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Abstract: In the near future, upcoming communications and storage networks are expected to
tolerate major difficulties produced by huge amounts of data being generated from the Internet of
Things (IoT). For these types of networks, strategies and mechanisms based on network coding have
appeared as an alternative to overcome these difficulties in a holistic manner, e.g., without sacrificing
the benefit of a given network metric when improving another. There has been recurrent issues on:
(i) making large-scale deployments akin to the Internet of Things; (ii) assessing and (iii) replicating
the obtained results in preliminary studies. Therefore, finding testbeds that can deal with large-scale
deployments and not lose historic data in order to evaluate these mechanisms are greatly needed
and desirable from a research perspective. However, this can be hard to manage, not only due to the
inherent costs of the hardware, but also due to maintenance challenges. In this paper, we present the
required key steps to design, setup and maintain an inexpensive testbed using Raspberry Pi devices
for communications and storage networks with network coding capabilities. This testbed can be
utilized for any applications requiring results replicability.

Keywords: Linux; network coding; Raspberry Pi; testbed; C++

1. Introduction

Upcoming 5G technology is targeting the controlling and steering of the Internet of Things (IoT)
in real-time on a global scale. This will break new ground for new markets such as driverless vehicles,
manufacturing, humanoid robots, and smart grids. The number of wireless devices is expected to
increase by five times to up to 50 billion devices [1]. It is generally believed that those devices will
not be connected in the same manner as current devices are connected today. Centralized systems
will collapse in terms of capacity, while distributed systems appear as an alternative. Therefore,
we believe mesh technologies will play a major role in the communication architecture in future
systems. Mesh technology has been known for sensor and ad hoc networks or mobile cloud
scenarios, but the technical requirements on 5G mesh-based communication systems are dramatically
increasing. Future mesh networks need to support high data rate, low latency, security, network
availability and heterogeneous devices to ensure high Quality of Experience (QoE) for the final user.
In state-of-the-art systems, those requirements are traded-off with each other, but in the 5G context,
we cannot do this anymore.
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Introduced by Ahlswede et al. [2], network coding constitutes a paradigm shift in the way that
researchers and industry understand and operate networks, by changing the role of intermediate
relays in the process of transmission of information. Relays are no longer limited to storing and
forwarding data, but also take part in the coding process, through a process called recoding,
where the relay generates new linear combinations of incoming coded packets without previously
decoding the data. Network coding allows the increase of throughput, reliability, security and delay
performance of the networks. In previous works, we have shown that Random Linear Network
Coding (RLNC) [3,4] is able to satisfy the aforementioned technical requirements. We have actually
shown how to increase the throughput [5], reduce the delay [6] or support heterogeneity for coding
enabled communication nodes [7].

In our prior works, the C++11 Kodo library [8] was used as the common building block
containing the basic RLNC functionalities. Most of the work was focusing on small mesh networks
with a handful of communication nodes, though the expected scenarios are fairly beyond this
order of magnitude. Despite this successful deployment in real systems, many of these protocols
and contributions have been implemented in separate testbeds and the experiences are hard to
reproduce. Deploying a large-scale and configurable testbed for networking and storage can
be challenging, not only due to the inherent costs of the hardware, but due to maintenance
challenges and ability to replicate results consistently. The latter requires not only the devices to
run the same Operating System (OS), but also have exactly the same configurations and software
packages. There is a need to evaluate large-scale network deployments of low-cost devices in a quick,
easy-to-deploy, reproducible and maintainable fashion.

The emergence of powerful and inexpensive single-board computers opens new possibilities in
this area. By running a standard OS, they allow implementations that are compatible with higher
end devices. In addition, they utilize stable software supported by their communities. For example,
the Iridis-pi platform [9] provides a detailed description of a Raspberry Pi (Raspi) [10] testbed ideal
for educational applications. Here, the authors present computational speed benchmarks, inter-node
communication throughput and memory card writing speeds for data storage to assess the testbed
performance. This work indicates only a basic description of how to set up the required software
and also mentions that its maintenance could be time-consuming. Moreover, this work does not
consider possible network coding applications. Different studies of IoT applications consider using
the Raspi for data processing: In [11], the Raspi is the processing unit that coordinates and controls
the activity of an isle of lamps on a public road and reports it to a monitoring center. A use case
regarding remote environment surveillance using the Raspi and the Arduino [12] technologies is
presented in [13]. Here, both devices report air pressure, humidity and temperature of the locations
of cultural paintings plus high-resolution images of the paintings themselves. This data is sent to a
monitoring center to ensure the preservation of the paintings. Furthermore, authors in [14] consider
FingerScanner, a technology that utilizes the Raspi to act as the data server in a finger scanning
application that collects the fingerprints. Even though all these applications consider the use of the
Raspi as a core block, they provide few to no descriptions of their procedures to configure the Raspi.
These applications become cumbersome to maintain as their considered systems could potentially
scale when aiming to serve more users. The current way that the data is sent in the considered
networks for these IoT applications will not be feasible in future 5G systems as mentioned previously.

Given this set of specific needs, in this work, we present the design, key step-by-step instructions
and mechanisms to setup, configure and maintain an inexpensive testbed using potentially
several Raspi devices for networking (wireless or wired) and storage applications including RLNC
functionalities into the testbed through Kodo. The architecture itself is not bounded to the networking
area and can be used for other applications that require replicable results with the Raspi. Our work for
the testbed procedure is organized as follows: Section 2 introduces the testbed system. In Section 3,
we provide details about the testbed setup, scripts, configuration files and connectivity. In Section 4,
we elaborate on the need and setup for an overlay filesystem for our testbed in order to have both
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persistent and non-persistent data on it as an optional step. Section 5 describes a set of automation
and monitoring tools that can be included in the testbed to simplify the execution of routinary and
repetitive tasks. Section 6 elaborates on the compilation of the Kodo library for the Raspi. Conclusions
and future work are reviewed in Section 7. Finally, a set of alternative commands, in case the ones
presented in this work might not be executed, are discussed in the Appendices.

2. Testbed Overview and Design Criteria

A sketch of the testbed is depicted in Figure 1. The testbed consists of up to 100 Raspis of different
models. More specifically, in our design, we consider: Raspberry Pi 1 model B rev. 2, Raspberry Pi 2
model B V1.1 and Raspberry Pi 3 model B V1.2. All Raspis are each equipped with a 8 GB Secure
Digital (SD) memory card, a wired and wireless network interface and a power supply. All the
Raspi are connected to a common Local Area Network (LAN) that provides internal and external
connectivity. Without loss of generality, in our case, they are connected to a university network
using their wired Ethernet interface that is named eth0 according to the legacy naming convention
of Ethernet interfaces in Linux [15]. We consider the university network since our testbed is used
by students and academic staff to perform measurements and experimentation of controlled and
reproducible scenarios as part of academic research. The testbed description and procedures for
setting it up are not restricted to this academic scenario. All Raspis are configured to run a Secure Shell
(SSH) daemon for easy remote access within the university network. We requested the university
Information Technology (IT) department to configure the university Dynamic Host Configuration
Protocol (DHCP) server to assign each Raspi a static Internet Protocol (IP) address. This eliminates
the demand for monitors and keyboards with the Raspis for non-graphical applications. Finally,
our design aims to configure all Raspis identically from a customized bootable image in their
respective memory cards, while still allowing the end-users to store files locally in each of the Raspis.

Figure 1. Testbed setup.

