
Methodology for adapting the parameters of a

fuzzy system using the extended Kalman filter

A. Javier Barragán Piña1 José M. Andújar Márquez1 Mariano J. Aznar Torres2

Agustín Jiménez Avello3 Basil M. Al-Hadithi3

1DIESIA - Universidad de Huelva, Spain, {antonio.barragan, andujar}@diesia.uhu.es
2MICSEII - Universidad de Huelva, Spain, marianojose.aznar@alu.uhu.es

3DISAM - Universidad Politécnica de Madrid, Spain, {agustin.jimenez, basil.alhadithi}@upm.es

Abstract

When we try to analyze and to control a sys-
tem whose model was obtained only based on in-
put/output data, accuracy is essential in the model.
On the other hand, to make the procedure practi-
cal, the modeling stage must be computationally ef-
ficient. In this regard, this paper presents the appli-
cation of extended Kalman filter for the parametric
adaptation of a fuzzy model.

Keywords: Kalman filter, estimation, fuzzy sys-
tem, modeling.

1. Introduction

The Kalman filter has been used with fuzzy logic in
various applications, such as the extraction of rules
from a given rule base [1], parameters optimiza-
tion of defuzzification mechanisms that are based
on both Gaussian and polynomic distributions [2]
or in optimization of consequents of Takagi-Sugeno
models [3]. In 2002, Simon introduced the use of
Kalman filter for adjusting the parameters of a fuzzy
model [4], assuming that antecedents were member-
ship functions of triangular type, and using its cen-
ter of gravity to perform the adaptation process.
However, the complexity of the calculation for oth-
ers types of membership functions has meant that
this proposal has not been widespread so far.

In this paper we present a methodology for use of
the extended Kalman filter (EKF) to estimate the
adaptive parameters of a general fuzzy model, i.e.,
with no constraint in size of input/output vectors,
neither in type or distribution of the membership
functions used in the definition of fuzzy sets of the
model. So, authors try to use the excellent features
of Kalman filter to obtain fuzzy models of unknown
systems from input/output data, and also allowing
its application in real-time [5].

This article is organized as follows: section 2
presents the fuzzy modeling problem in a completely
general form, and sets the notation used through-
out this article. Section 3 is devoted to formal pre-
sentation of the extended Kalman filter and its use
for modeling systems. Later, in section 4 we solve
the calculation of derivatives for use of extended
Kalman filter to the problem of fuzzy modeling,

keeping the generality of the problem and consid-
ering that are included in the process of modeling
adaptive parameters of both antecedents and conse-
quents of the rules. Finally, section 5 presents some
conclusions and future work.

2. Problem Formulation

Since that building an appropriate model is a fun-
damental step for subsequent application of dif-
ferent techniques of both analysis and design, we
have chosen to perform a fuzzy model with Takagi-
Sugeno type, completely general. As is known, TS
models are universal approximators, and they can
achieve high accuracy with a small number of rules
[6, 7, 8, 9].

Let n be the number of input variables and m the
number of output variables of the system to model;
a discrete fuzzy model Multiple Input Multiple Out-
put - MIMO - can be represented by the following
set of rules [10, 11, 12, 13]:

R(l,i) : If x1(k) is Al
1i and . . . and xn(k) is Al

ni

Then yl
i(k) = al

0i+
n
∑

j=1

al
jixj(k),

where l = 1..M is the index of the rule and Mi the
number of rules that model the evolution of the i-th
system output, yi(k). The al

ij , j = 0..n, elements
represent the set of adaptive parameters of the con-
sequents of the rules, thus they must be determined
by the process of system modeling.

Note that in using the above representation, dy-
namics of each output can be modeled by a dif-
ferent number of rules, which facilitates the reduc-
tion of the total number of rules needed to model
correctly a complex system, and, therefore, facili-
tates the modeling process by reducing the number
of model parameters.

If input vector is extended in a coordinate [14, 15]
by x̃0 = 1, extended vector x̃ takes the form:

x̃ = (x̃0, x̃1, . . . , x̃n)
T

= (1, x1, . . . , xn)
T

(1)

Using the weighted average as a method of aggre-
gation and the extension of the state vector given
in (1) , the output yi generated by the set of rules
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R(l,i), can be calculated by [16, 17]:

yi(k) = hi(x(k)) =

n
∑

j=0

aji(x)x̃j(k), (2)

being aji(x) variables coefficients [18] defined by
(3), where wl

i(x) is calculated by (4) and represents
the degree of activation of the rules of fuzzy model:

aji(x) =

Mi
∑

l=1

wl
i(x)al

ji

Mi
∑

l=1

wl
i(x)

(3)

wl
i(x) =

n
∏

j=1

µl
ji(xj(k), σ

l
ji) (4)

µl
ji(xj(k), σ

l
ji) represents the j-th membership

function of the l rule for the i-th model output,
which determines the fuzzy set Al

ji. The σ
l
ji ele-

ments represent the set of adaptive parameters of
this membership function, so these values, with the
adaptive parameters of the consequents of the rules,
al

ji, shall be determined according to estimation al-
gorithm to achieve an appropriate system model.

