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Abstract
This paper presents a systematic methodology for design and tuning of the controller of LCL grid-
connected converters. The proposed approach is derived from the impedance/admittance stability for-
mulation, which eases the controller modelling of LCL grid-connected systems. After system modelling,
a modified sensitivity function is defined to analyze the closed loop dynamics. For practical development,
the control objectives are linked to main requirements in wind turbine applications: 1) the current control
time constant should be minimized and 2) active damping actions should effectively mitigate the LCL
resonance. After the theoretical development, an insightful case study is provided. It is shown that the
tuning problem can be solved approximately by root-loci inspection and an optimum solution can be
found by direct search. The theoretical approach is experimentally verified by a lab-scale prototype that
uses the same parameters of the case study.

Introduction
Grid-connected voltage source converters (VSC) usually work in current control mode: the PWM volt-
age reference is obtained from the current error in a closed loop. Current control mode of operation
is common to most industrial application, as it provides features such as peak current control and dis-
turbance rejection. In specific applications such as type IV wind turbines (full converter topology), the
current controllers have a key role in the performance of the electric power conversion stage, as they are
the innermost loops of a cascaded control structure [1–4]. In a cascaded loops structure, a suitable design
guideline points to minimize the time constant of the innermost controllers [2–6]. Fast dynamics is also
demanded to fulfill stringent grid-code requirements in faulty/weak grid situation [1–3].

On the other hand, LCL output filter configuration is employed in order to improve the filtering of switch-
ing harmonics and fulfil harmonic standards [7]. The selection of filter parameters is not a trivial task,
as the internal resonance affects to the current controller dynamics [8]. Active and passive damping
techniques have been proposed for a better dynamic behavior: the goal is to mitigate the harmonic am-
plification effects around the resonance frequency. In principle, passive damping is unwanted as it is
associated to an efficiency loss [9]. Active damping techniques, on the contrary, mitigate the effects of
the LCL resonance by proper control actions [8, 10–15]. The use of a filtered voltage feed-forward (i.e.,
use the capacitor voltage in an innermost loop) for active damping [8, 10, 13, 15] can be considered a
convenient solution for wind turbine applications, because its simplicity and readiness (i.e., little modifi-
cations to the control structure, no extra sensors needed). Therefore, this technique has been considered
in this work.

The main objective of this paper is to provide a systematic design approach, which addresses the specific
control objectives (e.g., minimizing the dominant time constant) from a constrained system definition

