
Intelligent IP Camera
An FPGA Motion Detection
Implementation

DAT6, Spring 2008.

Nicolas Cothereau

Guillaume Delaite

Edouard Gourdin

e
Aalborg University
Department of Computer Science

Aalborg University Department of Computer Science

TITLE:
Intelligent IP Camera
An FPGA Motion Detection
Implementation

THEME:
Distributed Systems
and Semantics
Control Systems

PROJECT PERIOD:
01/02/2008-31/05/2008

PROJECT GROUP:
d605a

GROUP MEMBERS:
Nicolas Cothereau
Guillaume Delaite
Edouard Gourdin

SUPERVISORS:
Alexandre David
Yannick Le Moullec

NUMBER OF COPIES: 2

NUMBER OF PAGES: 94

CONCLUDED: 26-05-2008

SYNOPSIS:

This Report deals with an intelligent camera

implementation. This camera is linked with a

Altera FPGA platform (DE2 Board) where a

motion detection algorithm is implemented. A

video is recorded when movements are detected.

It is then stored on a SD-Card and accessible

on an Ethernet network. Hardware and software

co-design is studied to implement the motion

detection algorithm on a Nios II softcore

processor, with hardware acceleration. The

project is composed of background analysis,

design model study, system analysis and design,

motion detection algorithm analysis and design,

implementation of the proposed solution, and

testing and experiments of this implementa-

tion. The video capture and transmission are

successfully implemented. The motion detec-

tion algorithm is also implemented, but using

images from the desktop �le system. Storage

and recording parts are not implemented due

to memory chip problems. As a conclusion,

the optimization of video surveillance by us-

ing FPGA seems to be possible, but with

a custom and optimized platform instead of a

'standard one' (i.e. produced by a manufacturer).

key words: Master Thesis, Motion Detection,

Altera, FGPA, Softcore Processor, Algorithm,

Background Subtraction, Thresholding, HW/SW

Co-design, Design Model.

v

This report is the result of the work done during the SSE4 (Dat6) semester of the
Cand.Scient study at Department of Computer Science, Aalborg University. This
project was done in the research area of Distributed Systems and Semantics and
Control Systems. It constitutes the complete work toward a master thesis.

We would like to thank our supervisors, Yannick le Moullec and Alexandre David
for supervising this project and the many helpful comments made throughout the
project. We would also like to thank Rasmus Abildgren for his precious and helpful
insights into use of Design Trotter.

The document is organised as follows: Part I is the main report, with the ex-
planations and details of the proposed solution. Part II regroups the appendices
and the bibliography of this report. The organization of each part is detailed in the
introduction of each.

This thesis has been revised on the 26th of may, 2008. Some corrections and
changes were made to the published edition.

Nicolas Cothereau Guillaume Delaite

Edouard Gourdin

vii

Summary

This Report deals with an intelligent camera implementation. This camera is
linked with a Altera Field Programmable Gate Array (FPGA) platform on a DE2
Board where a motion detection algorithm is implemented. The main goal of this
project is to analyse the feasibility of optimizing video surveillance with an FPGA.

The aim is therefore to create a prototype to do several function, with some re-
quirements. A room is monitored and the video captured by the camera sensor is
displayed on a VGA screen. The video is recorded only when motions are detected.
Then, the video is stored on a SD-Card and accessible on an Ethernet network. Hard-
ware and software co-design is studied to implement the motion detection algorithm
on a Nios II softcore processor, with hardware acceleration.

The project is composed of background analysis which details the main context of
the project and details the problem to be answered in this report. Then, a design
model study is proposed to enhance the analysis, design and implementation of the
project. The system analysis and design and the motion detection algorithm anal-
ysis and design are successively given. Finally, the implementation of the proposed
solution and the testing and experiments parts are detailed.

The video capture and transmission are successfully implemented. Those parts are
implemented in full hardware, using Verilog programming language. The motion
detection algorithm implemented is a background subtraction algorithm. As the
recording and storage blocks are not successfully implemented, frames stored on
the desktop �le system are used to test the algorithm. It is fully implemented in
software, using ANSI-C programming language. Storage and recording parts are not
implemented due to memory chip problems.

As a conclusion, the optimization of video surveillance by using FPGA seems to
be possible, but with a custom and optimized platform instead of a �standard one�
(i.e. produced by a manufacturer). In facts, the memory chip of the selected board
is an 8 MB SDRAM chip, while for this project two 256 MB SDRAM would have
been better.

Contents

I Main Report 1

1 Introduction 3
1.1 Surveillance systems . 3
1.2 Video Camera and Intelligence . 3
1.3 Problem statement . 4
1.4 Goals . 5

1.4.1 Selection and simulation of the event detection algorithm . . 5
1.4.2 Transmission chain . 5
1.4.3 Recording and Storage Chain 5
1.4.4 Intelligent Camera . 6
1.4.5 Optimized Intelligent Camera 7
1.4.6 Complete Intelligent IP Camera 7

1.5 Tasks . 8
1.5.1 Capture image with the camera sensor 8
1.5.2 Display image on a screen . 8
1.5.3 Record captured video . 8
1.5.4 Store recorded video . 9
1.5.5 Access recorded video . 9
1.5.6 Event detection algorithm . 10
1.5.7 Video compression . 11

1.6 Structure of the document . 11

2 Design Models 13
2.1 Description of the A3 paradigm . 13
2.2 Description of the Rugby Meta-Model 15
2.3 This project described using the design models 17

2.3.1 The A3 applied to our project 17
2.3.2 The Rugby Meta-Model applied to our project 19

3 System Description 23
3.1 System constraints analysis . 24

3.1.1 Use of FPGA . 24
3.1.2 Time constraint . 25
3.1.3 Data constraints . 26
3.1.4 Other constraints . 26

ix

x Contents

3.2 Sketching the initial architecture . 26

3.2.1 Hardware/software co-design 26

3.2.2 softcore processor de�nition 27

3.2.3 The need for a softcore processor 28

3.2.4 The need for an embedded OS 28

3.3 Possible options to satisfy the system constraints 29

3.4 FPGA platforms . 29

3.4.1 Altera Cyclone II on Terasic DE2 board 29

3.4.2 Altera Stratix . 29

3.4.3 Xilinx Virtex II on Celoxica RC203 board 30

3.5 Programming and simulation languages 30

3.5.1 Hardware Description Languages (HDL) 30

3.5.2 System Design Languages (SDL) 32

3.5.3 High Level Languages . 34

3.6 Softcore processors . 36

3.6.1 Nios II . 36

3.6.2 Microblaze . 36

3.6.3 SPARC and LEON . 37

3.6.4 Open softcore processor . 37

3.7 Embedded OS . 37

3.7.1 uCLinux . 38

3.7.2 eCos . 38

3.7.3 MicroC/OS-II . 38

3.8 Choices made to meet the constraints and requirements 38

3.8.1 FPGA platform . 38

3.8.2 Camera sensor . 39

3.8.3 Programming languages . 39

3.8.4 softcore processor . 40

3.8.5 Embedded OS . 42

4 Motion Detection Algorithm 43
4.1 De�nition . 44

4.2 Analysis . 45

4.3 Design . 46

4.3.1 Background Generation . 46

4.3.2 Thresholding . 47

4.3.3 Selecting an E�cient Median Search Algorithm 47

4.4 Pro�ling . 48

4.5 Metrics . 51

4.5.1 Chosen Metrics . 51

4.5.2 Results . 52

4.5.3 Conclusion . 54

5 Implementation 55
5.1 Transmission chain . 56

5.1.1 Image capture . 56

5.1.2 Display Image on a Screen . 60

5.1.3 Other Features . 62

CONTENTS xi

5.2 Recording and storage chain . 63

5.2.1 Implementation of the Nios II 63

5.2.2 Record captured video . 65

5.2.3 Store recorded video . 66

5.2.4 Access recorded video . 66

5.3 Intelligent camera . 67

5.3.1 Motion detection algorithm 67

5.4 Non implemented blocks . 68

6 Testing & Experiments 69
6.1 Testing . 70

6.1.1 Transmission chain testing . 70

6.1.2 Motion detection algorithm testing 70

6.2 Experiments . 71

6.2.1 Transmission chain testing . 72

6.2.2 Motion detection algorithm experiments 72

7 Conclusion and Future Work 75
7.1 Conclusion . 75

7.1.1 What has been done to answer the problem 75

7.1.2 Answer to the problem . 77

7.1.3 Solution proposal for a complete operational system 77

7.2 Future works . 77

7.2.1 Short term future works . 77

7.2.2 Long term future works . 78

II Appendices & References 79

Glossary 81
A Hardware/software co-design de�nition 81

B OS . 81

C embedded OS . 81

D Hardware Description Language de�nition 82

E System Description Language de�nition 82

F high-level programming language de�nition 82

G softcore processor de�nition . 83

H Embedded FPGA de�nition . 83

I Other acronyms . 84

I.1 SD de�nition . 84

I.2 MMC de�nition . 84

I.3 ASIC de�nition . 84

I.4 SoPC de�nition . 84

Algorithm simpli�ed call graph 85

Time plan 87

CD-Rom content 89

xii Contents

References 91

List of Figures

1.1 Transmission chain block diagram . 5

1.2 Recording chain block diagram . 6

1.3 Intelligent video camera block diagram 6

1.4 Optimized intelligent video camera block diagram 7

1.5 Global block diagram of the project 7

2.1 A3 paradigm design �ow . 14

2.2 The Rugby meta model . 16

2.3 The di�erent typical abstraction levels 17

2.4 A3 paradigm applied to this project 18

2.5 Rugby meta-model applied to our project. 20

2.6 The Computation domain . 20

2.7 The Communication . 20

2.8 The Data domain . 21

2.9 The Time domain . 21

3.1 Location in the A3 paradigm . 23

3.2 Location in the Rugby Meta-Model 24

3.3 HW/SW Co-Design to reach constraints 27

3.4 System-level language requirements 34

4.1 Motion detection algorithm's location in the A3 model 43

4.2 Motion detection algorithm's location in the Rugby Meta-Model . . 44

4.3 Pro�ler in Hardware/Software Co-Desisgn 48

4.4 Results of motion detection test . 49

5.1 Location in the A3 paradigm . 55

5.2 Location in the Rugby Meta-Model 56

5.3 Simpli�ed block diagram of the transmission chain 57

5.4 Camera sensor GPIO organization 58

5.5 RTL view of the CCD_Capture block 59

5.6 Generic Nios II diagram . 64

5.7 Generic Nios II core block diagram 64

5.8 Di�erent operation on the SD-Card 66

5.9 Block diagram of the SD-Card custom driver 67

xiii

xiv List of Figures

6.1 Location in the A3 paradigm . 69
6.2 Location in the Rugby Meta-Model 70
6.3 Results of motion detection test . 71
6.4 Results of motion detection experiments 73

1 Simpli�ed call graph of the C version of the algorithm 85

2 GANTT Diagram of the Project . 88

List of Tables

2.1 Pros and cons of processors available 19

3.1 Pros and cons of FPGA . 25
3.2 Pros and cons of C language . 35

4.1 Application pro�led Results (% Time) 50
4.2 Algorithm pro�led Results (% Time) 50
4.3 Metrics Results for the Greyscale Conversion using Design Trotter . 52
4.4 Metrics Results for the Background Substitution using Design Trotter 53
4.5 Metrics Results for the Median Search algorithm using Design Trotter 53
4.6 Metrics Results for the Automatic Threshold using Design Trotter . 54

1 Pros and cons of FPGA . 83

xv

Part I

Main Report

1

Chapter 1
Introduction

This chapter presents the overall context of this project. Firstly, a short back-
ground description of surveillance systems and video surveillance is given. Then, the
problem statement of the project is formulated as a question. The methodology used
for answering the question is subsequently introduced: goals and tasks are de�ned
step-by-step. Finally, the organization of Part I is detailed.

1.1 Surveillance systems

Surveillance is the monitoring of behaviour; a surveillance system is a system
designed to process and monitor the behaviour of people, objects or processes within
a given system for conformity to expected/desired norms in trusted systems for
security/social control. It can be either secrete or evident. Although the word
surveillance literally means �watching over�, the term is often used for all forms of
observation or monitoring, not just visual observation [Uni89]. Nevertheless, the
all-seeing �eye in the sky� is still a general icon of surveillance. Surveillance in many
modern cities and buildings often uses closed-circuit television cameras.

From the beginning of human civilization, there has always been a need for surveil-
lance systems. The reasons are numerous: borders guarding, raiders, spies and
thieves protections. The Sun Tzu's Art of War, written more than 2,000 years ago,
explain how to use spies against enemies. During thousands of years, there were
only one kind of surveillance system with two kinds of actors (or creatures): human
beings and dogs. It was more or less e�cient depending on the hour of the day.
However, electronics and Information Technologies (IT) gave the surveillance new
possibilities, making it more e�cient and more robust.

1.2 Video Camera and Intelligence

From their invention a century ago, video cameras have been early associated with
surveillance systems (e.g. during World War I). Now that cameras are more and
more a�ordable, surveillance systems using them have been generalized and spread
all over the world. It is because they are answering a need. It consists in placing
video camera in a public or private area to visualize or record in a central room all

3

4 1. Introduction

the people �ows. Its aim is to prevent thefts, attacks, frauds and to manage the
incidents and the sways of the crowd. As the information is centralized, it allows the
owner of a system to save money by employing less people and being more e�cient,
as a man cannot watch every part of the space at the same time whereas the cameras
can [Cus03].

After the use of the video cameras, the other main progresses were mobile video
cameras, tape recording and more recently intelligent video cameras. In fact, when
one records all the information captured by a video camera, it leads to get a lot of
tapes. Therefore, one needs to get room to store those data. Hence, it costs money
for having a record mainly consisting of actions of no interest instead of a record of
useful sequences (robbery, vandalism, etc.).

Intelligence in video camera is where the stress is put nowadays: with this kind of
video camera, the recorded data is smaller. In fact, thanks to the implementation of
an image processing algorithm, the video is recorded and stored only when needed
(motion detected, face recognized, etc.). The memory usage of the video can also be
reduced by using compression methods. More over, using new technology avoid to
use tape but other storage media, like data card (CompacFlash card, SD/XD-card,
etc.), which can contain more information and are smaller.

1.3 Problem statement

As explain previously, the use of an image processing algorithm allows to store
only useful data and save space. Therefore, the main aim of this project is to answer
this question:
Is it possible to implement an intelligent IP video surveillance camera on
an Field Programmable Gate Array (FPGA) platform to optimize video
surveillance?

For this project, the project group would like to connect a camera with an FPGA
. This FPGA processes the pictures captured by a camera sensor, used as a video
camera, with an image processing algorithm and then make it available on a web-
server, connected on a local Ethernet network. The context of the experiments is:

• A �xed video camera;

• A given room to monitor;

• Start recording only when a motion is detected in this room.

The requirements can be described as follow:
First of all, the architecture has to be based on an FPGA (more details can be found
in Chapter 3).
Secondly, the Hardware/Software Co-Desisgn methodology should be used to im-
plement the algorithms. �Hardware/Software Co-Desisgn tries to increase the pre-
dictability of embedded system design by providing analysis methods that tell designers
if a system meets its performance, power, and size goals and synthesis methods that

1.4 Goals 5

let researchers and designers rapidly evaluate many potential design methodologies�
[Wol03]. A more detailed de�nition is given in Chapter 3. The constraints are de�ned
and detailed in Chapter 3.

1.4 Goals

The main goal is to get the full implementation of the project on an FPGA to
answer to the question. Which means building a prototype system to monitor a
room, to process data captured, to record the useful part of the video and �nally
to allow accesses to this video through the Ethernet network, using the Internet
Protocol (IP). To achieve this, the project is split in several parts described bellow.

1.4.1 Selection and simulation of the event detection algorithm

This part consists in exploring the di�erent methods to process images. Then,
it allows the selection of one algorithm which ful�l our requirements. Once the
algorithm is selected, it needs to be pro�led to extract useful information to get the
best implementation. Therefore, a �rst draft using C code is to be implemented,
then all metrics (parallelism, best suitable architecture, etc. [ASR+05]) are to be
calculated to �nally get the pro�le of the algorithm for the implementation of the
�nal version of the algorithm.

1.4.2 Transmission chain

The aim of this part is to capture a video with the camera sensor and display it on a
screen. This is the second step to achieve our �nal goal. In fact, this implementation
step allows the extraction of data from the video camera and allows the veri�cation
of those data with a display. Please refer to Figure 1.1 (on page 5) to get the block
diagram of this part.

