:

A = {· · · , (pi, tj), · · · , (tj , pi), · · · } (2.7)

Where:
(pi, tj) is an arc from place pi to transition tj
(tj , pi) is an arc from transition tj to place pi

Finally, the set w of weights in the petri net structure will be represented by:

w = {· · · , w(pi, tj), · · · , w(tj , pi), · · · } (2.8)

18 Modelling of System

It follows from the definition in (2.7), that the sets A and w contains at most 2nm elements.
As an example, the petri net structure PN1 illustrated in Figure 2.2 can be written as following:

PN1 = (P, T, A, w), (2.9)

P = {p1, p2} (2.10)

T = {t1} (2.11)

A = {(p1, t1), (t1, p2)} (2.12)

w = {2, 1} (2.13)

So far the structure of the petri net has been considered, the following section covers the dynamics of
petri nets.

Petri Net State Dynamics

In order to be able to describe the dynamics of the petri net, information about the state of the net
is needed. This information is obtained by introducing the concept of marking to the petri net.
The marking of a petri net is defined as an n-dimensional row vector x consisting of non-negative
integers, describing the markings of each of the places pi in the petri net. The marking contain
information about when a given event/transition is enabled in the petri net. The vector x is given by:

x = {x(p1), · · · , x(pn)} (2.14)

When introducing the marking vector x to the petri net structure, the net is referred to as a marked
petri net or just a petri net for simplicity. The marked petri net PN is a five tuple defined as:

PN = (P, T, A, w, x) (2.15)

The state of the petri net is then defined as the marking vector. A transition is enabled in the petri
net if the marking of all places connected as inputs to a given transition is greater than or equal to
the weight on the arc connecting the place to the transition. This can be expressed as:

x(pi) ≥ w(pi, tj), ∀pi ∈ P : (pi, tj) ∈ A (2.16)

The marking of the petri net can be introduced to the petri net graph, by using the concept of tokens.
This is illustrated in Figure 2.4, where each dot inside the places in the graph is an illustration of a
token. The marking or state vector x of the petri net illustrated in Figure 2.4 can be verified to be:

p1 t1 p2

Figure 2.4: Illustration of a petri net graph including tokens

x = {2, 1} (2.17)

corresponding to the number of tokens in each place pi in the petri net.
When the requirement described in Equation (2.16) is fulfilled, the transition tj is allowed to occur.
This is also referred to as firing of the transition.
When the transition fires it consumes tokens from the places connected as inputs corresponding to the
weights of the arcs connecting the places to the transition. Additionally the transition adds tokens to
the places connected as outputs to the transition corresponding to the weight of the arcs connecting
the transition to the place. This can be expressed for place pi and transition tj as:

x′(pi) = x(pi) − w(pi, tj) + w(tj , pi) (2.18)

Where:
x′(pi) is the new marking of place pi

2.1 Discrete Event Systems 19

If there is no connection between pi and tj , the two weights w in (2.18) are evaluated as being zero.
From (2.18) it can be seen that tokens are generally not conserved in petri nets, since it is possible
that the sum of the weights of places connected as inputs to a transition is different than the sum of
the weights of places connected as outputs from a transition, that is:

∑

pi∈P

w(pi, tj) >
∑

pi∈P

w(tj , pi), or
∑

pi∈P

w(pi, tj) <
∑

pi∈P

w(tj , pi) (2.19)

Because of this it is possible for a finite petri net graph to have an infinite number of states, which is
opposite the case with finite state automata.
To illustrate the state dynamics of petri nets, an example will now be given. (Cassandras and
Lafortune, 1999) In Figure 2.5 a graph of a petri net is shown in its initial state x0. As it is apparent
from the figure it is only transition t1 that is enabled. If it is now considered that transition t1 fires,

p2

t1

p3

p4

t2

t3

p1

Figure 2.5: Illustration of a petri net in initial state x0

the resulting state x1 of the petri net will be as illustrated in Figure 2.6. Since p1 is input to transition
t1, one token is removed from this place. A token is added to both p2 and p3, since these places are
outputs from t1.
In the new state x1 it is possible for either of the transitions t1, t2 and t3 to fire, but only one at a
time. Figure 2.7 illustrates the new state x2 of the petri net if transition t2 is fired from the state

p2

t1

p3

p4

t2

t3

p1

Figure 2.6: Resulting state x1 of the petri net upon firing of transition t1 in state x0

x1. As can be seen a token is removed from p2 and p3, and a token is added to p2 and p4. If the
transition t3 is fired from state x1 instead, the resulting state x′

2 will be as illustrated in Figure 2.8.
Here a token has been removed from p1, p3 and p4 and no tokens are added since t3 has no outputs.
As it is apparent from the figure no more transitions can occur in this state, and it is therefor referred
to as a deadlock state of the petri net.
The above described behaviour can be captured in a simple linear equation, describing the relation
between the current and the resulting state upon the firing of a transition. First a firing vector u is
defined as an m-dimensional row vector in the following manner:

u = [0, · · · , 0, 1, 0, · · · , 0] (2.20)

20 Modelling of System

p2

t1

p3

p4

t2

t3

p1

Figure 2.7: Resulting state x2 of the petri net upon firing of transition t2 in state x1

p2

t1

p3

p4

t2

t3

p1

Figure 2.8: Resulting state x′
2 of the petri net upon firing of transition t3 in state x1

The only nonzero entry appears in the j’th place, indicating that it is the j’th transition that fires,
this entry has the value 1. The nonzero entry of the firing vector is of course limited to transitions
that are enabled. Next the incidence matrix A of the petri net is defined. This is an m × n matrix,
where the (j, i) entry is given by the following:

aji = w(tj , pi) − w(pi, tj) (2.21)

That is for every row in the matrix, the token balance is given for each of the places in the petri net
given that the transition fires.
Now it is possible to describe the relation between the current state x and the resulting state x′, given
the firing vector and the incidence matrix:

x′ = x + uA (2.22)

As an example one can consider the transition from state x0 illustrated in Figure 2.5 to state x1

illustrated in Figure 2.6. First the incidence matrix A is established by inspecting the petri net graph,
and using the definition in (2.21):

A =





−1 1 1 0
0 0 −1 1
−1 0 −1 −1



 (2.23)

Then by firing transition t1 in state x0 it is possible to calculate the state x1:

x1 = x0 + uA ⇔ (2.24)

x1 = [2 0 0 1] + [1 0 0]





−1 1 1 0
0 0 −1 1
−1 0 −1 −1



 ⇔ (2.25)

x1 = [1 1 1 1] (2.26)

Which can be verified in Figure 2.6. Now that both modelling formalism has been described, the
choice of the formalism appropriate for the distribution system will be made.

2.1 Discrete Event Systems 21

2.1.3 Choice of Modelling Framework

This section describes some of the considerations that has been done in order to choose the proper
modelling framework for the distribution system. As described in the previous sections two different
modelling frameworks has been considered; automata and petri nets.

Petri Net Model of Distribution Network

An intuitive approach for modelling the distribution of assets in the system, is to have places pi in
the petri net be a representation of a warehouse or a customer. In this abstraction a token in a given
place would then represent a single asset. In this framework the network structure is unknown in
between samples, i.e; the weights between places and transitions are unknown, since the amount of
assets moved from warehouse to warehouse in between samples can change. This is illustrated in
Figure 2.9, where the question marks above the arcs indicate unknown weights.
One possible solution to this problem could be to augment the petri net with additional places sij

? ? p2

t1

p1

t2

Figure 2.9: Petri net with unknown weights. The double arrows indicate that the bar symbolises the two
different transitions t1 and t2.

which contain information about how many tokens to move from one place to another in between two
samples. This is illustrated in Figure 2.10. In this framework the individual sij then have to be ’filled’
with the number of tokens to move, by some mechanism in between samples, which violates the petri
net modelling framework. Alternatively one could have transitions t1 · · · ti · · · tn between two places,
where i indicates the number of tokens that have been moved and n is the maximum number of assets
it is possible to possess, and the firing transition would have weights sij both in and out. The problem

p2p1

s12

t12

Figure 2.10: Petri net with weight determined by sij

is now to determine the marking of sij ; that is: number of tokens in sij in between two consecutive
samples. Which again indicates the weights of the arcs in between two samples.
Furthermore, it is possible for tokens (assets) to disappear from one place to turn up again a different
place, which indicates that a reading has been missed. In order to implement this in the model, the
set of places can be augmented by a place pL containing all the ’Lost’ tokens. This is illustrated in
Figure 2.11.
It is now possible to obtain expressions for the relation between the change in the state of the petri
net and the individual sij . First the number of tokens x+(p1) gained by place p1 between samples
can be expressed as:

x+(p1) = s21 + s31 + · · · + sn1 + sL1 (2.27)

The number of tokens x−(p1) lost by place p1 between samples can likewise be expressed as:

x−(p1) = s12 + s13 + · · · + s1n + s1L (2.28)

22 Modelling of System

p2p1

t12

s12

t21

s21

sL2

pL

sL1

s1L

tL1

t1L

t2L

tL2

s2L

Figure 2.11: Petri net augmented with ’Lost’ place pL with weights determined by sij

The matrix S containing the information about network structure between two samples is constructed
using entries sij :

S =





















0 s21 s31 · · · sn1 sL1

s12 0 s32 · · · sn2 sL2

...
...

. . .
...

...
...

...
. . .

...
...

s1n s2n s3n · · · 0 sLn

s1L s2L s3L · · · snL 0





















(2.29)

By the use of the constructed matrix S, the number of gained tokens x+(p1) and the number of lost
tokens x−(p1) can be expressed as:

x+(p1) = [1 1 · · · 1] × ST × [1 0 · · · 0]T (2.30)

x−(p1) = [1 1 · · · 1] × S × [1 0 · · · 0]T (2.31)

The relation between the old marking x(p1) of p1 and the new marking x′(p1) of p1 can be expressed
as:

x′(p1) = x(p1) + x+(p1) − x−(p1) ⇔ (2.32)

x′(p1) = x(p1) + [1 1 · · · 1] × (ST − S) × [1 0 · · · 0]T (2.33)

For the entire petri net, the relation between the old and the new marking can be expressed as:

x′ = x + [1 1 · · · 1] × (ST − S) (2.34)

Equation (2.34) generally results in a problem with n2 unknown, namely the entries in matrix S, but
only n equations. This indicates that the problem is not generally possible to solve. Even if it is
possible to find a probable solution to the problem, the entries in the matrix S only indicates how
many assets that have been moved from one location to another and not which assets that have been
moved. Since this information would also be of interest, for instance in determining if a particular
asset have been copied, this model approach have been discarded. Because of this, it is examined if
the automata framework is more appropriate for the problem at hand.

2.2 Markov Chains 23

Automata Model of Distribution System

In order to keep the information about which assets are present at a given warehouse, and not only
how many, an approach where each asset is modelled separately has been considered. In this approach,
an automaton is constructed for each asset in the system. This has the benefit that the location of
each asset can be determined from the state of the particular automaton modelling the asset, and that
a common model can be used for the assets. Figure 2.12 illustrates the approach described above. The

2

1

3

4

5

N

T

d3

d1

a1

a2

d2
a3

a5

dN
aN

d5

d4

a4

s1

s2

s3

s4

s5

sN

Figure 2.12: Automaton model for a single asset

figure shows the automaton model of a single asset. As it can be seen in the figure, the automaton
contain the states 1 · · ·N . These states represents the different warehouses present in the system. If
the particular asset continues to stay in the same state i after an event has occurred, it means that
the transition si has occurred. In order to get from one warehouse to another, a departure event di

has to occur from the present state followed by an arrival event aj from another warehouse. In other
words, the automaton will generate event sequences of the following type:

{· · ·ais
∗
i diajs

∗
jdj · · · } (2.35)

where ∗ indicates an arbitrary sequence of the given event
As it can be seen from the figure a ’Transport’ state T is introduced in the automaton, which models
the time spent during the transportation between two locations.
The major problem in the system is that the above described events are only partially observable, that
is; an asset can pass through a reading port without being registered. This problem can be handled by
modelling the asset automaton output as a hidden Markov chain, since this is the behaviour a hidden
Markov chain describes. Furthermore, the Viterbi algorithm is readily available to estimate the state
sequence of a hidden Markov chain. The next sections will be used for introducing the concept of
Markov chains, hidden Markov chains and how these apply for the system in question.

2.2 Markov Chains

This section covers properties of Markov chains, including the definition of a Markov chain and how
they are related to automata. The section is based on (Jurafsky and Martin, 2008).
A finite state automaton (FSA) having state space X = {x1, · · · , xn} and event set E = {e1, · · · , et}
and associated transitions f(x, e) for x ∈ X and e ∈ E, is called a weighted FSA if each transition
f(x, e) has a probability (weight) φij associated with it. The weights on the transitions indicates how
likely the transition in question is, or alternately how likely the transition from state xi to state xj is.

24 Modelling of System

The laws of probabilities require the sum of the weights on the transitions from a given state being
equal to 1:

n
∑

j=1

φij = 1, ∀i (2.36)

An example of a state sequence generated by a weighted FSA can be seen in Figure 2.13, where the
state is shown at times k − 1, k and k + 1. The state sequence generated by a weighted FSA is called

x1 x5 x2

φ15 φ52

k − 1 k k + 1

Figure 2.13: Sample trajectory for a weighted FSA

a first order Markov chain if the probability for the next state in the sequence is only dependent on
the current state and not on the entire state history (Cassandras and Lafortune, 1999), that is, for a
given state sequence Q = {q1, · · · , qk}:

P [qk+1 = xk+1|qk = xk, · · · , q1 = x1] = P [qk+1 = xk+1|qk = xk] (2.37)

Furthermore, to be able to model a weighted FSA by means of Markov chains, the state sequence of
the FSA has to be uniquely determined by the input sequence, that is; the FSA has to be deterministic
(Jurafsky and Martin, 2008).
A Markov chain Mc can be specified by:

Mc = (X, Φ, x0, xF) (2.38)

Where:
X is the set of n states {x1, · · · , xn}
Φ is a transition probability matrix with φij as entries
x0 is the initial state
xF is the final state

Alternatively, for Markov chains which does not rely on specific start and end states, they can be
expressed with a probability distribution over the initial states and a set of legal accepting states:

Mc = (X, Φ, π, Xa) (2.39)

Where:
π={π1, · · · , πn} is the initial probability distribution of states, πi is the
probability that the chain starts in state xi;

∑n

i=1
πi = 1

Xa ⊆ X is the set of legal accepting states

2.2.1 Hidden Markov Chains

Markov chains can be used to calculate the probability for a state sequence for a given process. In
many cases however, it is not possible to observe the state sequence of a Markovian process directly.
Instead a sequence of observations are made, where each observation is stochastically related to the
process state at the time of the observation. In this case, the Markov chain is called hidden, since it
cannot be observed directly. Instead each of the possible observations vi in the observation set V is
assigned a probability ωij of being emitted from state xj . This is illustrated in Figure 2.14, where the
Markov chain itself is illustrated above the dotted line, while the observations are illustrated below
the dotted line. A hidden Markov chain Mch is thus given by:

Mch = (X, Φ, π, Xa, V, Ω) (2.40)

Where:
V = {v1, · · · , vm} is the set of possible observations
Ω is the observation probability matrix with ωij as entries

Furthermore, it is a requirement that the probability of the current observation is only dependent of the
state emitting that observation, and not any other states or observations (Jurafsky and Martin, 2008).
This means that for a state sequence Q = {q1, · · · , qk} and observation sequence O = {o1, · · · , ok}:

P [oi|q1, · · · , qi, · · · , qk, o1, · · · , oi, · · · , ok] = P [oi|qi] (2.41)

2.2 Markov Chains 25

x1 x5 x2

φ15 φ52

v8
v3 v2

ω22

k − 1 k k + 1

ω81 ω35

Figure 2.14: Sample trajectory for a weighted FSA with hidden states

2.2.2 Markov Model of Distribution System

As described in section 2.1.3 it has been chosen to model the distribution of the assets as an individual
automaton for each of the assets. This is done since it is considered to be the best way to keep all
the information available in the system. This section describes how the automaton for the asset relate
to hidden Markov chains. First the automaton will be fitted to work as a hidden Markov process.
Furthermore, new parameters needed for the hidden Markov process will be described.

Model of Asset as Hidden Markov Process

The preliminary approach for modelling the assets as individual automata is described in section
2.1.3, the graph of the automaton is repeated here in Figure 2.15. As it can be seen, the assets has a

2

1

3

4

5

N

T

d3

d1

a1

a2

d2
a3

a5

dN
aN

d5

d4

a4

s1

s2

s3

s4

s5

sN

Figure 2.15: Preliminary automaton model for a single asset

transport state in the centre and all the other states, which corresponds to locations, are connected
to this in a star like configuration.
If the automaton of an asset is to describe a first order Markov process, it is a necessity that the
transition to the state at time k +1 is only dependant on the state at time k, and not the entire state
history, that is, for a given state sequence Q = {q1, · · · , qk}:

P [qk+1 = xk+1|qk = xk, · · · , q1 = x1] = P [qk+1 = xk+1|qk = xk] (2.42)

When examining the automaton graph in Figure 2.15 one can realise, that the transition away from the
transport state is dependant on which state has lead into the transport state, since the transportation
of an asset from one location back to the same location does not occur. Therefor, the probability
related to the transition to the state at time k + 1 is actually given by:

P [qk+1 = xk+1|qk = xk, · · · , q1 = x1] = P [qk+1 = xk+1|qk = xk, qk−1 = xk−1] (2.43)

26 Modelling of System

The expression in Equation (2.43) describes a second order Markov process, for which the mentioned
Viterbi algorithm associated with hidden Markov processes does not directly apply. One solution to
this problem could be to change the algorithms for use with the second order Markov process. The
other approach, which will be used here, is to alter the automaton model of the system, such that it
models a first order Markov process.
Figure 2.16 shows the altered automaton model for a single asset, with three locations. As it can
be seen from the figure, transport states associated with each of the locations has been introduced
into the model. This way it is implicit in the model, which state has led to the transport state, and
the transportation of an asset away from any given location, can no longer lead back to the state
representing the same location. This way the state sequences in the automaton can be considered a
first order Markov chain.

2

3

d2

d3

d1

a2

a2

a3

a3a1

T3

T2

T1

s2

s3

a1
1

s1

Figure 2.16: Final automaton model for a single asset

Synchronisation of Asset Automata: In order to be able to determine if an automaton for a
specific asset has made a transition to a different location, but missed to produce an output, the
automatons will be synchronised, such that every event going on in the entire system will make the
time index of every single asset automaton increase. By doing this, the time index of an automaton
will increase even if the transition of the particular asset has failed to produce an output. It is assumed
that assets are never transported on their own, but always accompanied by at least one other asset.
Thus, if one of the assets are failed to be read by the gate at a certain location, it is highly probable
that another asset will be detected. This means that even if the asset is not detected at the location,
the automaton representing that particular asset will still make a transition based on other events in
the system. The transition will then either be a self loop to the same state which is highly likely to
produce no output, or else it will be a transition to another state which will be less likely to produce
no output.
It is assumed that the loading or unloading of a load of assets takes about 30 minutes, therefor the
update frequency of the asset automata is limited to the reciprocal of this.

Output of Asset Automata: In the automaton model of each asset, the probability of a particular
output is not related to certain states, but is instead related to the transitions between different states
in the automaton. This can be realised by examining the probability of emitting a given observation
from one of the states representing a location in the system.
If the automaton has ended up in the state by taking the self loop to the state, the probability of
emitting a symbol from that state is very low, since it probably indicates that another asset in the
system has passed a gate, thus increasing the time index of the system. In very few cases it will be
an unintended reading of the particular asset, which has caused the asset to take the self loop. If

2.2 Markov Chains 27

the asset has entered the location state from the transport state instead, the probability of emitting
a reading will be very high, since it means that the asset has passed a gate at the location, which
will have a high probability of emitting a reading and increase the time index of the system. Thus
different probabilities of emitting a symbol is associated with the same state. This situation can be
avoided by making the observation probabilities rely on the transitions in the automaton instead of
the particular states. This means that the parameters for the hidden Markov model of the system has
to be redefined compared to what was presented previously. In particular, the observation probability
matrix Ω has to be redefined in order to capture this.

Hidden Markov Model of Asset

As described previously a hidden Markov chain Mch can be described by the following six tuple:

Mch = (X, Φ, π, Xa, V, Ω) (2.44)

Where:
Ω is the transition probability matrix where ωij is the probability that the
symbol vi is emitted from state xj

The transition probability matrix Ω has to be changed in order to capture the nature of the system,
since observations in the system are associated with transitions and not states as in the original
definition. This means that instead of being a two dimensional matrix, Ω is changed to be a three
dimensional matrix with entries ωhij which are defined as the probability of the symbol vh being
emitted when the automaton makes a transition from state xi to xj , or in a more formal definition:

ωhij = P [vh|xi → xj] (2.45)

Where:
The notation xi → xj indicates a transition from state xi to xj

Furthermore, a start observation probability matrix Θ is defined with entries θhj defined as the
probability of the symbol vh being emitted when xj is the initial state, or formally:

θhj = P [vh|start → xj] (2.46)

The final hidden Markov model of the asset automaton becomes the seven tuple:

Mch = (X, Φ, π, Xa, V, Ω, Θ) (2.47)

With the structure of the asset automaton established, it is necessary to determine the parameters
to use in the model. For hidden Markov models the forward-backward algorithm can be used in
parameter estimation of the model if the structure of the model is known, therefor this algorithm will
be described in the next section. Furthermore, the forward algorithm will be described since this is
used implicit in the forward-backward algorithm. These are two of the characteristic algorithms in
the use of hidden Markov chains as a modelling framework (Jurafsky and Martin, 2008):

• Computing Likelihood (The Forward Algorithm): Given a hidden Markov chain
Mch = (X, Φ, π, Xa, V, Ω, Θ) and an observation sequence O = {o1, · · · , ok}, determine the
likelihood P [O|Mch].

• Learning (The Forward-Backward Algorithm): Given an observation sequence O and the set of
states X = {x1, · · · , xn}, learn the Φ and Ω parameters of the hidden Markov chain Mch.

The following sections will be used to describe the above mentioned forward and forward-backward
algorithms in detail. The algorithms are adaptations of those described by Jurafsky and Martin (2008),
changed so they fit to a hidden Markov model where the observations are related to the transitions.