We will refer to the testbed administrator as the person(s) in charge of setting up and configuring
the testbed with administrator privileges from the OS point of view. The setting and configuration
procedures are performed by the testbed administrator in a PC running a Linux distribution as
shown in Figure 1. Although in principle the administrator Linux distribution is not a restriction,
we present our procedure in a Debian-based Linux distribution. Our basic design considers to create
a customized image to store it later on a memory card for each Raspi. Once configured, we store
the resulting image file in a Hyper Text Transfer Protocol (HTTP) server as backup and in case the
testbed administrator requires the making of new changes to this file. In our case, we store all
files at Zenodo [16], but the testbed administrator should copy the our files to his/her own HTTP
server to get read/write permissions. We also put all the required configuration files and scripts
for the Raspis setup in the HTTP server so there is a single place where system setup is stored and
could be modified. This simplifies the system maintenance, as it may not always be desirable to
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make persistent changes on the Raspis—for example, when different users are interested in running
experiments on a rebooted testbed. We later present how to utilize stacked filesystems to enable both
persistent and temporary storage to have this capability. Its purpose is to remove non-desired data
after a reboot while keeping the original customized image structure. This step of the procedure is
optional if the testbed administrator decides to keep only persistent changes regardless of the testbed
use. Finally, we include a set of automation, monitoring and cross-compilation tools over the top
of our system in order to simplify the execution of repetitive and long tasks, be able to follow the
progress of long task processes and compile relevant C++ source code for the testbed administrator.

3. OS Image Setup

In this section, we review the steps to create a common OS image for all the Raspis. The image
setup is composed of three major steps: select and download the OS image file, alter the image
structure and configure the OS files. We proceed to detail all these steps providing brief discussions
to our setup choices when required. To perform these steps, we indicate with command-line blocks
the required sequential commands to be typed by the testbed administrator on his/her PC to obtain
the desired setting. In all the command blocks in the paper, we indicate if a command needs to be run
with root permissions (#) or common user permissions ($). These signs will prefix the commands.

3.1. OS Selection and Download

To get started, we first need to install an OS that works properly on all the Raspi models. We will
download and setup the image in the testbed administrator PC using a Debian-based distribution.
An alternative to this method, is to create a tailoared Linux distribution for the Raspi platform using
the Yocto Project [17]. However, this process would require assembly and compilation of all the
software for the Raspi platform from scratch, which goes beyond the scope of our work. We use
the popular Debian-based Raspbian Linux [18] given that is the recommended and default OS for
the Raspi. Raspbian is made available in two bundles: Raspbian and Raspbian Lite. The difference
between the two is that Raspbian contains a pre-installed desktop environment for user interaction,
and Raspbian Lite by default only permits interaction through a command shell. Given that
the Raspis in our testbed are not connected to monitors, we decide to work with Raspbian Lite.
If required, a desktop environment can be installed using the package manager later.

The latest Raspbian Lite bundle can be downloaded from the Raspbian official webpage [18].
At the time of this writing, the latest available bundle was 2016-05-27-raspbian-jessie-lite.zip.
To ensure that the content of the bundle does not change, this procedure is based on that particular
version of Raspbian Lite, which we have made available at [16]. All other files used in this paper
are also available there. The testbed administrator has to move these files to his/her own HTTP
server. To get started, the testbed administrator must open a Linux shell (terminal) on his/her PC
and declare the environment variables shown in the command block below. We show the whole
procedure by performing the role of the testbed administrator.

1 $ export URL="https://zenodo.org/record/154328/files/"
2 $ export IMAGE="2016-05-27-raspbian-jessie-lite"
3 $ export WORKDIR="${HOME}/Raspbian"

In this code block, the ${URL} and ${IMAGE} variables specify where the Linux bundle is located
and ${WORKDIR} specifies a working directory where the Raspbian Lite bundle will be downloaded
and customized. If the testbed administrator allocates his/her files into another location, then it will
be required to change the ${URL} environment variable. Notice that even though we use the $ and #
signs in the shell, in general, these signs will be particular to the testbed administrator OS shell. Next,
we create the working directory and change to it with the cd command. To download the image,
we utilize the wget command before unpacking the zip file as follows:
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1 $ mkdir -p ${WORKDIR}
2 $ cd ${WORKDIR}
3 $ wget ${URL%/}/${IMAGE}.zip
4 $ unzip ${IMAGE}.zip

3.2. Image Customization

After Raspbian Lite has been unpacked, there should be an .img file in the working directory
${WORKDIR}. fdisk can be used to display the content of the image. We parse the arguments -u
sectors to display the sizes in sectors and -l to display the partitions within the image. The fdisk
command should output to the terminal something similar to:

1 $ fdisk -u=sectors -l ${IMAGE}.img
2 Disk 2016-05-27-raspbian-jessie-lite.img: 1.3 GiB, 1387266048 bytes, 2709504 sectors
3 Units: sectors of 1 * 512 = 512 bytes
4 Sector size (logical/physical): 512 bytes / 512 bytes
5 I/O size (minimum/optimal): 512 bytes / 512 bytes
6 Disklabel type: dos
7 Disk identifier: 0x6fcf21f3
8

9 Device Boot Start End Sectors Size Id Type
10 2016-05-27-raspbian-jessie-lite.img1 8192 137215 129024 63M c W95 FAT32 (LBA)
11 2016-05-27-raspbian-jessie-lite.img2 137216 2709503 2572288 1.2G 83 Linux

The output provides relevant information about the image. The image is in total 2,709,504 sectors
(1.3 GiB) in size and contains two partitions. The first partition starts at sector 8192 and the other
partition starts at sector 137,216. The first partition type is FAT32 with a size of 63 MB and the second
partition is of type Linux with a size of 1.2 GB. This indicates that the first partition is a boot partition,
and the second one is a traditional Linux filesystem. In this case, the root filesystem, i.e., /.

3.3. Image Resizing

Given that we want to customize the root filesystem in the Raspis, we need to expand the image
file since 1.2 GB might not be enough to store the existing root filesystem plus additional files and
software packages. Thus, we need to increase the partition size. The following procedure illustrates
how the image and its root filesystem can be expanded by one GB. First, to expand the image one GB,
we execute:

1 $ dd if=/dev/zero bs=1M count=1024 >> ${IMAGE}.img && sync

Later, we use fdisk with the same arguments as before to see that the image is now one
GB larger:

1 $ fdisk -u=sectors -l ${IMAGE}.img
2 Disk 2016-05-27-raspbian-jessie-lite.img: 2.3 GiB, 2461007872 bytes, 4806656 sectors
3 Units: sectors of 1 * 512 = 512 bytes
4 Sector size (logical/physical): 512 bytes / 512 bytes
5 I/O size (minimum/optimal): 512 bytes / 512 bytes
6 Disklabel type: dos
7 Disk identifier: 0x6fcf21f3
8

9 Device Boot Start End Sectors Size Id Type
10 2016-05-27-raspbian-jessie-lite.img1 8192 137215 129024 63M c W95 FAT32 (LBA)
11 2016-05-27-raspbian-jessie-lite.img2 137216 2709503 2572288 1.2G 83 Linux
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Now, in the above command block output, we observe that the change has taken effect by
noticing the total available image size is 2.3 GiB. To expand the root filesystem, we replace the Linux
partition with a new partition one GB larger. The starting point of this new partition should be the
same as the old one. We make use of fdisk to alter the partition table in the commands below.
They (i) delete partition number 2; (ii) create a new primary partition and (iii) set the new partition
starting point. The new partition starting point value is 137,216 in our case; Finally, we (iv) write the
new partition table to the image file. This is made as follows:

1 $ fdisk ${IMAGE}.img << EOF
2 d
3 2
4 n
5 p
6 2
7 137216
8

9 w
10 EOF

If the partitions commands were correct, the partition table should now look like the following:

1 $ fdisk -u=sectors -l ${IMAGE}.img
2 Disk 2016-05-27-raspbian-jessie-lite.img: 2.3 GiB, 2461007872 bytes, 4806656 sectors
3 Units: sectors of 1 * 512 = 512 bytes
4 Sector size (logical/physical): 512 bytes / 512 bytes
5 I/O size (minimum/optimal): 512 bytes / 512 bytes
6 Disklabel type: dos
7 Disk identifier: 0x6fcf21f3
8

9 Device Boot Start End Sectors Size Id Type
10 2016-05-27-raspbian-jessie-lite.img1 8192 137215 129024 63M c W95 FAT32 (LBA)
11 2016-05-27-raspbian-jessie-lite.img2 137216 4806655 4669440 2.2G 83 Linux

3.4. Loopback Device Setup

After successfully resizing the image file, we use a loopback device to make the Raspbian image
available as a block device in the filesystem. For this command to work, the testbed administrator
distribution must have the util-linux package with version 2.21 or higher. Otherwise, the -P
argument of losetup will appear as invalid. If the version of losetup can not be updated for some
reason, an alternative option for this part is presented in Appendix A.1 of the Appendices.