Figure 1.1: Transmission chain block diagram: the implementation of this step is
very simple as it only needs a few processing: the conversions from raw data to RGB
and the grey-scaled one. The decomposition of the di�erent parts of this system in
blocks allow the connection of future other blocks to enhance the system easily.

1.4.3 Recording and Storage Chain

The aim of this part is to add a recording function to the previously described
system. To verify this and make this function useful, an access function is to be

6 1. Introduction

added. This allows the user to see what has been stored through a web-server.
Please see Figure 1.2 (on page 6) to get the block diagram of this part.

Figure 1.2: Recording chain block diagram: the new blocks are added upon the
previous architecture. There are used to enhance the previous system and to avoid
a complete rede�nition of the system. As previously explain, this new system can be
enhanced easily.

1.4.4 Intelligent Camera

Once the previous step implemented, the next step is to trigger those events when a
motion is detected. Therefore, the implementation of an event detection algorithm is
done during this phase. This part is the core of this project, as the previous steps are
preparing steps and following steps are optimizations and feature additions. Please,
see Figure 1.3 (on page 6) to get the block diagram of this part.

Figure 1.3: Intelligent video camera block diagram: upon the previous implementa-
tion are added the blocks of the algorithm.

1.4 Goals 7

1.4.5 Optimized Intelligent Camera

This step is for adding an important feature considering the storage space. In
fact, implementing a video compression algorithm to improve the storage is highly
desirable. It adds complexity to the project design, but also reduces the disk space
usage on the SD-Card and therefore the storage costs of the proposed solution. Please
refer to Figure 1.4 (on page 7) to get the block diagram of this part.

Figure 1.4: Optimized intelligent video camera block diagram: after adding the �rst
algorithm, a second one is to be implemented, concerning the video compression to
save more space.

1.4.6 Complete Intelligent IP Camera

This step mainly consists in testing and validating the complete system. In fact, the
complete chain of execution is to be implemented to verify that all components of
the system work and communicate together as planned. Please, see Figure 1.5 on
page 7 to get the block diagram of this part.

Figure 1.5: Global block diagram of the project: all blocks are added to build up the
full system to answer the hypothesis. There are also some external event to perform.

8 1. Introduction

1.5 Tasks

This section describes all the required tasks to implement the previous step-by-step
presentation of the project. The following described tasks do not follow the previous
order, as the implementation of certain tasks is more critical for the step-by-step
implementation. Figure 2, page 88, presents the GANTT diagram of this project,
using the following tasks to plan the project schedule.

1.5.1 Capture image with the camera sensor

This part is essential as it is the �rst step of the global process. It simply consists
of acquiring the image with the camera sensor and made it available to the rest of
the system.

Study

The aim of this task is to understand how the camera sensor acquires and sends
data through its inputs and outputs.

Implementation

The aim is to implement the data acquisition from the sensor.

Test

The aim is to verify that the implementation is working according to the require-
ments (detailed in Chapter 3) to detect potential problems and correct them.

1.5.2 Display image on a screen

This part is a feature and a validation test for the implementation. In fact, it
allows the user to see what is currently being captured by the camera sensor.

Choice of the display

Nowadays, it exists several way to display on a given screen (VGA, LCD, etc.).
Therefore, the study and selection of one of those types has to be done for the
implementation.

Implementation

The aim is to implement the controller for the selected display screen type.

Test

The aim is to verify that the implementation is working according to the require-
ments (detailed in Chapter 3) to detect potential problems and correct them.

1.5.3 Record captured video

This part consist of recording the video, to make it available for compression and
storage.

1.5 Tasks 9

Study

The study consists in understanding how to record a video from the sensor.

Implementation

The aim is to implement the recording functionality in the system by storing
several frames on the memory.

Test

The aim is to verify that the implementation is working according to the require-
ments (detailed in Chapter 3) to detect potential problems and correct them.

1.5.4 Store recorded video

This part is one of the major goal of the project: the storage of data, previously
recorded. Also, the reduction of the medium size (memory card instead of tape) is
another way to reduce the size of the storage.

Storage choice: SRAM? SDRAM? SD-Card? Other?

Nowadays, there is a lot of available memory types. The aim of this task is to
study ans select the one that will ful�l our requirements.

Implementation

The aim is to implement the storage functionality in the system. It therefore
requires to get a controller to access the selected memory card and create the blocks
to use this controller.

Test

The aim is to verify that the implementation is working according to the require-
ments (detailed in Chapter 3) to detect potential problems and correct them.

1.5.5 Access recorded video

The aim of this task is to build a mechanism for providing the user with a conve-
nient access to the data stored.

Study

The aim is to study how to make a data stored available on an Ethernet network.

Implementation of a softcore processor

As the Ethernet protocol is easier to implement at a higher abstraction level, im-
plementing a softcore processor on the FPGA helps using the Ethernet controller of
the system. A soft microprocessor (also called softcore microprocessor or a soft pro-
cessor) is a microprocessor core that can be wholly implemented using logic synthesis.
It can be implemented via di�erent semiconductor devices containing programmable

10 1. Introduction

logic (e.g., FPGA , CPLD). A more detailed de�nition of a softcore processor is
given in Chapter 3.

Implementation of a web-server

Once the softcore processor implemented, the web-server executing on it makes
the data available on the network.

Test

The aim is to verify that the implementation is working according to the require-
ments (detailed in Chapter 3) to detect potential problems and correct them.

1.5.6 Event detection algorithm

The aim is to record only useful data. Therefore, the implementation of an event
detection algorithm is one of the main goal of this project.

Study

As it exists various event detection algorithms, the goal of this task is to study
them and select one to implement.

Calculation of metrics

Once the algorithm selected, it has to be pro�led (to get the full understanding of
the algorithm) in order to be implemented it in the best way.

Hardware/Software co-design

With the previous task done, the algorithm is partitioned between hardware and
software parts to have the best implementation.

Implementation

The aim is to implement the algorithm according to the previous results. That
means, use the draft c-code algorithm and adapt it to the softcore processor.

Optimization

Once the algorithm implemented, it may requires optimization of some parts, such
as bottlenecks, to have a faster implementation. The main point of this optimiza-
tion is the execution time. Other optimization, such as power, area, etc., are not
considered.

Test

The aim is to verify that the implementation is working according to the require-
ments (detailed in Chapter 3) to detect potential problems and correct them.

1.6 Structure of the document 11

1.5.7 Video compression

When the video is recorded and stored, it would be bene�cial to optimize the space
used by it. To do so, a video compression algorithm can be used. It will enhance
one of the project's goals: saving space for data storage.

Study

As it exists various video compression algorithms, we have to study and select one
of them. In facts, as explained in Chapter 2, depending on the requirements of the
�nal video, the range of possible algorithms is quite wide.

Calculation of metrics

Once the algorithm selected, it has to be pro�led in order to be implemented it in
the best way.

Hardware/Software Co-Design

With the previous task done, the algorithm is partitioned between hardware and
software parts to have the best implementation.

Implementation

The aim is to implement the algorithm according to the previous results.

Test

The aim is to verify that the implementation is working according to the require-
ments (detailed in Chapter 3) to detect potential problems and correct them.

1.6 Structure of the document

The rest of the report is organised as follows: Chapter 2 is an overview of the
project using a meta-model. Chapter 3 is the system analysis and design, while
the Chapter 4 details the analysis and design of the motion detection algorithm.
Chapter 5 deals with the actual implementation by describing each step. Chapter
6 is about the testing and give the main results of our experiments. Finally the
Chapter 7 conclude this report and propose several future work.

Chapter 2
Design Models

This chapter describes how the use of design models can facilitate the process of
ful�lling the goals of the project. Firstly the A3 paradigm is explained. Then, the
Rugby Meta-Model is introduced. Finally, the details of the actual description of the
project using the Rugby Meta-Model and A3 paradigm are provided. Both of these
models are used because they are complementary for a complete implementation, as
explained in this chapter.

2.1 Description of the A3 paradigm

The acronym A3 stands for Application-Algorithm-Architecture (as explain in
[tea07]) which corresponds to the three fundamental domains of the hardware de-
sign process. The A3 model is used to describe the design �ow, its basic stages and
transitions between them. Figure 2.1 (on page 14) presents the model with generic
references in each of the three domains. The three domains and corresponding design
�ow stages are as follows:

• Application domain: characterizes the system from a purely behavioural point
of view. System analysis in this domain can be expressed by the phrase: �What
are the system's functionalities, properties and requirements? �. In the design
process this corresponds to a high-level functional speci�cation of the system
as well as establishing design constraints.
A transition to the next domain is achieved by detailed functional analysis
leading to selection of speci�c algorithms.

• Algorithm domain: concerns algorithms used to realize speci�c functionali-
ties of the system. System analysis in this domain can be expressed by the
phrase: �How are system functionalities realized? �. As most of the time nu-
merous algorithms are exploited in a single application, system design tasks in
the algorithmic domain are usually related to the evaluation of multiple algo-
rithms. This can be done either by analysis of theoretical models or performing
numerical simulations. Such evaluation leads to the veri�cation of algorithm
correctness as well as obtaining measures of complexity, robustness and various
other metrics. This eventually leads to select a set of algorithms most suitable
for realizing the application.

13

14 2. Design Models

Figure 2.1: A3 paradigm design �ow: the �rst step is to de�ne the purpose of the
application (1). The second one is to explore and simulate the algorithms that
ful�l the requirements of this application (2). Then, the third step is to select the
best architecture to implement those algorithms (3). The implementation on an
architecture can lead to modi�cation to the algorithm (3'). And last but not least,
the fourth step is to check that the actual implementation ful�l the requirements of
the application (4).

A transition to the third design domain corresponds to the process of Design
Space Exploration (DSE) of which purpose is to map the selected algorithms
onto an hardware or software architecture which matches most application re-
quirements and constraints.

• Architecture domain: Characterizes type, number and organization of Pro-
cessing Elements (PE) used for system implementation as well as determines
the scheme of mapping selected algorithms to respective PEs. System analy-
sis in this domain can be expressed by the phrase: �How are the algorithms
implemented, what hardware/software resources are used and how are various
hardware/software modules cooperating? �. The architecture domain is strongly
related to the �nal stage of the design process, namely system implementation.
In this section of the design �ow, algorithms selected for realization of system
functionalities are mapped to speci�c hardware/software structures with con-

2.2 Description of the Rugby Meta-Model 15

sideration of requirements and constraints from the application domain. Both
architecture selection and algorithm mapping are performed with consideration
of various metrics such as performance, hardware/software complexity, code
size, cost, power consumption and development time. The DSE process can
also involve a feedback path to the algorithm domain leading to re-specifying
the set of algorithms used for realizing system functionalities. Such situation
can occur when the algorithms selected originally are either infeasible or ine�-
cient to implement on any available architecture resulting in a con�ict between
system requirements and availability of design solutions.

�Successful system implementation enables to characterize the application in terms
of both qualitative and quantitative metrics such as application feasibility, achievable
performance, hardware requirements and cost. In order to achieve this, a complete
system design �ow is followed as described in the following section .�[Por07]

The A3 design �ow summary:

1. Select the algorithm(s) for the application

2. Simulate the algorithm(s)

3. Select the architecture to implement the algorithm(s)

4. Model the algorithm(s) on the architecture

5. Design Space Exploration

6. HW/SW Co-design

7. Compare results of the implementation to the requirements

As the A3 paradigm is very generic, it is complemented by the use of a more
detailed and precise design model, the Rugby Meta-Model. In fact, as explain in
the next section, the Rugby Meta-Model is closer to the implementation and is very
designed for hardware and software co-design. Moreover, the A3 is a paradigm,
which means mostly a way of thinking or designing a system. The Rugby is more an
implementation model to follow from the beginning of the project to its end.

2.2 Description of the Rugby Meta-Model

Models like the Y-chart [KG83] & [Gaj88] and the Rugby Meta-Model [HJK99]
make it possible to represent the abstraction levels and domains of the design model
under consideration and the transitions between the abstraction levels when moving
from one model to the next.

The Y-chart model has three domains: Structural, Behavioural and Physical.
However, it has no explicit representation for time, data and communication. Es-
pecially a representation for communication is necessary in heterogeneous systems
having several processing elements like for example a GPP and an ASIC communi-
cating. The Rugby Meta-Model (as described in [HJK00]) on the other hand has

16 2. Design Models

(a) The Rugby meta model with the four
domains: Communication, Data, Computa-
tion and Time. The system start with an
idea and ends with a physical system. The
development time progresses from right to
left

(b) Elaboration of the four domains of the
Rugby meta model. The level of abstraction de-
crease and the development time increase from
left to right. At some stage in the development
of the system, a decision about the Hardware &
Software partitioning is made. From that point,
the development of the system is split into two.

Figure 2.2: The Rugby meta model and elaboration of the four domains. As an
example the speci�cation model of the methodology of a system design language is
shown in the Rugby meta model together with the level of abstraction in the four
domains [HJK00].

explicit representations for both time and communication, since it has four domains,
namely Communication, Data, Computation and Time. It has therefore been cho-
sen to utilize the evaluation properties of the Rugby meta model to visualize the
abstraction levels of the di�erent models in the design. The Rugby Meta Model is
shown in Figure 2.2(a) (on page 16) and an elaboration of the four domains is shown
in Figure 2.2(b) (on page 16). As an example the speci�cation model of the method-
ology of a system design language has been represented by the Rugby Meta-Model.
The speci�cation model is at an early stage of the design process, hence it is on a
high level of abstraction. As a system has a number of abstraction levels, Figure 2.3,
on page 17 shows the di�erent typical abstraction layers of a generic system. Those
abstraction levels are used in the Rugby Meta Model.

Having described the problems of designing a system for a given application and
the means to solve the problem in a structured manner, the last section of this
chapter introduces how those terms are used in this project.

2.3 This project described using the design models 17

Figure 2.3: The di�erent typical abstraction levels of a generic system. It goes from
the top, with the highest abstraction layer, to the bottom with the lowest [Döm03].

2.3 This project described using the design models

In this section, the A3 paradigm is applied to this project and then the Rugby
Meta-Model is applied. For each of those two design models, each domain is detailed.

2.3.1 The A3 applied to our project

This section is the application of the section 2.1 to this project. For the A3

paradigm, Figure 2.4 (on page 18) is the speci�c �ow of the A3 paradigm applied to
this project. The application of each domain is given in the following paragraphs.

Application

The goal is to make an intelligent IP surveillance video camera. It implies that
the system must be secure and available all the time for the surveillance. There is an
�IP part� because the video camera is connected to an Ethernet network (through
the Ethernet adapter), using the IP protocol. This feature provides the owner of the
system a fast and convenient access to data. The other main part is the �intelligence�.
As previously explained, only useful data are stored. This implies using an image
processing algorithm to record only video when something happens. As a feature,
what is being captured is also displayed. It provides the validation of the recording
and storage parts.

One of the constraints to be met is to be as much as possible in a real-time
system. Which means that the system built is a real-time system, but with soft
timing condition. A second point is to have data stored during the process in the
correct format to be useful for the following steps of the process (i.e. in raw from the
camera sensor, in RGB & grey scaled for the algorithm, etc.). An other one is the
security of the system. In fact, as it is a surveillance system, the data stored need to
be secured when they are written on the �nal memory block, and only the system
should be allowed to write data on the selected storage medium.

For further explanation and details, please refer to Chapter 3, on page 23.

18 2. Design Models

Figure 2.4: A3 paradigm applied to this project: there is one application (intelligent
camera for video surveillance) using two algorithms (one for event detection and one
for video compression). For each of those algorithms, the architecture is based on a
General Purpose Processor (GPP) and on an FPGA . The GPP in this project is a
softcore processor implemented on the FPGA .

Algorithm

In order to meet one of the main functionalities of the system, the �intelligence�
part, an image processing algorithm is to be implemented. It exists several algo-
rithms and several ways to implement those algorithms. The main categories of
event detection algorithms are motion detection, face recognition and shape recog-
nition. A motion detection algorithm was chosen because it seems to cost less in
development time, its complexity is rather simple and more accurate for this project
than shape or face recognition algorithms. More over, the implementation of this
algorithm is just to verify the feasibility of the proposal solution. Also, the algorithm
is used to detect any kind of event occurring in the monitored room. Therefore, face
recognition and shape recognition are too speci�c to be used. The main method for
motion detection is to make a background subtraction methodology. The motion
detection algorithms are presented in Chapter 4 (page 43), along with the details of
the choice of algorithm.