28 Modelling of System

2.2.3 Forward Algorithm

As mentioned, the forward algorithm is used to determine the likelihood of a given observation sequence
in a hidden Markov chain. For any particular state sequence Q = {q1, · · · , qk} and observation
sequence O = {o1, · · · , ok}, the likelihood of the observation sequence is given by (Jurafsky and
Martin, 2008):

P [O|Q] =
k

∏

i=1

P [oi|qi−1 → qi] (2.48)

Since the underlying state sequence Q is unknown it is necessary to compute the probability for the
observation sequence O by summing over all possible state sequences (Jurafsky and Martin, 2008).
For any particular state sequence Q, the joint probability of generating an observation sequence O is
given by:

P [O, Q] = P [O|Q] · P [Q] =

k
∏

i=1

P [oi|qi−1 → qi] ·

k
∏

i=1

P [qi|qi−1] (2.49)

The probability for the given observation sequence is now given by summing over all possible hidden
state sequences:

P [O] =
∑

Q

P [O, Q] =
∑

Q

P [O|Q] · P [Q] (2.50)

The number of state sequences in a system composed of n states, given k observations is in general
nk. Thus the algorithm for computing the probability of a certain observation sequence will be of
exponential complexity (O(nk)) if each of the observation probabilities are to be summed up. Instead
of using this approach, the forward algorithm which has O(n2k) complexity, can be used.
The forward algorithm calculates the probability of a given observation sequence, by using a graphical
approach called a forward trellis. An example of the trellis is illustrated in Figure 2.17. In Figure 2.17

start x2

x1

xn

x1

x2 x2

x1

xn
xn

v8
v2 v5

k

α1(n)

α1(1) α2(1)

α2(n)

| {z }

o1

| {z }

o2

| {z }

o3

α1(2) = π2θ82
P
[x

n
|s

ta
rt

]P
[v8

|s
ta
rt

→
xn

] =
πn

θ8n

P
[x
1 |start]P

[v
8 |sta

rt
→

x
1] =

π
1 θ

81

P [x2|start]P [v8|start → x2]

= π2θ82

P [x2|x2]P [v2|x2 → x2] = φ22ω222

P [x1|x1]P [v2|x1 → x1] = φ11ω211

α2(2) = α1(2)φ22ω222 + α1(1)φ21ω212

P [x
1 |x

2]P [v
2 |x

2 →
x
1]

=
φ
12 ω

221
P
[x2

|x1
]P

[v2
|x1

→
x2

]

=
φ21

ω21
2

Figure 2.17: Sample trellis for forward algorithm (Jurafsky and Martin, 2008)

2.2 Markov Chains 29

an observation sequence O = {o1 = v8, o2 = v2, o3 = v5} is illustrated at the bottom. Each of the
cells in the trellis is associated with a number αk(j), where k is the observation number and j is the
j’th state in the state set X . The number αk(j) represents the probability of being in state j after
seeing the first k observations, given the hidden Markov chain in question:

αk(j) = P [o1, · · · , ok, qk = xj |Mch] (2.51)

Where qk = xj corresponds to the k’th state in the sequence being xj . For a given state xj at time k,
the number αk(j) is calculated as:

αk(j) =

n
∑

i=1

αk−1(i) · φij · P [ok|xi → xj] (2.52)

If ok = vh then P [ok|xi → xj] = ωhij or θhj if xi is the start state, as in the definition of the
observation probability matrices Ω and Θ. By the definition of the elements in the trellis it is now
possible to derive the forward algorithm, for K observations:

1. Initialisation:

α1(j) = πj · P [o1|start → xj], 1 ≤ j ≤ n (2.53)

2. Recursion:

αk(j) =

n
∑

i=1

αk−1(i) · φij · P [ok|xi → xj], 1 ≤ j ≤ n, 1 < k ≤ K (2.54)

3. Termination:

P [O|Mch] = αK =

n
∑

j=1

αK(j) (2.55)

The forward algorithm can be used to evaluate how well a given model match a given observation
sequence. This can be used to select between different models (Rabiner, 1989).

2.2.4 Forward-Backward Algorithm

The forward-backward algorithm can be used to learn the parameters Φ and Ω of a hidden Markov
chain Mch. For this purpose it is necessary to have a known observation sequence O produced by the
process and a known state space X . The Φ and Ω parameters are estimated iteratively from an initial
estimate of them, thus using this estimate, better and better estimates are obtained.
The forward-backward algorithm uses a probability related to the forward probability, which is called
the backward probability βk(j). The backward probability βk(j) is the probability of seeing the
observations from time k + 1 to time K given that the state at time k is xj :

βk(j) = P [ok+1, · · · , oK |qk = xj , Mch] (2.56)

It can be computed in a manner similar to the forward algorithm:

1. Initialisation:

βK(i) = 1, 1 ≤ i ≤ n (2.57)

2. Recursion:

βk(i) =
n

∑

j=1

φij · P [ok+1|xi → xj] · βk+1(j), 1 ≤ i ≤ n, 1 ≤ k < K (2.58)

30 Modelling of System

3. Termination:

P [O|Mch] = β1 =
n

∑

j=1

πj · P [o1|start → xj] · β1(j) (2.59)

The probability φij of taking the transition from state xi to xj , can be estimated by the following
proposition:

φ̂ij =
expected number of transitions from state xi to state xj

expected number of transitions from state xi

(2.60)

In order to calculate φ̂ij , a variable ξk(i, j) is defined as the probability of being in state xi at time k
and in state xj at time k+1, given the observation sequence and the hidden Markov chain in question:

ξk(i, j) = P [qk = xi, qk+1 = xj |O, Mch] (2.61)

The variable ξk(i, j) can be calculated using the following property of probabilities:

P [qk = xi, qk+1 = xj |O, Mch] =
P [qk = xi, qk+1 = xj , O|Mch]

P [O|Mch]
(2.62)

Where P [qk = xi, qk+1 = xj , O|Mch] can be calculated from (Jurafsky and Martin, 2008):

P [qk = xi, qk+1 = xj , O|Mch] = αk(i) · φij · P [ok+1|xi → xj] · βk+1(j) (2.63)

The probability P [O|Mch] can for instance be calculated as αK , thus ξk(i, j) is evaluated as:

ξk(i, j) =
αk(i) · φij · P [ok+1|xi → xj] · βk+1(j)

αK

(2.64)

The expected number of transitions from state xi to state xj is then given as the sum over all k of

ξk(i, j). In order to obtain φ̂ij , the total number of transitions out of state xi is found by summing

over all transitions out of state xi. The final expression for φ̂ij is given by:

φ̂ij =

∑K−1

k=1
ξk(i, j)

∑K−1

k=1

∑n

j=1
ξk(i, j)

(2.65)

Just like the state transition probability matrix Φ, the observation probability matrix Ω can be
estimated by making an estimate ω̂hij of the entry ωhij the following way:

ω̂hij =
expected number of transitions from state xi to state xj and observing symbol vh

expected number of transitions from state xi to state xj

(2.66)

The denominator of Equation (2.66) has already been calculated in the estimate of the φij parameter,
and the numerator can be found by simply summing ξk(i, j) over the time indices where the observation
was the symbol vh in question:

K−1
∑

k=1,ok+1=vh

ξk(i, j) (2.67)

The expression in Equation (2.67) means sum of ξk(i, j) over all k for which the observation was the
symbol vh. The expression for the estimate of ωhij thus become:

ω̂hij =

∑K−1

k=1,ok+1=vh
ξk(i, j)

∑K−1

k=1
ξk(i, j)

(2.68)

The forward-backward algorithm is meant to be run iteratively until the estimates of the Φ and
Ω matrices converges. In practice the initial estimates of the matrices are very important for the
algorithm to work properly. In order to obtain good initial estimates of the system parameters to use
either directly in the model or together with the forward-backward algorithm, the next section will
describe an analysis of the derivation of these.

2.2 Markov Chains 31

2.2.5 Configuration of Initial System Parameters

This section deals with the initial configuration of the parameters used in the system. These
parameters are, as described in section 2.2.2; the transition probability matrix Φ, the observation
probability matrix Ω, the initial observation probability matrix Θ, the vocabulary V and the initial
state probability distribution π. The parameters chosen in this section can be considered as the best
guess on the actual system parameters, and will be used together with the forward-backward algorithm
described in section 2.2.4 to derive a better estimate of the actual parameters of the system.

Transition Probability Matrix

As it can be seen in the illustration of the asset automaton in Figure 2.16 on page 26, there exists
four different types of transitions in the system. These are; self loop in a location state, self loop in
a transport state, a transition from a location state to its corresponding transport state and finally a
transition from a transport state to a location state different from its corresponding location state.
The automaton in question models the distribution of a cc container in the system. Since the locations
in this system are considered equally likely for the assets to end up in, all of the transitions of the
same type are considered to have the same probability. This means that if an asset is in location
or state ’a’ it is equally likely to take the self loop as if it had been in location or state ’b’. These
considerations also apply to the other three types of transitions.
Correlating the above mentioned considerations with the illustration of the asset automaton in Figure
2.16 it can be realised that only transition probabilities for two types of transitions will have to be
estimated. The rest of the transition probabilities can be calculated from these. The two probabilities
to be estimated are the probabilities of taking self loops when in either a location state or in a transport
state.
For the location state, there are only two possible transitions and since the total probability is 1, the
remaining probability can be calculated by subtracting the probability for a self loop from 1. The
transport state has more transitions associated with it, but since all the transitions to location states
are considered equally likely, these can be calculated by subtracting the probability for the self loop
from 1 and then dividing by the number of possible transitions to location states:

P [Ti → xj] =
1 − B

n − 1
(2.69)

Where:
Ti is the transport state in question
xj is a location state not associated with the transport state
B is the probability of a self loop in the transport state
n is the number of locations in the system

The number of possible transitions to location states are one less than the total number of location
states since it is not possible to take a transition from a transport state back to its associated location
state.
The following paragraph describes how the two transition probabilities are derived.

Derivation of Transition Probabilities In order to derive an estimate of the self loop transition
probabilities some intermediate variables are defined, these are; N which is the number of assets in the
system, M which is the average number of assets in each transport, F which is the average frequency
at which the time index of the system is updated, which is done when measurements are separated at
least 30 minutes, and f which is the transport frequency for each asset or the average frequency at
which each individual asset is transported.
The variable which is of interest when seeking the transitional probabilities, is the transport frequency
for the individual assets, since the sum of time periods each asset stays at a given location state and its
associated transport state is given as the reciprocal of the transport frequency. If the average time an
asset spends at a location state (Tl) and the average time an asset spends at the locations associated

32 Modelling of System

transport state (Tt) is known, the transitional probability A for the self loop in the location state can
be estimated from the following equation:

T F
l =

∞
∑

j=0

j · Aj−1 · (1 − A) ⇒ (2.70)

T F
l =

A

1 − A
⇒ (2.71)

A =
T F

l

T F
l + 1

(2.72)

Where T F
l is Tl normed regarding the average transport frequency F , since the asset automatons time

base is synchronised to the transport frequency. Likewise, the transition probability B for the self
loop in the transport state can be calculated using the following:

T F
t =

∞
∑

j=0

j · Bj−1 · (1 − B) ⇒ (2.73)

T F
t =

B

1 − B
⇒ (2.74)

B =
T F

t

T F
t + 1

(2.75)

In order to express the time periods Tl and Tt in terms of the transport frequency F an estimate of the
transport frequency is needed. The transport frequency is calculated using the following equations:

F =
N · f

M
⇒ (2.76)

F =
N · 1

Tl+Tt

M
⇒ (2.77)

F =
N

M · (Tl + Tt)
(2.78)

The time periods Tl and Tt can then be expressed in terms of the frequency F , by the following
expression:

T F
l = F · Tl (2.79)

T F
t = F · Tt (2.80)

This means that in order to derive the transitional probabilities A and B, an estimate of the time
periods Tl and Tt, the total number N of assets in the system and the average number M of assets per
transport is needed. Given these estimates the transport frequency F is calculated using Equation
(2.78), then the time periods Tl and Tt is expressed in terms of F using Equations (2.79) and (2.80)
and lastly, A and B are calculated using Equations (2.72) and (2.75).

Observation Probability Matrix

The observational probabilities are tied to the probability of an asset being read when passing through
an RFID reader gate. When the asset passes the gate, one of two things can happen; either the asset
is read in which case the output of the asset automaton will be the id of the gate in question. The
other possibility is that the reading of the asset is missed and the corresponding output of the asset
automaton will be the empty symbol. Out of the four possible transitions described previously, two
of them involves the asset passing through a gate, and thus for these cases the possibility of emitting
the symbol associated with the location is equal to the possibility of the asset being read by the gate.
The two transitions in question is the transition from a transport state to a location state, and the
transition from a location state to its corresponding transport state.
When an asset is in a transport state and takes a self loop, it is not possible to generate other than
the empty symbol, since no RFID reader gates are involved in this situation, thus the empty symbol
will always be generated in this case.

2.3 Validation of Simulation Model 33

When an asset takes a self loop in a location state it is possible to emit the location symbol. This
happens if the asset is in the vicinity of the RFID reader gate at the location and unintentionally
gets read without being prepared for transport. This is assumed to happen with a low probability,
since it requires the asset to be close to the loading ramp during its stay at the particular location
and because the probability for the asset staying at a particular location is assumed to be high. If
the asset does not emit the location symbol when taking the self loop it will emit the empty symbol,
which happens with a high probability.

Initial State Probability Distribution

When an asset is introduced to the system, each of the different location states are considered equally
likely as initial state. The transport states are considered impossible as initial states.

Initial Observation Probability Matrix

The probability of emitting a symbol corresponding to the initial location is the same as the probability
of emitting a symbol when taking a normal transition into the particular location state, since it also
involves the RFID reader gate. Therefor, the parameters for emitting the location symbol respectively
the empty symbol are the same.

Vocabulary

The RFID reader gates at the different locations involved in the system are assigned an id. This id is
mapped to an id for the location the gate belongs to. The location ids will be used in the vocabulary
as the symbol associated with the location. Furthermore, the empty symbol is added to the vocabulary.

2.3 Validation of Simulation Model

With the derivations made in the previous sections it is possible to implement a hidden Markov model
of the assets in Matlab. The model can then either make use of the initial parameters directly or it
can make use of the forward-backward algorithm to estimate the true system parameters if there are
output sequences available from the actual system.
In order to validate the parameters of the model, it is necessary to have output sequences from the ac-
tual system available. Since the registration of cc containers via RFID tags has not been implemented
into the distribution system yet, data from the actual system is not available to the project group.
Therefor, data from a similar system which already has been implemented will be used. The data
to validate the model of the asset output against come from the Post Danmark registration of letter
cages, which are transported between post offices and package distribution centres in Denmark. This
system is not in the same scale as the distribution of cc containers in Europe. More specifically, the
data received from the Post Danmark setup contains registrations from 22257 assets collected from
eleven different locations.

A test has been conducted in order to validate the hidden Markov model of the system. The model
is a Matlab script implementation of the model derived in this chapter. The model is a pure hidden
Markov model, which means that each assets state- and output sequences are simulated independently.
This has the effect that the output from the model does not capture the fact that assets are expected
to be transported at least two together at all times. On the other hand the model is expected to be less
time consuming than a full system model, and can thus be used to test different system parameters
within a reasonable time frame. Later, when a set of parameters, which can be validated using the
pure hidden Markov model, have been found, these will be validated with a model describing the full
dynamics of the system. A complete description of the test can be found in appendix B, the main
results and conclusions from the test will be summarised in this section.

34 Modelling of System

In order to validate if the hidden Markov model of the system uses the correct parameters the test has
been carried out using the Viterbi algorithm (described in chapter 4). More specifically, the γ-values
produced by the algorithm at the last time index has been used. The maximal γ-value at the last
time index is proportional to the probability of the output sequence used as input to the algorithm,
given the optimal state sequence and the underlying hidden Markov model. It is expected that the
distribution of these γ-values will be similar if the model matches the actual system. The distributions
of the γ-values are compared using the rank sum test, which is described in appendix A.

First the simulation model is tested using the parameters calculated based on the Post Danmark data
directly. The distribution of the γ-values calculated using the actual system output and the simulation
model output can be found in Figure 2.18 and Figure 2.19 respectively. As it can be seen in the figures,
the distributions does not appear to be similar, and since the p-value from the rank-sum test is zero,
the hypothesis of the distributions being similar can readily be rejected.
Next the simulation model is tested using parameters estimated by the forward-backward algorithm,

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

0

1000

2000

3000

4000

5000

6000

7000

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for actual system

10
−300

10
−200

10
−100

10
0

10
100

10
200

10
300

0

2

4

6

8

10

12

14

16

18

20

γ−value

γ−values for simulated system

Figure 2.18: Distribution of γ-values of Post
Danmark data (A = 0.8333,B = A)

Figure 2.19: Distribution of γ-values of simulated
data (A = 0.8333,B = A)

with the previous parameters as initial parameters. The distribution of the γ-values calculated using
the actual system output and the simulation model output can be found in Figure 2.20 and Figure
2.21 respectively. As it can be seen in the figures, the distributions does not appear to be similar, and
since the p-value from the rank-sum test is zero, the hypothesis of the distributions being similar can
readily be rejected.

Finally the simulation model is tested using parameters tuned by hand. The distribution of the
γ-values calculated using the actual system output and the simulation model output can be found
in Figure 2.22 and Figure 2.23 respectively. As it can be seen in the figures, the distributions does
not appear to be similar, but since the p-value from the rank-sum test is 0.54, the hypothesis of the
distributions being similar cannot be rejected. Although the rank-sum test cannot reject the model
parameters in the final test of the simulation model, the distributions of γ-values in Figure 2.22 and
2.23 does not appear to be similar. Based on the results from the different test it will though still
be assessed that the latter parameters are those that fit the actual system best, and thus these are
accepted as system parameters.
This concludes the modelling of the distribution system as a pure hidden Markov model. The next
chapter deals with a SimEvent model of the system, which in contrast to the pure hidden Markov
model also takes into account that assets are always transported at least two at a time.

2.3 Validation of Simulation Model 35

10
0

10
20

10
40

10
60

10
80

10
100

0

1000

2000

3000

4000

5000

6000

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for actual system

10
−300

10
−200

10
−100

10
0

10
100

10
200

10
300

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

γ−value

γ−values for simulated system

Figure 2.20: Distribution of γ-values of Post
Danmark data (A = 0.76,B = 0.85)

Figure 2.21: Distribution of γ-values of simulated
data (A = 0.76,B = 0.85)

10
5

10
10

10
15

10
20

10
25

10
30

0

500

1000

1500

2000

2500

3000

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for actual system

10
−150

10
−100

10
−50

10
0

10
50

10
100

10
150

10
200

10
250

10
300

1

2

3

4

5

6

7

8

9

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for simulated system

Figure 2.22: Distribution of γ-values of Post
Danmark data (A = N/(N + 1),B = A), where
n is the number of assets in the system

Figure 2.23: Distribution of γ-values of simulated
data (A = N/(N + 1),B = A), where n is the
number of assets in the system

36 Modelling of System

Chapter 3
Simulink Model of System

This section describes the construction and properties of the simulation model of the distribution
system. The simulation model is constructed in Matlab Simulink, using the SimEvents Toolbox
version 2.1.

The SimEvents Toolbox, is an extension for the Matlab Simulink simulation environment, which adds
features for simulation of DES. SimEvents uses events and entities to model a DES. An entity is
a discrete item, which can be used to model items, such as network packets etc. The entities are
routed through a network of different elements, such as queues, servers, gates and switches during the
simulation. Entities can carry data, known in SimEvents as attributes. (The MathWorks, 2007) The
size of the attribute, can be either a single character or a multidimensional array. The attributes does
not use dynamic allocation of memory i.e the data size of the attribute is fixed at the initial size.

The SimEvents library works, in the same way as the ordinary Simulink library, and can interact with
Simulink blocks. Discrete events can be used to trigger different actions in the SimEvents simulation.
These events can be generated, based on entities departing from a block. Events can also be time
based, either at a fixed interval or scheduled. SimEvents can also interact with Stateflow, which can
generate events based on state machines. (The MathWorks, 2007) As the reader is presumed to have
knowledge of Simulink, only the used blocks will be briefly described in the following sections.

3.1 Simulink Model

This section describe the constructed simulation model, and the relation to the physical plant, which
is modelled. The plant is a combination of a distribution system of assets and a number of automated
registration devices.

The plant operates without any input, but produces a number of outputs. However these output
are error prone. The output of the system is a number of readings, produced when an asset either
enter or leaves a location, thus being scanned in the RFID reader. This reading includes the following
elements:

• Identification number of the cc container

• Time stamp of registration

• Location identification of where the registration occurred

• Other miscellaneous information, such as method of scanning etc.

However various errors occur in the system as described in the introduction in chapter 1.

1. The cc’s pass through the reading portal, without being registered.

38 Simulink Model of System

2. The cc’s are registered without having passed through the reading portal.

The model consist of three major blocks. An initialisation block, a places block and a transport block.
Furthermore, an observation generation block exists in the system. The observation generation block
generates the observation sequence from the state sequence of each asset. The block diagram of the
simulation model is shown in Figure 3.1. Assets are fed into the system, by the Initialise block. The
assets are then fed into the locations block, which models the locations in the system. When an asset
leaves the location block or makes a self loop in a location, the asset is routed through the observation
block, which updates the observation sequence of the asset. When an assets makes self loops in
the transport block no observations are generated. Two different probabilities are used, when the
observation sequence is updated; the scan probability, which is the probability of a successful reading
and a faulty scan probability, which is the probability of the RFID reader to output a reading, even
when the asset has not passed through the reader. The state and observation sequences are stored
into two of the attributes of each asset.

Initialise

Transport

Places

Observation

Figure 3.1: Block diagram of simulation model divided into three major blocks, and an output block, which
generates the observation sequences.

The simulation model is, as stated above, divided into three blocks, the functionality of these blocks
will be described in the following. The complete Simulink model is illustrated in Figure 3.2. The

Write log to workspace

In log place

To Location

To Transport

In log trans Transport

Transport in

Return log

Transported

To log

Places

Source

Destination

In place

To log

From log

 Not transported

Transport
Path Combiner

IN1

IN2

IN3

OUT

Initialization

Containers

From1

index

 Random Source and dest

Timestep

Source

Destination

fcn

Figure 3.2: The complete simulink model, the major blocks are colored orange, blue and yellow

Simulink model uses entities to represent assets. Each asset has a number of attributes associated
with it, these attributes include:

1. ID

3.1 Simulink Model 39

2. Current location (state) L

3. Time stamp of last event T

4. State history (state sequence) S

5. Event history (observation sequence) E

6. A probability (self loop in location)

7. B probability (self loop in transport)

8. Scan probability

9. Faulty scan probability

And some additional attributes, due to the nature of the SimEvent toolbox. These additional
attributes are used to control the flow of assets through the system.

