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Identifying the order of a quantum phase transition by means of Wehrl entropy in phase space
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We propose a method to identify the order of a quantum phase transition by using area measures of the ground
state in phase space. We illustrate our proposal by analyzing the well known example of the quantum cusp and
four different paradigmatic boson models: Dicke, Lipkin-Meshkov-Glick, interacting boson model, and vibron
model.
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I. INTRODUCTION

The extremely relevant concept of phase transition in
thermodynamics has been extended recently to encompass
novel situations. In particular, two main aspects have been
recently addressed: the study of mesoscopic systems and the
study of quantum systems at zero temperature. In the first case,
the finite system size modifies and smooths phase transition
effects. In the second case a tiny modification of a certain
Hamiltonian parameter or parameters (control parameters)
induces an abrupt change in the ground state of the quantum
system and quantum phase transitions (QPTs) appear as an
effect of quantum fluctuations at the critical value of the control
parameter [1]. QPTs strictly occur in infinite systems, though
QPT precursors are present in finite systems. In fact, bosonic
models make it possible to study both aforementioned aspects:
finite-size effects and zero temperature QPTs. Recent reviews
on this subject are [2–4].

QPTs occurring in finite-size systems can be characterized
by the disappearance of the gap between the ground and the
first excited state energies in the mean field or thermodynamic
limit (infinite system size). The QPT is a first-order phase
transition if a level crossing occurs and a continuous transition
if there are no crossings (except in the limit value) [5].
The Landau theory holds in the models addressed in this
presentation, and within this theory the Ehrenfest classification
of QPTs is valid. In this case, the order of a QPT is assigned
on the basis of discontinuities in derivatives of the potential of
the system at the thermodynamic limit [3,4].
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The assignment of the order of a phase transitions in
finite-size systems using a numerical treatment to compute
finite differences of the system energy functional can be a
cumbersome task. In order to overcome this problem, different
approaches have been proposed. Cejnar et al. have used the
study of non-Hermitian degeneracies near critical points to
classify the order of QPTs [5]. Alternative characterizations
are based in the connection between geometric Berry phases
and QPTs in the case of the XY Ising model [6,7] and in
the overlap between two ground state wave functions for
different values of the control parameter (fidelity susceptibility
concept) [8–10]. In addition, many efforts have been devoted to
characterize QPTs in terms of information theoretic measures
of delocalization (see [11–14] and references therein) and
quantum information tools, e.g., using entanglement entropy
measures (see, e.g., [15] for the Dicke model and [16,17] for
the vibron model).

In this work we propose an alternative way to reckon the
order of a QPT by using the Wehrl entropy in the phase-space
(coherent state or Bargmann) representation of quantum states
ψ provided by the Husimi function Qψ , which is defined as
the squared overlap between ψ and an arbitrary coherent state.

The Husimi function has been widely used in quantum
physics, mainly in quantum optics. For example, the time
evolution of coherent states of light in a Kerr medium is
visualized by measuring Qψ by cavity state tomography,
observing quantum collapses and revivals, and confirming the
nonclassical properties of the transient states [18]. Moreover,
the zeros of this phase-space quasiprobability distribution
have been used as an indicator of the regular or chaotic
behavior in quantum maps for a variety of quantum problems:
molecular [19] and atomic [20] systems, the kicked top [21],
quantum billiards [22], or condensed matter systems [23]
(see also [24,25] and references therein). They have also
been considered as an indicator of metal insulator [26] and
topological-band insulator [27] phase transitions, as well
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as of QPTs in Bose-Einstein condensates [10] and in the
Dicke [28,29], vibron [17], and Lipkin-Meshkov-Glick (LMG)
models [30].