2.3 This project described using the design models 19

Another functionality is to compress the �nal stored video to save more space.
This can be done by implementing a video compression algorithm. Again, there are
many algorithms and implementation methods to explore. The main algorithms are
based on di�erent constraints or requirements. The �rst requirements is the quality
of the �nal compressed video. The other one is the disk space usage. In fact, those
requirements are antagonistic. Therefore, one can decide that the �nal video needs
to be the smallest possible (in terms of disk space usage), but it implies that the
quality has to be very low. Between those two extrema, there is a wide range of
algorithms that try to �t the best optimum solution, to have the best quality for the
smaller disk space usage.

Architecture

It exists mainly three kinds of architectures: embedded General Purpose Proces-
sors (GPPs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays
(FPGAs). For the selected algorithms, the main characteristics of those architecture
(pros and cons) are given in Table 2.3.1, on page 19. Typically, embedded GPPs
are the most common processors, o�ering a lot of �exibility, DSPs are mainly used
in repetitive signal processing application (e.g. number crunching) and FPGAs o�er
parallelism and recon�gurability and are more and more used.

Processors Pros Cons

embedded GPP speed, development time,
�oating point support

limited parallelism (depend-
ing on the number of core)

DSP some parallelism, �xed or
�oating point support

speci�c for signal processing
calculation

FPGA massive parallelism, recon�g-
urability

more di�cult to implement
than software (time consum-
ing), �oating point is very ex-
pensive

Table 2.1: Pros and cons of processors available for this project: each of those have
there own capabilities. The FPGA have also the possibility to include DSP elements.

For further explanation and details about the selected architecture, please refer to
Chapter 3, on page 23. For the main details about the actual implementation on the
selected architecture, please refer to Chapter 5, on page 55.

2.3.2 The Rugby Meta-Model applied to our project

The application of each domain is given in the following paragraphs. The global
meta-model applied to this project can be seen in Figure 2.5, on page 20.

Computation

The computation domain starts from the relations and constraints level to go to
the transistor level, for the hardware part, and the instruction set, for the software
part. For this project, the �rst level of abstraction is described in Chapter 3, on page

20 2. Design Models

Figure 2.5: Rugby meta-model applied to our project.

Figure 2.6: The Computation domain applied to our project.

23. The system functions of the project are described in the following chapter. For
the hardware part, the abstraction level stops at the logic blocks level as an already
existing FPGA is used. Concerning the software part, as a softcore processor is used
(please refer to Chapter 1, page 3), the instruction set is the one of this processor.
The diagram of this domain is shown on Figure 2.6, on page 20.

Communication

Figure 2.7: The Communication domain applied to our project.

The communication domain starts with the structural and interface constraints
level to �nish at the layout level, for the hardware part, and the addressing nodes,
for the software part. For this project, the �rst level of abstraction is described in
Chapter 3, on page 23. The interprocess communication is core part of the project as
the algorithms used require a lot of data. Also, memory accesses are very important

2.3 This project described using the design models 21

because the internal memory of an FPGA chip is too small for image processing.
Therefore, the better the processes communicate, the fewer time is spend accessing
the memory. Concerning the parameter passing, for the software, and the topology
of the hardware implementation, the following chapter describes how the problems
have been solved. The diagram of this domain is shown on Figure 2.7, on page 20.

Data

Figure 2.8: The Data domain applied to our project.

The Data domain starts with the data constraints level to �nish at the analog
value, for the hardware part, and the processor data types for the software part.
For this project,the �rst level of abstraction is described in Chapter 3, on page 23.
The symbols and number used are described in the following chapters, as it was very
important to de�ne them well to improve and enhance the communication domain.
The analog value abstraction level was only used for testing and experiments purpose.
For the hardware implementation, only logic values were used. For the software part,
the processor data types used were those of the Nios II softcore processor. The
diagram of this domain is shown on Figure 2.8, on page 21.

Time

Figure 2.9: The Time domain applied to our project.

The time domain starts with the timing constraints level to �nish at the physical
time, for the hardware part, and the processor cycle time for the software part.
For this project,the �rst level of abstraction is described in Chapter 3, on page 23.
The main point to be noted is that the frequency of the Nios II softcore processor

22 2. Design Models

is 100 MHz. The physical time level of abstraction was only used for testing and
experiments purpose. The diagram of this domain is shown on Figure 2.9, on page
21.

Chapter 3
System Description

Figure 3.1: Location in the A3 paradigm, highlighted by the purple circle.

This Chapter presents the system analysis and the system design. To do so,
a �rst section explains the constraints of this project. Then, it gives the needs
required by this project. The platforms and programming languages are then shortly
reviewed, before dealing with the softcore processors (de�ned in 3.2.2) and embedded

23

24 3. System Description

(a) Global location (b) Elaborated location

Figure 3.2: Location in the Rugby Meta-Model, highlighted by the grey bars on (a)
and (b).

OS (de�ned in 3.2.4) possibilities. Finally, the last section details and explains the
choices made to meet those constraints and requirements.

3.1 System constraints analysis

This section gives an overview of the di�erent constraints of the system.

3.1.1 Use of FPGA

FPGA de�nition

The �rst constraint is the choice of a technology. In this project, one of the goals
is to try to evaluate the feasibility of implementing a motion detection algorithm
onto a FPGA platform.

FPGA stands for Field-Programmable Gate Array and refers to a semiconductor
device containing programmable logic components called "logic blocks" including
memories and programmable interconnects ([PT05]).The designer can program the
logic blocks and the interconnects like a one-chip programmable breadboard.

In the design �ow of a new product, the early designs are using FPGAs then mi-
grated into a �xed version that more resembles an ASIC. ASIC means Application-
Speci�c Integrated Circuit and refers to an integrated circuit customized for a partic-
ular use. To be con�gured, the FPGA has to be described by a logic circuit diagram
or a source code using a hardware description language (de�ned in 3.5.1).

3.1 System constraints analysis 25

Table 3.1.1 (page 25) summarize the pros and the cons of the FPGAs compared
to ASICs.

Pros Cons

Time-to-market shorter than
ASICs

Slower than ASICs

Development cost cheaper
than ASICs

More expensive for mass pro-
ductions than ASICs

Lower non-recurring engineer-
ing costs than ASICs

More power consuming than
ASICs

Re-programmable in the �eld Di�culty to program FPGA
platform

Performance/power relative
to standard processors and
DSPs

Table 3.1: Pros and cons of FPGA compared to ASIC: despite their lower perfor-
mances compared to ASICs, FPGAs are more �exible and easy to develop

The requirements speci�ed during the early design step of the project are the
following:

• Fast processor for processing parallel tasks

• Support/documentation/examples available and up to date

• Free of charges or not expensive price

• Input/output for the camera sensor

• USB wire for programming/debugging the FPGA

• Possibility to add a softcore processor

• Possibility to add an embedded OS

• SD card or MMC slot to add extra memory (SD: Secure Digital, MMC: Mul-
timedia card)

3.1.2 Time constraint

The time constraint follows two di�erent axis. On the one hand, the image process-
ing part must be fast enough to start the recording as soon as a motion is detected.
On the other hand, the storage process must be fast enough to store a picture after
another picture without freezing. Those two aspects depend on the platform used
and the e�ciency of the algorithm. This time constraint is related to the data con-
straint because the quickness of execution of the image processing depend on the
temporary storage of pictures.

26 3. System Description

3.1.3 Data constraints

For motion to be detected, pictures need to be processed and analysed. It already
underlines two kinds of constraints. The �rst one is that the system needs a memory
with fast access for the process to be in real time (or at least as close to). The other
constraint is about the type of the data : is it possible to perform the algorithm on
the raw data or do this raw data need to be transformed into a known picture type.
After the detection of a movement, when the system starts to record, the video must
be stored. It means that the pictures has to be stored quickly enough as they are
arriving (less than 0.1s).

As a consequence: the system must have a memory sized big enough to store a
decent amount of video recorded. The data stored must �t to the performances of
the platform and need not to be too important. Then, when a video is recorded,
it need to be available in the FPGA memories(internal or external) for the external
users of the system. The success of the motion detection and the storage of the
pictures and videos are dependent to the �ow of pictures and their dimensions.

3.1.4 Other constraints

Last but not least, some other constraints need to be mentioned. One concerns
the security. Indeed, as this motion detection camera could be used as a surveillance
system, it needs to be secured. One other aspects concerns the power consumption.
This aspect is mainly depending on use context of the system. This aspect is out of
the scope of this report because not all the FPGA have been optimized for power
consumption and the choice of FPGAs are available for the system was quite limited
to those available in the AAU embedded lab (Terasic DE2 with Altera Cyclone
II or Stratixand Celoxica RC203 with Xilinx Virtex).

The constraints applied to this system can change deeply depending on the �nal
purposes. Indeed, the performances required and the algorithms needed are not the
same depending if the objective is to detect a movement, to count peoples or to
recognize forms.

3.2 Sketching the initial architecture

3.2.1 Hardware/software co-design

One of the key notion in this project is Hardware/Software Co-Desisgn [Wol03]
which is used through all the development phases. This concept has been created
a little more than a decade ago in response to the raise of the embedded systems,
the complexity and the heterogeneity of those systems. As an example, already in
1998, 98% of the processors were found in embedded systems. Embedded systems
are single-functionned, tightly constrainted, reactive and realtime systems. When
designing a embbedded system, the partitioning between hardware and software is
a crucial point. Hardware has better performances but is more di�cult to code
contrary to software.

3.2 Sketching the initial architecture 27

Figure 3.3: Hardware/Software Co-Design to reach the constraints of performances
and costs [Koc].

Figure 3.3, page 27 [Koc], enlightens that to deal with time and performance
constraints, a designer has to make choices about partitioning his algorithm between
hardware and software part. This partitioning and tasks scheduling are the two main
dimensions of the Co-Design. Hardware/Software Co-Desisgn can be summarized in
the following way:
�Hardware/Software Co-Desisgn provides a way of customizing the hardware and
the software architectures to complement one another in ways which improve system
functionality, performance, reliability, survivability and cost/e�ectiveness.� [SFL85]

Hardware/Software Co-Desisgn was used in this project to save some time for
development and to make the system more e�cient and faster because both hardware
and software development have been used in this project and separate them as late
as possible in the conception cycle, aiming at unifying the speci�cation that includes
both hardware and software. The reasons and the partitioning used in this project
are described in the appropriate section A.

3.2.2 softcore processor de�nition

A softcore processor is a processor implemented into a reprogrammable system
like a FPGA . It is a System on Programmable Chip or SoPC.

A softcore processor is a very �exible architecture, it can be recon�gured at any
time, contrary to a hardcore processor whose core has it own non- reprogrammable
chip. A softcore processor can be adapted to the material constraints (performances,
resources, power consumption,...). However, softcore processors performances are
inferior to the hardcore ones but a softcore processor is easier to maintain and can
implemented into an ASIC (Application Speci�c Integrated Circuit).

28 3. System Description

3.2.3 The need for a softcore processor

Using a softcore processor has many advantages:

• Higher level of abstraction (the softcore processor transforms the developer's
software code into hardware language)

• Possibility to use higher level languages as C like languages

• Better management of the memories

• With a softcore processor , the conception is going from hardware to software

• Easily recon�gurable compared to other processors

3.2.4 The need for an embedded OS

The following de�nitions are necessary to clarify what is an embedded OS.

The software component of a computer system that is responsible for the manage-
ment and coordination of activities and the sharing of the resources of the computer
is de�ned as an operating system. This Operating System (OS) acts as an host
for application programs that are executed on the machine. As an host, one of the
purposes of an operating system is to handle the details of the operation of the
hardware.

An embedded operating system is an OS for embedded systems. These OS are
specialized, compact and e�cient. They do not have all the functions the non-
embedded computer have because they do not need them. The embedded OS are
designed to be operated on real-time operating systems.

The advantages given by the embedded OS are:

• Higher abstraction level (possibility to use object-oriented languages like python)

• Better memory management

• Better network management

• Some web server are already coded and available

• Possibility to do parallelism (most processors does not allow software paral-
lelism)

• Better management of the TCP/IP stack

Once a softcore processor has been implemented on the board, another step could
be the implementation of an embedded OS. The available embedded OS are depend-
ing on the platform used. Like for the softcore processors, some of them can be free
and/or open-sources but none of them has been created by the companies building
the platforms (Xilinx or Altera).

3.3 Possible options to satisfy the system constraints 29

3.3 Possible options to satisfy the system constraints

In the following sections are detailed all the feasible solutions that can be explored
in all the relevant domains:

• FPGA platforms

• Programming languages softcore processor

• Embedded OS

After these presentations the options selected for this project are shown in 3.8.

3.4 FPGA platforms

Here is list of the FPGA platforms available in the embedded laboratory of AAU
that could be used for this project. They are supposed to �t the constraints de-
clared in 3.1: resources, input/output for camera sensor, possibility to add a softcore
processor or an embedded OS and so on.

3.4.1 Altera Cyclone II on Terasic DE2 board

This is a common solution using classic education board with a medium sized
FPGA ([Cor06a]). It is supposed to represent the middle point between complexity,
performances. One of the advantages of this kind of board are the examples provided
with it and the ones which can be found on the Internet. The relevant DE2 main
characteristics are :

• Altera Cyclone II processor (2C35) with 35000 LEs

• 4 MegaBytes SDRAM memory

• 512 kiloBytes SRAM memory

• 8 MegaBytes �ash memory

• VGA output

• Ethernet Connectivity

• softcore processor Nios II II created by Altera for its FPGAS

3.4.2 Altera Stratix

The Stratixdevelopment board ([Cor08]) is a better version of the previous one:
faster FPGA & larger memory. The main di�erences are :

• The Stratixprocessor (EP1S10) with 10570 LEs

• The SRAM memory is 1 MegaBytes

• The SDRAM memory is 16 MegaBytes

30 3. System Description

3.4.3 Xilinx Virtex II on Celoxica RC203 board

Xilinx is the other company that is leading the FPGA market. Xilinx proposes
also main development boards similar to the Altera ones. The one available in the
embedded laboratory is the Celoxica RC203 featuring Xilinx Virtex II FPGA
([Cor06b]). It has the following key features:

• Xilinx XC2V3000-4 Virtex II processor

• 2 Banks of 2Mbyte each SRAM (4Mb total)

• Video In/Out

• Audio In/Out

• Smartmedia socket

• 10/100 Ethernet

• Parallel Port

• RS232 port

• PS2 Keyboard and Mouse ports

3.5 Programming and simulation languages

In this section are described the di�erent programming and simulation languages
that can answer the needs of the project. Those languages can be di�erentiated
into categories because all can not be used in the same conditions and for the same
goals. The Hardware Description Language (HDL, 3.5.1) are the languages directly
available on the FPGA platform. Then there are the System Description Language
which do not also need any added layer on the FPGA platform. After that are the
high level languages which needs a softcore processor or an embedded OS to work.
The conclusions and the choices made for this project concerning the programming
languages are presented in section 3.8

3.5.1 Hardware Description Languages (HDL)

De�nition

In electronics, an Hardware Description Language or HDL is a computer language
for formal description of electronic circuits. So it can describe an operation made by
a circuit, its design and organization. It can also be simulated and tested to verify
this operation.

A Hardware Description Language is written in standard text-based and describes
the behaviour circuit structure of an electronic system (for example FPGA). Di�er-
ing from software programming languages, an HDL's syntax and semantics take in
account the time and the concurrency between processes. The languages describing
the circuit connectivity between a classi�ed hierarchy of blocks are netlist languages.

3.5 Programming and simulation languages 31

Executable speci�cations for hardware can be written with HDLs. The simulation
program takes also the time in account and allows the programmers to model a
piece of hardware before it is created physically. With the hardware descriptions, a
software program called a synthesizer can infer hardware logic operations from the
language statements and produce an equivalent netlist of generic hardware primitives
to implement the speci�ed behaviour on the platform.

Designing a system in HDL is generally much harder and more time consuming
than writing the equivalent program in a C like language. To solve this di�culty,
there has been much work done on automatic conversion of C code into HDL.

Verilog

Verilog ([TDMP85]) is a Hardware Description Language used to model elec-
tronic systems like FPGAs and ASICs. The language is designed for the design,
veri�cation, and implementation of analog, digital or mixed-signal circuits at various
levels of abstraction. The main characteristics of this language are :

• Syntax similar to the C programming language

• Case-sensitive

• Preprocessor with C tools

• The major control �ow keywords, such as "if" and "while", are similar to C

• The formatting mechanism and language operators are also similar to C

"One of the key concept is the non strictly sequential execution of statements. A
Verilog design consists of a hierarchy of modules. Modules are de�ned with a
set of input, output, and bidirectional ports. Internally, a module contains a list of
wires and registers. Concurrent and sequential statements de�ne the behaviour of the
module by de�ning the relationships between the ports, wires, and registers. Sequen-
tial statements are executed in sequential order within the block. But all concurrent
statements and all begin/end blocks in the design are executed in parallel, qualifying
Verilog as a data�ow language." [Wikd]

VHDL

VHDL (VHSIC Hardware Description Language)([Air83]) is commonly used as a
design-entry language for �eld-programmable gate arrays and application-speci�c in-
tegrated circuits in electronic design automation of digital circuits. VHDL was orig-
inally developed at the best of the US Department of Defence in order to document
the behaviour of the ASICs that supplier companies were including in equipment.
That is to say, VHDL was developed as an alternative to huge, complex manuals
which were subject to implementation-speci�c details.