1 $ export DEV=$(sudo losetup --show -f -P ${IMAGE}.img); echo $DEV
2 /dev/loop0

If the previous command was succesful, the lsblk command can be used to list the available
block devices in the filesystem as follows:

1 # lsblk
2 NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
3 ...
4 loop0 7:0 0 2.3G 0 loop
5 |-loop0p1 259:2 0 63M 0 loop
6 |-loop0p2 259:3 0 2.2G 0 loop
7 ...
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The image block device appears as /dev/loop0. This block device has two partitions associated
with it, e.g., loop0p1 and loop0p2. Finally, we check the filesystem of the block device with e2fsck
and resize it with the resize2fs command:

1 # e2fsck -f ${DEV}p2
2 e2fsck 1.42.8 (20-Jun-2013)
3 Pass 1: Checking inodes, blocks, and sizes
4 Pass 2: Checking directory structure
5 Pass 3: Checking directory connectivity
6 Pass 4: Checking reference counts
7 Pass 5: Checking group summary information
8 /dev/loop0p2: 35392/80480 files (0.1% non-contiguous), 201968/321536 blocks
9 # resize2fs ${DEV}p2

10 resize2fs 1.42.8 (20-Jun-2013)
11 Resizing the filesystem on /dev/loop0 to 583680 (4k) blocks.
12 The filesystem on /dev/loop0 is now 583680 blocks long.

3.5. Block Device Mounting

For browsing and altering the files in the image, we mount the block device partitions into a
particular path of our ${WORKDIR} in order to customize them. We mount the block device partition
that contains the root filesystem and later the boot partition. This is done by creating an empty
directory that is used as a mountpoint. We name it root and create it in the working directory before
mounting the root filesystem onto the mountpoint. We mount the root filesystem as follows:

1 $ export ROOTDIR="${WORKDIR}/root"
2 $ mkdir -p ${ROOTDIR}
3 # mount ${DEV}p2 ${ROOTDIR}

The root filesystem mounted in ${ROOTDIR} already has a boot directory that can be used as the
mount point for the boot partition in the block device /dev/loop0p1. This is convenient because the
final edited partition from ${ROOTDIR}/boot will be mounted on this same directory when a Raspi
starts up with a memory card containing the raw final image. Hence, to mount boot partition we do:

1 # mount ${DEV}p1 ${ROOTDIR}/boot

In this way, it is now possible to change all files within the Raspbian image as desired by editing
the files in ${ROOTDIR}. We take advantage of this to edit configuration files, append new files and
even update and install packages.

3.6. Image OS Files and Configuration Scripts Setup

In general, the Raspis should be setup as similarly as possible. However, some particularities
exist to differentiate the devices in principle. In addition, scripts containing further configurations for
the Raspis are desirable to be distributed as part of the common image. Therefore, we present here
the steps to setup basic properties of the Raspis and distributing configuration scripts to each of them
through the image. For this, we first indicate how to obtain and put our configuration scripts in the
image. Later, we describe the tasks performed by these configuration scripts. Finally, we indicate how
and in which order the scripts are executed to configure all the devices. Any testbed administrator
might modify or include other tasks according to his / her needs as we will show.

3.6.1. Image Default Configuration Scripts Download

In our case, we have our default configuration scripts stored in a file rasp_config.zip located in
the same URL of the HTTP server where the image was retrieved from, i.e., the one in the environment
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variable ${URL}. We first download this compressed file with wget and extract it locally into our
Raspbian Lite image. These commands and the output of the last one are shown as follows:

1 $ wget ${URL%/}/rasp_config.zip
2 $ unzip rasp_config.zip -d ${ROOTDIR}/home/pi/
3 Archive: rasp_config.zip
4 creating: ${ROOTDIR}/home/pi/rasp_config/
5 inflating: ${ROOTDIR}/home/pi/rasp_config/nodes.csv
6 inflating: ${ROOTDIR}/home/pi/rasp_config/set_hostname
7 inflating: ${ROOTDIR}/home/pi/rasp_config/main
8 inflating: ${ROOTDIR}/home/pi/rasp_config/update_rasp_config

The unzippped files are one configuration file and three configuration scripts in the newly
created ${ROOTDIR}/home/pi/rasp_config/ folder in the image. We describe which features that
we require all the Raspis to have and how are they achieved with these configuration scripts.

3.6.2. Device Hostnames

The hostname helps the user to physically distinguish the devices from each other. In our case,
we require the devices in our testbed to have different hostnames. We define the hostnames based on
the Medium Access Control (MAC) addresses of the Raspis wired Ethernet interface.

Prior to this stage, the MAC address of a network card can be found using the command
ifconfig or ip addr on a given Raspi. We store the MAC addresses and hostnames of the Raspis in
the configuration file ${ROOTDIR}/home/pi/rasp_config/nodes.csv. A sample of our file is shown
as follows:

${ROOTDIR}/home/pi/rasp_config/nodes.csv
––––––––––––––––––––––––––––––––––––––––

1 # Ethernet MAC Hostname
2 b8:27:eb:5b:da:20 rasp00
3 b8:27:eb:7b:c3:91 rasp01
4 b8:27:eb:54:9c:64 rasp02
5 b8:27:eb:95:bd:11 rasp03
6 ...

The testbed administrator has to insert the MAC addresses and hostnames of his/her Raspis
obtained previously in the format shown in the configuration file. For each given Raspi,
there is a MAC address and the corresponding hostname. This file will be employed by the
${ROOTDIR}/home/pi/rasp_config/set_hostname Bourne Again SHell (Bash) script to assign the
hostname of each Raspi. The script content is the following:

${ROOTDIR}/home/pi/rasp_config/set_hostname
––––––––––––––––––––––––––––––––––––––––––-

1 #!/usr/bin/env bash
2

3 script_path="$(dirname $(realpath $0))"
4 config_file=${script_path}/nodes.csv
5 mac=$(cat /sys/class/net/eth0/address)
6 old_hostname=$(hostname)
7 new_hostname=$(grep $mac $config_file | cut -f2 -d' ')
8

9 # Assign hostname found in nodes.csv
10 if [ ! -z ${new_hostname} ]; then
11 echo ${new_hostname} > /etc/hostname
12 hostname ${new_hostname}
13 sed -i.old -e "s:${old_hostname}:${new_hostname}:g" /etc/hosts
14 fi
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The script (in lines): (1) tells the system to interpret the script using Bash; (3–4) gets the path
to the script itself and the list of hostnames; (5) gets the MAC address of the node itself; (6) gets the
current hostname; (7) gets the new hostname from the hostname list; and (10–14) assigns the new
hostname to the Raspi where the script will be executed.

