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ABSTRACT:

This master’s thesis concerns the design of linear

control strategies for making an AUV capable of

autonomous flight. The goal is to be able to com-

plete level 1 in the International Aerial Robotics

Competition, which involves flight over a dis-

tance of 3 km, as fast as possible.

The starting point for this thesis is taken in

the developed nonlinear model of a reconfigured

Bergen Industrial Twin helicopter, where the lin-

ear controllers are designed based on lineariza-

tion of the nonlinear model.

Two different linear control design methods are

used for the controller design; classic SISO con-

trol and optimal LQR control. Furthermore, a

gain scheduling approach to perform schedul-

ing between two controllers is introduced. As

a high level controller a supervisory controller is

designed to handle position control.

Hover control was designed using the two dif-

ferent linear control design methods. The clas-

sic SISO controllers was implemented as lead

or lag compensators. Furthermore, a forward

flight LQR controller was developed to be able

to perform fast forward flight. The gain schedul-

ing approach was implemented as an observer-

based gain scheduler framework around the

LQR hover and forward flight controllers.

The LQR hover and forward flight controllers,

along with the observer-based gain scheduling

controller, were all tested separately in three dif-

ferent level 1 specifications to be able to compare

them. It was concluded that the observer-based

gain scheduling approach was the most time ef-

ficient control method of the three.





PREFACE

This master’s thesis has been written by group 1035b on the specialization of Intelligent

Autonomous Systems at the Department of Control Engineering, Aalborg University, in

the period between September 2nd 2006 and June 7th June 2007.

The thesis has been done as a part of the development of an autonomous helicopter

based UAV at the Department of Control Engineering at Aalborg University for future

participation in the IARC.

The thesis consists of three parts ”Helicopter model introduction and control system

analysis”, ”Control system design” and ”Control system test and conclusion”, which con-

tain several chapters each starting with a short introduction. Last in the thesis appendices

are placed with supplementary subjects and are denoted with capital letters starting with

A. Enclosed at the back of this thesis a CD is placed containing MATLAB© code, SIMULINK

models, C code and a pdf copy of the thesis. For visualization in 3D the program GSIM is

used (see Appendix A).

The thesis is intended for supervisors, examiner, control students and others that

might have interest in linear control and gain scheduling on an autonomous helicopter.

Aalborg University, 2007

Teis Bæk Mads Hammelsvang Thomas Bæk Jørgensen

Reading instructions

References to literature are done by the Harvard method, where needed specific pages are added,

e.g. [Sørensen, 1992, p.45]. Figures, equations, and tables are numbered consecutively within

each chapter. References to equations are in addition made in parenthesis.

To clarify the difference between vectors and matrices these are written with bold lower-case

letters and with bold capitals respectively. Variables and symbols stems, wherever possible, from

the used literature.
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1
INTRODUCTION

In several years the subject of autonomous flight with helicopters has been researched by different

project groups and a single Ph.d. student at the Department of Control Engineering at Aalborg

University. Two of the student projects done most recently are master’s thesis motivated by the

International Aerial Robotics Competition (IARC) 2006, organized by the Association for Un-

manned Vehicle Systems International (AUVSI [1972]). In this competition an Unmanned Aerial

Vehicle (UAV) is required autonomously to complete a number of levels involving different chal-

lenges inspired by different mission examples.

Inspired by the previous work done on autonomous flight and the IARC, this master’s thesis

focus is on designing linear control for an UAV making it capable of autonomous flight. For this

purpose more advanced control methods are looked into in order to achieve this goal. Here the

control method gain scheduling is chosen because of it ability to extend the range at which linear

control of a given system can be performed.

In order to better understand the motivation behind the IARC, and thereby the basis for mak-

ing an UAV performing autonomous flight, a short mission example involving a nuclear disaster

is given.

One of four units at a nuclear reactor has exploded, and there are no survivors at the facility.

A safety distance of three kilometers for the human rescue team must be maintained. One of the

remaining three units still operating at the reactor needs to be shutdown manually, as the units

control system for automatically shutdown is not operating correctly due ti the explosion. The

mission is to have an UAV find the building of the unit still operating and deploy a vehicle to

enter the building. The UAV must carry visual sensors in order to find the right building, and

obtain pictures of the panel gauges and switch positions in the control room, such that experts

can assess the potential for a meltdown of the unit. The reconnaissance mission results in four

levels.

In level 1 a flight over a distance of three kilometers with designated starting and final way-

point must be performed. During the flight the UAV must visit up to four waypoints. In level 2

the UAV must find a building entry indicated by a image consisting of a black circle with a white

cross. In level 3 a vehicle must be deployed into the building, and image data, with sufficient

quality for the judges to obtain the desired reconnaissance information, must be gathered. Level

4 performance is to complete level 1, level 2 and level 3 within 15 minutes. In each level the UAV

must perform autonomous flight.

The work done by the aforementioned project groups and the Ph.d. student resulted i.a. in re-

configuring a Bergen Industrial Twin model helicopter (Helicopters [2000]) into an UAV platform

by adding sensors, on-board computer, ground to helicopter communication and GPS equipment

(see Figure 1.1). As much effort has been put into this rather comprehensive task, and the result

is a fully functional and programmable UAV platform, this thesis takes its starting point here.

1



2 Section

(a) (b)

FIGURE 1.1: The Bergen Industrial Twin model helicopter before (a) and after

(b) being rebuild.

The first of the above mentioned student projects (Hald et al. [2006]) concerned modelling of

the Bergen helicopter using first principles. Some model parameter determination and Linear

Quadratic Regulator (LQR) control were carried out as well. However, due to complications with

the sensor equipment and much emphasis on the modelling task the groups never got to test the

developed controllers in flight nor participate in the IARC 2006.

The complications with the sensor equipment has been taken care of by the supervisor of this

master’s thesis Anders la Cour-Harboe and the Ph.d. student Morten Bisgaard who is also work-

ing with the Bergen helicopter. In the Ph.d. project a nonlinear model of the Bergen helicopter

and the necessary sensor fusion and estimation have been developed and implemented. Morten

Bisgaard has made the sensor fusion and estimation and model implementation as well as his

guidance available for the this thesis.

The second student project (Holmegaard et al. [2006]) concerned a navigation system enabling

the UAV to complete level 1 and 2 in the IARC. The work done by the project group included

development of a software platform and design of i.a. navigator, vision system, mission control,

map generator and optimal path calculator. Tests of the navigation system showed the helicopter

theoretically able to complete level 1 and 2. However, it is suggested to optimize the navigator by

minimizing the flight time in level 1, by extending the autonomous flying features of the UAV to

encompass fast forward flight also.

Inspired by the suggestion by Holmegaard et al. [2006] the overall objective of this master’s

thesis is stated as:

Design, implementation and test of a control strategy enabling the UAV to autonomously

complete level 1 in the IARC by employing hover and fast forward flight.

Here hover is defined as the UAV being airborne, and the translatory and rotational movement of

the UAV are close to zero. And fast forward flight is defined as the UAV being airborne, and the

rotational movement is close to zero, where a specified speed in the same direction as the heading

of the UAV is maintained.

The fast forward feature is especially important, if a future project group at Aalborg University
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reaches the point where completion of the IARC, that is achieving level 4, becomes a goal. Because

level 2 and 3 involves relaying reconnaissance data, and such tasks involves time-consuming

image processing, the faster level 1 is completed the better. The overall objective is therefore

rephrased as:

Design, implementation and test of different control strategies enabling the UAV to au-

tonomously complete level 1 in the IARC by employing hover and fast forward flight, such

that the most efficient control strategy regarding level 1 completion time can be identified.

In order to accomplish the overall objective it has been chosen to look at the control system in

Figure 1.2, from where the control strategies linear control without gain scheduling and linear control

with gain scheduling can be seen. Based on the overall objective two linear controllers must be

designed; one for hover and one for fast forward flight. The gain scheduling strategy is then

implemented to use both of these linear controllers. The supervisory controller must handle the

high level control of the system. The different blocks of the control system are elaborated on in

the following.

Level 1 specification

Supervisory controller

Gain scheduling
controller

Linear controllers System

Sensor fusion

FIGURE 1.2: Illustration of the elements constituting the control system. The

arrows show the data flow direction.

1.1 Prerequisites and Objectives
Using a bottom-up approach the blocks constituting the chosen control system are treated one by

one throughout this thesis divided into a number of objectives. Prerequisites for achieving these

objectives followed by the actual objectives are presented in the following. The order of these

sections also serve as an outline for the chapters in part I and II of this thesis.

Prerequisite A: System and sensor fusion

As mentioned this thesis takes its starting point in the work done on modelling the reconfigured

Bergen helicopter and development of sensor fusion and estimation. A nonlinear model (includ-

ing sensor fusion and estimation) implemented in C++ for SIMULINK, able to simulate the motion
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of the Bergen helicopter, is available for this thesis. To narrow the focus of this thesis to the control

field, this model is used for control design and validation tests of the developed strategies.

As model parameters, important for the nonlinear model to reflect the Bergen helicopter pre-

cisely, are being determined during the period of this thesis, it has been chosen not to perform

test flights. However, as the complexity of the nonlinear model is assumed to be as high as for

reflection of the Bergen helicopter, it is justified to use validations based on simulation for testing

developed control strategies. Therefore, when referring to the UAV throughout the thesis it refers

to the nonlinear model of the Bergen helicopter. An introduction to the nonlinear model and the

sensor fusion and estimation can be found in Chapter 2.

Prerequisite B: Control system analysis

The control system will be analyzed with the purpose of identifying in- and outputs of the differ-

ent blocks from Figure 1.2. This will lead to the identification of the needed references, feedback

signals and controller outputs. The analysis can be found in Chapter 3

Prerequisite C: Control goals and requirements

It is necessary to determine control goal and requirements for the supervisory controller and

linear controllers. These will be determined with respect to the overall objective stated earlier.

These goals and requirements can be found in Chapter 4.

Objective A: Classic linear control

Based on the available feedback signal linear control, using classic Single Input Single Output

(SISO) controllers, must be able to stabilize the UAV in hover. It provides a basis for comparison

between SISO and Multiple Input Multiple Output (MIMO) control of the system. The design of

classic linear control is found in Chapter 5.

Objective B: LQR hover control

An optimal LQR controller able to stabilize the UAV in hover must be developed. The perfor-

mance of this controller is compared with the performance of the classic linear controller. Fur-

thermore, it will be used as one of the two controllers in the gain scheduling strategy. Because

the LQR controller is a MIMO controller, and the UAV is a MIMO system as well, it is expected to

perform better.

Objective C: LQR forward flight control

In order to facilitate fast forward flight, a second optimal LQR controller must be developed for

a forward flight operating point. The forward flight controller is expected to perform better than
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the LQR hover controller in the forward flight operating point. The design of the optimal LQR

hover and forward flight controllers can be found in Chapter 6.

Objective D: Gain scheduling

A gain scheduling controller must be designed such it is possible to control the UAV utilizing the

two optimal LQR controllers, such that an acceleration from hover to forward flight can be per-

formed. The performance of this control method is evaluated by comparing it to the performance

of the LQR hover and forward flight controllers. The design of gain scheduling control is found

in Chapter 7.

Objective E: Supervisory controller

Based on a given level 1 specification defining the placement of waypoints, and position feedback

from the UAV, a supervisory controller must calculate at which speed and heading the UAV must

fly, in order to get through the given level 1 as fast as possible. The complexity of the supervisor

(short for supervisory controller) is kept low, as the emphasis of this thesis is on linear control

and gain scheduling. However, it is an important element in the control system in order to obtain

a realistic estimate of the level 1 flight time for the Bergen helicopter platform. Design of the

supervisor can be found in Chapter 8.

1.2 Control system testing and Conclusions
When the above listed objectives have been reached, the designed control strategies will be tested

with respect to the overall objective and the IARC. Because the range of this thesis only span as

far as level 1 of the IARC the designed control strategies will only be tested with respect to the

criteria listed for this level. The control system test can be found in Chapter 9.

Finally the thesis will sum up the concluded results obtained from the different objectives .

The conclusions ultimately leads to suggestions for future work to be done regarding the Bergen

helicopter. The conclusion and future work is found in Chapter 10.





Part I

Helicopter model introduction and

control system analysis
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2
HELICOPTER MODEL INTRODUCTION

To be able to perform satisfactory control of the helicopter it is necessary to obtain knowl-

edge about the model. This includes knowledge about the different reference frames, the gen-

eral model structure, and the inputs and outputs of the model.

2.1 Reference frames
For the purpose of performing control of the helicopter two reference frames are used; an Earth-

fixed reference Frame (EF) and a Body-fixed reference Frame (BF). The xy-plane of the EF is

parallel to the surface of the Earth, where the x-axis is pointing north, the y-axis is pointing east

and the z-axis perpendicular to both pointing vertically downwards. The origin of the EF is

chosen arbitrarily but always with the aforementioned orientation. The EF is used to describe the

position and attitude of the helicopter.

bx

by

bz

φ

θ

ψ ex

ey

ez

FIGURE 2.1: Illustration of the two coordinate systems used for control pur-

poses.

The second reference frame necessary for control purposes is the BF, which has its origin in

the center of mass of the helicopter, and follows the position and attitude of the helicopter. The

x-axis of the BF is pointing through the nose of the helicopter, the y-axis point through the right

side of the helicopter and the z-axis perpendicular to both and pointing downwards through the

bottom of the helicopter. It is in the BF that translateral and rotational movement of the helicopter

are defined. The reference frames are illustrated in Figure 2.1. The illustration was made by

9



10 Section 2.2. Model overview

Hald et al. [2006], whom used the two additional frames attached to the main and tail rotor for

modeling purposes. These additional frames will not considered in this thesis.

2.2 Model overview
To perform control of the nonlinear model only the input/output relations are taken into consid-

eration. Therefore, the actual model components are looked upon as black boxes, which receive

some actuator inputs and yield some outputs regarding the position, attitude and movement. The

description of the black boxes will be strictly superficial, where only the build-up and functional-

ity will be elaborated on.

The model used is divided into three black boxes; the nonlinear helicopter model, the sensor

emulation, and the sensor fusion and estimation. The three blocks can be seen in Figure 2.2.
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Slon
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e
Ξreal

e
Θreal

b
Ξ̇real

b
Θ̇real

e
Ξgps

e
Ξ̇gps

bF mag

(bΞ̈ + bg)imu

b
Θ̇imu

e
Ξest

e
Θest

b
Ξ̇est

b
Θ̇est

FIGURE 2.2: Block diagram of the model used in this thesis illustrating the

nonlinear helicopter model, the sensor emulation, and the sensor

fusion and estimation. All with related inputs and outputs.

Nonlinear helicopter model: The nonlinear model of the helicopter is constructed by several

mathematical equations describing how the helicopter acts when given any arbitrary in-

put. These mathematical equations include a dynamic model of the actuators mounted on

the helicopter, a dynamic model of the flapping motion of the main rotor blades and the sta-

bilizer bar, a calculation of the forces and torques generated by and affecting the helicopter

and a model of the rigid body dynamics and kinematics, which the forces and torques are

acting upon. As it can be seen from Figure 2.2 the nonlinear model takes four inputs; one

for the collective pitch of the main rotor blades Scol, one for the lateral cyclic pitch angle of

the main rotor Slat, one for the longitudinal cyclic pitch of the main rotor Slon and one defin-

ing the reference for the build-in yaw rate control of the tail rotor Str. Based on the value of

the inputs the nonlinear model yields four outputs for control purposes; the position given

in the EF e
Ξreal, the attitude given in the EF e

Θreal, the translatory velocity given in the BF
b
Ξ̇real and the angular velocity given in the BF b

Θ̇real.

Sensor emulation: The sensor emulation block contains models of the different sensors mounted

on the helicopter. These sensor models have had measurement noise added to them, where
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the noise has been determined based on tests performed on the actual helicopter. Note that

the information provided by the sensors (both actual and emulation) are not sufficient for

control purposes, hence sensor fusion and estimation is necessary. The sensors used for

measurements on the helicopter are a GPS, which measures the position e
Ξgps and trans-

latory velocity e
Ξ̇gps in the EF, a compass that measures the attitude of the helicopter with

respect to the Earths magnetic field bF mag and an IMU, which measures the the sum of the

gravitational and helicopter accelerations (bΞ̈ + bg)imu and the angular velocities bΘ̇imu.

Sensor fusion and estimation: The sensor fusion and estimation blocks take the information from

the sensor emulations and utilizes them to estimate the position, attitude and velocities of

the nonlinear model. The estimator is designed as an Unscented Kalman Filter, which is sta-

tistical calculation method of a random variable undergoing a nonlinear transformation.

The outputs of the estimator are the estimated states of the nonlinear model; the position
e
Ξest, the attitude eΘest, the translatory velocity b

Ξ̇est and the angular velocity b
Θ̇est.

From the above description of the model (used in this thesis) the input and output vectors can

be determined as

u =
[

Scol Slat Slon Str

]T

(2.1)

x =
[
e
Ξ
T e

Θ
T b

Ξ̇
T b

Θ̇
T

]T

=
[
ex ey ez eφ eθ eψ bẋ bẏ bż bφ̇ bθ̇ bψ̇

]T

, (2.2)

where S is the inputs to the system and x are the outputs of the system to be controlled. Note

that the output vector x is the output of the estimator, and that the subscript est is removed to

ease further use of the output signals.

2.3 Input/output relations
To ease the design of different controllers for the model described above the input/output re-

lations are analyzed further. In addition, to ease the analysis of the relations the effect of cross

couplings between model states are not taken into consideration. Note that the descriptions be-

low are based on the BF having the exact same orientation as the EF.

Collective input Scol: This input controls the collective pitch of the main rotor blades, which

makes the helicopter move vertically. Therefore, this input affects the vertical position ez

and the vertical velocity bż.

Cyclic input Slat: This input controls the lateral pitch angle of the main rotor blades making the

helicopter move sideways. This means that this input affect the lateral position ey, the roll

angle of the helicopter eφ, the lateral velocity bẏ and the roll angular velocity bφ̇.

Cyclic input Slon: This input controls the longitudinal pitch of the main rotor blades, which

makes the helicopter move for- or backwards. As a result it is determined that this in-
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put affect the longitudinal position ex, the pitch angle of the helicopter eθ, the longitudinal

translatory velocity bẋ and the pitch angular velocity bθ̇.

Reference input Str: This input sets the reference for the build-in yaw rate controller. This means

that this input ultimately affects the yaw angle of the helicopter eψ and the yaw angular

velocity bψ̇.

The descriptions of the four inputs can in association with the knowledge gained from the refer-

ence frames be summarized as listed in Table 2.1. Note that the positions and angles given in the

Input Translatory movement Rotational movement

Scol > 0 bż > 0 −

Scol < 0 bż < 0 −

Slat > 0 bẏ < 0 bφ̇ < 0

Slat < 0 bẏ > 0 bφ̇ > 0

Slon > 0 bẋ > 0 bθ̇ < 0

Slon < 0 bẋ < 0 bθ̇ > 0

Str > 0 − bψ̇ > 0

Str < 0 − bψ̇ < 0

TABLE 2.1: Overview of the collective, cyclic and reference inputs to the he-

licopter describing the effects of a given input with respect to its

sign. This effect is seen for the system initialized in hover and only

one input applied at a time.

EF are left out because the BF does not have the same orientation as the EF at all times.