https://www.researchgate.net/publication/224141276_Investigation_of_Active_Damping_Approaches_for_PI-Based_Current_Control_of_Grid-Connected_Pulse_Width_Modulation_Converters_With_LCL_Filters?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/224141276_Investigation_of_Active_Damping_Approaches_for_PI-Based_Current_Control_of_Grid-Connected_Pulse_Width_Modulation_Converters_With_LCL_Filters?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/224141276_Investigation_of_Active_Damping_Approaches_for_PI-Based_Current_Control_of_Grid-Connected_Pulse_Width_Modulation_Converters_With_LCL_Filters?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/281393259_Highly_Accurate_Derivatives_for_LCL-Filtered_Grid_Converter_With_Capacitor_Voltage_Active_Damping?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/281393259_Highly_Accurate_Derivatives_for_LCL-Filtered_Grid_Converter_With_Capacitor_Voltage_Active_Damping?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/262842418_Passivity-Based_Stabilization_of_Resonant_Current_Controllers_With_Consideration_of_Time_Delay?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/262842418_Passivity-Based_Stabilization_of_Resonant_Current_Controllers_With_Consideration_of_Time_Delay?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/257870723_Analysis_of_the_Passive_Damping_Losses_in_LCL-Filter-Based_Grid_Converters?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/272094839_Tuning_of_Synchronous-Frame_PI_Current_Controllers_in_Grid-Connected_Converters_Operating_at_a_Low_Sampling_Rate_by_MIMO_Root_Locus?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/272094839_Tuning_of_Synchronous-Frame_PI_Current_Controllers_in_Grid-Connected_Converters_Operating_at_a_Low_Sampling_Rate_by_MIMO_Root_Locus?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/263858631_Impedance_Shaping_of_the_Grid-Connected_Inverter_with_LCL_Filter_to_Improve_Its_Adaptability_to_the_Weak_Grid_Condition?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/268331859_LCL-Filter_Design_for_Robust_Active_Damping_in_Grid-Connected_Converters?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/273771314_Line_Filter_Design_of_Parallel_Interleaved_VSCs_for_High_Power_Wind_Energy_Conversion_System?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/259973857_Transient_Response_Evaluation_of_Stationary-Frame_Resonant_Current_Controllers_for_Grid-Connected_Applications?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/259973857_Transient_Response_Evaluation_of_Stationary-Frame_Resonant_Current_Controllers_for_Grid-Connected_Applications?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/259973857_Transient_Response_Evaluation_of_Stationary-Frame_Resonant_Current_Controllers_for_Grid-Connected_Applications?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/258994039_Assessment_and_Optimization_of_the_Transient_Response_of_Proportional-Resonant_Current_Controllers_for_Distributed_Power_Generation_Systems?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/258994039_Assessment_and_Optimization_of_the_Transient_Response_of_Proportional-Resonant_Current_Controllers_for_Distributed_Power_Generation_Systems?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/258994039_Assessment_and_Optimization_of_the_Transient_Response_of_Proportional-Resonant_Current_Controllers_for_Distributed_Power_Generation_Systems?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/224394994_Evaluation_of_Current_Controllers_for_Distributed_Power_Generation_Systems?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/224394994_Evaluation_of_Current_Controllers_for_Distributed_Power_Generation_Systems?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/260712421_Regions_of_Active_Damping_Control_for_LCL_Filters?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/264974048_Passivity-Based_Controller_Design_of_Grid-Connected_VSCs_for_Prevention_of_Electrical_Resonance_Instability?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/264974048_Passivity-Based_Controller_Design_of_Grid-Connected_VSCs_for_Prevention_of_Electrical_Resonance_Instability?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
https://www.researchgate.net/publication/300971531_Control_Systems-Cascade_Loops?el=1_x_8&enrichId=rgreq-b1bf8311b09c9c86e808042cdd04c520-XXX&enrichSource=Y292ZXJQYWdlOzMwOTU4OTA3NDtBUzo0MjM2MDY4ODM3NTM5ODdAMTQ3ODAwNzE1OTk0Ng==
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Fig. 1: System description. (a) LCL grid-connected VSC converter. (b) Current controller. (c) Admit-
tance/Impedance formulation for dynamics assessment.

(e.g., in wind turbine applications, the hardware design is mainly imposed by the transformer leakage
[7]). The impedance/admittance stability criterion [16, 17] is used to formulate the control problem: the
converter dynamics are expressed by an equivalent converter admittance; the LCL capacitance branch in
combination with the transformer leakage set the grid impedance [10, 13, 17]. Subsequently, from this
formulation an equivalent nominal sensitivity transfer function is provided. It is shown as the root-locus
of this equivalent nominal sensitivity describe the dynamics of the closed-loop system. Then, from a
parametric analysis, it is possible to select the main control and active damping parameters to fulfill the
control objectives: 1) maximizing the dominant time constant and 2) minimize harmonic interactions
around the resonance frequency. Both objectives can be described analytically by the position of the
dominant poles [4]. Therefore, an optimal solution to the tuning problem is obtained by a direct search
that maximizes the absolute value of the dominant poles real part .

A lab-scale case study, which includes modelling, key diagrams and implementation details is provided.
The experimental results prove that the high accuracy of the proposed methodology.

System Description and Modelling
Circuit Modelling

Fig. 1a represents a LCL grid-connected VSC working in current control mode. The voltages E, Ec and
U represent the stiff grid, point of connection and VSC voltages, respectively. The LCL output filter
is formed by the converter side inductive filter, the capacitance and transformer leakage model. The
converter side inductive filter is defined by series inductance Lcs and resistance Rcs. The capacitance is
given by a parallel capacitance Ccp in series with a small equivalent series resistor Rcp. The transformer
model is given by a leakage inductance Lts and a leakage resistor Rts in series. The grid impedance is
represented by Z

′
g, which depends on power system circuit and grid conditions [14, 18].

