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ABSTRACT:

This report documents the implementation of
swarm robots. The novel designed robots are
introduced and built up. The swarm robots are
designed to be perceptive and cognitive. Each
micro robot is equipped with six couples of IR
transmitter and receiver, six ambient light sen-
sors, one color sensor and one global IR receiver.
The maneuverability is provided by two motors
on each side. An MCU is used to coordinate the
whole system.
Based on the hardware functionalities, algo-
rithms are developed to provide a signal ro-
bot with several capabilities when doing navi-
gation, including communication, distance mea-
surement, obstacle avoidance, light source ap-
proaching and color reaction.
With these capabilities, swarm robots can work
together. The algorithms of two robots’ forma-
tion with obstacle avoidance are developed and
validated in both simulation and experiments.
Two approaches to keep the formation are dis-
cussed and compared.
A collective task is planed and separated into two
subtasks. One is to find the food and move the
food. The other one is to return home with se-
curity guard. For each subtask, separated algo-
rithms are developed respect to the responsibility
of each robot and validated by implementations
of two robots.





Preface

This thesis is submitted for Master at the specialization of Intelligent Autonomous Sys-
tems, Section of Automation and Control, Aalborg University. The work has been carried
out in the period from February 1st 2007 to October 1st 2007.

The main topic of this project is the implementation of swarm robots’ behaviors. The sim-
ulation programs are written in steve Language by using free softwares Breve V2.5.1

and Jasmine simulator V7. The programs for the real implementations are written in
Embedded C Language and complied by GCC V4.1.2. The Embedded C programs
are tested in free software Visual Micro Lab V3.12. The AVR Studio V4.13 is used to down-
load the programs. The results of conducted work are illustrated by MATLAB R2007a.

The enclosed CD-ROM contains this report in .pdf format, data sheets, references and
source codes. The videos recorded from simulations and real experiments are also in-
cluded.

The thesis is intended for supervisors, examiner, students and others that might have in-
terest in swarm robots.
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Chapter 1

Introduction

The significations of swarm robots, formation and collective behavior are introduced
firstly. Then the research backgrounds in two specific areas are addressed briefly. The
motivation, scope, objectives and contributions of this project are presented continuously.
In the end, the outline of the thesis is stated.

1.1 Swarm robots

The technique of robotics has achieved a significant progress in the recent decades. A lot
of different kinds of Robots have been developed and applied widely for both manufac-
turing and scientific research. Instead of humans, robots can perform tough and repeated
jobs more accurate and efficient as long as the designers let them known what they should
do and how to do it. Another excellent advantage is that the robots can be used in environ-
ments unsuited for human, allowing us to explore these areas without the risk of human
life.

Nowadays, swarm robots, that is multi-robot systems, are being explored extensively due
to their better functionalities for specific objectives in parts of industrial and scientific
areas.

Swarm robots is a novel approach to the coordination of large number of relatively simple
physical robots. It is inspired form the observation of social insects, such as ants, termites,
wasps and bees. These insects shows how a large number of simple individuals can inter-
act to create collectively intelligent systems. Social insects are known to coordinate their
action to accomplish tasks that are beyond the capabilities of a single individual. Most of
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2 Introduction

social insects coordination capabilities are much beyond the reach of current multi-robot
systems.[sro]

Parker has presented the current state of the art in multi-robot systems. His work has iden-
tified eight primary research topics concerning multi-robot systems, including biological
inspirations, communication, architectures, localization, object transport and manipula-
tion, motion coordination, reconfigurable robots, and learning[Par00]. In this project, in
order to demonstrate the swarm robots’ behaviors, formation and collective behavior are
implemented. During the implementation, some topics identified by Parker are covered,
including communication, object transport and motion coordination.

1.2 Formation

It is easy to see formation behaviors in the nature. A flock of animals are marching with
some regular formations in order to maximize their capabilities to percept the environment
and response quickly when encountering emergencies. By keeping distance from each
other and using communication to share the information, a flock of animals can achieve
the bigger opportunities to to prey or avoid predators.

In analogy to the animals, the same idea has derived is that swarm robots could similarly
get the benefits by using formation tactics. Formation allows each individual team mem-
ber to concentrate its own sensors on a portion of environment. Then the information
from all the members can be shared in order to ensure full coverage of an environment.
This approach is potentially applicable in many other domains such as search and rescue,
agricultural coverage tasks and security patrols[BA98].

For clearly understanding the benefits from formation, it would take the satellite formation
as an example to illustrate[NG01].

The satellite formation flying permits scientists to obtain measurements by combining dif-
ferent data from several satellites rather than mounting all the instruments on one costly
satellite. Multiple scientific instruments often present competing and conflicting require-
ments on a satellite design and its operation. In reality, complexity of a system is inher-
ently easy to be faulty. A satellite with less functions decreases the complexity in the
design stage since engineers need less effort to consider the interference between compo-
nents of to design fault-tolerant control to ensure one satellite working permanently.

The above advantages ensure to collect data conveniently and correctly. The following
is concerning the characteristic of data themselves. The sensitivities of some scientific
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instruments are increased by expanding the effective observation baselines, that is sepa-
rated distance. By distributing these scientific instruments over separated satellites, the
formation flying enables to collect expected data that are unavailable from a single satel-
lite, such as stereo views or simultaneously collecting data from a same ground scene in
different angles.

It can be seen that formation is necessary to be performed for sake of collecting data
effectively and efficiently.

1.3 Collective behavior

The collective behavior can be described as a group of robots working on a common job
by cooperation. Compared with the meaning of formation, this definition is relatively
wide and general since different collective behaviors depend on different common jobs.
While formation can be treated as one approach or process to realize the final aimed job.
For different objectives, the swarm robots would be assigned with different common jobs,
for example, mapping, exploration, transportation, and so forth.

In this project, a specific collective behavior, that is object transportation, is mainly con-
sidered. This task requests multiple robots to cooperatively carry, push, or pull a common
object to a specific area. Single robot has limited strength to move an heavy object, or
keeps balance of an big object. These problems can be solved by using swarm robots.
They can distribute the mass of an object and also they can change the place to hold an
object so as to fit different terrains.

1.4 Background

Formation

The work in formation generation[TaS89] and keeping[BA98][Wan89] by swarm robots
has been investigated by many researchers before.

A review of efforts exerted on the area of the multi-robot formation has been presented
in [BA98] in detail. In the following, the background of formation is described briefly
referring to the previous works.

An early application of artificial formation was to simulate the flocks of birds and schools
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of fish for computer graphics. The dynamics and stability of multi-robot formation have
drawn recent attention. Wang[Wan89] developed a strategy for robots’ formation where
individual robot is given a specific position to maintain relative to a leader or neighbor.
Wang’s analysis centered on feedback control for formation maintenance and stability
of the resulting system. It did not include integrative strategies for obstacle avoidance
and navigation. Chen and Luh[CL94] implemented the formation generation by distrib-
uted control. Large groups of robots cooperate to move in various geometric formations.
Chen’s research also centered on the analysis of group dynamics and stability and did not
provide for obstacle avoidance.

There are other related paper of interest on formation control for robot team. [Par94] con-
cerns the coordination of multiple heterogeneous robots and simulates a military move-
ment, that is, one group moves a short distance while the other group overwatches for
dangers. [EYM94] and [Yam97] investigate how robots can use only local communica-
tion to generate a global grouping behavior. Similarly, [Gag92] examines how robots can
use local sensing to achieve group objectives like coverage and formation maintenance.

Based on the researches mentioned above, Tucker and Ronald did further contribution on
formation control[BA98]. In their work, reactive behaviors for four geometric formations
and three formation reference types are successfully simulated and implemented in two
types of mobile multi-robot systems. The robot in one system is using 16 ultrasonic range
sensors for hazard detection and controlled by onboard laptop computer running Linux.
They communicate over a wireless network supporting Unix sockets via TCP/IP. The
other robot is unmanned ground vehicle equipped with DGPS as position sensor, control
computers and actuation devices for steering and speed control.

Collective behavior

Enabling swarm robots to move an object cooperatively has been a long-standing, yet
difficult, goal of multi-robot systems. Many researches have dealt with this area. But,
fewer of these projects have been demonstrated on physical robot systems.

Numerous variations on this task area have been studied, including constrained and un-
constrained motions, compliant versus non-compliant grasping mechanisms, cluttered
versus uncluttered environment, global system models versus distributed models. The
most demonstrated task involving cooperative transport is the pushing of objects by multi-
robot teams [DRJ95][SB93]. This task is inherently easier than the carry task, in which
multiple robots must grip the common object and navigate to a destination in a coor-
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dinated fashion[ZWN00][OKC96]. A novel form of multi-robot transportation that has
been demonstrated is the use of ropes wrapped around objects to move them along desired
trajectories.[Par00]

Most of previous works in this area only consider robots moving in a flat surface. A
challenging issue is to implement the object transportation over uneven outdoor terrains.

1.5 Motivation

Research on swarm robotics has been on the rise during the last decade. A number of suc-
cessful swarm robotic systems have already been developed and the study of coordination
in swarm robotic system has become a hot topic of research.[sro]

In the project called Swarm-bots[sbt], an application of search and rescue in complex
environments by swarm robots are successfully implemented. In the project called Jas-

mine robots[jas], a large number of robots have been built to investigate self-organization,
emergent phenomena and so forth.

The research in this area is important to understand underlying principle of information
and knowledge processing, adaptation and learning for very limited autonomous systems.
These systems represent the result of miniaturization processes in such fields as robotics,
micro- and embedded controllers, sensor networks, environmental monitoring, ubiquitous
systems, medical and nano-technological research. Even today the autonomous micro-
systems are of interest for entertainment and toy industry.[jas]

By considering these merits in the research area resulting from swarm robots systems
as well as only a few of physical swarm robots systems exist in the current world, it is
suggested to start building a swarm robots system for Aalborg University (AAU).

1.6 Scope

In this project, micro mobile robots with limited sensors and processing ability are used.
The robots had been designed by Trung Dung Ngo before this project was started. The
objective to design such robots is to demonstrate distributed swarm robots behaviors on
physical robot systems. Therefore, instead of designing robots from the beginning, the
frame of this robot is taken into implementation for this project.

The robots are provided with perception by infrared sensors that are used both for distance
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measurement and communication. An ambient light sensor and a color sensor are used
to detect the light and distinguish the color, respectively. Each robot is built based on a
chassis of a toy tank. The robot can be regarded as a two-wheeled driven mobile system.
The wheels on each side are controlled by two motors, respectively. This actuation system
provides the robot with maneuverabilities, including forward motion, backward motion
and rotation. All the signals and data are processed by an onboard Microcontroller Unit
(MCU). The MCU has the duty to make a decision on the robot’s behaviors.

Based on the designed circuit diagram for robots, with knowing characteristics of con-
troller, sensors and motors, proper strategies of negotiation and cooperation between mul-
tiple robots are feasible to be developed.

This project is conducted based on the robots mentioned above. After this project is fin-
ished, a new design robot has come out and the new circuit diagram is shown in Appendix
A.2.

1.7 Objectives

In order to realize the swarm robots implementation, the objectives at this project are
robots fabrication and test, algorithm development for formation and collective behavior,
and algorithm validation by simulation and the physical robots system. In all, the tasks
that have to be done in this project are presented in the following:

• Solder the PCBs for robots. Assemble the PCBs with actuation systems to construct
the robots.

• Build a scenario with an object inside for running the robots with different aims.

• Test sensors and actuation systems. Modify the circuits to improve their function-
alities if necessary, especially for the performance of communication and distance
measurement.

• Develop algorithms for obstacle avoidance, light source approaching and color re-
action during basic navigating.

• Develop an algorithm for formation generation and keeping along with obstacle
avoidance.

• Develop an algorithm for a planned collective behavior.
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• Validate algorithms by simulation and the physical robots system.

However, two points that have to be noted in this project are:

• There is no critical requirements defined when implementing robots’ behaviors
since these robots are still in the developing and testing phase. They are not sophis-
ticated products and every functionalities achieved are limited by the current layout
of hardware. Actually, one objective of testing the robots has to be conducted by
adjusting the components in order to improve their functionalities as much as pos-
sible.

• The simulation is only used to test the logic in algorithms. The shape and size of
robots defined in the simulation are not necessary to be the same as the real robots.
Also, the sensors and the motion of robots are ideally configured in the simulation,
which can not be achieved by current designed robots.

1.8 Contributions

This project make a progress on the practical research area of swarm robots rather than
advanced theoretical research area. It starts a new swarm robots system, which can be
further developed based on the contributions from this project. The main contributions
are listed in the following:

• A novel design robot for distributed swarm robots system is introduced and imple-
mented in this project. Each robot is cheap and micro. Even with limited size, each
robot has several functionalities, including communication, distance measurement,
light and color detection. During the project, suggestions in hardware configuration
are proposed in order to improve the functionalities of the robots.

• The algorithm of formation is developed. This algorithm includes integrative strate-
gies for obstacle avoidance and navigation, which are not considered in the previous
work on formation. Furthermore, this algorithm is validated by simulation and the
physical robots system.

• The algorithm of collective behavior is developed. The algorithm asks robots to
play different roles in a collective task. The algorithm is much more valuable than
the previous work that all robots perform the same role in a collective task. This
algorithm is also validated by physical robots system.
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1.9 Outline

Below, the remaining chapters of the thesis are listed and briefly summarized.

Chapter 2 Description
The schematics of the designed robots are described at the beginning of this chapter.
Then, the scenario is introduced. The remainder of the chapter covers the platforms
set for simulation and implementation, respectively.

Chapter 3 Hardware Functionalities
The realization of functionalities for a robot provided by hardware are described
in this chapter. Firstly, two critical functionalities, communication and distance
measurement are discussed deeply and a compromised configuration is decided.
Then, light and color detection as well as maneuverability are addressed.

Chapter 4 Single Robot Behaviors
The algorithms for communication and distance measurement are generated firstly.
Based on the above two algorithms, the algorithm for obstacle avoidance is devel-
oped by considering both wall and robots avoidance. In the end, two algorithms for
light source approaching and color reaction come out, respectively.

Chapter 5 Formation
The formation of two robots is discussed in this chapter. According to the different
approaches to keep formation, two cases are discussed and compared. The algo-
rithms developed for each case are validated.

Chapter 6 Collective Behavior
The collective behavior is described in this chapter. One collective task is planned
and realized by two subtasks. The algorithms are developed for each subtask and
validated.

Chapter 7 Closure
The conclusion and future work are stated in the chapter.



Chapter 2

Description

In this chapter, the designed robots for this project are described concerning controller,
sensors, actuation and power system. A scenario with an object inside is established for
running the robots inside. The platforms for simulation and implementation are estab-
lished.

2.1 Robot

The robot was designed by Trung Dung Ngo. The main usage of this kind of robot is to
implement swarm robots’ behaviors. Therefore, a group of robots have to be built and it
requests each robot to be small and low cost.

The schematics of the robot is depicted in Figure 2.1. The Figure 2.2 shows an assembled
robot viewed from front and right sides. The robot is mainly composed by two parts. The
bottom part is a chassis, including the actuation system and supporting the top part. The
top part is a Printed Circuit Board (PCB) mounted with components, mainly including a
MCU and sensors. In order to use the space efficiently and keep the robot to be small, the
diameter of the round PCB is only 6.4cm and all the components are compactly soldered
on both sides of the PCB.

The robot is provided with five kinds of sensors. They are one color sensor, six ambient
light sensors, one global IR receiver and six couples of local IR transmitter and receiver.
The global IR receiver has not been implemented yet. The robot has an actuation system
driven by two motors on each side. The MCU is in charge of all the components. By an-
alyzing the data from sensors, the MCU functions as a control center to decide behaviors

9
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Figure 2.1: Schematics of the robot. L represents ambient light sensor. T and R are local
IR transmitter and receiver respectively. The arabic numerals from 1 to 6 are used for
identifying the sensors placed on different sectors.



2.1 Robot 11

(a) Front view of the robot.

(b) Right view of the robot.

Figure 2.2: An assembled robot.
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of the robot, which could be realized by cooperation of two motors.

A power supply system is necessary to support the robot to be alive. But in this project,
the power is taken from a power supply instrument. In expectation, the robot has to be
equipped with a rechargeable battery.

In the following subsections, each part will be described in detail.

2.1.1 Controller

A MCU is selected to be the controller for the robot. The merit of highly integrated MCU
drastically reduces the number of chips and the amount of wiring and PCB space that
would be needed to produce equivalent systems using separate chips[mcu]. For the robot,
the MCU is like the brain for the human. It needs to collect all the data detected from
sensors and finally make a decision. Especially, the rules between data collection and
decision making have to be memorized by the MCU.

Considering both memory and peripherals integrated in a MCU, ATmega8L from Atmel
Corporation is used. The interested features are listed in the following[atm06]:

• Advanced RISC architecture

– 130 Powerful instructions. Most are single-clock cycle execution.

– 32 × 8 general purpose working registers.

• Nonvolatile program and data memories

– 8K bytes of in-system self-programmable flash.

– Endurance: 10000 write/erase cycles.

– 1K byte internal SRAM.

• Peripheral features

– Two 8-bit Timer/Counter with separate prescaler.

– one 16-bit Timer/Counter with separate prescaler.

– Three PWM channels.

– 8-channel ADC with 10-bit accuracy.

– Two-wire serial interface.

– Programmable serial USART.
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• I/O

– 23 programmable I/O lines.

• Operation voltages

– 2.7V-5.5V.

• Speed grades

– 0-8 MHz.

The pins configuration of ATmega8L can be referred to Appendix A.

2.1.2 Sensors

Sensors give the robot abilities of perception and cognition. With different kinds of sen-
sors, a robot can not only be conscious of environment, but also talk to the other robots.

The schematics of sensors’ placement on the PCB is shown in Figure 2.3 and real layout
of sensors can be seen from Figure 2.4. The round PCB is separated into six average
sectors with angle of 60◦. Six sectors are named by sequential numbers. The front sector
is given the number 0 and the rest sectors are numbered clockwise. There are three sensors
in each sector, including one couple of local IR transmitter and receiver and one ambient
light sensor. The sensors on each sector are responsible for that specific direction. One
color sensor is mounted on the front sector and one global IR receiver is fixed in the center
of the PCB.

Six IR couples of transmitter and receiver

One each sector, there is one couple of IR transmitter and receiver mounted on the top of
PCB. The IR transmitter is useing SFH487 from SIMENS. This is an IR emitting diode
with half angle of ±20◦ [sf4]. The IR receiver is using SFH309FA from SIMENS. This
is an IR phototransistor with half angle of ±12◦ [sfh99].

The IR couple on one sector has to be in charge of that direction. It can detect the distance
to another object in that direction. Moveover, the robot can do communication in that
direction by using IR transmitter to emit signal and IR receiver to get signal.

In expectation, each IR couple can take the responsibility in an area with range of 60◦.
This ideal configuration can let the robot cover the area with 360◦ and also avoid the
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Figure 2.3: Schematics of a robot. L, T, R and arabic numerals from 1 to 6 are the
same representations as in Figure 2.1. GR is the global IR receiver. The rectangles with
horizontal lines represent left and right pedrails respectively. The arrow ↑ shows the
forward direction of the robot. The sensors are placed on the both sides of PCB, which
can be seen from Figure 2.4.
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(a) Top view of the PCB. The global IR receiver and six couples of local
IR transmitter and receiver are placed on this side.

(b) Back view of the PCB. The color sensor and six ambient light sensors
are placed on this side.

Figure 2.4: PCB views.
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interference from the neighboring IR couples. However, the validity of communication
has be to firstly ensured. After several pairs of IR transmitter and receiver were tested
by Trung Dung Ngo, the above IR couple was selected. Even though the selected IR
transmitter and receiver only cover the range with angle of 40◦ and 24◦, respectively, they
can perform communication effectively and validly.

Six ambient light sensor

There is also one ambient light sensor on each sector. They are placed on the back side of
PCB. The ambient light sensor, APDS-9002 from Avago, is used to detect the light. This
sensor consists of a spectrally suited phototransistor, which peaks in human luminosity
curve. Hence, it provides an excellent responsibility that is close to the response of human
eyes. It outputs the photocurrent whose value mainly depends on the irradiance. The size
of this sensor is relatively small that is only 0.8mm×2mm×1.25mm [adp04].

