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1. Introduction  
The recruitment of capillaries in active muscles together with a model for oxygen diffusion from the 

capillary to the tissue were first published in the Journal of Physiology (98, 99, 100) by August 

Krogh and were the basis on which he was awarded the 1920 Nobel Prize in Physiology or 

Medicine. These findings and evaluations set the framework for determination of muscle blood flow 

during exercise. Based on ideas originated by DeJager (36), Krogh (97) also presented a circulation 

model that describes the important role of down-regulated splanchnic blood flow during exercise 

for the maintenance of blood pressure. Krogh’s circulation model was verified by the observation 

that occlusion of the dog’s aorta above the superior mesenteric artery, and thereby redirecting blood 

volume from the capacious splanchnic region to the heart, increases cardiac output, whereas cardiac 

output is reduced when the occlusion is below that level (12). However, in supine humans (69), as 

probably in most animals (18), cardiac output is not limited by preload to the heart and may be 

sufficient to satisfy peripheral circulation needs, and hence redistribution of cardiac output during 

exercise may not be required, as shown in dogs (73).  

Yet, the situation is much different in upright humans where the central blood volume is 

reduced (e.g., 111, 112) and accordingly sympathetic activity elevated (155). Thus, the ability to 

constrict high compliant vascular regions to support cardiac end-diastolic volume and consequently 

cardiac output is important not only for upright posture but also during exercise as demonstrated 

with the reduction of splanchnic (166) and kidney blood flow (63). That is the case although during 

exercise vasoconstriction is less relevant for the superior mesenteric artery flow (144, 42). 

Accordingly, the elevated cardiac output during exercise is supported by increased central blood 

volume (64), despite enlargement of leg (143) and cutaneous blood volume with increasing body 

temperature (170). These observations lead to the understanding that the blood volume available to 

the heart depends on the fraction of cardiac output directed to noncompliant vs. compliant regions, 

i.e., working muscles vs. viscera and the skin (138, 30). 



 6 

The reduction in abdominal blood flow during exercise is established by an enormous increase 

in sympathetic vasomotor outflow, as indicated by the inverse relationship between splanchic blood 

flow and heart rate (172, 25) and thereby, at least indirectly, indicates sympathetic control of 

splanchnic blood volume. The identification of norepinephrine as the sympathetic neurotransmitter 

by von Euler (45), the ability to record muscle and skin sympathetic nerve activity in humans (210, 

209), and perfection of the norepinephrine spillover technique by Esler et al. (44), provided insight 

into the activity of the sympathetic nervous system and, thus, allowed for appreciation of the 

sympathetic system’s contribution to cardiovascular control (24). 

Sympathetic activation during exercise is mediated primarily by a reflex mechanism (“the 

exercise pressor reflex”) that arises from stimulation of both metabolically and mechanically (22) 

sensitive thinly myelinated and unmyelinated nerve endings within contracting skeletal muscles 

(89), possibly as a result of muscle ischemia (5), and the combination of increased ATP, protons, 

prostaglandins (119) and may be lactate (104). Also, during intense exercise the motor-neural drive 

elicits parallel activation of sympathetic pathways, named “central command” (118). Furthermore, 

the reduced central blood volume associated with upright posture enhances sympathetic activity 

(230), while the muscle pump during upright exercise and supine posture increases the central blood 

volume and reduces sympathetic activity (155). Such modulation of sympathetic vasomotor activity 

indicates a role for the cardiopulmonary baroreceptors in resetting the arterial baroreflex during 

exercise (224, 46). Yet, the sympathetic system cannot explain, or would be considered to hinder 

the increase in blood flow to active muscles, but their flow is secured by metabolite-induced 

attenuation of sympathetic vasoconstriction, named “functional sympatholysis” (156, 157, 66) and 

yet muscle oxygenation is not maintained during exercise (81), as confirmed in studies using near 

infrared spectroscopy (e.g. 23). 
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It is recognised that functional sympatholysis is promoting vasodilation in active muscles and 

thus is critical for establishing the metabolically required blood flow, nevertheless interaction 

between muscle blood flow and sympathetic vasoconstriction introduces a seemingly paradox:  

restriction of blood flow to active muscles during whole body exercise to maintain arterial pressure 

could be overridden by their demand for flow. This apparent paradox may reflect that 

sympathetically mediated restriction of blood flow is most effective in feed arteries and primary 

arterioles, whereas vasodilation prevails downstream in distal arterioles (206). Feed arteries are 

external to the muscle and therefore not exposed to vasoactive metabolites that mediate functional 

sympatholysis within the active muscles (213). Thus, at the level of the feed arteries sympathetic 

vasoconstriction could limit muscle blood flow and thereby support arterial pressure. 

Yet, it has remained controversial whether during whole body exercise the increase in cardiac 

output is large enough to support skeletal muscle flow. Cardiovascular regulation during whole 

body exercise has been addressed by Rowell in a classical review (170), followed up by two famous 

textbooks (165, 164), Clausen (26) and recently by Laughlin et al. (103). The present review 

provides four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. 

Most studies on the role of cardiac output for muscle blood flow during exercise are concerned with 

leg blood flow (175, 160), while this review adds the implication of cardiac output capacity for 

establishing arm blood flow. Furthermore, it is considered whether cardiac output influences, 

besides skin blood flow (30), cerebral blood flow and metabolism during whole-body exercise (188). 

It is argued that during exercise regional blood flow, including perfusion of active muscles, is 

subordinate to the control of blood pressure. 