2.4 The feedback signal
It is important to keep in mind that the feedback signals from the estimator are not perfectly good

signals, hence it may be necessary to design controllers a bit slow to be able to handle any form

of sudden alteration in the signal. In addition, some estimated states are more affected by the

measurement noise from the sensors. An example of this can be seen in Figure 2.3, which shows

the roll, pitch and yaw angles (eφ, eθ and eψ respectively) as model states (to the left) and as

estimated states (to the right) for the nonlinear model trimmed in hover. It is observed, that the

yaw angle (red line) is the least correct estimate of the three. In addition, the roll angle (blue line)

is somewhat affected by the estimation of the yaw angle, which is indicated by the way the roll

angle seems to follow changes in the yaw angle estimate. In Appendix B graphs of all 12 states

are showed; both real and estimated states for comparison.

Having determined the reference frames for control purposes, and the inputs and outputs of
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FIGURE 2.3: Comparison of the real roll, pitch and yaw angles (left) and the

estimated roll, pitch and yaw angles (right). The data is obtained

by initializing the system in hover. Note that the legend on the

left graph is also applicable on the right graph.

the system model it is now possible to analyze the control system further, which will be done in

the following chapter.





3
CONTROL SYSTEM ANALYSIS

This chapter describes an analysis of the physical environment in level 1 of the IARC with

regard to the overall goal stated in the introduction. Then an overview of the different control

units are presented, and finally the control system elaborated on in this thesis is established.

3.1 The physical environment in level 1
As the level 1 specification in the IARC is unknown, the UAV must be able to handle an infinitely

number of different shapes specified by GPS coordinates. Examples on flight paths are illustrated

in Figure 3.1.

Start point

Start point
Start point

End point

End point

End point

Waypoint 1

Waypoint 2

Waypoint 3

Waypoint 4

FIGURE 3.1: Three examples on flight paths the UAV might be subject to in

level 1 of the IARC. The scaling of the figure should be ignored, as

the total length of each flight path is known to be three kilometers.

From the figure it can be seen, that both lengths on the path segments and the turn angles

between the path segments might vary significantly from waypoint to waypoint as well as for

different level 1 specifications. As described in the introduction it is desired to travel the total

flight path of level 1 as fast as possible, hence the UAV must be able to calculate a time-optimizing

way of dealing with a given set of path segments and waypoint turns.

When considering optimization regarding the flight path of the UAV, this can be done by

optimizing the flight through the different waypoints defined for a given level 1 specification

with respect to speed and turning method. A likely approach to this problem is to implement

an optimization algorithm in a supervisory controller in this thesis. Note that there are several

different ways of dealing with different waypoints with respect to turning, speed and heading.

15



16 Section 3.2. Control system overview

However, since the focus of this thesis is on designing linear controllers and gain scheduling it is

chosen only to look at two different types of dealing with waypoints; decelerating to hover and

turn, or fly over a waypoint with a given speed and then turn maintaining that same speed.

With the above analysis of the physical environment of level 1 in mind it is possible to elaborate

further on the defined control system from the introduction (see Figure 1.2 on page 3).

3.2 Control system overview
The general control system to be developed in this thesis consists of two main control blocks; a

supervisor and a linear controller block (the general control system in open loop is illustrated in

Figure 3.2). Because gain scheduling per definition consists of two or more controllers it can not

be seen as a direct block in the control system, but rather a frame work around several controllers,

which will be elaborated on later.

Supervisory

controller

Linear

controller
System

e
Ξlvl1 or u x

FIGURE 3.2: Block diagram of the general control system illustrated in open

loop with in- and outputs of each block.

In the following the two controller blocks from Figure 3.2 will be elaborated on.

3.2.1 Supervisory controller

As it can be seen from Figure 3.2 the high level control of the control system is handled by the

supervisor. As described earlier the supervisor must be able to define the optimal flight path

for the UAV based on the information received about the waypoint positions of level 1 e
Ξlvl1.

Furthermore, the supervisor must be able to calculate references or for the linear controller, which

handles the low level control of the control system. Based on this information about the reference

input and the output of the supervisor a more clear definition of the supervisor regarding its

actual functionality can be determined.

Since the supervisor handles the planning of the actual flight path for the UAV it is chosen to

have the supervisor handle the entire position control of the control system. In addition, since the

supervisor determines the method as to how the UAV must fly through the different waypoints

it is also necessary for the supervisor to know the heading of the UAV. This result in the feedback

signal vector for the supervisor to be

[
e
Ξ
T eψ

]T

, (3.1)

where e
Ξ is the position vector given as [ ex ey ez ]. This leads to the in illustration of the

supervisor block (see Figure 3.3).
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e
Ξlvl1

[
e
Ξ
T eψ

]T or
Supervisory

controller

FIGURE 3.3: Illustration of the in- and outputs for the supervisor.

Based on the inputs the supervisor must be able to calculate references or for the linear con-

troller. Since the supervisor itself handles the position control of the UAV it is not necessary to

calculate references for these states. As mentioned in Chapter 2 the total state vector is

x =
[
ex ey ez eφ eθ eψ bẋ bẏ bż bφ̇ bθ̇ bψ̇

]T

.

By removing the position states from the state vector there are a total of nine states left, which are

all desired to be able to control. Therefore, the output reference vector from the supervisor must

calculate references for these nine states, which yields the output reference vector

or =
[

reφ reθ reψ rbẋ rbẏ rbż rbφ̇ rbθ̇ rbψ̇

]T

. (3.2)

3.2.2 Linear controller

Having determined the reference input to the linear controller the control states becomes

[

e
Θ
T b

Ξ̇
T b

Θ̇
T

]T

=
[
eφ eθ eψ bẋ bẏ bż bφ̇ bθ̇ bψ̇

]T

. (3.3)

It is not necessary to use all of the feedback states, which means that the linear controller may

designed to only utilize some of the feedback states and references. However, a number of four

states are the absolute minimum needed to perform control of the UAV, where these states are the

translateral velocities and the yaw angle:

[
eψ bẋ bẏ bż

]T

. (3.4)

As described in the introduction to this thesis the linear controller either consist of classic SISO

control or MIMO optimal LQR control, where it is necessary to design one controller for each

of the feedback signals when using SISO control, and only one controller for all feedback states

when using LQR control.

Based on the above the actual linear controller block can be defined with respect to inputs and

output (see Figure 3.4). The linear controller receives the reference signal or from the supervisor

along with the above described feedback signal [ e
Θ
T b

Ξ̇
T b

Θ̇
T

]T as inputs. The output of

the linear controller is then the input vector u to the system.

3.2.3 Closed loop control system

Having described in- and outputs of both the supervisor and the linear controller the control

system layout shown in Figure 1.2 on page 3 can be transformed into the closed loop control
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or

[
e
Θ
T b

Ξ̇
T b

Θ̇
T

]T u
Linear

controller

FIGURE 3.4: Illustration of the in- and outputs for a linear controller, which is

either classic hover, LQR hover or LQR forward flight controller.

system in Figure 3.5.

Supervisory

controller

Classic hover

controller

LQR hover

controller

LQR forward

flight controller

LQR forward

flight controller

System

e
Ξlvl1

or

[
e
Θ
T b

Ξ̇
T b

Θ̇
T

]T

u

u

u

[
e
Ξ
T eψ

]T

FIGURE 3.5: Illustration of the closed loop control system using only linear

control. The linear controllers are designed separately and can be

utilized one at the time, as indicated by the switch at the system

input.

As it can be seen from Figure 3.5 each of the linear controllers can be used one at the time. As

for the general illustration of the control system, gain scheduling is left out but will be elaborated

on in the following section.

3.2.4 Closed loop control system using gain scheduling

The gain scheduling approach used in this project is based on Bendtsen et al. [2005]. The two

LQR controllers in Figure 3.5 are inserted in an observer based control structure, and using a

variable α ∈ [0; 1], the influence of the control signals from the LQR controllers are each weighted

as illustrated in Figure 3.6.

Having determined the structure of the control system along with the inputs and outputs of

the different controller blocks, the requirements and test specification for the control system can

be identified.
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Supervisory

controller

LQR hover

controller

LQR forward

flight controller

System

e
Ξlvl1

or

[
e
Θ
T b

Ξ̇
T b

Θ̇
T

]T

Gain scheduling controller

[
e
Ξ
T eψ

]T
1 − α

α

FIGURE 3.6: Illustration of the gain scheduling approach used in this thesis.

The classic controller block is left out, as it is not used for the gain

scheduling control.





4
CONTROL GOALS AND

REQUIREMENTS

This chapter describes how the requirements to the elements constituting the control sys-

tem have been established. Hence the overall requirements and settings for the supervisory

controller are explained, together with the requirements for the linear controllers, which pri-

mary concern the validation of the controllers.

4.1 Supervisory controller
To setup requirements to the control system elements starting point is taken in the overall objec-

tive described in the introduction to complete the level 1 of the IARC. A review of the rules associated

with the competition specifies that an autonomous UAV must be able to perform a flight of three

kilometers visiting up to four waypoints. Whether the waypoints have been visited is determined

by judges placed on the ground at each waypoint. If the judge observes the UAV when looking

up the waypoint has been passed. It is assumed that passing the waypoints within a circle with

a radius of two meters, is sufficient for the judges to observe the UAV. As the position control is

performed by the supervisor, this is a requirement for this controller. In addition, the UAV must

initiate and terminate the level 1 flight in hover. Also a requirement for the supervisor. These are

the only control requirements given in advance and determined by AUVSI [1972]. However, to

obtain steady hover and forward flight goals and requirements to the linear controllers must be

established as well.

4.2 Linear controllers
The requirements described in this section concern the control states in (3.3) and some overall

properties necessary for the control system.

The overall objective repeated above, obviously, results in the need for a control system able

to bring the UAV from hover to forward flight and back to hover again. Therefore, the linear

controllers must be able to follow the references calculated by the supervisor. In addition, the

controllers must feature integral states to avoid possible steady state errors.

The controllers must stabilize the system using the rather noisy state estimates discussed in

Section 2.4 as feedback. The controlled states can therefore be expected to fluctuate from their

respective references. As a control goal these fluctuations must be minimized in order to obtain

steady control.

21
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As a requirement to the dynamical properties the controllers must be able to stabilize the

UAV, when the UAV is initialized in a condition not equal to the operating point for the given

controller. This condition is therefore described by offsets, which are added to the initial values,

in translateral velocities and angles with respect to an operating point. The offsets values listed

in Table 4.1 have been chosen.

State: eφ eθ eψ bẋ bẏ bż

Offset value: 0.5 rad 0.5 rad 0.5 rad 2 m
s 2 m

s 2 m
s

TABLE 4.1: Offset values specifying the rquirements to the dynammical prop-

erties of the linear controllers.

The following sums up the requirements established in this section.

Supervisory controller

• The supervisor must be able convert a given level 1 specification to references for use by

the linear controllers, such that the UAV can complete the level 1 path autonomously.

• Waypoints must be passed within a circle with a radius of 2 m in the xy-plane.

• The level 1 flight must be initiated and terminated in hover.

Linear controller

• The linear controllers must feature integral states to avoid steady state errors.

• Fluctuation on the controlled states must be minimized, in order to obtain steady control.

• The controllers must be able to stabilize the UAV, when the UAV initialized with the offset

values in Table 4.1.

Having established the desired control system structure in the previous chapter, and the con-

trol goals and requirements above, the next chapter describes the design the classic linear con-

troller.



Part II

Control system design
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5
CLASSIC LINEAR CONTROL

In this chapter the design and implementation of a classic linear SISO controller structure

will be described. Since there are several different methods of designing SISO controllers the

method used in this thesis will be described initially. Note that there will only be designed a

SISO control system capable of keeping the UAV in hover.

5.1 Method overview
The actual model of the Bergen helicopter is, as mentioned in Chapter 2, nonlinear, why linear

control using SISO controllers is rather difficult. Therefore, the nonlinear model is linearized in

the hover operating point (no movement), where there will be designed linear controllers for this

specific flight condition. The performance of the linear SISO controllers will ultimately be used

for comparison with the more advanced control method LQR, which will be elaborated on later

in this thesis.

Since a linearized model of the nonlinear model is available it is possible to design the con-

trollers based on analysis of the transfer functions of the linearized models obtained from the

system matrices (see Appendix C). Based on the transfer functions, it is possible to identify poles

and zeros and to analyze the stability of the system with respect to the different outputs, which is

done using root locus plots. The use of root locus plots to design the SISO controllers leads to the

determination of lead or lag compensators, which are approximations of PI and PD controllers,

but can be just as effective.

The initial design of the controllers will be done based on the actual model feedback to ease the

identification of stability using the designed controllers. If stability is obtained using model feed-

back, then the controllers are tested using the estimator states as feedback, which helps identify

the robustness of the designed controllers.

5.2 Controller structure
Because the classic control strategy is based on SISO controllers it is necessary to design several

controllers; one for each of the desired outputs to be controlled. In Chapter 2 it was determined

that the total state vector available for control purposes has a total of 12 states. Since the overall

control strategy described in Chapter 3 states that the position control of the total control system

is to be handled by a supervisor, only nine states are left to use as feedback. In addition, it is not

deemed necessary to design SISO controllers for the angular velocities of the helicopter, which

25
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leads to the six remaining states used for feedback:

xfb =
[

e
Θ
T b

Ξ̇
T

]T

=
[
eφ eθ eψ bẋ bẏ bż

]T

. (5.1)

This result in a total of six controllers to be designed in the classic linear control system, where

the controller structure is illustrated in Figure 5.1. The controllers are denoted Ci with i being the

indicator for which state is being controlled.

N
o

n
li

n
ea

r
h

el
ic

o
p

te
r

m
o

d
el

Ceθ

Ceφ

Cbẋ
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FIGURE 5.1: Illustration of the controller structure used for classic linear con-

trol of the system. As can be seen there are implemented cascade

couplings for longitudinal and lateral movement.

With the structure of the total classic linear control system defined it is possible to design the

different controllers. From Figure 5.1 it can be seen that Cbẋ and Cbẏ must be designed such that

their outputs are references to Ceθ and Ceφ respectively. This means that for the purpose of correct

controller design Ceθ and Ceφ must be designed before Cbẋ and Cbẏ . The two remaining controllers

Cbż and Ceψ can be designed without any prerequisite.

5.3 Controller design
The design of the classic linear controllers is divided into four overall design parts; longitudinal

control, lateral control, vertical control and yaw control. The controllers will be validated as they

have been designed. Furthermore, a complete test of the total classic linear control system will be

performed when all the controllers have been designed.

5.3.1 Design procedure

Throughout this section the controllers will be designed based on reduced versions of the actual

linearized state-space model of the nonlinear model by common procedure. The reduced state-

space models will be shown as standard state-space models:

ẋi = Aixi + Biu

yi = Cixi + Diu ,



Chapter 5. Classic linear control 27

where i indicating the controlled state. Furthermore, the transfer functions for the different con-

trolled states are calculated based on their state-space models using the following operation:

Gi = Ci (sI − Ai)
−1

Bi + Di . (5.2)

With the determination of the transfer function for the control states the different controllers can

be designed using root locus plots.

5.3.2 Longitudinal control design

The first step in designing the longitudinal control part is to design the eθ controller, where the

first step of the design procedure is to determine the input/output transfer function Geθ =
eθ
Slon

.

Based on the system matrices of the linearized model, the state-space system specific for eθ is

determined as

·[
eθ
bθ̇

]

=

[

0 0.9992

0 −7.0002

] [
eθ
bθ̇

]

+

[

0

−42.5413

]

Slon

yeθ =
[

1 0
]
[

eθ
bθ̇

]

+ 0Slon .

From the reduced state-space model it can be seen that all other states than eθ and bθ̇ have been

decoupled to remove cross couplings, which helps ease the design of the controller.

From the state-space model and (5.2) it is possible to determine the transfer function for the

system Geθ as

Geθ =
−42.51

s(s + 7)
. (5.3)

When analyzing the root locus plot for Geθ it is seen that the root locus of the pole s = 0 lies in

the right half plane, which indicates that the system is unstable (see Figure 5.2(a)). Based on this

observation it can be determined that the gain of the eθ controller must be negative, which will

causethe root locus of the aforementioned pole to be in the left half plane of the s-domain (see

Figure 5.2(b)). Ultimately, it is possible to control eθ by the use of a P-controller. However, the

utilization of this type of controller may cause the system to have a steady state error. The pole

and zero of the compensator is determined by using the MATLAB© toolbox sisotool, which

immediately shows the effect of placing poles and zeros in the open loop system CeθGeθ . This

result in a pole-zero placement for the compensator as

Ceθ = −Kp,eθ

s + 4

s + 10
, (5.4)

which yields the root locus plot of the open loop system for eθ as shown in Figure 5.3.

From the root locus plot of the open loop system, it is possible to determine the actual control

gain needed to perform stable control. The gain is chosen with the intend of having a closed loop
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FIGURE 5.2: (a) shows the root locus plot of Geθ . (b) shows the root locus plot

of Geθ with negative control gain.
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FIGURE 5.3: Root locus plot of the open loop system CeθGeθ. From this plot

the controller gain can be determined.

steady state gain (DC gain) of 1 (0 dB), which result in a control gain of

Kp,eθ = 2.54 (5.5)

⇓

Ceθ = −2.54
s + 4

s + 10
, (5.6)
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where the open loop transfer function for the controlled system then becomes

Teθ,ol = 2.54
42.51s + 170

s(s2 + 17s + 70)
. (5.7)

To determine whether the designed controller stabilizes the system or not is done by observering

the bode plot of the open loop transfer function (see Figure 5.4(a)). From the bode plot it can

be seen that the open loop system has a phase margin of approximately 45◦ and an infinite gain

margin, which indicates that the system is stable in closed loop. The closed loop bode plot shows

that the DC gain is equal to 1 (0 dB) (see Figure 5.4(b)).
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FIGURE 5.4: (a) shows the bode plot of the open loop system Teθ,ol. (b) shows

the bode plot of the closed loop system Teθ,cl.

To determine the performance of the designed controller for the pitch angle, the step response

of the closed loop system is examined for rise time, settling time and overshoot (see Figure 5.5).

From the step response it can be seen that the rise time is approximately 0.1 s with an overshoot

of about 20 %, which indicates a fast controller. Furthermore, it can be seen that the 2% settling

time for the response is approximately 0.5 s.

From the above analysis of the designed pitch angle controller, it is concluded that it should

be able to perform satisfying control of the pitch angle when applied to the nonlinear model. In

addition, to test the performance of the controller the initial pitch angle of the UAV is applied

an offset of 0.5 rad in addition to the hover operating point value of −0.002 rad. Furthermore, to

make sure that cross couplings are not affecting the test all other states have been decoupled.

The controller is first tested on the nonlinear model using the real pitch angle as feedback (see

Figure 5.6(a)). It is seen that the controller is able to stabilize eθ in its hover operating point within

2 s, which is assessed as satisfactory. Furthermore, the controller is tested using the estimated

pitch angle as feedback in order to determine its robustness (see Figure 5.6(b)). As for the pre-

vious test the controller is able to stabilize eθ within 2 seconds despite the measurement noise
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FIGURE 5.5: Step response of the controlled system for the pitch angle eθ.

in the estimated eθ. Based on these observations the pitch angle controller is assessed as having

satisfactory performance.

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [s]

e
θ

[r
ad

]

(a)

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [s]

e
θ

[r
ad

]

(b)

FIGURE 5.6: Simulation result of the pitch angle controllers ability to stabilize
eθ using (a) model feedback and (b) estimator feedback.