One color sensor

There is a color sensor mounted in the front of the robot. The color sensor is TCS230 from
TAOS. This sensor is a color light-to-frequency converter which combines configurable
silicon photodiodes and a current-to-frequency converter on a single monolithic CMOS
integrated circuit. The output is a square wave with frequency directly proportional to
light intensity. The light-to-frequency converter reads a 8×8 array of photodiodes. Six-
teen photodiodes have blue filters, 16 photodiodes have red filters, 16 photodiodes have
green filters, and 16 photodiodes are clear with no filters. The four types of photodiodes
are interdigitated to minimize the effect of non-uniformity of incident irradiance. Which
type of photodiode the device uses during operation can be selected by digital input pins.
[tcs04]

2.1.3 Actuation system

The actuation system is a significantly important part to execute the behavior decided by
the MCU. To build an actuation system needs to synthetically take into account of motor
system, gear system and wheel system. These subsystems have to be combined together
and fixed into a chassis suitably. Furthermore, the chassis also needs to be designed
carefully to fit with all the other parts. Because these procedures are relatively time-
consuming, a chassis including an actuation system is directly disassembled from a toy
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tank. Thus, two pedrails of the tank are used to drive the robot. The height, length and
width of the chassis are 2.8cm, 6cm and 4cm, respectively.

2.1.4 Power system

The expected power is supplied by a rechargeable battery. In the Figure 2.1, it can be
seen that one ADC channel of MCU is connected with the power supply, which is used
to detect the voltage level of the battery. This value can be used to calibrate the sensors’
readings. However, the rechargeable battery has not be implemented yet. During this
project, the power is taken from a power supply instrument since it is easy to check the
voltage and current for the robot system in the developing phase.

In order to have a stable voltage supply, two voltage regulator chips are used. The chip
is LM317 from National Semiconductor. One is to regulate the voltage to be 2.5V for
motors and the other one is to provide 5V for other components.

2.2 Scenario

On implementations, all robots are supposed to perform in a scenario and react with ob-
jects.

The boundary of the scenario is built by foams, which is used to emulate the wall that
robots can not go over. It gives a limited area to run the robots.

A round object has been built, which is decorated by four LED arrays of different colors,
including red, blue, yellow and white. All the LED arrays can be remotely controlled
by using radio frequency. The wireless radio modules, iDwaRF-168 from chip45.com
are used to realize this function [idw]. This module combines a Cypress 2.4GHz DSSS
radio transceiver with an Atmel AVR ATmega168 MCU. One module is connected with
an USB port of PC by using an USB-to-UART interface which has been integrated in
the module of iDwaRF-HubBoard[lit]. The other module connects to a PCB which was
designed in order to switch the LED arrays. After being programmed, the object can
change the light colors by entering commands on the PC side. The detailed commands
can be found in Appendix B.

This object with different color lights can be used to play different roles according to the
specific robots’ behaviors. For example, the red light could simulate the food that robots
want, the blue light could be the enemy that robots has to be escaped from, the white light
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could be treated as the robots’ home, and the yellow light or no light could represent an
obstacle that robots need to avoid. Using the remote control, the object’s lights can be
quickly changed , which is useful to simulate an accidently changed environment and test
the robots’ responses.

2.3 Simulation platform

The simulation platform is established based on Jasmine simulator 7 version [jas]. There
are several attractive features in Jasmine simulator.

• A scenario can be created easily.

• An object of the robot has been already created.

• An object of IR sensor has been already created.

• A robot can be controlled to move or rotate at different speeds.

• A multi-robot system can be created and each robot’s behaviors can be decided
independently.

• Communication between robots is available.

The robots can be created to be 3D. The realization of the simulation is based on Breve,
which is an open-source 3D simulation environment with an OpenGL engine. The pro-
gramming language is Steve, which is an oriented-object language. All the simulation
programs are developed with Breve 2.5.1 version[bre].

In simulation, the motions of robots and communication between robots can be ideally
configured. No accident would happen if the algorithms were correct. In real experiments,
the behaviors of robots are much influenced both by its own and environmental factors.
Therefore, the main objective to do simulation is to test and improve the logic inside
developed algorithms. However, the algorithms of behaviors which request the robots to
react on light or colors are not simulated.

2.4 Implementation platform

To implement the algorithms on the real robots, there are two recursive procedures, in-
cluding programming and debugging.
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Programming platform

In order to realize different robots’ behaviors, the corresponding algorithms have do be
developed and proved in the simulation firstly. Then, the validated algorithms will be
written in embedded C language based on the type of MCU. The C programs are com-
plied by GCC and downloaded to the MCU by In-System Programming (ISP). These
procedures are indicated in Figure 2.5. The AVR Stdio takes on the jobs of compiling
and downloading. The interface between USB and ISP is validated by a programmer
CrispAVR-USB[cri].

ISP
USB 

to ISP

PC

AVR Studio USB

Figure 2.5: Programming environment.

Debugging platform

A debugging system can be used to adjust the programs. It is necessary to read the data out
from the robots. By observing and analyzing the actually data in the robots’ memories,
the programs and the algorithms can be both improved to fit the real situations.

10k

10k

5V

txd

UART 

to USB

PC

HyperTerminalUSB

Figure 2.6: Debugging environment.

The debugging platform is established according to Figure 2.6. The interested data will
be configured to output from txd pin of MCU. However, during the experiments, the high
level voltage is only 1.5V , which can not be recognized by the UART-to-USB converter.
Thus, a circuit shown in the second block of Figure 2.6 is used to pull up the high level
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signal to be 5V . This result is indicated in Figure 2.7. In the end, the data can be read out
from the HyperTerminal on the PC side.

Figure 2.7: The upper one shows the signal directly output from txd pin of MCU. The
lower one shows the high level signal is pulled up to be 5V from 1.5V .

2.5 Summary

In this chapter, the robot used in this project was described in Section 2.1, including
controller, sensors, actuation system and power system. However, The global IR receiver
has not been implemented and a rechargeable battery has not been fixed yet.

In Section 2.2, a scenario was built by foams and an object with four LED arrays was
built in order for playing different roles in the scenario. This object was programmed and
could be controlled remotely by using radio frequency.

In the Section 2.3, the simulation platform was established based on Jasmine simulator.
The main aim of doing simulation is to test the logic in algorithms.

In the Section 2.4, the implementation platform was described, including programming
and debugging platforms.



Chapter 3

Hardware Functionalities

Based on the current hardware design, it provides the robot with several functionalities,
including communication, distance measurement, ambient light detection, color detection
and Maneuverability. Every functionality is investigated by doing experiments in the
laboratory. In this chapter, the realization of each functionality related to the specific
hardware is introduced and the results from experiments are discussed. Suggestions are
given in the end.

3.1 Communication

In order for running swarm robots rather than a single robot, the main functionality is
that one robot can communicate with the other robots. From communication signal, they
can know what the other robots are doing and decide what they have to do. Therefore,
communication between robots is the most significant functionality need to be realized
above all.

For this designed robot, communication is realized by six couples of local IR transmitter
and receiver with Universal Asynchronous Receiver/Transmitter (UART). The layout
of six couples and the characteristic of the used IR transmitter and receiver have been
described in Section 2.1. In this section, the realization of communication between robots
will be described.

21
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3.1.1 UART

UART is commonly used for embedded systems communications. It is useful to commu-
nicate between MCUs and also with PCs. The debugging platform was setup by using
UART. The PC asynchronously receives data from the MCU and then displays in the
HyperTerminal.

Between MCUs on robots, UART was also used as the approach to build up the commu-
nication. The six couples of local IR transmitter and receiver are the wireless bridges to
load signal and let signal pass through.

The frame format used for communication is that one start bit plus eight data bits plus
two stop bits. It is indicated in Figure 3.1. The IDLE line is always high. The start bit is
always low. The next eight data bits is either low or high depending on the information
included in the data. The final two stop bits are always high, which provide an interval
for receiving the next start bit. Two stop bits used here give more time for the interval and
also the second stretched stop bit helps resynchronization. The UART recovers character
timing information from data stream by using designated start and stop bits to indicate the
framing of each character. [usa]

(IDLE) St 0 1 2 3 4 5 6 7 Sp1 Sp2 (St / IDLE)

Figure 3.1: The frame format of UART. St represents start bit. 0 to 7 represent eight
data bits. Sp1 and Sp2 represent two stop bits. IDLE represents no transfers on the
communication line(RXD or TXD).

3.1.2 Communication by IR couples

Before to choose the baud rate of the UART, this subsection describes how IR couples
work for communication. The Figure 3.2 indicates the schematics of one couple of the lo-
cal IR transmitter and receiver. The IR transmitter and receiver can be treated as mounted
on one robot or separately on two robots because of identical design. There have to be
other five couples connecting with the inputs of multiplexers and ADC channels of MCU.
Only one couple is clearly shown in Figure 3.2 due to their same functions.

On the IR transmitter side, the MCU sends out a signal from the TXD pin that is connected
to the base of a N-channel transistor. The transistor is pulled up in the collector. Then the
signal can make the transistor output high or low signal to an OR gate. The function of
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Figure 3.2: Schematics of one couple of the local IR transmitter and receiver for either
one or two robots. I/O pins connect to the MCU. There should be six of IR couples in all,
but not drawn out repeated. The ADCx represents ADC channels 0 to 5 of MCU.
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the OR gate is to switch between communication mode and distance measurement mode
depending on the output of PD5 from the MCU. If PD5 outputs low, so the output side
of OR gate is decided by the input originally from TXD, that is communication signal.
By setting digital outputs PB0, PD7 and PD6 from MCU, a multiplexer determines which
one of six channels allows the signal to pass through. The output from the multiplexer
switches a N-channel digital FET to be either on or off. If the FET is on, there will be
current going through the IR transmitter, which sends out an IR signal. If the FET is off,
no IR signal will be sent out.

On the IR receiver side, if no signal were received, the output to the multiplexer would be
as high as the VCC value. If the IR receiver receives signals, there would be photocur-
rent going through. Therefore, the output voltage value to the multiplexer will be lower
than the VCC value, which is depending on the intensity of the received IR signal. The
multiplexer functions the same as one on the IR transmitter side. Before the output of
multiplexer enters to the RXD pin of MCU, it needs to be trimmed firstly by using a com-
parator. The comparator compares the output from the multiplexer and reference voltage
level and then outputs a binary state signal, one or zero. Finally, a stream of binary signal
that need to be recovered will enter the UART part of MCU .

The Figure 3.3 shows the signals detected in two points, p1 and p2 labeled in Figure 3.2,
which are on the transmitter and receiver side, respectively. The data used for testing is
”01011010” in binary. Packing with one start bit and two stop bits, the whole package
is ”00101101011” which is identical to the signals shown in the Figure 3.3. When doing
this testing, one robot’s IR transmitter closely points to the other robot’s IR receiver and
the used baud rate is 9600bps.

3.1.3 Communication speed

In this subsection , one critical factor is discussed based on the hardware design, which is
communication speed decided by baud rate.

If the baud rate is higher, the robots can spend less time on communication. Therefore,
during one specific time interval, there are more chances to talk to each other. According
to the information included in the received data and their own states during every time
interval, the robots can response immediately.
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Figure 3.3: Transmitted and received signals. The testing data for communication is
”01011010”. The upper signals with GND 2 is detected at the p1(Figure 3.2) on the
transmitter side. The lower signals with GND 1 is detected at the p2(Figure 3.2) on the
receiver side. The baud rate is 9600bps.

Crystal oscillator selection

In order to ensure the validity of data transferred by UART, a suitable crystal oscilla-
tor with frequency of 7.3728MHz is selected. Referring to the datasheet of ATmega8L
[atm06], with this frequency for system clock source, the error between the actual gener-
ated baud rate and the target baud rate keeps 0.0% from baud rate 2400bps to 230.4kbps

whenever in normal or double speed mode. The max speed grade of ATmega8L could
reach to be 8MHz, but there exist errors in most baud rate selections except 250kbps and
0.5Mbps. Because baud rate is important in synchronization, it is worthwhile to low down
7.84% speed for whole system but get the benefit of no error in baud rate.

Double speed Operation

With the accurate baud rate setting and system clock, the transfer rate can be doubled by
setting UART running in double speed mode. Thereafter, the highest baud rate can be
1Mbps[atm06]. However, the receiver in this case use half the number of samples for
data sampling and clock recovery. For the transmitter, there are no downsides.
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Asynchronous data reception

Before to select a suitable baud rate, it is introduced firstly that how to recover asynchro-
nous data [atm06]. There are two step to recover data. First step is to recover asynchro-
nous clock which is introduced in detail in [atm06]. And the second step is to recover
asynchronous data which is more related to the baud rate selection.

When the receiver clock is synchronized to the start bit, the data recovery can begin. The
data recovery unit uses a state machine that has eight states for each bit in double speed
mode. Figure 3.4 shows the sampling of the data bits. Each of the samples is given a
number that is equal to the state of the recovery unit.

1 18732 4 5 6

BIT nRXD

Sample

Figure 3.4: Sampling of data.

The decision of the logic level of the received bit is taken by doing a majority voting of
the logic value on the three samples in the center of the received bit. The center samples
are emphasized on the Figure 3.4 by having the sample number inside boxes. the majority
voting process is done as follows: if more than two samples have high levels, the received
bit is registered to be a logic 1. On the contrary, it is 0. The recovery process is then
repeated until a complete frame is received.

Analysis of signal transfer

From Figure 3.3, it is obviously to see that there is a rising process for the IR receiver
when changing from signal received to no signal received. The Figure 3.5 is the zoom in
of the Figure 3.3 at -402µs to more clearly show the delay and rising time for only one bit
transfer. The delay time is defined as the error from the rising time of the upper signal to
the time of the lower one beginning to rise. The delay time is around 12µs. And the rising
time is defined as the time spent on rising from 10% to 90% of top value, which is around
20µs.

There is also a falling process for IR receiver when changing from no signal received to
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Figure 3.5: Zoom in of Figure 3.3 at -402µs. The upper signal with GND 2 is detected at
the p1(Figure 3.2) on the transmitter side. The lower signal with GND 1 is detected at the
p2(Figure 3.2) on the receiver side. The delay time is around 12µs and the rising time is
around 20µs.

signal received. Seen from the Figure 3.5, it is estimated to be 2µs. This time is much
shorter than the time spent on the rising process. Thereafter, only the rising process is
considered to select the baud rate.

Figure 3.6 shows the received and trimmed signals. The lower signal has been trimmed
to be a stream of binary states which inputs to the RXD of MCU. The MCU recovers the
original data completely based on this binary stream. Therefore, it is critical to make sure
the time sequence of trimmed binary states to be close to the transmitted signal.

Figure 3.7 is the zoom in of Figure 3.6. It is more clearly to show that the comparator
outputs high when the input is higher than the reference value which is defined to be
0.846VCC. Otherwise, the output is low. The error time, which defines the time from the
upper signal beginning rising to the lower signal changing to high, is around 25µs.

Baud rate selection

From the above analysis, the total delay time, which is defined from the rising of the
transmitted signal to the rising of the trimmed signal, is around 37µs.

The Table 3.1 lists the one bit transfer time and the error according to different baud rates.
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Figure 3.6: Received and trimmed signals. The useful data received is ”01011010”. The
upper one with GND 2 is the received signal detected at the p2(Figure 3.2). The lower
one with GND 1 is the signal trimmed by the comparator and detected at the p3(Figure
3.2). The baud rate is 9600bps.

Figure 3.7: Zoom in of Figure 3.6 at 0µs. The upper one with GND 2 is the received
signal detected at the p2(Figure 3.2). The lower one with GND 1 is the signal trimmed by
the comparator and detected at the p3(Figure 3.2). The error time is around 25µs.
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Table 3.1: Comparison of characteristics in different baud rates.
Baud Rate (bps) One bit transfer time (µs) Error (%)

2400 417 0.0
4800 208 0.0
9600 104 0.0
14.4k 69 0.0
19.2k 52 0.0
28.8k 35 0.0

Considering that the logic value is decided by majority voting on three centering samples,
it has to ensure at least two centering samples are correct after the delay time. This rule
written in Equation 3.1 can be used to judge a baud rate is suitable or not. The Tobt

represents the time of one bit transfer.

4
8
×Tobt > 37µs (3.1)

Substitute the Tobt by the one bit transfer times listed in the Table 3.1. Only three is
satisfied, which are 2400bps, 4800bps and 9600bps. It is evidently to choose 9600bps

since it is the highest one in the three choices.

There are two ways can be used to increase the baud rate according to the current hardware
layout. One is to decrease the reference voltage of the comparator to make shorter of time
error shown in Figure 3.7. The other is to replace the resistor R3 shown in Figure 3.2 by
a lower one. It can let the rising process be finished in shorter time. But as a tradeoff,
increasing the baud rate would sacrifice the capability of communication distance.

3.1.4 Communication distance

The communication distance is another important factor need to be considered. In most
cases, it prefers that the robots can communicate with each other with longer distance.
However, the robots’ ability of long distance communication can bring one drawback
when a large number of robots are implemented in a scenario. One robot will be easy to
receive many interference signals from several robots as long as they stay in the range of
communication distance. This subsection discusses the communication distance related
to the hardware design.
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An experiment was setup to let one robot’s IR transmitter directly point to the other ro-
bot’s IR receiver. This experiment is repeated three times with setting different distance
between two robots. The Figure 3.8 shows the results. It can be seen that, the farther
distance, the higher of low level voltage of the received signal. The high level voltage of
the received signal always keeps the same as VCC.

This received signal needs to pass through the comparator firstly. The comparator would
output zero state only if the low level of the received signal is lower than its reference
voltage. Thus, if the low voltage level of received signal that could be recognized by the
comparator is higher, the longer communication distance would be realized. However,
referring to the datasheet of comparator [lmv99], the input voltage range is up to 4.2V

with 5V DC supply since there has to be voltage drop for transistors inside the comparator.
Therefore, the reference voltage value of the comparator is set to be 4.23V calculated by
Equation 3.2. Even though there is 0.03V higher than the suggested value, it performs
with no error on the real implementation.

Vre f = VCC× R5
R4+R5

= 5× 11k
2k +11k

= 4.23V (3.2)

There is also another component influencing the communication distance, that is R3
shown in Figure 3.2. The voltage of received signal, Vp2, can be computed by Equation
3.3.

Vp2 = VCC− ICE ×R3 (3.3)

where ICE is the photocurrent linearized with the irradiance of received IR [sfh99].

When no IR were received, the Vp2 would be equal to VCC. If there were IR received,
the Vp2 would be lower than VCC depending on the part of ICE ×R3. Assuming the IR
receiver is exposed to the constant irradiance of IR signal, the higher resistance of R3, the
lower Vp2. Similarly, for the same distance, increasing the resistance of R3 leads to the
lower of Vp2. It can also infer that the longer communication distance can be achieved by
a higher resistance of R3.

3.1.5 Summary

In a short summary, longer communication distance needs higher values of reference
voltage and resistance of R3. This is opposite to the communication speed which requires
lower value of reference voltage and resistance of R3. The specific values selected for
R3, R4 and R5 shown in Figure 3.2 are compromised configurations. The communication
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(a) When two robots are close.

(b) When two robots are near.

(c) When two robots are far.

Figure 3.8: These three experimental results show that the low voltage level of the re-
ceived signal detected at p2(Figure 3.2) is related with the distance from the other robot
who transmits signal.



32 Hardware Functionalities

speed is set to be 9600bps and the communication distance is around 20cm.

3.2 Distance measurement by reflected IR

Another important ability for a robot is to detect the distance. With knowing the distance
to either obstacles or other robots beside itself, the robot can perform to avoid them or
keep specific distance from them. It is a basic functionality.

The robot is equipped with IR couples to do distance measurement. The IR couples are
shared by doing communication, but used during different time.