2. Skeletal muscle blood flow 

The first line of evidence for a flow limitation to working skeletal muscles during whole body 

exercise comes from the measurement of muscle blood flow. Early use of plethysmography 
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reported calf blood flow during rhythmic plantar flexion up to ~30 ml/min/100 g (11). However, it 

was recognised that flow was probably hindered by the intensity of the muscular contractions that 

eliminate flow when the contraction intensity exceeds approximately 30% of maximal voluntary 

strength (15, 54). Thus, the immediate post-exercise value of ~80 ml/min/100 g might be more 

representative for calf blood flow during exercise, taking post-exercise hyperaemia as an index of 

flow during the relaxation phase between muscle contractions (11). Similarly, ~40 ml/min/100 g 

calf blood flow has been reported after running (14). 

A specific measure of muscle blood flow during exercise was made possible with the 
133

Xenon 

clearance method (102) confirming a value of ~70 ml/min/100 g, although larger values
 
can be 

measured if the collimator is placed “looking away” from the direction of blood flow (189), thus 

minimising the absorption of 
133

Xenon by intramuscular fat that slows its clearance. Considering a 

muscle mass of ~30 kg in males, the 
133

Xenon-measured muscle blood flow demand, even when 

“all” muscles are engaged in exercise, would be ~21 liters/min and that is within the cardiac output 

capacity of both sedentary subjects (~22 liters/min; Ref. 9) and, especially athletes (~42 liters/min; 

Ref. 40).  

Accordingly, as originally demonstrated by Nicolai and Zunzt (123) using X-ray evaluation of 

the dimensions of the heart during treadmill walking, exercise enhances the central blood volume 

and, as illustrated later during electrically evoked (37) or arm exercise (205) in spinal cord injured 

subjects, a reduction in abdominal blood volume compensates for the increase in muscle blood 

volume and skin blood flow required for thermoregulation (28). These observations are in support 

of the position that muscles have “unlimited” access to blood even during maximal whole body 

exercise (114). 

A different view, however, came about when thermodilution (7) and ultrasound (147) blood 

flow methods were applied to evaluate leg flow during one-legged knee-extensor exercise. 
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Assuming that the measured blood flow of, e.g. 5.7 liters/min was reflecting the drainage of, or flow 

to, the quadriceps muscle during one-legged knee extensor exercise, with occlusion of flow to the 

lower leg, and by using an anthropometric estimate of the active muscle mass, a remarkable muscle 

perfusion of ~250 ml/min/100 g was estimated.  Furthermore, even larger muscle perfusion has 

been determined during hypoxic exercise (~310 ml/min/100 g, Ref. 169) and in highly trained 

cyclists (~385 ml/min/100 g, Ref. 159). 

Yet, methodological considerations regarding the magnitude of the muscle perfusion values 

using thermodilution during the one-legged knee extensor model need to be addressed. First, when 

evaluating femoral venous flow, the proximity of the artery and the vein, combined with the high 

diffusion coefficient of heat in the tissue may “contaminate” the thermodilution estimate of flow by 

prohibiting temperature equilibration within the vein and thus overestimate the flow rate (189). 

Furthermore, it should be considered that these studies have not addressed muscle blood flow per se 

but leg blood flow during exercise. The determination of flow includes also inactive muscle blood 

flow, eventual changes in bone blood flow and, probably more importantly, skin blood flow during 

exercise as body temperature increases to, e.g. 38° within a few minutes of exercise, depending on 

initial temperatures and the rate of heat production or exercise intensity (174, 60). Even though the 

estimated ~300-400 ml/min thigh skin blood flow during heat stress (178) would overestimate 

femoral venous flow as an indication of muscle blood flow, most likely it would not be significant 

since the accuracy of the thermodilution estimate is ~10%, and hence, skin blood flow would be 

less than the detection threshold when the leg blood flow is > 4 liters/min (178).  

Another concern for the estimate of muscle perfusion is the determination of the engaged 

muscle volume. With the use of imaging techniques, such as magnetic resonance and computed 

tomography, combined with electrical muscle stimulation, it was established that during maximal 

knee extension exercise the quadriceps muscle is the sole contributor to the work produced (93) as 
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the quadriceps muscle is gradually fully recruited (154). In fact, it seems that the anthropometric 

muscle mass evaluation overestimates the engaged muscle volume, compared to evaluations by 

computed tomography, suggesting that peak muscle perfusion estimated with the use of 

anthropometric muscle mass evaluation may be up to ~30% larger (146).  

Accepting these limitations, the magnitude of the thermodilution measurements of femoral 

venous blood flow has been verified by ultrasound Doppler of the femoral artery flow (147). 

Furthermore, these femoral venous flows are in agreement with values obtained with tracer 

injection such as both continuous (81) and bolus injection (143) of indocyanine green dye and with 

bolus injection of radio-labelled albumin (181, 95). Also, these high perfusion values are in line 

with reports from animal exercise models. When assessed by microspheres in the rat (8), dog (122), 

and horse (142), blood flow to active skeletal muscle can reach almost 400 ml/min/100 g.  

Thus, if the leg muscle blood flow values during exercise are representative of all muscles in 

the body, there is an obvious conflict between the cardiac output that can be established (at the most 

~42 liters/min, Ref. 40) and the capacity for blood flow of the muscles during maximal whole body 

exercise, i.e. a demand of more than 100 liters/min, expressed by Rowell’s metaphor (171) when he 

compared the muscles to a “sleeping giant”. Consequently, even if maximal blood flow capacity 

varies within different muscle groups, a “competition” for a share of cardiac output develops during 

whole body exercise, and thus the cardiac output “pie” needs to be carefully “sliced” for all the 

active muscles to be adequately perfused (182).  