To identify the order of a QPT we suggest to observe the
singular behavior of the Wehrl entropy, Wψ , of the Husimi
function, Qψ , near the critical point as the system size
increases. The Wehrl entropy is defined in Sec. III as a function
of the Hamiltonian control parameter(s) and the system’s
size. For harmonic oscillators, Lieb proved in Ref. [31]
Wehrl’s conjecture [32], stating that Wψ attains its minimum
(maximum area) when ψ is an ordinary (Heisenberg-Weyl)
coherent state. This proof has been recently extended by Lieb
and Solovej to SU(2) spin-j systems [33]. We observe that
Wψ is maximum at the critical point of a first-order QPT,
and this maximum is narrower as the system size increases.
However, for second-order QPTs, the Wehrl entropy displays
a step function behavior at the critical point, and again the
transition is sharper for larger system sizes. We confirm this
behavior for five models: quantum cusp, Dicke, LMG, a one-
dimensional realization of the interacting boson model (IBM-
LMG), and the two-dimensional (2D) limit of the vibron model
(2DVM).

We have chosen the cusp model as a prototypical case,
because this is probably the best known catastrophe example,
describing the bifurcation of a critical point with a quartic
potential. Its quantum version [34] has been used to illustrate
the effects associated with criticality as a prior step to deal with
more involved physical situations [3,34–36]. In addition to the
cusp model, we present results for four different realizations
of bosonic systems. The LMG model is a simple model,
originally introduced for the description of nuclear systems as
an exactly solvable toy model to assess the quality of different
approximations [37]. This ubiquitous model still receives
much attention, further stimulated by its recent experimental
realization [38,39]. The study of the ground state QPTs for this
model can be traced back to the seminal articles of Gilmore
and Feng [40,41]. The Dicke model is a quantum-optical
model that describes the interaction of a radiation field with
N two-level atoms [42]. This model has recently renewed
interest [43–46], partly because a tunable matter-radiation
interaction is a keynote ingredient for the study of quantum
critical effects [15,47,48] and partly because the model phase
transition has been observed experimentally [49]. The interact-
ing boson model (IBM) was introduced by Arima and Iachello
to describe the structure of low energy states of even-even
medium and heavy nuclei [50]. For the sake of simplicity, we
use the IBM-LMG, a simplified version of the model built
with scalar bosons [51]. Finally, the vibron model was also
proposed by Iachello to describe the rovibrational structure of
molecules [52] and the 2DVM was introduced [53] to model
molecular bending dynamics (e.g., see Ref. [54] and references
therein). The 2DVM is the simplest two-level model which still
retains a nontrivial angular momentum quantum number and
it has been used as a playground to illustrate ground state and
excited state QPTs features in bosonic models [55,56].

We proceed to present the Hamiltonian of the five different
addressed models, defining the Wehrl entropy as a function of
the moments of the Husimi function Qψ and considering the
results obtained in the first- and second-order critical points of
the different models. A brief introduction to the main results

on Schwinger boson realizations, coherent states, and energy
surfaces used in the paper can be found in the Appendix .

II. SELECTED MODELS

We give a brief outline of the five models we use to illustrate
the characterization of QPT critical points by means of the
Wehrl entropy.

The first model is the 1D quantum cusp Hamiltonian [3,34–
36]

Ĥ = K2p̂2

2
+ Vc(x̂), (1)

where Vc(x̂) = 1
4 x̂4 + u

2 x̂2 + vx̂ is the cusp potential, with
control parameters u and v and a classicality constant K =

�√
M

, combining � and the mass parameter M (see [35]). The
smaller the value of K , the closer is the system to the classical
limit. The mass parameter M can be fixed to unity without loss
of generality. In order to obtain energies and eigenstates for
the quantum cusp, we have recast Hamiltonian (1) in second
quantization, using harmonic oscillator creation and annihi-
lation operators and diagonalized the resulting matrix with a
careful assessment of convergence. The ground state QPTs
associated with the cusp have been studied using catastrophe
theory and Ehrenfest’s classification [3] and making use of
entanglement singularities [36]. It is well known that there is
a first-order QPT line when the control parameter v changes
sign for negative u values and a second-order transition point
for v = 0 and u moving from negative to positive values. In
this work we consider two trajectories: (i) for u = −1 and
v ∈ [−0.2,0.2] with a first-order critical point at vc = 0 and
(ii) for v = 0 and u ∈ [−1,1] with a second-order critical point
at uc = 0.