The ID is the unique identification number of each asset. The current location is the state of the FSA
in figure 2.16 on page 26 for the asset. The time stamp is the time step of the current event. The
state history attribute is a matrix of past locations combined with corresponding time stamps. The
observation sequence is constructed, by the output function, which uses the state sequence to generate
the observation sequence, as illustrated in Equation 3.1, where output is the observation generation
block . The A probability is the probability, at which an asset makes a self loop in a location state,
and the B probability is the probability at which the asset makes a self loop in a transport state.
Scan probability is the probability for a successful reading of the asset passing through a reading
portal. The faulty scan probability is the probability that an asset generates a reading without being
transported.

S =











L(1) T (1)
L(2) T (2)

...
...

L(k) T (k)











output
E =











O(1) T (1)
O(2) T (2)

...
...

O(k) T (k)











(3.1)

Where:
O(k), is the observation at time k, generated by the observation block

3.1.1 Model Description

An activity diagram for the Simulink model can be seen in Figure 3.3. The diagram illustrates how the
model operates. The initial model parameters, which is the number of assets, number of locations and
transition and output probabilities are loaded into the model workspace. When the simulation starts,
entities are continuously generated in the Init block. When the number of entities generated is less
than or equal to the number of assets specified for the simulation, the attributes are set. The entities
are fed out of the Init block and into the system. When the desired number of assets is exceeded the
following entities are discarded.

In order to have assets only to take a loop in either the transport block, the location block or to take a
transition between the two blocks, a queue is put in both the transport block and the location block.
Both the input and output can be blocked with gates, the input and output gates are controlled by
the total number of assets in the two queues. A third queue exists in the places block, which is used
to ensure that minimum two assets are transported together.

When assets exits either the places or transport blocks, the state- and observation sequences are
updated.

When all assets are in one of the two queues, the time step is increased and a new source and
destination for the transport are generated.

When the assets are in the places block, the order of the assets are randomized. For each asset in
the places block, the current location is compared with the random generated source. All assets with
a matching destination are routed out of the places block, this is done to model a transport from a
specific location.

40 Simulink Model of System

Initiate model
parameters

Generate assets

Wait

Increase the time

one step

Assets enter

places block

Set initial

attributes of each

asset

Are all assets in a

queue?
no

yes

Route the assets in

’before transport’

queue into the

transport block

Generate source

and destination of

transport

Add entry to
observation

sequence

Compare current

location with source of

transport

Not equal

Transport

according to(1-A)
probability

Transport ?

equal

no

Increase the time

one step

Add entry to

observation

sequence

Save the entering

time to attribute

Enter before
transport queue

Are all assets

in a queue?

yes

Enter transport

queue

Wait

yes

no

Does ’before

transport’ queue

hold >1

Are all assets in either

transport or location queue
Waitno

yes

The asset are with

the same
transport, do as

the previous

Stay or leave?

stay

leave

Does asset have same
entering time as the

previous

no

yes

Stay in transport

according to B

probability

If index ==

sequencelength

Terminate

yes

No

Figure 3.3: Activity diagram for the simulation model

3.1 Simulink Model 41

3.1.2 Init Block

When the simulation is started, a specified number of entities are created in the Init block. The block
uses the number of assets, and number of locations to initialise the system. The initial attributes are
all assigned in the init block.

3.1.3 Places Block

The Places block is used to simulate, the different locations where the assets can be in the distribution
system. It consist of a infinite server, which can hold infinitely many entities. To model the Markovian
properties, the state sequence S = {s0, s1, s2, · · · , sk} of each asset has to have the same length, which
means that each time an automaton changes state, k is increased and the state sequence for all assets
has to be updated. This is achieved in the places block, by having all entities in the places block depart
from the block and add a new entry to the state history attribute, which hold the state sequence S
for the asset. Each time the assets are departing from the places block, the observation sequence is
updated.

Whenever a transport event is occurring, the following information is generated; the location from
which the transport is occurring, and the destination of the transport, which are randomly chosen,
and ensured not to be coinciding.

There exists two outputs from the places block, one for the location from which a transport was
chosen, and one for all other locations. This mechanism enables the system to change the current
state for assets residing at a specific location, meanwhile keeping the state of all the other entities,
while increasing the value of k for all entities. An output switch switches between the two outputs
according to the current location attribute. When the assets enter the block, the output of the queue
is blocked until all assets have returned to a queue, either in the places block or in the transport
block. The index variable is increased, and a new transport is initiated as the output of the queue is
unblocked.

When assets have the correct source location, they are routed to the ’before transport’ queue, with
the transport probability, entered as a parameter to the model. The assets are only transported when
two or more assets are in the queue.

3.1.4 Transport Block

The transport block changes the location of the entering assets. An entry is added to the state
sequence, each time an asset enters or loops in the transport block.

3.1.5 Observation Sequence Generation

As the history attribute of each asset, contains the actual state sequence, this should be mapped onto
an observation sequence. This is done in an embedded Matlab block, which generates the following
entries in the observation sequence;

When the state sequence includes two identical location entries, which indicate a self loop in a location,
a zero output is generated, with a probability of 1−ωfailprob. And of a faulty reading with a probability
of ωfailprob.

P [Ok = 0)|qk = qk−1 = xi] = 1 − ωfailprob (3.2)

P [Ok = vi)|qk = qk−1 = xi] = ωfailprob (3.3)

Where:
ωfailprob is the probability of a reading without the assets passes through
the RFID reader

42 Simulink Model of System

When the state sequence includes a transport state, the output is 0, with the probability 1−ωscanprob,
indicating that the asset has been transported, but not registered. The value of ωscanprob and ωfailprob.

P [Ok = vi)|qk−1 = Tj, qk−2 = xi] = ωscanprob (3.4)

P [Ok = 0)|qk−2 = xj , qk−1 = Tj] = 1 − ωscanprob (3.5)

P [Ok = 0)|qk−1 = Tj, qk−2 = xi] = 1 − ωscanprob (3.6)

P [Ok = vi)|qk−2 = xj , qk−1 = Tj] = ωscanprob (3.7)

Where:
ωscanprob is the probability of a successful reading

3.1.6 Summary

The simulation model outputs, two arrays, one with the state sequence, and one with the corresponding
observation sequence, which simulates the port readings of the distribution system.

Figures of all blocks included in the simulation model, can be found in appendix D. Now that the
Simulink simulation model has been constructed the model has to be validated, this is done in the
following section.

3.2 Validation of Simulink Model

This section deals with the validation of the SimEvent model used to simulate the system. The quality
of the model will be evaluated by comparing its output with measurements from the actual system.
The complete test report is found in appendix C.

The test is conducted similar to the validation of the hidden Markov model, described in section 2.3,
with the parameters validated on the hidden Markov model.

The γ-values from the simulation model, and the test data are shown in Figure 3.4 and 3.5 respectively.

10
12

10
14

10
16

10
18

10
20

10
22

10
24

10
26

10
28

0

20

40

60

80

100

120

140

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for actual system

10
−150

10
−100

10
−50

10
0

10
50

10
100

10
150

10
200

10
250

10
300

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for simulated system

Figure 3.4: γ-values generated by the Viterbi
algorithm, run on data from Post Danmark

Figure 3.5: γ-values generated by the Viterbi al-
gorithm, run on data from the SimEvent simula-
tion model

The result of the rank sum test is a p-value of zero, which indicate that the H0 hypothesis, that the
underlying distributions are similar can be rejected. This can either mean that the simulation model
is not applicable in modelling the system, or the test is simply too sensitive, which will mean that
small modelling errors will result in rejection of the hypothesis.

Chapter 4
Estimator Design

This chapter deals with the analysis and design of the estimator to use in the system. As described
in chapter 2, the dynamics of the distribution system can be modelled by a hidden Markov chain.
One of the algorithms designed for use with hidden Markov chains deals with the problem of finding
the best hidden state sequence given an output sequence from the hidden Markov chain. This is the
Viterbi algorithm (Cassandras and Lafortune, 1999):

• Decoding (The Viterbi Algorithm): Given an observation sequence O and a hidden Markov chain
Mch, discover the most likely hidden state sequence Q = {q1, · · · , qk}.

This chapter describes how the Viterbi algorithm works and how it will be used to determine the state
sequences of the assets in the system.

4.1 Viterbi Algorithm

Like the forward algorithm described in section 2.2.3, the Viterbi algorithm utilises the use of a forward
trellis. But instead of calculating the probability of a given observation sequence, the Viterbi algorithm
is used for calculating the most probable hidden state sequence for a given observation sequence. An
example of the trellis used in the Viterbi algorithm can be seen in Figure 4.1. Each of the cells in the
trellis is associated with a number γk(j), which represents the probability of being in state xj after
k observations and passing through the most probable state sequence Q = {q1, · · · , qk−1}, given the
hidden Markov chain in question:

γk(j) = max
q1,··· ,qk−1

P [q1, · · · , qk−1, o1, · · · , ok, qk = xj |Mch] (4.1)

This probability can be calculated recursively by using the following expression:

γk(j) =
n

max
i=1

γk−1(i) · φij · P [ok|xi → xj] (4.2)

This recursive expression is almost identical to that of the forward algorithm, with the difference that
the Viterbi algorithm uses the maximum over the previous path probabilities, instead of the sum over
all the previous path probabilities.
Furthermore, a backpointer χk(j) is used in the algorithm to keep track of the of the path of states
that has lead to each state. This is used to trace back the best path to the beginning. The value of
χk(j) is the index of the state xi which maximises γk(j):

χk(j) =
n

argmax
i=1

γk−1(i) · φij · P [ok|xi → xj] (4.3)

With the Viterbi probabilities γk(j) and the backpointer χk(j) defined it is now possible to derive the
Viterbi algorithm (Rabiner, 1989):

44 Estimator Design

start x2

x1

xn

x1

x2 x2

x1

xn
xn

v8
v2 v5

k

| {z }

o1

| {z }

o2

| {z }

o3

P
[x

n
|s

ta
rt

]P
[v8

|s
ta
rt

→
xn

] =
πn

θ8n

P
[x
1 |start]P

[v
8 |sta

rt
→

x
1] =

π
1 θ

81

P [x2|start]P [v8|start → x2]

= π2θ82

P [x2|x2]P [v2|x2 → x2] = φ22ω222

P [x1|x1]P [v2|x1 → x1] = φ11ω211

P [x
1 |x

2]P [v
2 |x

2 →
x
1]

=
φ
12 ω

221
P
[x2

|x1
]P

[v2
|x1

→
x2

]

=
φ21

ω21
2

γ1(1)

γ1(2) = π2θ82

γ1(n)

γ2(1)

γ2(2) = max(γ1(2)φ22ω222, γ1(1)φ21ω212)

γ2(n)

Figure 4.1: Sample trellis for Viterbi algorithm (Jurafsky and Martin, 2008)

1. Initialisation:

γ1(j) = πj · P [o1|start → xj], 1 ≤ j ≤ n (4.4)

χ1(j) = 0 (4.5)

2. Recursion:

γk(j) =
n

max
i=1

γk−1(i) · φij · P [ok|xi → xj], 1 ≤ j ≤ n, 1 < k ≤ K (4.6)

χk(j) =
n

argmax
i=1

γk−1(i) · φij · P [ok|xi → xj], 1 ≤ j ≤ n, 1 < k ≤ K (4.7)

3. Termination:

P ∗ = γK(j) =
n

max
i=1

γK(i) (4.8)

q∗K = χK(j) =
n

argmax
i=1

γK(i) (4.9)

4. Path backtracking:

q∗k = χk+1(q
∗
k+1), k = K − 1, K − 2, · · · , 1 (4.10)

Where:
P ∗ is the probability of the observation sequence O given the optimal state
sequence Q∗ and the Markov chain Mch

q∗K is the start of the backtrace, that is the index of the K − 1’th state in Q∗

The Viterbi algorithm described above determines the single best state sequence for the given hidden
Markov chain and observation sequence, or in other words; it finds the state sequence Q which
maximises P [Q|O, Mch]. The complexity of the algorithm is O(n2k), where n is the number of states
in the system and k is the sequence length. A change in the algorithm has been made such that the
γ-values are normed with the smallest of the γ-values at each time step. This way it is avoided that

4.1 Viterbi Algorithm 45

the γ-values turns to zero because of machine representation, while keeping the order between the
γ-values the same.
With the algorithm defined it is possible to implement it in Matlab and test if it is implemented
correctly.

4.1.1 Implementation of Viterbi Algorithm

A test of the implementation of the algorithm can be found in appendix E. The main results and
conclusions from the test will be summarised in this section.
The test is conducted by simulating the output from the system using the pure hidden Markov model
of the system. The A and B parameters used in the Viterbi algorithm are varied, while the same
parameters are kept fixed in the simulation of the system. The error percentages of the Viterbi algo-
rithm are then measured at the different parameters. If the algorithm is correctly implemented, the
algorithm which match the system parameters should be optimal regarding error percentages or at
least at par with the best. The error percentage is measured by counting how many of the states in
the state sequence is estimated wrong.
The simulation has been run on values of the A and B parameters in the Viterbi algorithm ranging
from 0.05 to 0.95 with an interval of 0.05, which gives a total number of test points of 361. Five differ-
ent tests has been run. In each of the tests the A and B parameters used by the hidden Markov model,
are fixed. The values of the parameters used by the hidden Markov model are: A = 0.25, B = 0.25;
A = 0.25, B = 0.75; A = 0.50, B = 0.50; A = 0.75, B = 0.25 and A = 0.75, B = 0.75 respectively. The
plot in Figure 4.2 shows the results from the test where the A and B parameters in the model are 0.25.
As it can be seen in the figure, there is a large part of the surface where the error percentages are all
lower than in the rest of the plot, and the Viterbi parameters that match the system parameters are
placed in this part of the surface.
The same tendencies apply for the other four tests, it is therefor concluded that the algorithm is

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
6.5

7

7.5

8

8.5

9

A parameter

Sensitivity of Viterbi algorithm

B parameter

M
ea

n
er

ro
r

pe
rc

en
ta

ge
 [%

]

Figure 4.2: Error percentages at different A and B parameters of Viterbi algorithm at system parameters:
A = 0.25 and B = 0.25

implemented correctly.

4.1.2 Test of Viterbi Algorithm Time Consumption

With the implementation of the Viterbi algorithm verified it is necessary to test the time consumption
of the algorithm in order to assess if it is possible to use the algorithm as state sequence estimator in
a system in the scale of the distribution system in question, where approximately 4e6 assets and 20e3
locations are present.
A test have been run where the time consumption of the algorithm has been measured at different
sequence lengths and at different numbers of locations in the system. The test is run on simulated

46 Estimator Design

data, which comes from the simulation model implemented in Matlab Simulink.
The entire test report can be found in appendix F. The main results and conclusions from the test
will be summarised in this section. The results of the test is shown in Figure 4.3 which shows the
calculation time for the algorithm. As it can be seen in Figure 4.3 the calculation time for the Viterbi
algorithm is linear in the sequence length and quadratic in the number of locations in the system, this
can be seen more clearly in the cross section plots shown in Figure 4.4 and Figure 4.5, which shows a
number of cross sections of the plot in Figure 4.3. This fits the expected computational complexity.
The plot in Figure 4.4 shows that it takes about 16 seconds to calculate the state sequence of the asset
if there are 55 locations in the system and the sequence length is 200, which corresponds the topmost
line in the plot.
Since the full scale system is expected to consist of 20e3 locations and 4e6 assets, the calculation time
has been extrapolated to a system consisting of 20e3 locations. The plot in Figure 4.6 shows the

10
20

30
40

50
60

0

50

100

150

200
−5

0

5

10

15

20

Number of Places

Standard Viterbi algo

Sequence Length

C
al

cu
la

tio
n

T
im

e
[s

]

Figure 4.3: Plot of calculation time for the Viterbi algorithm

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

10 15 20 25 30 35 40 45 50 55
0

2

4

6

8

10

12

14

16

Sequence Length

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

Figure 4.4: Plot of cross sections at different
sequence lengths of Figure 4.3

Figure 4.5: Plot of cross sections at different
numbers of locations of Figure 4.3

measured data along with a Matlab polyfit of the topmost line in Figure 4.4. The plot in Figure 4.7
shows the calculation time extrapolated to 20e3 locations using the polynomial found with polyfit.
The value estimated at 20e3 locations is with a mean (µ) of 2.01e6 seconds and a standard variation
(σ) of 3.88e4 seconds. Using the extrapolated calculation time it is estimated that it will take the
algorithm between 1.93e6 and 2.09e6 (µ± 2σ) seconds to calculate the state sequence of a single asset
at a 2σ level of confidence if there is 20e3 locations in the system and the sequence length is 200. If
this number is scaled to a system consisting of 4e6 assets it would take between 245e3 and 265e3 years
to calculate the state sequence of all assets on a single computer.
If it is assumed that a computer is present at each location in the system, such that the computational

4.2 Customised Viterbi Algorithm 47

10 15 20 25 30 35 40 45 50 55
0

2

4

6

8

10

12

14

16

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

Measured Data
Polyfit Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.5

0

0.5

1

1.5

2

2.5
x 10

6

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

Figure 4.6: Illustration of measured data along
with the polyfit at a sequence length of 200

Figure 4.7: Extrapolation of calculation time
using polyfit at a sequence length of 200

burden can be distributed to each of these, it would take between 12 and 13 years to calculate the
state sequences. This is infeasible to be useful since a sequence length of 200 corresponds to a time
span of just above four days if a day is split into intervals of half an hour. If the Viterbi algorithm is to
be used for model based estimation of state sequences in a system of this scale it has to be simplified
in order to reduce its computational complexity. Therefor, an approach is needed to decrease the
computational complexity of the algorithm.

4.2 Customised Viterbi Algorithm

As it is concluded in the previous section, that the Viterbi algorithm is unusable as the time
consumption is much greater than the time covered by the length of the state sequence even if the
algorithm is distributed. Because of this fact, the algorithm has to be simplified in order to reduce
the computational time.

This section deals with a customisation of the Viterbi algorithm. The section starts with a description
of how the system matrices can be reduced to data structures of fixed sizes, and is concluded with a
description of the customised Viterbi algorithm to be used in the system.

4.2.1 Reduction of System Parameters

Due to the nature of the system, the system parameters can be reduced to data structures much
smaller than the ordinary system matrices used in hidden Markov models. The reason for this is
illustrated in Figure 4.8. The figure shows part of the asset automaton described in section 2.2.2. The

1, ε

1, ε

1, ε
1, ε

.

.

.

T1 .
.
.

ε

N, ε

1

1, ε

2, ε

3, ε

Figure 4.8: Illustration of a single location state along with its corresponding transport state, the symbols
alongside the arrows indicate the possible output symbols for the specific transition

part illustrated in Figure 4.8 models one specific location and its neighbourhood. As it can be seen
in the figure the location is modelled by a state representing the specific location or warehouse, this
is the state marked ’1’. Furthermore, it consists of an associated transport state marked ’T1’, which
models the event that the asset leaves the location. The neighbourhood of the location is illustrated

48 Estimator Design

by the arrows going into the location state and the arrows coming out of its associated transport state.
The symbols alongside the arrows indicates the outputs which are possible to emit when taking the
transition associated with the arrow.

Transition Matrix

When the initial parameters for the asset automaton is set up, the transitions of the same type are
considered equally likely. That is; it is for instance equally likely for an asset to take the self loop
in the location state no matter which location the asset is located at. This in turn means that there
will be redundant parameters in the system matrices. In fact it is only necessary to describe the state
transitions in the system by four parameters, instead of the entire matrix Φ. These parameters are:
the probability of taking a self transition in the location state (P [xj → xj]), the probability of taking
a transition from the location state to the corresponding transport state (P [xj → Tj]), the probability
of taking a self transition when in a transport state (P [Tj → Tj]) and the probability of taking the
transition from a transport state to a location state (P [Tj → xi]).

Observation Matrix

By making similar considerations it can be realised that the output distribution matrix Ω, can be
reduced to a vector consisting of two parameters: the probability of emitting the symbol vj when
entering or leaving the location state (P [vj |Ti → xj], P [vj |xj → Tj]) and the probability of emitting the
symbol vj when taking the self transition in a location state (P [vj |xj → xj]). The two first situations
can be described by the same parameter, since they both require the asset to be transported through
the RFID reader gate at the physical location, thus resulting in the same probability of emitting
the symbol corresponding to the specific location. The latter output parameter is a special case
since it describes non intended readings of the RFID tag when transporting it locally around within
a location without the intention of transports to another location. The probabilities of emitting the
empty symbol (ε) when taking a transition, can be calculated from the other parameters. Furthermore,
the probability of emitting ε when taking the self transition in the transport state is always 1 since
no RFID readings are generated while the assets are being transported, so this is not necessary to be
passed as a parameter to the algorithm.

Initial Distribution Vector

Finally, the initial state distribution π, can be described by a scalar, since the different locations are
considered equally likely as initial state. Thus all the parameters necessary to describe the system are
fixed size and does not grow with the number of states in the system, as is the case with the system
matrices described in section 2.2.2.

4.2.2 Derivation of Custom Viterbi Algorithm

Because of the nature of the system, it is possible to reduce the complexity of the Viterbi algorithm, by
customising it for use with the logistic system of interest. The considerations used in the derivation of
the algorithm are similar to those used in the derivation of the reduced system parameters described
previously. Since the parameters of the different parts of the asset automaton describing a particular
location are the same, many of the states in the system will be assigned the same γ-value in the
Viterbi trellis. Thus, this value can be calculated once and then applied to all the states for which
this particular γ-value applies.