Focusing on a type IV wind turbine application, the biggest constraint in the hardware design is imposed
by the transformer short-circuit current, which sets Lts. Typical values for the secondary inductance are
then in the range [0.06,0.1]p.u. of the machine rate power [7]. Following LCL design basic guidelines,
the secondary inductance also constraints the selection of the converter filter: a primary inductance equal
to the transformer inductance is a reasonable design both in terms of cost and dc-bus usage [7, 8]. Using
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Lts as a constraint (which may include the inductive part of Z
′
g(s) if available [7]), in practice, the main

degree of freedom of the LCL filter is the choice of the capacitance Ccp. The LCL resonance frequency
(angular) is given by

ωres =

√
Lcs +Lgs

LcsLgsCcp
. (1)

The selection of ωres involves a trade-off between control interactions and enhanced filtering [8, 9, 19].
From the point of view of the capacitor based active damping typical values at which the technique is
more effective are in the range of [0.1,0.2]ωs, with ωs being the angular sampling frequency [8].

The role of the resistive components in the control problem is also important. From the VSC efficiency
perspective, these are associated to system power losses. However, from the control point of view they
have associated the positive effect of damping system responses [8, 9].

Current Controller Structure

Fig. 1b shows the analyzed controller structure. K(s) represents the main controller, which in this work
is a PR implemented in αβ-frame

K(s) = (kp + ki
s

s2 +ω2 )I (2)

with kp and ki being the proportional and resonant gains, respectively. I represents a 2x2 unity matrix,
that means that K(s) is diagonal.

The control action calculation also includes an Ec voltage feedforward double path, with the following
objectives: 1) provide a filtered value of the main grid component to improve the initial transient [20]
and 2) an active damping action based on capacitor voltage derivative term [8,13,15]; the active damping
action is given by

F(s) = (kadCcps)I (3)

with kad being the active damping gain (Ccp is the capacitor nominal value). F(s) is also diagonal.

The system delay is modelled by a time latency tL due to discrete-time operation (e.g., A/D and D/A
conversion times of the digital board) and half a control sample due to PWM [zero order hold (ZOH)]
operation [3, 4, 13]. Even both blocks are usually merged in one pure delay one, it has been found that
splitting the delay model in two transfer functions better matches the whole frequency response around
ωres.

The system plant is represented by P(s), which is a function of the LCL filter components [and Z′g(s)]
[8, 11, 12].

The matrix notation in the figure represents the three-phase and scalar variables of the real circuit. Sub-
sequently, for the sake of generality scalar notation is used, since no couplings between phases are
considered.

Admittance/Impedance formulation for dynamics assessment of grid-connected VSCs

Fig. 1c shows an alternative formulation of the grid-connected current controlled VSC problem. The
converter controller and main filter, which are well parametrized during the design stage, are modeled by
an equivalent admittance Yc(s) [and the closed loop gain Gc(s) which sets the dependence on the current
reference]. The converter dynamics are set by the admittance interacting with the rest of grid impedances,
grouped in Zg(s); i.e., the Yc(s)Zg(s) Nyquist trajectories set the dynamics of the system [13, 17, 21, 22].

In the context of the analyzed problem, a key feature of the Impedance/Admittance formulation is that
Yc(s) definition includes all the Ec(s) internal feedback paths, which eases the study of active damping
[10, 13].The explicit derivations of Yc(s) and Zg(s) are given in the following.
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Table I: Physical System Parameters

Parameter Value
Rated Power S = 2.2kVA

Rated Voltage (Line to line RMS) V = 220V
Sampling (and PWM switching) frequency fs = 10kHz (ωs = 2π fs)

Converter inductance Lcs = 8.6mH(0.123p.u.)
Converter equivalent resistance Rcs = 0.27Ω(0.012p.u.)

Capacitor Ccp = 4.5uF(0.039p.u.)
Capacitor ESR Rcp = 1mΩ(< 0.001p.u.)

Grid Side Inductance Lgs = 4.7mH(trafo leakage)+1.8mH = 6.8mH(0.097p.u.)
Grid Side Resistor Rgs = 0.22Ω(0.010p.u.)