With IR couple, one approach to measure the distance is to counter the time spent between
emitting IR signal and receiving the reflected IR signal. It do not need to consider the
energy dissipation. Even though the energy of received signal is quite low, what only
needs to note is that the received signal has to be the original emitted one.

Considering the MCU of this robot, the system clock is 7.3728MHz. When the clock
source of Timer/Counter is set as the system clock with no prescaling, the maximal res-
olution of the Timer/Counter is 0.13563µs. During this period of time, an IR signal can
transfer 40.66m calculated by Equation 3.4.

0.13563µs× c = 0.13563µs×299,792,458m/s = 40.66m (3.4)

where c is the speed of light.

So the maximal resolution of the distance can be detected by IR on the robot is half of
40.66m, that is 20.33m. This number is not suitable for the robot’s implementation.

There is a second way to measure the distance with IR. The energy of received IR signal
is always lower than the transmitted one, which has been dissipated due to its transferred
distance as well as the surface, color and material of the reflector. For example, a rough
surface is good at dispersing the light and a dark color is easier to absorb light than a light
color. Therefore, there should be different rules for different reflectors. If the reflector is
a specific one, the distance is possible to be estimated by detecting the energy of reflected
IR signal.
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3.2.1 Distance measurement by IR couples

The distance measurement is realized by using the same hardware part as to realize com-
munication. Referring to Figure 3.2, the approach to do distance measurement is intro-
duced from the sides of IR transmitter and receiver, resectively.

On the transmitter side, if PD5 is set to be high, both the OR gate and the multiplexer
output high. Thus, the N-channel FET is always on and the IR transmitter keeps emitting
IR signal.

On the receiver side, according to the Equation 3.3, when the receiver gets continuous IR
signal, the IR phototransistor would generate photocurrent whose level is depending on
the irradiance of received IR signal. With assumption that the IR couple is pointing to a
specific reflector, it can say the irradiance is related to the distance from the reflector. The
level of the Vp2 is read by the ADC part of MCU with 10-bit accuracy.

As the similar to the discussion on communication distance, when detecting the same
distance, a higher resistance of R3 can lower down the level of Vp2. It also implicates that
the robot can measure longer distance if increasing resistance of R3. But the side effect
is that the communication speed has to be lower down. The actually visible distance the
robot can see is depending on the different reflectors.

3.2.2 Distance of one robot’s vision

In this subsection, the measurable distance for a robot is discussed on two parts, including
distance to the wall and distance to another robot.

Distance to the wall

The foam was used to build the boundary of the scenario. The robot treats the foam as the
wall and it is important for the robot to know how far away from the wall. An experiment
was set by directly pointing one IR couple of a robot to the wall and the incident angle is
0◦. The Figure 3.9 shows the relation between the distance to the wall and the ADC value
converted from the voltage level of received reflected IR.

It can be seen from Figure 3.9 that the detectable distance is less than 10cm. If the distance
is larger than 10cm, the curve is still rising slowly but undistinguishable. The Equation
3.5 shows the piecewise defined function disjointed by distance 10cm. If the distance, d,
is less than 10cm, the ADC value can be computed by a six-order function. If the distance
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Figure 3.9: The ADC value from reflected signal versus the distance to wall.

is larger than 10cm, the ADC value is above 1000 but less than 1023 that is the maximum
the 10-bit ADC can reach. In the latter case, the ambient light would influence on the IR
receiver, so the ADC value could change between 1000 and 1023.

ADC =

{
0.036d6−1.2d5 +16d4−88d3 +171d2 +208d +110 if d ≤ 10
[1000,1023] if d > 10

(3.5)

Distance to another robot

The situation is different when one robot meets another robot from the wall. Referring to
Figure 2.2, it can be seen that the IR couples are mounted on the top of the robots. There
is not enough reflector can be used to reflect signal since no big surface exists in the height
of IR couples. There exists infinite relative positions of two robots when they meet each
other. So the reflected signal would have different voltage levels even they keep the same
distance. In the following, two main relative positions are analyzed.

The first one is that one robot’s IR couple points to the IR couple of the other robot. This
also means the transmitted IR signal would reflect from the IR couple of the other robot.
The result is shown in Figure 3.10(a). It can be seen that the detectable distance is less
than 4cm.
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But in reality, the chance that one IR couple uses the other robot’s IR couple as reflector
is relatively small. In most cases, the IR couple of one robot only points to a point in the
range between two IR couples of the other robot. So the reflector would be a combination
of small components dispersedly mounted on the PCB and the surface of PCB which is
unfortunately parallel to the IR couple. The Figure 3.10(b) shows the experimental result
in this situation. It can be seen from Figure 3.10(b) that the robot has an opportunity to
see the other robot only if their distance is less than 1cm. But even when they touch each
other, the ADC value still reaches to the height of 974. The noise from the ambient light
is easy to reach to this value.

Combining the analysis of above two situations, it can conclude that it is not available to
measure distance to the other robot by using reflected IR signal.

3.3 Distance measurement by communication signal

From the analysis in the last section, it has got a conclusion that it is impossible to measure
the distance to the other robot by detecting the voltage level of reflected signal. But from
the analysis of communication distance in Subsection 3.1.4, it can been seen that the
low level voltage of received communication signal is related to the distance between
robots. Compared to the reflected signal, the received communication signal has to be
much stronger due to no dissipation on reflectors. So it can ensure the measurable distance
to the other robot to be as long as the communication distance, that is 20cm.

An experiment was set up as similar as doing the experiment for communication distance.
One robot transmits signal and the other robot receives signal. The IR transmitter and
receiver keep pointing to each other straightly. The relation between the ADC value con-
verted from low level voltage of received communication signal and the distance between
them is shown in Figure 3.11.

It can be seen from Figure 3.11 that detectable distance to the other robot reaches to 20cm.
The piecewise defined function to show the relation is written in Equation 3.6.

ADC =

{
−0.0019d6−0.11d5−2.6d4 +25d3−97d2 +123d +8 if d ≤ 20
[1000,1023] if d > 20

(3.6)

Where ADC is the ADC value and d represents the distance.
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(a) When the robot’s IR couple points to the other robot’s IR couple.
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(b) When the robot’s IR couple points to the the middle place between two IR
couples of the other robot.

Figure 3.10: The ADC value from reflected signal versus the distance to another robot.
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Figure 3.11: The ADC value from the low voltage level of received signal versus the
distance between two robots.

However, there still exists a weakness even using communication signal to detect distance.
Because when the IR transmitter does not point to the receiver in a straight line. The
energy of received signal will be lower. So another experiment was done based on the
last experiment. The distance between two robots are kept to be 5cm, and then rotated
the transmitting robot from -60◦ to 60◦. Positive angle is defined to be clockwise rotated.
The result is indicated in Figure 3.12. The detectable range of angle is from -40◦ to 50◦.
The asymmetry of the curve on the left and right side of 0◦ is due to the hardware layout
of the IR couple. In physical, an IR couple is parallel mounted on one sector side by side
but not ideally at one point. It is obviously shown in Figure 3.12 that even a bit deflected
angle between the IR transmitter and the IR receiver can induce a notable change of the
ADC value. If the distance were longer, the change would be much more evident.

In a short summary, using communication signal for detecting distance to the other robot
is the best choice based on the hardware design. And the Equation 3.6 can be used to
calculate this distance.
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Figure 3.12: The ADC value from the low voltage level of received signal versus the angle
deflected from the IR transmitter to the IR receiver when distance is 5cm.

3.4 Ambient light detection

Besides the basic functionalities of communication and distance measurement, the robot
is also equipped with six ambient light sensors. The placement of these six sensors can
be either seen from Figure 2.1 or Figure 2.2. In this section, the main topic is to describe
how the ambient light sensor works.

The Figure 3.13 shows the schematics of one ambient light sensor. In the real robot, there
are six of them mounted. They are responsible for each sector and can be switched by
the multiplexer. This sensor consists of a phototransistor. When it is exposed to a light
source, it could generate photocurrent whose value is mainly related to the illuminance,
angle and temperature. The detailed information can refer to the datasheet of APDS-9002
[adp04].

The output photocurrent passes to the ground through a resistor of R6. Thereafter, a level
of voltage drop Vlightsensor is generated at the point of p4 calculated by Equation 3.7

Vlightsensor = ICE ×R6 (3.7)

Where ICE is the photocurrent. Then, this value can be converted to digital value by ADC
part of MCU. The function of the capacitor, C1, is to filter noise.
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Figure 3.13: The schematics of one ambient light sensor. There should be six of them
connected to the multiplexer, but not drawn out repeatedly.

Because all the experiments were done in the laboratory. Compared to the illuminance
and angle, the influence from temperature is less important. So an experiment was done
to detect the relations between the ADC value and two factors that are illuminance and
angle.

The experiment was conducted in a dark environment and a bulb was used as a light
source. The front ambient light sensor was tested by rotating the robot clockwise from
pointing to the bulb defined as 0◦ to being back to the bulb that is 180◦. Two settings of
distance are tested, which are 20cm and 40cm far from robot to the bulb.

The results are shown in Figure 3.14. The dashdot curve with the legend of dark is the
ADC value when the bulb is off. The value keeps 12 for all angles. The solid curve
with the legend of 40cm is the result from keeping the distance to be 40cm and rotating
the robot. The tendency of the curve is obviously to show that the ADC value decreases
when deflecting the ambient light sensor to the light source. Because the bulb is on,
the ADC value still keeps 52 even 180◦ rotated. The dashed curve is got by setting the
distance to be 20cm. This curve is always higher than the solid curve since the robot is
20cm closer to the light source and the illuminance is much stronger on this place than the
place on 40cm away. Also, it can be seen that the dashed curve decreases slowly until 70◦

deflected. It dues to the fact that the bulb can not be treated as an ideal point light source
if the distance is not far enough from the robot to it. Thus, with the distance of 20cm,
even though the robot is rotated 70◦, the ambient light sensor can still directly receive the
light emitted from the bulb, but not the light from any reflector.

With six ambient light sensors mounted on six sectors respectively, the robot has more
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Figure 3.14: The ADC value from the ambient light sensor versus the rotated angle.
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chance to feel the light and furthermore to judge the direction of the light source.

3.5 Color detection

The robot has one color sensor placed in the front of itself. The original function of
the color sensor, TCS230, is able to detect red, blue and green [tcs04]. But due to the
limitation of MCU used for this robot, there are only two pins left that are PD3 and T0.
Because this sensor is a converter from color light to frequency, the pin of T0 is important
for extracting the information expressed by the frequency. Thereafter, only one pin is left
for switching to detect different colors.

The connection of the color sensor is set up accroding to the datasheet of TCS230[tcs04].
And the schematics is illustrated by Figure 3.15. S0 and S1 are the setting for the scaling
of output frequency. They are connected to the VCC which implicates that the highest
output frequency would larger than 500kHz. The setting of S2 and S3 is used to select
what color filter is used. In Figure 3.15, S2 is connected to the ground and S3 is con-
nected to the PD3 of MCU. It leads to the fact that the robot can only detect red or blue
corresponding to low or high output from PD3. The output of the color sensor connects
to the T0 of the MCU. The clock of Timer/Counter0 is configured to be external clock on
the falling edge of the T0 pin.

VCC

T0

S0

VCC

OUT

S2

S3

GND

S1

OE

PD3

Figure 3.15: Schematics of the color sensor.

But the Timer/Counter0 is 8-bit and the maximal counted number is 255, which is much
lower than the highest frequency. There are two ways that can be used to solve this
problem.
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One way is to counter the falling edge of the output square wave in shorter time. In
the program, the interval time for countering is set to be 1ms. It leads to that only one
thousandth of real frequency need to be countered.

The second way is to use the feature of Timer/Counter0 overflow interrupt. Inside the
Interrupt Service Routine (ISR), a 8-bit variable is used to increase one every time when
this interrupt is triggered. So using this way, a 16-bit counter is created that can count the
number up to 65535.

Both ways are used to count the number of falling edges during every 1ms. The real
frequency can be calculated by one thousand times of this number.

On the implementation of color detection, an object decorated with different LED arrays
is treated to be the colored object. The object can emit red and blue light that robots need
to detect. In a dark environment, several experiments were conducted to test the relation
between the output frequencies and the distance to the colored object when using red or
blue filter. The color sensor keeps pointing to the object straightly. The results are shown
in Figure 3.16(b) and Figure 3.16(c). The Figure 3.16(a) shows the output frequency
when no LED array is on, that is, the result from using red or blue filter for the ambient
light. It can be seen that in that specific environment without any color in front, the output
frequency is around 20kHz if using red filter and the frequency is below 10kHz if using
blue filter. With stronger ambient light, both values would increase.

When the object emits red light, the result is indicated in Figure 3.16(b). The output
frequency by using blue filter keeps below 10kHz except 62kHz that got from the case
when the red light is very close to the sensor. The output frequency when using the red
filter is much more sensitive to the distance. The value is around 800kHz when the red
light is close to. Beyond the distance more than 15cm, the value is lower than 25kHz and
the decreasing slope of the curve becomes gentle.

The Figure 3.16(c) shows the result when the object emits blue light. In this case, the
frequency when using red filter keeps around 20kHz except 38kHz when distance is 0cm.
However, the output frequency when using blue filter is much more sensitive if the dis-
tance is less than 5cm.

From above analyzing the results from the experiment, it could get a conclusion. In the
dark environment, the red light can be detected if the distance less than 15cm and the
detectable distance for blue light is less than 5cm.
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(a) When LED arrays are off. The X-coordinate is a series of samples.
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(b) When the red LED array is on.
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(c) When the blue LED array is on.

Figure 3.16: The output frequencies when using red or blue filter in three situations.
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3.6 Maneuverability

The robot needs to response immediately when suffering obstacles or getting communi-
cation signal from other robots. Thus, the maneuverability for the robot is considered to
be an important functionality. In this section, the actuation system is discussed.

3.6.1 Construction of actuation system

This robot is driven by two stripes of plastic pedrails on left and right side, respectively.
The two pedrails can be seen from Figure 2.1 and Figure 2.2. Each pedrail is indirectly
driven by one micro DC motor that places inside the chassis. The schematics of mechan-
ical construction of actuation system is illustrated in Figure 3.17 briefly. Two motors are
fixed side by side. The power for the motivity is derived from the motors and passes
though the gear systems. In the end of the gear systems, two wheels are connected to the
shafts. The wheels can drive the pedrails to be rolling forwards or backwards.

Right Motor

Left Motor

gears

gears

pedrail pedrail

wheel wheel

Figure 3.17: The schematics of mechanical part of the actuation system
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3.6.2 Motor controller

Each micro DC motor is controlled by using a H-bridge chip, that is Si9986 from Vishay
Siliconix.

With the H-bridge, the DC motor can be controlled to run forwards or backwards. The
schematics of controllers for two sides of motors is depicted in Figure 3.20. The function
of this H-bridge chip is shown in Table 3.2. HiZ represents the state of high impedance.

100k
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VCC_motor

VCC

SB

OUTB

OUTA

SA

GND

InB

InA

100k

OC1B

Left motor

H-bridge
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(a) Left motor controller.

100k
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VCC_motor

VCC
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OUTB
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GND

InB

InA

100k

PB4

Right motor

H-bridge

R9

R10

(b) Right motor controller.

Figure 3.18: The schematics of electronic part of the actuation system.

Taking the Figure 3.18(a) for example, if the MCU outputs high on OC1A pin and low
on OC1B pin, the OUTA pin of Si9986 would be high and OUTB would be low. So the
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Table 3.2: The truth table of Si9986.
InA InB OUTA OUTB

1 0 1 0
0 1 0 1
0 0 0 0
1 1 HiZ HiZ

motor can run in the forward way. On the contrary, the motor would run in the backward
way. If both outputs of OC1A and OC1B are low, both inputs to the H-bridge are pulled
down to the ground and the motor would be stopped. All the situations are the same for
the right motor shown in Figure 3.18(b).

The Pulse Width Modulation (PWM) waves generated from MCU are used to control the
speed and direction of motors. OC1A and OC1B are for the left motor and OC2 and PB4
are for the right motor.

3.6.3 Generation of PWM signal

PWM signal involving the modulation of its duty cycle can control the amount of power
sent to a motor [pwm]. It use a square wave whose duty cycle is modulated resulting in
the variation of the average value of the waveform. Considering the square wave form,
V (t), input to the motor with a low level voltage Vmin = 0V , a high level voltage Vmax =
VCCmotor and a duty cycle D of cycle time T , the average value, V̄ , of the waveform is
given by Equation 3.8.

V̄ =
1
T

Z T

0
V (t)dt (3.8)

=
1
T

(
Z DT

0
Vmaxdt +

Z T

DT
Vmindt) (3.9)

= D ·Vmax +(1−D)Vmin (3.10)

= D ·VCCmotor (3.11)

According to two motor controllers shown in Figure 3.20, it needs to be four PWM waves
to control two motors. But referring to the datasheet of ATmega8L [atm06], there are
only three PWMs can be provided. Two PWMs are derived from the Timer/Counter1
and one is from the Timer/Counter2. So one PWM with the square wave form should
be generated by programming to frequently change the digital output on one I/O pin. In
this way, there is an drawback compared to using the Timer/Counter for generating PWM
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wave. The Timer/Counter is a particular hardware part integrated in the MCU and it can
run independently as long as it has been configured one time in the program. So during
outputing the PWM waves, the program can run other functions. However, for simulating
normal I/O pin to output PWM, the program has to stay in this function until output is
stopped.

Selection of PWM frequency

The PWM frequency is an important factor that has to be considered. The frequency is
the reciprocal value of the cycle time.

If the frequency were higher, the cycle time of PWM wave would be shorter. In this case,
the motor will switch between on and off very quickly. Consider the characteristics of
the motor that it needs to take a short time whenever switch a motor on due to the static
friction inside the motor and also from the load. Therefore, the PWM frequency can not
be too high.

On the opposite case, if the frequency were lower, The cycle time of PWM wave would
be longer. It will make the motor not run continuously and it is easy to see the motor on
and motor off.

An experiment was conducted to see the performance of the motors when set by different
PWM frequencies with duty cycle 50%. Finally, the best suitable PWM frequency for the
motors is 112.5hz.

For Timer/Counter0 and Timer/Counter1, this value can be got by setting the clock source
to be 1

256 of the system clock and waveform generation modes to be 8-bit Fast PWM
mode and non-inverting Compare Output mode. In Fast PWM mode, the counter counts
from BOTTOM of 0x00, to TOP of 0xFF, then restarts from BOTTOM. In non-inverting
Compare Output mode, the Output Compares, including OC1A, OC1B and OC2, are
cleared on the compare match between the registers of TCNT and OCR. The resolution is
8-bit and the duty cycle can be computed by OCR+1

256 ×100%.

For the PD4, the wave form should be set manually in the program. The cycle time T

is 8.889ms. If define D as duty cycle, the wave form can be generated by repeating the
procedure of outputing high for period D ·T followed by low for period (1−D)T .
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3.6.4 Testing of motors

Two experiments were conducted to test the motors driven by PWM waves output from
the H-bridge. The first experiment is to let the robot to move forwards. Two PWM waves
with duty cycle 40% are generated in the pins of OC1A and OC2 for left and right motor,
respectively. While the pins of OC1B and PB4 keep zero. It can be seen from Figure
3.19(a) that the duty cycles are precise on both PWMs. But in real movement of the
robot, the robot is always tend to turn left. So it can be deduced that the two motors is not
absolutely identical. The experiment was repeated by keeping the OC1A and lowering
down the duty cycle for OC2. The Figure 3.19(b) shows that when the duty cycle of OC2
is 2.2% less then 40% of OC1A, the robot can move forwards straightly.

The second experiment is similar as the first one but to let the robot move backwards,
which is used to test the other two channels of PWMs output. The duty cycle is set to be
50%. From the Figure 3.20(a), it can be seen that the duty cycle of the wave from PB4
can reach to the same accuracy as the output from Timer/Counter. But due to the non-
identical motors, if the robot is expected to move backwards straightly, the duty cycle of
OC2 has to be 42% when OC1B is 50%, which is shown in Figure 3.20(b).