With the pitch angle controller designed it is now possible to design and test the longitudinal

velocity controller. Because the longitudinal velocity controller is the outer controller in the total

longitudinal controller its output must be a eθ reference angle. Therefore, the transfer function
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can initially be identified as Gbẋ =
bẋ
eθ

. The state-space model for bẋ can then be determined as

·[
eθ
bẋ

]

=

[

0 0

−9.82 −0.0215

] [
eθ
bẋ

]

+

[

0

−9.82

]

eθ

ybẋ =
[

0 1
]
[

eθ
bẋ

]

+ 0 eθ .

From the above state-space model the transfer functionGbẋ is given as (see Eq. (5.2) for calculation

method)

Gbẋ =
−9.82

s + 0.0215
. (5.8)

By analyzing the root locus plot of Gbẋ it can be seen that it is necessary to use a negative control

gain in order to ensure stability (see Figure 5.7(a)). The compensator pole and zero are chosen

such that

Cbẋ = −Kp,bẋ

s + 2

s + 10
, (5.9)

which result in the root locus plot depicted in Figure 5.7(b). From this root locus plot the control
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FIGURE 5.7: (a) shows the root locus plot of Gbẋ. (b) shows the root locus plot

of the open loop system CbẋGbẋ.

gain is determined as

Kp,bẋ = 0.14 (5.10)

⇓

Cbẋ = −0.14
s + 2

s + 10
, (5.11)
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which yields the open loop system

Tbẋ,ol = 0.14
9.82s + 19.64

s2 + 10.02s + 0.215
. (5.12)

In Figure 5.8(a) the bode plot of the open loop system Tbẋ,ol is shown, and from the bode plot it can

be seen that the system has a phase margin of approximately 125 ◦ and an infinite gain margin.

This indicate that the system is open loop stable and therefore also closed loop stable. In addition,

the step response performance of the designed controller is analyzed (see Figure 5.8(b)). From the

step response it can be seen that the rise time is 2 s and settling time of about 3.9 s indicating a

stable and fast controller.
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FIGURE 5.8: (a) Bode plot of the open loop system Teẋ,ol. (b) Step response of

the closed loop system Teẋ,cl.

To test the performance of the controller the initial longitudinal velocity of the nonlinear model

is applied an offset of 2 m
s , where the original initial value in the hover operating point is 0 ms. All

other states then eθ and bẋ are decoupled in order to remove the effect of cross couplings. From

the test simulation using the real state of bẋ (and eθ for inner controller) as feedback it is observed

that the controller is able to stabilize the longitudinal velocity within 6 seconds, which is seen as

being satisfactory (see Figure 5.9(a)). Furthermore, it can be seen from the test simulation using

the estimated state of bẋ, that the designed controller is still able to stabilize the longitudinal

velocity within 6 seconds despite the measurement noise. The designed longitudinal controller is

therefore assessed usable for longitudinal velocity control.
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FIGURE 5.9: Simulation result of the longitudinal velocity controllers ability to

stabilize bẋ using (a) model feedback and (b) estimator feedback.

5.3.3 Lateral control design

The second part of the classic control design is the total lateral controller where the first step is to

design the roll angle eφ controller. The system matrices for eφ are

·[
eφ
bφ̇

]

=

[

0 1

0 −13.86

][
eφ
bφ̇

]

+

[

0

−85.08

]

Slat

yeφ =
[

1 0
]
[

eφ
bφ̇

]

+ 0Slat.

From the above state-space model and (5.2) the transfer function Geφ is calculated as

Geφ =
−85.08

s(s + 13.86)
. (5.13)

From the root locus plot of Geφ (see Figure 5.10(a)) it can be seen that the controller must be

designed with a negative control gain in order for the system to become stable. The compensator

pole and zero are chosen as

Ceφ = −Kp,eφ

s + 5.26

s + 10
, (5.14)

which yields the open loop root locus plot as depicted in Figure 5.10(b), from where the control

gain is determined as

Kp,eφ = 3.47 (5.15)

⇓

Ceφ = −3.47
s + 5.26

s + 10
. (5.16)
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FIGURE 5.10: (a) shows the root locus plot ofGeφ. (b) shows the root locus plot

of the open loop system CeφGeφ.

This yields the open loop system

Teφ,ol = 3.47
16.17s + 85.08

s(0.1s2 + 2.386s + 13.86)
. (5.17)

From the bode plot of the open loop system Teφ,ol in Figure 5.11(a), it can be seen that the system

has a phase margin of 45.1◦ and an infinite gain margin, which indicate that the system is open

loop stable. Furthermore, it can be seen from the step response of the closed loop system in Figure

5.11(b), that the rise time of the controlled system is approximately 0.06 seconds, and that it has

an overshoot of approximately 20 %. Despite the overshoot it is not considered an issue because

the settling time for the controlled system is about 0.36 seconds. These observations indicate that

the designed controller is able to stabilize the roll angle of the UAV.

The designed controllers ability to stabilize eφ is tested by applying an offset of 0.5 rad to

the hover operating point angle value of 0.039 rad. In addition, all other states are decoupled to

remove cross couplings in the nonlinear model. In Figure 5.12(a) the controller is tested using real

state of eφ as feedback from which it can be seen, that the designed controller is able to stabilize

the roll angle within 2 seconds. In addition, it can be seen from Figure 5.12(b) that the controller,

using the estimated state of eφ as feedback, is able to stabilize the roll angle within 4 seconds,

which is assessed as being satisfactory.

With the roll angle controller designed it is now possible to design and test the lateral velocity

controller. Because the lateral velocity controller is the outer controller in the lateral control system

its output must be a eφ reference angle. Therefore, the transfer function can initially be identified
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FIGURE 5.11: (a) Bode plot of the open loop system Teφ,ol. (b) Step response of

the closed loop system Teφ,cl.
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FIGURE 5.12: Simulation result of the roll angle controllers ability to stabilize
eφ using (a) model feedback and (b) estimator feedback.

as Gbẏ =
bẏ
eφ

. The state-space model for bẏ can then be identified as

·[
eφ
bẏ

]

=

[

0 0

9.81 −0.068

] [
eφ
bẏ

]

+

[

0

9.81

]

eφ

ybẏ =
[

0 1
]
[

eφ
bẏ

]

+ 0 eφ.
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By using (5.2) the transfer function Gbẏ is determined as

Gbẏ =
9.81

s + 0.068
. (5.18)

By observing the root locus plot of Gbẏ in Figure 5.13(a), it is seen that the system is stable and

therefore must have a positive control gain. Furthermore, from the root locus plot of Gbẏ the
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FIGURE 5.13: (a) shows the root locus plot of Gbẏ . (b) shows the root locus plot

of the open loop system CbẏGbẏ .

compensator pole and zero are chosen as

Cbẏ = Kp,bẏ

s + 0.23

s + 0.63
, (5.19)

which result in the open loop root locus plot as seen in Figure 5.13(b) from where the controller

gain is determined to be

Kp,bẏ = 0.56 (5.20)

⇓

Cbẏ = 0.56
s + 0.23

s + 0.63
. (5.21)

The open loop transfer function then becomes

Tbẏ,ol = 0.56
42.19s + 9.812

1.6s2 + 1.109s + 0.068
, (5.22)

which result in the bode plot in Figure 5.14(a). From the bode plot the phase margin of the open

loop system is determined to be approximately 91 ◦, and that it has an infinite gain margin, which

indicate that the system is open loop stable. In addition, analyzing the step response of the closed

loop system it is observed that the rise and settling time are about 0.1 and 0.4 seconds respec-

tively (see Figure 5.14(b)). Furthermore, it is noticed that the controlled system is over damped.
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FIGURE 5.14: (a) Bode plot of the open loop system Tbẏ,ol. (b) Step response of

the closed loop system Tbẏ,cl.

However, the fact that the controlled system is over damped is not considered an issue because

of the small rise and settling times. Based on these observations it is concluded that the designed

controller should be able to stabilize the lateral velocity of the UAV.

The controller is tested by applying an offset to the initial lateral velocity of 2 m
s , where the

hover operating point value is 0 m
s . In addition, all other states than eφ and bẏ have been decou-

pled to remove cross couplings. Using the real state of bẏ as feedback, it can be seen from Figure

5.15(a) that the designed controller is able to stabilize the lateral velocity within 15 seconds, which

is rather long compared to previous settling times. However, it is deemed usable. Furthermore,

it can be seen from Figure 5.15(b), that the designed controller, using the estimated state of bẏ

as feedback, is able to stabilize the lateral velocity within 6 seconds with the rather noisy signal

taken into consideration. Based on these observations the lateral velocity controller is assessed

usable.

5.3.4 Vertical control design

The third part of classic control design is the vertical velocity control, and its state-space system

is determined as

·[
ez
bż

]

=

[

0 0.9992

0 −0.9001

] [
ez
bż

]

+

[

0

−98.5353

]

Scol

ybż =
[

0 1
]
[

ez
bż

]

+ 0Scol.
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ẏ

[
m s

]

(b)

FIGURE 5.15: Simulation result of the lateral velocity controllers ability to

stabilize bẏ using (a) model feedback and (b) estimator feedback.

Based on the above state-space system the transfer function Gbż =
bż
Scol

is calculated as

Gbż =
−98.54

s + 0.9
, (5.23)

which result in the root locus plot as depicted in Figure 5.16(a). From the root locus plot it can

be determined that a negative control gain is necessary to stabilize the system. Based on the root
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FIGURE 5.16: (a) shows the root locus plot of Gbż . (b) shows the root locus plot

of the open loop system CbżGbż .
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locus plot of Gbż the compensator pole and zero are determined as

Cbż = −Kp,bż

s + 0.53

s + 1.75
, (5.24)

which yields the open loop root locus plot in Figure 5.16(b). The control gain is then determined

as

Kp,bż = 0.17 (5.25)

⇓

Cbż = −0.17
s + 0.53

s + 1.75
, (5.26)

which then yields the open loop transfer function as

Tbż,ol = 0.169
187.2s + 98.54

0.57s2 + 1.513s + 0.9
. (5.27)

From the bode plot of the open loop system Tbż,ol in Figure 5.17(a) it is observed that the system

has a phase margin is approximately 92 ◦ and an infinite gain margin, which indicate that the

system is open loop stable and therefore also closed loop stable. Analyzing the step response of
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FIGURE 5.17: (a) Bode plot of the open loop system Tbż,ol. (b) Step response of

the closed loop system Tbż,cl.

the closed loop system Tbż,cl (see Figure 5.17(b)) it can be seen that the controlled system has a

rise time of about 0.03 seconds, a settling time of about 0.06 s and no overshoot, which indicate

a fast controller. Therefore, it can be concluded that the controller should be able to stabilize the

vertical velocity.

The controller is tested by applying an offset to the initial vertical velocity of −2 m
s , where the

hover operating point is 0 m
s . In addition, all other states have been decoupled to remove cross

couplings. Using the real state of bż as feedback it can be observed that the controller is able to
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FIGURE 5.18: Simulation result of the vertical velocity controllers ability to

stabilize bż using (a) model feedback and (b) estimator feedback.

stabilize the vertical velocity within 4 seconds (see Figure 5.18(a)). Furthermore, the controller is

tested using the estimated state of bż as feedback, where it can be determined that the controller

is also able to stabilize the vertical velocity here within 4 seconds despite measurement noise (see

Figure 5.18(b)). Based on the observations done the vertical velocity controller will be used.

5.3.5 Yaw control design

The fourth and last par of the classic control design is for the yaw angle and its state-space system

is determined as

·[
eψ
bψ̇

]

=

[

0 0.9992

0 −4.4331

][
eψ
bψ̇

]

+

[

0

3.6196

]

Str

yeψ =
[

1 0
]
[

eψ
bψ̇

]

+ 0Str.

From the state-space system the transfer function Geψ =
eψ

Str
is determined as

Geψ =
3.617

s(s + 4.433)
, (5.28)

which result in the root locus plot seen in Figure 5.19(a). From the root locus plot of Geψ it is

determined that a positive control gain is necessary. In addition, based on the root locus plot the

compensator pole and zero are chosen as

Ceψ = Kp,eψ

s + 0.77

s + 0.5
, (5.29)
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FIGURE 5.19: (a) shows the root locus plot of Geψ. (b) shows the root locus

plot of the open loop system CeψGeψ .

which result in the open loop root locus plot seen in Figure 5.19(b). Based on the root locus plot

of the open loop system CeψGeψ the control gain is determined as

Kp,eψ = 2.53 (5.30)

⇓

Ceψ = 2.53
s + 0.77

s + 0.5
, (5.31)

which result in the open loop transfer function

Teψ,ol = 2.53
4.702s + 3.617

s(2s2 + 9.866s+ 4.433)
. (5.32)

From the bode plot of the open loop system Teψ,ol it can be observed, that the system has a phase

margin of approximately 65 ◦ and an infinite gain margin, which indicate that the system is open

loop stable (see Figure 5.20(a)). Furthermore, from the step response of the closed loop system

in Figure 5.20(b), it is seen that the controlled system has a rise time of about 1 second and an

overshoot of approximately 9 %, but this overshoot is not considered an issue since it is rather

small, and that the settling time of the controlled system is about 4.2 seconds. This show that the

designed controller shoould be able to stabilize the yaw angle.

The yaw angle controller is tested by applying an offset of 0.5 rad to the initial yaw angle of

0 rad. Furthermore, all other states are decoupled to remove cross couplings. From Figure 5.21(a)

it can be observed that the controller is able to stabilize the yaw angle using the real state of eψ

within 6 seconds. In addition, it can be observed from Figure 5.21(b) that the controller also is

able to stabilize the yaw angle when using the estimated state of eψ as feedback although within

8 seconds. It is therefore assessed that the yaw angle controller can be used.
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FIGURE 5.20: (a) Bode plot of the open loop system Teψ,ol. (b) Step response of

the closed loop system Teψ,cl.
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FIGURE 5.21: Simulation result of the yaw angle controllers ability to stabilize
eψ using (a) model feedback and (b) estimator feedback.

Having designed all of the necessary SISO controllers to maintain the UAV in the hover oper-

ating point a more powerful stress test of the total control system will be performed.
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5.4 Classic control system test
In the following the total classic control system will be tested for its stationary and dynamical

properties. The individual designed controllers from the previous section are implemented in the

control structure depicted in Figure 5.1 on page 26.

5.4.1 Stationary properties

The total control system will be tested for its ability to maintain the UAV in the hover operating

point, when the nonlinear model is initialized in this point. Note that early tests showed some of

the controllers had too high control gains, why it is necessary to lower these gains by applying

additional scalars to the controllers. Having modified control system the aforementioned test is
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FIGURE 5.22: Simulation result of the total classic control systems ability to

maintain the UAV in the hover operating point. Strong oscil-

lating behavior can be observed in some of the controlled states,

which indicate fast transient responses of their respective con-

trollers.

performed, where the simulation results can be seen in Figure 5.22. From the plotted simulation

data it can be observed that the roll and pitch angles exhibit strong oscillating behavior about

their respective operating point values, which indicate fast transient responses of the two con-
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trollers. In contrast to the roll and pitch angles, the yaw angle show more slow behavior with

respect to the estimator feedback signal, which ultimately result in slow tracking of the reference

signal. Common for the three angles is that they vary less than 0.1 rad from their respective oper-

ating point values. Observations of the longitudinal and vertical velocities also exhibit oscillating

behavior, which, like for the roll and pitch angles, indicate fast transient responses of the two re-

spective controllers. The lateral velocity also show signs of oscillating behavior, however, not as

noticeable as for the other velocities. All of the velocities follow their respective operating point

values with a maximum variation of 0.3 m
s .

Based on the above observations regarding the control systems ability to maintain the UAV in

the hover operating point, it is concluded that the designed classic linear control system is capable

of maintaining the UAV in hover.

5.4.2 Dynamical proporties

The dynamical test is performed in the exact same manner as each individual test of the different

controllers. However, here all cross couplings are not removed and all controlled outputs are

given an initial offset corresponding to the offsets used for each individual controller test (see

Table 4.1 on page 22 for an overview of the offsets). The test results can be seen in Figure 5.23.

To be able to determine when the UAV can be identified as being in hover the variation values

of 0.1 rad and 0.3 m
s , for the angles and velocities respectively, is used as limits. From Figure 5.23

it can then be observed that all controlled states have settled within a period of 5 seconds except

the lateral velocity, which settles after approximately 10 seconds. It is based on these observations

concluded that the designed classic linear control system is capable of stabilizing the UAV in the

hover operating point and capable of rejecting possible disturbances.



Chapter 5. Classic linear control 45

0 10 20 30
−0.5

0

0.5

0 10 20 30
−1

0

1

2

0 10 20 30
−0.5

0

0.5

1

0 10 20 30
−2

0

2

4

0 10 20 30
−0.5

0

0.5

1

0 10 20 30
−4

−2

0

2

Pitch angle

e
θ

[r
ad

]

Longitudinal velocity

b
ẋ
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FIGURE 5.23: Simulation result of the total classic control systems ability to

stabilize the UAV in the hover operating point when given an

initial offset in all of the controlled states. The total settling time

for the controlled system is prolonged due to slow lateral velocity

control.





6
OPTIMAL LINEAR QUADRATIC

CONTROL

This chapter describes the design and implementation of the LQR hover and forward flight

controllers. Since the LQR method is a MIMO controller it results in design of only two

different controllers; one for hover and one for forward flight. Before the actual controller

design is performed the choice of operating points and control states are described, followed

by the principle of the LQR method.

6.1 Choice of operating points and feedback states
As the first step in designing the hover and forward flight controllers the two operating points for

linearization of the nonlinear model must be determined, which is done in the following.

6.1.1 Choice of operating points

As with the classic hover controller the LQR controller design is based on linearization of the

nonlinear model in a chosen operating point. As described in the introduction to this thesis two

controllers, one for hover and one for forward flight, must be developed using the LQR method

for later use in gain scheduling. Consequently two operating points must be determined prior

to the design. The first operating point for the hover controller is obviously the hover condition

itself.

The second operating point for the forward flight controller is, however, not given in advance.

As stated in the introduction it is desired to complete level 1 in the IARC as fast as possible. An

obvious choice of forward flight operating point is therefore the maximum speed of the UAV,

which is known to be at least 92 km
h . However, as the use of gain scheduling provides for the

use of several forward flight controllers for different forward flight speeds, the second operating

point is instead chosen to be at 10 m
s to allow the for possibility of implementing several forward

flight controllers, where this thesis focuses on the usage of two controllers.

6.1.2 Choice of control, reference and integral states

As described in Section 3.2 the feedback states for the linear controller are given as in (6.1). Hence,

the supervisor must handle the position control of the control system.

xs =
[
eφ eθ eψ bẋ bẏ bż bφ̇ bθ̇ bψ̇

]T

(6.1)

47
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The index s (representing the system feedback states) is used for the sake of clarity throughout this

chapter, as state augmentation in subsequent sections involves more indices. At a first sight the

translatory velocity states [bẋ bẏ bż] together with the heading eψ seem sufficient for controlling

the UAV through a given level 1 specification. However, as the LQR control method utilizes

weights to determine the influence of states, it is chosen to design the controller for all nine states

in (6.1). In this way the largest possible freedom regarding choice of weights is achieved.

As described in Section 4.1 the LQR controllers must feature both reference and integral states,

which are included in the LQR controller by state augmentation. As with the system states the

reference and integral states are being weighted, therefore it is chosen to include reference and

integral states for all nine states in (6.1) as well.