The Dicke model is an important model in quantum optics
that describes a bosonic field interacting with an ensemble of
N two-level atoms with level-splitting ω0. The Hamiltonian is
given by

Ĥ = ω0Ĵz + ωa†a + λ√
2j

(a† + a)(Ĵ+ + Ĵ−), (2)

where Ĵz, Ĵ± are angular momentum operators for a pseu-
dospin of length j = N/2 and a and a† are the bosonic
operators of a single-mode field with frequency ω. There is a
second-order QPT at a critical value of the atom-field coupling
strength λc = 1

2

√
ωω0, with two phases: the normal phase (λ <

λc) and the superradiant phase (λ > λc) [57,58]. Several tools
for the identification of its QPTs have been proposed: by means
of entanglement [15], information measures (see [11,13] and
references therein) and in terms of fidelity [59], inverse
participation ratio, the Wehrl entropy, and the zeros of the
Husimi function and marginals [28,29,60].

We also deal with an interacting fermion-fermion model,
the LMG model [37]. In the quasispin formalism, except for a
constant term, the Hamiltonian for N interacting spins can be
written as

Ĥ

2ωj
= Ĵz

j
+ γx

j (2j − 1)
Ĵ 2

x + γy

j (2j − 1)
Ĵ 2

y , (3)

where γx and γy are control parameters. We would like to point
out that the total angular momentum J 2 = j (j + 1) and the
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number of particles N = 2j are conserved and Ĥ commutes
with the parity operator for fixed j . Ground-state QPTs for this
model have been characterized using the continuous unitary
transformation technique [61], investigating singularities in
the complex plane (exceptional points) [62], and from a
semiclassical perspective [63]. A complete classification of
the critical points has been accomplished using the catastrophe
formalism [64,65]. We study the first- and second-order QPTs
given by the trajectories γx = −γy − 4 and γx = −γy + 2
in the phase diagram [65]. A characterization of QPTs in
the LMG model has recently been performed in terms of
Rényi-Wehrl entropies, zeros of the Husimi function, and
fidelity and fidelity susceptibility concepts [30].

In the case of the characterization of the phase diagram
associated with the IBM, it is important to emphasize the
pioneer works on shape phase transitions on nuclei [66], which
anticipated the detailed construction of the phase diagram of
the IBM using either catastrophe theory [66,67], the Landau
theory of phase transitions [68,69], or excited levels repulsion
and crossing [70]. In the present work we use the IBM-LMG,
a simplified 1D model, which shows first- and second-order
QPTs, having the same energy surface as the Q-consistent
IBM Hamiltonian [51]. In this case the Hamiltonian is

Ĥ = xn̂t − 1 − x

N
Q̂yQ̂y, (4)

where n̂t = t†t and Q̂y = s†t + t†s + y t†t are expressed in
terms of two species of scalar bosons s and t and the
Hamiltonian has two control parameters x and y. The total
number of bosons N = n̂s + n̂t is a conserved quantity.
For y = 0 there is an isolated point of second-order phase
transition as a function of x with a critical value xc = 0.8. For
y > 0 the phase transition is of first order and, to illustrate
this case, we have chosen the value y = 1/

√
2, with a critical

control parameter xc = 0.82.
Finally, the 2DVM is a model which describes a system

containing a dipole degree of freedom constrained to planar
motion. Elementary excitations are (creation and annihilation)
2D Cartesian τ bosons and a scalar σ boson. The second-order
ground state QPT in this model has been studied in Ref. [56]
using the essential Hamiltonian

Ĥ = (1 − ξ )n̂ + ξ
N (N + 1) − Ŵ 2

N − 1
, (5)

where the (constant) quantum number N labels the totally
symmetric representation [N ] of U(3), n̂ = τ

†
+τ+ + τ

†
−τ− is

the number operator of vector bosons, and Ŵ 2 = (D̂+D̂− +
D̂−D̂+)/2 + l̂2. The operators D̂+ = √

2(τ †
+σ − σ †τ−) and

D̂− = √
2(−τ

†
−σ + σ †τ+) are dipole operators, and l̂ =

τ
†
+τ+ − τ

†
−τ− is the angular momentum operator. This model

has a single control parameter 0 � ξ � 1 and the second-order
QPT takes place at a critical value ξc = 0.2 [56]. Several
procedures have been used to identify the ground state QPT in
this model: entanglement entropies [16], Rényi entropies [12],
the Wehrl entropy, and the inverse participation ratio of the
Husimi function [71].