3.6.5 Summary

From the results of experiments, it can be seen that the MCU can output PWM waves with
precise duty cycle from either Timer/Counter or normal I/O pin. But a problem is exposed
that two motors for the robot is not identical. Also, during the test, it is easy to see the
phenomenon of the slippage between the wheels and pedrails, especially in the cases of
turning left or right. This is because only cheap plastic pedrails are used and they are easy
to become tensionless to the wheel. It leads to the pedrails having less friction between
the wheel than the floor. Therefore, every motor in robots need to be treated separately.

3.7 Summary and suggestion

In this chapter,five main functionalities provided by hardware have been discussed except
the Global IR receiver, which has not been implemented.

In Section 3.1, the robots communication is described. The frame format in one data
package is defined as 1 start bit, 8 data bits, 2 stop bits. The baud rate is set to be 9600bps

and the maximum communication distance is 20cm. The main influence on the com-
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(a) When two pins have same duty cycles, the robot tends to turn left.

(b) After calibration, the robot can move forwards straightly.

Figure 3.19: Testing results when let the robot move forwards. The upper PWM waves
with ground 2 is detected at the pin of OC1A. The lower PWM waves with ground 1 is
detected at the pin of OC2.
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(a) When two pins have same duty cycles, the tail of the robot tends to the left side.

(b) After calibration, the robot can move backwards straightly.

Figure 3.20: Testing results when let the robot move backwards. The upper PWM waves
with ground 2 is detected at the pin of OC1B. The lower PWM waves with ground 1 is
detected at the pin of PB4.
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munication speed and distance is from the IR receiver. This receiver is actually an IR
phototransistor and the rising time is relatively longer than an IR photodiode. Therefore,
it suggests to use an IR photodiode rather than the IR phototransistor. Also, the resistance
R3 has to be adjusted to ensure the best abilities of communication speed and distance.

On distance measurement, two different approaches are discussed. By the means of de-
tecting the voltage level of the reflected IR signal, the robot can estimate the distance to
the wall. This approach is discussed in Section 3.2 and the Equation 3.5 can be used to
estimate the distance. The measurable distance is less than 10cm for the foam and the
value would be much changeable for different reflectors. This ability can be enhanced by
increasing the resistance of R3. But this change should be considered synchronously with
the communication ability.

In the other case of estimating the distance to another robot described in Section 3.3, a
possible approach can be used is to detect the low voltage level of received communication
signal. The Equation 3.6 is suited for this case. However, the estimated distance would
be false if the IR receiver does not point to the transmitter straightly. This problem could
be improved by mounting more IR couples averagely on the circle of the PCB. These new
IR couples have to be selected with less aperture angle.

In Section 3.4, the ability of ambient light detection is realized by using six ambient light
sensors. The analogue output of this sensor is mainly depending on the illuminance and
the deflected angle to the light source.

In Section 3.5, it states that the robot can detect red light inside 15cm and blue light
inside 5cm. If the MCU could provide one more I/O pin, the green color would be also
detectable.

The Maneuverability is critical for the robot and discussed in Section 3.6. The robot is
driven by two pedrails whose power is originally derived from two micro DC motors. By
using two H-bridge chips, The MCU can output four PWM waves to drive left and right
motors. The PWM waves can be generated with precisely expected duty cycle from either
Timer/Counter or normal I/O pin.

However, there exists some problem for this cheap actuation system. The two motors
for each side are not identical and they need to be adjusted manually to ensure the robot
can move straightly. The other problem is the slippage between the wheels and pedrails.
Therefore, a robust motor system is recommended to replace the current one. If speed
detection sensors are mounted, each motor can be accurately adjusted to be a reference
speed. Also, a metal-made pedrail and fastened joints between wheels and pedrails are
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suggested to replace the current one.



Chapter 4

Single Robot Behaviors

The robot is provided with several hardware functionalities, which have been discussed in
Chapter 3. In this chapter, the implementations of those functionalities for a single robot
are described, including communication, distance measurement, obstacle avoidance, light
source approaching and color reaction. The algorithms according to each behavior are
developed and validated.

4.1 Communication

The communication between robots needs to be reliable. The swarm robots’ behaviors
rely on communication significantly. With knowing the statuses of the other robots, one
robot can make a decision for itself. The robot can observe another robot by using its own
sensors, but it is less believable than the information received directly from the speaking
of the other robot. In order to realize the communication, a protocol has to be agreed with
firstly by all the robots. Based on the protocol, the algorithms for sending and receiving
signals are developed.

4.1.1 Protocol

A communications protocol is a set of standard rules for data representation, signalling,
authentication and error detection required to send information over a communication
channel. It has the features intended to ensure reliable interchange of data [cmp].

For the communication between robots, the protocol is built mainly on the physical layer,

53



54 Single Robot Behaviors

that is RS-232. RS-232 is a standard for serial binary data signals connecting between a
Data Terminal Equipment (DTE) and a Data Circuit-terminating Equipment (DCE). But
for functional communication through a serial port interface, conventions of bit rate, char-
acter framing, character encoding, data compression and error detection, not defined in
RS-232, must be agreed to by both sending and receiving equipment. The implementation
for these robots is to use an integrated circuit part, that is UART [rs2]. The UART can
convert data from parallel to serial form. It is using asynchronous start-stop character for-
matting with 8 data bits per frame with ASCII character coding. The data rate defined by
the baud rate has set to be 9600bps. The more information on UART has been discussed
in Subsection 3.1.1.

For every robot, there are six communication channels created by local IR couples. But
due to the hardware design, they are all unidirectional and they can not send or receive
signal with six channels simultaneously. It needs to switch the sending or receiving chan-
nel by setting in the program. Also, the half-duplex is used, which means either sending
or receiving can operate during one period of time. Therefore, Two robots only have the
chance to do communication when the sending channel of one robot is pointing to the
receiving channel of the other robot at that moment. A bit of deflected angle is allowed.
The allowed value of this angle is depending on the distance between two robots. The
farther distance, the less allowed deflected angle. Consider one simple situation that, one
robot only switches six channels to transmit signal and the other robot only switches six
channels to receive signal. The probability of the robot to receive the signal is only 1

36 .
If more functions are added besides signal sending and receiving, there would be much
less chance to get the communication signal. So one critical requirement is that, the com-
munication rule has to be defined as simple as possible. On the implementation, assistant
programs can be added on to increase the chance for getting the communication signals.
If a robot gets no communication signal at one moment but there was signal before, the
robot can try to get signal again by waiting for a while or adjusting its direction. If there
is still no signal received, the robot would believe that there is no neighbor robot.

In the protocol, no acknowledgment message would be sent back when a robot receives
signals and the communication speed is defined to be 9600bps. The ability of confirma-
tion of a signal completely relies on the UART.

All information needs to tell to another robot is packaged in one character, that is 8-bit
data. The schematics of 8-bit data is shown in Figure 4.1. The bit 3 and bit 4 contain
the information of the ID of a robot who sends the signal. Because only two robots are
implemented, two bits are enough to identify different robots. The bit 0 to bit 2 are used to
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carry the information of the channel ID of an IR couple which is used to send the signal.
Three bits are enough to enumerate six channels. The channel ID contains an important
information that is direction. The other three bits 5, 6 and 7 are free. They can be used
for specific behaviors with different aims if necessary.

07 6 5 4 3 2 1

Robot ID Channel IDFree

Figure 4.1: The schematics of 8-bit data which is used to contain the useful information.

4.1.2 Signal sending

The algorithm for signal sending is written in Algorithm 1.

The algorithms are represented by statements followed by parameters inside parenthesis,
( ). Variables are written in italics. Arrays are represented by their names with square
brackets, [ ]. An algorithm can also be used inside other algorithms. The texts inside the
big brackets, { }, are the comments. A ⇐ B represents the value A is given by the value
B. The other symbols are similar to the C Programming Language. These rules are used
in the whole report.

Algorithm 1 Signal sending(Status)
1: PD5⇐ 0 {Set the communication mode.}
2:
3: for Channel Number = 0 to 5 do
4: Select channel (Channel Number)
5: T XD Char ⇐ (Status << 5 | Robot ID << 3 |Channel Number)
6: for Transmit Time = 0 to 3 do
7: Output char (T XD Char)
8: end for
9: end for

The sending signal is represented by variable, T XD Char, which is related with the ro-
bot’s status, ID, and sending channel. The signal will be transmitted four times in each
channel, which benefits for confirmation in the receiving end.
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4.1.3 Signal receiving

The Algorithm 2 shows how the robot receives signal. The receiving channel is switched
sequentially from channel 0 to channel 5.

When one channel is selected to receive signal, it is planed to be waiting for maximal
15000 loops in the algorithm. If no signal were got during this period of time, it would
turn to the next channel. Only if the same data are received two times, the robot ensures
the data is available and then it switches to the next channel. As well, during the interval
between two times to get the same data, the AD converter of MCU is planned to run 80
times to detect the voltage level of received signal. The temporary ADC value is calcu-
lated by averaging every two times of ADC results. Finally, only the minimum value is
kept, which results from the low level voltage of the received signal. This minimum value
has the relationship with the distance to the other robot who sends that signal. Two arrays
both with six elements are used to save the received signals and distance information from
each channel, respectively. Finally, the received signal has to be handled and the process
is written in Algorithm 3.

The Algorithm 3 describes the process of extracting the useful information from the re-
ceived signals of six channels. For different robots’ objectives, the useful information
would be different. This algorithm is established by an assumption that one robot is only
interested in the other robot with lowest ID. Firstly, the algorithm is to filter the noise or
wrong signals by judging whether the numbers of the neighboring robot’s ID and sending
channel are both valid. If they were valid, the useful information would be memorized,
including its own received channel number, distance, the neighboring robot’s ID, sending
channel and status.

4.2 Distance measurement

From the analysis of Section 3.2, it have been seen that it is only possible to estimate the
distance to the wall by detecting the voltage level from reflected IR. For the distance be-
tween robots, the approach of detecting the low voltage level of received communication
signal is preferred. In last section, the Algorithm 2 developed for signal receiving has
already considered the issue of detecting the distance to another robot. In this section, the
main attention is paid on detecting the distance to the wall.

The main purpose to do distance measurement is to avoid obstacles, which will be dis-
cussed in the next section. Only in the case of emergency, the robot is planned to move
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Algorithm 2 Signal receiving()
1: PD5⇐ 0 {Set the communication mode.}
2:
3: for Channel Number = 0 to 5 do
4: Select channel (Channel Number)
5: Received Signal[Channel Number]⇐ 0
6: Distance to Robot[Channel Number]⇐ 0
7: RXD Char ⇐ 0
8: Last RXD Char ⇐ 0
9: Distance to Robot temp⇐ 1000 {Initialized by a large number.}

10: for Waiting Times = 0 to 15000 do
11: if USART Char Received then
12: RXD Char ⇐USART Char Received
13: if RXD Char == Last RXD Char then
14: Received Signal[Channel Number]⇐ RXD Char
15: break
16: end if
17: Last RXD Char ⇐ RXD Char
18: for ADC Times = 0 to 40 do
19: ADC temp ⇐ ADConvert(Channel Number) {Take the average value of

two times of AD conversion.}
20: if ADC temp < Distance to Robot temp then
21: Distance to Robot temp ⇐ ADC temp {Keep the minimum of ADC

value}
22: end if
23: end for
24: end if
25: end for
26: Distance to Robot[Channel Number]⇐ Distance to Robot temp
27: end for
28: Signal handling()
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Algorithm 3 Signal handling()
1: Neighbor Robot ID⇐ 100 {Initialized by a large number.}
2: for Channel Number = 0 to 5 do
3: if Received Signal[Channel Number] 6= 0 then
4: Neighbor Robot ID temp⇐ (Received Signal[Channel Number] & 0x18) >>

3
5: Neighbor Robot Channel temp⇐ Received Signal[Channel Number] & 0x07
6: if Neighbor Robot ID temp is valid && Neighbor Robot Channel temp < 6

then
7: if Neighbor Robot ID temp < Neighbor Robot ID then
8: Neighbor Robot ID⇐ Neighbor Robot ID temp
9: Neighbor Robot Channel ⇐ Neighbor Robot Channel temp

10: Distance to Neighbor Robot ⇐ Distance to Robot[Channel Number]
11: Status o f Neighbor Robot ⇐ Received Signal[Channel Number] >> 5
12: My Received Channel ⇐Channel Number
13: T here is a Neighbor Robot ⇐ 1
14: end if
15: end if
16: end if
17: end for

backwards on purpose. In most cases, the robot is excepted to move in forward directions.
Thus, it is only necessary to use three front IR couples, which are mounted in channel 0,
1 and 5.

This process has been written in Algorithm 4. Using this algorithm, the robot will take
turns on channel 1, 5 and 0 to detect the distances to the wall from three directions.
These three distances are compared. The minimum distance as well as the error between
maximal and minimal distance is memorized.

4.3 Obstacle avoidance

One of basic behaviors for a robot is to avoid obstacles. It is a relatively important func-
tionality need to be achieved. Before a robot can do something else, it has to ensure itself
not to be in a potential crash. On the implementation of this robot, two kinds of obstacles
are needed to be taken into account, including the wall and the other robots.
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Algorithm 4 Distance measuring()
1: PD5⇐ 1 {Set the distance measurement mode.}
2:
3: Select channel (1)
4: Distance to Wall[1]⇐ ADConvert(Channel Number)
5: Min Distance⇐ Distance to Wall[1]
6: Max Distance⇐ Distance to Wall[1]
7: Channel o f Min distance⇐ 1
8:
9: Select channel (5)

10: Distance to Wall[5]⇐ ADConvert(Channel Number)
11: if Distance to Wall[5] < Min Distance then
12: Min Distance⇐ Distance to Wall[5]
13: Channel o f Min distance⇐ 5
14: else
15: Max Distance⇐ Distance to Wall[5]
16: end if
17:
18: Select channel (0)
19: Distance to Wall[0]⇐ ADConvert(Channel Number)
20: if Distance to Wall[0] < Min Distance then
21: Min Distance⇐ Distance to Wall[0]
22: Channel o f Min distance⇐ 0
23: else if Distance to Wall[0] > Max Distance then
24: Max Distance⇐ Distance to Wall[0]
25: end if
26:
27: Error o f Max Min Distance⇐Max Distance−Min Distance
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4.3.1 Wall avoidance

From the Figure 3.9, it can be seen that the detectable distance to the wall is less than
10cm. Taking the channel 0 for example, this value is got by setting the wall perpendicular
to the radial of IR, which is shown in Figure 4.2(a). In this situation with the assumption
of glazed surface of the wall, the angle of incidence as well as the angle of reflection is 0◦

. Thus, the energy detected from reflected IR has to be largest in this situation. If keeping
the same distance to wall and rotating the robot 30◦ clockwise, the distance that IR signal
needs to pass would be longer and both angles of incidence and reflection become 30◦.
This situation is shown in Figure 4.2(b). In reality, the wall is ridged, so the IR receiver
can still receive signal. But the energy would be much less if the IR couple points to the
wall with an angle. In the situation of Figure4.2(b), apparently from the sensor’s reading,
the robot will judge the distance from itself to the wall to be much longer than d. The
result is that the robot will continue to move forwards even though the actual distance d

has been in the dangerous range.

Also, the sensors’ readings are all absolute values and influenced by the ambient light.
The more IR inside the ambient light, the lower ADC values from all channels.

0

3

d

(a) The IR couple of channel 0 is perpendicularly
pointing to the wall.

d

2

5

30
O

(b) The robot turns left 30◦ and keeps the same
distance.

Figure 4.2: The relative position and direction between the robot and the wall. d repre-
sents the distance between them.

From the analysis above, it can be seen that it is risky to avoid the wall by directly con-
sidering the absolute ADC values. However, by analyzing the ADC values from three
channels simultaneously, the problem can be solved. In the following, the maximal error
between three ADC values is used to realize the wall avoidance.

The Figure 4.3(a) is the result from an experiment. Referring to Figure 4.2(a), the exper-
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(b) The max error between the three channels’ ADC values.

Figure 4.3: The result of an experiment, which was conducted by keeping the distance
2cm to the wall and rotating the robot from -30◦ to 30◦. 0◦ represents the channel 0
perpendicularly points to the wall.
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iment was conducted by keeping the distance to be 2cm and rotating the robot from -30◦

to 30◦. The positive angles represent clockwise rotating and the negative angles repre-
sent anticlockwise rotation. The three curves show the ADC values from three channels,
respectively. During this range, the value from channel 0 is never larger than the values
from the other two channels, which is lowest at 0◦ and increases with the rotated angle.
The value from channel 1 decreases slightly from -30◦ to 30◦. The value from channel 5
is opposite to the tendency in channel 1.

Figure 4.3(b) shows the tendency of the maximal error of ADC values from three chan-
nels. In the case when channel 1 or channel 5 is nearest to the wall with distance of 2cm,
the maximal error would also be larger than 200. In the case of no obstacle around the
robot, this error value is less than 10 induced from non-uniform environment and non-
identical IR couples.

Because this max error is an relative value calculated from three channels, it would not be
much influenced by the ambient light. Therefore, if 2cm is defined as the alarm distance,
as long as the maximal error is larger than 200, the robot has to make a decision to avoid
the wall.

4.3.2 Robot avoidance

Not only the wall, but also the other robots have to be avoided by a robot. Even though
robots would have a plan to cooperate for some specific tasks, they still need to stay
outside the safe line from each other. Otherwise, a crash is easy to happen.

Consider a robot called robot1. When this robot meets the other robot called robot2, there
might be three situations of the robot2 at that moment. These situations are decided by the
IR couple that points to the robot1, including sending nothing, sending communication
signal, sending distance measurement signal, which are discussed in the following.

Sending nothing

In this case, the robot2 keeps quiet on that IR couple and sends nothing out. It results that
the robot1 can not get any signal from the robot2. The only chance of the robot1 to detect
the robot2 is to use the functionality of distance measurement by reflected IR. However,
the robot1 can not recognize the robot2 and only knows there is something in front of
itself.

This topic has been talked in Section 3.2.2 and the conclusion shows it is difficult to detect
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the distance to the other robot by using reflected IR. But for the aim to avoid the other
robot, the requirement is not so critical as to realize distance measurement. Seen from the
Figure 3.10(b), when the distance between two robots is less than 1cm, the ADC value
from the distance detecting channel is a bit lower than the value in no obstacle situation.

In this case , the other two channels except the channel that points to the other robot, can
not detect the other robot and will keep the ADC values above 1000. Therefore, as similar
to the case of wall avoidance, the robot can use the relative value of max error to judge
whether a robot is in front of itself. The robot needs to avoid obstacle if the max error is
larger than 25, which is corresponding to the distance near 0cm.

Sending communication signal

If the robot2 sends communication signal, the robot1 can estimate the distance by detect-
ing the low voltage level of received signal. This functionality has been talked in Section
3.3 and the algorithm has been included in Algorithm 2 of signal receiving().

But an unexpected situation would happen. It can be read from the Figure 3.12 that the
ADC value is 637 when keeping the distance 5cm but deflecting angle -20◦. Referring
to the Figure 3.11, the value of 637 is corresponding to the distance around 9.5cm. The
robot would think that 9.5cm is still far from being crash and continue to move forwards.
But actually, the distance is only 5cm.

On the implementation, the dangerous distance is defined as 2cm corresponding to the
ADC value 31. If the ADC value is less than 31, the robot needs to do avoidance behavior.

Sending distance measurement signal

If the robot2 sends continuous IR signal for measuring distance, the IR receiver of the
robot1 will get quite strong IR by using reflected IR to detect distance. The robot1 can
not receive any signal in signal receiving mode. In this case, the ADC value from that IR
receiver can go down below 100. The robot will treat this small value with the implication
of an object being significantly close to itself.

Since if one IR receiver of the robot1 could get the distance measurement signal from one
IR transmitter of the robot2, it is also possible to get the communication signal from the
robot2. On the implementation, only three channels are set to do distance measurement
and the process of doing communication is much more complicated than doing distance
measurement. Thus, doing distance measurement spends much less time than doing com-
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munication. When running programs for the robots, the chance to get the communication
signal is much higher than the chance to get distance measurement signal. Therefore,
even though the robot1 receives a strong IR signal, referring to the previous communi-
cation results, it can judge whether this signal is from the robot2 or its own reflected IR.
This situation will not be considered separately in the algorithm for avoiding obstacles.