In the next section the LQR principle is introduced, and the state augmentation for including

reference and integral states is explained.

6.2 The principle of LQR
The LQR control design done in this thesis is based on the procedures in Sørensen [1992], which

are described in the following. It relies on minimization of the performance index with weight

matrices on states and inputs. Furthermore, it features both reference and integral states, which

are needed in this thesis as described in the previous section.

The LQR control method is based on the state equation from the general discrete state-space

description of the system:

xs(k + 1) = Φsxs(k) + Γsu(k) (6.2)

ys(k) = Hsxs(k) + P su(k) , (6.3)

where xs(k) and u(k) are given by (6.1) and (6.4) respectively.

u =
[

Scol Slat Slon Str

]T

(6.4)

The LQR principal builds on determining the optimal input u∗(k) such that the performance

index given in (6.5) is minimized.

I =

N−1∑

k=0

(

xTs (k)Q1xs(k) + uT (k)Q2u(k)
)

+ xTs (N)QNxs(N) (6.5)

The quadratic weight matrices Q1, Q2 and QN weighting the states xs(k), the inputs u(k) and the

final states xs(N) respectively. These are all chosen along with the time horizon N , therefore the

determination of the weight matrices are the actual design task in developing an LQR controller.

Because the weight matrices are chosen it results in a trade-off between achieving small errors in

the control states and small control signals.

The optimal input u∗(k) can be found by the control law

u∗(k) = −L(k)xs(k) . (6.6)
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The proportional matrix L(k) in (6.6) is given as:

L(k) =
[

Q2 + Γ
T
s S(k + 1)Γs

]
−1

Γ
T
s S(k + 1)Φs , (6.7)

where S(k) satisfies the following discrete time dynamic Ricatti equation:

S(k) = Q1 + Φ
T
s S(k + 1)[Φs − ΓsL(k)] . (6.8)

It is desired to have a constant feedback gain L(0) calculated in advance in a closed loop control

system as shown in Figure 6.1. This is obtained by evaluating (6.7) and (6.8) backwards in time,

System

−L(0)

u∗(k) xs(k)

FIGURE 6.1: The structure of the closed loop system for an LQR controller.

with S(k) = QN and k = N − 1 initially, until k = 0. In this way the performance index is at all

times keptN steps ahead in time, where k = 0 denotes the current time. Prior to the calculation of

the controller L(0), the weight matrices Q1, Q2 and QN and the time horizon N must be chosen.

6.2.1 Design parameters

The system having nine states and four inputs yields the following dimensions of the weight ma-

trices Q1 ∈ R
9×9 and Q2 ∈ R

4×4. To simplify the design process it is chosen to use diagonal

weight matrices, which results in a total of 13 weights to be determined. In doing so, each di-

agonal entry in Q1(j, j) and Q2(j, j) is interpreted as a measure of the relative weights of xj(k)

and uj(k) respectively. A commonly used method for choosing the entries, is based on a physical

insight in the system. If the open loop system is subject to limitations on inputs and states, the

diagonal entries can as a starting point be chosen as:

Q1(j, j) =
1

x2
j,max

Q2(j, j) =
1

u2
j,max

. (6.9)

In addition, a weight factor can be introduced to weight Q1 relative to Q2. The weight on the final

states are chosen as QN = Q1, which is often the case when the value of the final states are of no

particular importance (see Sørensen [1992]).

The size of the time horizon N is determined by trial-and-error, by keeping in mind that a

large value of N improves the stationary properties of the control system, and that a small value

of N improves the dynamical properties of the control system (see Sørensen [1992]).
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6.2.2 Implementation of reference states

The reference states are implemented in the control design such that the controller is able to fol-

low desired set-points. The set-points are provided by the supervisor and therefore modeled as

constants, yielding the following state-space representation of the system together with the refer-

ence:

xs(k + 1) = Φsxs(k) + Γsu(k) (6.10)

ys(k) = Hsxs(k) + P su(k) (6.11)

xr(k + 1) = Φrxr(k) (6.12)

r(k) = Hrxr(k) , (6.13)

where Φr and Hr are 9 × 9 identity matrices. With the control error given as

e(k) = r(k) − ys(k) = Hrxr(k) − Hsxs(k) , (6.14)

the performance index becomes:

I =

N−1∑

k=0

(
eT (k)Q1ee(k) + uT (k)Q2u(k)

)
+ eT (N)QNee(N) , (6.15)

where Q1e is the control error weight matrix. To calculate the gain matrices for the states and

references, the state vector is augmented to contain both system and reference states:

xaug(k) =
[

xTs (k) xTr (k)
]T

. (6.16)

The state-space representation for the augmented state then becomes

[

xs(k + 1)

xr(k + 1)

]

=

[

Φs 0

0 Φr

][

xs(k)

xr(k)

]

+

[

Γs

0

]

u(k) (6.17)

e(k) =
[

−Hs Hr

]
[

xs(k)

xr(k)

]

. (6.18)

The augmented system can now be described as:

xaug(k + 1) = Φaugxaug(k) + Γaugu(k) (6.19)

e(k) = Haugxaug(k) . (6.20)

The augmented system can, as shown for the system in (6.2) and (6.3), be used to calculate the

system and reference feedback gains depicted in Figure 6.2 for the optimal controller:

u(k) = −Laug(0)xaug(k) = −
[

L(0) Lr(0)
]
[

xs(k)

xr(k)

]

. (6.21)
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−Lr(0) Γsz−1 z−1 Hs

Φs

−L(0)

xr(k) u(k) xs(k) y(k)

Hr

Φr

r(k)

++

FIGURE 6.2: The structure of the LQR controller with implemented reference

states.

6.2.3 Implementation of integral states

As stated in Section 4.1 it is chosen to implement integral states to remove steady state errors. The

state-space representation of the integral is given as

xI(k + 1) = xI(k) + e(k) (6.22)

e(k) = r(k) − y(k) . (6.23)

With the integral state the augmented state vector becomes

xaug(k) =
[

xTs (k) xTr (k) xTI (k)
]T

, (6.24)

which yields the new augmented system

xaug(k + 1) =







Φs 0 0

0 Φr 0

−Hs Hr I







xaug(k) +







Γs

0

0







u(k) (6.25)

= Φaugxaug(k) + Γaugu(k) (6.26)

y(k) =
[

Hs 0 0

]

xaug(k) = Hyxaug(k) (6.27)

e(k) =
[

−Hs Hr 0

]

xaug(k) = Hexaug(k) (6.28)

xI(k) =
[

0 0 I

]

xaug(k) = HIxaug(k) . (6.29)

With the implemented integral state the performance index becomes

I =

N−1∑

k=0

(

xTaug(k)Q1xaug(k) + uTaug(k)Q2uaug(k)
)

+ xTaug(N)QNxaug(N) , (6.30)

where

Q1 = QN = HT
e Q1eHe + HT

I (k)Q1IHI (6.31)

Because of the implementation of integral action on all feedback states in the LQR controller, a

total of 22 weight parameters for each of the hover and forward flight controller must be deter-

mined. With the augmented system given by Φaug and Γaug and the design parameters Q1, Q2
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and QN , the optimal controller

u(k) = −Laug(0)xaug(k) = −
[

L Lr LI

]







xs(k)

xr(k)

xI(k)







, (6.32)

with a structure as depicted in Figure 6.3 can be calculated by evaluating (6.7) and (6.8).

−Lr(0) Γsz−1 z−1

Hs

Φs

−L(0)

xr(k) u(k) xs(k)

ys(k)

Hr

−LI(0)

−

1

z−1

+
++

+ +

xI(k)

Φr

r(k)

FIGURE 6.3: The structure of the optimal controller with implemented reference

and integral states.

6.2.4 Modification of the LQR control structure

The current structure of the LQR controller is designed to weight the different references, which

the controller must track. However, early controller designs showed that the gain matrices Lr

and L are approximately identical with opposite sign (Lr = −L). By performing this substitution

of Lr the following becomes clear:

u(k) = −
[

L −L

]
[

xs(k)

xr(k)

]

= L
[

−I I

]
[

xs(k)

xr(k)

]

= L(xr(k) − xs(k)) = Le(k) . (6.33)

From (6.33) it can be seen that the modification result in the controller trying to bring the error

e(k) to zero. In addition, only two control gain matrices are needed to be designed.

Because the matrices Hr and Hs are identity matrices the controller structure depicted in

Figure 6.4 is obtained. This structure will be used for implementation and test of the designed

controllers in the nonlinear model in SIMULINK.

Having determined the design method and the actual structure for implementation of the LQR

controllers the design of the hover and forward flight controllers can be performed, which is done

in the following sections.
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1
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+
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xI(k)

FIGURE 6.4: The modified structure of the optimal controller.

6.3 Hover controller design
In the following the design of the LQR hover controller will be performed. As described earlier

the actual design lies in the determination of the weight matrices. Furthermore, it is described

that if the open loop system is subject to limitations regarding the states and inputs, then the

weight matrices can be initially be determined based on these limitations. This will be elaborated

further in the following section.

6.3.1 Analytical weight determination

As described in Section 6.2.1 the weights can be determined (based on the limitations) as de-

scribed by (6.9). The limitations in the system states can be determined based on open loop

simulations of the nonlinear model. Because the model must operate in open loop it needs to

be initialized in an equilibrium point regarding states and inputs. This equilibrium point is found

by linearization of the nonlinear model in a desired operating point (see Appendix C for informa-

tion on linearization). Note that it is not possible to operate the nonlinear model in open loop for

all of these equilibria, as the linearization yields only approximated equilibria.

The limitations on the different states are determined as the highest values for which the non-

linear model does not destabilize. With this in mind the following state limitations have been

identified by examining different flight velocities in forward and sideways direction:

bẋmax = 33 m
s with pitch angle: eθmin = −0.32 rad

bẏmax = 20 m
s with roll angle: eφmax = 0.5 rad .

(6.34)

The pitch angle eθmin is found as the lower limit due to its definition. The minimum vertical velo-

city bż corresponding to upwards flight with eθ = eφ = 0 rad is by similar experiments identified

as bżmin = −12 m
s . The limitation on the yaw angle eψ is intuitively not possible to determine, as

there should not be a limit on the number of rotations possible to perform. Therefore, it is chosen

as eψmax = 100 rad.

As with the translatory velocities, it is possible to linearize the nonlinear model to obtain an

equilibrium point with a constant rotational velocity bψ̇ about the z-axis in the BF. The limit has

been identified as bψ̇max = π rad
s corresponding to one revolution in two seconds. The angular
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velocities bφ̇ and bθ̇ are estimated to be equal to the limit on bψ̇ yielding bφ̇max = bθ̇max = π rad
s .

Having determined the limits on the states the diagonal weight matrix in (6.35) is obtained for

both the error and integral states. In addition, the weights on the control inputs are chosen as large

values relative to the weights on the system states in order to obtain a conservative controller. The

diagonal weight matrix for the control signals in (6.36) is chosen.

Q1e(j, j) = Q1I(j, j) =
[

1
(0.5)2

1
(−0.32)2

1
1002

1
332

1
202

1
−122

1
π2

1
π2

1
π2

]

= [ 4 9.7 0.0001 0.00091 0.0025 0.0069 0.10 0.10 0.10 ] (6.35)

Q2(j, j) = [ 100 100 100 100 ] (6.36)

The time horizon parameter is chosen as N = 3, and the LQR hover controller is calculated as

described in Section 6.2. The designed controller is tested by simulation on the nonlinear model
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FIGURE 6.5: Test result for the designed LQR hover controllers ability to stabi-

lize the nonlinear model in hover. The red horizontal lines shows

the hover operating point values.

initialized in the hover operating point and with the estimated states as feedback signals. The

simulation result is depicted in Figure 6.5, where the hover operating point is illustrated as the

red horizontal lines.

From the simulation of the hover controller it can be observed that it is capable of tracking
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the pitch angle set-point with a deviation of less than 5 · 10−3 rad. A similar observation can be

made for the roll angle, where a deviation of about 0.1 rad is determined. Taken the estimation

signal and the analytical determined weight matrices into consideration, the performance of the

hover controller is evaluated as relatively good because of it ability to track the set-point angles.

However, the ability to track the pitch and roll angles can be interpreted as a result of reduced

longitudinal and lateral velocity tracking ability. This can also be observed from Figure 6.5, where

the longitudinal and lateral velocities have a stationary error as they approaches negative values

over time. Furthermore, it can be observed that the designed controller is relatively slow taken the

time scale into consideration. This means that compensation of disturbances applied to the UAV

will happen slowly and may ultimately lead to instability. Therefore, a faster controller must

be designed. In addition, as the ability to track velocity set-points in longitudinal and lateral

directions are deemed more important than the tracking ability of the pitch and roll angles, it is

necessary to improve the LQR controller by manually tuning the weight matrices.

6.3.2 Weight tuning regarding stationary properties

The tuning of the weight matrices is performed iteratively using trial-and-error during multiple

simulations to obtain the weights seen in (6.37) −(6.39):

Q1e(j, j) = [ 0.016 0.81 1.0 1.5 0.0044 1.0 0.036 0.18 0.00091 ] (6.37)

Q1I(j, j) = [ 0.048 1.2 3.6 0.31 0.013 1.5 0.0010 0.10 0.0027 ] (6.38)

Q2(j, j) = [ 3.2 · 103 17 1.4 · 102 2.7 ] . (6.39)

In addition, the time horizon is changed to N = 5 in order to improve the stationary properties

in the closed loop. This is the final value of N and will therefore not be discussed any further

throughout this thesis.

A test simulation using the new weight matrices is performed with the result depicted in Fig-

ure 6.6. Compared to the results from Figure 6.5 the roll and pitch angles obtain larger variations,

which is a trade-off that leads to better tracking of the longitudinal and lateral velocities. This

is explained by the fact, that when the UAV needs to gain e.g. longitudinal velocity, this is done

by altering the current pitch angle. It is observed that the angles eθ, eφ and eψ varies less than

0.1 rad from their respective set-points, and the three translatory velocities bẋ, bẏ and bż varies less

than 0.3 m
s . The size of these stationary deviations are estimated as being small enough for the

controller to fulfill their purpose of keeping the UAV in the condition hover. Furthermore, it can

be observed that the hover controller has become become a faster controller than the previous,

therefore it is decided to use this for control of the system.

Having validated the designed controller with respect to its stationary properties, the dynam-

ical properties of the controller must be tested. Furthermore, if deemed necessary the controller

will be tuned based on the observations done by dynamical tests of the closed loop system.
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FIGURE 6.6: Test result of the improved LQR controller. As it can be observed

the variations of the angles are lager than the previous designed

controller. However, the new controller has better overall tracking

ability and perform faster control.

6.3.3 Weight tuning regarding dynamical properties

The dynamical properties of the designed controller are examined by performing offset tests and

analyzing the controllers ability to return the UAV to the hover operating point. The test is per-

formed by initializing the nonlinear model in hover with the offsets listed in Table 4.1 on page 22

applied to the initial states. For this purpose the UAV is considered as being in hover when the

angles varies less than 0.1 rad and the velocities varies less than 0.3 m
s from the hover operating

point (values obtained from Figure 6.6). As it is not possible to determine some maximum time

for the controller to stabilize the UAV, it is instead required to settle the six control states equally

fast, with a maximum time dispersion of 5 seconds.

The simulation result is depicted in Figure 6.7. It is observed that the time for settling the lon-

gitudinal velocity at the stationary limits (indicated by dashed lines) is approximately 23 seconds,

where it only takes approximately 6 seconds to settle the pitch angle. An intuitive way for obtain-

ing a lower settling time for the longitudinal velocity is to increase the corresponding weights for
bẋ in Q1e and/or Q1I . A few trial-and-error simulations with increased weights for bẋ quickly
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FIGURE 6.7: Dynamical test of the improved LQR hover controller. The large

variations in the roll angle causes significant variations in the

lateral velocity as well.

reveal, that this approach is not the solution. The explanation is found in the severe cross cou-

pling between the pitch angle eθ and the longitudinal velocity bẋ. From observation of Figure 6.7

it becomes clear that although eθ settles within 6 seconds, it does vary throughout the following

20 seconds, which causes bẋ to settle relative late. Therefore, the focus must be turned to tuning

the weight for eθ. Similar oscillating behavior is observed for the roll angle and the lateral and

vertical velocities.

Consequently some of the weight elements of the weight matrices in (6.37) and (6.38) have

been multiplied by the following factors:

Q1e(1, 1) = 10 Q1e(2, 2) = 10 Q1e(3, 3) = 20

Q1I(1, 1) = 2 Q1I(2, 2) = 2 ,
(6.40)

which result in the dynamical properties depicted in Figure 6.8 for the LQR hover controller. It

is observed that the six control states settle in the time period 2 s < t < 6 s, which satisfies the

requirement of a maximum dispersion of 5 seconds. In addition, it is observed that the stationary

properties of the LQR controller have also improved compared to Figure 6.7.

As the LQR hover controller is capable of stabilizing the UAV in the hover operating point
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FIGURE 6.8: Dynamical test for the final LQR hover controller. It is seen

that the control states settles faster and with less overshoot with

respect to the former controller weights.

(given the initial offset values) within 6 seconds the stationary and dynamical properties of the

controller are concluded as satisfactory for further use in the gain scheduling controller.

In the next section the classic SISO hover and the optimal LQR hover controller are compared

regarding stationary and dynamical properties.

6.3.4 Comparison of classic and LQR hover control

As described in the introduction to this thesis the classic control strategy is applied to be able to

compare it with more advanced control strategies, here optimal LQR control. The comparison of

the two control strategies is based on the individual tests performed with respect to stationary

and dynamical properties for each of the two controllers.

The first test performed for each controller concerns the stationary properties. For the LQR

controller a new simulation different from the one in Section 6.3.2 is performed, as the weight

matrices for this controller were changed during evaluation of the dynamical properties. This

new simulation result is depicted as the blue graphs in Figure 6.9 together with the test result

obtained for the classic controller in Section 5.4 (the green graphs).
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The graphs for the yaw angles looks much alike which indicates, that the two controllers per-

forms equally with respect to the yaw angle, and that the variations to a great extent are a result

of the estimated yaw angle being different from the actual yaw angle for the model.

It is observed that the pitch angle and the longitudinal and vertical velocities are more reso-

nant for the classic controller, which is an unwanted property for controlling a helicopter. The

LQR controller is better than the classic controller for controlling these, as it maintains the states

closer to the references and less resonant. The classic controller seems to control the lateral velo-

city better than the LQR controller. However, as the main part of the variations of the graphs, as

with the yaw angle, results from the estimated state being different from the real state, no con-

clusion can be drown regarding which controller is the better for controlling the lateral velocity.

It is concluded that the LQR controller overall has better stationary properties than the classic

controller.
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FIGURE 6.9: Comparison of the classic (green) and LQR (blue) controllers for

hover with respect to the stationary properties. It is observed that

the pitch angle and the longitudinal and vertical velocities are

more resonant for the classic controller.

For both controllers tests regarding the dynamical properties has been performed as well. The

nonlinear model was initialized with offsets in the states eφ, eθ, eψ, bẋ, bẏ and bż, and the ability

of the controllers to settle these six states to the levels shown in Figure 6.9 was examined in terms
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of time spend. The classic controller used 10 s and the LQR controller 5 − 6 s. It is therefore

concluded, that the LQR controller has better dynamical properties than the classic controller.

In the following section the design of the LQR forward flight controller is described.