LCL resonance frequency fres = ωres/2π = 1.233kHz
Latency (1 sample in dSpace DS1006) tL = 1/ fs = 100µs

PWM/ZOH delay tpwm = 0.5/ fs = 50µs

From Fig. 1a, the converter admittance transfer function is defined by the ratio ic(s) over Ec(s), with
Ec(s) being defined as an ideal voltage source and the current reference set to zero [the closed loop gain
Gc(s) can be defined in a similar manner], i.e.,

Yc(s) =
ic(s)
Ec(s)

]
i∗c=0

(
Gc(s) =

ic(s)
i∗c(s)

]
Ec=0

)
. (4)

Using both circuit and (inner current) control equations [23], the following expression is obtained

Yc(s) =
1−F(s) e−s/ fsHzoh(s)

Lcss+Rcs +K(s) e−s/ fsHzoh(s)
(5)

It should be remarked that Yc(s) is a function of the interface filter in combination with the controller
(including system delays) transfer functions. The effect of outer loops, such as phase-locked loop, dc-
link or reactive power control, in Yc(s) can be neglected as in practice the bandwidth of those outer loops
should be much smaller than ωres [21–24]. Using a similar reasoning, the feedforward path filtering Ec1
from Ec to improve the grid-connection initial transient [see Fig. 1b] can be also neglected [20].

On the other hand, the grid impedance as seen from the Ec(s) point is given by the capacitance filter
connected in parallel to the transformer leakage impedance.

Zg(s) = Zgp(s)//Zgs(s) (6)

Zgp(s) = 1/(Ccps)+Rcp (7)

Zgs(s) = Ltss+Rts +Z
′
g(s). (8)

Root-Locus based Tuning Derived from the Impedance/Admittance Formu-
lation
Starting from the Impedance/Admittance Stability formulation, a systematic methodology to calculate
the root locus and then tune the current controller is developed in this section.

By assuming that both Yc(s) and Zg(s) are open loop stable1, a modified sensitivity transfer function is
defined as

Sm(s) =
1

1+Yc(s)Zg(s)
(9)

1This condition is imposed to avoid unstable pole-zero cancellations [25]. Zc(s) is stable by definition. Yc(s) stability can
be checked in the design stage.
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Fig. 2: (a) “Moderate αc” tuning: root-locus by a kad sweep with αc = 0.05ωs; (b) “High αc” tuning:
root-locus by a kad sweep with αc = 0.1ωs.

Then, the dominant poles of the closed-loop system are available from the Sm(s) root-locus.

In practice, since the LCL filter defines a poorly damped physical system, the dynamics are defined
by an under-damped second order system. The dominant pair of poles is defined as pd± j . As shown
below ℑ(pd± j) is around ±ωres, which provides physical meaning to the model: the roots associated
to ωres oscillations limit the dynamics of the system. Furthermore, since the system is poorly damped
|ℜ(pd± j)|< |ℑ(pd± j)| is also found in practice.

Control and Tuning Objectives
As said in the introduction, identification and minimization of the dominant time constants of inner
loops is a key objective in cascade loops [5,6], such as the power-train controller in wind turbines [1–3].
Root locus inspection has been proved as a suitable method for tuning current controllers since the
modeling of delays results in complex expressions (difficult to deal with analytically) [2–4]. The use
of Impedance/Admittance formulation together with an accurate modeling of delay effects, provides a
systematic methodology that is straightforward for the tuning problem of LCL grid-connected converters,
including the effect of active damping.

The tuning objective is then to find the collection of kp,ki and kad parameters that fulfills the application
objectives:

1. In order to minimize the current controller dominant time constant, ℜ(pd± j) should lie in the left
half plane (LHP), as further as possible from the right half plane (RHP).

2. In order to reduce the harmonic amplification of components around ωres, the damping factor of
the dominant poles, defined as

ξd =
|ℜ(pd± j)|√

ℜ(pd± j)
2 +ℑ(pd± j)

2
(10)

should be maximized.

In practice, by maximizing |ℜpd± j | both objectives are fulfilled.