4.3.3 Algorithm

From the analysis above, it can be classified into two main situations that a robot needs to
perform obstacle avoidance. One is the robot meets the wall or another quiet robot. The
other one is the robot meets another robot, from whom it gets the communication signal.
The process has been written in Algorithm 5.

Algorithm 5 Obstacle avoiding()
Require: Distance measuring()
Require: Signal receiving()

1: Obstacle⇐ 1
2: if T here is a Neighbor Robot == 0&&Error o f Max Min Distance > 25 then
3: Wall and quiet robots avoiding()
4: else if T here is a Neighbor Robot == 1&&Distance to Neighbor Robot < 31

then
5: Robots Avoiding()
6: else
7: Obstacle⇐ 0
8: end if

The robot judges whether there is an obstacle based on the information got from doing
distance measurement and signal receiving. So this algorithm requires these two processes
before it.

In the first situation, the thresholds represented by max error for wall avoidance and quiet
robots avoidance are different. For wall avoidance, the threshold is 200. While for quiet
robots avoidance, the threshold is 25. The requirement of obstacle avoidance is to avoid
everything provided with potential crash or danger for the robot. So the threshold is set to
be 25 in order to avoid both obstacles. With this threshold, the wall can be avoided with
the alarm distance of 5cm.

The Algorithm 6 describes the robot’s behavior to avoid the wall and quiet robots. The
behavior is decided by judging which one of the front three sectors is nearest to the ob-
stacle. If the sector 0 is the closest one, which is represented by the lowest value from the
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channel 0, the robot will further compare the values from the channel 1 and the channel 5.
If the value from the channel 5 is lower, the robot decides to turn right 120◦. Otherwise,
the robot will turn left 120◦. In the cases that the sector 5 or sector 1 is closest to an
obstacle, the robot would decide to turn right or left with angle 60◦, respectively.

Algorithm 6 Wall and quiet robots avoiding()
1: if Channel o f Min distance == 0 then
2: if Distance to Wall[1] > Distance to Wall[5] then
3: Turn right(120◦)
4: else
5: Turn left(120◦)
6: end if
7: else if Channel o f Min distance == 1 then
8: Turn left(60◦)
9: else if Channel o f Min distance == 5 then

10: Turn right(60◦)
11: end if

In the second situation, if a robot gets communication signal from a neighboring robot
and judges that the ADC value is less than 31, it would perform to avoid the neighboring
robot.

The robot will judge the position of the neighboring robot relative to itself firstly. If the
neighboring robot is in front of itself, the robot would move backwards. Otherwise the
neighboring robot is in the back, the robot would move forwards. This behavior has been
written in Algorithm 7.

Algorithm 7 Robots avoiding()
1: if My Received Channel == (0||1||5) then
2: Move backwards()
3: else
4: Move forwards()
5: end if

4.3.4 Testing results

The Algorithm 5 is implemented in both simulation and real experiments.

In the real experiments, there exist several weak points. The ability to detect distance is
significantly different from object to object. Also, the robot is easy to lose the communi-
cation signal even a neighboring robot is close. Moveover, the actuation system can not
be controlled accurately.
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The main objective of doing simulation is to test the logic of algorithms. Thus, the prob-
lems mentioned above are not supposed to occur in simulation. The ability of distance
measurement is ideally provided to each robot. One robot knows the accurate distance
either to the wall or to another neighboring robot as long as the object is in the range of
sensors’ maximal abilities. The distance between robots defined in simulation is ideally
from one robot’s center to other robot’s center, which is not the same as the distance de-
fined for real robots. Also, the communication is supposed to be ideal, which means one
robot can get signal as long as another robot stands in the communication range and sends
signal. Moveover, the motions of a robot, including move forwards or backwards and turn
left or right, are also ideally configured.

The parameters defined in simulation are also much more flexible than in real experi-
ments. For example, the real robot is only possible to avoid another quiet robot when they
are relatively colse, while this threshold can be defined to be 8cm in simulation.

Results of simulation

Two robots labeled by robot0 and robot1, respectively, are tested in a scenario of 120cm×180cm.

The Figure 4.4 shows the moving traces of two robots, it can be seen that both robots
do never touch the wall. Every time when they are close to the wall, they will rotate to
change their moving direction.

For the robots avoidance, it can be seen from Figure 4.5 that the distance between two
robots is always larger than 0cm. When they are close to each other with distance 8cm,
they will adjust their direction to avoid the crash.

Results of experiments

In the real experiments, the robots are supposed to move slowly. It gives the benefit to
the robots that they could have more time to do sensing in a slowly changed environment.
But during the experiments, it has been seen that the robots are hard to meet each other
when let them run in a big scenario.

In order to test the behaviors of robots more efficiently, the scenario is not suggested to
be used on this experiment as well as future experiments. The wall and robots will be set
randomly by manual way. All the figures showing the results of experiments are clipped
from videos.

The Figure 4.6 shows the wall avoidance. The robot meets the wall and then turn right to
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(a) Robot0.

(b) Robot1.

Figure 4.4: The moving traces of two robots in simulation. The sign of× shows the initial
position. The color represents the time.
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Figure 4.5: The distance between two robots.

avoid it.

The Figure 4.7 shows the case when two robots meet each other without receiving com-
munication signal. Both robots turn to the direction that there is no obstacle in front.

The Figure 4.8 shows the case when a robot meets the other robot and gets the commu-
nication signal. The robot detects the low voltage level whose ADC value is less than the
threshold. Then the robot knows there is another robot in its front and that robot is quite
colse to itself. Finally, the decision made by the robot is to move backwards.

4.4 Light source approaching

The robot is mounted with six ambient light sensors and the hardware functionality for
detecting the light has been discussed in Section 3.4. In this section, the main task is to
develop an algorithm for the robot approaching a light source.
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(a) Move forwards. (b) Detect the wall.

(c) Turn right. (d) Avoid the wall.

Figure 4.6: Wall avoidance.



70 Single Robot Behaviors

(a) Move forwards and meet each other. (b) Rotate the direction with no obstacle in front.

(c) Continue to rotate. (d) Ensure no obstacle in front and move forwards.

Figure 4.7: Robots avoidance without communication signal.
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(a) Meet the other robot and estimate the dis-
tance from the communication signal.

(b) Move backwards.

Figure 4.8: Robots avoidance when receiving communication signal.

4.4.1 Analysis

In order to approach a light source, it is necessary to let the robot know where is the
light source. By using the ambient light sensors, it can not detect the distance accurately
since different object has different illuminant intensity. But with six ambient light sensors
averagely mounted on 360◦ of the PCB, the direction of a light source can be estimated.
This direction is defined as the error angle between the forward direction of the robot and
the direction pointing to the light source. This defined error can be seen from Figure 5.6
to 4.12. Before to calculate this error, the relationship between six ambient light sensors’
outputs and the direction of the light source is analyzed in the following.

The Figure 3.14 shows the ADC value from the front ambient light sensor when the robot
is rotated clockwise from 0◦ to 180◦. Because the ambient light sensors are symmetrically
mounted around the PCB, when anti-clockwise rotating the robot, the ADC value from
the front sensor is symmetrical to the value in the case of clockwise rotating. Keeping the
distance to be 40cm, the samples from an experiment are drawn by the dashdot curve in
Figure 4.9.

It can be seen that the in the range between -100◦ and 100◦, the dashdot curve is similar
to the shape of a parabola. Thereafter, the dashed line in Figure 4.9 shows an two-order
approximated parabola calculated from the samples in that range. The formula of this
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curve is written in Equation 4.1

y =−0.0634x2 +0.0138x+812.9823 x ∈ [−100,100] (4.1)

On the experiment, a bulb was used as the light source, which has a bigger illuminant
surface than an ideal point light source. Thus, if the robot is close to the bulb, the ADC
value changed by the rotated angle is not as sensitive as in the case with longer distance.
This comparison has already shown in Figure 3.14. When the distance is 20cm, the curve
can not be approximated by a parabola. Seen from the curve with distance of 40cm, the
bulb performs much close to the characteristic of an point light source.

In the following, the algorithm is developed with the assumption of a point light source.

The experimental result from the Figure 4.9 also implicates the distribution of detected
ADC value on 360◦ of the PCB when a bulb stays away with distance of 40cm. The 0◦

represents the reference point in the PCB which has the minimal distance to the bulb.

Therefore, it can get an inference that when a point light source points to a point of PCB
labeled by 0◦, the distribution of detectable ADC value from -180◦ to 180◦ with reference
of the 0◦ point has the similar tendency as the dashdot curve in Figure 4.9.

4.4.2 Direction estimation

From the analysis about distribution of detectable ADC value, it could provide the ro-
bot with the ability to estimate the direction of a light source referred to it own forward
direction. This error between two directions is calculated in the following.

One ambient light sensor can have the maximal value in six sensors when the light source
points to the sector where it is mounted. Take the front ambient light sensor fixed on the
sector 0 for example, only if the error were between -30◦ and 30◦, the output from the
front ambient light sensor could be larger than values from the other five sensors. And the
values from two sensors beside the front one would be larger than three back sensors.

According to the largest and two second largest ADC values from two neighboring sen-
sors, the error can be estimated. The error is defined to be in the range between -180◦ and
180◦. In the following , three specific cases are discussed firstly and then the formula for
error estimation is generated.
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Figure 4.9: The distribution of detected ADC value from -180◦ to 180◦ when the distance
is 40cm. 0◦ is the case when the bulb points to the front ambient light sensor. The dashdot
curve is drawn from samples of the experiment. The dashed curve is the second-order
approximation between -100◦ and 100◦. The solid curve is the first-order approximation
in the range from -90◦ to 90◦.



74 Single Robot Behaviors

Case one

The Figure 4.10(a) illustrates the situation when the froward direction deflects clockwise
from the direction of the light source. The light source is indicated by a bulb. The error
is defined to be positive in this relative direction. And also this error is less then 30◦ in
order to make sure that the ADC value from sector0 is maximum.

error

(a) Relative direction when
error is in the range between
0◦ and 30◦.

L5

L1

L0

-60 6030-30 0

y5

y0

error

y1

P

(b) Approximated curves for calculating the error angle.

Figure 4.10: Direction estimation in case one.

Referring to the Figure 4.9, the approximated parabola is drawn by the dashed curve
in Figure 4.10(b) in order for showing the tendency. The X-coordinate is the degree of
angle where 0◦ represents the place mounted with the front ambient light sensor. The Y-
coordinate is the ADC value. The vertex of the parabola is an point which the bulb points
to. This point is also related with the error of direction.

The parabola can be described by a second-order formula written in Equation 4.2.

y = ax2 +bx+ c x ∈ [−60,60] (4.2)

Because three readings from sensors on sector0, sector1, and sector5 are satisfied to cal-
culate the error, the independent variable, x, is only need to be considered in the range
between -60◦ and 60◦. Those three readings are represented by three points in Figure
4.10(b), that are L0(0,y0)4, L1(60,y1) and L5(−60,y5). Substituting three points into
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Equation 4.2, three parameters a, b and c can be achieved. With the full expressed for-
mula, the error can be calculated by Equation 4.3.

error =− b
2a

(4.3)

Even though these calculations are not expensive for MCU, but the limited memory size
in the MCU is relatively expensive. Furthermore if using data of double type in order for a
more accurate result, the flash memory in the MCU would be occupied more. Therefore,
a first-order approximated function is suggested to be used.

The first-order approximation is shown by the solid curve in Figure 4.9. This approxima-
tion is calculated from the samples between -90◦ and 90◦. The approximated function is
shown in Equation 4.4.

y =

{
6.1224x+903.3091 if x≤ 0

−6.0903x+902.9636 if x > 0
(4.4)

It can be seen that this first-order curve fits worse than the parabola, especially in the range
beside the 0◦, where the first-order curve is relatively acuate compared with the parabola
which is gentle. But it contributes much on unloading the burden of MCU.

In Figure 4.10(b), the first-order approximated curve is drawn by the solid line with a
peak point P. This curve can be described by Equation 4.5.

y =−k|x− error|+b x ∈ [−90,90] (4.5)

Where k is the slope of the increasing line on the left side. Substituting the three sample
points, the results are written in Equation 4.6.

y0 = −k|0− error|+b

y1 = −k|60− error|+b (4.6)

y5 = −k|−60− error|+b

There are three functions with three unknown parameters. In this case, the error is be-
tween the range from 0◦ to 30◦. Finally, the value of error can be solved by Equation
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4.7
error = 30 · y1− y5

y0− y5
(4.7)

Case two

In this case, shown in Figure 4.11(a), the forward direction of the robot is on the right
side of the bulb, which is opposite to the relative direction in the case one. The error is
defined to be a negative angle when the robot rotates anticlockwise. In order to ensure the
maximal sensor value is from the sector0, this error is limited in the range between -30◦

and 0◦.

error

(a) Relative direction when
error is in the range between
-30◦ and 0◦.

L5

L1

L0

-60 6030-30 0

y5

y0

error

y1

P

(b) Approximated curves for calculating the error angle.

Figure 4.11: Direction estimation in case two.

The Figure 4.11(b) shows the the first-order and second-order approximated curves in
this case. As similar to the computation in the case one, the error can be calculated by
Equation 4.8.

error =−30 · y5− y1
y0− y1

(4.8)
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Case three

The third case is indicated in Figure 4.12(a). The bulb points to the back of the robot and
the error is in the range from 150◦ to 180◦ In this case, the ambient light sensor on sector3
has the maximal ADC value. The sensors on the sector2 and sector4 have the second and
third largest ADC value.

Based on these three values, the different angle between the error and 180◦ labeled in
Figure 4.12(b) can be calculated by using the similar approach as in the case two. The
formula is shown in Equation 4.9

error−180 =−30 · y2− y4
y3− y4

(4.9)

Therefore, the error can be got by Equation 4.10

error = 180−30 · y2− y4
y3− y4

(4.10)

error

(a) Relative direction when er-
ror is in the range between 150◦
and 180◦.
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(b) Approximated curves for calculating the error angle.

Figure 4.12: Direction estimation in case three.
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Formula of error calculation

From the analysis of the above three cases, it can be seen that the error can be estimated
wherever the light source is in front or in back. The complete formula to calculate the
error angle has been developed and written in Equation 4.11 and 4.12.

error360 =

{
60 ·X +30 · VRight−VLe f t

V−VLe f t
if VRight ≥VLe f t

60 ·X−30 · VLe f t−VRight
V−VRight

if VLe f t > VRight
(4.11)

Where V is the maximal ADC value detected from sector X . VLe f t and VRight are val-
ues read from sensors mounted on the left side and right side of sector X , respectively.
error360 is the error of angle defined in the range from 0◦ to 360◦.

However, the supposed error angle is in the range between -180◦ and 180◦. Therefore,
in order to get the wanted error, the error360 needs to be treated further according to the
Equation 4.12.

error =

{
error360 if error360 ≤ 180
error360−360 if error360 > 180

(4.12)

4.4.3 Algorithm

The algorithm used for robot approaching the light source has been developed and written
in Algorithm 8.

Algorithm 8 Light source approaching()
Require: Ambient light detecting()

1: if Channel with Max Lux == 2 then
2: Turn right(120◦)
3: else if Channel with Max Lux == 4 then
4: Turn left(120◦)
5: else if Channel with Max Lux == 3 then
6: Turn left(180◦)
7: else
8: Direction estimating()
9: P controlling()

10: end if

The robot needs to detect the light from six channels firstly. This process is written in
Algorithm 9. Because all channels are connected to the pin ADC6 of MCU, the ADC



4.4 Light source approaching 79

channel does not to be changed. The voltage levels from ambient light sensors are con-
tinuously sampled from ADC6 and the average of every two ADC values from the same
channel will be saved in an array. In the meanwhile, the number of the channel which
gets the maximal ADC value is recorded in an variable.

Algorithm 9 Ambient light detecting()
1: Max Lux⇐ 0
2: for Channel Number = 0 to 5 do
3: Select channel (Channel Number)
4: Ambient Light[Channel Number]⇐ ADConvert(6)
5: if Ambient Light[Channel Number] > Max Lux then
6: Max Lux⇐ Ambient Light[Channel Number]
7: Channel with Max Lux⇐Channel Number
8: end if
9: end for

On the implementation, if the detected light source is in the back of robot when the chan-
nel 2, 3 or 4 gets the maximal ADC value, the robot is supposed to rotate until it faces to
the light source. Therefore, the error angle only needs to be estimated when channel 0,
1 or 5 gets the maximal ADC value. In these cases, the error angle will be in the range
between -90◦ and 90◦. Based on the analysis in the last section, the Algorithm 10 is de-
veloped to estimate the direction to the light source. The error angle returned from this
algorithm can be used as feedback information for further controller implementation.

By taking information from sensors, the robot is supposed to approach the light source
in a smooth way. This behavior can be realized by using the closed-loop control. A
P-controller has been developed for this implementation and written in Algorithm 11.

In this closed-loop control system, The reference angle for the robot is 0◦, that is the
direction pointing to the light source. The feedback is the error angle calculated from
sensors. So the value input to the P-controller is (0−Error)◦.

This input value only has opposite sign to the error angle. Therefore, in the algorithm, the
value of error angle is directly used as input signal to the P-controller. Firstly, the absolute
value of error angle is used to judge the robot’s motion. If the error is in the range of dead
zone, the robot will move forwards at default speed. Otherwise, the P-controller will be
utilized. A speedup value for the motor is decided by the P-gain and the absolute error
value, which describes how much speed should be added on the default forward-moving
speed of the left or right motor. This speedup value is also limited by a threshold defined
as the potentially maximal speedup value. If the error angle is larger than 0◦, the speedup
value will be added on the left motor, which leads the robot to turn right. If the error angle
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Algorithm 10 Direction estimating()
Require: Ambient light detecting()

1: if Channel with Max Lux == 0 then
2: if Ambient Light[1] > Ambient Light[5] then
3: Error ⇐ 30× Ambient Light[1]−Ambient Light[5]

Ambient Light[0]−Ambient Light[5]
4: else
5: Error ⇐−30× Ambient Light[5]−Ambient Light[1]

Ambient Light[0]−Ambient Light[1]
6: end if
7: else if Channel with Max Lux == 1 then
8: if Ambient Light[2] > Ambient Light[0] then
9: Error ⇐ 60+30× Ambient Light[2]−Ambient Light[0]

Ambient Light[1]−Ambient Light[0]
10: else
11: Error ⇐ 60−30× Ambient Light[0]−Ambient Light[2]

Ambient Light[1]−Ambient Light[2]
12: end if
13: else if Channel with Max Lux == 5 then
14: if Ambient Light[0] > Ambient Light[4] then
15: Error ⇐−60+30× Ambient Light[0]−Ambient Light[4]

Ambient Light[5]−Ambient Light[4]
16: else
17: Error ⇐−60−30× Ambient Light[4]−Ambient Light[0]

Ambient Light[5]−Ambient Light[0]
18: end if
19: end if
20:

Algorithm 11 P controlling()
Require: Direction estimating()

1: Absolute Error ⇐ |Error|
2: if Absolute Error < T hreshold o f Deadzone then
3: Move forwards()
4: else
5: Speedup Value o f Motor ⇐ Kp ·Absolute Error
6: if Speedup Value o f Motor > T hreshold o f Max Speedup Value then
7: Speedup Value o f Motor ⇐ T hreshold o f Max Speedup Value
8: end if
9: if Error > 0 then

10: Left motor speed up(Speedup Value o f Motor) {Turn right.}
11: else
12: Right motor speed up(Speedup Value o f Motor) {Turn left.}
13: end if
14: end if
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is less than 0◦, the right motor will speed up and the robot will turn left.

4.4.4 Testing results

The Algorithm 8 has been tested in reality. A bulb is used as a light source in a dark
environment. Because the bulb emits the light with strong IR, the IR sensors of the robot
can not function. The P-gain is set to be 5 and the dead zone is in the range between -3◦

and 3◦. The max speed is limited by the duty cycle of PWM with the number of 75%.