The only way a state can obtain a γ-value different from other states, is if the output sequence from
the Markov chain contains a symbol corresponding to the particular location. As it can be seen in
Figure 4.8, the three possibilities for the Markov chain to generate the output ’1’ is; if the transition
from another transport state is taken into location state ’1’, if the location ’1’ state makes a self
transition or lastly if the location ’1’ state makes a transition to its associated transport state ’T1’.
These considerations applies to arbitrary location states. This means that if the output from the

4.2 Customised Viterbi Algorithm 49

x2

x1x1

x2 x2

x1

start

x1

x2

γ1(1)

γ1(2) = 0

γ2(1)

| {z }| {z } | {z }

T1 T1 T1

T2 T2 T2

o2 = ε o3 = ε

γ1(T1) = 0

γ2(T1) = 0

γ2(2) = 0

γ2(T1) γ3(T1)

γ3(2)

γ3(1)

γ2(T2) = 0 γ3(T2) = 0

T2

T1

k

o4 = ε
| {z }

o1 = 1

γ4(1)

γ4(2)

γ4(T1)

γ4(T2)

Figure 4.9: Example of Viterbi trellis in the distribution system, where the output vector starts with a
non-empty output. The arrows indicate (potential) backpointers

Markov chain is ’1’, the only possibilities for the present state is either location ’1’ or its transport
state ’T1’, all other states are impossible solutions and can therefor be assigned a γ-value of zero.

For every empty symbol following another empty symbol in the output sequence, the probability
distribution of the states in the state sequence will be spread out on all states. This is illustrated in
Figure 4.9. The figure shows part of an example Viterbi trellis, where the arrows indicate possible
candidates for backpointers. The example uses an output sequence, where the initial symbol is a valid
location symbol and the rest are empty outputs. From the figure it can be seen that if the output
sequence starts with a location symbol it is only possible for the asset to be in the state corresponding
to the given symbol. The more empty outputs following a valid symbol, the more the probability
distribution will be spread out on all the states. If the second symbol is an empty symbol it is possible
to be located in the transport state corresponding to the location. If the next symbol is also empty,
it can be possible to be in one of the other location states, and because of this these location states
will be assigned a non-zero γ-value. This γ-value will be the same for all other states than the state
for which the previous non-empty symbol applied, and because of this it is only necessary to calculate
one γ-value to apply to all of these states.

If yet another empty symbol follows, it is furthermore possible that the automaton is in the one
of the remaining transport states, so these will in turn be assigned a non zero γ-value. Because of
the symmetry in the system all location states not corresponding to the latest non empty output
symbol will be assigned the same γ-value in the Viterbi trellis. Likewise, all the transport states
not corresponding to the latest non empty measurement will be assigned the same γ-value. For
transport states there are two possible candidates for the χ- and γ-values if the output was an empty
symbol, depending on which transition maximises the γ-value. Because of this two arrows are shown
as backpointers on the figure for these transport states.

Figure 4.10 shows a trellis example where the output sequence starts with an empty symbol. As
illustrated in the figure this means that the asset can have started out in anyone of the locations
and because of this, the probabilities are evenly distributed among the location states. If another
empty symbol follows it is furthermore possible for the asset to be in the transport states with equal
probability. This will continue until a valid output is produced in the output sequence.

Finally, Figure 4.11 shows an example of a trellis with two different location symbols in the output
sequence separated by a number of empty symbols. When this is the case the location state
corresponding to the latter output will have its backpointer directed at the transport state of the
state which has produced the former output.

50 Estimator Design

x2

x1x1

x2 x2

x1

start

x1

x2

γ1(1) γ2(1)

| {z }| {z } | {z }

T1 T1 T1

T2 T2 T2

o2 = ε o3 = ε

γ1(T1) = 0

γ2(T1) = 0

γ2(T1) γ3(T1)

γ3(2)

γ3(1)

T2

T1

k

| {z }

o1 = ε o4 = 2

γ1(2) γ2(2)

γ2(T2) γ3(T2) γ4(T2)

γ4(2)

γ4(T1) = 0

γ4(1) = 0

Figure 4.10: Example of Viterbi trellis in the distribution system, where the output vector starts with an
empty output

x2

x1x1

x2 x2

x1

start

x1

x2

γ1(1)

γ1(2) = 0

γ2(1)

| {z }| {z } | {z }

T1 T1 T1

T2 T2 T2

o2 = ε o3 = ε

γ1(T1) = 0

γ2(T1) = 0

γ2(2) = 0

γ2(T1) γ3(T1)

γ3(2)

γ3(1)

γ2(T2) = 0 γ3(T2) = 0

T2

T1

k

| {z }

o1 = 1

γ4(2)

γ4(T2)

o4 = 2

γ4(T1) = 0

γ4(1) = 0

Figure 4.11: Example of Viterbi trellis in the distribution system, where the output vector starts with a
non-empty output, and has another non-empty output at a later time index

These considerations lead to the conclusion, that it is only necessary to calculate maximum four
γ-values for each time index in order to fill the Viterbi trellis. The location and transport state
corresponding to the latest non empty measurement are treated as special cases and are evaluated by
themselves. The rest of the location states are assigned the same γ-value and so are the rest of the
transport states.
The customised Viterbi algorithm is listed below. The states denoted by x are location states and the
states denoted by T are transport states.

1. Initialisation:

4.2 Customised Viterbi Algorithm 51

• if o1 = ε:

∀j γ1(j) = P [start → xj] · P [ε|start → xj], γ1(Tj) = 0 (4.11)

∀j χ1(j) = 0, χ1(Tj) = 0 (4.12)

• if o1 = vi 6= ε

γ1(i) = P [start → xi] · P [vi|start → xi],

∀j 6= i γ1(j) = 0, ∀j γ1(Tj) = 0 (4.13)

∀j χ1(j) = 0, χ1(Tj) = 0 (4.14)

2. Recursion:

• if ok = vj :

– if previous non-empty measurement was vj :

γk(j) = γk−1(j) · P [xj → xj] · P [vj |xj → xj], χk(j) = j (4.15)

γk(Tj) = γk−1(j) · P [xj → Tj] · P [vj |xj → Tj], χk(Tj) = j (4.16)

∀i 6= j γk(i) = 0 (4.17)

– if previous non-empty measurement was vi:

γk(j) = γk−1(Ti) · P [Ti → xj] · P [vj |Ti → xj], χk(j) = Ti (4.18)

γk(Tj) = γk−1(j) · P [xj → Tj] · P [vj |xj → Tj], χk(Tj) = j (4.19)

∀h 6= j γk(h) = 0 (4.20)

• if ok = ε

– if previous non-empty measurement was vj :

γk(j) = γk−1(j) · P [xj → xj] · P [ε|xj → xj], χk(j) = j (4.21)

γk(Tj) = max(γk−1(j) · P [xj → Tj] · P [ε|xj → Tj],

γk−1(Tj) · P [Tj → Tj] · P [ε|Tj → Tj]) (4.22)

χk(Tj) = argmax(γk−1(j) · P [xj → Tj] · P [ε|xj → Tj],

γk−1(Tj) · P [Tj → Tj] · P [ε|Tj → Tj]) (4.23)

∀i 6= j γk(i) = γk(Tj) · P [Tj → xi] · P [ε|Tj → xi], χk(i) = Tj (4.24)

γk(Ti) = max(γk−1(i) · P [xi → Ti] · P [ε|xi → Ti],

γk−1(Ti) · P [Ti → Ti] · P [ε|Ti → Ti]) (4.25)

χk(Ti) = argmax(γk−1(i) · P [xi → Ti] · P [ε|xi → Ti],

γk−1(Ti) · P [Ti → Ti] · P [ε|Ti → Ti]) (4.26)

– if there have been no non-empty measurements:

∀j γk(j) = γk−1(j) · P [xj → xj] · P [ε|xj → xj], χk(j) = j (4.27)

γk(Tj) = max(γk−1(j) · P [xj → Tj] · P [ε|xj → Tj],

γk−1(Tj) · P [Tj → Tj] · P [ε|Tj → Tj]) (4.28)

χk(Tj) = argmax(γk−1(j) · P [xj → Tj] · P [ε|xj → Tj],

γk−1(Tj) · P [Tj → Tj] · P [ε|Tj → Tj]) (4.29)

3. Termination: Same as in standard Viterbi algorithm.

4. Path backtracking: Same as in standard Viterbi algorithm.

The complexity of the algorithm can be verified to be O(k), where k is the length of the observation
sequence. As opposed to the standard Viterbi algorithm which has complexity O(n2k), where n is
the total number of states in the system. The algorithm has been verified to produce the same γ- and
χ-matrices as the standard Viterbi algorithm.

52 Estimator Design

4.2.3 Test of Custom Viterbi Algorithm

The custom Viterbi algorithm has been tested in order to determine if its performance in terms of
the error percentage is similar to the performance of the standard Viterbi algorithm, such that it is
possible to use as a replacement for the standard Viterbi algorithm as state sequence estimator in the
system and if it is able to fulfil the requirement of estimating the state correct in 98.75 % of the time.
Furthermore, the time complexity of the algorithm has been tested in order to verify that it has the
expected complexity, which is O(k) where k is the sequence length, and to verify that the algorithm
is feasible for use in a system in the scale of the distribution of cc containers in Europe, which consist
of approximately 4e6 assets and 20e3 locations. The full test reports can be found in appendix G
and H, for the test of the error percentage and time complexity respectively. The main results and
conclusions will be summarised in this section.

Error Percentage

The results from the test of the error percentage is shown in Figure 4.12 and Figure 4.13, which show
the results from the standard Viterbi algorithm and the customised Viterbi algorithm respectively. As

10
20

30
40

50
60

0

50

100

150

200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Places

Standard Viterbi algo

Sequence Length

E
rr

or
 P

er
ce

nt
ag

e
[%

]

10
20

30
40

50
60

0

50

100

150

200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Places

Custom Viterbi algo

Sequence Length

E
rr

or
 P

er
ce

nt
ag

e
[%

]

Figure 4.12: Plot of estimation error percentage
for the standard Viterbi algorithm

Figure 4.13: Plot of estimation error percentage
for the customised Viterbi algorithm

it can be seen in the two figures the two different algorithms produce exactly the same results on the
same output sequences which is a strong indication that the customised algorithm produces the same
estimations as the standard algorithm for the system in question. It can also be seen that the number
of errors in the estimated sequence is generally low if the sequence is long or if there is many locations
in the system. The results show a mean percentage of erroneous states in the estimated sequences
of approximately 0.05 with a standard deviation of 1.89. These results indicate that the estimator
currently is able to fulfil its requirement when considering the mean value. But taking the relatively
high standard deviation into account it is concluded that it is not able to fulfil its requirement.

Time Consumption

Figure 4.14 shows that the custom algorithm is linear in the sequence length as expected but it is not
constant in the number of locations in the system as described in section 2.2.2. This can be seen more
clearly in the cross section plots in Figure 4.15 and Figure 4.16. The reason for the calculation time of
the customised Viterbi algorithm not being entirely constant in the number of locations in the system
is expected to be caused by the choice of implementation. The algorithm treats the states correspond-
ing to the latest non-empty measurement as special cases and calculates special probabilities for those
states, all other states of the same type are assigned the same probabilities due to the symmetry of
the system. Because of this the algorithm is supposed to have complexity O(k). Attempts to simplify
the γ- and χ matrices used in the algorithm has not been done. Therefor, the latter probabilities

4.2 Customised Viterbi Algorithm 53

10
20

30
40

50
60

0

50

100

150

200
0

1

2

3

4

5

6

7

x 10
−3

Number of Places

Custom Viterbi algo

Sequence Length

C
al

cu
la

tio
n

T
im

e
[s

]

Figure 4.14: Plot of calculation time for the customised Viterbi algorithm

are first calculated and then assigned to the states using array assignments in Matlab. The time
consumption of the array assignment is expected to be proportional to the number of states and thus
the number of locations in the system, and because of this the time consumption of the algorithm is
not constant in the number of locations in the system. The plot in Figure 4.17 shows the measured

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

10 15 20 25 30 35 40 45 50 55

1

2

3

4

5

6

x 10
−3 Custom Viterbi algorithm

C
al

cu
la

tio
n

tim
e

[s
]

Sequence Length
20 40 60 80 100 120 140 160 180

1

2

3

4

5

6

x 10
−3

Figure 4.15: Plot of cross sections at different
sequence lengths of Figure 4.14

Figure 4.16: Plot of cross sections at different
numbers of locations of Figure 4.14

data along with a Matlab polyfit of the topmost line in Figure 4.15. The plot in Figure 4.18 shows the
calculation time extrapolated to 20e3 locations using the polynomial found with polyfit. The value
estimated at 20e3 locations is with a mean (µ) of 0.822 seconds and a standard variation (σ) of 0.016
seconds. From Figure 4.18 it is estimated that it will take the algorithm between 0.790 and 0.854
(µ ± 2σ) seconds to calculate the state sequence of a single asset at a 2σ level of confidence if there
is 20e3 locations in the system and the sequence length is 200. If this number is scaled to a system
consisting of 4e6 assets it would take between 36.5 and 39.5 days to calculate the state sequence of all
assets on a single computer. If it is assumed that a computer is present at each location in the system,
such that the computational burden can be distributed to each of these, it would take between 158
and 171 seconds to calculate the state sequences. This is well within the four days that a sequence
length of 200 corresponds if a day is split into intervals of half an hour. Alternatively, one could have
the computational burden distributed to ten computers which would bring the calculation time to
approximately four days. Therefor it is concluded that the algorithm is feasible for use in the system
if it is implemented on a distributed platform.

54 Estimator Design

10 15 20 25 30 35 40 45 50 55
4

4.5

5

5.5

6

6.5

7
x 10

−3 Custom Viterbi algorithm

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Measured Data
Polyfit Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

Figure 4.17: Illustration of measured data along
with the polyfit at a sequence length of 200

Figure 4.18: Extrapolation of calculation time
using polyfit at a sequence length of 200

4.3 Graphical User Interface

A GUI has been constructed, with the intention of creating an easy way to manipulate the parameters
used in the Simulink model of the distribution system, as well as creating an easy way of running
the algorithms and presenting the results. An illustration of the GUI is shown in Figure 4.19. A full
description of the GUI, can be found in appendix K.

Figure 4.19: The main window of the graphical user interface

The next chapter describes the design of a distributed version of the customised Viterbi algorithm.

Chapter 5
Distribution of Algorithm

This section describes the practical issues, which has to be considered if the designed algorithm is to
be implemented to work in a full scale system, which consists of approximately 20e3 locations. This
would make the algorithm in its current form very time- and resource consuming, as can be seen in
section 4.2.3. This fact leads to analysis of other implementations methods for the algorithms. If a
microprocessor is present at each location in the distribution system, these processors could be used
to process a fraction of the overall computation problem, thus making the algorithm distributed, an
illustration of the two different approaches is shown in Figure 5.1 and Figure 5.2. The distributed
system would be self scalable, as when a new location is introduced into the system, an extra processor
would be available. The following chapter, will include an analysis of the terms, which should be
considered to distribute the Viterbi algorithm between multiple computers.

Figure 5.1: Non distributed algorithms, data are
transferred to a central server for data processing

Figure 5.2: Distributed system, where data are
processed locally, and results are merged at central
server

5.1 Distribution Paradigms

Some different methods for distribution of the algorithm exists. In this section some of the methods
will be described and analysed, ending up with advantages and disadvantages for each approach. In
the distribution setup, multiple computers are cooperating in processing the data. However the data
processing can be shared in different manners. Three different methods are considered:

1. Client-server setup; each client manages a specific set of assets, and the server has the information
about which client manages which assets. The clients sends the observations to the server and

56 Distribution of Algorithm

the server relays the observations to the managing client. On request from the server, possibly
from the user, the client runs the Viterbi algorithm. The clients transfers the estimation result
to the server, which merges the estimation data.

2. Peer-to-peer setup (1); each client manages a specific set of assets, information of observations
are received from the other peers. The estimation result is transferred to the server upon request.
This approach will require some occasional load balancing.

3. Peer-to-peer setup (2); each client manages varying assets, depending on where the asset have
been observed. When an asset is observed at a location, a request is sent the server, which relays
this request to the old managing location, which replies directly to the new managing location,
with the observation sequence. The estimation result is transferred to the server upon request.

These approaches all have advantages and disadvantages, including different bandwidth demands,
and managing complexity. The client-server based approach is low in managing complexity, as the
managing location for a specific asset is static in runtime, and all communication from the locations is
always to or from the server. Demand for bandwidth is large at the server location, and an equally low
demand exists at the clients. The first peer-to-peer setup, reduces bandwidth demand at the server
location, as data is transferred directly from the observation location, and to the managing location
of the observed asset. The second peer-to-peer approach, has a high bandwidth demand compared
to the previous approach, as the state sequence should be transferred between locations, as assets
are transported. Furthermore, the second peer-to-peer setup require more computational resources
at locations where many assets are observed than at locations where few assets are observed, which
can be an advantage or disadvantage depending on ones point of view, since it can be assumed that
locations where many assets are observed will have more financial resources.
From these considerations the first peer-to-peer setup has been chosen. This is done because it can
be designed such that it distributes the computational load evenly to the peers in the system, while
keeping the bandwidth requirement for the server low. The next section describes the designed load
balancing algorithm and an analysis of its steady state distribution properties.

5.2 Load Balancing

When the Viterbi algorithm is distributed between the locations in the system, some kind of load
balancing is necessary in order for the system to perform its best, at all times. One approach to load
balancing will be analysed in the following section.

One approach for load balancing, is a selfish load balancing algorithm; suppose the managing of a
set of N assets are to be shared as equally as possible amongst a set of m locations. Each time
two locations are communicating they share information on the number of assets they each manage.
Assets would then be expected to migrate from the overloaded location to the underloaded until the
allocation becomes balanced. The locations act selfishly without any centralised control.

Expressions for the steady state values of the mean and variance of the load at each node are derived
in order to examine if the load balance algorithm leads to an even distribution of the management of
assets to the nodes in the system. The mean value should converge to N/m in a system consisting
of N assets and m nodes in order to get an even distribution. The steady state value of the variance
should converge to zero as time goes towards infinity, since this means that there will be low or no
difference in the number of assets being managed by two arbitrarily chosen nodes.

5.2.1 Mean Value of Load

In order to derive the steady state value of the mean load at each node, an expression of the derivative
of the mean value is needed. In order to derive such an expression, the following variables are defined:
fij which is a Poisson process with parameter λij and is binary, which describes the probability of
node i and j communicating; ci which is a Poisson process with parameter αi and is binary, which
describes the probability of a new asset being introduced to the system to be managed by node i ;
di which is a Poisson process with parameter βi and is binary, which describes the probability of an
asset managed by node i being removed from the system; bi(t) which is the load at node i at time t

5.2 Load Balancing 57

and lastly δ which is the fraction of the difference in loads between node j and i to transfer.
With the variables just defined the following equations for derivative of mean value of the load at
node i are derived:

bi(t + dt) = bi(t) + ci − di + δ

m
∑

j=1

fij(bj(t) − bi(t)) (5.1)

Because E[ci] = αdt, E[di] = βdt and E[fij] = λijdt, taking expected values on both sides of Equation
(5.1) leads to:

E[bi(t + dt)] = E[bi(t)] + αidt − βidt + δ
m

∑

j=1

λijdt(E[bj(t)] − E[bi(t)]) ⇒ (5.2)

d

dt
E[bi(t)] = αi − βi + δ

m
∑

j=1

λij(E[bj(t)] − E[bi(t)]) ⇒ (5.3)

d

dt
E[b(t)] = ∆ + ΛE[b(t)] (5.4)

Where:

b(t) is the load vector for the system at time t

It follows from the expressions above that if the load at node j is greater than the load at node i
assets are added to node i. If the opposite is the case, then assets are taken away from node i. The
vector ∆ is given by the following:

∆ =







α1 − β1

...
αm − βm






(5.5)

The matrix Λ is given by:

Λ = δ







λ11 −

Pm
j=1 λ1j λ12 λ13 · · · λ1m

λ21 λ22 −

Pm
j=1 λ2j λ23 · · · λ2m

.

.

.

.

.

.

λ(m−1)1 · · · λ(m−1)(m−2) λ(m−1)(m−1) −

Pm
j=1 λ(m−1)j λ(m−1)m

λm1 λm2 · · · λm(m−1) λmm −

Pm
j=1 λmj






(5.6)

In order to find the steady state value of the mean load the derivative is set to zero, which leads to
the following:

d

dt
E[b(t)] = 0 ⇒

∆ + ΛE[b(t)] = 0 (5.7)

If the system is closed, i.e. there is no flow of assets into or out from the system, then the vector ∆
will be zero. If this is the case, then it follows from Equation (5.7) that the derivative of the expected
value of the load vector will be zero if the load vector consists of equal values. This can be seen by
realising that the row sums of the Λ matrix is zero, since all the rest of the elements are subtracted
in the summation on the diagonal.