6.4 Forward flight controller design
As a starting point for the design of the diagonal weight matrices for the forward flight controller,

the final weights determined for the hover controller are used. The forward flight controller

is afterwards tuned with respect to the stationary properties using trial-and-error to obtain the

following weight matrices:

Q1e(j, j) = [ 1.3 8.1 20 0.15 0.079 0.10 0.036 0.019 0.0001 ] (6.41)

Q1I(j, j) = [ 0.024 1.8 3.6 0.022 0.0080 0.15 0.0011 0.011 0.00027 ] (6.42)

Q2(j, j) = [ 295 2.1 21 0.33 ] . (6.43)

For tuning both the hover and the forward flight LQR controller some identified rules of thumb

have been exploited in addition to the trial-and-error method. As described in the previous sec-

tion the strong cross coupling between bẋ and eθ resulted in changing weights for eθ instead of
bẋ for the hover controller. In general, the knowledge on cross coupling in the nonlinear model

described by the input/output relations divided into four groups in Section 2.3 have been used

for weight tuning.

6.4.1 Stationary properties

A stationary test simulation of the nonlinear model initialized in the 10 m
s forward flight operating

point and stabilized by the forward flight controller is depicted in Figure 6.10. It is observed that

the lateral velocity deviates from the reference of 0 m
s with a peak of 1.5 m

s , which is significant

compared to the stationary deviations of less than 0.3 m
s observed for the hover controller (see

Section 6.3.2). The explanation is, that some of the estimated states used as feedback for control

purposes have a significant deviation from the real state. In this case the deviation on the lateral

velocity origins from poor estimates of the yaw angle eψest and lateral velocity bẏest. This is shown

in Figure 6.11, where the test simulation is repeated using the real states as feedback. It is observed

from Figure 6.11 that the controller is able to stabilize both eψ and bẏ at approximately zero in

contrast to their respective estimates. Furthermore, it is observed that the yaw angle estimate has

a positive error of up to 0.25 rad and the lateral velocity a negative error of up to 2.5 m
s . Another

important observation is the initial increase and decrease in the longitudinal velocity and pitch

angle respectively. This is due to the initial value of the estimated longitudinal velocity, which at

all times initially is zero. This leads to an initial error input to the controller of 10 m
s even though

the real error (with respect to the real initial state) is zero.

As this thesis does not concern sensor equipments and sensor fusion and estimation, the signif-

icant estimation error in eψest and bẏest will not be treated any further in this thesis. As simulations



Chapter 6. Optimal linear quadratic control 61

0 10 20 30
−0.2

−0.1

0

0 10 20 30
9

10

11

0 10 20 30
−0.1

0

0.1

0 10 20 30
−1

0

1

2

0 10 20 30
−0.2

0

0.2

0 10 20 30
−1

−0.5

0

eplacements

Pitch angle

e
θ

[r
ad

]

Longitudinal velocity

b
ẋ
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FIGURE 6.10: Stationary simulation results of the LQR forward flight con-

troller initialized in the forward flight operating point of 10 m
s .
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FIGURE 6.11: Simulation of the forward flight controller in the operating point

of 10 m
s using the real states as feedback signals.
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over a greater period of time show, that the estimation errors does not become larger, and as the

top level supervisory controller provides position control in the control system. Furthermore, the

drift effect from the observed stationary lateral velocity error is assumed not to have noticeable

impact on the performance of the control system. Based on this assumption the designed LQR for-

ward flight controller it is assessed that it has satisfactory stationary performance in the forward

flight operating point.

In the following section the dynamical properties of the designed forward flight controller will

be evaluated.

6.4.2 Dynamical properties

The dynamical properties of the LQR forward flight controller are examined in the same manner

as for the LQR hover controller, but with starting point in the forward flight operating point. The

result of the test is depicted in Figure 6.12, where it is observed that four of the controlled outputs

settle to their respective references; eθ, bẋ, eφ and bż. Regarding the remaining two control states
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FIGURE 6.12: Validation test for the LQR forward flight controller where an

initial offset is given on six of the controlled outputs; eθ, bẋ, eφ,
bẏ, eψ and bż.

(bẏ and eψ) the same behavior as described in the previous section can be observed. However,
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since it has been concluded that the deviations in bẏ and eψ are acceptable this is overlooked for

the dynamical test as well.

However, another important observation is that of the rather large variations during the first

15 seconds of the different control states. This is mainly due to the initial values of the estimated

states, which are all zero. Consequently the controller compensates on a wrong error of 10 m
s in

the longitudinal velocity, where the actual error on the model state −2 m
s . The integral action

thereby accumulates a large error, which helps explaining the 15 seconds of large variation.

With the above in mind the designed LQR forward flight controller is assessed to have satis-

factory dynamical performance because it is capable of returning the UAV to its forward flight

operating point. Therefore, this controller will be used in the gain scheduling controller, which is

treated in the next chapter.





7
OBSERVER-BASED GAIN

SCHEDULING CONTROL

This chapter explains the design and implementation of gain scheduling into the control

system. The implementation of gain scheduling makes it possible to switch between several

controllers designed for one or more operating point(s). In addition, the use of gain scheduling

enables the helicopter to achieve a more reliable and versatile manoeuvrability when perform-

ing level 1 of the IARC.

7.1 Gain scheduling method
As mentioned earlier in this thesis the implemented controllers are designed based on lineariza-

tions of the nonlinear model in different operating points. Here the operating points have been

chosen as hover and forward flight of 10 m
s , and linear controllers have been developed for the

respective operating points. The challenge is to switch between these two specific controllers

without compromising overall system stability.

Three ways to approach the problem of switching between controllers are; direct switch be-

tween controllers, gradual transition using a controller weight function αgs, and an observer-

based gain scheduling version of the weighted controller method with improved stability prop-

erties.

7.1.1 Direct controller switch

Direct switch between controllers is the most simple method of gain scheduling. This method is

executed simply by replacing one controller with another. Consider the optimal LQR controller

form

u(t) = L0e(t) − LI0xI(t) , (7.1)

where u(t) is the system control signal, e(t) is the control error and xI(t) is the integral state with

ẋI(t) = xI(t)+e(t). L0 and LI0 are the optimal proportional and integral gains respectively for a

given operating point. Now assume that a switch is performed from the first set of controllers (L0

and LI0) to a second set of controllers (L1 and LI1) at a given time instance t̄. If L1 is different

from L0 and/or LI1 is different from LI0, which is probably the case if the controller sets are

designed for different operating points, the value of u(t) will be subject to a momentary change

with a size dependent on the difference between the controller sets, unless both e(t) and xI(t) at

the time t̄ are both zero. Hence, this method may cause the control system to become unstable.

65
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7.1.2 Weighted controller switch

A less bumpy transfer between two controller sets are achieved by implementing a weight func-

tion αgs. The general control law for this method is

u(t) = (αgsL1 + (1 − αgsL0)) e(t) + (αgsLI1 + (1 − αgs)LI0)xI(t) , (7.2)

where αgs ∈ [0; 1]. By changing αgs gradually from 0 → 1, (7.2) will result in a switch from the first

controller set (L0 and LI0) to the second set (L1 and LI1), where a smooth control signal u(t) (no

momentary changes) is maintained, as long as e(t) and xI(t) does not change momentary either.

However, it is important to note that this form of gain scheduling between to sets of controllers

does not guarantee stability of the control system for 0 < αgs < 1, Bendtsen et al. [2005].

7.1.3 Controller switch using observer-based gain schedul ing

In Bendtsen et al. [2005] a controller construction that guarantees stability for any αgs ∈ [0; 1] when

applied to one linear system is introduced. It is claimed, that while it does not guarantee stabil-

ity between two operating points, it is still an improvement compared to (7.2). This controller

construction is implemented and tested on the nonlinear model of the UAV in this thesis.

Starting point is taken in an observer based structure mapping an input signal u(t) ∈ R
m to

an output signal y(t) ∈ R
p, which can be described as

H =

[

A B

C D

]

, (7.3)

which represent a standard state space model

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
. (7.4)

The above system can be extended to a so called two port system

H =







A B B2

C D D12

C2 D21 D22







, (7.5)

which, if interconnected with a zero system, yields

[

I 0

]

H

[

I

0

]

= H ? 0 =

[

A B

C D

]

= H . (7.6)

mapping two input vectors to two output vectors. The ? in (7.6) represent the Redheffer Star-

product, where the calculation method for the interconnection shown in Figure 7.1 between two

two port systems

P =







A B1 B2

C1 D11 D12

C2 D21 D22






, K =







AK BK1 BK2

CK1 DK11 DK12

CK2 DK21 DK22






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is defined as (see Zhou et al. [1996]):

S(P ,K) =

[

Ā B̄

C̄ D̄

]

,

where

Ā =

[

A + B2R̃
−1

DK11C2 B2R̃
−1

CK1

BK1R
−1C2 AK + BK1R

−1D22CK1

]

(7.7)

B̄ =

[

B1 + B2R̃
−1

DK11D21 B2R̃
−1

DK12

BK1R
−1D21 BK2 + BK1R

−1D22DK12

]

(7.8)

C̄ =

[

C1 + D12DK11R
−1C2 D12R̃

−1
CK1

DK21R
−1C2 CK2 + DK21R

−1D22CK1

]

(7.9)

D̄ =

[

D11 + D12DK11R
−1D21 D21R̃

−1
DK12

DK21R
−1D21 DK22 + DK21R

−1D22DK12

]

(7.10)

R = I − D22DK11, R̃ = I − DK11D22 .

P

K

w(t)z(t)

ŵ(t)ẑ(t)

FIGURE 7.1: Illustration of the ? interconnection between two two port sys-

tems.

The above described method for interconnection between systems is combined with the weighted

controller switch method to perform observer-based gain scheduling between the two LQR con-

trollers developed in Chapter 6. In the following section the matrices associated with the imple-

mentation of the observer-based gain scheduling are explained.

7.2 Observer-based gain scheduling design
The design presented throughout this section is based on the work described in Bendtsen et al.

[2005]. It is presented in continuous time, however it can be extended into discrete time by simple

discretizations of the involved matrices. The time index (t) is omitted to ease the notation.
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For the purpose of observer-based gain scheduling it is necessary to design observers for the

two operating points; hover, and forward flight of 10 m
s . The design of the observers follow the

general observer design theory, where any given system is simplified by linearization, and an

observer feedback gain F is determined such that the output of the observer ŷ converges to the

sensor output y of the system as illustrated in Figure 7.2.

Nonlinear

helicopter model

F

∫
C

A

B
x̂

y

ŷ

−

+

u

+

FIGURE 7.2: Illustration of the general observer theory with observer feedback

gain.

The system matrices A and B are determined as described in Appendix C for the hover (A0

and B0) and the forward flight (A1 and B1) operating points. The output matrices C0 and C1 are

both identity (I) with the same dimension as A0 and A1, as all states can be measured directly

and a full state observer is chosen. The observer feedback gains are therefore the only remaining

parts for implementing the observer structure in Figure 7.2. Note that there must be designed a

specific observer for each of the two operating points, which will be elaborated on later. For now

the observer gains are denoted with F 0 and F 1 for the hover and the forward flight operating

points respectively.

The goal for the observer design is to construct a two port system









˙̂x0

˙̂xI0

u

eq









=

K
︷ ︸︸ ︷








A0 − B0L0 − F 0C0 B0 F 0 B0

0 0 LI0 rI

−L0 I 0 I

−C0 0 I 0

















x̂0

x̂I0

e

uq









, (7.11)

with the structure depicted in Figure 7.3, where r > 0 represents the integrator factorization

and L0 and LI0 represents the LQR hover controller. The LQR controller matrices of dimension

R
4x9 are each extended with three columns of zeros as feedback gains for the position errors

of ex, ey and ez to fit the full state observer design. The augmented observer state vector is

defined as ξ̂0 = [ x̂
T
0 x̂

T
I0 ]T . As it can be seen from (7.11) there are two input and two output

vectors, where K takes the input vectors e = y − yref and uq, and yields the output vectors u and



Chapter 7. Observer-based gain scheduling control 69

eq = e−C0x̂0. Notice that the observers about to be designed are not observing the actual states

but the state error.

LI0

F 0

∫

A0

−L0

C0B0

∫

rI

e

ê

−

+

uq

x̂0

+

+ +

eq

u

FIGURE 7.3: Graphical illustration of the observer-based controller given by

(7.11) (illustrated in continues time).

By performing interconnection between K and a zero system it can be shown that the resulting

system becomes a standard observer-based controller K0 with integral action

[

I 0

]

K

[

I

0

]

= K ? 0 =







A0 − B0L0 − F 0C0 B0 F 0

0 0 LI0

−L0 I 0







= K0 , (7.12)

which is equal to αgs = 0 in

K(αgsQ) = K ? (αgsQ) (7.13)

where K is the total interconnected system in Figure 7.4(a). Having determined the structure for

the two port system for the first observer-based controller K the next step is to identify the struc-

ture for the scheduler Q. Because Q is the control system scheduler it must by definition contain

the second controller to switch to. Furthermore, it is desired to decouple the first controller com-

pletely when αgs = 1 and therefore it is necessary to design a two port system K̃ with the state

vector ξ̃ = [ x̃T x̃TI ]T that, when αgs = 1, yields an identity system when interconnected with

K. By having an identity system of K ? K̃ it is possible to implement any given second observer-

based controller K1 interconnected to K̃ (see Figure 7.4(b)), such that replacing Q with K̃ ?K1 in

(7.13) yields

K(αgs(K̃ ?K1)) = K ? (αgsK̃ ?K1) . (7.14)
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FIGURE 7.4: (a) shows the standard gain scheduling strategy with an observer-

based controller K interconnected with a scheduler αgsQ.

(b) shows the design of the total gain scheduling controller, where

Q is defined as K̃ ? K1, which yields the total controller as

K(αgsQ) = K ? (αgsK̃ ?K1).

Based on the structure of (7.11) K̃ is in Appendix D determined as:

K̃ =









A0 0 F 0 B0

LI0C0 − rL0 −rI −LI0 rI

−L0 −I 0 I

C0 0 −I 0









, (7.15)

such that the following interconnection

K ? K̃ =














A0 − B0L0 − F 0C0 B0 B0L0 −B0 F 0 B0

0 0 rL0 −rI LI0 rI

−F 0C0 0 A0 0 F 0 B0

−LI0C0 0 LI0C0 + rL0 −rI LI0 rI

−L0 I L0 −I 0 I

−C0 0 C0 0 I 0














(7.16)

can be made, where it can be seen that the interconnection K ? K̃ truly is an identity system, as

ξ̂0 = ξ̃ results in:

u = u1 (7.17)

e1 = e , (7.18)
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which means that the control signal u1 from the second observer-based controller K1 will be the

only control signal affecting the controlled system. Likewise, the error e1 provided to controller

K1 is equal to the actual error of the system e.

Furthermore it can be seen that when the augmented state vectors are identical they will stay

that way as long as αgs = 1:

˙̂x0 = (A0 − F 0C)x̂0 + F 0e + B0u1 (7.19)

ẋI0 = rL0x̃ − rx̃I + LI0e + ru1 (7.20)

˙̃x = −F 0C0x̂0 + A0x̃ + F 0e + B0u1 (7.21)

˙̃xI = rL0x̃ − rx̃I + LI0e + ru1 (7.22)

The structure of the second observer based controller K1 is the same as given in (7.12) but

designed in a new operating point. K1 is then given as

K1 =







A1 − B1L1 − F 1Cy B1 F 1

0 0 LI1

−L1 I 0







, (7.23)

where K1 has the augmented state vector ξ̂1 = [ x̂
T
1 x̂

T
I1 ]T .

7.2.1 Design of observer gains F 0 and F 1

Having determined the structure of the observer-based gain scheduler and the LQR controllers

the observer feedback gain matrices for the two operating points are the next to be designed.

Each of the feedback gains is calculated using the MATLAB© function lqed(), which calculates

the Kalman feedback gain matrix F when given the system matrix A, process noise matrix G,

output matrix C, observer estimat covariance matrix Q, measurement covariance matrix R and

the desired sampling time Ts as inputs. A is known from Appendix C for both operating points.

The estimated states of the nonlinear model are the observer measurements associated with the

covariance matrix R. It is assessed that the measurements are reliable based on the tests per-

formed for the LQR controllers in Chapter 6, and therefore the covariance matrix R is set small

relative to Q. By simulations with the nonlinear model in open loop and trial-and-error tuning

the following matrices are determined:

R = 0.00001I ∧ Q = 0.1I ∧ G = I (7.24)

The two calculated observer gains F 0 and F 1 can be found in Appendix E). The designed ob-

server gain matrices can only be used for observer based gain scheduling approach if the observer

gains are able to stabilize the system A such that A + FC (or A − FC) is Hurwitz, which means

that all eigenvalues must have strictly negative real parts (in the discrete case the eigenvalues

must be within the unit circle)(Bendtsen et al. [2005]). By using the MATLAB© function eig() the
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eigenvalues for the two stable systems A0 − F 0C0 and A1 − F 1C1 are:

eig(A0 − F 0C0) =
[

−14.7005 −8.2241 −5.4541 −1.8940 −0.9901− 0.4069i −0.9901 + 0.4069i

−1.0050− 0.3886i −1.0050 + 0.3886i −0.9975 −0.9975 −0.9975 −0.9975
]T

eig(A1 − F 1C1) =
[

−15.2053 −8.2385 −3.5084− 2.5335i −3.5084 + 2.5335i −2.9647

−1.0141− 0.3440i −1.0141 + 0.3440i −1.0726 −0.9940− 0.0550i

−0.9940 + 0.0550i −0.9971− 0.0006i −0.9971 + 0.0006i
]T

As it can be seen above all eigenvalues for the two observers have strictly negative real parts,

which shows that both systems are Hurwitz and therefore usable for observer-based gain schedul-

ing.

7.2.2 Design of αgs function

The scheduling variable αgs ∈ [0; 1] is modeled as a piecewise linear function of the forward flight

velocity bẋ as illustrated in Figure 7.5. As can be seen small values of αgs exists for bẋ < 4 m
s ,
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FIGURE 7.5: Illustration of the chosen αgs function.

and large values of αgs (values close to one) exists for bẋ > 6 m
s . In that way K0 obtains the most

influence for bẋ < 4 m
s and K1 gets the most influence for bẋ > 6 m

s . At a forward flight velocity

of bẋ = 5 m
s equal influence of the two controllers is obtained.

Having designed the αgs function, the design of the observer-based gain scheduling controller

is concluded. In the following section the functionality and performance of the controller will be

evaluated.
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7.3 Gain scheduling control test
In Section 7.2 the algebraic calculations showed that the interconnected system K?K̃ is an identity

system when αgs = 1. To determine whether the scheduler can actually be used for control

of the nonlinear model it is implemented and tested with respect to the change of controller,

which means that the gain scheduling system must be tested for the properties of K ? K̃. The

property is tested by comparing the two state vectors x̂0 and x̃ from K and K̃ respectively. If the

interconnection between the two are indeed an identity system then x̂0 − x̃ → 0|αgs=1.