3.6.3. Updating Default Configuration Files and Scripts

Besides the single script with its configuration file introduced up to this point of our
procedure, it is possible that the testbed administrator may require to add other scripts to
configure his/her Raspis. We want to ensure that all the Raspi configuration scripts of
any testbed administrators are obtained in a simple way. We automate this task by including the
${ROOTDIR}/home/pi/rasp_config/update_rasp_config script in our procedure. The purpose of
this script is to make all the Raspis fetch all the configuration scripts located with the image during a
testbed start up.

In our case, as the testbed administrator for presenting the procedure, we want to fetch all our
configuration scripts in ${URL%/}/raspi_config.zip. The update script automatically downloads all
the required configuration files in rasp_config.zip file from a remote location. This is the same that
we manually did earlier to get our files, but this will be made in an automated way after booting up
the system. This script content is:

${ROOTDIR}/home/pi/rasp_config/update_rasp_config
–––––––––––––––––––––––––––––––––––––––––––––––––

1 #!/usr/bin/env bash
2

3 url="https://zenodo.org/record/154328/files/"
4 config_file="rasp_config.zip"
5

6 # Attempt to fetch new configuration files
7 if ! wget -q --show-progress -O /tmp/${config_file} ${url%/}/${config_file}; then
8 echo "Warning: Unable to update rasp_config files"
9 exit 1

10 fi
11

12 # Unzip and overwrite configurationn files to root's home directory
13 unzip -q -o /tmp/${config_file} -d /home/pi/

The update script lines (3–4) specify the URL and .zip file that should be downloaded.
Lines (7–10) download the configuration files to /tmp folder in the corresponding Raspi. It also prints
a warning in case of errors and line (13) unzips the files to /home/pi/, the Raspi home directory.
Existing files and directories are simply overwritten.

For the above scripts to work in the Raspis, it is required that the Raspis MAC addresses are
found in nodes.csv. In addition, it should be noted that for other testbed administrators besides
ourselves, the URL for file fetching and the configuration scripts themselves can be modified to fit
their requirements. If required for a testbed administrator, the rasp_config.zip will need to be
edited to include all the required configuration files and scripts. In addition, it might be necessary
to edit the URL in the script update_rasp_config to store and fetch from a different location.
Nevertheless, both the URL and configuration files presented here can be used as a starting boilerplate
if desired.

3.6.4. Configuration Scripts Execution Order

To actually make the Raspis change hostnames and any other considered configurations,
we have to make each Raspi call the above scripts when it starts up. After finishing the setup process,
all the unzipped files presented in Section 3.6.1 should be locally available at each Raspi after getting
the root filesystem. We first need to run the update script before running any other configuration



Electronics 2016, 5, 67 10 of 25

scripts. To do this after boot up, we include a call for the update script in ${ROOTDIR}/etc/rc.local
before exit 0 in the file:

# sed -i '/^exit 0/i bash /home/pi/rasp_config/update_rasp_config' ${ROOTDIR}/etc/rc.local

If it is required to have more configuration scripts, adding them in the rc.local file
makes maintenance by the testbed administrator difficult since this needs to be both in
the image and the downloaded rasp_config.zip. To avoid this problem, we include the
${ROOTDIR}/home/pi/rasp_config/main script that calls all other configuration scripts (besides
update_rasp_config) in a sequential order. This script content is:

${ROOTDIR}/home/pi/rasp_config/main
––––––––––––––––––––––––––––––––––-

-2 #!/usr/bin/env bash
-2

-1 bash /home/pi/rasp_config/set_hostname
-1 # Any other required configuration scripts...

In this way, the automation process is simplified since we do not need to modify
${ROOTDIR}/etc/rc.local again after the image has been written to the memory cards. Now,
we insert a call to the main script in ${ROOTDIR}/etc/rc.local as follows:

# sed -i '/^exit 0/i bash /home/pi/rasp_config/main' ${ROOTDIR}/etc/rc.local

Finally, ${ROOTDIR}/etc/rc.local should look like the following:

${ROOTDIR}/etc/rc.local
––––––––––––––––––––––-

-5 ...
-6 bash /home/pi/rasp_config/update_rasp_config
-7 bash /home/pi/rasp_config/main
-8 exit 0

Notice that set_hostname is now called by the main script instead. The update script is still
called directly. This ensures that all configuration scripts are updated before executed. Changes to
the update script itself will first take effect at the next system startup.

3.7. Image Package Updating by Changing the Apparent Root Directory

Besides adding and configuring files within the image, the testbed administrator may want to
install and update the software packages within the image before it is written to all the memory
cards that goes into the Raspis. From any Linux x86 machine as the testbed administrator
PC, this can be done using chroot command in the Quick Emulator (QEMU) [19] hypervisor for
Advanced RISC Machine (ARM) processors.

chroot is a method in Linux that modifies the apparent root filesystem location from / to any
other path. Consequently, in our case, we can use the Raspbian Lite image root filesystem within the
testbed administrator Linux distribution. Then, QEMU allows the execution of commands for the
Raspi image (ARM instructions) through the ones from the testbed administrator PC architecture.
Due to the ARM processor that the Raspis employ, installation of the QEMU related software is
required first and verification that QEMU is ARM enabled. To do so, run the following commands:



Electronics 2016, 5, 67 11 of 25

-1 # apt-get install binfmt-support qemu qemu-user-static
-2 # update-binfmts --display qemu-arm
-3 qemu-arm (enabled):
-4 package = qemu-user-static
-5 type = magic
-6 offset = 0
-7 magic = \x7fELF\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x28\x00
-8 mask = \xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff\xff
-9 interpreter = /usr/bin/qemu-arm-static

-10 detector =

In the previous output, the testbed administrator must be sure that the second command writes
qemu-arm (enabled) as indicated. If that is not the case, then it should be possible to enable it
by running:

-1 # update-binfmts --enable qemu-arm

Provided that qemu-arm is enabled, we should now be able to chroot into our Raspbian lite
image. There are a few commands to be performed before actually changing root into the root partion
of the image. First, to get internet access from within the Raspbian lite image, copying the testbed
administrator Linux distribution resolv.conf file into the image root filesystem is required. To do
this, it is necessary to run the following:

-1 $ cd $ROOTDIR
-2 # cp /etc/resolv.conf ${ROOTDIR}/etc/resolv.conf

Now, because of the ARM architecture, the /usr/bin/qemu-arm-static command needs to be
copied into the image before continuing by running:

-1 # cp /usr/bin/qemu-arm-static ${ROOTDIR}/usr/bin

Before changing the root, it is necessary to populate the directories proc, sys and dev for the
image to get control as the testbed administrator apparent root filesystem. This is made by the
following commands:

-1 # mount -t proc proc proc/
-2 # mount --bind /sys sys/
-3 # mount --bind /dev dev/
-4 # mount --bind /dev/pts dev/pts

Finally, run the following command to change root:

-1 # chroot ${ROOTDIR} /usr/bin/qemu-arm-static /bin/bash

If successfully executed, our terminal should have changed the prompt, indicating that we are
the root user in the Raspbian lite root filesystem as the apparent root. In case the chroot command
is not successful, we provide an alternative command in Appendix A.2 of the Appendices. To be
aware of the mode that we are working now, we change the prompt title to indicate that it is a chroot
environment as follows:

-1 # export PS1="(chroot) $PS1"
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The Raspbian lite image should now be possible to use almost as if it had been booted in a Raspi.
A major difference is that the testbed administrator PC is likely significantly faster than a Raspi.
Hence, enabling updates, upgrades and installing new software packages should be faster than in
a Raspi. Still updating and upgrading the packages for the Raspi might take some amount of time.
To update the system package list, run the following command:

-1 (chroot) # apt-get update

We further install some packages that we consider useful:

-1 (chroot) # apt-get install vim git screen

vim is the improved vi editor for Linux, git for managing Git repositories and screen [20]
for better handling of long-runnning processes. When writing the image to a memory card, all the
changes that have been made to the image so far will exist in all Raspis after fetching it.