5.2.2 Variance of Load

Just like in the derivation of the expression for the steady state value of the mean load, an expression
for the derivative of the variance is needed in order to find the steady state value. First of all an
expression for the squared value of the load is needed since:

Var[bi(t)] = E[b2
i (t)] − E2[bi(t)] (5.8)

58 Distribution of Algorithm

Since an expression for the second term on the right side in steady state was derived in section 5.2.1
this can be assumed to be constant and because of this it is only necessary to find an expression for
the first term. The squared value of the load is given by the following expression:

b2
i (t + dt) = b2

i (t) + 2bi(t)ci − 2bi(t)di + 2bi(t)δ
m

∑

j=1

fij(bj(t) − bi(t)) +

c2
i + 2cidi + 2ciδ

m
∑

j=1

fij(bj(t) − bi(t)) + d2
i −

2diδ

m
∑

j=1

fij(bj(t) − bi(t)) + δ2

m
∑

j=1

N
∑

p=1|p=j

fijfip((bj − bi)(bp − bi)) (5.9)

Binary variables (ci, di and fij) which are squared are given by the values themselves. Furthermore,
terms which depend on dt2 are eliminated since terms depending on dt will dominate these as dt → 0.
This leads to the following expression:

b2
i (t + dt) ≈ b2

i (t) + 2bi(t)



ci − di + δ
m

∑

j=1

fij(bj(t) − bi(t))



 +

ci + di + δ2

m
∑

j=1

fij(bj − bi)
2 (5.10)

Taking expected values leads to the following expression:

E[b2
i (t + dt)] − E[b2

i (t)] ≈ 2dt



αiE[bi(t)] − βiE[bi(t)] + δ
m

∑

j=1

λij(E[bj(t)]E[bi(t)] − E[b2
i (t)])



 +

dt(αi + βi) + dtδ2

m
∑

j=1

λij(E[b2
j] + E[b2

i] − 2E[bj(t)]E[bi(t)]) ⇒ (5.11)

d

dt
E[b2

i (t)] ≈ 2



αiE[bi(t)] − βiE[bi(t)] + δ

m
∑

j=1

λij(E[bj(t)]E[bi(t)] − E[b2
i (t)])



 +

(αi + βi) + δ2

m
∑

j=1

λij(E[b2
j] + E[b2

i] − 2E[bj(t)]E[bi(t)]) (5.12)

Replacing E[bi(t)] and E[bj(t)] with the steady state value µss, leads to the following expression:

d

dt
E[b2

i (t)] ≈ 2



αiµss − βiµss + δ

m
∑

j=1

λij(µ
2
ss − E[b2

i (t)])



 +

(αi + βi) + δ2

m
∑

j=1

λij(E[b2
j (t)] + E[b2

i (t)] − 2µ2
ss) (5.13)

If it is assumed that the system is closed, i.e: no assets enter or leave the system, then αi and βi can
be assumed to be zero, which gives the following:

d

dt
E[b2

i (t)] ≈ 2δ

m
∑

j=1

λij(µ
2
ss − E[b2

i (t)]) +

δ2

m
∑

j=1

λij(E[b2
j(t)] + E[b2

i (t)] − 2µ2
ss) (5.14)

Under the assumption that µ2
ss ≤ E[b2

i (t)] and that the distribution of assets at location i and j is
equal, which it is in steady state, the following has to apply in order for the variance to converge:

2δ ≥ δ2 ⇒ (5.15)

2 ≥ δ (5.16)

5.2 Load Balancing 59

If the left side of Equation (5.14) is set to zero, which is the case in steady state, it follows that
µ2

ss = E[b2
i (t)] is a solution to the problem. This in turn means that the variance is zero according to

the definition in Equation (5.8), which is the desired result. The conclusion is that the chosen load
balancing scheme will give an even distribution of the load in the system.
Now that the distribution paradigm has been chosen and the load balancing scheme has been assessed
to have the desired properties, it is possible to analyse and design the software to use in the distributed
version of the algorithm. This is covered in the following chapter.

60 Distribution of Algorithm

Chapter 6
Distributed Software

In chapter 5 it was chosen to use a peer-to-peer setup in the distributed estimator. The setup should
distribute the computational load evenly amongst the peers in the system, and a selfish load balancing
scheme was chosen for this purpose. This chapter covers the analysis, design, implementation and
finally the test of the distributed version of the estimator.
As this is a proof of concept of distribution of the Viterbi algorithm, the software will not include all
the features that are necessary for the system to work optimal, which includes various kinds of error
handling, such as network related faults and sanity check of user input. Furthermore, no graphical
user interface has been constructed.

The requirements for the peer software, and for the software, which should be running on the server,
will be listed in the following:

• The overall functionality of the distributed system, is to equally share the data processing
between all nodes in the system.

• Each peer should have a list, containing the managing location, of each asset, this list is in the
following called global list. The global list should be updated when a load balancing routine is
executed.

• Peer software should include a load balancing routine.

• When a new peer is connected, the peer should receive a global list from the server.

• When a peer is either not present in the system anymore, or out of service, the server should
broadcast an updated global list.

• When an asset is observed, the time of observation and observation location, is transferred to
the managing location of that particular asset, according to the global list.

• When the connection to the receiving peer, cannot be established, the problem should be
reported to the server.

• When a location is not managing a specific asset anymore, due to load balancing, all data
concerning the asset should be transferred to the new managing location.

• State sequences should be transmitted to the server upon requests.

6.1 Description of Events

This section contains a list of events, which can happen in the system, and the corresponding actions.

62 Distributed Software

6.1.1 Events:

• An asset is producing a reading - When an asset passes through the RFID reading port, data is

sent to the computer

• User requests current status - When the user, requests to have the state sequences for either all

assets or for some assets

• Data is sent to non managing location - A RFID reading is sent to a non managing location,

due to non updated global list

• Network error - When the connection is lost, or cannot be established

• A new location joins the network - A new peer connects to the network

6.1.2 Actions:

• When a measurement is received - The reading is sent to the managing location

• When the user requets the current status - The server broadcasts request of current status, and

replies to the user

• Measurement data is received, for a non managed asset - Data is relayed to correct managing

location, an updated list is sent to the sending location

• When a network error occour - Server is notified

• When a new peer connects - Global list is sent to new peer

6.2 Analysis of Distributed Software

This section, will present the analysis of the software for the distributed Viterbi algorithm.

6.2.1 Use case Analysis

The section will contain use case descriptions, and flow diagrams describing the operation of the
software. The constructed use case diagram for the system is shown in Figure 6.1.

Use case: Receive Data from RFID Port

The use case is initiated by the reading port. When an asset x passes through the reading port at
location a, a look up is done to find the managing location, if this is not local the reading is transferred
to the location b, which manages asset x. Figure 6.2 is illustrating the behaviour of the software, for
the use case.

Use case: Receive Data from Another Location

The use case is initiated, as the network receives asset data from another location. The location b
receives data about asset x from location a. If location b manages asset x, the load balancing routine
is executed, and the data is processed, else the data is sent to location c, by location b, and the correct
global list is sent to location a. Figure 6.3 is illustrating the behaviour of the software for the use
case.

6.2 Analysis of Distributed Software 63

User

Recieve data from

port

Recieve data from

another location

Port

Current status

request

Handle data

Network socket

Location

Handle network

faults

«uses»

«uses»

Initialise new

location

Figure 6.1: Use case diagram of distributed system

Asset passes through port Lookup managing location for asset

Is managing location local?

handle data send data to managing location

[yes] [no]

Figure 6.2: Activity diagram for use case: Receive data from port

Incomming data Lookup managing location for asset

Is managing location local?

handle data

send data to managing location

[yes]

[no]

send global list to sender

load balancing

Figure 6.3: Activity diagram for use case: Receive data from another location

64 Distributed Software

Calculate state sequence save state sequence

Figure 6.4: Activity diagram for use case: Handle data

Use case: Handle Data

The handle data use case, is used by the two previous use cases. When the use case is initiated data
is ready to be processed. The object of the use case is to add entries into the observation sequence,
and upon request calculate the state sequence for an asset, and save this in the asset data. Figure 6.4
is illustrating the behaviour of the software for the use case.

Use case: Handle Network Faults

The use case is initiated by the network interface, when an error occurs. The use case uses the fault
number, to decide which action the system should take. In case of lost connection, the system tries to
reconnect to the other peer, if this is not possible, the fault is handled as an unable to connect error,
in which case the data is sent to the server. Figure 6.5 is illustrating the behaviour of the software
for the use case.

Network fault

get fault id

Retry

Send data to server

Does network still fail
[connection lost]

[unable to establish connection]

[yes]
[no]

Figure 6.5: Activity diagram for use case: Handle network faults

Use case: Current Status Request

The use case is initiated by the user, when the user requests the status of the system, from the user
interface. The object of the use case is to receive the current state sequence for all assets. When the
server has received the available information, the state sequences should be merged and displayed to
the user. The activity diagram for the use case is shown in Figure 6.6.

Use case: Initiate New Location

The use case is initiated by a location when it connects to the network. When a location is connected
to the network, it connects to the server and receives the current global list, covering all assets in the
system. Figure 6.7 illustrates the behaviour of the software.

6.2.2 Class Diagram Analysis of Distributed Software

Figure 6.8 shows a class diagram which has been constructed based on the use cases. The diagram
includes a package Distributed system, containing all the classes specific for the system. The standard
classes used for i/o handling and networking is not included in the package. The classes used in the
system, are described in the following.

6.2 Analysis of Distributed Software 65

User request status
Server broadcast status request

Locations reply with state sequence

Server merges data

Display data to user

Figure 6.6: Activity diagram for use case: Current status request

New location is present Contact server

Server returns global list

Server updates location lists

Figure 6.7: Activity diagram for use case: Initiate new location

Asset Class

The class holds all the attributes associated with a specific asset. Each asset is associated with an ID,
and a type of asset. The type of asset is a parameter, which would be checked if the ID of the asset is
not present in the system to present an error to the user, or for the system to handle the error, as the
RFID tag registered could be a tag of a different system. The asset object also include the observation
sequence and the calculated state sequence for the asset. The operations for the asset class is:

addToObsSeq() adds an entry to the observation sequence.

calcStateSeq(), calcStateSeqOld() calculates the state sequence, using the custom Viterbi
algorithm and standard Viterbi algorithm respectively.

calcInitPar(),calcInitParOld() calculates the initial parameters for the custom and standard
Viterbi algorithm respectively.

getStateSeq() combines the two preceding functions i order to calculate, both the parameters and
the state sequence.

setSystemPar() manipulates the system parameters; number of assets, number of locations and
observation probability.

Location Class

The class is associated with each location, with the following attributes; ’location ID’ which is a
number representing the location, ’physical location’, holds a description of the physical location,
where the reading port is placed. ’Type’, the type attribute, holds the type of reading port, which
can be fixed or movable. The blacklist attribute holds the list of locations which are faulty at the
moment. Information on faulty locations is important, when a faulty location comes online again, it
should contact the server to get the updated lists, as the location might not know that it has been
faulty. The global list is a list of all assets in the system, with the corresponding managing location.
The managing list is a list of local managed assets. The operands for the location class are:

66 Distributed Software

loadbalancingReq() requests another location for load balancing.

updateGlobalList() updates the global list for the current location.

addToGlobalList() adds an entry to the global list.

sendGlobalList() sends the global list.

findAssetManager() finds the asset in the global list and returns the managing location.

sendLoadnumber() sends the current number of local managed assets.

sendAssetData() sends all information for a certain asset to another location.

addAssetToManagingList() adds an asset to the list of locally managed assets.

removeFromManagingList() deletes assets from the list of local managed assets.

getAssetFromManagingList() returns data for a specific asset.

editGlobalList() edits an entry in the list of all assets.

sendMeasurement() sends an observation for a specific asset.

addObsToAsset() adds an entry to the observation sequence for a specific asset.

initialise() sends a initialise request to the server.

updateBlacklistList() updates the list of currently faulty locations.

setLocationAttributes() manipulates the attributes associated with the location class.

Server Class

The server class holds the status of the server, this is mainly thought to be used if multiple servers
are used in the system. The status attribute can hold the current status of the server; active as
server, inactive, offline etc. The physicalLocation attribute holds the physical location of the server.
The blacklistList is a list with all the faulty locations. The lastStatusRequest attribute hold the date
and time of the last status request, where all data has been collected from all locations and merged
together. The locationIPAdresses attribute holds all the IP addresses of the peers currently present in
the system. The assetData attribute holds the asset data from the last status request. The operands
in the server class are;

getAssetInfo() broadcasts a message, on which all location replies with the current data for all
assets.

updateBlacklistList() updates the blacklistList locally and broadcasts the new list to all locations.

updateGlobalList() updates the global list.

showAssetData() output the current assetData for all assets to the user.

6.2.3 Dynamic Modelling of the Distributed Software

This section will present a more detailed description of the system behaviour. The states, presented
in the activity diagrams in Figure 6.2,6.3,6.4,6.5,6.6 and Figure 6.7 will be described in greater detail,
by the use of sequence diagram showing the interaction of the software elements.

6.2 Analysis of Distributed Software 67

+getAssetInfo() : stateSeq<unspecified>obsSeq
+addToObsSeq ()

+calcStateSeq()

+calcInitPar ()

+calcStateSeqOld()

+calcInitParOld()
+getStateSeq()

+setSystemPar()

-obsseq
+stateseq

+assetID

+type

Distributed system::Asset

+loadBalancingReq() : managinglist<unspecified>location
+loadbalancing()

+updateBlackList()

+sendGlobalList()

+updateGlobalList()

+senLoadnumber()
+sendAssetData()

+addAssetToManagingList()

+removeAssetFromManagingList()

+getAssetFromManagingList()

+editGlobalList()
+sendMeasurement()

+addToGlobalList()

+addObsToAsset ()

+findAssetManager()

+initialise ()

-locationID

-managingList

-physical location

-type
-blacklist

-globallist

Distributed system::Location

+getAssetInfo()

+updateBlacklistList()

+updateLocationIPAdresses()

+showAssetData()

+initLocation()

-status

-physicalLocation

-blacklistList
-lastStatusRequest

-locationIPAdresses

-assetData

Distributed system::Server

«system»
Distributed system

+0x10 = GETASSETDATA
+0x11 = ASSETDATA

+0X20 = OBSMEASUREMENT

+0X30 = GLOBALLIST

+0X31 = LOADBALANCINGREQ

+0X32 = LOADNUMBER
+0X40 = BLACKLIST

+0X50 = PROPERTIES

+0X100 = INIT

«enumeration»

Message

Figure 6.8: Class diagram for the distributed system

Non-faulty Operation

The sequence diagram shown in Figure 6.9 illustrates the operation of the system, where no network
faults occurs. The diagram shows the interaction between the classes. Three location classes are
present in the figure; one at the port location, and two other locations. The sequence diagram first
shows the interaction between the locations, in the case where the managing location is the scanning
location. In the second case where this is not true, the measurement is sent to the managing location,
in this case location 2. If the global list of location 1 is outdated, and location 2 is no longer the
manager of the asset, the data is further transmitted to location 3. When a successful transmission
of data has occurred, the load balancing routine is run, thus balancing the number of assets between
the two locations.

Faulty Operation

The sequence diagram shown in Figure 6.10 illustrates the interaction between the classes, when a
location loses its connection to the network. The first event is a port event, as an asset passes through
a port. The reading is passed to the client at the location, which either handles the data, or sends
it to the managing location. If an error message from the network is returned, indicating that the
message could not be delivered, the data is sent to the server. The server tries to contact the faulty

68 Distributed Software

Location1 Location2Port 1

Asset is registered

Lookup procedure

Asset

addObsToAsset()

status

Data about registred asset

Lookup

addObsToAsset

status

{OR}

GlobalList

{OR}

updateGlobalList()

Location3

Data about registred asset

Lookup

addObsToAsset()

status

loadbalancingReq()

number of assets

AssetData

Figure 6.9: Sequence diagram for normal operation

location, if this is successful, the system continues in normal operation. If the network returns an
error message, the server broadcasts a message saying that location 2 is down. And a randomly chosen
location is now the manager of the assets of location 2. When the faulty location is repaired, and goes
online again, it registers itself with the server, which broadcasts a message that location 2 should be
removed from the blacklist. Measurements are store locally in a buffer at the faulty location, until
the connection is reestablished.

Load Balancing

The loadbalancingReq() routine is called, when a non-faulty communication has occurred. The purpose
of the routine, is as described previously to balance the computational load between all computers in
the network. This is done, based entirely on the number of assets managed by each location. The two
locations exchange their individual number of assets managed. Based on these numbers, the location
which is over loaded, sends asset, from its managing list, such the two locations are equally loaded,
the receiving location adds the asset to its managing list. Both locations updates their global lists
locally, and the receiving location sends the updated global list to the server.

Distributed Viterbi Algorithm

The distributed algorithm, should work just as the non distributed algorithm, with the only exception
that each peer should be time synchronised with the other peers, since the time stamps on the
observations at one peer should fit the corresponding time at another peer. Each peer should know,

6.3 Implementation of Distributed Algorithm 69

Location1 Location 2Port 1

Asset is registered

Lookup procedure

Asset

addObsToAsset()

status

Data about registred asset

{OR}

Server

Error message(Message could not be delivered)

Network

Data about registred asset

Broadcast message(Location2 is down)

Random location is now managing location of2's assets

Ping

Error message(Message could not be delivered)

Figure 6.10: Sequence diagram for faulty operation

when an event has occurred somewhere in the system, in order to construct observation sequences
with the same length for all assets in the system. A method to achieve this would be to occasionally
to broadcast status messages containing information on which events has occurred at a location. Each
asset has an array associated, this array holds the observation sequence. The length of the array is
fixed to 48 slots per day, one slot for every 30 minutes. When an observation should be added to the
sequence, the slot corresponding to the current time is used. The unused slots are zero padded, which
ensures that the observation sequences all have the same length k.

O = o1, · · · , ok (6.1)

where k is derived from the equation

k =

⌈

Treset

Tslot

⌉

(6.2)

Where:
Treset is seconds elapsed since last reset of the index counter k [s]
Tslot is the length of each time slot in seconds [s]

The normal Viterbi or the custom Viterbi algorithm is then run on the output sequence, and the
optimal state sequence is calculated.

The software is now designed and is ready to be implemented.

6.3 Implementation of Distributed Algorithm

This section covers the implementation of the distributed Viterbi algorithm, and the constructed
software needed in order to distribute the algorithm among multiple computers.

70 Distributed Software

The software which has been described in the previous chapter, excluding various error handling
routines has been implemented in C++, using Eclipse as IDE. The construction of the software
follows the structure outlined in the software design. Only minor changes has been made, which can
be seen in the updated class diagram, in Figure 6.11. A doxygen generated documentation can be
found on the enclosed CD-ROM.

As the setup is intended as a proof of concept, and for test purposes of the algorithms, in a distributed
way, various error handling has not been implemented, which means that no action is taken, in case of
network failures in the system, and thus none of the error handling routines described in the analysis
chapter has been implemented.

+getAssetInfo() : stateSeq<unspecified>obsSeq

+addToObsSeq ()

+calcStateSeq()

+calcInitPar ()

+calcStateSeqOld()
+calcInitParOld()

+getStateSeq()

+setSystemPar()

-obsseq

+stateseq

+assetID

Distributed system::Asset

+loadBalancingReq() : managinglist<unspecified>location

+loadbalancing()

+sendGlobalList()
+updateGlobalList()

+senLoadnumber()

+sendAssetData()

+addAssetToManagingList()

+removeAssetFromManagingList()
+getAssetFromManagingList()

+editGlobalList()

+sendMeasurement()

+addToGlobalList()

+addObsToAsset ()
+findAssetManager()

+initialise ()

+getIdOfLastElementInManagingList()

+IncomingHandler()

+getLengthOgGlobalList()
+copyEntryToGlobal()

+saveManagingLoad()

+debug_print_globalList ()

-locationID

-managingList

+globallist

-loadnumber

Distributed system::Location

+getAssetInfo()

+updateBlacklistList()

+updateLocationIPAdresses()

+showAssetData()

+initLocation()

-lastStatusRequest
-locationIPAdresses

-assetData

-globalList

Distributed system::Server

«system»

Distributed system

+0x10 = GETASSETDATA
+0x11 = ASSETDATA

+0X20 = OBSMEASUREMENT

+0X30 = GLOBALLIST

+0X31 = LOADBALANCINGREQ

+0X32 = LOADNUMBER
+0X40 = BLACKLIST

+0X50 = PROPERTIES

+0X100 = INIT

«enumeration»

Message

Figure 6.11: Class diagram, of the implemented system

The software needed for the algorithm to work has been implemented. The following sections, describe
the operation, and tests of the software.

6.3.1 Description of Distributed Software

The software is intended as the peripheral software needed for the Viterbi algorithm to work correctly
in a distributed setup. This includes handing data between the different clients, and inserting
observations into the corresponding asset observation sequence. The two versions of the Viterbi
algorithm has been ported from Matlab code, and into C++ code.

6.4 Test of Distributed Software 71

Location lists Two lists exists at each location, a managing list and a global list. The managing
list is a linked list containing the assets which are currently managed by the location. The global
list contains an entry for each asset in the system, the entry includes the asset id, the ip address
of the managing location and a timestamps, which indicates the time of last edit of that particular
entry. When assets are transferred to or from a client, the managing list and the global list are edited
correspondingly.

Server

The server maintains a list of clients in the network. When a client sends an init command to the
server, the server replies to the client with a location id, followed by the latest version of the global
list. The first client which sends a init request, is treated differently, as the server does not have a
global list at this time. The server hands assets to the first client, and adds a new entry in the global
list for each asset. When all assets have been handed, the server has generated a global list. This list
is sent to new connecting clients. When the user requests data, the server sends a command to all
clients to prepare state sequences and return these to the server. The server combines all the received
data, and present this to the user.

Clients

Each client initially sends an init request to the server, and receives a location id and a global list.
When the RFID port generates a measurement, the client runs through its managing list, if it finds
the asset id, the measurement is added to the corresponding asset. If the asset is not found in the
managing list, the asset is searched for in the global list, and the measurement is sent to the managing
location. When data is received from another location, the data is treated in the same way as if it
was received from the port. When a measurement is received from another location a load balancing
request is sent.

The load balancing request includes the number of assets currently managed by the location. When a
load balancing request is received, the loadnumber in the request is compared to the local loadnumber.
If the result of the comparison is greater than one, the calculated number of assets to be transferred
is sent to the client which requested the load balancing along with a flag, indicating either to transfer
assets or expect assets to be sent. The assets are transferred, the receiver of the assets sends the
updated global list to the server and the load balancing is complete.

When a client receives an asset data request from the server, the Viterbi algorithm is run on all
managed assets and the result is transferred to the server.

6.4 Test of Distributed Software

The system has been tested with multiple clients, these tests are described in this section. To be
able to test the system, a test stub has been made, simulating port readings at each location. The
test stub reads a line in a file indicating a timestamp, an asset and a location ID. If the location ID
correspond to the location itself this reading is then sent to the location itself, through the loopback
device. This implementation handles readings from the locations own port and from other locations
equal. The stub uses simulated data which means that the data from the different assets are already
synchronised.

6.4.1 Module Tests

Module tests have been performed on the load balancing routine and on the Viterbi algorithm. These
two modules are the only ones tested since they use all the operands in the different classes.

72 Distributed Software

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100
Loadbalancing

Time[s]

M
an

ag
ed

 a
ss

et
s

Peer1
Peer2
Peer3
Peer4
Peer5
Peer6
Peer7
Peer8
Peer9
Peer10
Peer11

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100
Loadbalancing

Time[s]

M
an

ag
ed

 a
ss

et
s

Peer1
Peer2
Peer3
Peer4
Peer5
Peer6
Peer7
Peer8
Peer9
Peer10
Peer11

Figure 6.12: Loadbalancing run with a sequence
length of 100

Figure 6.13: Loadbalancing run with a sequence
length of 20

Test of Load Balancing Routines

The test of the load balancing routines, test the load balancing algorithm as well as the interaction
with the network and asset routines. The aim of the test is to verify the load balancing routine,
including the handing over of assets between the clients. The test is conducted with 11 clients, and a
server. The complete test report is found in appendix J.