The Figure 4.13 shows six video clips from the experiment. It can be seen that the robot
has the ability to discover the light source and approach it smoothly.

4.5 Color reaction

A color sensor is equipped in the front of the robot. The hardware functionality of color
detection has been discussed in Section 3.4. Due to the limitation of hardware, only colors
of red and blue can be detected by the robot. On the implementation of color reaction, an
object with red color is assumed to be the thing that the robot is interested in. While, an
object with blue color is what the robot is afraid of. When the robot recognizes different
colors, it is expected to have reactions of approaching the red light and escaping from the
blue light.

4.5.1 Analysis

Before to have reaction, the robot needs to decide whether there is an object with colors
in front of itself. If with colors, the robot has to further judge what the color is. On the
implementation, there are three situations for the robot to decide, which are classified in
the following:

1. No object with colors.

2. An object with the red light.

3. An object with the blue light.

The robot has to distinguish the different situations by comparing two output frequencies
when using red filter and blue filter. In a specific environment, the result in three situations
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(a) Discover the light source in the back. (b) Turn left.

(c) Right motor speeds up. (d) Move with right motor speeding up.

(e) Move with right motor speeding up. (f) Approach the light source.

Figure 4.13: The video clips of light source approaching.
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has been plotted in Figure 3.16.

In situation one, it can be seen from Figure 3.16(a) that the frequency output from red
filter is always higher than using the blue filter. This result fits to the characteristic of
the photodiode spectral responsivity of the color sensor [tcs04]. In that environment, the
values from the red filter and blue filter are below 30kHz and 10kHz, respectively.

In situation two, referring to Figure 3.16(b), if the distance is less than 15cm, the value
from the red filter is much larger than the value from the blue filter. At the distance of
15cm, the value from the red filter is three times of the value from the blue filter. The less
distance, the more times. If the distance is more than 15cm, both values tend to be the
values as similar as in the situation one.

In situation three, seen from Figure 3.16(c), the blue light can be detected if the distance
is less than 5cm, during which the value from the blue filter is larger than the value from
the red filter. If the distance is farther than 5cm, both values tend to be the case when there
is no color light in front.

4.5.2 Algorithm

From the analysis above, the color reaction for the robot is written in Algorithm 12.

Algorithm 12 Color reacting()
1: Color deciding()
2: if Color == clear then
3: Turn left(60◦)
4: Times o f Turn Le f t++
5: if Times o f Turn Le f t > 5 then
6: Move forwards()
7: Times o f Turn Le f t ⇐ 0
8: end if
9: else if Color ⇐ red then

10: Move forwards()
11: else if Color ⇐ blue then
12: Move backwards()
13: Turn left(180◦)
14: Move forwards()
15: end if

Firstly, the robot needs to decide the color by analyzing the data from color sensor. The
process of color decision has been written in Algorithm 13.
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Algorithm 13 Color deciding()
Require: Timer/Counter0 overflow ISR()

1: PD3⇐ 0 {Select the red filter}
2: TCNT 0⇐ 0 {TCNT 0 is the register of Timer/Counter0 counter value.}
3: Count o f Timer0 Over f low⇐ 0
4: Delay ms(1) {Delay 1ms}
5: Red Filter Frequency⇐ 256 ·Count o f Timer0 Over f low+TCNT 0
6:
7: PD3⇐ 1 {Select the blue filter}
8: TCNT 0⇐ 0
9: Count o f Timer0 Over f low⇐ 0

10: Delay ms(1)
11: Blue Filter Frequency⇐ 256 ·Count o f Timer0 Over f low+TCNT 0
12:
13: if Red Filter Frequency > 30 && Red Filter Frequency > 3 ×

Blue Filter Frequency then
14: Color ⇐ red
15: else if Blue Filter Frequency > Red Filter Frequency then
16: Color ⇐ blue
17: else
18: Color ⇐ clear {clear represents no color.}
19: end if

Algorithm 14 Timer/Counter0 overflow ISR()
1: Count o f Timer0 Over f low++ {To record the overflow times.}
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The output frequencies when using red and blue filters are calculated in the beginning.
The Timer/Counter0 counts the times of falling edges of the square wave output from the
color sensor during 1ms. An variable is set to count the times of Timer/Counter0 being
overflow, which is shown in Algorithm 14. The real frequency has to be one thousand
times of the value calculated by that variable and the number in the register TCNT 0.
Then, based on the analysis of three situations, the color can be distinguished. And the
color will be recorded in an variable.

Secondly, with the information of the kind of color, the robot will response on different
colors. If no color detected, the robot will turn left 60◦ and try to detect any color again.
But if the robot has rotated 360◦ with no color detected, it will move forwards to another
position. This process of color searching is repeated until any color is detected. If detected
color is red that the robot is interested in, the robot will move forwards to approach it. If
detected color is blue that the robot is afraid of, the robot will move backwards, then turn
left 180◦ and move forwards to escape from the object with blue color.

4.5.3 Testing results

The Algorithm has been validated in the experiments. Figure 4.14 shows nine consecu-
tive video clips when the robot reacts to the object with red light. The robot will move
forwards if it detects the red light in front. But the moving direction can not be ensured to
be directly pointing to the red light. So the robot will lose the detected color and need to
detect the red light again. Finally, the robot is successful to approach the object with red
light.

Figure 4.15 shows the reaction of the robot when there is a object with blue light in front.
The robot succeeds to escape from it.

4.6 Summary

In this section, five abilities of a single robot have been discussed. All the abilities are
realized based on the hardware functionalities.

For robots’ communication, the protocol is established. The realization of communication
mainly relies on the UART. The baud rate is 9600bps. The data for communication is
packaged in one character. Besides the information of robot ID and channel ID. There
are also three bits left that can be used for different aims. The algorithms for sending and
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(a) Turn left and try to detect any
color.

(b) Detect the red light. (c) Move forwards to approach it.

(d) Detect no color. (e) Turn left. (f) Turn left.

(g) Detect the red light again and
move forwards.

(h) Detect no color. (i) Turn left and detect the red light
again.

Figure 4.14: The video clips of red light reaction.
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(a) Detect the blue light. (b) Move backwards.

(c) Turn left 180◦. (d) Move forwards.

Figure 4.15: The video clips of blue light reaction.
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receiving signals and are developed in Section 4.1. Since the channel for signal sending
and receiving needs to be switched, it has a chance to lose the communication signal
even robots are close to each other. The useful information is extracted from the received
signals.

The algorithm for estimating the distance by using the reflected IR is developed in Section
4.2. Because in most cases, the robot moves in front direction and only needs to know
the distance to objects on its moving way, only three front IR couples are used for this
objective.

The robot is necessary to avoid any potential crash. A robot needs to avoid the wall as well
as other robots. Because the reflector surface from the other robot is relatively small, it
prefers to estimate the distance between robots by communication signal. But in reality, a
robot will keep quiet and send no communication signal out. In this case, to avoid another
robot is not as easy as to avoid the wall. Considering both obstacles, the algorithm of
obstacle avoidance is developed in Section 4.3 and has been validated both in simulation
and real experiments.

With the help of six ambient sensors, the robot can estimate the direction of the light
source. By knowing the error angle to the light source, a P-controller is implemented to
control the robot to approach it in a smooth way. The algorithms for direction estimation
and light source approaching are developed in Section 4.4 and have been validated in the
experiments.

The robot can use the color sensor to distinguish the red and blue color. The algorithm is
developed in Section 4.5 as well as the reaction to the different colors. The algorithm has
been proved in the experiment that the robot can succeed to approach the red light and
avoid the blue light.



Chapter 5

Formation

In this chapter, one of the swarm robots behaviors, that is formation, is implemented by
two robots. The formation is discussed in two cases. One is only relative direction is
kept after the formation is generated. The other is both relative direction and distance
are always kept. For each case, separated algorithms are developed for each robot with
different roles. The algorithms for the first case are validated in both simulation and
experiments. While the algorithms for the second case are only validated in simulation.

5.1 Formation analysis

Two micro robots are implemented in the formation. In order to clearly distinguish robots
from each other, they are given the names of robot0 and robot1, respectively. Two robots
are supposed to keep a specific formation.

A specific formation can be defined by the relative direction and distance of two robots.
On this implementation, the relative direction is defined to be that the robot0’s sector5
points to the robot1’s sector2, and the relative distance is defined to be 12cm. This forma-
tion is depicted in Figure 5.1.

The process of formation can be realized by two steps. Firstly, two robots generate the
formation. Then, the formation has to be kept when they are moving. These two steps are
discussed in the following.

89
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Figure 5.1: Formation shape. The relative direction is robot0’s sector5 pointing to the
robot1’s sector2. The d represents the relative distance, 12cm.

5.1.1 Formation generation

Two robots are initialized to be moving freely. If they meet each other, two robots are
supposed to perform formation. Formation are defined by two factors as mentioned above,
including relative direction and distance.

Formation generation can be realized by two approaches. Two robots can perform for-
mation with each other or only one moving robot performs formation with the other stop
one.

Using the first approach, the relative direction is much easier to be corrected by two robots
adjusting in the meanwhile. They only need to rotate themselves to make sure the correct
sector points to the other robot. But, there exists a problem when adjusting the distance.
Because in most cases, the communicating IR couples on two robots do not point to each
other in a straight line, the sensors’ readings for the same distance will be different for
two robots. Therefore, two robots will stick on the process of distance adjusting.

Using the second approach, the distance is only confirmed by the moving robot. It can
avoid the problem existing in the first approach. However, for direction adjusting, the
moving robot needs to perform more motion to find the expected relative direction and it
will take more time than the time spent in the first approach.

As a compromise, two robots can use the first approach to do direction adjusting and
then use the second approach to do the distance adjusting. It is relative ideal when they
generate the formation. However, when they are then moving together after formation
is generated, in order to keep the direction relative to each other, two robots have to
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change the moving direction dynamically. Actually, the further objective of swarm robots
formation is for doing other specific tasks. Otherwise, only doing formation has no value
in application. Therefore, if the moving direction were changed frequently, it would be
no sense for specific tasks.

Therefore, the second approach is used to do implementation. The complete expected
procedures in formation generation is stated in the following:

1. Two robots are moving freely.

2. If they meet each other, the robot0 asks the robot1 to stop.

3. The robot0 adjusts direction 00to12.

4. If direction 00to12 is ok, the robot0 adjusts distance.

5. If distance is ok, the robot0 adjusts direction 05to12.

6. If both direction and distance are ok, they go to the next step.

The main tasks in the above procedures are direction and distance adjustments. The algo-
rithms for realizing these two processes are developed in the following.

Direction adjustment

The expected relative direction is that the robot0’s sector5 points to the robot1’s sector2,
which is shortly represented by 05to12 and the same notation is used in this report. Take
the 05 for example, the first number 0 represents the robot ID and the second number 5
represents the sector number.

The Algorithm 15 is developed for adjusting the direction of 00to12. The approach to do
direction adjustment consists of two steps. Firstly, the robot0 has to move to the relative
direction of the robot1’s sector2. Secondly, the robot0 adjusts its own direction to realize
that its own sector0 points to the robot1’s sector2.

This algorithm is developed only for one specific relative direction. However, the algo-
rithms for other relative direction adjustments will not be written since the approach is
the similar.
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Algorithm 15 Direction adjusting(00 to 12) for Robot0
1: if Neighbor Robot Channel == (0||1||5) then
2: if My Received Channel == 1 then
3: Move forwards()
4: else if My Received Channel == (2||3||4) then
5: Turn right(60◦)
6: else if My Received Channel == (0||5) then
7: Turn left(60◦)
8: end if
9: else if Neighbor Robot Channel == (3||4) then

10: if My Received Channel == 5 then
11: Move forwards()
12: else if My Received Channel == (0||1||2) then
13: Turn right(60◦)
14: else if My Received Channel == (3||4) then
15: Turn left(60◦)
16: end if
17: else if Neighbor Robot Channel == 2 then
18: if My Received Channel == 0 then
19: Stop()
20: else if My Received Channel == (1||2||3) then
21: Turn right(60◦)
22: else if My Received Channel == (4||5) then
23: Turn left(60◦)
24: end if
25: end if
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Distance adjustment

The distance is decided by the robot0. Because the motors are easy to be slipping, the
distance can not be adjusted precisely by controlling the robot’s moving and turning in
the meanwhile. That is also why two robot need to realized direction 00to12 firstly. After
the direction adjustment 00to12 is done, the robot0 can only move forwards or backwards
to adjust the distance. The Algorithm 16 is developed for adjusting the distance to be
the reference distance by using a P-controller. If the distance is farther, the robot0 will
keep moving forwards with a lasting time defined by the P gain and error distance. If the
distance is shorter, the robot0 will keep moving backwards with a lasting time. A dead
zone is set, in which, the robot0 believes the relative distance is satisfied.

Algorithm 16 Distance adjusting() for Robot0
1: Motion Time⇐ P gain · |Distance to Neighbor Robot− re f erence distance|
2: if Distance to Neighbor Robot > re f erence distance+deadzone distance then
3: Move forwards()
4: else if Distance to Neighbor Robot < re f erence distance − deadzone distance

then
5: Move backwards()
6: else
7: Stop()
8: end if
9: Delay ms(MotionT ime)

10: Stop()

5.1.2 Formation keeping

After the two robots finish formation generation, they are supposed to move forwards
together with keeping the formation.

Keeping the formation implicates two robots have to keep the relative distance and di-
rection during the motion. Due to the truth that the distance decided from the sensors
are much influenced by the deflected angle, the robot0 will judge frequently that the dis-
tance is wrong. But on the implementation, the relative directions for doing distance
adjustment and for this specific formation are not the same. Therefore if the robot0
thinks the distance is not correct, it needs to perform Direction adjusting( 00to12) ,
Distance adjusting() , and then Direction adjusting( 05to12) . Actually in real-
ity, each process is not easy to be performed due to the problems of losing communication
and slippage between the wheel and pedrails. Therefore, on the implementation, only the
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relative direction is ensured to be kept during the motion. The whole formation pro-
cedures will be performed again only if the relative direction is lost. However, in the
simulation, both the relative direction and distance can be ensured to be kept during the
formation. Classified by these two approaches to keep the formation, the realization of
formation will be discussed in next two sections, respectively.

5.2 Formation – case one

When the robot0 finishes formation generation, it only makes sure that the relative direc-
tion is correct during they are moving. Only if the relative direction is lost, they have
to perform formation again. This case will be discussed in this section. The separated
algorithms for each robot are developed with respect to their different roles. Also, the
algorithms are validated in both simulation and experiments.

5.2.1 Algorithms

The Figure 5.2 shows the flow chart of the complete algorithm for both robot0 and robot1.
Hardware is initialized firstly and then a loop runs infinitely. During the loop, the robot
will measure distance and receive signal firstly. The data got from those two processes will
be analyzed to decide whether or not to do obstacle avoidance. If an obstacle is avoided,
the loop will go back to the beginning. Otherwise, the robot will perform an expected
behavior. The two robots have different behaviors according to their own responsibilities.
The procedures to perform a specific behavior for both robots are the same. The robot has
to analysis the information got from sensors firstly. Then, the robot will make a decision
and perform the decided behavior. Thereafter, the whole loop will be repeated.

The algorithm BEHAVIOR() is the main part to realize an expected behavior, inside which
different algorithms have to be developed by considering the role of each robot. This main
algorithm is realized by three sub-algorithms. In the algorithm Signal analyzing() ,
the pre-extracted data from received signals will be analyzed to further extract the use-
ful information depending on different aims. In the algorithm Decision making() , a
decision will be made that is judged by its previous state and the information got from
the last algorithm. In the algorithm Executing() , an expected behavior decided by the
last algorithm will be executed. In the following, the algorithms for robot0 and robot1 to
realize the formation will be described in detail.
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Decision making();

Executing();

Signal analyzing();

Obstacle==1

Obstacle==0

Figure 5.2: Flow chart for both robots in formation-case one.
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Robot0

The robot0 has to generate and keep the formation with robot1. The relative direction
and distance are both adjusted by the robot0, which plays an important role to realize the
formation.

Algorithm 17 Signal analyzing() for Robot0 in formation-case one
1: No signal ⇐ 0
2: Direction 00to12 Ok ⇐ 0
3: Direction 05to12 Ok ⇐ 0
4: Distance Ok ⇐ 0
5: if T here is a Neighbor Robot == 1 then
6: Signal ⇐ Status o f Neighbor Robot
7: if Neighbor Robot Channel == 2 then
8: if My Received Channel == 0 then
9: Direction 00to12 Ok ⇐ 1

10: else if My Received Channel == 0 then
11: Direction 05to12 Ok ⇐ 1
12: end if
13: end if
14: if Distance to Neighbor Robot ∈ [re f erence distance±deadzone distance] then
15: Distance Ok ⇐ 1
16: end if
17: else
18: No Signal ⇐ 1
19: end if

The Algorithm 17 illustrates the signal analyzing process. Five useful variables are taken
out from the received signals, involving the information of data, relative direction and
distance. The variable, Signal, is used to record the status of the other robot, which also
represents the main information that robot1 want to tell robot0.

The Figure 5.3 is the Finite State Machine (FSM) diagram to illustrate the transitions
between states and the actions in each state. During every main loop, only one state in
the Figure 5.3 can be executed. Then the function will be returned to begin the next main
loop. The state which will be executed in the current loop is decided by the last state and
the five variables from the previous signal analyzing.

The formation is mainly achieved by states from 2 to 5 with respect to the excepted for-
mation process. If the robot0 believes the formation is correct, it will send out the signal
to let the robot1 move. Otherwise, it will always ask the robot1 to be stopped. Counter

is to count the times of losing direction 05to12. If the number is bigger than a threshold,
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STATE1

Free moving;

Sending(stop);

Return;

STATE2

Wait=0; 

Direction(00 to 12);

Sending(stop);

Return;

STATE3

Wait=0;

Distance adjusting;

Sending(stop);

Return;

STATE4

Wait=0;

Counter++; 

Direction(05 to 12);

Sending(stop);

Return;

STATE5

Counter=0;

Move forwards;

Sending(move);

Return;

No_Signal==1

Signal==null

Direction_00to12_Ok==1

Distance_Ok==1

Direction_05to12_Ok==1

STATE6

Wait++;

Stop;

Sending(stop);

Return;

No_Signal==1

Signal==null

STATE7

Wait++;

Stop;

Sending(stop);

Return;

No_Signal==1

Signal==null

Direction_00to12_Ok==0

&& Signal==null

STATE8

Wait++;

Stop;

Sending(stop);

Return;

No_Signal==1

Signal==null

No_Signal==1

Wait>threshold 

&& No signal

Direction_05to12_Ok==0 

&& Signal==null

Counter>threshold 

&& Signal==null

Wait>threshold 

&& No_Signal==1 Wait>threshold 

&& No_Signal==1

initial

Figure 5.3: FSM of robot0 in formation-case one.
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the previous adjusted distance is not believable. Thus, the robot0 has to adjust direction
and distance from the beginning. There are also three assistant states 6, 7 and 8 which are
used for the robot0 to stay when no signal is got in the current loop but there was signal
before. A variable Wait is to counter the waiting times. If the robot0 have waited more
times than a threshold, it will go back to move freely. If there is signal got again during
waiting, the robot0 will go back to the previous one of formation states.

This state machine has been written in Algorithm 18 for deciding a state and Algorithm
19 for executing an action.

Robot1

During the formation generation, the robot1 performs like a landmark and waits for the
robot0 to finish formation. Then when they are moving, the robot1 behaves as a leader
and let the robot0 keep formation with itself.

The Algorithm 20 shows the signal analyzing for the robot1. The robot1 only needs
to know whether there exists signal or not. The received signal will only include the
information to let it move.

The Figure 5.4 shows the FSM for robot2 including the transitions between four states
and the actions in each state. The formation states are state 2 and 3. The robot1 will be
stopped in state 2 when the robot0 performs formation. The state 3 represents the situation
that the robot1 is moving with formation of the robot0. The state 4 is for waiting and the
state 1 is for free moving without formation. During all the four states, the robot1 always
sends out the signal null. It is noted that null does not mean no signal, which represents
there is no special request on the other robot and the contents of the data are only robot
ID and channel ID. Only one state will be executed during one loop. Then after return,
the loop will be repeated again.