3. Competition for blood flow amongst different vascular beds during exercise 

The second line of evidence for flow limitation to skeletal muscles during exercise comes by 

considering whether exercise with several muscle groups affects blood flow to each of these muscle 

groups compared to when they are working in isolation. This question has been addressed by 

addition of handgrip exercise on plantar flexion exercise demonstrating that “competition” for flow 
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between these two muscle groups attenuates the post-exercise hyperaemic response (84). Also, calf 

blood flow is reduced when occlusion of the active forearm increases sympathetic activity to the 

calf (173). However, calf blood flow is reduced only when the intensity of the added handgrip 

exercise exceeds about 50% of maximum voluntary contraction (86), or when exercise is performed 

to exhaustion (85). Similar blood flow reduction is observed when elbow-flexion exercise is added 

to low intensity plantar flexion exercise (84). The flow reduction seems to depend on the relative 

intensity of the working muscles rather than on the specific muscles involved in exercise. Also, the 

duration of the attenuated vascular conductance after exercise suggests that the responsible 

mechanism is related to a metabo-receptor mediated sympathetic activation and, therefore 

vasoconstriction, rather than either to central neural drive towards the muscle, or an effect of 

mechano-receptors (84). and points to the metabolic component of the exercise pressor reflex as the 

key cardiovascular regulator during exercise with several muscle groups. It seems that the addition 

of high-intensity fatiguing exercise of even a small muscle mass induces vasoconstriction in active 

small muscles.  

3.1. Respiratory muscles 

The consideration that the exercise pressor reflex dictates regulation of muscle blood flow 

during exercise has also been evaluated during whole body exercise including flow regulation to the 

respiratory muscles. During exercise ventilation increases exponentially with workload and the 

respiratory muscles need to work intensively to establish values that may exceed 260 liters/min (79, 

115). Thus, considering the remarkable activation of the respiratory muscles during exercise, the 

role of the respiratory muscles for such “competition” for flow among different muscle groups has 

been of interest. Even though the metabolic requirements of the respiratory muscles are assumed to 

increase with ventilation, the mechanical work performed by these muscles during exercise is 
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probably underestimated since displacement of the heavy abdominal content and ineffective forces 

due to thoracic distortion are not included in the estimate (139).  

The intensity of sympathetic activation elicited from fatiguing respiratory muscles (199) can 

reduce limb blood flow at rest (192) and implies that sympathetic activity may reduce blood flow 

even in large muscles during maximal exercise and, thereby, have detrimental effects on 

performance. A ~10% reduction of leg blood flow during cycling, when the work of the respiratory 

muscles increases, supports that breathing is prioritised over locomotion (67, 68). Such observations 

may contribute to the performance improvement that follows inspiratory muscle training (Fig. 1; 

219, 59) that reduces fatigue of these muscles and therefore, at least presumably also sympathetic 

activation.  

The reverse question has also been addressed, i.e. whether exercise affects respiratory muscle 

blood flow. During progressive isocapnic ventilation, intercoastal muscle blood flow increased from 

~20 ml/min/100 g (as determined by indocyanine (“cardiac”) green and near infrared spectroscopy) 

during quite breathing to ~70 ml/min/100 g at a ventilation equal to that observed during maximal 

exercise (215). These muscle flow values seem low, probably reflecting that evaluation by near 

infrared spectroscopy is influenced by skin blood flow (e.g., Ref. 198). Nevertheless, when that 

ventilation was established during exercise, the intercoastal muscle blood flow increased to only 80% 

of the maximum value observed during isocapnic ventilation, and it declined further to ~25 

ml/min/100 g during maximal exercise (215). Yet, as suggested by animal studies, diaphragmatic 

blood flow is more resistant to sympathetic vasoconstriction than other skeletal muscles (1). If that 

finding applies also to humans, and considering that the different responsiveness to sympathetic 

stimuli between intercostal muscles and the diaphragm may be explained by a hierarchy amongst 

the respiratory muscles, it could be that during whole body exercise the enormous ventilation 

required for CO2 elimination is prioritised over the blood flow demands of locomotor muscles.  
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4. Cardiac Output 

The potentially limiting role of cardiac output for peripheral circulation has been evaluated in 

heart failure patients during one- and two-legged dynamic knee extensor exercise (106). When only 

one leg is engaged in dynamic work, patients with moderate CHF achieve an equally high peak 

muscle perfusion as healthy age-matched controls, while when both legs are engaged a lower peak 

muscle perfusion is established. Similarly, when in healthy subjects, the ability to increase cardiac 

output is constrained by administration of a β1-adrenergic blocker (metropolol), leg blood flow is 

attenuated during exercise and attributed to sympathetic activation as indicated by increased 

norepinephrine “spillover” from the leg (143).  

Thus, the third line of evidence for the limitation of cardiac output to satisfy active muscle 

blood flow demand is represented by evaluation of regional blood flow during exercise, where a 

discrepancy between flow to a muscle group working exclusively and when additional muscles are 

engaged exists. When either arm or leg blood flow is determined during combined arm and leg 

exercise, blood flow to the arms or the legs is lower than when these limbs are working exclusively, 

provided that during the combined exercise the additional workload represents a substantial part of 

the total work performed (Fig. 3, Ref. 181).   

Although several subsequent studies failed to reproduce these findings (179, 161, 158, 10, 203), 

when the results from these studies are summarised, an ~10% reduction is revealed (221, 218), or 

when the blood flow reduction is large enough to reach statistical significance with a small sample 

size, a 20-30% reduction is reported (22). Similarly, during ergometer cycling leg blood flow is 

attenuated compared to the value achieved during one-legged knee extension (121), illustrating the 

restrain placed on the peripheral circulation when increased active muscle mass is competing for the 

available cardiac output. Furthermore, the competition for flow between different vascular beds, 

both between the two legs (95) and upper and lower body (223, Fig. 5A) is manifested even 
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following endurance training. This observation suggests that both the enhanced cardiac output and 

central and local structural changes that accompany endurance training, including cardiac 

hypertrophy (e.g., 34, 116) and number of capillaries in the muscles (e.g.,72, 94), facilitate peak 

muscle perfusion, nevertheless, cannot satisfy the peripheral blood flow demands during maximal 

whole body exercise. 