32 3. System Description

Handel-C

Even if like the previous languages Handel-C ([Cel05]) is made to enable the
compilation of programs into synchronous hardware (FPGA and ASICs), its case
is a bit di�erent. Handel-C is more a programming language aimed at compiling
high level algorithms directly into gate level hardware than a HDL. It is a subset of
C, with non-standard extensions to control hardware instantiation and parallelism.
It contains all the necessary features to describe complex algorithms.

3.5.2 System Design Languages (SDL)

SDL

A System Description Language (SDL) is more than a HDL because it can be used
for designing the whole system, unlike HDL which are used only for coding blocks.
Concerning their characteristics, the SDLs are:

• Made for System-on-Chip design

• Used to move to Higher levels of abstraction

• Used to design a complete system

The programming of the System Description Language is made on the development
computers. Then, after a co-design step, the code is divided between hardware and
software by the compiler and coder. That is one of the main advantage of this
category of languages: hardware and software, all the system is coded with a same
language which is not low level (time saving and productivity increasing).

The main SDLs with their main characteristics are describing in the following
subsections.

System-C

Unlike the VHDL or Verilog languages which are only material description lan-
guages, System-C is higher level because it allows the design of systems at a be-
havioural level. System-C is not really a complete, new language but more an
ensemble of C++ classes introducing the necessary concepts for designing material
(e.g. the concurrency concept) ([CG05]). System-C is able to design material sys-
tems, softwares, mixed. System-C is adapted to conception of SoC (System on
Chip) systems. It also allows to simulate and to create an implementable represen-
tation.

In System-C , the system is a hierarchy of objects, i.e. modules imbricated and/or
processes. These modules are communicating by channels establishing links between
ports of di�erent modules.

3.5 Programming and simulation languages 33

Impulse-C

Impulse-C ([PT05]) is based on standard ANSI-C supporting parallel program-
ming and provides a software level of abstraction in particular for the development of
applications targeting FPGA devices. The advantages of the ANSI C for program-
ming are :

• It supports standard C development tools

• It supports multi-process partitioning

• It is compatible with a wide range range of FPGA-based computing platforms

Impulse-C is as software-to-hardware compiler:

• It optimizes C code for parallelism

• It generates HDL, ready for FGPGA synthesis

• It also generates hardware/software interfaces

Spec-C

Spec-C ([Döm03] is another SDL, also created a Irvine University (California)
like System-C but it is considered as less general as its main concurrent System-C
. Its main characteristics are:

• Its execution behaviour (Validation and simulation)

• Its synthesis behaviour (possibility to implement in software and hardware)

• Its modularity (Hierarchy)

• It supports all the embedded systems concepts

• It is a real language, not only a class library

Matlab and Simulink

Matlab is both a programming language and a development environment([inc08c]).
It is used for numeric calculations, algorithmic and project development. In the do-
mains of the FPGA ,Matlab is used with Simulink as a multi-domain simulation
platform. It is also a dynamic systems design platform. Simulink allows design,
simulation, implementation and control of communication and signal analysis sys-
tems.

The Simulink environment can design a system, simulate its behaviour, break up
the design before its implementation. Simulink can simulate numeric, analogical or
mixed components.

A summary of a comparison between all languages able to be used in FPGA
programming is found in Figure 3.4, on page 34.

34 3. System Description

Figure 3.4: System-level language requirements: comparison between the Spec-C
and other languages possibly used in FPGA [Döm03].

3.5.3 High Level Languages

High Level Language de�nition

A short de�nition of a high-level programming language may be that this kind
of language is more abstract, easier to use, or more portable across platforms than
low-level languages. High level languages are supposed to make complex program-
ming simpler and low level languages make more e�cient code. They consume more
memory, have a larger binary size and are slower to execute. In fact the di�erence
between low and high level languages could be very relative, originally, C language
was considered as high level language and now depending on the context, it can be
also considered as a low level language because it still allows memory to be accessed
by address, and provides direct access to the assembler level.

C Language

C is a general-purpose programming language with the following features ([Com07]):

• Block structured

• Procedural

• Imperative

• Allowing low-level access to memory

• Requiring minimal run-time support

These languages are available once a softcore processor has been implemented into
the FPGA platform. Table 3.5.3, page 35 gives an overview of the possibilities of c
language.

3.5 Programming and simulation languages 35

Pros Cons

based on open standards no object-oriented concepts

use few concepts to ease the
programming

no error handling mechanism

in�uenced numerous recent
languages such as C++/Java,
PHP

no standard garbage collector

allow or code softwares
not needing any support
(libraries, virtual machine)

bu�er over�ow breach

Has a predictable comport-
ment (ram memory)

di�culty to code portable
code

Table 3.2: Pros and cons of the C language

C++ Language

C++ ([Wika]) is a general-purpose programming language, compatible as much as
possible with the C language. Its main features and di�erences compared to C are:

• Statically typed

• Multi-paradigm

• Not platform speci�c

• No need for sophisticated programming environment

• Exception handling

• Templates

The key concept of the C++ language is the object oriented programming. It
allows classi�cation, encapsulation, classes composition, classes association, heritage,
abstraction and genericity.

Python Language

Python ([fou06]) is a multi-paradigm, interpreted language for structured impera-
tive and object-oriented programming. Python is a general-purpose, very high-level
programming language. Python has also a large variety of libraries and its core
syntax is quite simple.

Its design philosophy emphasizes programmer productivity and code readability.
Python's core syntax and semantics are minimalist, while the standard library is large
and comprehensive. Python has a automatic management of the memory (garbage
collector) and a exception handling system. This language can be available once
an embedded OS has been implemented into the FPGA platform. On most of the
embedded OS , there is a python interpretor included. Compared to other high level
languages, a key advantage of python is the fact that it does not need any virtual
machine.

36 3. System Description

3.6 Softcore processors

This section presents the di�erent softcore processors that can be used on the
available FPGA platforms. There are two distinct possibilities: the o�cial branded
ones and the open source ones. Depending on the platform used, some o�cial softcore
processors can be free of charge. As the choice is quite narrow, all the possibilities
have been studied and are displayed in the following subsections.

3.6.1 Nios II

The Nios II softcores (I and II) [Cor07] are softcore processors owned by Altera
. They �t for Altera FPGA , are well documented and numerous existing IP-Bloc
can be implemented into it. The Nios II softcore processor is based on a RISC
32 bits Cores and Avalon bus. The implementation of the Nios II into the FPGA
is done via Quartus([Inc08b]). The development of the core and its components
(ip-Blocs) is done via SOPC Builder(citesopc). The development of the software is
done under Nios II IDE (based on Eclipse, [Inc08a]) using C language. These three
softwares are the development tools provided by Altera to develop applications on
FPGA .

3.6.2 Microblaze

Microblaze [Inc07] is the softcore processor developed by Xilinx for its FPGA
platform Virtex. Its main features are:

• It is based on RISC architecture

• Both instruction and data words are 32 bits

• Many aspects can con�gured cache size, bus-interfaces and embedded periph-
erals

• Speed up to 210 MHz on the Virtex-5 FPGA family

• Con�gurable 3-stage or 5-stage pipeline

• Very customizable for designing custom-built software.

The Xilinx Embedded Development Kit (EDK) contains:

• The MicroBlaze core

• Peripheral cores

• Software development tools:

� GNU C Compiler (GNU: Gnu's Not Unix is an OS based exclusively free
and open sources softwares)

� GNU Debugger

� Eclipse IDE

3.7 Embedded OS 37

3.6.3 SPARC and LEON

SPARC (Scalable Processor ARChitecture) is brand owned par SPARC Interna-
tional Incorporation and stands for an open microprocessor architecture. It is con-
structed on a RISC model with a pipeline and as few features or op-codes as possible.
This architecture is supporting 64 bits data and memories addresses. SPARC de-
signs also a microprocessors family. SPARC is an architecture which speci�cations
are free. A completely free of cost processor using SPARC is LEON.

LEON [GHC07] is an open source 32 bits RISC processor, SPARC compatible. Its
main features are:

• 7 levels pipeline

• Data cache and instructions separated

• Con�gurable cache

• MMU

• Bus interface AMBA-2.0

• Works until 125MHz on FPGA

3.6.4 Open softcore processor

The other softcore processor are concentrated on the Website www.opencores.com.
There are some numerous projects but only a few documentation and no IP-Blocs.
These projects can be designed for Altera , Xilinx or other architectures. Here
are two examples of interesting projects found on this website.

DDR SDRAM Controller Core

The DDR SDRAM project ([Win06]) provides a controller to access standard
memory devices like DDR SRAM. This controller manages the initialization, the auto
refresh and other commands such like of course READ and WRITE. The controller
has been designed for the XILINX Virtex II.

SD/MMC Bootloader

The SD/MMC Bootloader project ([Lae07]) manages con�guration and bootstrap-
ping of FPGAs. This bootloader control SecureDigital (SD) cards or MultiMediaC-
ards (MMC) which are operated in SPI mode (avoiding dedicated implementations).
This bootloader is designed initially for the Xilinx Spartan IIe on BurchED's B5-
X300 board. Many di�erent sized, di�erent brands SD and MMC cars have tested
successfully but not all.

3.7 Embedded OS

This section will present the di�erent embedded OS that can be used on the available
FPGA platforms.

38 3. System Description

3.7.1 uCLinux

uCLinux means "MicroController Linux". It is a fork of the Linux Kernel designed
for Microcontrollers without MMU (memory management unit) but now it covers
more processor architectures still without MMU like FPGA platforms.

3.7.2 eCos

Ecos is used to design softwares with strong constraints of response time and
reactivity. Ecos is very con�gurable, allowing good run-time performances optimised
hardware resource footprint.At the beginning developed by Cygnus, Ecos is now a
free software developed by a community ensuring on-going technical innovation and
platform support.

3.7.3 MicroC/OS-II

MicroC/OS-II [Lab02](commonly written µC/OS-II or uC/OS-II) is a low-cost
real-time OS for microprocessors. It is now extended to other platforms. It is
written in ANSI-C for maximum portability. The society, Micrium Incorporation,
developing this OS also created lots of middlewares for it like uC/CAN, uC/TCP-IP,
uC/FS, uC/GUI, uC/MOD-BUS, uC/LCD, uC/USB for example. MicroC/OS-II
is suitable for use in safety critical embedded systems such as aviation, medical
systems and nuclear installations.

3.8 Choices made to meet the constraints and require-
ments

After de�ning all the di�erent options available for implementing the project, some
options have been selected to �t the requirements and constraints. In the following
subsections are presented the chosen options in the following categories:

• FPGA platform

• Camera sensor

• softcore processor

• Programming languages

• Embedded OS

3.8.1 FPGA platform

The chosen FPGA platform is the Altera DE2 Board with Cyclone II pro-
cessor. The reasons of this choice are:

• A camera sensor has been designed by Terasic for this platform (1.3Mega
Pixel Digital Camera Development Package), and is available in the embedded
system lab.

• The examples' availability on how to use the camera

3.8 Choices made to meet the constraints and requirements 39

• A modular Processor and synthesisable one (softcore processor) available with
suited tools and softwares.

• The presence of a socket for the camera sensor.

• It is an education board meaning that it should be well documented and with
supports.

• JTAG cables (for FPGA programming and softcore processor debuging)

• The examples' availability on how to use the camera

For the previooulsy enumerated reasons, this FPGA platform �ts the requirements
in terms of possibilities, space and time constraints.

3.8.2 Camera sensor

The camera sensor selected for this project is the TRDB-DC2 produced by Tera-
sic ([Tec06]). It is a 1.3 mega pixel camera sensor and is part of the �1.3Mega Pixel
Digital Camera Development Package�. Its main interesting features are:

• The quality is �tting the requirements: resolution is su�cient for the targeted
surveillance application

• Wires and connectors are �tting the ones of the FPGA platform

• The availability of examples using the camera and the FPGA platform

3.8.3 Programming languages

Currently Verilog and C language are the two languages used in this project.
The choice of these two languages has been done within the �ow of the Hardware/-
Software Co-Desisgn . These two languages are corresponding to the partitioning.
The Verilog is used for the acquisition chain which is the hardware part of the
project, while the C language is used thanks to the Nios II (3.8.4)for the motion
detection part (software).

They were two main reasons for the choice of the Verilog . The �rst one was the
fact that the camera sensor examples were coded only in Verilog . The other one
is the similarity between the Verilog and the C languages compared to the VHDL
(same syntax,similarity for the loop mechanisms).
The main reasons for the choice of the C language are:

• It is the language available without any con�guration compared to C++language
when using a softcore processor

• The project team had already some knowledge about C programming.

• It introduces a limited overhead compared to other high level languages

• It provides an easier way to handle memory management, while still allowing
some low-level access to the memory.

40 3. System Description

• It is a portable language, the algorithm can be developed in C on desktop
computer (pro�led, debugged) and then ported onto the targeted platform

• Most of the tools used to developed onto the targeted platform are common
with desktop development tools (Eclipse IDE and the GNU toolchain including
GNU C Compiler, GNU Debugger)

Concerning the SDLs, it has decided not to use them for some kinds of reasons:

• For the Handel-C , some license problems have been encountered

• For the Spec-C , it was impossible to make the compiler work in the Linux
development computers

• For the Impulse-C , the researches made shown that this language is too
speci�c, with less documentation and less examples as the previous, it appears
having no more special feature compared to the previous ones for the project.

Moreover, the most important reasons not to use these languages are more general.
All these languages needs some learning time to become e�cient while programming
with them. After that, all the tools needs compilers that cannot be more reliable
than the ones provided by the society building the FPGA platform and/or the
softcore processor and sometimes do not work the the Spec-C compiler with desktop
computers.

Last but not least, for the same reasons as in the last paragraph, there were no
needs of python because it required a embedded OS which is harder to implement
compared to a softcore processor and require a much higher overhead in term of
resources' use. Python special features are not needed in this project and as for
every new programming language, there is also the problem of the learning curve.

3.8.4 softcore processor

As the project was progressing, the need for a softcore processor has became
clearer. Indeed, after a long time of work on Verilog language with the camera
sensor and the memories, the conclusion was that it was not possible to realize the
project within the meeting deadlines using this language. Even with the FPGA
examples provided by Altera , they were still some functions whose code was not
available, for example, the stack function for the memories (SDRAM, SRAM). The
second main reason was the lack of documentation concerning the needed functions,
especially the ones involved into the memories management. This concerns also
examples, lot of the Altera examples on their CD were not working on the chosen
board. Moreover the free examples of �ash memory management using Verilog
language that can be found on internet are also incomplete or bugged.

But this decision to use software is not only due to the disadvantages of program-
ming without softcore processor . As said before using a softcore processor allows
to use C/C++ and other object-oriented languages and to work at a higher level
of abstraction. On the other hand, it needs another way to think the architecture

3.8 Choices made to meet the constraints and requirements 41

of the system. Using a softcore processor means using hardware/software co-design
methodology.

After some researches, the conclusion that the open cores did not �t the project
requirements because they is a lack of support/manuals. They are also not designed
for the chosen FPGA platform and do not have some needed features as GPIO
management (General Purpose Input Ouput) for example (The opencore projects
were not targeting the DE2 platform, were not up to date or were not using the
required functions).

Here are the reasons to use the Nios II :

• It is the softcore processor dedicated to the selected FPGA platform, both
Altera products

• It is supported by both the Quartus II software and SOPC builder software
from Altera which should provide a thigh and easier integration into the
platform, which is relevant given the time frame.

• It allows to use C and C++ languages

• It is documented and there are some information examples and forums on the
internet.

• It has the 32 bits instruction cache like desktop computers.

• It uses the development chain GNU based on Eclipse (A project providing a
universal open-source tool-set for development) due to an ANSI-C implemen-
tation on the Nios II .

• the resources (Cyclone II, SRAM, SDRAM, FLASH memories, LCD screen
and so on) and the architectures seemed to be su�cient enough for the project

• possibility to accelerate some functions (C2H technology) : a tool provided as
part of Altera tools chain which aims to facilitate the hardware optimisation
of C function by creating the required component directly in HDL. This tool
is supposed to ease Hardware/Software Co-Desisgn mapping process.