Referring to FSM in Figure 5.4, the Algorithm 21 and 22 shows the decision making and
executing process, respectively.

5.2.2 Testing results

The algorithms are implemented in both simulation and experiments. During the distance
adjustment, the dead zone is defined from 9cm to 15cm and the P gain is set to be 1.5.
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Algorithm 18 Decision making() for Robot0 in formation-case one
1: if Last State == 1 then
2: if Signal == null then
3: State⇐ 2
4: end if
5: else if Last State == 2 then
6: if No Signal == 1 then
7: State⇐ 6
8: else if Direction 00to12 Ok == 1 then
9: State⇐ 3

10: end if
11: else if Last State == 3 then
12: if No Signal == 1 then
13: State⇐ 7
14: else if Distance Ok == 1 then
15: State⇐ 4
16: else if Direction 00to12 Ok == 0 then
17: State⇐ 2
18: end if
19: else if Last State == 4 then
20: if No Signal == 1 then
21: State⇐ 8
22: else if Direction 05to12 Ok == 1 then
23: State⇐ 5
24: else if Counter > threshold then
25: State⇐ 2
26: end if
27: else if Last State == 5 then
28: if No Signal == 1 then
29: State⇐ 8
30: else if Direction 05to12 Ok == 0 then
31: State⇐ 4
32: end if
33: else if Last State == (6||7||8) then
34: if Signal == null then
35: State⇐ Last State−4
36: else if Wait > threshold&&No Signal == 1 then
37: State⇐ 1
38: end if
39: else
40: State⇐ 1
41: end if
42: Last State⇐ State
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Algorithm 19 Executing() for Robot0 n formation-case one
1: if State == 1 then
2: Free moving()
3: else if State == 2 then
4: Wait ⇐ 0
5: Direction adjusting(00to12)
6: else if State == 3 then
7: Wait ⇐ 0
8: Distance adjusting()
9: else if State == 4 then

10: Wait ⇐ 0
11: Counter++
12: Direction adjusting(05to12)
13: else if State == 5 then
14: Counter ⇐ 0
15: Move forwards()
16: else if State == (6||7||8) then
17: Wait++
18: Stop()
19: end if
20: if State == 5 then
21: Signal sending(stop)
22: else
23: Signal sending(move)
24: end if
25: Return

Algorithm 20 Signal analyzing() for Robot1 in formation-case one
1: No signal ⇐ 0
2: if T here is a Neighbor Robot == 1 then
3: Signal ⇐ Status o f Neighbor Robot
4: else
5: No Signal ⇐ 1
6: end if
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STATE1

Free moving;

Sending(null);

Return;

STATE2

Wait=0;

Stop;

Sending(null);

Return;

STATE3

Wait=0;

Move forwards;

Sending(null);

Return;

STATE4

Wait++;

Stop;

Sending(null);

Return;

Signal==stop

Signal==moveSignal==stop

Signal==move

No_Signal==1

No_Signal==1

Signal==stop

Signal==move

Wait>threshold 

&& No_Signal==1

initial

Figure 5.4: FSM of robot1 in formation-case one.
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Algorithm 21 Decision making() for Robot1 in formation-case one
1: if Last State == 1 then
2: if Signal == stop then
3: State⇐ 2
4: else if Signal == move then
5: State⇐ 3
6: end if
7: else if Last State == 2 then
8: if No Signal == 1 then
9: State⇐ 4

10: else if Signal == move then
11: State⇐ 3
12: end if
13: else if Last State == 3 then
14: if No signal == 1 then
15: State⇐ 4
16: else if Signal == stop then
17: State⇐ 2
18: end if
19: else if Last State == 4 then
20: if Signal == stop then
21: State⇐ 2
22: else if Signal == move then
23: State⇐ 3
24: else if No signal == 1&&Wait > threshold then
25: State⇐ 1
26: end if
27: else
28: State⇐ 1
29: end if
30: Last State⇐ State
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Algorithm 22 Executing() for Robot1 in formation-case one
1: if State == 1 then
2: Free moving()
3: else if State == 2 then
4: Wait ⇐ 0
5: Stop()
6: else if State == 3 then
7: Wait ⇐ 0
8: Move forwards()
9: else if State == 4 then

10: Wait++
11: Stop()
12: end if
13: Signal sending(null)
14: Return

Results of simulation

The Figure 5.5 shows the moving traces of two robots. The © and × represent the initial
positions of robot0 and robot1, respectively. It can be clearly seen that two robots are
keeping formation and moving forwards after 100s.

The Figure 5.6 shows the distance and relative direction between two robots. The Figure
5.6(b) shows the number of channel from which the communication signal is received. If
the receiving channel number for the robot0 is 5 and for the robot is 2, it implicates the
relative direction is correct. The Figure 5.6(a) shows the distance between two robots. It
can be see that at the time around 55s, both the distance and direction are correct. But the
distance is still increasing after 55s until they lose the formation. It results from the reason
that the robot0 only ensures the relative direction is right during the motion. The proof for
judging the right direction is that the IR receiver on the robot0’s sector5 receives the signal
from IR transmitter on the robot1’s sector 2. If the two IR couples do not point to each
other in a straight line, the moving directions for two robots are a bit different. Therefore,
two robots will go farther or closer to each other. Finally, they will lose formation and
then they need to perform formation again. After the 100s, two robots keep formation
precisely since two IR couples straightly point to each other.

The two robots also have the abilities to avoid the obstacles when they are moving with
formation. The Figure 5.7 is a series of video clips to show the behaviors when they meet
the wall two times. Every time, the robot1 detects the wall and tries to avoid it. The
robot0 always tries to keep the formation with robot1 except the case when there is any
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Figure 5.5: Simulation result of two robots’ moving traces in formation-case one.
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(a) The distance between two robots.
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(b) The signal received channel numbers of two robots.

Figure 5.6: Relative direction and distance from simulation in formation-case one.
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(a) 36.35s. Two robots
are moving freely.

(b) 47.41s. R0 asks R1 to
stop and is adjusting the
direction 00to12.

(c) 51.86s. R0 is adjust-
ing the distance.

(d) 53.62s. R0 is adjust-
ing the direction 05to12.

(e) 60.88s. Finish forma-
tion and move forwards
with deflected directions.

(f) 67.21s. R1 meets the
obstacle.

(g) 72.66s. R1 is avoiding
the obstacle and R0 per-
forms formation.

(h) 76.95s. R1 has
avoided the obstacle and
R0 performs formation.

(i) 83.49s. Finish forma-
tion and move forwards.

(j) 97.19s. R1 meets the
obstacle again and R0 per-
forms formation.

(k) 101.15s. Finish for-
mation and move for-
wards.

(l) 106.26s. Keep the
formation and move for-
wards with the same di-
rection.

Figure 5.7: The video clips from simulation in formation-case one. The number repre-
sents the time in simulation. R0 and R1 represent the robot0 and the robot1, respectively.
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obstacle suffered by itself. It can be seen that the two robots can succeed to avoid the wall
and quickly recover the formation.

Results of experiments

The formation algorithm is validated on experiments without a scenario. The Figure 6.4
shows the sequential video clips from the test. It can be seen that the robot0 needs to take
much longer time than the time spent in simulation to finish the process of adjusting direc-
tion 00to12, which is shown from Figure 5.8(c) to 5.8(h). Finally, they finish formation
can move forwards together.

One problem can not be avoided is that they will lose formation since only relative di-
rection is ensured when they moving together, which also exists in the simulation result.
However, two robots can not perform so well as the behaviors in the simulation. They will
lose formation when losing communication. Also, the actuation system can not carry out
the behavior as expected. Therefore, two robots need to generate formation much more
frequently than in the simulation.

5.3 Formation – case two

In the second case of formation, when the robot0 finishes formation generation, it will
keep both relative direction and distance during they are moving. When either direction
or distance is not correct, the robot0 has to perform formation again. This case will be
discussed briefly in this section.

5.3.1 Algorithms

The algorithms for two robot are similar to the algorithms in case one, which will be
described briefly in the following.

The main loop are the same as in case one, which has been shown in Figure 5.2. The
behaviors for the robot1 are also the same as before, which has been written in Algorithm
20, 21 and 22.

For the robot0, it has to perform much heavier behaviors than in the case one. The signal
analyzing is the same as the Algorithm 17. The Figure 5.9 shows the FSM in this case.
Compared with the FSM in Figure 5.3, the number of the state and the actions in each state
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(a) Two robots are moving freely . (b) R0 meets R1 and asks R1 to
stop.

(c) R0 is adjusting the direction
00to12.

(d) R0 is adjusting the direction
00to12.

(e) R0 is adjusting the direction
00to12.

(f) R0 is adjusting the direction
00to12.

(g) R0 is adjusting the direction
00to12.

(h) R0 finishes adjusting the direc-
tion 00to12.

(i) R0 is adjusting the distance.

(j) R0 finishes adjusting the dis-
tance.

(k) R0 is adjusting the direction
05to12.

(l) Keep the formation and move
forwards.

Figure 5.8: The video clips from the experiment in formation-case one.



5.3 Formation – case two 109

STATE1

Free moving;

Sending(stop);

Return;

STATE2

Wait=0;

Direction(00 to 12);

Sending(stop);

Return; 

STATE3

Wait=0;

Distance adjusting;

Sending(stop);

Return;

STATE4

Wait=0;

Direction(05 to 12);

Sending(stop);

Return;

STATE5

Move forwards;

Sending(move);

Return;

Signal==null

Direction_00to12_Ok==1

Distance_Ok==1

Direction_05to12_Ok==1

STATE6

Wait++;

Stop;

Sending(stop);

Return;

No_Signal==1

Signal==null

STATE7

Wait++;

Stop;

Sending(stop);

Return;

No_Signal==1

Signal==null

Direction_00to12_Ok==0

&& Signal==null

STATE8

Wait++;

Stop;

Sending(stop);

Return;

No_Signal==1

Signal==null

No_Signal==1

Wait>threshold 

&& No_Signal==1

Wait>threshold 

&& No_Signal==1

Wait>threshold 

&& No_Signal==1

Distance_Ok==0

&& Signal==null

Direction_05to12_Ok==0

 && Distance_Ok==1 

initial

Figure 5.9: FSM of robot0 in formation-case two.
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are the same, while transitions are a bit different. One assistant variable, Counter, is not
needed any more since the robot0 will go to the state to adjust the distance immediately
when the distance is not correct.

5.3.2 Testing results

In reality, the robot can not response so much quickly and accurately as in simulation.
Therefore, the algorithms in this case are only tested in simulation.
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Figure 5.10: Simulation result of two robots’ moving traces in formation-case two.

The Figure 5.10 shows the moving traces of two robots. It can bee seen that two robots can
avoid the obstacle and move forwards with formation. The robot0’s trace is not so smooth
as the trace of robot1. It dues to the fact that the robot0 adjusts the relative direction and
distance frequently in order to keep the formation.

Figure 5.11(a) shows the distance between two robots. It can be seen that when the
distance begins to increase, it will decrease again by the effort from the robot0. The
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(a) The distance between two robots.
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(b) The signal received channel numbers of two robots.

Figure 5.11: Relative direction and distance from simulation in formation-case two.
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Figure 5.11(b) shows the two robots’ channel numbers which receive signal. It shows
that the channel number for the robot0 switches between 0 and 5 frequently in order for
adjusting the distance and direction.

From the simulation result, it proves that the algorithms are good at keeping formation.
While it expenses much more motions of robot0. Therefore, maneuverability and flex-
ibility of the robots are two necessary conditions to realize the formation by using this
approach.

5.4 Summary and discussion

In this chapter, the algorithms of formation by two robots are developed. There are two
cases are discussed separately.

In Section 5.1, the formation shape and the expected procedures to realize this forma-
tion are described firstly. Then, two algorithms for realizations of direction and distance
adjustments are developed, which are two important processes in the formation.

In Section 5.2, the case that only relative direction is kept when two robots move together
is discussed. The separated algorithms for the robot0 and the robot1 are developed with
respect to their different roles. The algorithms are validated in both simulation and exper-
iments. The two robots can keep the formation as well as obstacle avoidance. However,
they will lose formation if their moving directions are not exactly the same.

In Section 5.3.1, the case that both relative direction and distance are kept when two robot
are moving with formation. The algorithm for the robot1 is the same as in the case one.
While the algorithm for the robot0 is newly developed. The algorithms are only validated
in simulation since there is a high requirement on the robot’s maneuverability and the
current robots can not achieve. The simulation result shows that two robots can be more
robust to keep the formation when moving. Even though there is an obstacle, two robots
can succeed to avoid it and recover formation again.

For the swarm robots, it suggests to use one algorithm for all the robot members. While on
the implementation of this project, separated algorithms for each robot are developed. But
it does not disobey the suggested rule. Actually, the separated algorithms are developed
for different roles rather than for different robots. Because only two robots are imple-
mented in this project, one role has already been assigned to one robot in the beginning.
For a large group of swarm robots, it prefers to integrate the algorithms of different roles’
behaviors into one algorithm and fixed the same algorithm onto all the robots since they
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are not so distinguishable as only two robots. When robots doing communication with
others, they can decide which roles they should play. Thus, every robot will perform one
role’s behavior based on the same integrated algorithm. One advantage to distribute roles
beforehand in this project is to save flash memories of MCU, which is quite important for
the current used MCU.
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Chapter 6

Collective Behavior

Another swarm robots behaviors implemented in this project is to let the robots perform
a collective task. In this chapter, the collective behavior is implemented by two robots.
Each robot plays a different role and has different responsibility with respect to a specific
collective task. The collective task will be planned and the corresponding algorithms will
be developed for each robot. The algorithms are validated in simulation or experiments.

6.1 Task planning

For different collective tasks, the robots have to be assigned with different behaviors.
Therefore, a specific collective task has to be planned firstly. Then according to that
planned task, the different duties can be distributed on different robots.

One complete collective task is planned and written sequentially in the following:

1. The robots are searching the food

2. If food is found by one robot, this robot will ask the other robots to help carrying
the food to their home.

3. Some robots are carrying the food to home and some robots are guarding them.

In the plan of this task, each job is supposed to be conducted by a group of robots. Dif-
ferent common responsibilities will be assigned to different groups, involving searching
food, carrying food, finding the way to home and security guarding. However, only two
robots have been built until now and these two robots have to take on all the jobs above.

115
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Therefore, in order to realize collective behaviors by two robots. The planned collective
task has to be separated into two subtasks. For each subtask, different robots have the
different responsibilities.

In the subtask one, one robot is responsible for searching the food and then carrying the
food and the other robot will help to carry the food.

In the subtask two, one robot is carrying the food and finding a way to go home and the
other robot has to guard the first robot.

These two subtasks will be discussed in the following sections and the algorithms will be
developed.

6.2 Subtask one

In this subtask, two robots need to find the food and carry the food. The object with red
light will be treated as the food that the robots want. Due to the structure of the robot,
there is neither a gripper to hold the food nor a place to keep the food. Therefore, the food
can be moved only if the robots push it. On the implementation, the expected procedures
to perform this subtask are written in the following.

1. The robot1 is searching an object with red light.

2. If the robot1 finds the object, it will stop and ask for help from another robot.

3. If the robot0 gets the help signal, it will perform formation with the robot1. When
the formation is finished, the robot0 will ask the robot1 to move the object together.

4. When the robot1 receives the signal from the robot0 and knows the robot0 is ready
to move, it will move the object.

6.2.1 Algorithms

The main loop for both robots is similar to the case of formation, which is illustrated in
Figure 6.1. However, one more judgement is added depending on a variable, Last Food.
This variable is used to distinguish food and obstacle. If the robot believes there is a food
in front of itself, it will directly perform the expected behavior according to that food.
Otherwise, the robot has to judge whether there is an obstacle or not.
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Obstacle==0

Obstacle==1

Decision making();

Executing();

Signal analyzing();

Last_Food==1

Last_Food==0

Figure 6.1: Flow chart for both robots in collective subtask one.
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The specific behaviors for robot0 and robot1 are different, which will be discussed re-
spectively.

Robot0

The Algorithm 23 shows the useful information extracted from the communication sig-
nal. Three variable are important for the decision making, which are No signal, Signal

and Direction 05to11 Ok. The variable, Last Food is initialized to be 0, which will be
changed if there is food.

Algorithm 23 Signal analyzing() for Robot0 in collective subtask one
1: Last Food ⇐ 0
2: No signal ⇐ 0
3: Direction 05to11 Ok ⇐ 0
4: if T here is a Neighbor Robot == 1 then
5: Signal ⇐ Status o f Neighbor Robot
6: if Neighbor Robot Channel == 1&&My Received Channel == 5 then
7: Direction 05to11 Ok ⇐ 1
8: end if
9: else

10: No Signal ⇐ 1
11: end if

The Figure 6.2 shows the FSM about the transitions between states and the actions in each
state. If a help signal is received, the robot0 will perform the formation with the robot1.
The relative direction 05to11 is only ensured for this formation. With this formation, the
two robots almost stand shoulder by shoulder and face to the food. If the formation is
finished, the robot0 will send ready signal to the robot1. Meanwhile, the Robot0 believes
there is food in front and tries to move the food. If there is no help signal received
accidently, the robot0 will wait until it believes that there is no help needed from others.
The corresponding processes are written in Algorithm 24 for decision making and 25 for
behavior executing.

Robot1

In the Algorithm 26, the robot1 actives the color sensor and analyzes the color. If detected
color is red, it represents food in front. Furthermore, the robot1 will judge the food is close
to itself if the output frequency from the red filter is higher than a threshold.
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STATE1
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Return;

STATE2

Wait=0;

Direction(05 to 11);

Return; 

STATE3

Wait=0;
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Return;
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Wait++;
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Direction_05to11_Ok==0 

&& Signal==help 

initial

Figure 6.2: FSM of robot0 in collective subtask one.
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Algorithm 24 Decision making() for Robot0 in collective subtask one
1: if Last State == 1 then
2: if Signal == help then
3: State⇐ 2
4: end if
5: else if Last State == 2 then
6: if NoSignal == 1 then
7: State⇐ 4
8: else if Direction 05to11 Ok == 1&&Signal == hel p then
9: State⇐ 3

10: end if
11: else if Last State == 3 then
12: if No Signal == 1 then
13: State⇐ 5
14: else if Direction 05to11 Ok == 0&&Signal == hel p then
15: State⇐ 2
16: end if
17: else if Last State == 4 then
18: if Signal == help then
19: State⇐ 2
20: else if Wait > threshold then
21: State⇐ 1
22: end if
23: else if Last State == 5 then
24: if Direction 05to11 Ok == 0&&Signal == help then
25: State⇐ 2
26: else if Direction 05to11 Ok == 1&&Signal == hel p then
27: State⇐ 3
28: else if Wait > threshold then
29: State⇐ 1
30: end if
31: else
32: State⇐ 1
33: end if
34: Last State⇐ State
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Algorithm 25 Executing() for Robot0 in collective subtask one
1: if State == 1 then
2: Free moving()
3: else if State == 2 then
4: Wait ⇐ 0
5: Direction adjusting(00to12)
6: else if State == 3 then
7: Wait ⇐ 0
8: Last Food ⇐ 1
9: Move forwards()

10: Signal sending(ready)
11: else if State == 5 then
12: Wait++
13: Stop()
14: else if State == 5 then
15: Wait++
16: Last Food ⇐ 1
17: Stop()
18: end if
19: Return

Algorithm 26 Signal analyzing() for Robot1 in collective subtask one
1: Color deciding()
2: Food ⇐ 0
3: Food Near ⇐ 0
4: if Color == red then
5: Food ⇐ 1
6: if Red Filter Frequency > threshold o f f requecny then
7: Food Near ⇐ 1
8: end if
9: end if

10: Last Food ⇐ Food
11: No signal ⇐ 0
12: if T here is a Neighbor Robot == 1 then
13: Signal ⇐ Status o f Neighbor Robot
14: else
15: No Signal ⇐ 1
16: end if
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STATE2

Wait=0;

Stop;

Sending(help);

Return;

STATE1
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Return;
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Figure 6.3: FSM of robot1 in collective subtask one.
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The Figure 6.3 shows the FSM for the robot1. If the object with red light is detected by
the robot1, it will approach it. Then, the robot1 will stop close to the object and send out
signal for help. Finally, the robot1 will move the objects if there is a ready signal received
from another robot. The state 4 and 5 are used for waiting in the cases of accidently
changing of sensor’s readings or communication signal. The corresponding processes are
written in Algorithm 27 for decision making and 28 for behavior executing.