Yet, muscle blood flow depends not only on metabolism and thereby vasodilation in the vessels 

feeding the muscle but also on mechanical factors such as the duration of contraction relative to 

relaxation (duty cycle) and the effective pressure head, i.e. the perfusion pressure (50). Thus, by 

virtue of the height difference between arms and legs in an upright posture, arm blood flow is 

expected to be smaller than leg blood flow when related to the estimated muscle mass.  

Arm blood flow is influenced both by the lower perfusion pressure that the arms are subjected 

to when they work together with the legs (181, 224) and possibly sympathetically mediated 

vasoconstriction, as indicated by increased norepinephrine “spillover” over the arms when leg 

exercise is added (Fig. 2; 221). The resultant lower arm blood flow is thus provoking a larger 

arterial to venous oxygen difference to meet the oxygen demands of the working arms (Fig. 4, Refs. 

181, 221, 218, 223). Furthermore, when during running the legs are swung back and forth, leg 

blood flow is promoted (193) while a similar “gravitational swing” may not be established for the 

arms, suggesting that perfusion pressure, and thus limb blood flow depends not only on body 

position but also on the angular velocities of the specific movement. 

Accordingly during arm cranking, arm blood flow does not increase to a comparable level as 

leg flow at an equal power (3, 4) indicating that the arms are not as perfused as the legs (21).  When 

arm blood flow during maximal exercise is related to the active muscle mass, a perfusion of ~140 

ml/min/100 g in non-arm trained subjects and ~185 ml/min/100 g in rowers is revealed (Fig. 5, Ref. 

223) when the engaged muscle mass is evaluated by X-ray Absorptiometry (DXA). Even though 
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computerised tomography and magnetic resonance imaging are standards for measuring skeletal 

muscle mass, the availability and the minimal exposure to radiation makes DXA an attractive 

alternative (226). The DXA approach provides skeletal muscle estimates that agree closely with 

measurements by computerised tomography, although DXA tends to overestimate total body 

skeletal muscle by ~5% (226), and thus peak arm perfusion may be ~5% larger. However, even if 

these arm perfusion values (about 160 ml/min/100 g) are corrected for the DXA overestimation of 

muscle mass, they are well below the maximal leg blood flow reported (159).  

Since blood flow for a given oxygen uptake is higher during contraction in a muscle comprised 

predominantly with slow twitch (ST) fibres (soleus) compared to a muscle with primarily fast 

twitch (FT) fibres (white gastrocnemius) in anaesthetized rats (113, 48), it could be considered that 

the differences in blood flow capacity between arms and legs may be due to different fibre-type 

composition between arms and legs. However, this explanation is unlikely as there is on average 

50/50% fiber type distribution in all human muscles, with the triceps having little more FT fibres 

and the soleus little more ST fibres (41). 

Yet, if the arm-derived muscle blood flow values are applied to a hypothetical total body 

muscle mass of ~30 kg (78), the cardiac output capacity (regardless of training status) would still be 

surpassed during whole body dynamic exercise. Taken together, the view is that muscle blood flow 

represents a balance between metabolically-mediated vasodilation and sympathetically-induced 

vasoconstriction. While engaging only a small muscle mass sympatholysis secures a large muscle 

blood flow but with co-activation of multiple muscle groups, or with a restrain on cardiac output 

(f.x., by lower body negative pressure, Ref. 201), there is insufficient sympatholysis on the 

exercising vasculature and, thus, muscle blood flow is limited by the ensuing vasoconstriction.  
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4.1. Skin blood flow  

Limited cardiac output may also affect skin blood flow during exercise. With skin blood flow 

that can reach 7-8 liters/min, or about 300 to 400 ml/min/100 g during passive heating (168), the 

flow capacity of the cutaneous circulation is comparable to that of skeletal muscles. Thus, it has 

been considered that during exercise in hyperthermia the elevated skin blood flow, besides the 

implication for left ventricular pressure and end-diastolic volume, according to Krogh’s model 

when a large fraction of cardiac output is distributed to a compliant region like skin, can reduce 

blood flow to the active muscles in favour of the elevated skin circulation to serve thermoregulatory 

homeostasis (170). During prolonged exercise in a hot environment, skin blood flow increases 

gradually and may amount to ~3 liters/min, as estimated from forearm skin values (80). This 

additional skin blood flow demand cannot be satisfied by the further ~20% reduction of splanchnic 

(167) or renal (148) blood flows, which are already reduced by approximately 75% during exercise, 

as indicated by the reduction in venous oxygenation (216). Considering that splanchnic and renal 

circulations, combined with the modest vasoconstriction in inactive skeletal muscles, can contribute 

to the systemic circulation at most a total of ~1 liter/min (170), it is deemed that active limb 

muscles are needed as a circulatory “donor” (80).  

However, blood flow to active limb muscles and tissues is either maintained or increased when 

heat stress is superimposed upon light to moderate intensity prolonged exercise (178, 125, 124, 126).  

Using positron emission tomography Heinonen et al. (70) demonstrated that heat increases muscle 

blood flow as evaluated by the partitioning of blood flow between muscle and skin under passive 

heat stress. The implication is that when the metabolic heat production is substantial during 

prolonged or high intensity exercise, an increase in muscle blood flow may compromise skin blood 

flow. In support, the cutaneous circulatory demand has a ceiling as skin blood flow plateaus at ~ 55% 

of maximal level when core temperature reaches ~38 C˚ (17).  This plateau manifests by a restrain 
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of active vasodilation, as shown by selective local blockade of noradrenergic vasoconstrictor nerves 

(90), implying that oxygen delivery to active skeletal muscles is prioritized over skin blood flow 

with adverse consequence for thermoregulation (61). Support for that postulate comes from the 

increased risk for death in the elderly associated with a heat wave (190), probably reflecting the 

limited capacity of the elderly to increase cardiac output and thus, skin blood flow and thereby their 

predisposition to hyperthermia. 