III. WEHRL’S ENTROPY AND GROUND STATE QPTS

We have numerically diagonalized the Hamiltonians of the
five models for two different values of the system size N in an
interval of control parameters containing a critical point (either
first or second order). Given the expansion |ψ〉 = ∑

n cn|n〉
of the ground state in a basis {|n〉,n ∈ I } (I denotes a set
of quantum indices) with coefficients cn depending on the
control parameters and the system’s size N and given the
expansions of coherent states |ζ 〉 in the corresponding basis
(see the Appendix), we can compute the Husimi function
Qψ (ζ ) = |〈ζ |ψ〉|2 and the Wehrl entropy

Wψ = −
∫

Qψ (ζ ) ln[Qψ (ζ )]dμ(ζ ), (6)

where we are generically denoting by dμ(ζ ) the measure in
each phase space with points labeled by ζ . Note that Wψ is
a function of the control parameters and the system size N .
We discuss typical (minimum) values of Wψ for each model,
which are attained when the ground state ψ is coherent itself,
and Wehrl entropy values of parity-adapted (Schrödinger cat)
coherent states [72,73], which usually appear in second-order
QPTs [16,17,28,30,44,45].

Cusp. In the top panels of Figs. 1 and 2 we plot Wψ as a
function of the control parameters u and v for two trajectories
and two values of the classicality constant K . The first-order
case is for trajectory u = −1, depicted in Fig. 1, with a critical
control parameter vc = 0. In this case a sudden growth of
Wehrl entropy of the ground state at the critical point vc = 0
is immediately apparent. The entropy growth is sharper as K

decreases. The ground state is approximately a coherent state
for v �= 0 and a catlike state for v = 0. Indeed, as conjectured
by Wehrl [32] and proved by Lieb [31], any Glauber coherent
state |ψ〉 = |β〉 has a minimum Wehrl entropy of Wψ = 1.
It has also been shown [16,28–30] that parity adapted co-
herent (Schrödinger cat) states, |ψ〉 ∝ |β〉 + | − β〉, increase
the minimum entropy by approximately ln(2) (for negligi-
ble overlap 〈−β|β〉). With this information, we infer that
the ground state |ψ〉 is approximately a coherent state in the
phase u > 0 and a catlike state in the phase u < 0.

The second-order QPT case is shown in Fig. 2, with
v = 0 and critical control parameter uc = 0. For the second
trajectory, if we move from positive to negative values of
u, we find in the top panel of Fig. 2 a sudden growth
of Wψ in the vicinity of the critical point uc = 0 jumping
from Wψ (u > 0) � 1 to Wψ (u < 0) � 1 + ln(2). The entropy
growth is sharper as K decreases (classical limit).

Therefore, we would like to emphasize the utterly different
entropic behavior of first- and second-order QPTs. In both
cases we also plot an inset with the parameter trajectory and
the evolution of the potential along it. We proceed to show
that this Wehrl entropy behavior is shared by the rest of the
considered models too, allowing a clear distinction between
first- and second-order QPTs.

LMG. The LMG model has first- and second-order tran-
sitions depicted in the bottom left panels of Figs. 1 and 2,
respectively. We plot Wψ as a function of the control param-
eters γx and γy for the trajectories: γy = −γx − 4 (first-order
QPT at γxc = −2, bottom left panel Fig. 1) and γy = −γx + 2
(second-order QPT at γxc = −1, bottom left panel Fig. 2) for
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FIG. 1. (Color online) First-order QPTs: Wehrl entropy Wψ of
the Husimi function for the ground state. (Top) Cusp model for k =
10−1 (blue solid line) and 10−2 (red dashed line) along the straight
line u = −1 with critical point vc = 0. (Bottom left) LMG model for
N = 20 (blue dashed line) and 40 (red solid line) along the straight
line γx = −γy − 4 with critical point γxc = −2. (Bottom right) IBM-
LMG model for N = 80 (red solid line) and N = 40 (blue dashed
line) for the straight line y = 1√

2
with critical point xc = 0.82. Critical

points are marked with vertical blue dotted lines.

two values of the total number of particles N . We observe
an entropic behavior completely similar to the Cusp model.
The difference only lies on the particular entropy values. In
fact, according to Lieb’s conjecture [31,33]), spin-j coherent
states have a minimum Wehrl entropy of Wψ = 2j

2j+1 , which
tends to Wψ = 1 in the thermodynamic limit j → ∞. Catlike
states again increase the minimum entropy by approximately
ln(2). The IBM-LMG model exhibits a similar behavior to the
LMG model, as can be appreciated in the bottom right panel
of Figs. 1 and 2.