Case Study
The parameters of the lab-scale prototype, used for experimental verification, have been employed to
develop the theoretical approaches in a case study. Table I shows the physical parameters employed for
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Fig. 3: Surface plot showing the results of the direct search in the αc− kad axes. The gradient colors
represent |ℜ(pd± j)|. The optimal solution (i.e., “optimal” tuning) is identified at (αc = 0.066ωs,kad =
19.5).

analysis and experimental verification. It should be noted that Z
′
g(s) is neglected in the analysis, since

|Z ′g(s)|<< |Ltss+Rts| is an accurate assumption for low-power scale circuits (i.e., the leakage inductor
of a low power transformer is much higher than other impedances in the path of the stiff grid).

Different methodologies to get the tunings that fulfill the application objectives have been performed as
explained below.

Tuning by Inspection

A criterion to start the tuning is first to consider that the dominant roots mainly depend on the proportional
constant kp [2, 3, 20]. The proportional constant is re-written as

kp = (Lsc +Lsg)αc (11)

with αc being the theoretical closed loop bandwidth [8, 13, 20]. The main reason to use this expression
is to give physical insight to the kp parameter [4, 20]. By means of a αc (kp) sweep (with ki = kad = 0),
it has been found that the real part of the dominant poles is maximized at αc = 0.05ωs. This gain can be
considered a moderate one when compared to the maximum value defined by the one-to-tenth-rule, i.e.,
0.1ωs [26]. Therefore, this tuning is named “moderate αc”.

Subsequently, the gain of ki is introduced: a relatively low ki does not give a significant change in the
root locus; i.e.,

• the new roots result in pole-zero cancellations around jω1 (resonant gains) so the system order is
kept.

• The effect ki on the main roots is relatively small; i.e., as expected kp weights much more in the
dominant poles placement.

It should be mentioned that, this reasoning applies in all the tunings; ki = 5000 has been employed in all
the root-loci (and in the experiments).

Subsequently, a kad sweep, which shown in Fig. 2a, seeks to identify the most convenient gain that
maximizes the real magnitude of the dominant poles. The dominant poles that give the most convenient
tuning (according to the proposed control objectives) are highlighted in red in Fig. 2a; the parameters are
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Fig. 4: Comparison of tunings (a) Root-loci of the analyzed tunings: (blue) “moderate αc”; (red) “high
αc”; (green) “optimum”; (black) “high kad”. The dashed arrow represents the trajectories of the poles
from the “optimal” tuning to “high kad” one as kad increases; (b) Nyquist trajectories corresponding to
the analyzed tunings: (blue) “moderate αc”; (red) “high αc”; (green) “optimum”; (black) “high kad”.

αc = 0.05ωs, ki = 5000 and kad = 10. The dominant poles obtained with the “moderate αc” tuning are
pd± j =−905±8570rad/s.

Another criterion to start the tuning is by considering that the active damping is more effective changing
the position of the dominant poles when the main controller has a high theoretical bandwidth [8]. This
suggests that another tuning strategy starting from αc = 0.1ωs (one-to-tenth rule [26]). Fig. 2b shows
the root-locus based on a kad sweep for αc = 0.1ωs. This tuning is named “high αc”. It can be noticed
that the system is unstable if active damping is not activated (kad = 0). With kad = 20 there is two sets
of pair of poles with ℜ(pd± j) ≈ −1000rad/s (i.e., a fourth order dominant response); in Fig. 2b, these
roots are highlighted in purple .

Optimal Tuning

From the previous sections it can be seen that, overall, a moderate αc is convenient to initially move the
dominant poles to the left, but the tuning of kad is more effective for higher αc values. Therefore, it is
expected that there is an optimum set of (αc,kad) values that places the dominant poles the furthest away
from the RHP. This problem can be solved by finding the minimum of ℜ(pd± j) [i.e., the maximum of
|ℜ(pd± j)| for stable solutions] in the (αc,kad) plane, which has been solved by a direct search method
[27]. Fig. 3 depicts |ℜ(pd± j)| for a bounded set of (αc,kad) that assures stability. The optimal solution
is obtained with αc = 0.066ωs and kad = 19.5, where |ℜ(pd± j)| ≈ 2150rad/s.