The test of the gain scheduling system is performed by implementing the αgs function as a

ramp with a slope of 0.1 and saturation at αgs = 1. At the time zero αgs = 0 and after 10 seconds

αgs = 1 is obtained. Because the scheduling system is initialized with αgs = 0 the states observed

by K and K̃ will be different. Therefore, it is expected that when the ramp function becomes 1

the scheduling system will make x̂0 → x̃ for increasing time t > 10 s. The result of the test of

the scheduler can be seen in Figure 7.6. It is observed, that after time t = 10 s all observer errors

converges to zero (x̂0 − x̃ → 0). It is therefore concluded that the scheduler is performing as

intended with the ability to switch between the two controllers.
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FIGURE 7.6: Graphs showing the observer state error x̂0−x̃ for αgs going from

0 to 1. (a) shows the error in the system angles given in the EF.

(b) shows the error in the system velocities given in the BF.

Having determined that the scheduler is able to switch between the two LQR controllers the

total observer-based gain scheduling control system can be validated using the same approach

as with the classic and LQR controllers, by initializing the UAV with offsets in six of the control

states. The offset values are the same as for the tests of the classic and the LQR controller (see

Table 4.1 on page 22). However, it is desired to perform the test with a mixture of K0 and K1

such that both controllers are equally used. This means that an αgs = 0.5 resulting in a forward
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flight velocity of 5 m
s must be maintained. The offset test for the observer-based gain scheduling

control system can be seen in Figure 7.7.

0 10 20 30 40
−0.5

0

0.5

0 10 20 30 40
0

5

10

15

0 10 20 30 40
−1

0

1

0 10 20 30 40
−5

0

5

0 10 20 30 40
−0.5

0

0.5

1

0 10 20 30 40
−4

−2

0

2

Pitch angle
e
θ

[r
ad

]
Longitudinal velocity

b
ẋ
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FIGURE 7.7: Simulation result of the observer-based gain scheduling con-

trollers ability to stabilize the UAV at 5 m
s when given an offset

in six of the controlled states.

It is observed that rather large variations for all states during the first 10 s exists. These are

explained by the estimator problem mentioned in Section 6.4 (applies to the Sensor fusion and

estimation block presented in Section 2.2) causing the estimated state bẋest to start at 0 m
s . Overall,

at time t = 0 s, the real state is 7 m
s , the estimated state is bẋest = 0 m

s and the reference is rbẋ = 5 m
s .

The error based on the estimated state seen from the controller is therefore −5 m
s , where the actual

error is 2 m
s , causing the controller to bring the UAV further away from its reference. Despite the

fact that bẋest becomes equal to bẋ after approximately 2 s, the large variations continues the first

10 s as a result of the integral action in the controller accumulating the errors. The effort of the

controller trying to stabilize the UAV based on a wrong state estimate propagates to the other

states as well due to cross couplings in the model. However, the controller stabilizes the UAV at

the references afterwards.

For the final test of gain scheduling controller, an acceleration from hover to forward flight of

10 m
s is simulated with the nonlinear model in SIMULINK. The UAV is initialized in hover, and

four steps of each 2.5 m
s at the times 10, 20, 30 and 40 s are used to produce the forward flight
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reference rbẋ. The longitudinal velocity and the pitch angle from the test simulation is shown in

Figure 7.8. It is observed that bẋ has a small overshoot at the first two steps and no overshoot
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FIGURE 7.8: Illustration of; (a) the pitch angle (b) the forward flight velocity

(the red line indicates the reference) in a simulation of the gain

scheduling controller in closed loop with the nonlinear model.

at the last two steps, which indicates that different controllers are used as intended. Overall the

gain scheduling control system follows the reference without steady state error satisfying for use

in the overall control system.

Having designed and tested the gain scheduling controller of the overall control system, the

last element of the control system, the supervisor, can be designed, which is done in the following

chapter.





8
SUPERVISORY CONTROL

This chapter describes the design of the supervisory controller used for providing referen-

ces to the low level linear controllers. Different algorithms used for calculating the references

based on simple rules on how to handle the approach to and turning at waypoints are de-

scribed. A number of parameters associated with thresholds for the different decisions are

determined as described last in the chapter.

8.1 Overview
The purpose of the supervisor is to provide position control for the control system. Based on po-

sition and heading it must be able to generate references for the LQR and gain scheduling control

units, such that the UAV is able to complete level 1 in the IARC as described in section 3.1. These

references are created by rules on how to handle all possible situations given the actual position

and heading of the UAV compared to the target waypoint (the next waypoint to be reached). The

following in- and outputs are thus identified:

• Input: Level 1 specification:
e
Ξlvl1 =

{

[exwp,1
eywp,1

ezwp,1], . . . , [
exwp,n

eywp,n
ezwp,n]

}

• Input: Feedback control signals: eΞ = [ex ey ez] and eψ

• Output: Reference signals: or = [reφ reθ reψ reẋ reẏ re ż rbφ̇ rbθ̇ rbψ̇]

In the IARC the waypoints are given as [exwp
eywp

ezwp] , where the ezwp coordinate is in-

cluded such that the UAV can be controlled to maintain a certain altitude.

The last feedback signal eψ is used in flight close to a waypoint if a hover turn must be per-

formed, which means that the UAV stops above a waypoint, then turns towards the next way-

point and finally continues towards the next waypoint.

Before the design of control rules the strategy of the supervisor is described.

8.2 Supervisor strategy
Given a level 1 specification:

e
Ξlvl1 =

{

[exwp1
eywp1

ezwp1], [
exwp2

eywp2
ezwp2], [

exwp3
eywp3

ezwp3]
}

and assuming that the UAV is initialized in hover with the altitude of the first waypoint, a simple

control strategy repeated for all waypoints can be described as:

1. Turn towards target waypoint.

77
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2. Fly to target waypoint.

3. Update target waypoint.

4. Repeat for n waypoints.

The challenge lies in identifying appropriate rate limitations for the calculated output references

in order to obtain a steady flight. The rate limitations are especially important when passing

a waypoint and thereby updating the target waypoint, which, without rate limitation, would

induce unwanted reference changes in terms of steps. In addition, a suitable turn method must

be identified for each waypoint to further ensure a steady flight, but also in some situations allow

the UAV to pass waypoints without stopping to reduce the total flight time in level 1.

8.3 Control design
The control strategy described above is illustrated by the flowchart in Figure 8.1. In the following

Initialization.

Forward flight
towards target

waypoint.

Has target
waypoint been

reached?

Is target
waypoint the final

waypoint?

Level 1 completed.

Set target
waypoint to the
next waypoint.

yes

yes

no

no

FIGURE 8.1: Illustration of the overall supervisor control strategy. The UAV

is initialized in hover with the altitude equal to that of the first

waypoint with a heading eψ = 0 rad.

sections the different decision and action blocks will be elaborated on. A number of constants will

for the sake of clarity be referred to only by symbols. The exact sizes of these are determined as

described in section 8.4 on page 82.
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8.3.1 Initialization

As depicted in Figure 8.2 the control strategy is based on two paths yielding two possible turning

methods; A Hover turn where path (a) is followed, and a Forward flight turn where path (b) is

followed.

[exwp,i+1
eywp,i+1]

[ex ey]

[exwp,i
eywp,i]

eψturn,i

|evr| = vr,fast

|evr| =
vr,slow

Path (a)

Path (b)

Rvr,slow

|evr| = vr,medium

FIGURE 8.2: Illustration of factors and approach associated with calculation of

the velocity reference evr and the identification of turn method.

Here shown for the waypoint [exwp,i
eywp,i].

Hover turn:

A hover turn consists of the following actions:

1. Decelerate towards waypoint eΞwp,i until it is reached.

2. Hover and turn towards eΞwp,i+1.

3. Accelerate towards eΞwp,i+1 following path (a).

In the hover approach a velocity reference evr consisting of a longitudinal (reẋ) and a lateral (reẏ)

component is set to the size vr,slow, when a certain distance Rvr,slow
(indicated by the circle) has

been reached. Due to the rate limit on the references, the shift from vr,fast to vr,slow results in the

deceleration referred to above. As evr is mapped from the EF to the BF and then provided to

the LQR controllers, it is expected that the lateral reference component rbẏ in the BF is close to

zero when approaching the waypoint having a velocity reference vr,slow. Assuming that the LQR

controller is capable of keeping the controlled states at the references, no sideways movement of

the UAV can be expected. The hover and turn action in point 2. above is performed by keeping evr

at zero, from the time a waypoint is reached, until the heading of the UAV becomes equal to the

heading reference.
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Forward flight turn:

A forward flight turn consists of the following actions:

1. Decelerate at Rvr,slow
to vr,medium towards waypoint eΞwp,i until it is reached.

2. Turning with vr,medium until the direction of eΞwp,i+1 is reached.

3. Accelerate to vr,fast towards eΞwp,i+1 following path (b).

The idea with the forward flight turn is to avoid a deceleration to vr,slow and hereby optimize the

time consumption while performing a turn. The helicopter makes the deceleration at Rvr,slow
to

vr,medium and keep the heading until eΞwp,i is reached. At the waypoint a new velocity reference

vector evr pointing in the direction of eΞwp,i+1 is provided to the controllers immediately. If the

next waypoint do not have the same heading as the previous waypoint, there can occur some

sideways flight, hereof a velocity in bẏ. The UAV will keep on turning until the heading eψ has

reached the reference reψ, and hereafter the helicopter starts to accelerate to the maximum velocity

of the given controller.

Choosing turn method:

The supervisor must decide once for each waypoint to perform either a hover turn or a forward

flight turn. This decision will be based on:

1. the distance `wp,i→i+1 between e
Ξwp,i and e

Ξwp,i+1 and,

2. the turn angle eψturn,i measured between the continuation of a virtual straight line between
e
Ξwp,i−1 and e

Ξwp,i and another straight line between e
Ξwp,i and e

Ξwp,i+1 according to

Figure 8.2.

The idea is, that if the distance `wp,i→i+1 is large enough and the turn angle eψturn,i is not

too large, a forward flight turn is performed in order to reduce the total flight time of the level.

Appropriate constant limits must therefore be determined by simulations, such that the following

two statements can be tested by the supervisor:

if `wp,i→i+1 < `turn,hover then perform hover turn

else if |eψturn,i| >
eψturn,hover then perform hover turn ,

where `turn,hover is the limit on the distance and eψturn,hover the limit on the turn angle.

8.3.2 Decision blocks

In the first decision block it must be determined whether the current waypoint eΞwp,i has been

reached. For this purpose a circle of radius Rvr,hover
is defined in the xy-plane. When the UAV

enters this circle the given waypoint has been reached.

The second decision keeps track of the target waypoint, and terminate when the last waypoint

has been reached. If the waypoint is not the last, the target waypoint is set to the next, which is

done in the successive action block.
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8.3.3 Forward flight

The action block Forward flight towards the target waypoint handles the following tasks:

1. Calculate heading reference reψ towards the target waypoint.

2. Calculate velocity references evr = [reẋ reẏ] .

In addition, the forward flight action block contains a control of the altitude of the UAV, which

simply increases or decreases the velocity reference re ż when the difference between the desired

altitude ezwp,i and the feedback control signal ez exceeds a certain threshold. Furthermore, it

contains rate limit control on all the calculated references [reψ reẋ reẏ re ż] . Due to the sim-

plicity of these controls, they will not be described any further.

Calculation of heading reference

Assuming that the UAV has the best flying properties in forward direction, it is desired to keep

the heading given by eψ towards the target waypoint at all times. This is done by calculating reψ

continuously during flight, rather than once at each waypoint. As can be seen from Figure 8.3 this

is easily done by the tangent calculation:

reψ =
π

2
− arctan(

exwp,i −
ex

eywp,i − ey
) , (8.1)

with the special situations:

eywp,i −
ey = 0 (8.2)

eywp,i −
ey < 0 (8.3)

If (8.2) is valid the calculation will fail, as dividing by zero is not possible. If (8.3) is valid the result

will be wrong, because tangent only evaluates to positive values.

y

x

{exwp,i,
eywp,i}

{ex, ey}

reψ

FIGURE 8.3: Illustration of the frame used to calculate the heading reference

reψ. The frame has the same orientation as the EF with an offset

equal to the position of the UAV.
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Calculation of velocity references

When the size of the velocity reference |evr| has been set to either vr,slow or vr,fast, the velocity

references reẋ and reẏ can be calculated (here for vr,slow) as:

reẋ = sin(π2 − reψ) · vr,slow (8.4a)

reẏ = cos(π2 − reψ) · vr,slow (8.4b)

8.4 Parameter determination
To finish the design of the supervisor the different parameters have to be determined. The param-

eters determination will be done based on knowledge of the system and the rules associated with

the IARC. As described in Section 4.1 on page 21 the UAV must pass a waypoint so a judge can see

it from the ground by looking straight up and thereforeRvr,hover
is chosen to 2 m. Furthermore, the

velocity reference vr,slow, used for a steady approach to a hover turn, is chosen to 1 m
s . Based on

the determination of vr,slow, the parameters vr,rate limit, vr,fast and Rvr,hover
for each control strategy

can be determined by experimentation (see Appendix F). Then by having determined the differ-

ent values of vr,fast for the control strategies, the medium velocity reference vr,medium is chosen

such, that it is equal to half of the maximum velocity references. The different values of the deter-

mined supervisor parameters can be seen in Table 8.1. The two remaining parameters `turn,hover

Parameter Hover Forward flight Gain scheduling Unit

Rvr,hover
2 2 2 [m]

Rvr,slow
37 60 62 [m]

vr,slow 1 1 1
[

m

s

]

vr,fast 11 15 16
[

m

s

]

vr,medium 5.5 7.5 8
[

m

s

]

vr,rate limit ±5 ±5 ±5
[

m

s2

]

`turn,hover 100 150 100 [m]

eψturn,hover ±π ±π ±π [rad]

TABLE 8.1: List of parameter values used by the supervisor together with each

of the three controllers.

and eψturn,hover, which decides whether a hover turn must be performed or not, are determined

by simulation tests. The simulations show that the UAV is capable of performing a 180◦ turn us-

ing the forward flight turn approach by decelerating to the medium velocity reference vr,medium.

Therefore, the implementation of the maximum turn angle eψturn,hover is omitted from the super-

visor. Having determined that a hover turn is only necessary to define based on the distance

between two waypoints, the distance `turn,hover can be determined as the distance between two

waypoints, involving a 180◦ turn, where a forward flight turn is as fast as a hover turn (see Figure
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8.4(a) for illustration). Based on test simulations it is determined that if the distance between two

waypoints is greater than 100 m a forward flight turn is the most effective turning method using

the hover or the gain scheduling controllers (150 m in case of forward flight controller). Another

example of the advantage of using forward flight turn is depicted in Figure 8.4(b). Here a 45◦

turn must be made with a distance of 300 m to the next waypoint. From the test it is observed that

performing a forward flight turn is 5 seconds faster than performing a hover turn.

Having determined all of the necessary parameters for the supervisor it is possible to test the

performance of the overall control system, which will be described in the following chapter.
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FIGURE 8.4: Illustrations for determination of `turn,hover where the blue line

is a hover turn and the red line in a forward flight turn - (a) 180◦

turn where both the completion times are 62 s. (b) 45◦ turn where

the completion times are 70 s and 65 s for the forward flight turn

and hover turn, respectively.





Part III

Control system test and conclusion
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9
CONTROL SYSTEM TEST

This chapter describes the conclusive tests performed on the three control strategies; LQR

hover control, LQR forward flight control and observer-based gain scheduling control. Three

tests regarding different level 1 specifications for the IARC are performed for each control

strategy, such that the most time efficient strategy can be identified. In addition the perfor-

mance of the three control strategies is evaluated for the last level 1 specification.

9.1 Test specification
Starting point for the control system test is taken in the overall objective described in the intro-

duction, hence the purpose is to identify the most efficient control strategy regarding completion

time of level 1 of the IARC. The control strategies to be tested are; LQR hover control, LQR for-

ward flight control and gain scheduling control. The three controllers are each tested together

with the supervisor. To identify the best overall control strategy, it is desired to test the control

system in different situations regarding the level 1 specification of the IARC, such that the best

overall control strategy can be identified. The three different level 1 specifications (A, B and C)

are depicted in Figure 9.1. Each specification has a length of 3 km and contains a starting and end

Starting point

End point

Starting point and
waypoint 2 and 4

End point and
waypoint 1 and 3

Starting point

Waypoint 1

Waypoint 2

Waypoint 3

Waypoint 4

End point

Level 1 spec. A Level 1 spec. B Level 1 spec. C

FIGURE 9.1: Illustration of the three level 1 specifications, all with a total flight

length of 3 km used for performing the control system test. A has

no waypoints, B has four waypoints placed such that a 180◦ turn

must be performed at each waypoint, and C also has four way-

points placed such that several different turn types are obtained.

point, and up to 4 waypoints pursuant to the IARC rules.
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Level 1 spec. A: This specification is assumed to be the least time demanding of the three, as it

simply consists of a starting and an end point placed 3 km from each other. The ability to

accelerate and decelerate together with the maximum flight velocity are the decisive factors

for identifying the best control strategy for A.

Level 1 spec. B: This specification is assumed to be the most time demanding specification, as it

beside starting and end point consists of four waypoints placed such that a 180◦ turn has

to be performed at each waypoint. The ability to accelerate, decelerate and turn will be the

decisive factors in this test.

Level 1 spec. C: The last specification also contains four waypoints, but the waypoints are placed

such that different turn angles are obtained. Waypoint 1 and 2 are intentionally placed

such that the supervisor is forced to decide for a hover turn at waypoint 1. Graphs of the

six control states will also be presented for Level 1 spec. C, and the performance of the three

control strategies regarding the states will be discussed.

In the following sections the test results are discussed. To ease the reading the abbreviation

LQR is left out when referring to the LQR hover and/or the LQR forward flight controller.

9.2 Flight performance in specification A

As described above the ability to accelerate and decelerate and the maximum forward flight velo-

city are the decisive factors in A. From Table 8.1 on page 82 it can be seen that the gain scheduling

controller has the highest forward flight velocity reference vr,fast and it is therefore expected that

using the gain scheduling strategy to complete A takes less time than with the hover or the for-

ward flight controller.

The resulting flight path in the xy-plane is depicted in Figure 9.2 where the blue, red and cyan

line are the hover, forward flight and gain scheduling strategy respectively. It is observed that

with the hover control strategy the UAV deviates more from the optimal path, indicated by the

straight line, than with the other strategies. This is because the flight mainly consists of forward

flight with maximum velocity, which means that the hover controller is far from the operating

point for which it is developed causing it to drift in the ey direction. The flight route for the gain

scheduling and the forward flight strategies are much alike. This is because the gain scheduling

controller decouples the hover controller at high velocities, such that only the control signals from

the forward flight controller are used in the observer construction.

The completion time for each control strategy is listed in Table 9.1. As expected the gain

scheduling strategy has the lowest completion time.
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FIGURE 9.2: Illustration of the flight paths from the simulation of A. It is ob-

served that the flight paths using forward flight and gain schedul-

ing strategies are much alike, and that the hover strategy causes

the UAV to drift with respect to the optimal path between starting

and end point.

Strategy Hover Forward flight Gain scheduling

Completion time 287 s 219 s 204 s

TABLE 9.1: Completion times for the three flight paths of the UAV in level 1

specification A.

9.3 Flight performance in specification B

As mentioned earlier specification B consists of four waypoints placed on top of starting and

end point (see Figure 9.1), which results in the flight paths being placed on top of each other as

well. Consequently only two parts of the resulting flight path are presented (see Figure 9.3(a) and

9.3(b)). It is observed that the forward flight and the gain scheduling strategies, as was also the

case in specification A, results in similar flight paths. The same explanation as before applies to

the flight in specification B. Notice that forward flight turns with the velocity references vr,medium

listed in Table 8.1 are performed for all waypoints, as the distance between each waypoint is

sufficient for the UAV to get back on track after each turn. Consequently the gain scheduling

strategy primarily uses the forward flight controller.