4. Overlay File System

In principle, our procedure modifies the image file only once in the testbed administrator PC
when its setup is made. In addition, keeping this image in the Raspis provides the same initial system
for all the devices. If we do not make any further modifications during the image setup, any files
created after the initial boot of a Raspi will remain in the memory card. This is cumbersome to
maintain since the size of the memory card is relatively small (8 GB), and there might be various
users utilizing the testbed. In addition, different testbed users could be interested in running their
experiments in a fresh rebooted system with the original customized image. We emphasize that
this step is not necessary if the tesbed administrator wants to consider only persistent storage for
its devices. A use case for this scenario could be a single user for the testbed or when a testbed
administrator only wants to setup a few Raspis.

If both persistent and non-persistent storage are required for the Raspis, we present here the
steps to setup an overlay filesystem. This type of filesystem enables an upper filesystem to overlay
into a lower filesystem. Whenever a file is requested, the upper filesystem will forward the request
to the lower filesystem in case it does not have it itself. If the upper filesystem has the requested
file, it will simply return the file. This idea can be used in our setup to mount the root filesystem
(i.e., Raspbian Lite) in the Raspis during startup as read-only filesystem. On the one hand, the image
configuration files will remain after a reboot but the local data in these directories will be erased
after a reboot. To enable the possibility of persistent changes, we overlay the upper filesystem that
is mounted in the Raspi Random Access Memory (RAM), i.e., /tmp as rewritable on top of the lower
root filesystem. Reading a file may return a file from the lower filesytem, but if it is stored, it will
be saved in the upper filesystem. Accessing this file again will return the stored file from the upper
layer. After a reboot, all the stored files in the upper filesystem will be retrieved, but the ones in the
lower filesystem that are not part of the original image will be removed.

4.1. Filesystem Installation

Assuming that we are still in the chroot environment of the Raspbian Lite root filesystem for
installing packages, we can setup the overlay filesystem at this point of the procedure. There already
exists implementations overlaying the root filesystem. We use an implementation available at the
Git repository in [21]. Since we have installed git in a previous step, we clone the repository.
The command block below stores it in /tmp which is really mounted in RAM. All the files stored
here will disappear when the system is rebooted.
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-1 (chroot) # OVERLAYROOTDIR="/tmp/overlayroot"
-2 (chroot) # git clone https://github.com/chesty/overlayroot.git ${OVERLAYROOTDIR}

Before enabling the overlaying filesystem, it is necessary to generate an initial RAM filesystem or
initramfs. This is an initial filesystem that is loaded into RAM during the startup process of a Linux
machine to prepare the real filesystem. For this purpose, we need the BusyBox package by running:

-1 (chroot) # apt-get install busybox

To create and activate the overlaying filesystem, we need to first add the required system scripts
to do so. This is done as follows:

-1 (chroot) # cp ${OVERLAYROOTDIR}/hooks-overlay /etc/initramfs-tools/hooks/
-2 (chroot) # cp ${OVERLAYROOTDIR}/init-bottom-overlay /etc/initramfs-tools/scripts/init-bottom/
-3 (chroot) # echo "overlay" > /etc/initramfs-tools/modules

To generate the initial RAM filesystem, we have to utilize the mkinitramfs command.
This searches by default for the available kernel modules in the system. Since we are in chroot
mode, we need to specify the correct kernel modules to search for. The available kernel modules are
located in /lib/modules. To see them, we just run:

-1 (chroot) # ls /lib/modules/
-2 4.4.13+ 4.4.13-v7+

Now, the initial RAM filesystem can be generated. Raspi version 1 needs a different kernel than
Raspi version 2 and version 3. Kernel version 4.4.13+ is for Raspi version 1 and kernel 4.4.13-v7+ for
Raspi version 2 and version 3. We proceed to generate an initial RAM filesystem for these kernels
by running:

-1 (chroot) # mkinitramfs -o /boot/init.gz -k 4.4.13+
-2 (chroot) # mkinitramfs -o /boot/init-v7.gz -k 4.4.13-v7+

Although these commands might output some warnings, they should successfully generate
working initial RAM filesystems. Later, an initial RAM filesystem will need to be called by the
bootloader. In Raspbian, this is done by adding a command to config.txt file in the boot partition.
If the system should be run in a Raspi version 1, then use init.gz by executing only the first code
line below; otherwise, use init-v7.gz by executing only the second code line:

-1 (chroot) # echo "initramfs init.gz" >> /boot/config.txt # For Raspberry Pi version 1
-2 (chroot) # echo "initramfs init-v7.gz" >> /boot/config.txt # For Raspberry Pi version 2 or 3

After this point, it is no longer required to be in chroot mode. The following commands exit the
chroot environment, unmount all partitions and detach the loopback devices:

-1 (chroot) # exit
-2 # cd ..
-3 # umount --recursive ${ROOTDIR}
-4 # losetup -d ${DEV}

For the ––recursive option to work properly, it is necessary that the package util-linux
version is greater than or equal to 2.22. Otherwise, an alternative is to either update the package
or follow the procedure in Appendix A.3 of the Appendices.
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4.2. Persistent and Non-Persistent Image Directories

Provided the stacked filesystem is configured, it is now possible to have directories where files
are removed or not upon rebooting the Raspis. The following procedure creates an extra partition in
the image for the Raspi user home directory that will be made storage persistent. We first expand
image according to the desired home directory size, but avoid to making the image bigger than the
target memory card size.

-1 $ dd if=/dev/zero bs=1M count=1024 >> ${IMAGE}.img && sync

We create a partition for the home directory after the root partition. To do this, we again use
fdisk to find the next available sector in the image. To verify the new available space for the full
image and observe the next available sector, we run:

-1 $ fdisk -u=sectors -l ${IMAGE}.img
-2 Disk 2016-05-27-raspbian-jessie-lite.img: 3.3 GiB, 3534749696 bytes, 6903808 sectors
-3 Units: sectors of 1 * 512 = 512 bytes
-4 Sector size (logical/physical): 512 bytes / 512 bytes
-5 I/O size (minimum/optimal): 512 bytes / 512 bytes
-6 Disklabel type: dos
-7 Disk identifier: 0x6fcf21f3
-8

-7 Device Boot Start End Sectors Size Id Type
-8 2016-05-27-raspbian-jessie-lite.img1 8192 137215 129024 63M c W95 FAT32 (LBA)
-9 2016-05-27-raspbian-jessie-lite.img2 137216 4806655 4669440 2.2G 83 Linux

We notice that one GB is now available to be used in the partitions. In addition, we observe the
new partition should start at sector 4806656. To create it, we use fdisk as follows:

-1 $ fdisk ${IMAGE}.img << EOF
-2 n
-3 p
-4 3
-5 4806656
-6

-5 w
-6 EOF

We create a loopback device again and format the new partition, as follows:

-1 # export DEV=$(sudo losetup --show -f -P ${IMAGE}.img); echo $DEV
-2 /dev/loop0
-3 # mkfs.ext4 ${DEV}p3

If the -P option is not available for losetup, we provide an alternative command line in
Appendix A.1. Finally, if the previous filesystem formatting was successful, the filesystem is now
available for use. We need to inform the Raspbian OS to mount the home partition that we have just
created. This can be done by adding an entry in fstab as follows:

-1 # mount ${DEV}p2 ${ROOTDIR}
-2 # sed -i '$a /dev/mmcblk0p3 /home ext4 defaults,noatime 0 2' ${ROOTDIR}/etc/fstab