4.2. Cerebral blood flow and metabolism 

4.2.1. Cerebral blood flow 

Whole body exercise poses not only a circulatory challenge to splanchnic, muscle, and cutaneous 

vascular beds but, seemingly, also to the brain, with potential metabolic consequences and 

implication for performance. Cerebral activation and thus cerebral metabolism during exercise is 

heterogeneous (i.e., brain area specific, Ref. 101) that provokes a differential blood flow response, 

depending on the type of mental activity. Moreover, regional specificity of cerebral blood flow 

(CBF) combined with the different measuring methods used, have led to contrasting observations 

that fuelled a controversy as to whether CBF increases during exercise (77, 183).  However, 

considering that regional CBF is more sensitive than the global CBF to brain activation during 

small muscle exercise with no increase in global CBF, e.g. handgrip (136, 51, 52, 185), it is now 

accepted that whole body exercise provokes a marked increase in CBF (207, 82, 83, 177), e.g. by 

~35% during cycling (from 58 to 79 ml/min/100 g, Ref. 188).  

Similarly with the peripheral vasculature, however, CBF and O2 delivery to the brain may be 

attenuated with a restricted cardiac output either because of administration of a β1-adrenergic 

blocking agent (75, 187), heat stress (131, 132, 229), or because of cardiac disease (74). For 

example, heart failure patients show a normal increase in middle cerebral artery mean flow velocity 

during one-legged exercise, but that increase is lowered during two-legged exercise (71).  
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Additionally, with the marked hyperventilation associated with maximal exercise, PaCO2 

tension is lowered and that reduces CBF (207, 82, 83, 105, 187, 228), although this effect does not 

seem to manifest in the posterior cerebral vasculature (176). Together with the possible hypoxemia 

developed during maximal whole-body exercise (38) and especially rowing (149, 222), the 

reduction in CBF may provoke a decrease in cerebral oxygenation by 10% (127). Such a reduction 

in cerebral oxygenation appears to affect performance, i.e. elicits so-called central fatigue as 

supported by the effect of hypoxia on the ability to perform repeated handgrip exercise rather than 

rapid contraction as exemplified by computer “mouse click” (150). In support, when oxygen is 

added to the inspired air during whole body exercise and thereby hinders the reduction in cerebral 

oxygenation, performance is enhanced by ~5% (127, 6) with no effect on muscle oxygenation (127). 

Although the enhancement is not always statistically significant in single studies (130, 218, Fig. 6), 

when these results are summarised an average performance enhancement of ~ 3.5% is revealed 

(effect size Glass’ Δ = 1.4, Ref. 196). 

The opposite view has however also been advanced. Since PaCO2 influences CBF, it has 

been evaluated whether addition of CO2 to inspired air would improve the reduced work capacity in 

hypoxia. At altitude, cerebral oxygen delivery is reduced, both by the hypoxia-induced arterial 

haemoglobin desaturation and the attenuation of CBF, as a result of hypoxia-stimulated 

hyperventilation and the consequent hypocapnia (204, 137, 194, 47). However, even when CBF and 

cerebral oxygenation are restored with the addition of CO2 to the inspired air, performance is not 

improved. An explanation for the absence of performance improvement by addition of CO2 to the 

inspired air could be that the elevated ventilation in response to the additional PaCO2 limits muscle 

blood flow (67) and, hence, under these circumstances performance is limited by “peripheral” rather 

than “central” fatigue. However with addition of CO2 to inspired air, ventilation is increased only 
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during submaximal exercise in hypoxia and, therefore, a possible “competition” for flow between 

the brain and the respiratory muscles during maximal exercise would be considered to be similar.  

On the other hand, during exercise with bicarbonate infusion that reduces ventilation by 

approximately 12 liters/min despite an increase in PaCO2 and therefore presumably in CBF, 

performance is enhanced by approximately 5% (Fig. 7, Refs. 128, 220,), while the NIRS determined 

muscle oxygenation is not different compared to the control trial (128).  

Considering that bicarbonate administration restores muscle pH during exercise (129), it 

seems that the performance enhancement during exercise with bicarbonate administration is 

effected by both a “central” ergogenic effect of enhanced CBF and attenuation of “peripheral” 

fatigue, as a consequence of reduced ventilation (67) and may be a direct effect of pH on muscle 

metabolism. Thus, an explanation for the absence of performance enhancement with CO2 

supplementation during exercise in hypoxia may be related to “peripheral” fatigue outweighing an 

eventual ergogenic effect of enhanced CBF. 

While attenuated increase in cardiac output during exercise may affect CBF, it remains 

unsettled how that restrain is established. Cholinergic vasodilatation has been considered with 

regard to the cerebral perfusion response to both handgrip and cycling exercise (185) but has not 

been substantiated with magnetic resonance scanning during moderate handgrip exercise (163). 

Alternatively, a likely candidate to restrain flow to the brain is increased sympathetic activity, 

similar to findings for exercising muscles (143, 221). Even though it remains debated whether 

sympathetic activity influences CBF in humans (202, 212), sympathetic influence on CBF in 

humans during exercise is illustrated during stellate ganglion blockade that hinders the restriction in 

CBF on the blocked side during exercise with reduced ability to increase cardiac output following 

administration of a beta-adrenergic blocking agent (76). Furthermore, sympathetic nerve activity of 

the cerebral vasculature is assessed by transcranial plasma noradrenaline spillover. Specifically, by 
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modifying sympathetic nerve firing (with trimethaphan or clonidine infusion) and neuronal 

noradrenaline uptake (with desipramine infusion) in healthy and autonomic failure subjects, the 

possibility of sympathetically-mediated cerebral vasoconstriction is substantiated (117). It follows 

that when the increase in cardiac output is small or absent during exercise sympathetic 

vasoconstriction may explain the lack of exercise-induced increase in CBF (188), but this 

possibility has not been evaluated during exercise (or orthostasis) with restrained cardiac output. 