Dicke. The Dicke model exhibits a second-order QPT at the
critical value of the control parameter λc = 0.5, when going
from the normal (λ < λc) to the superradiant (λ > λc) phase.
Wψ captures this transition, as can be seen in the midle left
panel of Fig. 2, showing an entropy increase from Wψ � 1 +

N
N+1 to Wψ � 1 + N

N+1 + ln(2), with N = 2j the number of
atoms. As expected, the entropic growth at λc is sharper for
higher N .
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FIG. 2. (Color online) Second-order QPTs: Wehrl entropy Wψ

of the Husimi function for the ground state. (Top) Cusp model for
K = 10−2 (red solid line) and 10−3 (blue dashed line) along the
straight line u = 0 with critical point vc = 0. (Middle left) Dicke
model for N = 10 (red solid line) and 20 (blue dashed line) with
critical point λc = 0.5; (middle right) 2DVM results for N = 8 (red
solid line) and 16 (blue dashed line) with critical point ξc = 0.2.
(Bottom left) LMG model for N = 20 (blue dashed line) and 40 (red
solid line) along the straight line γx = −γy + 2 with critical point
γxc = −1. (Bottom right) IBM-LMG model for N = 80 (red solid
line) and N = 40 (blue dashed line) for the straight line y = 0 with
critical point xc = 0.8.
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Vibron. The vibron model undergoes a second-order (shape)
QPT at ξc = 0.2, the critical point that marks a change between
linear (ξ < ξc) and bent (ξ > ξc) phases [56]. In the middle
right panel of Fig. 2 we plot the Wehrl entropy as a function
of ξ for two values of the system’s size N (total number of
bosons). As in the previous models, the second-order QPT
is characterized by a “step function” behavior of Wψ near
the critical point. In this case, we have conjectured [16]
that minimum entropy Wψ = N(3+2N)

(N+1)(N+2) is attained for U(3)
coherent states. In the bent phase, the ground state |ψ〉 is a
cat [16,17,71] and therefore Wψ � N(3+2N)

(N+1)(N+2) + ln(2).

IV. CONCLUDING REMARKS

In summary, we have numerically diagonalized the Hamil-
tonians of five models for several system sizes N in a
given interval of control parameters that contains a critical
point (either of first or second order). Given the expansion
|ψ〉 = ∑

n cn|n〉 of the ground state in a basis {|n〉,n ∈ I }
(where I denotes a set of quantum indices) with coefficients
cn depending on the control parameters and the system’s
size N , and given the expansions of coherent states in the
corresponding basis, we can compute the Husimi function Qψ

and the Wehrl entropy Wψ . In Figs. 1 and 2 we plot Wψ as a
function of a control parameter for different values of N .

From the obtained results it is clear that the Wehrl entropy
behavior at the vicinities of the critical point is an efficient nu-
merical way of distinguishing first-order and continuous QPTs.

It is worth emphasizing that the present approach could
imply an extra computational cost if compared to the search
of nonanaliticities in the ground state energy functional. The
present method makes use of the ground state wave functions
for different values of the control parameter and it also
requires the calculation of the overlap of the basis states with
the coherent states. Though the need for ground state wave
functions instead of ground state energies is computationally
more exigent, the finer sensitivity of the present method largely
offsets the extra computational cost. The second step, the
overlap with coherent states, needs to be done only once with
available analytic expressions (see the Appendix); therefore,
it does not constitute a significant computational burden.
The proposed approach permits a clear determination of the
character of a critical point using relatively small basis sets.
On the contrary, even for large system sizes, the numerical
determination with finite differences of the critical points
character could remain ambiguous.