• System designers can create their own custom peripherals that can be inte-
grated within Nios II processor systems. For performance-critical systems
that spend most CPU cycles executing a speci�c section of code, it is a com-
mon technique to create a custom peripheral that implements the same function
in hardware.

So the Nios II , another Altera product is well documented and �ts the project's
requirements. This softcore processor is the o�cial one for the DE2 Altera board
and even with that security, there are still some cost consuming not-so-documented
bugs.

42 3. System Description

3.8.5 Embedded OS

For this project, no embedded OS has been integrated. The reasons are quite
simple. The main advantage of an embedded OS is the possibility to use higher level
languages but there is no need to use these languages, neither for the acquisition
chain nor for the motion detection algorithm. So integrating a embedded OS would
have been less useful and would have added complexity and probably overhead which
could have slowed done the whole application [Lu, Section IV : Results]. Furthermore,
implementing a embedded OS on the FPGA is a long, and complex task with a not
negligible error rate.

Chapter 4
Motion Detection Algorithm

Figure 4.1: Location in the A3 model highlighted by the purple circle, the algorithm
studied in this chapter is encircled by the doted line

The purpose of this chapter is to provide an overview of the motion detection
algorithm development.

43

44 4. Motion Detection Algorithm

(a) Global location (b) Elaborated location

Figure 4.2: Location in the Rugby Meta-Model.

4.1 De�nition

As previously stated, one of the project's context is a �xed video camera observing
dynamic events in a scene. This fact has been taken into account while exploring the
broad variety of motion detection algorithms one can �nd in the literature. Back-
ground subtraction method is a common used approach for detecting moving objects
in videos from static cameras [Pic04a].
Common applications of image di�erencing include object tracking, vehicle surveil-
lance systems, and interframe data compression. There are also many examples of
its use for analysing satellite images to measure land erosion, deforestation, urban
growth,crop development and for analysing medical images to measure cell distribu-
tion.

The main idea behind this approach is that of detecting the moving objects from
the di�erence between the current frame and a reference frame, often called the
background image, or background model. As a basic, the background image must
be a representation of the scene with no moving objects and must be kept regularly
updated so as to adapt to the varying luminance conditions and geometry settings.

Therefore the foundation of the algorithm can be summarized by the following
equation (4.1):

|Framei −Backgroundi| > Threshold (4.1)

where Framei is the current frame captured by the video camera, Backgroundi is
the actual background and Threshold is the threshold level di�erentiating �motion
pixels� from �background pixels�
Reference images can be generated by a variety of methods, e.g. on a background

4.2 Analysis 45

image acquired during a period of relative inactivity within the scene or from a
temporally adjacent image from a dynamic sequence.

4.2 Analysis

To answer the problem statement (Is it possible to implement an intelligent
IP video surveillance camera on an FPGA platform to optimize video
surveillance?), the research of a proper algorithm able to solve the intelligent part
of the system was focused on the following requirement:

• Simple Method : If an apparently �straightforward� method is already hard
enough to implement, a more elaborated one could prevent to answer the ques-
tion in the given time frame.

• Low memory requirement : The chosen FPGA platform (Altera DE2 Board
with Cyclone II processor) has a limited embedded available memory.

A more thorough investigation of the Motion Detection algorithm can be found in
the review like [Pic04a] or [CGPP03].

The �rst method reviewed is the background as the average (a single value (as
a mean or median) that summarizes or represents the general signi�cance of a set
of unequal values) or the median (a median is described as the number separating
the higher half of a sample, a population, or a probability distribution, from the
lower half.) of the previous n frames. This method is rather fast, but very memory
consuming due to the memory requirement needed to calculate the average of those
n frames. The memory requirement is n ∗ size(frame), the more frame is used to
calculate the average the more the algorithm is going to be precise but the more
memory it will use.

The second algorithm studied is the background as the running average(A series of
successive averages of a de�ned number of variables). This method can be calculated
by the equation 4.2:

Bi + 1 = α ∗ Fi + (1− α) ∗Bi (4.2)

Where Bi is the current background, Fi is the current frame and α is the learning
rate (typically 0.05 [Pic04b]) This way the memory requirement is lower than the
previous algorithm 4.2.

Another method is based on the pixel's recent history to create the background.
Such history is often:

• just the previous n frames

• a weighted average where recent frames have higher weight

The background model is calculated as a chronological average from the pixel's his-
tory. This history is often based on an histogram (a mapping mi that counts the
number of observations that fall into various disjoint categories).

46 4. Motion Detection Algorithm

4.3 Design

Frame di�erencing is a particularly e�cient and sensitive method for detecting grey
level changes between images which are co-registered. Motion is detected by di�er-
encing a reference and the �current� image frame and applying a certain Threshold
to this di�erence (4.3).

|Framei − Framei−1| ≥ Th (4.3)

where Framei is the current frame captured by the video camera, Framei−1 is pre-
vious captured frame and Th is the threshold level di�erentiating �motion pixels�
from �background pixels�

The frame di�erencing algorithm may be sub-divided into three parts [Pic04b]:

1. the generation of a suitable reference or background

2. the arithmetic subtraction operation

3. the selection (and application) of a suitable threshold

4.3.1 Background Generation

The �rst task is then to generate the background image Bx,y from a sequence of
frames It

x,y which may contain moving objects. It
x,y being the pixel value at the x, y

location in captured frame at a given time t and Bt
x,y the extracted background.

The FPGA DE2 Board used embeds a limited amount of available memory to use,
so the detection of the background must not be very memory consuming. Therefore,
one of the least memory consuming way of achieving the background's creation is to
estimate the background from the previous frame (4.4).

Bi = Framei−1 (4.4)

The following step is to transform both the background Bx,y and the current frame
Ix,y into their greyscale version. As both of those image are coded in a 8 bits RGB
colours we use the following greyscale conversation (4.5):

Greyx,y =
(299 ·Redx,y + 587 ·Bluex,y + 114 ·Greenx,y)

1000
(4.5)

Then each of the 8 bit coded colour is replaced by the new grey value. The selected
coe�cients are from the 601st recommendation of the CIE (International Commission
on Illumination)[oI]
Subsequently, the arithmetic subtraction operation can be performed as follow (4.6):

Dx,y = |Ix,y −Bx,y| (4.6)

of which the result Dx,y is the absolute di�erence pixel value between Ix,y and Bx,y

previously de�ned.
At this point the two �rst step of the frame di�erencing algorithm are done.

4.3 Design 47

4.3.2 Thresholding

Thresholding is the simplest method of image segmentation. Individual pixels in
a greyscale frame are marked as �object� pixels if their value is greater than some
threshold value and as �background� pixels otherwise.
The frame di�erencing algorithm is really sensitive ([Pic04b] and [Ros95, Section
1]) about the threshold Th used to di�erentiate �object� pixels from �background�
pixels.
The proper value of the threshold is dependent on the scene, possibly �uctuating
camera levels, as well as viewing conditions (e.g. illumination) which may vary over
time. A too high Th could inhibit the detection of a really subtle change and hence
create a false negative. On the contrary, a too low Th could lead to detect noise as
a movement and then create false positive.
As the motion detection algorithm relies heavily on a correct threshold, an automatic
thresholding appears as a good choice due to its adaptive property during runtime
thus preventing a �xed threshold becoming irrelevant. The Automatic thresholding
Thof di�erence images algorithm used is described in [IDT95, Chapter 2.2]: First,
the di�erence image Dx,y is analysed to determine the median MED (4.7):

MED = medx,y∈FDx,y (4.7)

Then the median absolute deviation MAD is computed (4.8):

MAD = medx,y∈F |Dx,y −MED| (4.8)

Assuming that less than half the image is in motion, the median should correspond to
typical noise values, and a suitable threshold should correspond to the value obtained
by the following calculation (4.9) based on [IDT95, Chapter 2.2]:

Th = MED + 3 ∗ 1.4826 ∗MAD (4.9)

where 1.4826 is a normalisation factor with respect to a Gaussian distribution.

Now that the threshold Th is obtained, the last step is to apply it to the di�erence
frame Dx,y to obtain the foreground Fx,y binary image from the background (4.10).

Fx,y =
{

1 if Dx,y ≥ Th
0 else

(4.10)

1 meaning Fx,y is a foreground pixel hence part of a �moving� object; 0 meaning Fx,y

is a background pixel.

4.3.3 Selecting an E�cient Median Search Algorithm

The median of N numerical values can be de�ned by:

• The median of a list of N values is found by sorting the input array in increasing
order, and taking the middle value.

• The median of a list of N values has the property that in the list there are as
many greater as smaller values than this element.

48 4. Motion Detection Algorithm

The concept is fairly simple to understand but its implementation can be computing
intensive and therefore the selection of a fast Median Search Algorithm is necessary.
From the review of fast median search algorithm [Dev98], the selected C implemen-
tation is the a non-recursive search based on [Wir]. It was selected for di�erent
reasons:

• One of the fastest considering the benchmark done in [Dev98, Section 5]

• Non recursive : a recursive algorithm is not easily mapped into hardware for
accelerating its computation

4.4 Pro�ling

Figure 4.3: The pro�ler analyses the application. The results hightlight the critical
part of the application. This results can guide the Hardware/Software Co-Desisgn ,
hence potentially map the critical parts onto Hardware. [Mou08]

�performance analysis (more commonly pro�ling): investigation of a program's
behaviour using information gathered as the program runs, i.e. it is a form of dynamic
program analysis, as opposed to static code analysis.� [Wikb]
The purpose of pro�ling the Motion Detection algorithm is to discover bottlenecks
and to determine which parts of the program simulating the chosen algorithm to
optimize for speed, memory etc..

Pro�ling is a part of the Hardware/Software Co-Desisgn (4.3). The GNU Gprof
pro�ler [GKM] used to analyse the C version of the algorithm can output both the �at
pro�les (computation of the average call times, from the calls) and the call-graph
(showing call times, frequencies of the functions and also the call-chains involved
based on the callee) of the application.

4.4 Pro�ling 49

A software written in C, based on the previously designed algorithm as been pro-
�led on a desktop computer (Intel Pentium 4 @2.80Ghz - 1GB RAM) running Ubuntu
8.04. A simpli�ed version of the application call graph can be found in Appendix 1.

Those two pictures have been used to test this algorithm and have the following
characteristics:

• Resolution: 640x480 pixels;

• Colour depth: 24 bits;

• Moving element size: 450x200 pixels.

(a) Frame 1: background (b) Frame 2: new frame

(c) Result of motion detection

Figure 4.4: Results of motion detection experiments: frame (a) is considered as the
background frame, while frame (b) is the �Current� frame. The frame di�erence
algorithm is used to detect motion. (c) is the result of the comparison: black pixels
are when no motion is detected and grey pixels enlightens the motion.

The table 4.4 shows the timing pro�les results obtained after running the algo-
rithm on the two pictures 4.4(a) and 4.4(a) producing 4.4(c):

The time spent in each functions are not shown because they are not relevant due
to the overhead introduced by the pro�ler allowing it to trace all the functions calls
and the times spent in them. However the time overall percentage spent in each
functions is more relevant, it's highlighting the critical part, in term of execution

50 4. Motion Detection Algorithm

Function Called (#) % Time

BMP_Load_Data_24b 2 42.76 (≈ 21 each)

BMP_Save_File 1 16.60

BMP_GreyScaleconversion 2 12.36 (≈ 6 each)

MD_AutomaticThreshold 1 10.89
↪→ kth_smallest(Median Search Algorithm) 2 9.93 (≈ 5 each)

MD_Background_Substitution 1 7.43

BMP_Read_Header 2 0

BMP_Copy_Header 1 0

Table 4.1: Application pro�led Results (% Time) sorted by the total amount of time
spent in each function and its children, The important results are highlighted in red

time, of the application. And therefore can undercover bottleneck in the algorithm
used.

Some part of the results found in Table 4.4 are not are not really pertinent, those
parts (in black) concern some portion of the C code used only to load and save BMP
Files on a Desktop computer. Those portions of code represent roughly 60% of the
overall execution time. The interesting parts (in red) related to Algorithm previously
de�ned (4.3) took approximately 40% of the computation time.
The table 4.4 shows the percentage of execution time of each important function
from those 40% indexed on a 100% basis. Those results show that the Greyscale

Function Called (#) % Time

BMP_GreyScaleconversion 2 30.43 (≈ 15 each)

MD_AutomaticThreshold 1 26.82
↪→ kth_smallest(Median Search Algorithm) 2 24.45 (≈ 12 each)

MD_Background_Substitution 1 18.30

Table 4.2: Algorithm pro�led Results (% Time) sorted by the total amount of time
spent in each function and its children

conversion and the Automatic Thresholding are the heaviest computation tasks with
respectively ≈ 30% and ≈ 52% of the execution time. The Median Search Algorithm
(kth_smallest in the Table, used twice for the Automatic Thresholding) consumes
alone ≈ 12% of the execution time. The Background Substitution is relatively less
processing intensive with �only� ≈ 18%.
Those result by themselves are a good hints for highlighting where the algorithm
could be optimized, but they cannot indicate which part of the algorithm could be
mapped onto hardware, accelerating them. However those results correlated with rel-
evant metrics could help the Hardware/Software Co-Desisgn process by preselecting
part of the algorithm which could bene�t to be mapped onto hardware.

4.5 Metrics 51

4.5 Metrics

�Metrics: A software metric is a measure of some property of a piece of software
or its speci�cations.�[Wikc]
In this section, the aim is to use metrics and tools based on those metrics to guide
the Design Space Exploration and Hardware/Software Co-Desisgn during the im-
plementation of the chosen algorithm, hence to map the computational part of the
algorithm on to the components of the system architecture.
The tool use to analyse the algorithm and look through it against some speci�c
metrics is the design framework called Design Trotter . Design Trotter is a set of co-
operative tools which aim at guiding embedded system designers early in the design
�ow by means of design space exploration [MDA+05].

Design Trotter is an academic tool which is still in development with a certain
numbers of issues and limitations. The framework employs fast list-based scheduling
and heuristic methods to explore the search space so that feasible and near-optimal
solutions can be found rapidly and then guides the developer in the hardware /
software partition phase.

4.5.1 Chosen Metrics

The choice of relevant metrics has to be made to guide the designer and the synthesis
tool towards an e�cient application architecture matching.
Design Trotter is based on di�erent metrics which are de�ned in [DTm03] and
[AAS+07].

γ′

γ′ is especially relevant to measure the degree of inherent parallelism in the algorithm.
γ′ can be calculated for a function by the formulae 4.11 as in [AAS+07, Section 3].

γ′ = 1− Nb operations

CriticalPath
(4.11)

A high γ′ indicate an optimization potential for speed-up and consumption re-
duction when mapped to an highly parallelised architecture.

MOM

Memory Orientation Metric : MOM
MOM can be calculated for a function by the formulae 4.12 as in [DTm03, Section
3.3].

MOM =
Nb global memory accesses

Nb processing operations+Nb global memory accesses
(4.12)

MOM indicates the frequency of memory accesses in a graph. MOM values
are normalized in the [0;1] interval. When MOM gets closer to 1 the function
is dominated by memory accesses. Hence in case of hard time constraints, high
performance memories are required (large bandwidth, dual-port memory) as well as
an e�cient use of memory hierarchy and data locality.

52 4. Motion Detection Algorithm

COM

Control Orientation Metric : COM
COM can be calculated for a function by the formulae 4.13 as in [DTm03, Section
3.4].

COM =
Nb controls

Nb processings+Nb memory accesses+Nb controls
(4.13)

It indicates the appearance frequency of control operations (i.e., tests that cannot
be eliminated during compilation). COM values are normalized in the [0;1] interval.
When COM gets closer to 1 the function is dominated by controls.

4.5.2 Results

The main idea is now to apply those metrics to the chosen algorithm correlated with
the result of the pro�ling step.

Greyscale Conversion

The greyscale conversion (BMP_GreyScaleConversion in 4.4) of both the back-
ground and the current frame is the �rst function to be studied. The Table 4.5.2 is
the result of the calculation of those three metrics using Design Trotter .

Metric Result

γ′ 0.5

MOM 0.7

COM 0.0

Table 4.3: Metrics Results (γ′, MOM , COM) for the Greyscale Conversion using
Design Trotter

The Greyscale Conversion is quite dependant on memory accesses, as the MOM
points it with a 0.7 result. It is something pretty easy to foresee because this step
is fundamentally accessing data in memory, process them and then store them back.
This implies that the memory accesses should be optimised in the architecture to
avoid memory bottlenecks.
More important, γ′ result of 0.5 shows that it this step could bene�t from a paral-
lelised architecture. Even more when one can consider that both of the greyascale
conversion could be carried out in parallel without even thinking about optimizing
the inner self algorithm because the data manipulated are not the same. Those re-
sults outline another facts, this portion of the algorithm contain almost no control
operation (COM = 0).