From Figure 9.3(a) it is observed that the UAV turns right when using by the forward flight and

the gain scheduling strategies and left for the hover strategy. The right turn is performed because

the UAV approaches waypoint 1 from left and the supervisor therefore chooses to perform a right

turn as it is the shortest (the opposite way for the hover strategy).

As given in Table 8.1, the distance Rvr,slow
, indicating when a given controller must start de-

celerating towards a waypoint, varies between 37 m and 62 m, and as the distance between each



90 Section 9.3. Flight performance in specification B

−100 −50 0 50 100
−100

0

100

200

300

400

500

600

700

ey [m]

e
x

[m
]

Waypoint 1

Waypoint 2

(a)

−100 −50 0 50 100
−100

0

100

200

300

400

500

600

700

ey [m]

e
x

[m
]

Waypoint 3

Waypoint 2

(b)

FIGURE 9.3: The parts from waypoint 1 to 2 and waypoint 2 to 3 of the flight

path from the simulations of specification B. It is observed that the

flight paths using forward flight (red) and gain scheduling (cyan)

strategies are similar causing the UAV to make right turns at the

waypoints, where left turns are performed for the hover strategy

(blue).

waypoint in specification B is 600 m the test flights primarily consists of flight with maximum

velocity. The higher maximum velocity for the forward flight and the gain scheduling strategy,

with respect to the hover strategy, therefore results in smaller completion times as listed in Table

9.2.

Looking at the split times for waypoint 1 and 2 for the gain scheduling controller, it can be

shown that it takes approximately 4 s to perform a 180◦ turn. 1 s is subtracted from both time

marks as the UAV initiates in hover, where the velocity when leaving waypoint 1 after completing

the turn is approximately 5 m
s yielding t180 = (91 − 1) − 2 · (44 − 1) = 4 s. The same result of 4 s

can obtained for the hover and the forward flight strategies, which indicates that the difference

in the completion times follows from the ability of the strategies to accelerate and decelerate, and

not from the ability to turn.
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Strategy Waypoint 1 Waypoint 2 Waypoint 3 Waypoint 4 End

Hover 59 s 121 s 182 s 244 s 311 s

Forward flight 47 s 97 s 148 s 199 s 253 s

Gain scheduling 44 s 91 s 139 s 187 s 238 s

TABLE 9.2: Completion times for the UAV in specification B with split times

at each waypoint.

9.4 Flight performance in specification C

The flight paths of the UAV flight in level 1 specification C are depicted in Figure 9.4 for hover

(blue), forward flight (red) and gain scheduling (cyan) strategies respectively. The test results do
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FIGURE 9.4: Illustration of the flight paths from the simulations of specification

C for hover (blue), forward flight (red) and gain scheduling (cyan)

strategies respectively.

not reveal any significantly differences between the flight paths for the three control strategies due

to the scale, however, the completion times listed in Table 9.3 states, that using the gain scheduling

control strategy is the most time efficient strategy. The test flight in specification B was assumed

to be the most time demanding, however, the completion times for the test flights in specification

B and C show that for the hover and forward flight strategies the flight in specification C is more

time demanding. This is due to the hover turn present at waypoint 1. As expected the flight using
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Strategy Hover control Forward flight control Gain scheduling control

Completion time 317 s 254 s 231 s

TABLE 9.3: Completion times for the UAV for the simulation of specification

C.

the gain scheduling strategy uses the least time, which again is related to the higher maximum

velocity.

In the following the performance of the three control strategies are compared more thorough

by investigating angle and translateral velocity states of the UAV. The six states are depicted in

Figure 9.5, 9.6 and 9.7 for the hover, forward flight and gain scheduling strategy respectively.
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FIGURE 9.5: Illustration of six of the control states found by simulation of the

UAV flying trough specification C using the hover strategy .

For all control strategies it is observed that the pitch angle becomes negative when accelerating

in the longitudinal direction (and positive for deceleration), but with the forward flight strategy

(see Figure 9.6) the UAV has larger peaks in the pitch angle, than with hover or gain schedul-

ing strategy indicating a more aggressive controller. Furthermore, this indicates that the gain

scheduling controller mixes the hover an forward flight controllers when bẋ changes in the inter-

val [0; 10 m
s ] as intended, as it has smaller pitch angle variations than the forward flight strategy
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and greater variation than the hover strategy.

A similar observation applies to the roll angle graphs, where the forward flight strategy causes

higher and more resonant variations than with the other strategies. The hover strategy affects the

gain scheduling controller, such that a more steady control is obtained.

Overall it is concluded, from the whole control system test, that the gain scheduling control

strategy is the most time efficient control strategy regarding flight in each of the three level 1 spec-

ifications discussed. In addition, the gain scheduling strategy is shown able to combine the two

LQR controllers, in order benefit from the performance of the hover controller at low velocities

and the forward flight controller at high velocities.
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FIGURE 9.6: Illustration of six of the control states found by simulation of

the UAV flying trough specification C using the forward flight

strategy.
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FIGURE 9.7: Illustration of six of the control states found by simulation of

the UAV flying trough specification C using the gain scheduling

strategy.



10
CONCLUSION

The overall goal of this master’s thesis was to design control strategies such that the Bergen Indus-

trial Twin helicopter is able to perform autonomous flight. The goal of the autonomous flight was

to make the Unmanned Aerial Vehicle capable of competing in the International Aerial Robotics

Competition and complete level 1 of this competition as fast as possible. Therefore, the overall

objective for this thesis was determined to be:

Design, implementation and test of different control strategies enabling the UAV to au-

tonomously complete level 1 in the IARC by employing hover and fast forward flight, such

that the most efficient control strategy regarding level 1 completion time can be identified.

To accommodate the overall objective various subobjectives were defined as described in Sec-

tion 1.1. These objectives will be summarized in the following and concluded on separately fol-

lowed by an overall conclusion of the achievements of this thesis.

Objective A - Classic linear control:

It was desired to design classical SISO controllers for the UAV to be able to compare this

method to the optimal LQR method. The controllers were designed based on state-space

matrices obtained by linearization of the nonlinear model in the hover operating point, and

implemented as lead and lag compensators. Each of the designed controllers were tested

separately and were all found to be able to stabilize their individual control state.

After all of the SISO controllers were designed the classic control system was tested, where

the nonlinear model was initialized in hover with an offset applied to each of the controlled

states. It could be concluded that the designed classic control system was able to stabilize

the nonlinear model with respect to all of the controlled states.

Objective B - LQR hover control:

Besides the classical SISO control system it was desired to utilize more advanced control

methods. For this purpose the MIMO control method optimal LQR control was used. The

LQR hover control was, as the classic hover control, based on the linearized system matri-

ces, and by identifying weight matrices for the controlled states. It was chosen to perform

control on a total of nine states to be able to perform more stable control.

The main issue regarding the design was to determine the weight matrices used in the

performance function. Initial values used in the weight matrices was determined by identi-

fying state limitations of the nonlinear model in open loop. Using these determined weight

matrices an initial test was performed to examine the performance of the LQR hover con-

troller, where the test showed that the designed controller was not able to stabilize the UAV

Therefore, the weight matrices were altered.
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The final design of the LQR hover controller was tested on the nonlinear model initialized

in hover with an offset applied to the controlled states as done for classic linear control.

The test showed that the designed controller was able to stabilize all of the controlled states

of the nonlinear model in a steady fashion and therefore assessed as performing satisfac-

tory. Furthermore, it was concluded that the LQR hover controller performed more steady

control than the classic linear controller, and was able to stabilize the UAV faster.

Objective C - LQR forward flight control:

A forward flight LQR controller was developed for an operating point in 10 m
s . The design

of the this controller took starting point in the weight matrices determined for the LQR

hover controller.

The LQR forward flight controller was tested as the LQR hover controller, however, the

nonlinear model was initialized in the 10 m
s operating point and then applied an offset in

the controlled states. The test showed that the LQR forward flight controller was able to

stabilize the nonlinear model in the operating point.

The tests performed for the forward flight controller showed the estimator to yield faulty

estimates for the yaw angle and lateral velocity, which compromised the tests of the con-

troller. However, due to the controllers ability to stabilize the UAV despite the faulty es-

timates, it was assessed that this fault was acceptable because it did not accumulate over

time.

Objective D - Gain scheduling:

It was desired to optimize the change from hover to forward flight, why it was decided to

design gain scheduling between the two LQR controllers. This was done by designing an

observer-based gain scheduling controller to obtain bumpless transfer.

Since the two LQR controllers already were designed only the observer-based gain sched-

uler needed to be designed. For this purpose two observers were designed based on stan-

dard observer design theory.

To determine stability of the observer based gain scheduling controller a test was performed

like for the LQR controllers. The nonlinear model was initialized in a 5 m
s and then applied

an offset in the controlled states. This operating point was chosen because both LQR con-

trollers were equally used by the scheduler at this velocity.

The test showed that the observer based gain scheduling control system was able to stabi-

lize the nonlinear model for this setting.

Objective E - Supervisory controller:

To obtain position and heading control a supervisory controller was developed. This high

level controller was designed, such that it could calculate references for the linear con-

trollers based on the position and heading of the UAV.

The supervisor was able to chose between two different waypoint turning methods; hover

turn and forward flight turn, based on the waypoint position specification.
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The test of the supervisor was performed as part of the control system test, where it was

concluded that it was able to handle various turn angles, and that it was able to minimize

drift in the lateral direction at high velocities.

To identify the most time efficient control strategy three different control system tests were per-

formed for each of the three control strategies; LQR hover, LQR forward flight and gain schedul-

ing. From these tests it was identified that the gain scheduling strategy was the most time efficient

of the three. The decisive factors were that the gain scheduling controller was able to benefit from

the performance properties of both the LQR hover and forward flight controller. In addition, the

gain scheduling controller was identified as having the highest maximum velocity.

10.1 Future work
The work done in this thesis qualifies as a basis for future work on control of the reconfigured

Bergen Industrial Twin helicopter, as utilization of linear control showed good performance with

respect to control of the nonlinear model. However, because the nonlinear model used in this

thesis is of an older version, future controller designs must be based on the present nonlinear

model.

Further optimization of the gain scheduling approach can advantageously be performed by

adding several additional controllers in different operating points. In addition, a further analysis

of the scheduling function αgs could help optimize the benefit gained from each controller imple-

mented in the gain scheduler. Implementing the αgs scheduler function into the supervisor could

also help optimize the use of the gain scheduling approach. This implementation could be used

by the supervisor to chose between several additional rate limits as e.g. velocities.

A natural control approach to the Bergen Industrial Twin helicopter is to develop nonlinear

control, which could be advantageous because of the complexity of the nonlinear model.





ACRONYMS

BF Body-fixed reference Frame

EF Earth-fixed reference Frame

IARC International Aerial Robotics Competition

LQR Linear Quadratic Regulator

MIMO Multiple Input Multiple Output

SISO Single Input Single Output

UAV Unmanned Aerial Vehicle
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APPENDIX A
VISUALIZATION PROGRAM GSIM

This appendix describes how the visualization program GSIM used in this thesis for visu-

alization of the motion of the controlled UAV works. The program has especially been used

when designing the LQR controllers in this thesis.

A.1 Functionality of Gsim
The visualization program GSIM is a distributed system created by Jensen et al. [2006] capable of

visualizing 2D graph simulations from SIMULINK in a 3D environment. The program is able to use

multiple hosts, where one host can run the simulation and another host run the 3D visualization

program.

The program includes a SIMULINK block 3D Visualization Sink (see Figure A.1), which must

be defined with specific information of i.a. what 3D object is to be visualized and the IP of the

target host running the 3D visualization program. This SIMULINK block can handle objects with

six degrees of freedom, e.g. the UAV in this thesis, which result in six inputs needed for the

visualization program:

• The position of the UAV given in the EF eΞT = [ ex ey ez ]T .

• The attitude of the UAV given in the EF eΘT = [ eφ eθ eψ ]T .

3D Visualization Sink
Object name

FIGURE A.1: Illustration of the SIMULINK block 3D Visualization Sink.

The 3D Visualization Sink block sends the information received from the actual simulation

to the 3D visualization program, which renders the information into 3D. In Figure A.2 the 3D

visualization program is shown with no data received from the 3D Visualization Sink block in

SIMULINK. Furthermore, it can be seen that the program shows the host IP, which the 3D Visual-

ization Sink block must target.

In Figure A.3 the 3D visualization program is shown with data received from SIMULINK,

where it can be seen that the program has rendered a 3D helicopter model, which is being moved

around and rotated with respect to the data received from the actual simulation. In addition, it
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FIGURE A.2: Screenshot of the 3D visualization program with no simula-

tion data received. The program shows the IP of the program

host that must be targeted by the 3D Visualization Sink block in

SIMULINK.

FIGURE A.3: Screenshot of the 3D visualization program with simulation data

received regarding the position and attitude of the UAV. In the

top right corner tabs are shown; one for object info and one for

camera control.
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can be seen that the 3D visualization program is capable of showing the data regarding the po-

sition and attitude of the model helicopter (can be seen in the top right corner in the object info

tab). Another feature in the 3D visualization program is the free view seen in the camera tab next

to the object info tab in the top right corner. The free view feature makes it possible to see the 3D

model from any angle and therefore makes it easier to analyze the performance of the simulated

system.

A.2 Mapping data from Simulink to Gsim
To be able to use GSIM properly a mapping of the simulated data regarding the position and

attitude is necessary. The coordinate system represented in the 3D visualization program has the

orientation as illustrated in Figure A.4(b), where as the orientation of the coordinate system of the

UAV model is as illustrated in Figure A.4(a).

x

y

z

φ

θ

ψ

(a)

x

y

z

u

v

w

(b)

FIGURE A.4: (a) shows the orientation of the coordinate system in the working

model of the UAV. (b) shows the orientation of the coordinate

system in the 3D visualization program. Because they are differ-

ent a mapping from (a) to (b) is necessary.

Knowing the orientation of the two coordinate systems along with the positive rotations it is

rather easy to map the data from the simulation to the 3D visualization program. The mapping is
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performed in the following manner (described by equations):

zgsim = xmodel (A.1)

xgsim = ymodel (A.2)

ygsim = −zmodel (A.3)

w = −φ
180◦

π
(A.4)

u = −θ
180◦

π
(A.5)

v = ψ
180◦

π
(A.6)

Note that the angles mapped are converted from radians to degrees since the 3D visualization

program define angles in degrees.

A.3 Rotation problem
There are a known problem with the GSIM program, which compromise the versatile use of the

program. The problem reveals it self by for example performing the following rotations of the 3D

object:

1. Rotate 90◦ about the y-axis.

2. Rotate 30◦ about the x-axis.

3. Rotate 30◦ about the z-axis.

The result of this rotation of the 3D object is visually seen as a standard 90◦ rotation about the

y-axis, which means that the rotations about the x and z axis have been subtracted and thus

resulting in a rotation of 0◦ about both axes. It can then be concluded that a bug in the program

cause the x and z axes to have opposite orientations when a 90◦ positive rotation about the y-axis

is performed. Therefore, to make full use of the visualization program GSIM this bug must be

fixed.



APPENDIX B
REAL STATES VERSUS STATE

ESTIMATIONS

This appendix gives a view of the signals that are to be used as feedback in the control

loops. The graphs shown in here are all based on the data collected from the system when

initialized in hover.

In Figure B.1 the state estimates for the helicopter position (ex, ey and ez) are shown. As it can be

seen from the figure the state estimates have a rough 0.1 m error in general. In addition, the state

estimate of ex has an initial offset, which ultimately can cause a disturbance in the control loop

until the estimator settles.
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FIGURE B.1: Comparison of the real (to the left) and estimated (to the right)

position of the helicopter. The shown graphs are obtained by ini-

tializing the helicopter in hover.

In Figure B.2 the state estimates for the attitude (eφ, eθ and eψ) of the helicopter are shown.

As it can be seen the estimate of the different angles are rather good except for the yaw angle,
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which has a rough estimation error of 0.1 rad. Furthermore, it can be seen from the graphs that

the alterations seen in the yaw angle estimate is also seen in the roll angle estimation although

not as powerful changes.
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FIGURE B.2: Comparison of the real (to the left) and estimated (to the right)

attitude of the helicopter. The data is obtained by initializing the

helicopter in hover.

In Figure B.3 the state estimates for the helicopters translateral velocities (bẋ, bẏ and bż) are

depicted. As it can be seen from the graphs the estimated translateral velocities have a rough

estimation error of 0.3 m
s , which indicate that a compromise may have to be made regarding the

definition of hover.

In Figure B.4 the state estimates for the helicopters rotational velocities (bφ̇, bθ̇ and bψ̇) are

shown. From the graphs it can be seen that bφ̇ and bθ̇ have a rough estimation error of 0.3 rad
s . In

addition, it can be seen that bψ̇ has a larger estimation error of about 0.8 rad
s , which may cause the

relative large estimation error of the yaw angle eψ.
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FIGURE B.3: Comparison of the real (to the left) and the estimated (to the right)

translateral velocities of the helicopter. The shown estimates are

obtained by initializing the helicopter in hover.
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right) rotational velocities of the helicopter. The shown graphs

are obtained by initializing the helicopter in hover.



APPENDIX C
LINEARIZATION OF THE NONLINEAR

MODEL

The model of the helicopter, which was derived and verified in Hald et al. [2006], is non-

linear but as stated in the introduction to this thesis, there will only be used linear controllers

for the helicopter. Therefore the model needs to be linearized in different operation points

where the controllers will be optimized for. The linearization is used for both controller types;

classic and LQR. The linearization will be performed using a MATLAB© function developed

by Bisgaard [2007] and the linearization method will not be described beyond inputs for the

function, which are described in the following section.

C.1 Linearization conditions
The function, which is called trim_final_c.m, takes five inputs:

V : The velocity of the helicopter defined initially in the x direction in m
s .

fp: The angle between the x-axis and the vertical offset (positive up) in rad.

bw: The angle between the x-axis and the horizontal offset (postive right) in rad.

yaw_ref : The yaw angle velocity about the z-axis in rad
s .

full: A flag which decides if flapping will be included in the model or rigid body states only.

The above inputs to the linearization function are then used to calculate the velocity helicopter

along the three axes as

Vx = V cos(fp) cos(bw) (C.1)

Vy = V cos(fp) sin(bw) (C.2)

Vz = −V sin(bw). (C.3)

The output of the function are the linearized model in the form state matrices A and B and the

initial values there are needed for developing the controllers for the helicopter.

C.2 State matrices and initial values
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ẋ

b
ẏ
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APPENDIX D
CALCULATION OF K̃

The use of the observer based gain scheduling presented by Bendtsen et al. [2005] implies

that it is necessary to design K̃ such that the interconnection K ? K̃ is an identity system.

This means that the outputs of the system K ? K̃ is identical to the inputs, and that the

augmented state vectors ξ̂0 and ξ̃ are equal to each other. This appendix deals with the design

of K̃ such that these criteria are fulfilled.

D.1 Calculation method
The method used for the determination of K̃ is the general theory for calculation of interconnec-

tion between two systems, Zhou et al. [1996]. In this case the two systems are K and K̃, which

can be generally defined as

K =







A B1 B2

C1 D11 D12

C2 D21 D22







K̃ =







AK BK1 BK2

CK1 DK11 DK12

CK2 DK21 DK22







.