Fig. 4a shows the different root-loci, including the “optimal” tuning (highlighted in green), which gives
two set of dominant pair of poles with |ℜ(pd± j)| ≈ 2150rad/s. A solution with αc = 0.066ωs but high
kad is also represented in order to show how a high kad drives the system to near to the RHP (instability).
The latest tuning is named “high kad”.

Correspondence with Nyquist Diagrams

Fig. 4b represents the Nyquist trajectories corresponding to the root-loci of Fig. 4a. Overall, it can
be appreciated that the “moderate αc”, “high αc” and “optimum” tunings provide low sensitivity peaks,
defined by 1/η for each trajectory [5, 25, 28]. Low sensitivity peak means good relative stability; on
the contrary, the “high kad” gives a high sensitivity peak; i.e., low conditional stability [5, 25, 28]. How-
ever, it can be appreciated the calculation of pd± j is not so straightforward by inspection of the Nyquist
trajectories [5].
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Fig. 5: Time domain results. (a) Experimental test-bed; (b) Active-current step at kad = 19.5 (convenient
tuning) and then change to kad = 35; (c) Active-current step at kad = 37 (unstable system).

Experimental Results
Fig. 5a shows the test-bed used for the experimental verification. The main goal according to the ap-
plication objectives, is to show that the optimum tuning provides a fast transient response together with
a limited harmonic amplification in steady-state around ωres. It is shown how this is achieved with the
“optimal” tuning. Furthermore, when the dominant poles are moved towards the RHP (i.e., by means of
increasing kad) the closed-loop performance is much worse both for transient and steady-state tests. This
is shown by the “high kad” tuning.

Fig. 5b shows the grid current ig(t) during a step of amplitude 5A in the converter active current command
(some reactive current flows the LCL capacitor when the converter current is zero). The system response
is fast and tracks fast the reference. Then, after two cycles, kad is increased from 19.5 to 35. A steady-
state oscillation of frequency ≈ ωres is identified, as expected from the “high kad” tuning that places
dominant poles near the RHP.

Fig. 5c shows the star-up with kad = 37, which, from Fig. 4a suggest that the dominant poles enter on
the RHP (i.e., higher kad than in the “high kad” tuning): as expected, the system is unstable, as accurately
predicted.

Finally, the ig(t) harmonic spectrum for kad = 19.5 and kad = 35 are depicted in Figs. 6a and 6b. As
expected, the system is better damped with kad = 19.5 (damping factor is close to zero when kad = 35),
which is reflected with a lower amount of harmonics around the resonance frequency.

Overall, experimental results well match the predictions from the case study analysis and therefore,
validate the theoretical approach.



0 1,000 2,000 3,000 4,000 5,000
0

0.5

1

1.5

Frequency (Hz)

FF
T

of
Ic

(%
)

(a)

0 1,000 2,000 3,000 4,000 5,000
0

5

10

15

20

Frequency (Hz)

FF
T

of
Ic

(%
)

(b)

Fig. 6: Harmonic spectrum with (a) kad = 19.5 (“optimal” tuning); (b) kad = 35 (“high kad” tuning) .

Conclusions
This paper contributes an original methodology for systematic design and analysis of current controllers
with active damping for LCL grid-connected VSCs. The proposed design methodology is derived from
the impedance stability criterion and is suitable for tuning according to objectives quantified in terms
of 1) dominant time constant (i.e., the current controller is an inner loop of a cascaded system) and 2)
damping factor of dominant poles (which have an imaginary part around ωres). This control objectives
explicitly focus on the Wind turbine applications, in which the grid VSC is connected through an LCL
filter. The active damping method based on a capacitor voltage feedfoward is addressed because its good
features for this application. The proposed methodology relies on the root-locus calculation obtained
from a modified sensitivity [Sm(s)] transfer function. By root-loci inspection an insightful tuning method
is provided. Subsequently, an optimal solution [i.e., a set of (kp, ki, kad)] is obtained by a direct search
in which the real part of the dominant complex poles is minimized. From the theoretical case study, it is
show how both kp and kad have an important impact on the response and a convenient combination has
been obtained. The experimental results validate the theoretical analysis of the case study: experimental
figures show the accuracy of the method showing both transient (current steps) and steady-state (harmony
spectrum analysis) responses.
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