A similar sensitivity and computational cost could be
attained with the fidelity susceptibility approach, that provides
a clear determination of the critical point location, but with
no information of the transition order and with the additional
hindrance of varying the control parameter in two different
scales. Something similar happens with entanglement entropy
measures, which are suitable to be applied to bipartite or
multipartite systems; the critical point is clearly located, but
no precise information about the transition order is obtained.
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APPENDIX: SCHWINGER BOSON REALIZATIONS,
COHERENT STATES AND ENERGY SURFACES

a. Single mode. Radiation fields are described by harmonic
oscillator creation a† and annihilation a operators in Fock
space {|n〉 = (a†)n√

n!
|0〉}, and the corresponding normalized

coherent state (CS) is given by

|α〉 = e−|α|2/2eαa† |0〉 = e−|α|2/2
∞∑

n=0

αn

n!
|n〉, (A1)

where α = x + ip ∈ C is given in terms of the quadratures
x,p of the field. The phase-space (Bargmann) representation
of a given normalized state |ψ〉 = ∑∞

n=0 cn|n〉 of the
(single mode) radiation field is given by the Husimi
function Qψ (α) = |〈α|ψ〉|2, which is normalized
according to

∫
R2 Qψ (α)dμ(α) = 1, with measure

dμ(α) = 1
π
d2α = 1

π
dxdp.

b. Two-mode. (a1,a2) boson condensates with N = 2j

particles are described in terms of SU(2) operators, whose
Schwinger realization is

J+ = a
†
2a1, J− = a

†
1a2, Jz = 1

2 (a†
2a2 − a

†
1a1). (A2)

In the case of the Dicke model, J±,Jz represents collective
operators for an ensemble of N two-level atoms. Spin-j CSs
are written in terms of the Fock basis states |n1 = j − m; n2 =
j + m〉 ≡ |j,m〉 (with n1 and n2 the occupancy number of
levels 1 and 2) as

|ζ 〉 = 1√
(2j )!

(a†
2 + ζa

†
1)2j

(1 + |ζ |2)j
|0〉

= (1 + |ζ |2)−j

j∑
m=−j

(
2j

j + m

)1/2

ζ j+m|j,m〉, (A3)

where ζ = tan(θ/2)e−iφ is given in terms of the polar θ and
azimuthal φ angles on the Riemann sphere. The phase-space
representation of a normalized state |ψ〉 = ∑j

m=−j cm|j,m〉
is now Qψ (ζ ) = |〈ζ |ψ〉|2, which is normalized according to∫
S2 Qψ (ζ )dμ(ζ ) = 1, with integration measure (solid angle)

dμ(ζ ) = 2j+1
4π

sin θdθdφ.
The IBM-LMG model, based on a scalar (s) and a

pseudoscalar (t) boson creation and annihilation operators has
been written in terms of SU(2) operators (A2), with s = a1

and t = a2.
c. Three-mode. (a0,a1,a2) models (like the 2DVM) with

N particles are described in terms of U(3) operators, whose
Schwinger realization is Jjk = a

†
j ak,j,k = 0,1,2. U(3) CSs, in

the symmetric representation, are written in terms of the Fock
basis states |n0 = N − n; n1 = (n + l)/2; n2 = (n − l)/2〉 ≡
|N,n,l〉 [with nj the occupancy number of level j = 0,1,2
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and n = 0, . . . ,N (the bending quantum number), l = n − 2m

(the 2D angular momentum), m = 0, . . . ,n] as

|ζ1,ζ2〉 = 1√
N !