The results of the test is shown in Figure 6.12 and Figure 6.13. Figure 6.12 shows that the number
of managed assets converges towards an equilibrium given enough interaction between the peers. The
interactions needed is dependent on the number of assets and the number of locations in the system.
As seen in Figure 6.12, which is made with a sequence length of 100, where the equilibrium is reached
within 100 s for 100 assets and 11 peers. Figure 6.13 illustrates the same setup, with a sequence length
of 20. In this case the load balancing did not reach the equilibrium before the peers reached the end
of the measurement files. The conclusion is that the load balancing algorithm is able to balance the
number of asset between the peers in the system given enough interaction between the peers.

Test of C++ Implementation of Viterbi Algorithms

The implementation of both the standard and custom Viterbi algorithm in C++ has been tested in
terms of the error percentage in order to confirm that they behave similar to the implementations of
the same algorithms in Matlab. Furthermore, the time consumption of both the algorithms has been
tested in order to further establish the results from the Matlab implementations. These were that it
is infeasible to use the standard Viterbi algorithm in the system and that it is a necessity that the
custom algorithm is implemented on a distributed platform in order to make it usable in a system
consisting of 4e6 assets and 20e3 locations as is the case with the distribution of cc containers in
Europe. The full test report can be found in appendix I and the main results and conclusions will be
summarised in this section.

Error Percentage The results of the test of the error percentage is shown in Figure 6.14 for the
standard algorithm and in Figure 6.15 for the customised algorithm. When comparing with the
corresponding plots of the error percentages of the Matlab implementations of the algorithms, which
are shown in Figure 4.12 and Figure 4.13 on page 52, it can be seen that the C++ implementations of
the algorithms performs exactly like the Matlab implementations. Based on this it is concluded that
the implementation in C++ is correct.

6.4 Test of Distributed Software 73

10
20

30
40

50
60

0

50

100

150

200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Places

Standard Viterbi algo

Sequence Length

E
rr

or
 P

er
ce

nt
ag

e
[%

]

10
20

30
40

50
60

0

50

100

150

200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Places

Custom Viterbi algo

Sequence Length

E
rr

or
 P

er
ce

nt
ag

e
[%

]

Figure 6.14: Plot of estimation error percentage
for the standard Viterbi algorithm in C++

Figure 6.15: Plot of estimation error percentage
for the customised Viterbi algorithm in C++

10
20

30
40

50
60

0

50

100

150

200
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Places

Standard Viterbi algo

Sequence Length

C
al

cu
la

tio
n

T
im

e
[s

]

10
20

30
40

50
60

0

50

100

150

200
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

Number of Places

Custom Viterbi algo

Sequence Length

C
al

cu
la

tio
n

T
im

e
[s

]

Figure 6.16: Plot of calculation time for the
standard Viterbi algorithm in C++

Figure 6.17: Plot of calculation time for the
customised Viterbi algorithm in C++

Time Consumption The results of the time consumption test is shown in Figure 6.16 and Figure
6.17. It is apparent from Figure 6.16 and Figure 6.17 that the time consumption in the C++
implementation is lower for both the algorithms compared to the Matlab implementation, which
can be seen when comparing with Figure 4.3 and Figure 4.14. The spike in Figure 6.17 is assumed
to be caused by an outlier in the results, which may be caused by scheduling. The plots in Figure
6.18 and Figure 6.19 shows a number of cross sections of the plot in Figure 6.16, as it can be seen,
the plots confirm that the computational complexity of the Viterbi algorithm is quadratic in the
number of locations in the system and linear in the sequence length. In Figure 6.17 it is seen that
the time consumption of custom algorithm is not constant in the number of locations. As described
in section 4.2.2, the algorithm treats the states corresponding to the last non-empty measurement as
special cases and calculates special probabilities for those states, all other states of the same type are
assigned the same probabilities due to the symmetry of the system, thus it is expected that the time
consumption of the algorithm will be constant in the number of places. The assignment of probabilities
to states which produce the same probability, is done using for loops in the C++ implementation of
the custom Viterbi algorithm, which becomes time consuming when the number of locations in the
system increase, and because of this the time consumption is not constant.

The plots in Figure 6.20 and Figure 6.21 shows a number of cross sections of the plot in Figure 6.17, as
it can be seen, the plots confirm that the computational complexity of the custom Viterbi algorithm
is linear in the sequence length, but that it is also linear in the number of locations opposed to being
constant as described in section 4.2.2.

The plot in Figure 6.22 shows the measured data along with a Matlab polyfit of the topmost line in

74 Distributed Software

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

10 15 20 25 30 35 40 45 50 55

0

0.02

0.04

0.06

0.08

0.1

0.12

Sequence Length

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

20 40 60 80 100 120 140 160 180

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 6.18: Plot of cross sections at different
sequence lengths of Figure 6.16

Figure 6.19: Plot of cross sections at different
numbers of locations of Figure 6.16

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

10 15 20 25 30 35 40 45 50 55

0.5

1

1.5

2

2.5

3

3.5
x 10

−3 Custom Viterbi algorithm
C

al
cu

la
tio

n
tim

e
[s

]

Sequence Length
20 40 60 80 100 120 140 160 180

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Figure 6.20: Plot of cross sections at different
sequence lengths of Figure 6.17

Figure 6.21: Plot of cross sections at different
numbers of locations of Figure 6.17

Figure 6.18. The plot in Figure 6.23 shows the calculation time extrapolated to 20e3 locations using
the polynomial found with polyfit. The value estimated at 20e3 locations is with a mean (µ) of 1.62e4
seconds and a standard variation (σ) of 320.26 seconds. Even though the C++ implementation of the
Viterbi algorithm is faster than the Matlab implementation it is still infeasible for use in the system,
which can be concluded from the plot of the extrapolation of the calculation time in Figure 6.23.
Based on the extrapolation it will take between 1.97e3 and 2.13e3 (µ±2σ) years to calculate the state
sequences for 4e6 assets when there is 20e3 locations in the system and the sequence length is 200.
This can be reduced to between 36 to 39 days if it is assumed that the computational burden can be
distributed to 20e3 computers.

The plot in Figure 6.24 shows the measured data along with a Matlab polyfit of the topmost line in
Figure 6.20. The plot in Figure 6.25 shows the calculation time extrapolated to 20e3 locations using
the polynomial found with polyfit. The value estimated at 20e3 locations is with a mean (µ) of 0.79
seconds and a standard variation (σ) of 0.004 seconds. From the extrapolation of the calculation time
of the custom Viterbi algorithm to 20e3 locations, it can be calculated that it will take between 36
to 37 days for a single computer to calculate the state sequences of 4e6 assets if the sequence length
is 200. This time can be reduced to between 156.4 to 159.6 seconds if the computational burden can
be distributed to 20e3 computers. Since a sequence length of 200 corresponds four days if the time is
split into intervals of half an hour, it is concluded that it is feasible to use a distributed version of the
algorithm as state sequence estimator in the system.

6.4 Test of Distributed Software 75

10 15 20 25 30 35 40 45 50 55
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

Measured Data
Polyfit Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

Figure 6.22: Illustration of measured data along
with the polyfit at a sequence length of 200

Figure 6.23: Extrapolation of calculation time
using polyfit at a sequence length of 200

10 15 20 25 30 35 40 45 50 55
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−3

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

Measured Data
Polyfit Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

Figure 6.24: Illustration of measured data along
with the polyfit at a sequence length of 200

Figure 6.25: Extrapolation of calculation time
using polyfit at a sequence length of 200

6.4.2 System Test

The complete system has been tested, using two different server modes; one where the state sequences
are calculated on the peers, and one where each peer sends the observation sequences to the server,
and the server calculates the state sequences. Due to network errors, in the transfer of the sequences,
and due to time constraints it has not been possible to verify that the correct state sequences are
transferred. It has been possible to verify by inspection that state sequences are calculated, and are
correctly transferred if only one peer is present in the network. Due to these errors a comparison of
the time consumption of the two server modes has not been conducted. Furthermore, the fact that
all the peers run on the same two computers, means that the test will not show the correct result.

Discussion

When a distributed system should be implemented in a large scale system, a more appropriate startup
routine should be implemented. In the current implementation, assets are initiated at the server, and
sent to the first location, with state and observation sequences statically allocated. In order to reduce
the data needed to be transferred, in the startup routine, only the essential data concerning the asset
should be sent. When a measurement for the asset exists, the complete data structures could then be
initiated on the peer, thus reducing the data needed to be transferred in the startup of the system.

Error handling routines should be added to the software, in order for the system to work as intended,
this both includes network error handling and general error handling in the system. The general error
handling routines includes handling of asset which are no longer physically present in the system.

76 Distributed Software

Conclusion

Based on the test conducted on the distributed software it is concluded that it is possible to distribute
the algorithm, with a reduction in the time consumption of the calculations. It has not been possible
to actually test the time difference between running the Viterbi algorithm distributed at the peers,
and centrally at the server. This has not been possible due to the fact that all 11 peers and the server
is run on two machines only, thus the peers and server are running in different threads on the same
processor. But as shown in section 4.2.3 the distributed algorithm is much faster, when the data are
extrapolated to a full scale system. The load balancing routine has been tested, and shows that the
number managed by each peer is converging against an equilibrium.

Chapter 7
Conclusion

The system in question is a closed system where assets circulate between multiple parties. The
registration of the assets is error prone, as the registration is done with RFID technology. This
work focuses on construction of a system which can correct the data, using a Viterbi algorithm.
Two simulation models have been constructed, and attempted validated against test data from Post
Danmark. The result of the validation is that neither of the two simulation models can be validated,
by the used validation method.

The standard Viterbi algorithm is very time consumptive when many assets are included in the
system, as the time consumption is quadratic in the number of assets. In a system with 4e6 assets
and 20e3 locations, calculation of the estimated state sequences for a sequence length corresponding
to approximately four days, would take approximately 265e3 years to calculate on a single computer,
which is unusable for a billing system. A customised version of the Viterbi algorithm has been
constructed, which is able to calculate state sequences with the same error percentage as the standard
algorithm, using less computational time. Based on the error percentage, it is assumed that the
algorithms produce the same state sequences. The customised algorithm uses approximately 39 days
to calculate a state sequence of 200 for all assets on a single computer. In a distributed setup, where
a computer is present on each location, it would take between 158 and 171 seconds to calculate the
state sequences. This is well within the four days that a sequence length of 200 corresponds if a day
is split into intervals of half an hour.

It has been shown that it is possible to distribute the algorithm between multiple peers in the system,
and calculate the same state sequences, as when centrally calculated. The implemented load balancing
algorithm has been verified to reach an equally distributed load of each peer, within 100 s for 11 peers.
Due to networking problems it has not been possible to test all features in the distributed software,
with all peers.

The results show a mean percentage of erroneous states in the estimated sequences of approximately
0.05 with a standard deviation of 1.89. The algorithm is thus not able to meet the requirement of
a success rate of 98.75%, with the current input data, and the current method of testing, taking the
relatively high standard deviation into account.

In order to meet all requirements in the specification a FDI system should be implemented in order
to detect errors in the system, such as faulty RFID tags, or assets from third party suppliers. This
part of the problem has not been investigated during the project work.

7.1 Future Work

The algorithms has not been able to meet the requirement of a success rate of 98.75%, with the
current method of testing. The current method of testing compares each entry in the estimated
state sequence and the correct state sequence divided with the total sequence length. As the system
should be used for billing, a more valid method of testing would be to treat location states and the

78 Conclusion

corresponding transport state as one state, thus letting the participants pay for the time assets spend
on transportation away from the given location, and then compare the number of timesteps the asset
is estimated to be in each location, during a whole billing period. If this test show that the estimator
still is not able to keep the requirements, a number of tests could be run, varying the quality of the
input data thus varying the probability of successful readings, such a test would indicate what the
quality of the input data should be in order to meet the requirement of 98.75%.

The memory usage, and computational time of the customised Viterbi algorithm could be further
reduced by reducing the γ- and χ matrices to vectors as done with the transition probability matrix.

The computational time, clearly indicate that distributing the algorithm among multiple peers is
further reducing the computational time needed for calculation of the state sequences for all assets
in the system. This is of course a matter of system size if the additional complexity and bandwidth
requirements are worth spending in order to reduce the computational time needed by the algorithm.
The tests show that using the customised algorithm a number of ten processors would keep the
computational time below the sequence length, such a computer would be possible to keep at a
central place.

If the distributed algorithm should be used in a billing system additional features should be added to
the system, where the main issue is various kinds of error handling, and improvements of the network
communication.

Bibliography

Cassandras, Christos G and Lafortune, Stephane. Introduction to Discrete Event Systems. Springer,
first edition, 1999. ISBN 0-7923-8609-4.

Jurafsky, Daniel and Martin, James H. Speech and Language Processing: An Introduction to Natural
Language Processing Computational Linguistics and Speech Recognition. Prentice Hall, second
edition, 2008. ISBN 0-13-187321-0.

Rabiner, Lawrence R. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of The IEEE, 77(2):257–274, 1989.

Ross, Sheldon M. Introductory Statistics. Elsevier Academic Press, second edition, 2005. ISBN
0-12-597132-X.

The MathWorks, Inc. Getting Started with SimEvents. The MathWorks, Inc, 2007.

80 BIBLIOGRAPHY

Appendix A
Rank-Sum Test

This section is based on (Ross, 2005). In order to test if two distributions are identical, the rank-sum
test is used if the distributions are not normal. The distribution of the γ-values produced by the
output sequences from the model and the system, can be seen in Figure A.1 and Figure A.2. When
considering the distribution of the γ-values, it is evident that they are not normally distributed and
thus the rank-sum test is appropriate when examining if the distributions are identical. The rank-sum

10
5

10
10

10
15

10
20

10
25

10
30

0

500

1000

1500

2000

2500

3000

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for actual system

10
−150

10
−100

10
−50

10
0

10
50

10
100

10
150

10
200

10
250

10
300

1

2

3

4

5

6

7

8

9

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for simulated system

Figure A.1: Distribution of γ-values for the
output sequences from the actual system

Figure A.2: Distribution of γ-values for the
output sequences from the simulated system

test is used to test the hypothesis that two underlying population distributions are the same.
Suppose that independent samples of sizes n and m are drawn from the two populations. First the
n+m samples from the two distributions are ranked from the smallest value to the largest, this means
that the smallest value is given rank 1, the second smallest rank 2 and so on. One of the sample
vectors is designated as the first sample, it does not matter which sample vector. The test then makes
use of the test statistic TS, which is defined as the sum of the ranks of the first sample.
The hypothesis H0 to test, is that the two distributions are identical, and the value of the test statistic
TS is assumed to be t. The objective is then to reject H0 if the value t of the test statistic TS is
either significantly large or significantly small, this means that the significance-level-α test will call for
rejection of H0 if either; P [TS ≤ t] ≤ α/2 or P [TS ≥ t] ≤ α/2. The probabilities are calculated under
the assumption that the hypothesis H0 is true, which means that the hypothesis will be rejected if
the rank sum of the first sample is too small or too large to be explained by chance. The test will call
for rejection of H0 if the p-value of the data set is less than or equal to α. The p-value is given by:

p = 2 min(P [TS ≤ t], P [TS ≥ t]) (A.1)

82 Rank-Sum Test

In practice, the significance level is not set in advance but the p-value is calculated and then a
conclusion is drawn about the H0 hypothesis. If the p-value is significantly small, then the hypothesis
is rejected and if it is significantly large the hypothesis can be readily accepted. In order to calculate
the probabilities in Equation (A.1) it is necessary to know the distribution of the test statistic TS
when H0 is true.
Suppose that the size of the first sample vector is n. When all n + m values comes from the same
distribution as it is assumed in H0, it follows that the set of ranks in the first sample will have the
same distribution as a random selection of n of the values 1, 2, · · · , n + m. This can be used to show
that if H0 is true, the mean E[TS] and variance V ar[TS] of the test statistic TS are given by the
following expressions:

E[TS] =
n(n + m + 1)

2
(A.2)

V ar[TS] =
nm(n + m + 1)

12
(A.3)

It can be shown that when the sizes n and m of the sample vectors are larger than about 7, TS will
be approximately normally distributed when H0 is true, with mean and variance as given in Equation
(A.2) and (A.3) respectively.
If there are any ties between the samples, the rank of the data should be the average of the ranks of
all the data of the same value. For instance, if the first-sample data are; 2,4,4,6 and the second-sample
data are; 5,6,7, then the ordered sample data are; 2,4,4,5,6,6,7. Thus, the value 4 has both rank 2
and 3 which gives an average rank of 2.5 for the value 4. Likewise, the average rank of the value 6
will be 5.5 since this value has both rank 5 and rank 6. Using this it can be calculated that the sum
of ranks of the first-sample data will be; 1+2.5+2.5+5.5=11.5. Otherwise the test is run exactly as it
would be if there were no ties.

Appendix B
Validation of Hidden Markov Model

This appendix describes the test conducted to validate the hidden Markov model of the assets in the
distribution system.

B.1 Purpose

The purpose of the test is to validate the pure hidden Markov model of the system, either with a set
of parameters calculated using the equations derived to find the system parameters, or with a set of
parameters found using the forward-backward algorithm.

B.2 Theory

In order to validate if the hidden Markov model of the system uses the correct parameters a test has
been carried out using the Viterbi algorithm. More specifically, the γ-values produced by the algorithm
at the last time index has been used. The maximal γ-value at the last time index is proportional to the
probability of the output sequence used as input to the algorithm, given the optimal state sequence
and the underlying hidden Markov model. It is expected that the distribution of these γ-values will
be similar if the model matches the actual system. The distributions of the γ-values are compared
using the rank sum test.
The theory behind the hidden Markov model of the system can be found in section 2.2. The theory
behind the derivation of the initial system parameters can be found in section 2.2.5. The theory
behind the forward-backward algorithm can be found in section 2.2.4. The theory behind the rank
sum test can be found in appendix A.
The initial parameters used in the hidden Markov model are found based on the data from the Post
Danmark setup using the equations derived in section 2.2.5. First the number of time steps per day
(F) has been found from dividing the sequence length of the measurements in the converted data file
by the number of days the file covers:

F =
number of timesteps

number of days
⇒

F =
1357

34.5
⇒

F ≈ 39 (B.1)

Then the number of assets per transport M is estimated from the data file, by counting the number
of assets making the same output in the same time step, adding an additional 1/19’th of this number
since 5 % of the readings are missed in average, and taking the mean over all time steps.

84 Validation of Hidden Markov Model

Then the sum of the time fractions spent in transport and location states (T F
l + T F

t) is found using
the proposition:

T F
l + T F

t =
N

F · M
⇒

T F
l + T F

t =
22257

39 · 56.8
⇒

T F
l + T F

t ≈ 10 (B.2)

Where:
N is the number of assets in the system

This is equally divided between T F
l and T F

t , this results in the following probabilities;

A =
5

5 + 1
A = 0.8333 (B.3)

And equal for the B probability.

B.3 Setup

The test is run using a Matlab script implementation of the hidden Markov model of the asset
automaton. A wrapper script has been constructed in order to simulate as many assets as there
is present in the system. The output from the model is run through an altered version of the Viterbi
algorithm, which outputs the maximum γ-value at the last time step. The data from the Post Danmark
setup is run through a script in order to make the Post Danmark registrations comparable with the
model output. The Post Danmark data is then run through the altered Viterbi algorithm as well.
This gives two vectors with γ-values, which are then run through a rank-sum test. The rank-sum test
then shows if it is likely that the γ-values produced by the two outputs are similarly distributed.

B.4 Equipment

The test is run on an Intel T2330@1.6GHz Core 2 Duo based laptop with 2GB system memory,
running Mathworks Matlab 7.5.0.338 on Ubuntu 7.10.

B.5 Results

First the simulation model is tested using the parameters calculated based on the Post Danmark data
directly. The distribution of the γ-values calculated using the actual system output and the simulation
model output can be found in Figure B.1 and Figure B.2 respectively. As it can be seen in the figures,
the distributions does not appear to be similar, and since the p-value from the rank-sum test is zero,
the hypothesis of the distributions being similar can readily be rejected. Next the simulation model is
tested using parameters estimated by the forward-backward algorithm, with the previous parameters
as initial parameters. The distribution of the γ-values calculated using the actual system output and
the simulation model output can be found in Figure B.3 and Figure B.4 respectively. As it can be
seen in the figures, the distributions does not appear to be similar, and since the p-value from the
rank-sum test is zero, the hypothesis of the distributions being similar can readily be rejected. Finally
the simulation model is tested using parameters tuned by hand. The distribution of the γ-values
calculated using the actual system output and the simulation model output can be found in Figure
B.5 and Figure B.6 respectively. As it can be seen in the figures, the distributions does not appear
to be similar, but since the p-value from the rank-sum test is 0.54, the hypothesis of the distributions
being similar cannot be rejected.

B.5 Results 85

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

0

1000

2000

3000

4000

5000

6000

7000

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for actual system

10
−300

10
−200

10
−100

10
0

10
100

10
200

10
300

0

2

4

6

8

10

12

14

16

18

20

γ−value

γ−values for simulated system

Figure B.1: Distribution of γ-values of Post
Danmark data (A = 0.8333,B = A)

Figure B.2: Distribution of γ-values of simulated
data (A = 0.8333,B = A)

10
0

10
20

10
40

10
60

10
80

10
100

0

1000

2000

3000

4000

5000

6000

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for actual system

10
−300

10
−200

10
−100

10
0

10
100

10
200

10
300

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

γ−value

γ−values for simulated system

Figure B.3: Distribution of γ-values of Post
Danmark data (A = 0.76,B = 0.85)

Figure B.4: Distribution of γ-values of simulated
data (A = 0.76,B = 0.85)

10
5

10
10

10
15

10
20

10
25

10
30

0

500

1000

1500

2000

2500

3000

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for actual system

10
−150

10
−100

10
−50

10
0

10
50

10
100

10
150

10
200

10
250

10
300

1

2

3

4

5

6

7

8

9

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for simulated system

Figure B.5: Distribution of γ-values of Post
Danmark data (A = N/(N + 1),B = A), where
n is the number of assets in the system

Figure B.6: Distribution of γ-values of simulated
data (A = N/(N + 1),B = A), where n is the
number of assets in the system

86 Validation of Hidden Markov Model

B.6 Discussion

Although the rank-sum test cannot reject the model parameters in the final test of the simulation
model, the distributions of γ-values in Figure B.5 and B.6 does not appear to be similarly distributed.
Based on the results from the different test it will though still be assessed that the latter parameters
are those that fit the actual system best, and thus these are accepted as system parameters.