4.2.2. Cerebral metabolism 

The sympathetic activation associated with intense whole body exercise could influence 

cerebral metabolism, expressed as the cerebral metabolic rate of O2 (CMRO2) and the ratio of 

oxygen to carbohydrate uptake of the brain, known as the cerebral metabolic ratio (CMR) and in 

turn affect performance (188). Cerebral carbohydrate metabolism is stimulated by 

sympathomimetic drugs such as amphetamine, ritalin, and ephedrine (225), and activation of the 

sympathetic nervous system during stressful conditions relevant to exercise (e.g. hypoxia or 

hypoglycaemia, Refs. 20, 92).  

During progressive whole body exercise there is an intensity dependent ~30% increase in 

CMRO2 (62,187, 186, 16, 151, 208). On the other hand, with the intense sympathetic activation 

associated with whole body exercise CMR declines (33) reaching its lowest recorded value of 1.7 

during ergometer rowing (Fig. 8, refs. 217, 220). Furthermore, even when oxygen delivery is 

enhanced with hyperoxic breathing during maximal exercise, CMR remains reduced (217) 

suggesting that CMR is not affected by cerebral oxygenation and that non-oxidative carbohydrate 

consumption for the brain is independent of oxygen availability.  

Thus, if the decrease in CMR during intense exercise does not depend on oxygen availability, 

the decrease must depend on an increased cerebral uptake of carbohydrate and only lactate and 

glucose seem to be important in that regard (152). Cerebral glucose uptake decreases (91), or is 
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maintained (76, 31, 32, 217, 220), during intense exercise and the reduction in CMR is dominated 

by cerebral lactate uptake. Lactate transport across the blood-brain barrier dependents on the arterial 

concentration (76, 211). Yet, this reduction in CMR takes place also with little, or no, increase in 

plasma lactate as during prolonged exercise when it becomes a challenge to continue the work (132), 

related to, e.g., a decrease in muscle (88), or may be also brain glycogen (110, 109), and an increase 

in brain temperature (132).  

It may be that the brain’s choice of lactate as substrate is a consequence of enhanced 

metabolism (188) as known from skeletal muscles (19). Further, it could be that the reduction in 

CBF because of the reduction in PaCO2, and may be also inadequate cardiac output, would require 

brain lactate production to supplement aerobic metabolism. In fact, lactate is produced by the brain 

at the same time as lactate is taken up, f.x., lactate release from the brain increases during exercise 

(211) and more so under hypoxic conditions as demonstrated both in the rat (195) as in humans 

(140). Irrespective of whether brain lactate production is a consequence of enhanced metabolism 

and/or limited oxygen availability, it may account for about 10% of the brain’s metabolism (195, 

140).  

At a CMR of 1.7 less than one third of the amount of carbohydrate taken up by the brain can 

be accounted for by the concomitant uptake of oxygen and even though the explanation for such 

gross metabolic imbalance in the activated brain remains unknown, it may be coupled to an 

adrenergic mechanism (186, 184). Infusion of epinephrine, but not of norepinephrine, is associated 

with a reduced CMR (184) and the decline in CMR is blunted with administration of a non-selective 

β-adrenergic blocking agent (180, 187, 58), while a β
1
- adrenergic agent is without such an effect 

(31). Taken together it seems that a beta
2
-adrenergic mechanism contributes, if not dictates, the 

decrease in the CMR with activation of the brain. On the other hand, a meta-analysis (153) suggests 

that cerebral lactate uptake may not be directly related to adrenergic activity within the brain but 
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rather by increasing arterial lactate concentration, as adrenergic activity modulates whole-body 

glycolysis (162), and thus increases cerebral lactate uptake. 

Lactate transport across the blood-brain barrier has been thought to be pH dependent (134) 

but although bicarbonate infusion increases exercise performance by ∼2%, brain lactate metabolism 

is unaffected by the higher pH and CMR is similar to the control trial (220). However at least 

following high intensity exercise, brain lactate metabolism is not determined only by the arterial 

lactate concentration, as cerebral lactate uptake is reduced while arterial lactate concentration is 

peaking (220) but, perhaps, follows the cerebral energy requirements that decrease abruptly with 

exercise cessation (227). 

Taken together, neither compromised cerebral oxygenation nor a change in cerebral 

metabolism, possibly linked to cerebral glycogen depletion (109) are the only factors that affect 

central fatigue as, e.g., the limited ability of the brain to eliminate the consequences of its high 

metabolic rate may increase brain temperature and contribute to central fatigue (132). It seems that 

the reduction in CMR does not depend on oxygen delivery but rather on sympathetic activation 

(188), but it is enhanced by hypoxia (140). 

5. Arterial and cardiopulmonary Baroreflex 

The fourth line of evidence for restricted muscle blood flow during whole body exercise is 

derived from consideration of blood pressure regulation. The maintenance, or increase, of blood 

pressure during dynamic exercise requires that the increase in cardiac output matches the elevated 

skeletal muscle vascular conductance. Since with administration of a plasma expander (87) cardiac 

output during exercise increases, it can be argued that it is not the pumping capacity of the heart but 

rather venous return that is limiting cardiac output capacity (120). In support, only patients with 

ischemic heart disease develop chest pain during exercise. 
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But how is blood pressure controlled when there is limited cardiac output to distribute to the 

tissues? In 1972, Guyton et al. presented a model that provided basis for the understanding of long-

term blood pressure control. The model links blood pressure and sodium balance, where imbalance 

between salt intake and renal excretion leads to alteration in filling of the vascular system and thus 

influences blood pressure. The critical role of the kidney in Guyton’s model of long-term blood 

pressure control is relevant to exercise. The increased sympathetic activity elicited when exercise 

intensity approaches ~75% VO2max (55) provokes not only release of arginine vasopressin, to 

promote water reabsorption and increase blood pressure, but reduces renal blood flow in proportion 

to exercise intensity (63).  