(a†
0 + ζ1a

†
1 + ζ2a

†
2)N

(1 + |ζ1|2 + |ζ2|2)N/2
|0〉,

=
N∑

n=0

n∑
m=0

{N !/[(N − n)!(n − m)!m!]}1/2

(1 + |ζ1|2 + |ζ2|2)N/2

× ζ n−m
1 ζm

2 |N,n,l = n − 2m〉, (A4)

with ζ1,ζ2 ∈ C. The phase-space representation of a normal-
ized state |ψ〉 = ∑N

n=0

∑n
m=0 cnm|N,n,l = n − 2m〉 is now

Qψ (ζ1,ζ2) = |〈ζ1,ζ2|ψ〉|2, which is normalized according to∫
R4 Qψ (ζ1,ζ2)dμ(ζ1,ζ2) = 1, where

dμ(ζ1,ζ2) = (N + 1)(N + 2)

π2

d2ζ1d
2ζ2

(1 + |ζ1|2 + |ζ2|2)3

is the integration measure on the complex projective
(quotient) space CP 2 = U(3)/U(2) × U(1) and d2ζ1,2 ≡
dRe(ζ1,2)dIm(ζ1,2) the usual Lebesgue measure on R2.

The connection with our U(3) construction to the 2DVM
is a0 = σ and a1,2 are the so called circular bosons, τ± =
∓(τx ∓ iτy)/

√
2, respectively.

In order to make the article as self-contained as possible,
let us also briefly recall the classical Hamiltonians or energy
surfaces (the Hamiltonian operator expectation value in a CS)
and their critical points for the selected models. The cusp
model has already been discussed in Sec. II.

For the Dicke model, using harmonic oscillator CSs (A1)
for the field and spin-j CSs (A3) for the atoms, the energy
surface turns out to be

〈α,ζ |Ĥ |α,ζ 〉 = ω|α|2 + jω0
|ζ |2 − 1

|ζ |2 + 1
+ λ

√
2j

4Re(α)Re(ζ )

|ζ |2 + 1
.

(A5)

Minimizing with respect to α and ζ gives the equilibrium
points αe = 0 = ζe if λ < λc (normal phase) and

αe = −
√

2j

√
ω0

ω

λ

λc

√
1 − λ4

c

λ4
, ζe =

√
λ2 − λ2

c

λ2 + λ2
c

, (A6)

if λ � λc (superradiant phase). For the LMG model, the energy
surface written in terms of ζ = tan(θ/2)e−iφ is

〈ζ |Ĥ |ζ 〉
2ωj

= − cos θ + sin2 θ

(
γx

2
cos2 φ + γy

2
sin2 φ

)
. (A7)

The minimization process results in three phases for this
system: (1) region γx < −1 with γx < γy , (2) region γy < −1
with γy < γx , and (3) regions γy > −1 and γx > −1; for more
information, like bifurcation sets associated with the absolute
minimum of the energy surface, we address the reader to
Ref. [65].

The analysis of the IBM-LMG case performed in Ref. [51]
shows how for a two-mode CS |β〉 [the large N limit of |ζ 〉 in
Eq. (A3), with ζ = β ∈ R] the resulting energy surface in the
thermodynamic limit is

〈ζ |Ĥ |ζ 〉
N

= β2

(1 + β2)2
{5x − 4 + 4βy(x − 1)

+β2[x + y2(x − 1)]}, (A8)

which coincides with that of the Q-consistent IBM Hamil-
tonian [51]. If the control parameter is y = 0 there is an
isolated second-order phase transition point as a function of
the control parameter x with a critical value xc = 0.8. If y > 0
and constant, the phase transition is of first order and minima
coexistence occurs for the critical value xc = (4 + y2)/(5 +
y2). In particular, the results shown for a first-order phase
transition in the bottom right panel of Fig. 1, with y = 1/

√
2,

are equivalent to the results obtained in the IBM model in the
case of a transition from a U(5) (spherical) to a SU(3) (axially
symmetric) configuration in the Casten triangle [68].

Finally, for the 2DVM [56], due to the underlying (rota-
tional) symmetries, one can restrict himself to particular U(3)
CSs (A4) with ζ1 = r/

√
2 = −ζ2, so that the energy surface

turns out to be simply

〈ζ1,ζ2|Ĥ |ζ1,ζ2〉
N

= (1 − ξ )
r2

1 + r2
+ ξ

(
1 − r2

1 + r2

)2

. (A9)

The minimization process results in two phase shapes:
(1) linear phase (ξ � ξc = 1/5), with “equilibrium ra-
dius” re = 0, and (2) bent phase (ξ > ξc), with re(ξ ) =√

(5ξ − 1)/(3ξ + 1).
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