B.7 Conclusion

It has not been possible to find parameters for the model which result in a distribution plot for the
model similar to the actual system. The parameters tested in the final test could not be rejected by the
rank-sum test though. Because of this, these parameters will be accepted as the system parameters.

Appendix C
Validation of Simulink Model

This appendix deals with a validation of the simulation model, which is constructed in simulink.

C.1 Purpose

The purpose of the validation, is to determine, if the model is producing the same observation
sequences, as the real distribution system.

C.2 Theory

The theory behind the Viterbi algorithm is found in chapter 4. The theory behind the rank sum
test is found in appendix A. In order to validate the simulation model, outputs from both the model
and the actual system has to be compared, it has been chosen to compare the distribution of the γ-
values produced by the Viterbi algorithm, the γ-value is a measure of the probability that the output
sequence origins from the model in question. Because the distribution of the γ-values are not known
the rank-sum test is used. The rank-sum test is able to determine if two test vectors origins from
populations with the same distributions.

C.3 Setup

The validation test is based on the result of a rank sum test. The rank sum test is run with a test vector
consisting of the γ-values produced by the Viterbi algorithm, when run on data from the simulation
model, and when run on data from the test setup respectively. The simulation is run with 1000 assets
and eleven locations with a sequence length of 100. A data segment with similar parameters has been
drawn from the test data from the actual system.

C.4 Results

The γ-values from the simulation model, and the test data are shown in Figure C.1 and C.2
respectively. The rank-sum test results in a p-value of zero.

C.5 Discussion

As the rank-sum test results in a p-value of zero, the H0 hypothesis can be rejected. This can either
mean that the simulation model is not applicable in modelling the system, or the test is simply too
sensitive, which will mean that small modelling errors will result in rejection of the hypothesis.

88 Validation of Simulink Model

10
12

10
14

10
16

10
18

10
20

10
22

10
24

10
26

10
28

0

20

40

60

80

100

120

140

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for actual system

10
−150

10
−100

10
−50

10
0

10
50

10
100

10
150

10
200

10
250

10
300

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

γ−value

nu
m

be
r

of
 a

ss
et

s

γ−values for simulated system

Figure C.1: γ-values generated by the Viterby
algorithm, run on data from Post Danmark

Figure C.2: γ-values generated by the Viterby
algorithm, run on data from the SimEvent simula-
tion model

C.6 Conclusion

The rank-sum test results in a p-value of zero, which indicate that the H0 hypothesis can be rejected.

Appendix D
Simulink Model

This appendix includes all figures of the complete simulink model, which simulates the distribution
system. The discription of the simulation model is found in chapter 3

Write log to workspace

In log place

To Location

To Transport

In log trans Transport

Transport in

Return log

Transported

To log

Places

Source

Destination

In place

To log

From log

 Not transported

Transport
Path Combiner

IN1

IN2

IN3

OUT

Initialization

Containers

From1

index

 Random Source and dest

Timestep

Source

Destination

fcn

Figure D.1: The complete simulink model

90 Simulink Model

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

function [Source,Destination] = fcn(locations, seed,Timestep)
% This block supports the Embedded MATLAB subset.
% See the help menu for details.
%rand(’twister’,seed);
persistent seeded;
if isempty(seeded)
 seeded = true;
 rand(’twister’,seed);
end
persistent step;
persistent S;
if isempty(S)
 S=1;
end
persistent D;
if isempty(D)
 D=1;
end

if isempty(step)
 step = Timestep;
end
if (step ~= Timestep)
 step = Timestep;
 S = floor(1+locations.*rand(1,1));
 D = S;
 while(S==D)
 D = floor(1+locations.*rand(1,1));
 end

Source = S;
Destination = D;

else
Source = S;
Destination = D;

end
%A=index;

distribution_system_autonom_fast/ Random Source and dest

Figure D.2: Random source and destination

Transport

5

 Not transported

4

From log

3

To log

2

In place

1 set timestamp

A1

A2

IN

OUT

Location

currentTime

in transport

In

Out

Infinite Server

IN OUT

Goto2

reset

Goto1

index

Generate index and reset

waiting

in transport

Reset

Index

Generate Observation sequence

From5

number_in_place

From4

number_in_transport

From3

index

From2

index

From1

number_in_transport

Find all assets at location

Source

In

Correct location

Wrong Location

Digital Clock

12:34

Determine if asset should be transported

Destination(Port)

Correct source

Wrong source

Not transported

Transport

Add port to state history

Destination

2

Source

1

Figure D.3: Places

91

Transport

4

Not transported

3
Wrong source

2

Correct source

1

Transport or not

IN

OUT1

OUT2

Transport only more than one

In

Go back to location

Transport

Single Server

IN OUT

Set Destination

A1

IN

OUT

Path Combiner1

IN1

IN2

IN3

OUT

LocTrans prob

Destination(Port)

1

Figure D.4: Determine if asset should be transported

In

3

Transport

2

Go back to location

1

Output Switch1

IN

p OUT1

OUT2

From5

reset

From4

number_in_transport

From3

number_in_place

FIFO Queue

IN

OUT

#n

Entity Departure

Counter

IN

tr

OUT

#d

Enabled Gate

IN

en

OUT

Discrete Event Subsystem1

number in place

number in transport

switch

Discrete Event Subsystem

in que

count

enable

Figure D.5: Transport only more than one

Wrong Location

3

Correct location

2In

1 Route assets

Source

Attribute

Dout

Read Port

IN

A1

OUT

Find asset with source

IN

p OUT1

OUT2

Delay

IN OUT

Source

1

Figure D.6: Find all assets at location

Index

2

Reset

1

Stop Simulation

STOP
Scope

Relational

Operator

>=

Generate index

reset (event)

Index

reset

Discrete Event Subsystem

number waiting

number in transport

reset

Data Type Conversion2

Convert

Constant

length

in transport

2

waiting

1

Figure D.7: Generate index and reset

92 Simulink Model

reset

2

Index

1

Event−Based

Entity Generator

tr OUT

Entity Sink

IN

Entity Departure

Counter

IN
OUT

#d

Discrete Event Subsystem

Din

Din1

Dout

Dout1

reset (event)1

Figure D.8: Generate index

Out

2

In

1

Set order and CurrentTime

A1

A2

IN

OUT

Randomize order

reset (enableB)

in transport

In

Out

Places

IN

OUT

#n

Leaving places

IN

OUT

#n

Goto3

number_in_place

Goto2

[In_transport]

Goto1

EnableB

Goto

EnableAC

Gate C

IN

en

OUT

Gate B

IN

en

OUT

Gate A

IN

en

OUT

From4

[In_transport]

From3

[In_transport]

From2

EnableB

From1

EnableAC

From

EnableAC

Discrete Random number gen

random number

Control gates ABC

in place

in place2

in transport

EnableAC

EnableB

in transport

2

currentTime

1

Figure D.9: Location

EnableB

2

EnableAC

1

Relational

Operator

==

Logical

Operator2

NOT

Logical

Operator1

OR

Logical

Operator

AND

Data Type Conversion1

Convert

Data Type Conversion

Convert

Constant

assets

Compare

To Zero1

> 0

Compare

To Zero

> 0

Add

in transport

3

in place2

2

in place

1

Figure D.10: Control gates ABC

Out

2

In

1

Single Server2

IN OUT

Single Server1

IN OUT

Priority Queue2

IN

OUT

#n

Entity Departure

Counter

IN

tr

OUT

#d

Enabled Gate

IN

en

OUT

Discrete Event Subsystem

in queue

number departed

in transport

enable

in transport

2

reset (enableB)

1

Figure D.11: Randomize order

93

Return log

4
To log

3
Transported

2

Transport in

1

Transport

in transport

in transport2

In

Out log

Out

Return log

Terminator

Goto

number_in_transport

Figure D.12: Transport

in transport2

2

in transport

1Return log

4

Out log

3

In

2

Out

1

set timestamp

A1

A2

IN

OUT

Transport loop or places

IN

OUT1

OUT2

Trans−>loc prob

Trans stage 2

IN

OUT

#n

Trans stage 1

IN

OUT

#n

Single Server

IN OUT

Set Transport to false

Server

IN OUT

Record entering time
Path Combiner

IN1

IN2
OUT

Input transport

IN OUT

Generate Observation sequence

Gate C

IN

en

OUT

Gate B

IN

en

OUT

Gate A

IN

en

OUTFrom6

index

From2

EnableAC

From1

EnableAC

From

EnableB

Digital Clock

12:34

Add transport to state history

Figure D.13: Transport

In log trans

4

To Location

3

In log place

2

To Transport

1

Transport loop or places

IN

OUT1

OUT2

State History

to Workspace

state_history

Single Server

IN OUT

Path Combiner2

IN1

IN2

OUT

Path Combiner1

IN1

IN2

OUT

Output Switch1

IN

OUT1

OUT2

Logging

Get Histories

IN

A1

A2

OUT

Event History

to Workspace

event_history

Figure D.14: Write log to workspace

94 Simulink Model

Appendix E
Test of Viterbi Implementation

This appendix deals with a test of the Viterbi algorithm which is conducted in order to establish if
the algorithm is correctly implemented.

E.1 Purpose

The purpose of the test is to establish if the Viterbi algorithm has been correctly implemented in
Matlab.

E.2 Theory

The theory behind the state sequence estimator is found in section 4.1. The estimator consists of a
Matlab function implementation of the Viterbi algorithm, which can be used to determine the most
likely state sequence from the output of a hidden Markov process, such as the one used to describe
the dynamics of the system. The A and B parameters used in the algorithm are varied, while the
same parameters are kept fixed in the simulation of the system. The error percentages of the Viterbi
algorithm are then measured at the different parameters. If the algorithm is correctly implemented,
the algorithm which match the system parameters should be optimal regarding error percentages or
at least at par with the best. The error percentage is measured by counting how many of the states
in the state sequence is estimated wrong.

E.3 Setup

The test has been performed by generating simulated outputs from the pure hidden Markov model
which generate outputs for each of the assets in the system which are uncorrelated with the other
asset outputs. The simulation has been run on values of the A and B parameters in the Viterbi
algorithm ranging from 0.05 to 0.95 with an interval of 0.05, which gives a total number of test
points of 361. Five different tests has been run. In each of the tests the A and B parameters used
by the hidden Markov model, are fixed. The values of the parameters used by the hidden Markov
model are: A = 0.25, B = 0.25; A = 0.25, B = 0.75; A = 0.50, B = 0.50; A = 0.75, B = 0.25 and
A = 0.75, B = 0.75 respectively. Each of the simulations are run with 100 assets in the system and
with a sequence length of 100. The output from the tests are the mean error percentage taken over
all assets.

96 Test of Viterbi Implementation

E.4 Results

The plot in Figure E.1 shows the results from the test where the A and B parameters in the model are
0.25. As it can be seen in the figure, there is a large part of the surface where the error percentages are
all lower than in the rest of the plot, and the Viterbi parameters that match the system parameters
are placed in this part of the surface. The plot in Figure E.2 shows the results from the test where the

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
6.5

7

7.5

8

8.5

9

A parameter

Sensitivity of Viterbi algorithm

B parameter

M
ea

n
er

ro
r

pe
rc

en
ta

ge
 [%

]

Figure E.1: Error percentages at different A and B parameters of Viterbi algorithm at system parameters:
A = 0.25 and B = 0.25

A parameter in the model is 0.25 and B is 0.75. As it can be seen in the figure, there is a large part
of the surface where the error percentages are all lower than in the rest of the plot, and the Viterbi
parameters that match the system parameters are placed in this part of the surface.
The plot in Figure E.5 shows the results from the test where the A parameter in the model is 0.75
and B is 0.25. As it can be seen in the figure, there is a large part of the surface where the error
percentages are all lower than in the rest of the plot, and the Viterbi parameters that match the
system parameters are placed in this part of the surface. The plot in Figure E.4 shows the results

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

10

20

30

40

50

60

A parameter

Sensitivity of Viterbi algorithm

B parameter

M
ea

n
er

ro
r

pe
rc

en
ta

ge
 [%

]

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

5

10

15

20

25

30

35

A parameter

Sensitivity of Viterbi algorithm

B parameter

M
ea

n
er

ro
r

pe
rc

en
ta

ge
 [%

]

Figure E.2: Error percentages at different A
and B parameters of Viterbi algorithm at system
parameters: A = 0.25 and B = 0.75

Figure E.3: Error percentages at different A
and B parameters of Viterbi algorithm at system
parameters: A = 0.75 and B = 0.25

from the test where the A and B parameters in the model are 0.50. As it can be seen in the figure,
there is a large part of the surface where the error percentages are all lower than in the rest of the plot,
and the Viterbi parameters that match the system parameters are placed in this part of the surface.
The plot in Figure E.5 shows the results from the test where the A and B parameters in the model are
0.75. As it can be seen in the figure, there is a large part of the surface where the error percentages are

E.5 Discussion 97

all lower than in the rest of the plot, and the Viterbi parameters that match the system parameters
are placed in this part of the surface.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
6

8

10

12

14

16

18

20

A parameter

Sensitivity of Viterbi algorithm

B parameter

M
ea

n
E

rr
or

 P
er

ce
nt

ag
e

[%
]

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
5

10

15

20

25

30

35

A parameter

Sensitivity of Viterbi algorithm

B parameter

M
ea

n
er

ro
r

pe
rc

en
ta

ge
 [%

]
Figure E.4: Error percentages at different A
and B parameters of Viterbi algorithm at system
parameters: A = 0.50 and B = 0.50

Figure E.5: Error percentages at different A
and B parameters of Viterbi algorithm at system
parameters: A = 0.75 and B = 0.75

E.5 Discussion

From the results shown in the plots it is determined that the implementation of the Viterbi algorithm
is correct since the algorithm with the parameters which match the system parameters in all cases are
at least at par with the algorithm with the best performance.

E.6 Conclusion

It is concluded that the implementation of the Viterbi algorithm is correct.

98 Test of Viterbi Implementation

Appendix F
Test of Time Consumption of Viterbi

Algorithm

This chapter deals with a test of the time consumption of the implementation of the Viterbi algorithm
used to estimate state sequences of hidden Markov models.

F.1 Purpose

The purpose of the test is to assess if it is possible to use the Viterbi algorithm on a system which is
in the scale of the distribution system in question. The distribution system of cc’s throughout Europe
consist of approximately 4e6 assets and 20e3 locations.

F.2 Theory

The theory behind the state sequence estimator is found in section 4.1. The estimator consists of a
Matlab function implementation of the Viterbi algorithm, which can be used to determine the most
likely state sequence from the output from a hidden Markov process, such as the one used to describe
the dynamics of the system. As described in section 4.1 the calculation complexity of the Viterbi
algorithm is O(n2k), where n is the number of states in the system and k is the length of the output
sequence.

F.3 Setup

The test has been conducted on the output from the SimEvent simulation model, such that it has
been possible to verify the estimated state sequence against the actual sequence. In order to estimate
the state sequence for the assets, the Viterbi algorithm have been used. The test has been performed
on simulated data, from different simulations using different numbers of locations in the simulations.
Different sequence lengths in the estimations are obtained by truncating the output sequences at the
last non-empty output. This is done in order to verify the calculation complexity of the algorithm. The
system parameters used in the Viterbi algorithm has been the same as those used in the simulation of
the system. The estimator used in the test is a Matlab function implementation and the calculation
time for the algorithm is calculated using the tic/toc function in Matlab.

F.4 Equipment

The test is run on an Intel T2330@1.6GHz Core 2 Duo based laptop with 2GB system memory,
running Mathworks Matlab 7.5.0.338 on Ubuntu 7.10.

100 Test of Time Consumption of Viterbi Algorithm

F.5 Results

The results of the test is shown in Figure F.1 which shows the calculation time for the algorithm. As
it can be seen in Figure F.1 the calculation time for the Viterbi algorithm is linear in the sequence
length and quadratic in the number of locations in the system, this can be seen more clearly in the
cross section plots shown in Figure F.2 and Figure F.3, which shows a number of cross sections of the
plot in Figure F.1. The plot in Figure F.4 shows the measured data along with a Matlab polyfit

10
20

30
40

50
60

0

50

100

150

200
−5

0

5

10

15

20

Number of Places

Standard Viterbi algo

Sequence Length

C
al

cu
la

tio
n

T
im

e
[s

]

Figure F.1: Plot of calculation time for the Viterbi algorithm

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

10 15 20 25 30 35 40 45 50 55
0

2

4

6

8

10

12

14

16

Sequence Length

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

Figure F.2: Plot of cross sections at different
sequence lengths of Figure F.1

Figure F.3: Plot of cross sections at different
numbers of locations of Figure F.1

of the topmost line in Figure F.2. The plot in Figure F.5 shows the calculation time extrapolated to
20e3 locations using the polynomial found with polyfit. The value estimated at 20e3 locations is with
a mean (µ) of 2.01e6 seconds and a standard variation (σ) of 3.88e4 seconds.

F.6 Discussion

From Figure F.5 it is estimated that it will take the algorithm between 1.93e6 and 2.09e6 (µ ± 2σ)
seconds to calculate the state sequence of a single asset at a 2σ level of confidence if there is 20e3
locations in the system and the sequence length is 200. If this number is scaled to a system consisting
of 4e6 assets it would take between 245e3 and 265e3 years to calculate the state sequence of all assets
on a single computer. If it is assumed that a computer is present at each location in the system, such
that the computational burden can be distributed to each of these, it would take between 12 and 13

F.7 Conclusion 101

10 15 20 25 30 35 40 45 50 55
0

2

4

6

8

10

12

14

16

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

Measured Data
Polyfit Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.5

0

0.5

1

1.5

2

2.5
x 10

6

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

Figure F.4: Illustration of measured data along
with the polyfit at a sequence length of 200

Figure F.5: Extrapolation of calculation time
using polyfit at a sequence length of 200

years to calculate the state sequences. This is infeasible to be useful since a sequence length of 200
corresponds to a time span of just above four days if a day is split into intervals of half an hour. If
the Viterbi algorithm is to be used for model based estimation of state sequences in a system of this
scale it has to be simplified in order to reduce its calculation complexity.

F.7 Conclusion

From the test of the time complexity of the Viterbi algorithm it is concluded that the algorithm at its
current state is not feasible for use as estimator in a system in the scale of the distribution system in
question. Therefor, an approach is needed to decrease the computational complexity of the algorithm.

102 Test of Time Consumption of Viterbi Algorithm

Appendix G
Test of Error Rate of Viterbi Algorithm

This chapter describes the test of the error rate of the designed state sequence estimator, which is
used to determine the state sequences of the individual assets in the system.

G.1 Purpose

The purpose of the test is to determine how often the state sequence estimator is able to find the
correct state sequence for an asset automaton, given the output from the automaton in interest. The
result from the test will be the percentage of states which are estimated faulty from the entire state
sequence. Furthermore, the test is performed on both the standard Viterbi algorithm as well as the
customised Viterbi algorithm on the same output sequences in order to confirm that the customised
algorithm produce the same errors as the standard algorithm, thus indicating that the estimated state
sequences from the two algorithms are the same.

G.2 Theory

The theory behind the state sequence estimator is found in section 4.1 and section 2.2.2. The estimator
consists of a Matlab function implementation of the Viterbi algorithm, which can be used to determine
the most likely state sequence from the output from a hidden Markov process, such as the one used
to describe the dynamics of the system.

G.3 Setup

The test has been conducted on output from the Simulink simulation model, such that it has been
possible to verify the estimated state sequence against the actual sequence. In order to estimate the
state sequence for the assets, both Viterbi algorithms have been used. The test has been performed
on simulated data, from different simulations using different numbers of locations in the simulations.
Different sequence lengths in the estimations are obtained by truncating the output sequences at the
last non-empty output. This is done in order to verify that the estimation error does not depend on
these parameters. The system parameters used in the Viterbi algorithm has been the same as those
used in the simulation of the system.

G.4 Equipment

The test is run on an Intel T2330@1.6GHz Core 2 Duo based laptop with 2GB system memory,
running Mathworks Matlab 7.5.0.338 on Ubuntu 7.10.

104 Test of Error Rate of Viterbi Algorithm

G.5 Results

The results from the test is shown in Figure G.1 and Figure G.2, which show the results from the
standard Viterbi algorithm and the customised Viterbi algorithm respectively.

10
20

30
40

50
60

0

50

100

150

200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Places

Standard Viterbi algo

Sequence Length

E
rr

or
 P

er
ce

nt
ag

e
[%

]

10
20

30
40

50
60

0

50

100

150

200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Places

Custom Viterbi algo

Sequence Length
E

rr
or

 P
er

ce
nt

ag
e

[%
]

Figure G.1: Plot of estimation error percentage
for the standard Viterbi algorithm

Figure G.2: Plot of estimation error percentage
for the customised Viterbi algorithm

G.6 Discussion

As it can be seen in the two figures the two different algorithms produce exactly the same results on the
same output sequences which is a strong indication that the customised algorithm produces the same
estimations as the standard algorithm for the system in question. The results show a mean percentage
of erroneous states in the estimated sequences of approximately 0.05 with a standard deviation of 1.89.
These results indicate that the estimator currently is able to fulfil its requirement when considering
the mean value. But taking the relatively high standard deviation into account it is concluded that it
is not able to fulfil its requirement.

G.7 Conclusion

From the results plotted in Figure G.1 and G.2 it is concluded that the two algorithms has the same
error percentage profiles which could indicate that the two algorithms produce the same sequence
estimations given the same observation sequences, and using the system model in question. This
means that the customised may be used as a substitute for the standard Viterbi algorithm, when
the system is symmetric in its parameters as is the case for the distribution system in question.
It is furthermore concluded that the estimator in its current form cannot fulfil the requirement of
estimating correctly in 98.75 % of the cases.

Appendix H
Test of Time Consumption of Custom

Viterbi Algorithm

This chapter deals with a test of the time consumption of the two Viterbi algorithms used in the
estimation of the state sequences of the assets in the system.

H.1 Purpose

The purpose of the test is to confirm that the custom Viterbi algorithm designed for symmetric hidden
Markov models as the one modelling the distribution system in question has the time consumption as
expected. Furthermore, the test will show the ratio in calculation time between the standard Viterbi
algorithm and the custom one.