The importance of renal vasoconstriction during exercise does not only relate to the 

conservation of sodium and water, which is trivial when compared to the loss by sweating, or to the 

redistribution of blood from the kidneys to active muscle, which is ~300 ml and it is trivial 

compared to ~20-25 liters/min cardiac output increase during exercise. Rather, renal 

vasoconstriction during exercise contributes towards the increase of total peripheral resistance and 

thus maintenance of arterial pressure (170). The intense renal vasoconstriction contributes to offset 

the vasodilatation seen in active skeletal muscle, and thus prevents a dramatic fall in total peripheral 

resistance that could compromise the arterial pressure. In support, patients with autonomic failure 

who have compromised capacity for sympathetic vasoconstriction show a pronounced fall in blood 

pressure with exercise (108). 

 Even though the role of the kidney is important for long term blood pressure regulation, the 

shorts term regulation (i.e., during exercise) is manifested by the baroreceptors. During exercise, the 

main contributor to peripheral resistance comes from constraining the extent of peripheral 

hyperaemia through the arterial baroreflex, which includes both the carotid bifurcation and the 
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aortic arch and is stimulated by feedback from stretch sensing unencapsulated free nerve endings 

located at the medial–adventitial border (191).  

The quantitative approaches available for evaluation of arterial baroreflex function in humans 

(49) are: a) elevations or reductions of arterial pressure with infusion of vasoactive drugs (the 

“Oxford method”, Ref. 197), b) the Valsalva manoeuvre, using voluntary increase of intrathoracic 

and abdominal pressure through straining, c) the variable pressure neck-chamber technique, which 

allows selective activation/deactivation of the carotid baroreceptors by application of a 

negative/positive pressure to the anterior neck region (43), and d) two methods based on the 

analysis of spontaneous oscillations of systolic arterial pressure and R-R interval: (i) the sequence 

method, that analyses the relationship between spontaneous increasing/decreasing ramps of blood 

pressure and related increasing and decreasing R-R interval through linear regression (53) and (ii) 

spectral methods (35), that assesses the relationship (in terms of gain) between oscillatory 

components of the two signals. Among these methods the variable pressure neck-chamber method 

is of special interest because it allows for non-invasive, non-pharmacological and selective 

evaluation of the carotid baroreflex (i.e., void from the contributions of the aortic and 

cardiopulmonary baroreceptors to the blood pressure responses) by altering carotid sinus intramural 

pressure.   

First, it was thought that the arterial baroreflex is “deactivated” and does not regulate blood 

pressure during exercise as deducted from the fact that both heart rate and blood pressure rise 

during exercise, an observation that is in direct opposition to the inverse relationship between heart 

rate and blood pressure, the essential characteristic of the arterial baroreflex (107). An explanation 

for the parallel increase of heart rate and blood pressure during exercise was found to be a “resetting” 

of the arterial baroreflex that continues to regulate both heart rate and blood pressure with the same 

sensitivity at the higher levels established during exercise (Fig. 9, Refs. 145, 46).  Support for that 
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explanation comes from the reflex responses in heart rate and blood pressure with the same 

magnitude as at rest, when using a variable pressure neck chamber to the carotid baroreceptors 

during exercise (13) by influence from both central command (56) and the exercise pressor reflex 

(141, 57). Thus, the baroreflex tonically opposes vasodilation by imposing sympathetic 

vasoconstriction to active muscles and, thereby, increasing peripheral resistance in order to support 

blood pressure (171), as has been shown both in humans (133) and dogs during exercise (135, 27). 

In addition, the hemodynamic response to whole body exercise is influenced by 

cardiopulmonary baroreceptors. Higher heart rate and blood pressure during sitting compared to 

supine exercise at comparable level of VO2 (200) has hinted to the contribution of cardiopulmonary 

baroreceptors to the blood pressure response during exercise.  Importantly, the cardiopulmonary 

baroreceptors not only contribute in establishing the prevailing blood pressure but are also involved 

in the resetting of the arterial baroreflex (224). Specifically, increasing the load of the 

cardiopulmonary baroreceptors by assuming the supine position resets the operating point of the 

arterial baroreflex to a lower blood pressure during exercise (Fig. 9). Furthermore, the increased 

load to the cardiopulmonary baroreceptors in the supine posture is established by enhanced venous 

return as implied by plasma atrial natriuretic peptide that is released in response atrial stretch (Fig. 

10, Ref. 214). Thus, variation in the central blood volume may explain the lower blood pressure 

during combined arm and leg exercise than when the arms are working alone (181,  221, 218, 223) 

by concomitant adjustment of the arterial baroreflex function (224, 46). 