If the last command was executed correctly, the ${ROOTDIR}/etc/fstab file should have the new
line. The resulting file should look like the following:
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-1 ${ROOTDIR}/etc/fstab
-2 ––––––––––––––––––––
-2 proc /proc proc defaults 0 0
-2 /dev/mmcblk0p1 /boot vfat defaults 0 2
-2 /dev/mmcblk0p2 / ext4 defaults,noatime 0 1
-2 /dev/mmcblk0p3 /home ext4 defaults,noatime 0 2

Originally, the home folder is located in the root filesystem. However, we have to move its
content to the new home partition and store it properly. We do that as follows:

0 # mount ${DEV}p3 ${ROOTDIR}/mnt
0 # mv ${ROOTDIR}/home/* ${ROOTDIR}/mnt/

Now, unmount again all the partitions and detach the loop devices as follows:

0 # umount --recursive ${ROOTDIR}
0 # losetup -d ${DEV}

If the ––recursive option is not available, then follow the procedure in Appendix A.3 of the
Appendices. If the steps are successfully executed up to this point, the customized image is available
in the ${IMAGE}.img file and is ready to be deployed into the Raspis. In the following section,
we indicate how to proceed with the writing of the image into various memory cards.

4.3. Writing Customized Image to SD Memory Cards

For a basic system setup, the final step is to write the customized image to all the memory cards
before they can be used in the Raspis. For our current considered system, we do this manually for
each card. The testbed administrator needs to insert each memory card in his/her PC and follow the
procedure in this section. A given card will be available as /dev/mmcblkX or /dev/sdYX where X is a
natural number and Y is a letter.

It is very important to write to the correct device as everything will be overwritten. To avoid
removing information from the wrong device, a testbed administrator can use the commands
lsblk and/or df -h before and after inserting the memory card to deduce its correct device name.
For our case, the device was /dev/mmcblk0. Once identified, to write the image to a memory card,
the following command is used:

0 # dd if=${IMAGE}.img of=/dev/mmcblk0 bs=4M && sync

The previous dd and sync commands for copying the image to the memory card and flushing
the remainder in memory to the filesystem will take tens of minutes depending on the memory card
speed and the size of the image. After this is made, it is only necessary to eject the memory card and
now plug it in a Raspi so it can boot up.

5. Automation and Monitoring Tools

Within the daily testbed use, there exists frequent tasks that require a set of various commands
in a given Raspi. This could be tedious, prone to errors and time-consuming to realize every time
the task is required to be made. Therefore, in this section, we introduce a set of tools that help to
automate and monitor routinary task execution in the Raspis and show relevant example commands
with them. To be able to run all the following commands, it is necessary to have SSH connectivity
with the Raspis; otherwise, the commands need to be run locally on a Raspi making necessary to use
a keyboard and a monitor. The testbed administrator needs to put the memory cards in the Raspis
and turn them on for them to be able to boot. The devices should now be bootable.
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5.1. Fabric

Controlling multiple devices using SSH from a single PC often leads to many repetitive tasks.
Among these, we can mention: (i) rebooting a set of devices; (ii) installing applications in multiple
devices; and (iii) copying files to/from multiple devices. Fabric [22] provides a Python library
that simplifies the management of working with many devices from a single PC. First, the testbed
administrator creates a directory to hold the Fabric source code:

0 $ export CODEDIR="${HOME}/code"
0 $ mkdir -p ${CODEDIR}
0 $ cd ${CODEDIR}

Then, the ${CODEDIR}/fabfile.py file below provides a script with some basic functionalities
that can perform the few items above (i–iii). In general, other administrators may require
different functionalities, but this is out of the scope of this work. The following file serves as a
starting boilerplate:

${CODEDIR}/fabfile.py
––––––––––––––––––––-

-2 from fabric.api import env, task, sudo
-2 # Python Fabric script to run commands on multiple hosts through ssh
-2 #
-2 # Run script as 'fab <task>', where <task> is one of the scripts functions
-2 # marked as a tesk. The task marked as 'default' will be run if <task> is not
-2 # specified
-2

-1 env.hosts = ['10.0.0.100','10.0.0.101','10.0.0.102']
-1 env.user = 'pi'
-1 env.password = 'raspberry'
-1

0 @task
0 def reboot():
0 """ Reboot device """
0 sudo('reboot', quiet=True)
0

1 @task
1 def install(program):
1 """
1 Install a program
1 program: program name
1 """
1 result = sudo('apt-get install -y {}'.format(program), quiet=True)
1 print(result)
1

2 @task
2 def push(src,dst):
2 """
2 Copy file to device
2 src: source file path
2 dst: destination file path
2 """
2 put(src, dst)

The previous fabfile shows three functions that perform our example tasks. These functions
utilize variables and subsequent functions from the Fabric Application Programming Interface (API)
such as env, task and sudo among others. Each of these API functions permits defining environment
variables, creating the administrator tasks through decorators or running the mentioned task in sudo
mode, respectively. When a task is called from the terminal, Fabric searches the directory for the
fabfile.py file and executes the desired task. The syntax for executing a task with arguments is in the
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form fab <TASK>:arg1,arg2,... We denote the IP address of a generic Raspi for test as <RASP_IP>.
The executions from the terminal of some of these commands are shown as follows:

0 $ fab reboot
0 [<RASP_IP>] Executing task 'reboot'
0

1 Done.
1 Disconnecting from <RASP_IP>... done.
1 $ fab install:tmux
1 [<RASP_IP>] Executing task 'install'
1 ...
1 The following NEW packages will be installed:
1 tmux
1 0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
1 ...
1 Preparing to unpack .../archives/tmux_1.9-6_armhf.deb ...
1 Unpacking tmux (1.9-6) ...
1 Processing triggers for man-db (2.7.0.2-5) ...
1 Setting up tmux (1.9-6) ...
1

2 Done.
2 Disconnecting from <RASP_IP>... done.

The first function above reboots the Raspis in the lists of hosts and the second function installs
a program given by an argument. For the connection to the devices, Fabric calls the Paramiko [23]
module from Python to make an SSH connection. For this to work properly, the Paramiko version
needs to be higher than or equal to 1.15.1. If not available, the SSH connections from Fabric may
fail. In case of any problems, some instructions for updating the Paramiko package are available in
Appendix A.4 of the Appendices. This is a standard recommendation from the Fabric troubleshooting
guide [24].

After a successful SSH connection is made, in the previous two commands towards the Raspi,
Fabric employs the Raspi’s reboot and apt-get commands in sudo mode to do the required tasks.
Below, an example is shown for the push task which uses two arguments. Here, we copy my_file
from the testbed administrator PC to a test host Raspi:

0 $ fab push:"${CODEDIR}/my_file",'~/'
0 [<RASP_IP>] Executing task 'push'
0 [<RASP_IP>] put: /home/<USER>/code/my_file -> /home/pi/my_file
0

1 Done.
1 Disconnecting from <RASP_IP>... done.

To control a large set of devices, we simply need to include them in the env.hosts list
in the ${CODEDIR}/fabfile.py file. Fabric has many other functionalities that are useful in
controlling a large set of Raspis. For example, we may extract files or run automated experiments.
The included functionalities in the ${CODEDIR}/fabfile.py file will depend on the requirements of
the testbed administrator.

5.2. Long-Running Jobs Using SSH

There are times when a task may need to run for several hours or even days on the Raspis,
particularly when related to simulations or measurement campaigns. For this purpose, it might be
necessary to keep open an SSH connection on the Raspis without risking that the connection will be
interrupted and a given Raspi will terminate the task.