Background Substitution

The background substitution (MD_Background_Substitution in 4.4) is the second
function to be studied. The Table 4.5.2 is the result of the calculation of those three
metrics using Design Trotter .

4.5 Metrics 53

Metric Result

γ′ 0.656

MOM 0.656

COM 0.0

Table 4.4: Metrics Results (γ′,MOM , COM) for the Background Substitution using
Design Trotter

The Background Substitution is quite dependant on memory accesses, as the
MOM points it with a 0.656 result. As previously stated for the Greyscale Conver-
sion it was something almost predictable because this step is fundamentally accessing
data in memory, process them and then store them back. This implies that the mem-
ory accesses should be optimised in the architecture to avoid memory bottlenecks.
Those results outline another facts, this portion of the algorithm contain almost no
control operation (COM = 0). However on this particular part of the algorithm,
as the γ′ result of almost 0.7 highlights it, could really bene�t from a parallelised
architecture. It even more true, when the fastest architecture and scheduling (in
term of number of cycles) proposed by Design Trotter is composed by 4 ALUs.

Median Search algorithm

The Median Search algorithm (kth_smallest in 4.4) is the third function to be stud-
ied. The Table 4.5.2 is the result of the calculation of those three metrics using
Design Trotter .

Metric Result

γ′ 0.357

MOM 0.786

COM 0.0

Table 4.5: Metrics Results (γ′, MOM , COM) for the Median Search algorithm
Design Trotter

The Median Search algorithm is heavily dependant on memory accesses, as the
MOM underlines it with roughly 0.8 MOM result. This is even more important
given that this part of the Thresholding part of the algorithm is repeated twice.
One more time, This implies that the memory accesses should be optimised in the
architecture to avoid memory bottlenecks therefore slowing down the execution speed
of the overall application.
There is less inherent parallelism is this part of the Frame Di�erencing algorithm as
the 0.35 γ′ result indicates it.

Automatic Threshold

The Automatic Threshold (MD_AutomaticThreshold in 4.4) is the last function to be
studied. It is important to state that for this part, the Median Search algorithm has
not been analysed during the metrics calculation due to its results already expressed.

54 4. Motion Detection Algorithm

The Table 4.5.2 is the result of the calculation of those three metrics using Design
Trotter .

Metric Result

γ′ 0.25

MOM 0.75

COM 0.083

Table 4.6: Metrics Results (γ′,MOM , COM) for the Automatic Threshold (without
the Median Search algorithm included)Design Trotter

The Automatic Threshold is heavily dependant on memory accesses, as theMOM
underlines it with roughly 0.8 MOM result. Automatic Threshold could not really
bene�t to be parallelised regarding to its γ′ result of 0.25. This part of the application
is slightly more control oriented (a COM result of 0.083) than the previous studied
part. This is due to the 4.10 portion of the algorithm.

4.5.3 Conclusion

Design Trotter is a tool especially useful to give an insight on the parallelism level
of di�erent part of the algorithm studied. However, Design Trotter is still undergoing
development and has a rather limited implementation of the C language (no �while�
statement supported for instance). It is far from being straightforward to translate
the C version of an algorithm to the �C version for Design Trotter �. There is many
restriction on how to write it for Design Trotter to be able to handle and analyse it.
Therefore, it takes some time to rewrite an existing source code into one that Design
Trotter can analyse.

However results given by the tools are appreciable indications to help the designers
and developers to make their choices. For instance, the overall result tends to show
that the algorithm designed could bene�t from a parallelised architecture like FPGA
, given that from all the functions studied two could be fairly parallelised especially
one which is used twice during the course of execution.

Moreover a speci�c targeted processor, with multiple ALU or speci�c custom hard-
ware function (such as the Nios II for instance) could help to speed up the execution
time or cycle used to process the algorithm.
Apparently the Frame Di�erencing algorithm is not really control oriented with most
of the COM metric results close to 0 or equal to 0. The results obtained through
the use of Design Trotter using the chosen Metrics seemed to prove that the System
Architecture chosen in 3 is a relevant choice.

Chapter 5
Implementation

Figure 5.1: Location in the A3 paradigm, highlighted by the purple circle.

In this chapter, the application implementation is described and detailed. Each
section outlines the implementation of one of the goals described in the Chapter 1.
Therefore, this chapter is a step-by-step description of the implementation of the
project. The �rst section describes the blocks with a �black-box approach�: the main

55

56 5. Implementation

(a) Global location (b) Elaborated location

Figure 5.2: Location in the Rugby Meta-Model, highlighted by the grey bar on (a)
and grey arrows on (b).

functionalities of the block are given before given its inputs of outputs and their goal.
The source codes of the di�erent hardware blocks and the algorithm (the Nios II
version) are on the CD-Rom.

5.1 Transmission chain

The �rst step of the application is the implementation of a video camera on the
DE2 FPGA platform. It is implemented in full hardware, using Verilog as the
hardware language. This is because, �rstly, the camera sensor is connected to the
DE2 Board through General Purpose Input/Output (GPIO) pins, which requires a
low level access and because, secondly, there were already some existing IP-block to
use the camera sensor in Verilog . The block diagram of this step can be see in
Figure 5.3 on page 57. To see the con�guration of the GPIO pins of the camera
sensor, please refer to Figure 5.4, on page 58.

5.1.1 Image capture

This section is the description of the main blocks involved in the image capture
from the camera sensor.

CCD_Capture

The RTL diagram of this block can be see on Figure 5.5 on page 59. This RTL
view is presented in the report because it is simple enough to be readable and to �ll
in a A4 page. RTL diagrams of the other blocks are in the CD-Rom.

5.1 Transmission chain 57

Figure 5.3: Simpli�ed block diagram of the transmission chain: blue blocks are
the required blocks, while red blocks describes the features. The camera sensor is
controlled by an Inter Integrated Circuit Bus (I2C) command to select the exposure
time, and send data to a block which translate those for the rest of the circuit. The
other parts are the steps of the transmission, from raw data to the VGA display.

The aim of this block is to get raw data from the camera sensor and transfer them
to the other parts of the circuit. It has several inputs and outputs (Existing Block):

• Inputs:

� iCLK: main clock.

� iRST: main reset signal.

� iStart: start signal, which begin the information from the camera sensor
to be process.

� iEnd: end signal, which stop the information from the camera sensor to
be process.

� iFVAL: valid frame of pixel if 1, invalid if 0.

� iLVAL: valid line of pixel if 1, invalid if 0.

� iDATA: raw data from the web-cam.

• Outputs:

� oDVAL: validate the pixel.

� oDATA: return the raw data of the actual pixel.

58 5. Implementation

Figure 5.4: Camera sensor GPIO organization: one sensor requires only 15 pins.

� oX_Cont: return the X coordinate of the actual pixel.

� oY_Cont: return the Y coordinate of the actual pixel.

� oFrame_Cont: return the number of frame captured.

RAW2RGBGS

The aim of this block is to translate raw data from the camera sensor to three-
colour data Red, Green and Blue (RGB). The second functionality of this block is
to calculate the grey value of each pixel, using equation (5.1):

Grey =
(299 ·Red+ 587 ·Blue+ 114 ·Green)

1000
(5.1)

It is used with integer numbers because it is very expensive to use �oat numbers in
hardware, as it requires more logic elements and therefore bigger area. The selected
coe�cients are from the 601st recommendation of the CIE (International Commission
on Illumination)[oI]. The conversion of a RGB picture to a grey-scaled one is the
�rst step of the background subtraction algorithm. It is also possible to do it in
software.

The block has several inputs and outputs (Modi�ed Block):

• Inputs:

� iCLK: main clock.

� iRST: main reset signal.

� iDVAL: validate the pixel.

� iDATA: raw data from the block CCD_Capture.

� iX_Cont: return the X coordinate of the actual pixel.

� iY_Cont: return the Y coordinate of the actual pixel.

• Outputs:

� oDVAL: validate the pixel.

� oRed: red value of the pixel.

� oBlue: blue value of the pixel.

� oGreen: green value of the pixel.

� oGrey: grey value of the pixel.

5.1 Transmission chain 59

Figure 5.5: RTL view of the CCD_Capture block: in this block, from bottom to
top, (1) is the logical elements involved in the frame counter, (2) enlightens the logic
involved in the transmission of data (the pixel colour), (3) regroups the elements
used to extract the DVAL value of the current pixel and, �nally, (4) regroups the
elements that allows to extract both the X and Y coordinates of the pixel.

Mirror_Col

The main purpose of this block is to prepare and format information to be stored on
the SDRRAM. Therefore, it gets data from the RAW2RGBGS block and sends them
in the Sdram_Control_4Port block. The number of the pixel is stored separately,
while the colour values are stored by splitting the green value in two and sharing the
memory space for two colours (Red and the �ve Green least signi�cant bits & Blue
and the �ve Green most signi�cant bits). It is because the SDRAM block has two
storage stack of 16 bits. It has several inputs and outputs (Modi�ed Block):

• Inputs:

� iCCD_DVAL: validate the pixel.

� iCCD_PIXCLK: clock of the camera sensor.

� iRST: main reset signal.

� iCCD_R: red value of the pixel.

� iCCD_G: blue value of the pixel.

� iCCD_B: green value of the pixel.

� iCCD_Gr: grey value of the pixel.

60 5. Implementation

• Outputs:

� oCCD_DVAL: validate the pixel.

� oCCD_R: red value of the pixel.

� oCCD_G: blue value of the pixel.

� oCCD_B: green value of the pixel.

� oCCD_Gr: grey value of the pixel.

5.1.2 Display Image on a Screen

This section is the description of the main blocks involved in the display of a video.

Sdram_Control_4Port

The aim of this block is to get an access to the SDRAM of the board. In this
block, all information for a picture are stored temporarily. It consists of four First
In First Out (FIFO) stacks to optimize the writing and the reading of data. It has
several inputs and outputs (Existing Block):

• Inputs:

� REF_CLK: main clock.

� RESET_N: main reset.

� WR1_DATA: data input.

� WR1: write request.

� WR1_ADDR: write start address.

� WR1_MAX_ADDR: write maximum address.

� WR1_LENGTH: write length.

� WR1_LOAD: write register load & stack1 clear.

� WR1_CLK: write stack1 clock.

� WR2_DATA: data input.

� WR2: write request.

� WR2_ADDR: write start address.

� WR2_MAX_ADDR: write maximum address.

� WR2_LENGTH: write length.

� WR2_LOAD: write register load & stack2 clear.

� WR2_CLK: write stack2 clock.

� RD1: read request.

� RD1_ADDR: read start address.

� RD1_MAX_ADDR: read maximum address.

� RD1_LENGTH: read length.

� RD1_LOAD: read register load & stack1 clear.

� RD1_CLK: read stack1 clock.

5.1 Transmission chain 61

� RD2: read request.

� RD2_ADDR: read start address.

� RD2_MAX_ADDR: read maximum address.

� RD2_LENGTH: read length.

� RD2_LOAD: read register load & stack2 clear.

� RD2_CLK: read stack2 clock.

� DQ: SDRAM data bus.

• Outputs:

� WR1_FULL: write stack1 full.

� WR1_USE: write stack1 used.

� WR2_FULL: write stack2 full.

� WR2_USE: write stack2 used.

� RD1_DATA: data output.

� RD1_EMPTY: read stack1 empty.

� RD1_USE: read stack1 used.

� RD2_DATA: data output.

� RD2_EMPTY: read stack2 empty.

� RD2_USE: read stack2 used.

� SA: SDRAM address output.

� BA: SDRAM bank address.

� CS_N: SDRAM chip selects.

� CKE: SDRAM clock enable.

� RAS_N: SDRAM row address strobe.

� CAS_N: SDRAM column address strobe.

� WE_N: SDRAM write enable.

� DQM: SDRAM data mask lines.

� SDR_CLK: SDRAM clock.

VGA_Controller

The aim of this block is to display data on a VGA-Screen. Therefore it gets data
from the SD-Ram and encode them for VGA standard. If one wants to display
grey scaled picture, the VGA display only needs to get the same value of grey on the
three colours. The Switch allows the user to select the �colour� to be displayed: RGB
image or Grey-scaled image. The oRequest signal is sent by the screen to get the
information to display. Firstly, synchronization data is sent to prepare the screen.
Then, Red, Green and Blue values are sent to the VGA-screen. It has several inputs
and outputs (Modi�ed Block):

• Inputs:

62 5. Implementation

� iCLK: main clock.

� iRST: main reset signal.

� iRed: red value of the pixel.

� iBlue: blue value of the pixel.

� iGreen: green value of the pixel.

� Switch: allow the user to select the �color� to display (RGB or Grey Scale).

• Outputs:

� oRequest: send request signal to the VGA-Screen.

� VGA_BLANK: use for VGA synchronization.

� VGA_H_SYNC: use for VGA synchronization.

� VGA_SYNC(GND): use for VGA synchronization.

� VGA_V_SYNC: use for VGA synchronization.

� VGA_R: VGA red value of the pixel.

� VGA_G: VGA green value of the pixel.

� VGA_B: VGA blue value of the pixel.

5.1.3 Other Features

This section is the description of the blocks providing nice but not critical features.

SEG7_Controller

The aim of this block is to display the number of frames captured on the 7-segment
blocks of the board. It splits the frame number (written on 32 bits) in eight part of
4 bits (for each display). The number shown on the 7-segment displays is written in
hexadecimal. It has one input and several outputs (Existing Block):

• Inputs:

� iDIG: number of captured frame.

• Outputs:

� SEG0 to SEG7: the eight available 7-segment displays.

I2C_CCD_Con�g

The purpose of this block is to control and con�gure the exposure time of the
camera sensor. It allows the user, through the switches, to change this time and,
therefore, to enlighten the image in case it is too dark. This block use the I2C
protocol to communicate the new exposure time of the sensor. I2C is a multi-master
serial computer bus that is used to attach low-speed peripherals to a motherboard,
embedded system or cellphone. It has several inputs and one output (Existing Block):

• Inputs:

� I2C_SDAT: actual exposure time.

5.2 Recording and storage chain 63

� iCLK: main clock.

� iRST: main reset.

� iExposure: value of selected exposure time.

• Outputs:

� I2C_SCLK: new value of the exposure time.

LCD_TEST

The aim of this block is to display information on the LCD screen of the DE2
Board. It has several inputs and outputs (Created Block):

• Inputs:

� iCLK: main clock.

� iSwitchN: activate the LCD screen.

� iRST_N: main reset.

• Outputs:

� oTestLED: activate one LED when LCD is activated.

� LCD_DATA: data sent to the LCD.

� LCD_RW: read (0) or write (1) mode.

� LCD_EN: enable the LCD.

� LCD_RS: �ush the screen.

5.2 Recording and storage chain

This section describes the second goal of the project: to record and store a video
captured by the camera sensor. In Chapter 1, the softcore processor is involved in
the web-server and algorithms parts. But, the need of a softcore processor comes
earlier. In facts, it appears to be very hard to use both the SD-Card and the SD-Ram
only with Verilog blocks. Therefore, the implementation of the Nios II processor
is described in this section instead of the next one, as written previously.

5.2.1 Implementation of the Nios II

In order to access the memory block of the board, and later implement the al-
gorithm in C/C++ , a convenient solution is to use a softcore processor. As an
Altera DE2 Board is used, a Nios II processor is used as the softcore processor.
But a custom version has to be created to satis�ed the possibilities of the board used
for this project. To do so, the Nios II manual was used to have a better under-
standing of the di�erent modules [Cor07]. Figure 5.6, on page 64 shows some of the
modules accessible for the Nios II softcore processor, while Figure 5.7, on page 64
details the block diagram of the Nios II core.

64 5. Implementation

Figure 5.6: Generic Nios II diagram: it includes several components around the
Nios core processor [Cor07].

Figure 5.7: Generic Nios II core block diagram: it describes the components in-
cluded in the Nios core [Cor07].

5.2 Recording and storage chain 65

In order to create this custom version of the Nios II processor, one needs to follow
several steps:

1. Create a Quartus II project

2. Create the Nios II using SOPC Builder

3. Make the pins plan of the FPGA (i.e. associate each pin of the board to inputs
and/or outputs)

4. Add the �tting modules on the Nios II (i.e. VGA Controller, memory con-
troller, etc.)

5. Verify that it works (i.e. build and run a test program on the Nios II)

The custom version used in this project contains the following modules:

• Nios standard core, with JTAG debug level 2 (RISC 32 bits processor @100
MHz).