6.2.2 Testing results

The algorithms are validated in the experiments. The result is shown in Figure 6.4. It
can be seen that the robot1 gets the help from the robot0 and they cooperate to move the
object with red light.

6.3 Subtask two

In the second subtask, one robot is assumed to be carrying the food and tries to find a way
to go home. The responsibility of the other robot is to guard the first robot. The latter
robot plays a role as a security person, who should always stay around the first robot and
ensure no accidence for the food. The home will be imitated by a light source. The bulb
used before as a light source is not possible in this case, because the communication can
not work with the light from the bulb. Therefore, a white light from a LED array will be
treated as the home.

On the implementation, the expected procedures to perform this subtask are written in the
following:

1. The robot1 is searching a way to home and asking for security guard.

2. The robot0 gets the signal and stays around the robot1.

3. The robot1 goes home and the robot0 guards it.

4. When robot1 arrives home, the robto0 finishes its task and moves freely to see if
there are other robots need to be guarded.

6.3.1 Algorithms

The algorithms for the robot0 and robot1 are developed respectively in the following.
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Algorithm 27 Decision making() for Robot1 in collective subtask one
1: if Last State == 1 then
2: if Food Near == 1 then
3: State⇐ 2
4: end if
5: else if Last State == 2 then
6: if Food Near == 0 then
7: State⇐ 4
8: else if Food Near == 1&&Signal == ready then
9: State⇐ 3

10: end if
11: else if Last State == 3 then
12: if Food Near == 1&&No Signal == 1 then
13: State⇐ 2
14: else if Food == 0||Food Near == 0||No Signal == 1 then
15: State⇐ 5
16: end if
17: else if Last State == 4 then
18: if Food Near == 1 then
19: State⇐ 2
20: else if Wait > threshold||(Food == 1&&Food Near == 0) then
21: State⇐ 1
22: end if
23: else if Last State == 5 then
24: if Food Near == 1&&No Signal == 1 then
25: State⇐ 2
26: else if Food Near == 1&&Signal == ready then
27: State⇐ 3
28: else if Wait > threshold||(Food == 1&&Food Near == 0) then
29: State⇐ 1
30: end if
31: else
32: State⇐ 1
33: end if
34: Last State⇐ State
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(a) R1 is searching the object with
red light.

(b) R1 detects the object. (c) R1 approaches and stops in
front of the object, then asks for
help.

(d) R0 gets the help signal and per-
forms formation.

(e) R0 is too close to R1. (f) R0 moves backwards to avoid
R1 and performs formation again.

(g) R0 performs formation. (h) R0 performs formation. (i) R0 performs formation.

(j) Finish the formation and begin
to move the object.

(k) Move the object. (l) Move the object.

Figure 6.4: The video clips from an experiment in collective subtask one. R0 and R1
represent the robot0 and the robot1, respectively.
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Algorithm 28 Executing() for Robot1 in collective subtask one
1: if State == 1 then
2: color reacting()
3: else if State == 2 then
4: Wait ⇐ 0
5: Stop()
6: Signal sending(help)
7: else if State == 3 then
8: Wait ⇐ 0
9: Move forwards()

10: Signal sending(help)
11: else if State == (4||5) then
12: Wait++
13: Last Food ⇐ 1
14: Stop()
15: end if
16: Return

Robot0

The main loop for the robot0 is the same as the loop shown in Figure 5.2. The behaviors
including the signal analyzing, decision making and executing, are all written inside one
Algorithm 29. From the communication signal, the robot0 only needs to judge whether
existing robots need to be guarded. If there is a request from another robot, the robot0
will move close to guard it. Otherwise, the robot0 moves freely. These behaviors have
been shown in the Figure 6.5, which is the FSM to illustrate state transitions and actions.

The Algorithm 30 shows the approach to realize the security guarding. The robot0 has to
make sure that the robot1 is always in front of itself. If the distance is too far, the robot0
will speed up to move close to the robot1. If the distance is too short, the robot0 will stop
to avoid crash. Otherwise, the robot0 will keep normal speed to move with the robot1.

Robot1

The Figure 6.6 shows the flow chart of the main loop for robot1 in this subtask. The
robot1 has to judge the home after signal receiving. If the robot1 believes it is on the
way to home or the home has already been arrived, it will perform the specific behaviors
directly. Otherwise, the robot1 will analyze about the obstacle existence firstly.

The detailed behavior including the signal analyzing, decision making and executing,
are all written by the Algorithm 31. During signal analyzing, the robot1 will detect the
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Algorithm 29 BEHAVIOR() for Robot0 in collective subtask two
1: {Signal analyzing()}
2: No signal ⇐ 0
3: if T here is a Neighbor Robot == 1 then
4: Signal ⇐ Status o f Neighbor Robot
5: else
6: No Signal ⇐ 1
7: end if
8:
9: {Decision making()}

10: if Last State == 1 then
11: if Signal == guard then
12: State⇐ 2
13: end if
14: else if Last State == 2 then
15: if No Signal == 1 then
16: State⇐ 3
17: end if
18: else if Last State == 3 then
19: if Signal == guard then
20: State⇐ 2
21: else if Wait > threshold&&NoSignal == 1 then
22: State⇐ 1
23: end if
24: else
25: State⇐ 1
26: end if
27: Last State⇐ State
28:
29: {Executing()}
30: if State == 1 then
31: Free moving()
32: else if State == 2 then
33: Security guarding()
34: else if State == 3 then
35: Wait++
36: stop()
37: end if
38: Return
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STATE1

Free moving();

Return;

initial

STATE2

Security guarding;

Return;

STATE3

Wait++;

Stop;

Return;

Signal==guard

No_Signal==1

Wait>threshold

&& No_Signal==1
Signal==guard

Figure 6.5: FSM of robot0 in collective subtask two.

Algorithm 30 Security guarding() for robot0 in collective subtask two
1: if My Received Channel == (1||2) then
2: Turn right(60◦)
3: else if My Received Channel == (3||4||5) then
4: Turn left(60◦)
5: else if My Received Channel == 0 then
6: if Neighbor Robot Channel = (0||1||5) then
7: Stop()
8: else if Neighbor Robot Channel = (2||3||4) then
9: if Distance to Neighbor Robot > f ar distance then

10: Move forwards() with speed up
11: else if Distance to Neighbor Robot > near distance then
12: Stop()
13: else
14: Move forwards()
15: end if
16: end if
17: end if
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Obstacle==0

Obstacle==1

Decision making();

Executing();

Signal analyzing();

Home==1

Home==0

Figure 6.6: Flow chart for the robot1 in collective subtask two.



130 Collective Behavior

ambient light firstly and then judge that whether existing a home. If a home is existed, it
will further decide whether the home has been arrived by analyzing the irradiance of the
light. The more irradiant, the closer to home.

Algorithm 31 BEHAVIOR() for Robot1 in collective subtask two
1: {Signal analyzing()}
2: Ambient light detecting()
3: Home⇐ 0
4: Home Arrived ⇐ 0
5: if Max Lux > Min threshold o f Lux then
6: Home⇐ 1
7: end if
8: if Max Lux > Max threshold o f Lux then
9: Home Arrived ⇐ 1

10: end if
11:
12: {Decision making()}
13: if Last State == 1 then
14: if Home Arrived == 1 then
15: State⇐ 2
16: end if
17: else if Last State == 2 then
18: if Home Arrived == 0 then
19: State⇐ 1
20: end if
21: else
22: State⇐ 1
23: end if
24: Last State⇐ State
25:
26: {Executing()}
27: if State == 1 then
28: Light source approaching()
29: Signal sending(guard)
30: else if State == 2 then
31: Stop()
32: end if
33: Return

The decision making and actions are indicated in Figure 6.7. The robot1 will keep ap-
proaching the light source and sending the request for guard. If the home is arrived, it will
stop and have no request any more.



6.4 Summary 131

STATE2

Stop;

Return;

Home_Arrived==1

initial

STATE1

Light sorce approaching;

Sending(guard);

Return;

Home_Arrived==0

Figure 6.7: FSM of robot1 in collective subtask two.

6.3.2 Testing results

The Algorithm 30 has been validated in simulation. Because there is no simulated light
source, the robot1 is assumed to be moving freely. The Figure 6.8 shows the moving
traces of two robots. The smooth curve represents the behavior of the robot1. While the
curve for the robot0 is rough since its duty is to guard the robot1 and its motion is mainly
decided by the robot1. It can been seen that after the robot0 meets the robot1, the robot0
can succeed to keep staying around the robot1. The Figure 6.9 indicates the distance
between two robots. It can been clearly seen that the distance can be always kept lower
than 30cm after 35s.

An experiment has been done to validate the complete algorithms and the result is shown
in Figure 6.10. It proves that the robot0 can succeed to guard the robot1 until the robot1
arrives home.

6.4 Summary

In this chapter, the collective behavior is implemented by two robots. The algorithms are
developed and validated in simulation and experiments.

In Section 6.1, the complete collective task is planned and separated into two subtasks.
For each subtask, different robots have different responsibilities.

In Section 6.2, the subtask one is discussed. One robot needs to find the object with red
light, which is treated as food. Then this robot will ask for help from the other robot. The
object will be moved with the contributions from two robots. Separated algorithms are
developed with respect to each robot’s duty. Also, the algorithms have been proved in the
real experiment.
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Figure 6.8: Simulation result of two robots’ moving traces in security guard behavior.
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Figure 6.9: The distance between two robots from simulation in security guard behavior.

In Section 6.3, the subtask two is discussed. One robot is assumed to be carrying the
food and has to find a way to home. Meanwhile, this robot needs the guard from the
other robot. The other robot has the responsibility to guard the robot to return home. The
algorithms are developed separately for two robots and validated in the simulation and
real experiments.
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(a) R1 is searching the home and R0 is guard-
ing it.

(b) Light is turned on and R1 finds the home.

(c) R1 is approaching the the light source and
R0 is guarding it.

(d) R1 is approaching the the light source and
R0 is guarding it.

(e) R1 is approaching the the light source and
R0 is guarding it.

(f) R1 arrives home. R0 finishes this guard.

Figure 6.10: The video clips from an experiment in collective subtask two.



Chapter 7

Closure

7.1 Conclusion

The objectives of this project are focused on the swarm robots implementation. The
project starts from a circuit diagram of the robot to the end of realization of swarm robots
behaviors. During this period, three main objectives have been accomplished:

1. Two robots were built. The hardware functionalities based on the current frame
were analyzed. Especially, a lot of effort was devoted to improving the communi-
cation quality and distance measurement ability.

2. The algorithms for signal robot behaviors and swarm robots behaviors are devel-
oped, mainly including formation and collective behavior.

3. The developed algorithms are validated by the physical robots system or simulation.

The detailed tasks conducted in this project have been described in this thesis. In the
following, there will be a brief conclusion of the whole project.

The robots used in this project was designed by Trung Dung Ngo. For the aim of swarm
robots implementation, the robot is supposed to be micro and identical. Each robot was
equipped with six couples of IR transmitter and receiver, six ambient light sensors, one
color sensor and one Global IR receiver. The actuation system was taken from the chassis
of a toy tank. The homemade robot was established by combining sensor system and
actuation system. A MCU was used to cooperate those systems with respect to different
tasks. Two robots were built in this project.

135
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An object was built in order to play different roles for implementation of different robot’s
behaviors. The object was round and decorated by four LED arrays with different colors.
Programs were developed for remotely controlling these LED arrays by radio frequency.
The realization of this function mainly relies on the developed radio frequency modules.

All the sensor except the global IR receiver were tested separately and used for different
functionalities of the robot. The communication between robots was realized by using the
six IR couples. The protocol agreed by the robots was established based on the UART
with the baud rate of 9600bps. The ability of distance measurement was also achieved by
using IR couples. The robot can detect the distance to the wall by measuring the voltage
level of reflected IR signal. While the distance to another robot is not measurable by
using this approach since there is no big reflecting surface on the top of robot. Therefore,
it prefers to estimate the distance to another robot by detecting the low voltage level of
the communication signal. However, the estimated distance was much influenced by the
direction deflected from the direction of perpendicularly pointing to a wall or a robot.
A light source can be detected by six ambient light sensors and the red and blue color
detections were realized by the color sensor.

With the above functionalities provided by the hardware, the algorithms for communi-
cation and distance measurement were developed firstly. Then the algorithms of three
single robot behaviors were developed and validated. A robot can avoid both the wall and
another robot by considering the information from reflected IR and communication signal
synthetically. The algorithm to estimate the direction of the light source was developed by
analyzing the ADC values detected by the six ambient light sensors. A P-controller was
designed to control the robot to approach the light source in a smooth way. The algorithm
of reacting to the different colors of lights were implemented. The robot can succeed to
approach the red light and escape from the blue light.

After the signal robot’s behaviors were ensured, two robots were used to implement two
swarm robots’ behaviors.

The first one was the formation. Two robots were supposed to have a specific forma-
tion shape. When two robots meets each other, one robot will ask the other robot to be
stopped and perform formation with it. When it performs formation, the robot needs to
do direction and distance adjustment sequentially. After formation is generated, two ro-
bots are supposed to move together with the formation. There are two approaches to keep
the formation when moving. One is to keep the relative direction only. The separated
algorithms by using this approach were developed for each robot and validated in both
simulation and experiments. The result shows that the two robots can keep the formation
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if the moving directions are exactly the same when formation is generated. The other ap-
proach is to keep both the relative direction and distance during moving. The algorithms
were developed for this case and validated in the simulation. It shows that the robot needs
high requirements of maneuverability and flexibility in order for adjusting direction and
distance momentarily. In both cases, the developed algorithms can also ensure the robots
to avoid obstacles successfully.

The second one was the collective behavior. A collective task was planned and imple-
mented by two subtasks. The first subtask requires one robot finds the food and move the
food with the help of the other robot. The object with red light is to simulate the food
that robots interest. The corresponding algorithms were developed and proved by the ex-
periments. The second subtask is to let one robot guard the other robot to return home.
The other robot is assumed to be carrying the food and its duty is to take back the food
to home. The light source from the object with white light is simulated to be the robots’
home. The algorithms were also validated by the simulation and real experiments.

As a conclusion, in this project, two robots were built and different algorithms were de-
veloped to realize swarm robots’ formation and collective behavior. All the algorithms
are validated by implementations of the physical robots system.

7.2 Future work

The realization of swarm robots behaviors much relies on the ability of each robot mem-
ber. The more abilities provide to every single robot, the more complicated swarm behav-
iors can be realized. However the robot used in swarm robots is supposed to have a small
size, which leads to the drawback of limited capabilities. Because of this tradeoff, the sin-
gle robot’s design should be always paid attention to in the future work on swarm robots.
The main discussion in this section will be based on the current implemented robots.

The independent power system is relative important for distributed robots system. The
power used for the robots is taken from an power supply instrument. A rechargeable bat-
tery has not built into the robot and has to be added in the future. A suitable rechargeable
battery should be selected by mainly considering the characteristics of capacity, voltage
and size related with the energy dissipation and structure of the robot.

The global IR receiver was tested during this project, but it can not function as well
as expect. The features of communication distance and the aperture angle are neither
satisfied. In expectation, with this global IR receiver, the robot can have more chance to
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receive IR signals globally and save the energy spent on switching the local IR channels.
This global IR receiver needs to be investigated and improved in the future.

The communication is significantly important to implement swarm robots. For current
robots’ communication, six IR couples have to be switched one by one. Two robots can
only communicate when a switch-on IR transmitter of one robot points to a switch-on IR
receiver of the other robot. If the communication speed were increased, during every one
second, the chance to get communication signal would be increased. In order to increase
the communication speed, the most effective suggestion for the current design is to replace
IR phototransistors with IR photodiode. The photodiode has the less response time than
the phototransistor. If the ability of communication is expected be largely enhanced, the
hardware layout in the communication part should be redesigned. Actually, seen from
Figure A.2, the communication part is relatively improved.

From the communication signal, the robot can also know the relative direction to the other
robot. There are six IR couples in the current robot, so the maximal resolution to decide
the direction is 60◦. If adding more IR couples with smaller aperture angle, the resolution
would be smaller and the direction could be decided more precisely. As a tradeoff, the
probability to get the communication signal would be even less than the current 1

36 .

For measuring distance, the current robot has a problem to detect the distance to the other
robot since there is no obvious reflector can be used on the height of IR couples. Thus, it
suggests to vertically fix six partitions between six sectors. These partitions can be used
not only as reflectors but also to isolate the interference from the neighboring IR couples.

The actuation system is not robust in the current assembled robot, which can not be con-
trolled accurately. Therefore, a new actuation should be designed by synthetically con-
sidering the motor system, gear system, wheel system and placement.

Because only one MCU is used for one robot, every functionality has to be executed
sequentially depending on the program. For the current developed algorithm, in order to
get valid communication signal, the communication function has to take much more time
than other function. In order to control the robot close to the real time, it suggests to let
the other slaver MCU take in charge of the most time-consuming or heaviest function in
the master MCU. The Two Wire Interface (TWI) interface has already designed in the
PCB and can be used to transfer the data from slaver MCU to the master MCU. Also, the
flash memories are enlarged.

The current behaviors of swarm robots are only implemented by two robots. For the
real meaning of swarm robots, two robots is not enough. Therefore, it is expected to build
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more micro robots and implement them. If more robots were playing in a limited scenario,
there would be more interference on the robots’ communication. One solution is to give
each robot a characteristic to distinguish from each other. The distinctive characteristics
can be realized by using different modulated communication signals for different robots.
One approach is to use the different frequencies of carrier waves to carry the original
signals. The robot on the receiving side only extracts the signal with its interested carrier
wave.

All the suggestions mentioned above are expected to be implemented in the future by a
large group of the next generation micro robots according to the circuit diagram in Figure
A.2.
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Acronyms

AAU Aalborg University

ADC Analog-to-Digital Converter

DCE Data Circuit-terminating Equipment

DTE Data Terminal Equipment

FSM Finite State Machine

IR Infrared Ray

ISP In-System Programming

ISR Interrupt Service Routine

MCU Microcontroller Unit

MIPS Million Instructions Per Second

PCB Printed Circuit Board

PWM Pulse Width Modulation

RISC Reduced Instruction Set Computer

SRAM Static Random Access Memory

TWI Two Wire Interface

UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous/Asynchronous Receiver/Transmitter
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Appendix A

Circuit Diagram

The Figure A.1 shows the pins configuration of ATmega8L, which is used as the MCU
for robots in this project.

The Figure A.2 is the new design of a robot by Trung Dung Ngo, which can be imple-
mented for the next generation of robots. It can be seen clearly from the attached CD.

Figure A.1: MLF top view of ATmega8L.
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Appendix B

LED Control

Four LED arrays, which are used to decorate the object, can be remotely controlled by
using the wireless radio modules, iDwaRF-168. One module connects to the PCB for
the LED arrays and the other one is connected with a host PC. The LED arrays can be
switched by commands.

The commands are created by programming based on the iDwaRF-Net Firmware Ver-
sion 2.1a, and can be entered with keyboard by using a terminal program, e.g., HyperT-
erminal. The following commands are mainly used in this project. More command can
be found in [inf].

rst
The remote device will be reset and bind again and its ID will be reassigned.

enu
To enumerate the current bound remote device.

cln
To clean up the double entries of same device if it is reset.

snd (deviceID) −1 (color)
The variable color can be characters r(red), b(blue), y(yellow), w(white) and c(clean).
For example, sending r first time will turn on the red LEDs, and sending r second
time will turn off the red LEDs. Sending c can turn off all the lights.
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