The interconnection (also called the Redheffer Star-product) is then defined as

S(K, K̃) =

[

Ā B̄

C̄ D̄

]

=









Ā11 Ā12 B̄11 B̄12

Ā21 Ā22 B̄21 B̄22

C̄11 C̄12 D̄11 D̄12

C̄21 C̄22 D̄21 D̄22









,

where

Ā =

[

Ā11 Ā12

Ā21 Ā22

]

=

[

A + B2R̃
−1

DK11C2 B2R̃
−1

CK1

BK1R
−1C2 AK + BK1R

−1D22CK1

]

(D.1)

B̄ =

[

B̄11 B̄12

B̄21 B̄22

]

=

[

B1 + B2R̃
−1

DK11D21 B2R̃
−1

DK12

BK1R
−1D21 BK2 + BK1R

−1D22DK12

]

(D.2)

C̄ =

[

C̄11 C̄12

C̄21 C̄22

]

=

[

C1 + D12DK11R
−1C2 D12R̃

−1
CK1

DK21R
−1C2 CK2 + DK21R

−1D22CK1

]

(D.3)

D̄ =

[

D̄11 D̄12

D̄21 D̄22

]

=

[

D11 + D12DK11R
−1D21 D21R̃

−1
DK12

DK21R
−1D21 DK22 + DK21R

−1D22DK12

]

(D.4)

R = I − D22DK11, R̃ = I − DK11D22 . (D.5)

Since the structure of K̃ is not known it is necessary to determine it, based on the criteria defined

for the interconnection, which will be done in the following section.
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D.2 Design of K̃

As the first step in designing K̃ it is necessary to identify the structure of K, which is found to be

K =









A0 − B0L0 − F 0Cy B0 F 0 B0

0 0 LI0 rI

−L0 I 0 I

−Cy 0 I 0









=







A B1 B2

C1 D11 D12

C2 D21 D22







. (D.6)

Having determined K it is possible to start designing K̃, which is done in a backwards manner.

D.2.1 Determination of DK11, DK12, DK21 and DK22

From the criterion defining, that it should be possible to perform direct feed through from input

to output, makes it possible to define D̄ as

D̄ =

[

0 I

I 0

]

. (D.7)

This results in solving the equations given in (D.4) with respect to DK11, DK12, DK21 and DK22.

But first the values of R and R̃ are identified to ease the calculations:

R = I − D22DK11 = I − 0DK11 = I (D.8)

R̃ = I − DK11D22 = I − DK110 = I . (D.9)

With R and R̃ determined to be identity matrices these can be overlooked when solving the

equations.

By solving the equations for D̄11, D̄12, D̄21 and D̄22 the following is obtained

D̄11 = 0 = D11 + D12DK11D21 = 0 + IDK11I ⇒ DK11 = 0 (D.10)

D̄12 = I = D21DK12 = IDK12 ⇒ DK12 = I (D.11)

D̄21 = I = DK21D21 = DK21I ⇒ DK21 = I (D.12)

D̄22 = 0 = DK22 + DK21D22DK12 = DK22 + I0I ⇒ DK22 = 0 . (D.13)

With the above solutions K̃ can be updated with respect to DK11, DK12, DK21 and DK22:

K̃ =







AK BK1 BK2

CK1 0 I

CK2 I 0







. (D.14)

D.2.2 Determination of CK1 and CK2

Based on the criterion that the output must be equal to the input when ξ̂0 = ξ̃ results in the new

criterion that C̄11 + C̄12 = 0, and C̄21 + C̄22 = 0. This leads to solving the equations given in
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(D.3) with respect to CK1 and CK2, and the aforementioned criteria:

C̄11 = C1 + D12DK11C2 = [−L0 I] + I0 [−Cy 0] = [−L0 I]

C̄12 = D12CK1 = ICK1 = CK1

⇓

C̄11 + C̄12 = 0 = [−L0 I] + CK1 ⇒ CK1 = [L0 −I] . (D.15)

The same procedure is used for determine CK2:

C̄21 = DK21C2 = I [−Cy 0] = [−Cy 0]

C̄22 = CK2 + DK21D22CK1 = CK2 + I0 [L0 −I] = CK2

⇓

C̄21 + C̄22 = 0 = [−Cy 0] + CK2 ⇒ CK2 = [Cy 0] . (D.16)

The updated version of K̃ is then

K̃ =







AK BK1 BK2

L0 −I 0 I

Cy 0 I 0







. (D.17)

D.2.3 Determination of BK1 and BK2

To make sure that the augmented state vectors ξ̂0 and ξ̃ are equally affected by the interconnected

systems inputs it can be defined that B̄11 = B̄21 and B̄12 = B̄22, which leads to solving the

equations given in (D.2):

B̄11 = B1 + B2DK11D21 =

[

F 0

LI0

]

+

[

B0

rI

]

0I =

[

F 0

LI0

]

B̄12 = B2DK12 =

[

B0

rI

]

I =

[

B0

rI

]

Having determined B̄11 and B̄12 it is relatively easy to determine B̄21 and B̄22 as

B̄21 = BK1D21 = BK1I = BK1 =

[

F 0

LI0

]

(D.18)

B̄22 = BK2 + BK1D22DK12 = BK2 +

[

F 0

LI0

]

00 = BK2 =

[

B0

rI

]

. (D.19)

With the determination of BK1 and BK2, K̃ is now

K̃ =









AK

F 0 B0

LI0 rI

L0 −I 0 I

Cy 0 I 0









. (D.20)
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D.2.4 Determination of AK

The criterion for the determination of AK is that when ξ̂0 = ξ̃ they will stay that way regardless

of the inputs to the system. This criterion can be rephrased to

Ā11ξ̂0 + Ā12ξ̃ = Ā21ξ̂0 + Ā22ξ̃ (D.21)

⇓

Ā11 + Ā12 = Ā21 + Ā22 , for ξ̂0 = ξ̃ . (D.22)

With the above in mind the equations given in (D.1) can be solved with respect to determining

AK :

Ā11 = A + B2DK11C2 =

[

A0 − B0L0 − F 0Cy B0

0 0

]

+

[

B0

rI

]

0 [−Cy 0]

=

[

A0 − B0L0 − F 0Cy B0

0 0

]

Ā12 = B2CK1 =

[

B0

rI

]

[L0 −I] =

[

B0L0 −B0

rL0 −rI

]

Ā21 = BK1C2 =

[

F 0

LI0

]

[−Cy 0] =

[

−F 0Cy 0

−LI0Cy 0

]

Ā22 = AK + BK1D22CK1 = AK +

[

F 0

LI0

]

0 [L0 −I] = AK . (D.23)

As it can be seen from the above calculations the only unknown is the matrix AK . Therefore, the

equality Ā11 + Ā12 = Ā21 + Ā22 can be solved with respect to AK :

Ā11 + Ā12 =

[

A0 − B0L0 − F 0Cy B0

0 0

]

+

[

B0L0 −B0

rL0 −rI

]

=

[

A0 − F 0Cy 0

rL0 −rI

]

(D.24)

Ā21 + Ā22 =

[

−L0Cy 0

−LI0Cy 0

]

+ AK =

[

A0 − F 0Cy 0

rL0 −rI

]

⇓

AK =

[

A0 − F 0Cy 0

rL0 −rI

]

−

[

−F 0Cy 0

−LI0Cy 0

]

=

[

A0 0

rL0 + LI0Cy −rI

]

. (D.25)
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Having determined AK the design of K̃ is complete:

K̃ =









A0 0 F 0 B0

rL0 + LI0Cy −rI LI0 rI

L0 −I 0 I

Cy 0 I 0









, (D.26)

where the interconnection K ? K̃ is given as

K ? K̃ =














A − B0L0 − F 0Cy B0 B0L0 −B0 F 0 B0

0 0 rL0 −rI LI0 rI

−F 0Cy 0 A0 0 F 0 B0

−LI0Cy 0 LI0Cy + rL0 −rI LI0 rI

−L0 I L0 −I 0 I

−Cy 0 Cy 0 I 0













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APPENDIX E
OBSERVER GAIN MATRICES

E.1 Observer feedback gain matrices

F 0,1−6 =

















9.98 · 10
−1

0 0 1.14 · 10
−11

8.10 · 10
−7

0

0 9.98 · 10
−1

0 −8.10 · 10
−7

1.35 · 10
−11

1.28 · 10
−11

0 0 9.98 · 10
−1

−3.64 · 10
−10

0 0

1.14 · 10
−11

−8.10 · 10
−7

−3.64 · 10
−10

9.98 · 10
−1

1.24 · 10
−10

−2.59 · 10
−9

8.10 · 10
−7

1.35 · 10
−11

0 1.24 · 10
−10

9.98 · 10
−1

3.50 · 10
−10

0 1.28 · 10
−11

0 −2.59 · 10
−9

3.50 · 10
−10

9.98 · 10
−1

2.49 · 10
−5

2.29 · 10
−10

5.05 · 10
−8

1.60 · 10
−8

−2.43 · 10
−4

3.32 · 10
−9

−2.23 · 10
−9

2.49 · 10
−5

9.81 · 10
−7

2.43 · 10
−4

3.74 · 10
−8

−3.45 · 10
−8

−5.04 · 10
−8

−9.81 · 10
−7

2.49 · 10
−5

−9.78 · 10
−6

4.88 · 10
−7

6.24 · 10
−9

−1.41 · 10
−8

5.68 · 10
−8

1.06 · 10
−8

2.78 · 10
−5

5.59 · 10
−7

1.11 · 10
−7

−8.03 · 10
−8

−1.28 · 10
−8

1.50 · 10
−9

−5.50 · 10
−7

2.76 · 10
−5

9.87 · 10
−7

−1.83 · 10
−11

4.26 · 10
−8

−5.51 · 10
−9

−1.45 · 10
−6

−9.96 · 10
−7

2.48 · 10
−5

















(E.1)

F 0,7−12 =

















2.49 · 10
−5

−2.23 · 10
−9

−5.04 · 10
−8

−1.41 · 10
−8

−8.03 · 10
−8

−1.83 · 10
−11

2.29 · 10
−10

2.49 · 10
−5

−9.81 · 10
−7

5.68 · 10
−8

−1.28 · 10
−8

4.26 · 10
−8

5.05 · 10
−8

9.81 · 10
−7

2.49 · 10
−5

1.06 · 10
−8

1.50 · 10
−9

−5.51 · 10
−9

1.60 · 10
−8

2.43 · 10
−4

−9.78 · 10
−6

2.78 · 10
−5

−5.50 · 10
−7

−1.45 · 10
−6

−2.43 · 10
−4

3.74 · 10
−8

4.88 · 10
−7

5.59 · 10
−7

2.76 · 10
−5

−9.96 · 10
−7

3.32 · 10
−9

−3.45 · 10
−8

6.24 · 10
−9

1.11 · 10
−7

9.87 · 10
−7

2.48 · 10
−5

9.98 · 10
−1

2.02 · 10
−9

−1.46 · 10
−7

3.13 · 10
−6

3.11 · 10
−5

−6.19 · 10
−8

2.02 · 10
−9

9.98 · 10
−1

5.64 · 10
−7

−3.85 · 10
−5

3.55 · 10
−6

2.66 · 10
−5

−1.46 · 10
−7

5.64 · 10
−7

9.98 · 10
−1

2.95 · 10
−6

−2.37 · 10
−7

−2.16 · 10
−6

3.13 · 10
−6

−3.85 · 10
−5

2.95 · 10
−6

9.97 · 10
−1

2.52 · 10
−5

1.72 · 10
−5

3.11 · 10
−5

3.55 · 10
−6

−2.37 · 10
−7

2.52 · 10
−5

9.97 · 10
−1

−1.27 · 10
−7

−6.19 · 10
−8

2.66 · 10
−5

−2.16 · 10
−6

1.72 · 10
−5

−1.27 · 10
−7

9.97 · 10
−1

















(E.2)

F 1,1−6 =

















9.98 · 10
−1

0 1.92 · 10
−11

7.83 · 10
−11

8.10 · 10
−7

0

0 9.98 · 10
−1

0 5.98 · 10
−6

−2.58 · 10
−11

2.48 · 10
−4

1.92 · 10
−11

0 9.98 · 10
−1

−6.04 · 10
−10

−2.47 · 10
−4

−1.95 · 10
−11

7.83 · 10
−11

5.98 · 10
−6

−6.04 · 10
−10

9.97 · 10
−1

1.81 · 10
−9

−5.22 · 10
−7

8.10 · 10
−7

−2.58 · 10
−11

−2.47 · 10
−4

1.81 · 10
−9

9.97 · 10
−1

2.90 · 10
−10

0 2.48 · 10
−4

−1.95 · 10
−11

−5.22 · 10
−7

2.90 · 10
−10

9.97 · 10
−1

2.49 · 10
−5

9.59 · 10
−11

8.88 · 10
−6

9.51 · 10
−9

−2.43 · 10
−4

−2.44 · 10
−8

−2.00 · 10
−8

2.50 · 10
−5

6.58 · 10
−7

2.43 · 10
−4

2.63 · 10
−7

−3.41 · 10
−6

−7.11 · 10
−7

−6.71 · 10
−7

2.45 · 10
−5

−6.75 · 10
−6

1.02 · 10
−5

7.28 · 10
−8

−1.39 · 10
−8

5.93 · 10
−8

−4.94 · 10
−9

2.87 · 10
−5

4.72 · 10
−7

8.70 · 10
−8

−8.00 · 10
−8

−4.65 · 10
−9

−2.39 · 10
−7

3.44 · 10
−7

2.75 · 10
−5

7.00 · 10
−7

2.94 · 10
−8

1.08 · 10
−7

2.76 · 10
−8

2.16 · 10
−5

−4.27 · 10
−7

2.48 · 10
−5

















(E.3)

F 1,7−12 =

















2.49 · 10
−5

−2.00 · 10
−8

−7.11 · 10
−7

−1.39 · 10
−8

−8.00 · 10
−8

2.94 · 10
−8

9.59 · 10
−11

2.50 · 10
−5

−6.71 · 10
−7

5.93 · 10
−8

−4.65 · 10
−9

1.08 · 10
−7

8.88 · 10
−6

6.58 · 10
−7

2.45 · 10
−5

−4.94 · 10
−9

−2.39 · 10
−7

2.76 · 10
−8

9.51 · 10
−9

2.43 · 10
−4

−6.75 · 10
−6

2.87 · 10
−5

3.44 · 10
−7

2.16 · 10
−5

−2.43 · 10
−4

2.63 · 10
−7

1.02 · 10
−5

4.72 · 10
−7

2.75 · 10
−5

−4.27 · 10
−7

−2.44 · 10
−8

−3.41 · 10
−6

7.28 · 10
−8

8.70 · 10
−8

7.00 · 10
−7

2.48 · 10
−5

9.98 · 10
−1

−2.09 · 10
−7

−6.90 · 10
−6

2.53 · 10
−6

3.92 · 10
−5

8.85 · 10
−6

−2.09 · 10
−7

9.98 · 10
−1

1.08 · 10
−6

−4.92 · 10
−5

2.68 · 10
−6

−2.05 · 10
−4

−6.90 · 10
−6

1.08 · 10
−6

9.97 · 10
−1

1.15 · 10
−5

3.01 · 10
−4

6.78 · 10
−6

2.53 · 10
−6

−4.92 · 10
−5

1.15 · 10
−5

9.97 · 10
−1

1.87 · 10
−5

2.00 · 10
−5

3.92 · 10
−5

2.68 · 10
−6

3.01 · 10
−4

1.87 · 10
−5

9.97 · 10
−1

−1.16 · 10
−5

8.85 · 10
−6

−2.05 · 10
−4

6.78 · 10
−6

2.00 · 10
−5

−1.16 · 10
−5

9.97 · 10
−1

















(E.4)
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APPENDIX F
SUPERVISOR PARAMETER

DETERMINATION

This appendix describes the determination of the supervisor parameters velocity rate limit,

maximum velocity reference and the deceleration radius from a waypoint. These parameters

are determined based on several iterative test simulations, and are performed for each of the

three controllers; hover, forward flight and gain scheduling.

F.1 Test description
The supervisor is given a target waypoint such that the UAV must travel a distance of 300 m in

a straight line from its starting point. Furthermore, the UAV is initialized in the hover operating

point, which results in an acceleration at the start of the test and a deceleration when the waypoint

is reached. It is then possible to determine the velocity rate limit vr,rate limit and the deceleration

radius Rvr,slow
. The distance Rvr,slow

is determined as the minimum distance the controller needs

to decelerate to vr,slow before entering the waypoint radius Rvr,hover
= 2 m. Furthermore, the maxi-

mum velocity reference vr,fast is determined such that the highest possible forward flight velocity

is obtained with a maximum overshoot of 2 m
s , and a maximum of lateral velocity overshoot of

2 m
s .

F.2 Determination of parameters
The supervisor parameters with respect to the hover controller are determined using the above

described procedure. From iterative test simulations the maximum velocity rate limit for the

hover controller is identified as 5 m
s2 . In addition, the maximum velocity obtained for the hover

controller, with the above stated requirements, is determined as 11 m
s (see Figure F.1(a)). Based on

the maximum velocity and the deceleration rate the deceleration radius for the hover controller

is identified as 37 m (see Figure F.1(b)). The supervisor parameters regarding the forward flight

controller are determined in the same manner as for the hover controller, where the test results are

depicted in Figure F.2(a) and F.2(b). From the iterative tests for the forward flight controller the

maximum velocity rate limit is identified as 5 m
s2 . Furthermore, the maximum velocity obtained

for the forward flight controller is determined as 15 m
s , and the deceleration distance to the way-

point is identified as 60 m. It can be determined, that the forward flight controller is more useful

regarding completion time of level 1 of the IARC, because of the higher maximum velocity.

The last supervisor parameters to be determined are the parameters regarding the gain schedul-

ing controller, where the test results are illustrated in Figure F.3(a) and F.3(b). In the tests the
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FIGURE F.1: Graphs for determination of supervisor parameters for the hover

controller. (a) is used for determination of vr,fast and vr,rate limit;

blue is bẋ, cyan is bẏ and red is bż. (b) is used for determination

of Rvr,slow
represented by the red dashed line.
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FIGURE F.2: Graphs for determination of supervisor parameters for the for-

ward flight controller. (a) is used for determination of vr,fast and

vr,rate limit; blue is bẋ, cyan is bẏ and red is bż. (b) is used for

determination of Rvr,slow
represented by the red dashed line.

maximum velocity rate limit is determined as 5 m
s2 , and the maximum velocity obtained for the

gain scheduling controller is identified as 16 m
s . Based on the velocity rate limit and maximum

velocity of the gain scheduling controller, the deceleration radius is identified as 62 m from the

target waypoint.
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FIGURE F.3: Graphs for determination of supervisor parameters for the gain

scheduling controller. (a) is used for determination of vr,fast and

vr,rate limit; blue is bẋ, cyan is bẏ and red is bż. (b) is used for

determination of Rvr,slow
represented by the red dashed line.

The results of the three experiments are listed in Table F.1

Parameter Hover Forward flight Gain scheduling

vr,fast 11 m
s 15 m

s 16 m
s

vr,rate limit ±5 m
s2 ±5 m

s2 ±5 m
s2

Rvr,slow
37 m 60 m 62 m

TABLE F.1: List of the determined supervisor parameters for the three con-

trollers; hover, forward flight and gain scheduling.