• SRAM controller.

• LED red & green parallel outputs.

• JTAG Module.

• Tri-state Avalon bridge to control �ash memory.

• Flash memory controller.

• LCD controller.

• Button & switch parallel inputs.

• DMA9000 controller (Ethernet port of the DE2 Board).

• 7-segments controller.

• SD-Card controller (3-bits inputs/outputs).

• Various parallel inputs/outputs (PIO) for the processor to communicate with
the rest of the system.

A JTAG debug level 2 was used. It means that one can debug the program on the
Nios II directly, and use some breakpoints and view some variables values. There
are �ve level of debug, form 0 to 5. Each level allows more variables values to be
viewed and more breakpoints to be put, but requires more logic elements.

5.2.2 Record captured video

The �rst part of this block is the memory block. In fact, memory is very important
in this step, as it requires to store temporarily a lot of frame captured by the web-
cam. The �rst problem that appeared is that one frame is around 1 MB:

640 · 480 · 24
8

= 921600Bytes = 900kB (5.2)

(8 bits per colour * 3 colours (red, green and blue) = 24 bits per pixel, a frame is
640x480 pixels, 1 bytes = 8 bits & 1kB = 1024B.)

66 5. Implementation

The available temporary memory on the board is 8 MB for the SDRAM, which
means no more than 8 images simultaneously. It is quite a problem to capture a
video, running 24 frame per second while processing 3 images simultaneously with
the processor (the background image, the actual image and the temporary grey-scaled
image). It means that the processor need to access the SD-Card around 3 times per
second. It is impossible to have such a speed to access this kind of memory.

5.2.3 Store recorded video

As the previous block is nearly impossible to make with the available development
board, this part cannot be either done nor tested. If the SDRAM chip was around
256 MB, a video could have been recorded and processed in the same time. To have
a better processing, the optimal solution should have used two chips of 256 MB, one
as the processor RAM, one for the hardware blocks to record the video.

5.2.4 Access recorded video

(a) No-data operation

(b) Read-block operation

(c) Write-block operation

Figure 5.8: Di�erent operation on the SD-Card: those diagrams enlighten the use of
a 2-bits communication channel between the FPGA and the SD-Card [Ass06].

5.3 Intelligent camera 67

The way to use the SD-Card with the FPGA is to get a 1-bit access to the SD-
Card. The SD-Card controller module of the custom of the Nios II used in this
project has a 3-bits output: one bit for the clock, one bit for the command and one
bit for the data. Figure 5.8(a) shows a no-data operation with the SD-Card, Figure
5.8(b) shows a basic read-block operation and �nally Figure 5.8(c) shows a basic
write-block operation (those �gures are on page 66).

Figure 5.9: Block diagram of the SD-Card custom driver

There are no existing IP-block to use easily the SD-Card. The time to develop a
speci�c custom driver to use it during the project was too long. Moreover, the aim
of this project was to implement an intelligent surveillance video camera, using the
SD-Card as a tool to store data, not to develop a custom SD-Card driver. This part
was not done, but can be considered as a long term future work. In fact, this block
should contained the main commands to send to the SD-Card and an input to send
the data. Figure 5.9, on page 67, brie�y describes how the block should look like to
�t in the system.

5.3 Intelligent camera

This section describes mainly the implementation of the motion detection algo-
rithm. A �rst draft was made to make all measurements in Chapter 4. The �nal
version, detailed below is the draft adapted to the speci�cities of the Nios II pro-
cessor and using the inputs and outputs available to it.

5.3.1 Motion detection algorithm

The algorithm was in c-code for being studied. From this working draft, a Nios II
version of the code was written. The main points that have been changed concerned:

• strings: the Nios II does not recognised char * type as a string but char[x]
(with x the number of character);

• �les path: the draft used desktop path to access �le. With the use of the host
�le system, those paths had to be changed (as explained in Chapter 6, page
69);

68 5. Implementation

• small bugs.

For more details about the algorithm, please see Chapter 4 for the analysis and
design and Chapter 6 for the results of tests and experiments.

Although the aim of studying the algorithm by calculating metrics and pro�ling
it to get an idea of the hardware and software co-design, the algorithm is fully
implemented in software. The �rst reason is that the tool, C2H, provided in Altera
development software, is very hard to use. The second reason is that, if the code to
be accelerated does not ful�l some requirements, there can be no acceleration. The
�nal reason is that the main bottlenecks of the algorithm are memory accesses, and
this cannot be accelerated, except by adding other memory chips.

5.4 Non implemented blocks

As the recording and storage parts were not fully implemented, the following
blocks were not implemented. It is however possible to implement them by using the
previously proposed solution, which is described in Chapter 7.

• IP camera: this part should has presents the implementation of a web-server
on the softcore processor. As it is conditioned by the implementation of the
SD-Card driver, because the aim of this block is to access data stored into the
SD-Card, the web-server is not implemented.

• Optimized intelligent camera: this part of the project should have presents the
implementation of the video compression algorithm. As no videos are stored
by the system, it is impossible to implement this feature.

• Complete intelligent IP camera: this block should have presents the imple-
mentation of all the blocks together. As not all the blocks are working or
implemented, the implementation of this part is not done.

Chapter 6
Testing & Experiments

Figure 6.1: Location in the A3 paradigm, highlighted by the purple circle

The �rst section of this chapter deals with the testing scenarios used to validate
the implementation, to be sure to have a solid fully functional basis on which the
implementation of other blocks can be followed through. The second section de-
tails the di�erent experiments made to ensure that the implementation meets the

69

70 6. Testing & Experiments

(a) Global location (b) Elaborated location

Figure 6.2: Location in the Rugby Meta-Model, highlighted by the grey bar on (a)
and grey arrows on (b).

requirements and constraints de�ned in Chapter 1 and Chapter 3 (mainly the speed
criteria).

6.1 Testing

This section presents the main test scenarios used to verify that the actual imple-
mentation is functioning as expected. The section is therefore mainly organized as
the previous chapter, with each step of the implementation tested one after another.

6.1.1 Transmission chain testing

The �rst step of the implementation needs to function as required for the project
to continue. The test scenario used here is quite straightforward, as the main func-
tionalities to be tested are the capture of a picture with a video camera and the
display of this picture on a VGA screen. The scenario consists in capturing a picture
with the camera sensor and displaying it on the VGA screen.

6.1.2 Motion detection algorithm testing

In order to validate the motion detection algorithm, the �rst draft was tested on
a desktop computer, to be pro�led and analysed with di�erent metrics to calculate
the algorithm's complexity for instance.(please refer to Chapter 4). Then, once the
draft validated and the Nios II implemented, the �nal version of the algorithm is to
be tested. The images used to test this algorithm both on the desktop computer and
on the Nios II are the same. Those two pictures have the following characteristics:

6.2 Experiments 71

• Resolution: 640x480 pixels;

• Colour depth: 24 bits;

• Moving element size: 450x300 pixels.

(a) Frame 1: background (b) Frame 2: new frame

(c) Result of motion detection

Figure 6.3: Results of motion detection experiments: frame (a) is considered as the
background frame, while frame (b) is the current frame. It is subtracted by the
background to detect motion. (c) is the result of the comparison: black pixels are
when no motion is detected and grey pixels enlightens the motion.

The results obtained are satisfactory, as the algorithm is able to detect a motion.
The result of the test, running on the Nios II is shown in Figure 6.3 (page 71). This
example shows that the algorithm running on the Nios II has the same behaviour
as when running on a desktop computer.

6.2 Experiments

This section presents the main experiments done to verify that the implementation
satis�es the requirements and constraints of the system.

72 6. Testing & Experiments

6.2.1 Transmission chain testing

During this phase, several experiments were done to understand the existing blocks
to adapt them to the project requirements and constraints in a �rst experiment.
Then, after having modi�ed the blocks, an experiment was performed to observe the
data acquisition and to validate the tests results.

6.2.2 Motion detection algorithm experiments

The experiments scenario is quite simple: compare two by two a set of 30 pictures.
Those pictures have the following characteristics:

• Resolution: 150x150 pixels;

• Colour depth: 24 bits;

• Moving element size: 15x15 pixels (in Figure 6.4, the small �penguin� picture).

The pictures are located on the host computer, using the �host �le system� possibility
of the Nios II IDE, to facilitate results extraction and image storage on the FPGA.

The results obtained are satisfactory, as the algorithm is able to detect a motion on
a quite di�cult background. Examples of the results are shown in Figure 6.4 (page
73). As the frames are subtracted, when no motion is detected, the result is black
pixels. However, if a motion is detected, the result displays the pixels (in grey-scale
value) considered as di�erent form the background thus detected as moving objects.
Those examples underline the complexity of the background. They also show that
the resulted pictures only display the pixels in motion.

6.2 Experiments 73

(a) Frame 1: background 1 (b) Frame 2: new frame 1

(c) Result of motion detection 1 (d) Frame 3: background 2

(e) Frame 2: new frame 2 (f) Result of motion detection 2

Figure 6.4: Results of motion detection experiments: frames (a) and (d) are con-
sidered as background because they are the �old� frames. Frames (b) and (e) are
the current frames, and are subtracted by the background to detect motion. Frames
(c) and (f) are the results of the comparisons: black pixels are when no motion is
detected and grey pixels enlighten the motion.

Chapter 7
Conclusion and Future Work

The �rst section of this chapter presents the conclusions of the project. The
second section lists possible future work on this project, both for short- and long-
term perspectives.

7.1 Conclusion

The �rst part of the conclusion is a reminder of the problem statement de�ned
in the �rst chapter. Then the work done to attempt answering this question is
summarized. Finally, a �nal answer is given and a possible way to answer di�erently
to this problem is proposed.

7.1.1 What has been done to answer the problem

As de�ned in Chapter 1, the problem statement of this project is:
Is it possible to implement an intelligent IP video surveillance camera on
a Field Programmable Gate Array (FPGA) platform to optimize video
surveillance?

The following paragraph summarizes the main issues encountered during this
project and then the main fully operational blocks that were implemented are de-
scribed.

Problems encountered

The main technical problem encountered concerns memory. The �rst point is
that it is impossible to give a read (or write) access of a single memory chip to two
(or more) di�erent blocks. That prevents con�icts on this speci�c chip. But that
also forbid the softcore processor to access the memory where hardware blocks write
pictures captured by the sensor. The second point is that the resolution of the sensor
is quite big (640x480 pixels) and colour values of pixels are stored not compressed.
This means that the memory chip must be bigger that the one used to record more
than a few picture (less than ten now). Those memory problems have been a crucial
concerns during the whole developpement.

75

76 7. Conclusion and Future Work

A second technical problems is the SD-Card access. In facts, it requires to develop
a custom driver from the SD-Card speci�cation. Which means wasting a lot of time
to study and understand this speci�cation before implement and testing a driver just
to use a tool.

An important point which became a problem is that even if there are Intellectual
Property (IP) blocks for some parts of the system, it is neither easy nor straightfor-
ward to implement them together and get a �nal working prototype. In facts, each
IP blocks has its own architecture requirements. Therefore, if one want to lower the
development time by using IP blocks, most of the time one did not succeed by wast-
ing time trying to �t the selected IP block to the desired system. The knowledge
required to ease those IP blocks integration and communication is far from being
negligible.

Another problem encountered is the skills required to use development tools and
languages used during this project. In facts, the tools are quite speci�c and are
dependant of the selected platform (Altera or Xilinx). This require to make
choice very early during the project, often without the most complete view of it.
Moreover, the learning curve is very steep in the beginning, the developers and de-
signers have to learn how to use the provided tools and become e�cient while using
new languages. This learning curve should be minimized during early design choice,
mostly because those di�culties reveal themselves along the project progresses. But
it still stays high, as hardware and software co-design implies mixing di�erent lan-
guages and tools together, and therefore understanding the communication between
those. Which is a core issue as experienced with the memory management problem.
Especially for people coming from a more software oriented development �eld and
who are not new to the Hardware/Software Co-Desisgn concept. Moreover some of
the documentations that could have been helpful have been published a few weeks
before the end of this project, making them nearly impossible to bene�t from them.

Operational blocks

Even if the previous problems did not allow the project to be fully �nished, the
following blocks are functioning according to the requirements and constraints pre-
viously de�ned. In facts, the transmission chain, the fundamental block, upon which
the rest of the implementation is done, work perfectly.

The softcore processor block is also completely working. Moreover, some com-
ponents can be added in this block to enhance the possibilities. With the softcore
processor running, the motion detection algorithm is also fully implemented.

As detailed in Chapter 5 (page 55), studies about recording, storage and SD-Card
have also been done. The speci�cations of constraints of the system and the detailed
algorithm analysis and design also provide a clear methodology to continue this
project.

7.2 Future works 77

7.1.2 Answer to the problem

The answer to the problem statement seems to be �yes� .It is presumably possible
to implement an intelligent IP video surveillance camera on a FPGA platform to
optimize video surveillance. Several points highlight this. In facts, with another
development platform and a larger time frame, the main problem encountered could
have been solved very The next paragraph presents a possible solution. Last but not
least, the implementation of the algorithm on the FPGA is functioning. Therefore,
recording and storing data only when an event happens is possible and �just� a
step further. So optimizing video surveillance seems to be possible by using FPGA
platform.

7.1.3 Solution proposal for a complete operational system

As explain above, neither of the accessible development board �tted perfectly the
system design. A solution to achieve a prototype to show that using an FPGA can
enhance a video surveillance camera is to build a custom development board. As a
matter of facts, this custom board should present the following characteristics:

• Connectors:

� VGA;

� Ethernet;

� JTAG;

� GPIO;

� Switches;

� Buttons;

� SD-Card controller.

• Chips:

� FPGA (the Cyclone II was powerful enough);

� SDRAM: 2x256 MegaBytes (one chip for the Nios II part and one for
the hardware part);

7.2 Future works

This section give a non exhaustive list of possible future work. Short term future
works are presented �rst, then followed by the long term ones.

7.2.1 Short term future works

This section presents the short terms future works to continue this project.

78 7. Conclusion and Future Work

A �rst possibility could be to study and implement the SD-Card driver (or con-
troller) especially with the new data availabe on the Altera website concerning
this particular point. It allows data to be read and write from the Nios II on an
SD-Card and, therefore, avoids using host �le system solution to test and experi-
ments the algorithm. Which should also speed up the algorithm processing speed by
avoiding the latency and overhead added by using the debug mode of the Nios II
and the JTAG cable.

A second short term improvement should be the implementation of some part
of the Motion Detection algorithm directly into hardware function available for the
Nios II . The use of the C2H tools could be planed for instance.

A third short term possibility is to implement the web-server to allow a user to
access data faster than through the JTAG connection. It also enhance the imple-
mentation of the SD-Card controller.

7.2.2 Long term future works

This section presents the long terms future works to improve this project

Recording and storing chain

As this part of the project require a speci�c development platform, it is considered
as a long term future work. Moreover, this implementation could underline the
answer to the problem given in the previous section. In fact, to implement this
chain, it requires �rst to develop a custom development platform, as described in
Section 7.1.3.

Video compression algorithm

A goal of this project was to implement a video compression algorithm. This allows
the owner to save more space and money by reducing the number of memory card
required to store surveillance data. A possible future work could be to implement
this algorithm upon the video surveillance camera. This part can enlighten the
advantages of having a platform based on an FPGA rather on a single processor:
having two algorithms (motion detection and video compression) running on one
chip also reduce data treatment costs.

Power consumption

Another constraint could be the power consumption as surveillance systems could
be use in no-electricity environment. This constraint is not so relevant because even
for surveillance systems, they are mostly plugged to a electricity source. Moreover,
the constraint will depend mainly of the platform used. As a future work, one idea
could be to reduce the power consumption of the global system. It can be done either
by reducing or optimized the area used by the system on the FPGA , but also by
studying the possibility of an ASICs implementation with a fully working prototype
on FPGA development platform (including all chips in one ASIC: memories, FPGA
, etc.).

Part II

Appendices & References

79

Glossary

This appendix presents several de�nitions.

A Hardware/software co-design de�nition

One of the key notion in this project is the hardware and software co-design
[Wol03]. This concept has been created a little more than a decade ago in response
to the raise of the embedded systems, the complexity and the heterogeneity of those
systems. As an example, already in 1998, 98% of the processors were found in em-
bedded systems. Embedded systems are single-functionned, tightly constrainted,
reactive and realtime systems. When designing a embbedded system, the parti-
tionning between hardware and software is a crucial point. Hardware has better
performances but is more di�cult to code contrary to software.