There are methods to enable the Raspis to continue running applications although the connection
is terminated either on purpose or unexpectedly. One method is to run programs within a screen
session. screen enables a user to run applications within a shell window, a screen session,
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which does not terminate even with connectivity interruptions. Users can attach and detach from a
screen session as desired. The following procedure presents how to use screen with SSH to: (i) login
to a generic Raspi; (ii) open a screen session; (iii) execute an example command; (iv) detach from
the screen session; (v) terminate the SSH connection; (vi) login to the Raspi again; and (vii) attach
to screen session to see the program still running. From the testbed administrator PC, we start by
establishing an SSH connection to a Raspi and open a screen session:

0 $ ssh pi@<RASP_IP>
0 ...
0 pi@<RASP_IP>'s password:
0

1 The programs included with the Debian GNU/Linux system are free software;
1 the exact distribution terms for each program are described in the
1 individual files in /usr/share/doc/*/copyright.
1

2 Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
2 permitted by applicable law.
2 Last login: Tue Jul 12 13:04:31 2016
2

3 $ screen
3 Screen version 4.02.01 (GNU) 28-Apr-14
3 ...
3 [Press space or Return to end.]

To enter in the screen session after the introduction message, we have to press either the
Space or Return key in the keyboard to clear the shell. After doing so, we should be in a screen
session although its appearance is the same as a regular terminal shell. Inside this example session,
we execute a program that never ends:

0 $ top

The top command simply continuously shows the table of processes executed on the Raspi like in
any Linux distribution. When top is running, we first press Ctrl+a and later Crtl+d in the keyboard
to detach from the screen session. We now terminate the SSH connection and login again to verify
that the top command is still running. Without using screen, the top program should terminate since
its hosting shell was terminated. To log out, we run:

0 $ exit
0 logout
0 Connection to <RASP_IP> closed.
0 $ ssh pi@<RASP_IP>

Now that we are logged in to the Raspi again, we first check the available detached sessions
by running:

0 $ screen -list
0 There is a screen on:
0 824.pts-0.raspXX (07/12/16 13:17:30) (Detached)
0 1 Socket in /var/run/screen/S-pi.

From the command output, we can see that the session is still running in our generic Raspi
number XX and that no user is currently attached to the session. To attach to the session, we execute:

0 $ screen -r 824.pts-0.raspXX
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After attaching again, we should see top still running. screen has more functionalities that
can be used in this or other contexts, but this is outside the scope of this work. To terminate the
screen session, first terminate top by pressing q in the keyboard. Once top is terminated, we need to
type exit two times in order to first exit the screen session and then terminate the SSH connection.
An output should be as follows:

0 [screen is terminating]
0 pi@<RASP_IP>:~ $ exit
0 logout
0 Connection to <RASP_IP> closed.
0 $

6. Cross-Compilation: From the PC to the Raspberry Pi

An important case of a computational expensive task is to compile software packages and
large libraries. Given the computing capabilities of the Raspi, such tasks can be challenging if not
prohibitive in terms of Central Processing Unit (CPU), memory or space usage and/or compilation
time. In this section, we present a procedure of how to cross-compile C++ source code from the
testbed administrator PC for the ARM architecture of the Raspis. By doing this, we take advantage of
the (typically) much higher computing power of the testbed administrator PC in order to save time
and computational resources. Hence, we give an example of compiling a simple C++ program and
copying the generated binaries with SSH to run locally on a Raspi.

Furthermore, given that our testbed purpose is for network coding applications, we also present
how to cross-compile Kodo [8], a C++11 network coding library to perform encoding, decoding and
recoding operations. In this way, we aim to present a fully configurable and manageable testbed
with the capabilities to evaluate network coding protocols with several Raspis and locally store
measurements from different evaluations. Therefore, we also show how kodo-cpp, a set of high-level
C++ bindings for Kodo, can be cross-compiled for applications with the Raspi.

6.1. Toolchain Setup

To compile in a given architecture that is aimed for a different one, the testbed administrator
needs to install a toolchain on his/her PC. The toolchain is mandatory due to the different processor
architectures where the source can be compiled from. Given that compiling a toolchain can be
an arduous task, we get the toolchain recommended for the ARM architecture of the Raspis.
This toolchain is available from [16] and it already contains the binaries for different compilers
based on gcc 4.9. We extract the binaries adjusting them to our coding style and compiling
convention. For this, we use the ${TOOLCHAIN} directory as the working directory. The testbed
administrator may choose some other working directory of its preference if desired. First, we create
the toolchain directory:

0 $ export TOOLCHAINDIR="${HOME}/toolchains"
0 $ mkdir -p ${TOOLCHAINDIR}
0 $ cd ${TOOLCHAINDIR}

Later, we download a Raspi toolchain with the binaries for a 64-bit Linux distribution available
in [16]. Finally, we unzip the downloaded file. This is made as follows:

0 $ wget https://zenodo.org/record/154328/files/raspberry-gxx493-arm.zip
0 $ unzip raspberry-gxx493-arm.zip

Instead of calling the ARM cross compiler using its full path, we make the binaries accessible
from the command shell systemwide. A way to do this is by adding the following commands in the
${HOME}/.profile as follows:
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0 $ sed -i '$a export TOOLCHAINDIR=\"$HOME/toolchains\"' ${HOME}/.profile
0 $ sed -i '$a export TOOLCHAINBINARY=\"raspberry-gxx49-arm-g++\"' ${HOME}/.profile
0 $ sed -i '$a PATH=\"\$PATH:${TOOLCHAINDIR}/arm-rpi-4.9.3-linux-gnueabihf/bin\"' ${HOME}/.profile

This helps the OS to recognize the location of the compiler command when a new shell is opened.
The .profile should now contain the lines we inserted. There might be other code in the file of other
testbed administrators. We recommend to leave other parts unmodified.

$HOME/.profile
–––––––––––––-

-2 ...
-2 export TOOLCHAINDIR="$HOME/toolchains"
-2 export TOOLCHAINBINARY="raspberry-gxx49-arm-g++"
-2 PATH="$PATH:${TOOLCHAINDIR}/arm-rpi-4.9.3-linux-gnueabihf/bin"
-2 ...

To update the ${PATH} variable and the .profile, we use the source command for the changes
take effect in the administrator system:

0 $ source ${HOME}/.profile

A working ARM cross-compiler in the testbed administrator PC should output the following:

0 $ ${TOOLCHAINBINARY} --version
0 raspberry-gxx49-arm-g++ (crosstool-NG crosstool-ng-1.22.0-88-g8460611) 4.9.3
0 Copyright (C) 2015 Free Software Foundation, Inc.
0 This is free software; see the source for copying conditions. There is NO
0 warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

6.2. Cross-Compile Example

The following shows: (i) how to cross compile the classic hello_world C++ example for the
Raspi ARM architecture and (ii) how to copy and execute the binary in a Raspi using Secure Copy
(SCP) and SSH. First, we create the file hello_world.cpp. For simplicity, we create it in the directory
where we stored the fabfile.py file with the following content using any text editor:

${CODEDIR}/hello_world.cpp
–––––––––––––––––––––––––-

-2 #include <iostream>
-2

-1 int main()
-1 {
-1 std::cout << "Hello World!" << std::endl;
-1 return 0;
-1 }

We save the previous file and compile it for Raspi in the testbed administrator PC by doing:

0 $ ${TOOLCHAINBINARY} hello_world.cpp -o hello_world

This should produce a binary hello_world that is executable on the Raspi. We copy it to
a Raspi using SCP and using Fabric instead if we are interested in deploying a compiled binary
for many Raspis.
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0 $ scp hello_world pi@<RASP_IP>:~/

After the executable has been copied to the Raspi, we login through SSH to it:

0 $ ssh pi:<RASP_IP>

We can list the directory content after we have logged into the Raspi and verify that the compiled
hello_world binary is there:

0 pi@<RASP_IP>:~ $ ls
0 hello_world rasp_config

Finally, we simply execute the hello_world to confirm that the cross-compiling of hello_world
worked properly:

0 pi@<RASP_IP>:~ $ ./hello_world
0 Hello World!