6. Conclusion 

The blood flow capacity of the arms is lower than that of the legs. However, during intense whole 

body exercise, even with the values estimated for the arms the blood flow demand of active muscles 

presents a challenge to the capacity of the heart to provide sufficient cardiac output. Even though 

cardiac output is supported by an increase in venous return, mediated by the muscle pump of 
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primarily the lower legs, the blood flow demand surpasses venous return and, hence, cardiac output 

redistribution is necessary in order to preserve systemic blood pressure. The arterial barorereflex is 

critical in the cardiac output redistribution during exercise as it provokes sympathetic 

vasoconstriction, in order to regulate systemic resistance, not only to the abdominal organs (and 

inactive vascular beds) but also to active muscles and the skin, and perhaps equally importantly, 

may be also to the brain. Therefore, it is argued that blood pressure is the primary regulated variable 

during exercise that challenges regional blood flow especially during whole-body exercise. 
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Figures 

 

  
 

Figure 1 

Reduction in inspiratory muscle strength (PImax, maximum inspiratory mouth pressure) after 6 min 

maximal ergometer rowing, percent from resting PImax during 11 weeks of inspiratory muscle 

training (IMT) in the training and placebo group. Values are mean ± SD, ** P < 0.01 difference 

between groups (Redrawn from ref. 219). 
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Figure 2 

Catecholamines and noradrenaline spillover at rest and during arm (A) and combined arm and leg 

(A + L) exercise (Ref. 221).  
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Figure 3 
Arm blood flow during arm (A, •), arm and leg (A+L, ○; upper) and the transition (lower) from A to 

A+L trials. Measurements were taken at 60, 120 and 270 s during the independent trials and at 30, 

60, 110 and 180 s during the transition trial. The projected value (■) is from the data during the A 

and A+ L independent trials. Values are means ± SE, n=7, * different from A, P < 0.05 (Ref. 218). 
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Figure 4 

Arterial–axillary venous O2 difference (a-vO2 diff.) at rest and during arm (A) and combined arm 

and leg (A + L) exercise (average mean data ± SE from refs. 181, 221, 218, 223; n=31, * different 

from A, P < 0.05).  
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Figure 5 

Peripheral circulatory variables during arm cranking to exhaustion in rowers and average, fit 

subjects. ABF, arm blood flow (A); DO2, diffusional O2 conductance (B); a-v O2 diff, arteriovenous 

O2 difference (C); V̇O2, oxygen uptake (D); A + L, addition of leg exercise to arm cranking in the 

rowers. Values are means ± SE for 8 average fit subjects and 7 rowers. Redrawn from ref. 223. 
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Figure 6 

Performance improvement in maximal ergometer rowing (percent of power) with 0.28 - 0.30 O2 

supplementation in the inspired air.  Mean data ± SE from refs. 130, 127, 6, 217. * different from 

normoxic trial, P < 0.05. 
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Figure 7 

Performance improvement in maximal ergometer rowing (percent of power) with bicarbonate 

infusion.  Mean data ± SE from refs. 128, 220. * different from saline trial, P < 0.05  
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Figure 8 

The cerebral metabolic ratio (CMR, brain uptake of oxygen relative to that of carbohydrate; 

glucose+1⁄2 lactate) at rest and during various types of brain activation including several 

types of exercise with intense whole body exercise (ergometer rowing) demonstrating the largest 

deviation from the resting value of 6 (Redrawn with data from refs. 217, 220, 222).   
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Figure 9 

The carotid-cardiac (upper) and carotid-vasomotor (lower) reflex response during upright and 

supine arm exercise (A). Reflex responses in heart rate (HR) and mean arterial pressure (MAP) after 

stimulation of carotid sinus baroreceptors at rest during upright and supine arm exercise. Data 

represent mean ± SE. Lines are the mean fit of data from individual subjects. Arrows indicate the 

position of MAP for the given exercise modality. In each line the threshold (left), centering (middle) 

and saturation (right) of the baroreflex function are shown (Redrawn from ref. 224). 
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Figure 10 

Plasma atrial natriuretic peptide (ANP), A) at rest and during arm (A), leg (L) and combined A and 

L (A + L) exercise in upright seated (filled bars) and supine exercise (open bars) 

Blood samples were taken at the first (1) and the last minute of exercise (2). Values are means ± 

S.D., n = 11, ∗ Different from rest; † different from upright posture; a different from A, b different 

from L; all at P < 0.05 (redrawn from ref. 214). 
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Summary 

It is controversial whether during whole body exercise the increase in cardiac output is large enough 

to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow 

limitation to skeletal muscles during whole body exercise. First, even though during exercise the 

blood flow achieved by the arms is lower than that achieved by the legs (160 vs. 385 ml min-1 100 

g-1), the muscle mass that can be perfused with such flow is limited by the capacity to increase 

cardiac output (42 L min-1, highest recorded value). Secondly, activation of the exercise pressor 

reflex during fatiguing work with one muscle group limits flow to other muscle groups. Another 

line of evidence comes from evaluation of regional blood flow during exercise, where there is a 

discrepancy between flow to a muscle group when it is working exclusively and when it works 

together with other muscles. Finally, regulation of peripheral resistance by sympathetic 

vasoconstriction in active muscles by the arterial baroreflex is critical for blood pressure regulation 

during exercise. Together these findings indicate that during whole body exercise muscle blood 

flow is subordinate to the control of blood pressure. 
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Dansk Resumé 

Om øgningen af hjertets minutvolumen under helkropstræning er stor nok til at forsyne musklerne 

med blod er uklart. Denne oversigt giver fire argumenter for en begrænsning i blodforsyningen til 

musklerne under helkropsarbejde. Et argument er, at selvom perfusionen til armene er lavere end 

for benene (160 vs. 385 ml/min/100 g), er den muskelmasse, der kan forsynes af en sådan 

gennemstrømning begrænset af hjertets kapacitet til at øge dets minutvolumen (42 l/min, højest 

målte værdi). Det andet argument er, at aktiveringen af pressor reflekser under udtrættende arbejde 

af en muskelgruppe begrænser blodgennemstrømningen til andre muskelgrupper. Således er er der 

en diskrepans mellem blodgennemstrømning til en muskelgruppe, når den arbejder isoleret, og når 

den arbejder sammen med andre muskelgrupper. Endeligt medfører den arterielle barorefleks 

regulering af den perifere modstand, som også omfatter aktive muskler. Disse observationer 

indikerer, at blodgennemstrømningen til skeletmuskulaturen er underordnet kontrol af  blodtrykket. 

 