Figure 3.3, on page 27, enlightens that to deal with time and performance con-
straints, a designer has to make choices about partitionning. This partitionning
and scheduling are the 2 main dimensions of the Co-Design. Software-hardware Co-
Design can be summarized in the following way.
�Software/hardware co-design provides a way of customizing the hardware and the
software architectures to complement one another in ways which improve system
functionality, performance, reliability, survivability and cost/e�ectiveness.�[SFL85]

B OS

It is the software component of a computer system that is responsible for the
management and coordination of activities and the sharing of the resources of the
computer is called an operating system. The Operating System (OS) acts as an
host for application programs that are running on the machine. As a host, one of
the purposes of an operating system is to handle the details of the operation of the
hardware.

C embedded OS

An embedded operating system is anOS for embedded systems. TheseOS are spe-
cialized, compact and e�cient. They don't have all the functions the non-embedded
computer have because they don't need them. The embedded OS are designed to
operate as real-time operating systems.

81

82 . Glossary

D Hardware Description Language de�nition

In electronics, an Hardware Description Language or HDL is a computer language
for formal description of electronic circuits. It can describe an operation made by
a circuit, its design and organization. It can also simulate and tests to verify this
operation.

A Hardware Description Language is written in standard text-based and describes
the temporal behaviour circuit structure of an electronic system (for example FPGA).
di�ering from the software programming languages, an HDL's syntax and semantics
take in account the time and the concurrency between processes. The languages
describing the circuit connectivity between a classi�ed hierarchy of blocks are netlist
languages.

Executable speci�cations for hardware can be written with HDLs. The simulation
program as it is takes also the time in account allow the programmers to model a
piece of hardware before it is created physically. With the hardware descriptions a
software program called a synthesizer can infer hardware logic operations from the
language statements and produce an equivalent netlist of generic hardware primitives
to implement the speci�ed behaviour on the platform.

As designing a system in HDL is generally much harder and more time consuming
than writing the equivalent program in a C like language. To solve this di�culty,
there has been much work done on automatic conversion of C code into HDL.

E System Description Language de�nition

A System Description Language (SDL)is more than a HDL because it can be used
for designing the whole system, unlike HDL which are used only for coding blocks.
Concerning their characteristics, the SDLs are:

• Made for System-on-Chip design

• Used to move to Higher levels of abstraction

• Used to design a complete system -> to be completed

F high-level programming language de�nition

A short de�nition of a high-level programming language is that they may be more
abstract, easier to use or more portable across platforms than low-level languages.

High level languages are supposed to make complex programming simpler and low
level languages make more e�cient code. They consume more memory, have a larger
binary size and are slower at the execution.

G softcore processor de�nition 83

In fact the di�erence between low and high level languages could be very relative,
originally, C language was considered as high level language and now depending on
the context, it can be also considered as a low level language because it still allows
memory to be accessed by address, and provides direct access to the assembly level

G softcore processor de�nition

A softcore processor processor is a processor implemented in to a reprogrammable
system like a FPGA . It is a System on Programmable Chip or SoPC.

the softcore processor is a very �exible architecture, it can be recon�gured at any
time, contrary to a hardcore processor whose core has it own non- reprogrammable
chip. A softcore processor can be adapted to the material constraints (performances,
resources, power consumption,...). However, softcore processor performances are
inferior to the hardcore ones but a softcore processor is easier to maintain and can
implemented into an ASIC (Application Speci�c Integrated Circuit).

H Embedded FPGA de�nition

FPGA means �eld-programmable gate array and stands for a semiconductor de-
vice containing programmable logic components called �logic blocks� including mem-
ories, and programmable interconnects.The designer can program the logic blocs and
the interconnects like a one-chip programmable breadboard.

In the design �ow of a new product, the early designs are using FPGAs then
migrated into a �xed version that more resembles an ASIC. ASIC means application-
speci�c integrated circuit and stands for an an integrated circuit customized for a
particular use. To be con�gured, the FPGA has to be described by a logic circuit
diagram or or a source code using a hardware description language (de�ned in another
paragraph).

Table H, page 83, summarizes the pros and the cons of the FPGAs.

Pros Cons

Time-to-market shorter than
ASICs

Slower than ASICs

Development cost cheaper
than ASICs

More expensive for mass pro-
ductions than ASICs

lower non-recurring engineer-
ing costs than ASICs

More power consuming than
ASICs

re-programmable in the �eld

Table 1: Pros and cons of FPGA : despite its lower performances compared to
ASICs, FPGAs are more �exible and easy to develop

84 . Glossary

I Other acronyms

I.1 SD de�nition

SD stands for Secure Card, a type of memory card.

I.2 MMC de�nition

MMC stands for Multimedia Card, a type of memory card.

I.3 ASIC de�nition

ASIC stands for Application Speci�c Integrated Circuit.

I.4 SoPC de�nition

SoPC stands for System on Programmable Chip.

Algorithm simpli�ed call graph

Here is the simpli�ed call graph of the software written in C, based on the algorithm
used in the project, ran on a desktop computer.

Figure 1: Simpli�ed call graph of the C version of the algorithm: The green boxes
are Desktop version speci�c (used to load and save BMP �les) and the red boxes are
the algorithm parts implemented in c

85

Time plan

The time plan of the project is Figure 2 on page 88.

87

88 . Time plan

Figure 2: GANTT Diagram of the Project

CD-Rom content

The CD-Rom of the report contains the following items:

• Electronic version of the present report;

• RTL view of all hardware blocks;

• Set of 30 pictures and results used in the algorithm experiment;

• Algorithm source code (Nios II version);

• Hardware blocks source code.

89

References

[AAS+07] Rasmus Abildgren, Aleksandras, Saramentovas�, Paulius Ruzgys�, Peter
Koch, and Yannick Le Moullec. Algorithm-architecture a�nity � paral-
lelism changes the picture. 2007.

[Air83] United States Airforce. VHSIC Hardware Description Language , 1983.

[ASR+05] Rasmus Abildgren, Aleksandras Saramentovas, Paulius Ruzgys, Peter
Koch, and Yannick Le Moullec. Algorithm-architecture a�nity � paral-
lelism changes the picture. Aalborg University, 2005.

[Ass06] Technical Committee SD Card Association. SD Speci�cations, Part 1:
Physical Layer, Simpli�ed Speci�cation, 2006.

[Cel05] Celoxica. Handel-C Language Reference Manual, 2005.

[CG05] Cadence and Mentor Graphic. Open SystemC Language Reference Man-
ual, 2005.

[CGPP03] Rita Cucchiara, Costantino Grana, Massimo Piccardi, and Andrea Prati.
Detecting moving objects, ghosts and shadows in video streams. 2003.

[Com07] International Standard Comittee. Programming language C , 2007.

[Cor06a] Altera Corporation. DE2 Development and Education Board User man-
ual 1.4 (Nios II, Cyclone II), 2006.

[Cor06b] Xilinx Corporation. RC203 development and education board Datasheet,
2006.

[Cor07] Altera Corporation. Nios II Processor Reference Handbook, 2007.

[Cor08] Altera Corporation. Stratix Device Handbook, 2008.

[Cus03] Maurice Cusson. La vidéosurveillance : les raisons de ses succès et de ses
échecs. http://www.criminologie.com/cusson/cusvideo.pdf, 2003. written
in French, last visit date: April 2008.

[Dev98] Nicolas Devillard. Fast median search: an ansi c implementation. 1998.

[Döm03] Rainer Dömer. The SpecC Language. 2003.

91

92 References

[DTm03] Multi-Granularity Metrics for the Era of Strongly Personalized SOCs,
2003. Proceedings of the Design,Automation and Test in Europe Con-
ference and Exhibition (DATE'03).

[fou06] Python Software foundation. Python reference manual , 2006.

[Gaj88] Daniel D. Gajski. Silicon Compilation. Addison-Wesley Publishing Com-
pany, 1988.

[GHC07] Jiri Gaisler, Sandi Habinc, and Edvin Catovic. GRLIB IP librairy User's
manual, 2007.

[GKM] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof:
a Call Graph Execution Pro�ler.

[HJK99] Ahmed Hemani, Axel Jantsch, and Shashi Kumar. The rugby model: A
framework for the study of modeling, analysis, and synthesis concepts in
electronic systems. Proceedings of Design Automation and Test in Europe
(DATE), 1999.

[HJK00] Ahmed Hemani, Axel Jantsch, and Shashi Kumar. The rugby meta-
model. Electronic System Design Lab, 2000.

[IDT95] Image di�erence threshold strategies and shadow detection, 1995. Pro-
ceedings of the 6th British Machine Vision Conference.

[Inc07] Xilinx Incorporation. MicroBlaze Processor reference Guide, 2007.

[Inc08a] Altera Incorporation. Nios II Software Developer's Handbook, 2008.

[Inc08b] Altera Incorporation. Quartus II Development Software Handbook v8.0,
2008.

[inc08c] The MathWorks incorporation. Matlab 7 Desktop Tools and Development
Environment, 2008.

[KG83] Robert H. Kuhn and Daniel D. Gajski. Guest editor's introduction: New
vlsi tools. IEEE Computer, pages 11-14, 1983.

[Koc] Peter Koch. Hardware/Software Codesign constraints.

[Lab02] Jean J. Labrosse. MicroC/OS-II. CMP Books, 2002.

[Lae07] Arnim Laeuger. Sd/mmc bootloader.
http://www.opencores.org/projects.cgi/web/spi_boot/overview, 2007.
last visit date: April 2008.

[Lu] Ping-Hong Lu. Light source motion tracking (using terasic de2 board).
http://instruct1.cit.cornell.edu/courses/ece576/FinalProjects/f2007/pl328/pl328/index.html
: Visited 22/05/2008.

[MDA+05] Yannick Le Moullec, Jean-Philippe Diguet, Nader Ben Amor, Thierry
Gourdeaux, and Jean-Luc Philippe. Algorithmic-level Speci�cation and
Characterization of Embedded Multimedia Applications with Design
Trotter. Journal of VLSI Signal Processing 42, 2005.

REFERENCES 93

[Mou08] Yannick Le Moullec. ASPI8-S2-11 : HW/SW Co-design - MM5 : Auto-
mated HW/SW partitioning and metrics for HW/SW partitioning Slides,
2008.

[oI] International Commission on Illumination. Itu-r recommendation bt.601-
2. Encoding parameters of digital television for studios.

[Pic04a] Massimo Piccardi. Background subtraction techniques: A review. 2004
IEEE International Conference on Systems, Man and Cybernetics, IEEE,
2004.

[Pic04b] Massimo Piccardi. Background subtraction techniques: A review. The
ARC Centre of Excellence for Autonomous Systems (CAS) Faculty of
Engineering, University of Technology (UTS), Sydney, 2004.

[Por07] Maciej Portalski. Hardware aspects of �xed relay station design for
ofdm(a) based wireless relay networks. Master's thesis, Aalborg Uni-
versity, Department of Electronics Systems, 2007.

[PT05] David Pellerin and Scott Thibault. Practical FPGA Programming in C.
CMP Books, 2005.

[Ros95] Paul L. Rosin. Thresholding for change detection. 1995.

[SFL85] Connie U. Smith, Geo�rey A. Frank, and John L. An architecture design
and assessment system for software/hardware codesign. 1985.

[TDMP85] Thomas, Donalda, Moorby, and Phillip. The Verilog Hardware Descrip-
tion Language, 1985.

[tea07] �Teaching team�. Applied signal processing and implementation, intro-
duction slides. 2007.

[Tec06] Terasic Technologies. TRDB_DC2 Camera Development Package User
Guide, 2006.

[Uni89] Oxford University. Oxford english dictionary. 1989.

[Wika] Wikipedia.org. C++ Programming. http://en.wikipedia.org/wiki/C%2B%2B
: Visited 22/05/2008.

[Wikb] Wikipedia.org. Performance analysis.
http://en.wikipedia.org/wiki/Performance_analysis : Last Visited
22/05/2008.

[Wikc] Wikipedia.org. Software metric. http://en.wikipedia.org/wiki/Software_metric
: Visited 22/05/2008.

[Wikd] Wikipedia.org. Verilog (internet). http://en.wikipedia.org/wiki/Verilog
: Visited 22/05/2008.

[Win06] Hermann Winkler. Ddr sdram controller core.
http://www.opencores.org/projects.cgi/web/ddr_sdr/overview, 2006.
last visit date: April 2008.

94 References

[Wir] Niklaus Wirth. Algorithms + Data structures = Programs.

[Wol03] Wayne Wolf. A Decade of Hardware/Software Codesign. IEEE, 2003.

	I Main Report
	1 Introduction
	1.1 Surveillance systems
	1.2 Video Camera and Intelligence
	1.3 Problem statement
	1.4 Goals
	1.4.1 Selection and simulation of the event detection algorithm
	1.4.2 Transmission chain
	1.4.3 Recording and Storage Chain
	1.4.4 Intelligent Camera
	1.4.5 Optimized Intelligent Camera
	1.4.6 Complete Intelligent IP Camera

	1.5 Tasks
	1.5.1 Capture image with the camera sensor
	1.5.2 Display image on a screen
	1.5.3 Record captured video
	1.5.4 Store recorded video
	1.5.5 Access recorded video
	1.5.6 Event detection algorithm
	1.5.7 Video compression

	1.6 Structure of the document

	2 Design Models
	2.1 Description of the A3 paradigm
	2.2 Description of the Rugby Meta-Model
	2.3 This project described using the design models
	2.3.1 The A3 applied to our project
	2.3.2 The Rugby Meta-Model applied to our project

	3 System Description
	3.1 System constraints analysis
	3.1.1 Use of FPGA
	3.1.2 Time constraint
	3.1.3 Data constraints
	3.1.4 Other constraints

	3.2 Sketching the initial architecture
	3.2.1 Hardware/software co-design
	3.2.2 softcore processor definition
	3.2.3 The need for a softcore processor
	3.2.4 The need for an embedded OS

	3.3 Possible options to satisfy the system constraints
	3.4 FPGA platforms
	3.4.1 Altera Cyclone II on Terasic DE2 board
	3.4.2 Altera Stratix
	3.4.3 Xilinx Virtex II on Celoxica RC203 board

	3.5 Programming and simulation languages
	3.5.1 Hardware Description Languages (HDL)
	3.5.2 System Design Languages (SDL)
	3.5.3 High Level Languages

	3.6 Softcore processors
	3.6.1 Nios II
	3.6.2 Microblaze
	3.6.3 SPARC and LEON
	3.6.4 Open softcore processor

	3.7 Embedded OS
	3.7.1 uCLinux
	3.7.2 eCos
	3.7.3 MicroC/OS-II

	3.8 Choices made to meet the constraints and requirements
	3.8.1 FPGA platform
	3.8.2 Camera sensor
	3.8.3 Programming languages
	3.8.4 softcore processor
	3.8.5 Embedded OS

	4 Motion Detection Algorithm
	4.1 Definition
	4.2 Analysis
	4.3 Design
	4.3.1 Background Generation
	4.3.2 Thresholding
	4.3.3 Selecting an Efficient Median Search Algorithm

	4.4 Profiling
	4.5 Metrics
	4.5.1 Chosen Metrics
	4.5.2 Results
	4.5.3 Conclusion

	5 Implementation
	5.1 Transmission chain
	5.1.1 Image capture
	5.1.2 Display Image on a Screen
	5.1.3 Other Features

	5.2 Recording and storage chain
	5.2.1 Implementation of the Nios II
	5.2.2 Record captured video
	5.2.3 Store recorded video
	5.2.4 Access recorded video

	5.3 Intelligent camera
	5.3.1 Motion detection algorithm

	5.4 Non implemented blocks

	6 Testing & Experiments
	6.1 Testing
	6.1.1 Transmission chain testing
	6.1.2 Motion detection algorithm testing

	6.2 Experiments
	6.2.1 Transmission chain testing
	6.2.2 Motion detection algorithm experiments

	7 Conclusion and Future Work
	7.1 Conclusion
	7.1.1 What has been done to answer the problem
	7.1.2 Answer to the problem
	7.1.3 Solution proposal for a complete operational system

	7.2 Future works
	7.2.1 Short term future works
	7.2.2 Long term future works

	II Appendices & References
	Glossary
	A Hardware/software co-design definition
	B OS
	C embedded OS
	D Hardware Description Language definition
	E System Description Language definition
	F high-level programming language definition
	G softcore processor definition
	H Embedded FPGA definition
	I Other acronyms
	I.1 SD definition
	I.2 MMC definition
	I.3 ASIC definition
	I.4 SoPC definition

	Algorithm simplified call graph
	Time plan
	CD-Rom content
	References