6.3. Cross-Compile Kodo

As we originally mentioned, Kodo is a C++11 network coding library that permits
implementation of network coding functionalities by allowing any network protocol designer to use
and test the primitive encoding, decoding and recoding operations of RLNC. In this way, a designer
only needs to focus on the design and test of a network coding-based protocol. Kodo is available
through programming bindings for a variety of popular programming languages. This procedure
will present how to configure the Kodo C++ bindings kodo-cpp to cross-compile applications that
can run in Raspi. kodo-cpp provides a simple interface to the underlying C++11 code that exists in
the libraries kodo-core for the object structure and kodo-rlnc for the RLNC codec implementation.
More details about Kodo are provided in the code documentation [25].

To use Kodo for research, it is necessary to obtain a research free license. To do this, a request
form needs to be filled in [26] and wait for it to be processed by the Kodo developers. Once the access
for Kodo has been granted, the source code can be pulled from its Git repositories to be compiled.
Assuming that the testbed administrator already has access, we clone the kodo-cpp repository locally
in $CODEDIR and change directory into the repository by doing:

0 $ cd ${CODEDIR}
0 $ git clone git@github.com:steinwurf/kodo-cpp.git
0 $ cd kodo-cpp

We first configure kodo-cpp to build executables for the ARM architecture using the Raspi
toolchain and later build them by running:

0 $ python waf configure --cxx_mkspec=cxx_raspberry_gxx49_arm
0 ...
0 'configure' finished successfully (X.XXXs)
0 $ python waf build
0 ...
0 'build' finished successfully (XmXX.XXs)

If the configuration and build steps are successful, the binaries should have been created. To be
able to use them, we need to create a shared library that we will use in the Raspi. To do this, we run
the following command:
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0 $ python waf install --install_shared_libs --install_path="./shared_test"
0 ...
0 'install' finished successfully (X.XXXs)

Now, we copy the shared library, binary files and related headers to the Raspi home directory
as follows:

0 $ scp -r shared_test/include shared_test/libkodoc.so pi@<RASP_IP>:~/

Alternatively, and for the testbed administrator reference, Kodo can also generate static libraries.
We log in to the Raspi and execute the unit tests and one of the binaries by running:

0 $ ssh pi@<RASP_IP>
0 $ ./kodocpp_tests
0 ...
0 [ PASSED ] X tests.
0 $ ./encode_decode_simple
0 Data decoded correctly

If the Kodo cross-compilation worked properly, both the unit tests and binaries run should
provide the shown outputs.

7. Conclusions

Observing the expectation of the IoT and lack for a low-cost, easy-to-configure testbed in this area
for reproducible research, we provide an in-depth description of the new Aalborg University’s Raspi
testbed for network coding evaluation and how to guarantee replicability and scaling management of
this system. The description shows how to set up interconnected Raspis with memory cards for local
storage, a Raspbian Lite image, network connectivity and proper system administration privileges.
Using the presented procedure permits setting up a Raspbian Lite image for the Raspis. A tailored
Linux distribution might be created from the scratch using the Yocto project. However, to assemble
and compile the software for the Raspi can be a tedious and time-consuming task. However, this
method could be adequate for an expert user. We hope this work permits researchers to replicate
setups and scenarios for evaluating their strategies in a rapid and manageable way. Future work
in the use of Raspi devices will focus on expanding the setup and automation of tasks to run the
testbed, configure specified network topologies (e.g., with specific connectivity or packet loss ratios),
reserve the use of these sub-networks for running tailored experiments and open the use of the
testbed beyond our team at Aalborg University. Future work in this area will consider making the
testbed fetch the image through the HTTP server. This is expected to simplify the maintenance of the
memory cards.
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Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface
ARM Advanced RISC Machine
Bash Bourne Again SHell
CPU Central Processing Unit
DHCP Dynamic Host Configuration Protocol
HTTP Hyper Text Transfer Protocol
IoT Internet of Things
IP Internet Protocol
IT Information Technology
LAN Local Area Network
MAC Medium Access Control
NC Network Coding
NFS Network File System
OS Operating System
PC Personal Computer
QEMU Quick Emulator
RAM Random Access Memory
Raspi Raspberry Pi
RLNC Random Linear Network Coding
SCP Secure Copy
SD Secure Digital
SSH Secure Shell
URL Uniform Resource Locator

Appendix A. Alternative Commands for Outdated Packages

This section describes alternative commands in case the testbed administrator is not able to
update old packages on his/her Linux distribution for performing the commands, particularly
the ones regarding the util-linux package or if a command just fails.

Appendix A.1. Losetup for Loopback Devices

If the losetup -P command shows the invalid option message, an alternative is to manually
set all the loopback devices used during the whole procedure with mknod. To do this, the alternative
commands are:

0 $ export DEV="/dev/loop0"
0 # mknod ${DEV}p1 b 7 1
0 # mknod ${DEV}p2 b 7 2
0 # losetup -o $((8192*512)) --sizelimit $(( (137215-8192+1)*512) )) ${DEV}p1 ${IMAGE}.img
0 # losetup -o $((137216*512)) --sizelimit $(( (4806655-137216+1)*512) )) ${DEV}p2 ${IMAGE}.img

However, there will be a few differences by using the above code as an alternative to the losetup
-P case. First, the output from lsblk will look different:

0 # lsblsk
0 NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
0 ...
0 loop1 7:1 0 67M 0 loop
0 loop2 7:2 0 2.2G 0 loop
0 ...

Second, detaching the loop devices will also be different:
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0 # losetup -d ${DEV}p{1,2}

Working with these loopback devices will be transparent for the remainding procedure.
In addition, when creating the persistent home directory partition in Section 4.2, for recreating

the loopback devices, the commands are:

0 $ export DEV="/dev/loop0"
0 # mknod ${DEV}p2 b 7 2
0 # mknod ${DEV}p3 b 7 3
0 # losetup -o $((137216*512)) --sizelimit $(( (4806655-137216+1)*512) ) ${DEV}p2 ${IMAGE}.img
0 # losetup -o $((4806656*512)) --sizelimit $(( (6903807-4806656+1)*512)) ${DEV}p3 ${IMAGE}.img

Finally, for detaching in this case, the command is:

0 # losetup -d ${DEV}p{2,3}

Appendix A.2. Image Chroot with Proot

In some cases, chroot may not work properly. In this case, an alternative can be proot. It might
be required to install it before changing the root with apt-get install proot. Then, it should be
possible for the testbed administrator to run the following:

0 # proot -q qemu-arm-static -S ${ROOTDIR}

Appendix A.3. Umount after Image Chroot

In case the umount ––recursive command shows the invalid option message, an alternative
is to manually unmount all the partitions used during the chroot environment in the reverse order
from which they were mounted. These commands are:

0 # umount ${ROOTDIR}/dev/pts
0 # umount ${ROOTDIR}/dev
0 # umount ${ROOTDIR}/sys
0 # umount ${ROOTDIR}/proc

Appendix A.4. Paramiko Package Update

In case Paramiko version 1.15.1 or higher is not installed, we may observe a key exchange
algorithm error when trying to log in through SSH to a Raspi with Open SSH. In this case, it might be
necessary to update the Paramiko package that Fabric uses to remove this error by running:

0 # pip install --upgrade paramiko
0 ...
0 Successfully installed cffi-1.7.0 cryptography-1.4 paramiko-2.0.1
0 # pip show paramiko
0 ...
0 Name: paramiko
0 Version: 2.0.1
0 ...
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