H.2 Theory

The theory behind the state sequence estimator is found in section 4.1 and section 2.2.2. The estimator
consists of a Matlab function implementation of the Viterbi algorithm, which can be used to determine
the most likely state sequence from the output from a hidden Markov process, such as the one used
to describe the dynamics of the system. As described in section 4.1 the calculation complexity of the
standard Viterbi algorithm is O(n2k), where n is the number of states in the system and k is the
length of the output sequence. The customised Viterbi algorithm is expected to have a calculation
complexity of O(k).

H.3 Setup

The test has been run on the data set produced by the Simulink simulation model, which also has
been used in the test of the error percentage of the estimator described in appendix G. The simulation
has been run using different number of locations in the system. Furthermore, the outputs from the
individual assets in the simulated data has been truncated at the last non-empty output in order to
obtain calculation times for different sequence lengths. The estimators used in the tests are Matlab
function implementations and the calculation time for the algorithms is calculated using the tic/toc
function in Matlab.

H.4 Equipment

The test is run on an Intel T2330@1.6GHz Core 2 Duo based laptop with 2GB system memory,
running Mathworks Matlab 7.5.0.338 on Ubuntu 7.10.

106 Test of Time Consumption of Custom Viterbi Algorithm

H.5 Results

The results of the test is shown in Figure H.1 and Figure H.2 which shows the calculation time for
the standard and custom algorithm respectively. Figure H.1 is a repetition of Figure F.1 on page 106.
Figure H.2 shows that the custom algorithm is linear in the sequence length but not entirely constant
in the number of locations in the system. This can be seen more clearly in the cross section plots
in Figure H.3 and Figure H.4. The ratio in calculation time of the two algorithms can be seen in

10
20

30
40

50
60

0

50

100

150

200
−5

0

5

10

15

20

Number of Places

Standard Viterbi algo

Sequence Length

C
al

cu
la

tio
n

T
im

e
[s

]

10
20

30
40

50
60

0

50

100

150

200
0

1

2

3

4

5

6

7

x 10
−3

Number of Places

Custom Viterbi algo

Sequence Length

C
al

cu
la

tio
n

T
im

e
[s

]

Figure H.1: Plot of calculation time for the
standard Viterbi algorithm

Figure H.2: Plot of calculation time for the
customised Viterbi algorithm

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

10 15 20 25 30 35 40 45 50 55

1

2

3

4

5

6

x 10
−3 Custom Viterbi algorithm

C
al

cu
la

tio
n

tim
e

[s
]

Sequence Length
20 40 60 80 100 120 140 160 180

1

2

3

4

5

6

x 10
−3

Figure H.3: Plot of cross sections at different
sequence lengths of Figure H.2

Figure H.4: Plot of cross sections at different
numbers of locations of Figure H.2

Figure H.5. As it is apparent from the figure the ratio in calculation time grows with the number of
locations in the system as expected. The plot in Figure H.6 shows the measured data along with a
Matlab polyfit of the topmost line in Figure H.3. The plot in Figure H.7 shows the calculation time
extrapolated to 20e3 locations using the polynomial found with polyfit. The value estimated at 20e3
locations is with a mean (µ) of 0.822 seconds and a standard variation (σ) of 0.016 seconds.

H.6 Discussion

The reason for the calculation time of the customised Viterbi algorithm not being entirely constant
in the number of locations in the system is expected to be caused by the choice of implementation.
As described in section 2.2.2, the algorithm treats the states corresponding to the last non-empty
measurement as special cases and calculates special probabilities for those states, all other states of

H.7 Conclusion 107

10
20

30
40

50
60

0

50

100

150

200
−500

0

500

1000

1500

2000

2500

3000

3500

Number of Places

Time Difference of Viterbi algos

Sequence Length

D
iff

er
en

ce
 in

 C
al

cu
la

tio
n

T
im

e

Figure H.5: Plot of ratio in calculation time between the two algorithms

10 15 20 25 30 35 40 45 50 55
4

4.5

5

5.5

6

6.5

7
x 10

−3 Custom Viterbi algorithm

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Measured Data
Polyfit Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

Figure H.6: Illustration of measured data along
with the polyfit at a sequence length of 200

Figure H.7: Extrapolation of calculation time
using polyfit at a sequence length of 200

the same type are assigned the same probabilities due to the symmetry of the system. Because of
this the algorithm is supposed to have complexity O(k). In the implementation however the latter
probabilities are first calculated and then assigned to the states using array assignments in Matlab.
The time consumption of the array assignment is expected to be proportional to the number of states
and thus the number of locations in the system, and because of this the time consumption of the
algorithm is not constant in the number of locations in the system.
From Figure H.7 it is estimated that it will take the algorithm between 0.790 and 0.854 (µ ± 2σ)
seconds to calculate the state sequence of a single asset at a 2σ level of confidence if there is 20e3
locations in the system and the sequence length is 200. If this number is scaled to a system consisting
of 4e6 assets it would take between 36.5 and 39.5 days to calculate the state sequence of all assets on
a single computer. If it is assumed that a computer is present at each location in the system, such
that the computational burden can be distributed to each of these, it would take between 158 and
171 seconds to calculate the state sequences. This is well within the four days that a sequence length
of 200 corresponds if a day is split into intervals of half an hour.

H.7 Conclusion

From the extrapolation of the test data to a system in the scale of the distribution system in question, it
is concluded that it is feasible to use the customised version of the Viterbi algorithm as state sequence
estimator. This is under the assumption that it will be possible to distribute the computational burden
to a number of computers corresponding the number of participants in the system.

108 Test of Time Consumption of Custom Viterbi Algorithm

Appendix I
Test of C++ Implementation of Viterbi

Algorithm

This chapter deals with the test of the C++ implementation of both the standard and the customised
Viterbi algorithm. The two algorithms are tested regarding both the error rate of the algorithm as
well as the time consumption.

I.1 Purpose

The C++ implementation of the algorithms is tested in order to confirm that they are implemented
properly and performs similar to the Matlab implementations. Furthermore, the time consumption
of the algorithms is measured and the results are compared to the Matlab implementations.

I.2 Theory

The theory behind the state sequence estimator is found in section 4.1 and section 2.2.2. The estimator
consists of a C++ implementation of the Viterbi algorithm, which calculates the most likely state
sequence.

I.3 Setup

The test of the two algorithms is run on the same simulated data set as the tests of the estimation
error and time consumption of the Matlab implementations, which is described in appendix G and
appendix H. The data are produced by the SimEvent model of the system, and the output sequences
are truncated at the last non-empty output in order to obtain different sequence lengths.

I.4 Equipment

The test is run on an Intel T2330@1.6GHz Core 2 Duo based laptop with 2GB system memory,
running Ubuntu 7.10.

110 Test of C++ Implementation of Viterbi Algorithm

10
20

30
40

50
60

0

50

100

150

200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Places

Standard Viterbi algo

Sequence Length

E
rr

or
 P

er
ce

nt
ag

e
[%

]

10
20

30
40

50
60

0

50

100

150

200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of Places

Custom Viterbi algo

Sequence Length

E
rr

or
 P

er
ce

nt
ag

e
[%

]

Figure I.1: Plot of estimation error percentage
for the standard Viterbi algorithm in C++

Figure I.2: Plot of estimation error percentage
for the customised Viterbi algorithm in C++

10
20

30
40

50
60

0

50

100

150

200
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Places

Standard Viterbi algo

Sequence Length

C
al

cu
la

tio
n

T
im

e
[s

]

10
20

30
40

50
60

0

50

100

150

200
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

Number of Places

Custom Viterbi algo

Sequence Length

C
al

cu
la

tio
n

T
im

e
[s

]

Figure I.3: Plot of calculation time for the stan-
dard Viterbi algorithm in C++

Figure I.4: Plot of calculation time for the cus-
tomised Viterbi algorithm in C++

10
20

30
40

50
60

0

50

100

150

200
−60

−40

−20

0

20

40

60

80

Number of Places

Time Difference of Viterbi algos

Sequence Length

D
iff

er
en

ce
 in

 C
al

cu
la

tio
n

T
im

e

Figure I.5: Plot of ratio in calculation time between the two algorithms in C++

I.5 Results 111

I.5 Results

The results of the test of the error percentage is shown in Figure I.1 for the standard algorithm and in
Figure I.2 for the customised algorithm. The results of the time consumption test is shown in Figure
I.3, Figure I.4 and Figure I.5. The plots in Figure I.6 and Figure I.7 shows a number of cross sections
of the plot in Figure I.3, as it can be seen, the plots confirm that the computational complexity of
the Viterbi algorithm is quadratic in the number of locations in the system and linear in the sequence
length.

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

10 15 20 25 30 35 40 45 50 55

0

0.02

0.04

0.06

0.08

0.1

0.12

Sequence Length

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

20 40 60 80 100 120 140 160 180

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure I.6: Plot of cross sections at different
sequence lengths of Figure I.3

Figure I.7: Plot of cross sections at different
numbers of locations of Figure I.3

The plots in Figure I.8 and Figure I.9 shows a number of cross sections of the plot in Figure I.4, as
it can be seen, the plots confirm that the computational complexity of the custom Viterbi algorithm
is linear in the sequence length, but that it is also linear in the number of locations opposed to being
constant as described in section 2.2.2.

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

10 15 20 25 30 35 40 45 50 55

0.5

1

1.5

2

2.5

3

3.5
x 10

−3 Custom Viterbi algorithm

C
al

cu
la

tio
n

tim
e

[s
]

Sequence Length
20 40 60 80 100 120 140 160 180

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Figure I.8: Plot of cross sections at different
sequence lengths of Figure I.4

Figure I.9: Plot of cross sections at different
numbers of locations of Figure I.4

The plot in Figure I.10 shows the measured data along with a Matlab polyfit of the topmost line in
Figure I.6. The plot in Figure I.11 shows the calculation time extrapolated to 20e3 locations using
the polynomial found with polyfit. The value estimated at 20e3 locations is with a mean (µ) of 1.62e4
seconds and a standard variation (σ) of 320.26 seconds.

The plot in Figure I.12 shows the measured data along with a Matlab polyfit of the topmost line in
Figure I.8. The plot in Figure I.13 shows the calculation time extrapolated to 20e3 locations using
the polynomial found with polyfit. The value estimated at 20e3 locations is with a mean (µ) of 0.79
seconds and a standard variation (σ) of 0.004 seconds.

112 Test of C++ Implementation of Viterbi Algorithm

10 15 20 25 30 35 40 45 50 55
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

Measured Data
Polyfit Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Standard Viterbi algorithm

Figure I.10: Illustration of measured data along
with the polyfit at a sequence length of 200

Figure I.11: Extrapolation of calculation time
using polyfit at a sequence length of 200

10 15 20 25 30 35 40 45 50 55
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−3

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

Measured Data
Polyfit Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Places

C
al

cu
la

tio
n

tim
e

[s
]

Custom Viterbi algorithm

Figure I.12: Illustration of measured data along
with the polyfit at a sequence length of 200

Figure I.13: Extrapolation of calculation time
using polyfit at a sequence length of 200

I.6 Discussion

Figure I.1 and Figure I.2 shows that the error percentages are distributed exactly like the error per-
centages for the Matlab implementations which are found in Figure G.1 and Figure G.2.
It is apparent from Figure I.3 and Figure I.4 that the time consumption in the C++ implementation
is lower for both the algorithms compared to the Matlab implementation, which can be seen when
comparing with Figure F.1 and Figure H.2. The spike in Figure I.4 is assumed to be caused by an
outlier in the results, which may be caused by scheduling. The ratio in calculation time is lower than
for the Matlab implementations, which can be seen when comparing Figure I.5 and Figure H.5. The
reason why the ratio in calculation time of the two algorithms is lower than in the case of the Matlab
implementations is expected to come from the choice of implementation. As described in section 2.2.2,
the algorithm treats the states corresponding to the last non-empty measurement as special cases and
calculates special probabilities for those states, all other states of the same type are assigned the same
probabilities due to the symmetry of the system. The assignment of probabilities to states which pro-
duce the same probability, is done using for loops in the C++ implementation of the custom Viterbi
algorithm, which becomes time consuming when the number of locations in the system increase. The
efficiency of the algorithm does though still grow with the number of locations when comparing it
with the standard algorithm which is apparent from Figure I.5.
Even though the C++ implementation of the Viterbi algorithm is faster than the Matlab implementa-
tion it is still infeasible for use in the system, which can be concluded from the plot of the extrapolation
of the calculation time in Figure I.11. Based on the extrapolation it will take between 1.97e3 and
2.13e3 (µ±2σ) years to calculate the state sequences for 4e6 assets when there is 20e3 locations in the

I.7 Conclusion 113

system and the sequence length is 200. This can be reduced to between 36 to 39 days if it is assumed
that the computational burden can be distributed to 20e3 computers.
From the extrapolation of the calculation time of the custom Viterbi algorithm to 20e3 locations, it
can be calculated that it will take between 36 to 37 days for a single computer to calculate the state
sequences of 4e6 assets if the sequence length is 200. This time can be reduced to between 156.4 to
159.6 seconds if the computational burden can be distributed to 20e3 computers. Since a sequence
length of 200 corresponds four days if the time is split into intervals of half an hour, it is concluded
that it is feasible to use a distributed version of the algorithm as state sequence estimator in the
system.

I.7 Conclusion

Since the distributions of error percentages are the same as the ones for the Matlab implementations
of the algorithms it is concluded that the C++ implementations produce the same state sequences
when given the same output sequences as the Matlab implementations, and are thus implemented
correctly.
The test furthermore shows that it is feasible to use a distributed version of the custom Viterbi
algorithm as state sequence estimator in the system.

114 Test of C++ Implementation of Viterbi Algorithm

Appendix J
Test of Load Balancing Algorithm

This chapter describes the test of the load balancing algorithm, which is used in the distributed
software. The load balancing algorithm is used to ensure equal amounts of assets managed by each
peer in the system.

J.1 Purpose

The purpose of the test is to determine if algorithm is able to balance the assets between the peers in
the system. Furthermore the purpose is to test that an equilibrium is reached in a finite number of
time steps.

J.2 Theory

The theory behind the load balancing algorithm is found in section 5.2. It is expected that the system
will reach an equilibrium

load =
N

m
, for N >> m (J.1)

Where:
N is the number of assets in the system
m is the number of peers in the system

J.3 Setup

The setup for the test is as follows; two computers are equipped with six network interfaces each,
thus together are able to represent 11 peers and one server. This is the number of locations in the
data file from Post Danmark. The number of assets in the file is 22257, and the sequence length is
1357. Four different measurement files are created, using the pure HMM simulation model, with the
following parameters; 11 locations, 100 assets and sequence lengths of 100, 80, 30 and 20. The A
and B probabilities are set to 80% and 30% respectively. The reason for the less assets and shorter
sequence length, is based on the excessive time it would take to run the test. More assets added, to the
system results in misbehaviour of the system. This is expected to be caused by a tcp buffer size. Due
to time constrains no further investigation of this issue has been done. Because of this the number of
assets is limited to 100. The measurement files are used to simulate readings from the RFID ports.

The current load of each peer, is written to a file, each time a successful load balancing between two
peers has been completed. These output files are compared graphically in the result section.

116 Test of Load Balancing Algorithm

J.4 Equipment

The equipment used in the test of the load balancing algorithm is listed in Table J.1.

Equipment AAU number Description
Desktop PC 52548 Pentium III@800MHz, 256MB memory, running Linux 2.6.18-4
Desktop PC 46787 Pentium III@800MHz, 512MB memory, running Linux 2.6.18-4
Switch – Netgear FS108

Table J.1: Equipment used for load balancing test

J.5 Results

The results from the test is shown in figure J.1, J.2 J.3 and J.4, which show the number of managed
assets at each of the eleven locations, the number of managed assets is plotted when load balancing
between two peers is in progress.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100
Loadbalancing

Time[s]

M
an

ag
ed

 a
ss

et
s

Peer1
Peer2
Peer3
Peer4
Peer5
Peer6
Peer7
Peer8
Peer9
Peer10
Peer11

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100
Loadbalancing

Time[s]

M
an

ag
ed

 a
ss

et
s

Peer1
Peer2
Peer3
Peer4
Peer5
Peer6
Peer7
Peer8
Peer9
Peer10
Peer11

Figure J.1: Load balancing run with a sequence
length of 100

Figure J.2: Load balancing run with a sequence
length of 80

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100
Loadbalancing

Time[s]

M
an

ag
ed

 a
ss

et
s

Peer1
Peer2
Peer3
Peer4
Peer5
Peer6
Peer7
Peer8
Peer9
Peer10
Peer11

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100
Loadbalancing

Time[s]

M
an

ag
ed

 a
ss

et
s

Peer1
Peer2
Peer3
Peer4
Peer5
Peer6
Peer7
Peer8
Peer9
Peer10
Peer11

Figure J.3: Load balancing run with a sequence
length of 30

Figure J.4: Load balancing run with a sequence
length of 20

J.6 Discussion 117

J.6 Discussion

The result shows that with a long sequence length, shown in Figure J.1 and J.2, which means that
more measurements for each asset are included in the measurement file, the load balance algorithm is
able to equally balance the load between the peers in the system, and the number of assets managed
by each peer converges toward

N

m
=

100

11
= 9.09 (J.2)

On the other hand with a short sequence length, the load balancing algorithm is not executed enough
times to equally balance the system as seen in Figure J.3, and J.4, this is the expected behaviour of
the algorithm.

J.7 Conclusion

The conclusion is that the load balancing algorithm is able to balance the number of asset between
the peers in the system, as the number of managed assets converges towards an equilibrium given
enough interaction between the peers. The interactions needed is dependent on the number of assets
and the number of location in the system. As seen in Figure J.1 and Figure J.2 the equilibrium is
reached within 100 s for 100 assets and eleven peers.

118 Test of Load Balancing Algorithm

Appendix K
Graphical User Interface for Model and

Algorithms

As a part of the modelling of the distribution system, a graphical user interface (GUI) has been
constructed, in order to ease the interaction with the Simulink model, and to present the simulation
results in a easy comparable, and readable format. The GUI is implemented in Java, using Matlab.

From within the GUI the parameters, used in the Simulink model, can be changed.

These parameters are; number of assets, number of places, probability of self loop in location state,
probability of self loop in transport state, scan probability, probability of faulty scan, length of
observation sequence, and the seed for the random number generator. The main window of the GUI,
is shown in Figure K.1, which consist of the eight main input fields for the simulation parameters,
and a number of buttons, the buttons have the following functions associated to them:

Figure K.1: The main window of the graphical user interface

1. Run Simulation Executes the Simulink model, with the entered parameters

120 Graphical User Interface for Model and Algorithms

2. View results Opens a new window to present the simulation results, this button is only available
when results are present.

3. Save sim results Saves the simulation results, for later processing, this button is only available
when results are present.

4. Load results Loads previously saved results.

5. Run Tests Runs the simulation, with the parameters specified.

In the lower right corner of the main window, a test section is present. The section is used to run the
simulation a number of times, with increasing number of assets and places for each run. When the
Run Tests button is pressed, a save to file dialog appears where the file name for the result should
be entered. A struct for each run will be created in the file, where the simulated state and event
sequences are present together with all the simulation parameters used in the simulation.

An activity diagram for the GUI, has been constructed, and can be seen in figure K.2, which shows
the construction of the GUI.

A checkbox exists in the main window, called ’show location info’. When this is checked, and the view
results button is pressed, the distribution of the assets in the system is shown at each time step in the
simulation. If there exists more than ten locations in the simulation, the user is able to choose, for
which ten locations the distribution of assets should be shown. An illustration of the distribution of
the assets is shown in Figure K.3, where each colored line represent a location. Figure K.4 illustrates
the number assets, which are in a transport state for each time step. When the show results button is
pressed a new window appears, shown in Figure K.5, which consist of two panels, two buttons and an
input field. The input field is used to enter the asset, for which the event, and state sequence should
be shown. The state sequence can also be shown as a graphical state diagram, illustrated in Figure
K.7. The state diagram should be interpreted in the following way; The number on the arcs indicate
the time step, at which this transition has been taken. The ’T’ state is a pseudo transport state,
which includes transport states for all locations, to simplify and make the illustration more readable.
An activity diagram for the ’view result’ window is shown in figure K.6.

The last button, in Figure K.8 is the run algorithm, which makes another window appear. This
window which is shown in Figure K.8, consist of a number of input fields, and three panels. The two
first input fields is used to enter the parameters for the forward-backward algorithm, and the last
input field is used by the Viterbi algorithm. The result is shown in the panels as the estimated state
sequence and correct state sequence. The forward-backward panel shows the epsilon value, which is
the value that shows convergence of the forward-backward algorithm, for the system matrix. The
forward panel shows the probability calculated by the forward algorithm. An activity diagram for the
’run algorithm’ window is show in in Figure K.9.

121

Start GUI

Button clicked?

Get parameters

Set variable in model

Run simulation

Unshade
View results button

Button
clicked?

Show
View results window

Show
save to file dialog

Show load file
dialog

Load results

Unshade
View results button

Show save file
dialog

Save data

Get test parameters

Run simulation

Is # runs,
reached?

Show test completed

Run sim
ulati

on

Lo
ad

re
su

lts Save
results

Run tests

V
ie
w

re
su

lt
s Save

results

y
es

n
o

Figure K.2: GUI activity diagram

122 Graphical User Interface for Model and Algorithms

Figure K.3: Illustration of asset distribution, each color represent a location in the system

Figure K.4: The number of assets, in transport as a function of time steps

123

Figure K.5: Illustration of the results window

View result window present

Asset number entered ?

Get asset number

Show state, and observation sequences

Button pressed?

Generate, and show state graph for asset

Control state of checkboxes

Transfer data, and state of checkboxes
to the run algorithm window

y
es

S
h
ow

a
s

sta
te

g
ra

p
h

R
u
n

a
lg

o
ri

th
m

Figure K.6: View result window activity diagram

124 Graphical User Interface for Model and Algorithms

6 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 4 5 6 7 8 9

T

 30

1

 31

5

 47 46

 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48

 stop

 State sequence

Figure K.7: Illustration of generated state diagram

Figure K.8: Illustration of the algorithm window

125

Button pressed?

Run the chosen algorithm(s)

Present the results

View as state diagram?

Show error dialog, run Viterbi first

Run Matlab-scripts to construct
dot figure, and show

R
un

al
go

rit
hm

Show
state

diagram

Figure K.9: Run algorithm activity diagram