3. Extended Kalman Filter

Kalman filter was developed by Rudolph E. Kalman
[19, 20] and allows to construct an optimal ob-
server for linear systems in presence of white noise
both in model and in measures. Subsequently, the
Kalman filter was adapted for use in nonlinear sys-
tems via extended Kalman filter [21], if the sys-
tem supports linearized models around any working
point. Although the extended Kalman filter is not
optimal, since it is based on a linear approximation
of a model and its accuracy depends heavily on the
goodness of such approximations, is a powerful tool
for estimation in environments with noise.

If we consider a nonlinear discrete system as fol-
lows:

x(k + 1) = f (x(k), u(k)) , v(k)
y(k) = g (x(k)) + e(k),

where v(k) and e(k) are white noises that represent
uncertainty both in the model of equation of state
and in output, respectively.

Being the Jacobian matrices of the system:

Φ (x(k), u(k)) =
∂f

∂x

∣

∣

∣

∣

x=x(k),u=u(k)

(5)

Γ (x(k), u(k)) =
∂f

∂u

∣

∣

∣

∣

x=x(k),u=u(k)

(6)

and

C (x(k)) =
∂g

∂x

∣

∣

∣

∣

x=x(k)

, (7)

the Extended Kalman filter can be solved by itera-
tive application of following set of equations [22]:

P(k|k) = Φ(k)P(k|k − 1)ΦT(k) + Rv (8)

K(k) =
(

Φ(k)P(k|k)CT(k) + Rve

)

(

C(k)P(k|k)CT(k) + Re

)−1 (9)

x̂(k + 1|k) = Φ(k)x̂(k|k − 1) + Γ(k)u(k)
+K(k) (y(k) − C(k)x̂(k|k − 1))

(10)

P(k + 1|k) = Φ(k)P(k|k)ΦT(k) + Rv

−K(k)
(

C(k)P(k|k)ΦT(k) + RT
ve

)

,
(11)

where x̂(·) is the estimate of state vector, and Rv,
Rve and Re are the noise covariance matrices, esti-
mated from the hope operator, E(·):

Rv = E
(

v(k)vT(k)
)

Rve = E
(

v(k)eT(k)
)

Re = E
(

e(k)eT(k)
)

The iterative process starts with an initial esti-
mate of state vector x̂(0) = m0 = E (x(0)) and
P(0) = E

(

(x(0) − m0)(x(0) − m0)T
)

being known
x(0| − 1), u(0) and y(0), and it is evolving in-line
with respect the system, obtaining a solution that
minimizes both estimation error and its covariance
matrix for the linearization obtained at each in-
stant.

4. Application of the Extended Kalman

Filter to fuzzy modeling

A so interesting application of extended Kalman fil-
ter is the adaptive identification of parameters in
nonlinear systems, which allows the in-line obtain-
ing of the adaptive parameters set of a discrete non-
linear model with noise presence and in a pseudo-
optimal way (is optimal in linear systems). The
identification of a TS fuzzy model can be seen as
the obtaining of parameters of a nonlinear model,
so the Kalman filter can be applied using the ex-
tended algorithm for estimating these parameters.

First we must raise the problem of estimation by
extended Kalman filter. For this we have to build
a system whose states depend directly on the pa-
rameters to be estimated, then we apply recursively
from (8) to (11).

Let p(k) be the set of adaptive parameters of a
fuzzy system, and y(k) the set of outputs of this
fuzzy system, the system represented in (12) al-
lows to obtain these parameters using the extended
Kalman filter. The diagram that allows the use of
extended Kalman filter for the in-line estimation of
a fuzzy model is shown in Figure 1.

p(k + 1) = p(k)
y(k) = h(x(k), p(k)) + e(k)

(12)
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Figure 1: Fuzzy modeling using the extended Kalman

filter.

Signal e(k) is the uncertainty of the measurement
of the output system and is represented by a white
noise whose covariance is determined by Re.

Thus, the first thing to do is the calculation of
Jacobian matrices of the system using (5), (6) and
(7). In applying these expressions on (12) we obtain:

Φ (p(k)) = I (13)

Γ (p(k)) = 0 (14)

C (p(k)) =
∂h

∂p

∣

∣

∣

∣

p=p̂(k)

, (15)

being p̂(k) the current estimation of the parameters
vector of the fuzzy model.

Note that, given formulation exposed in section
2, the estimation problem is to determine the val-
ues of the adaptive parameters of both antecedents,
σ

l
ji, and consequents, al

ji, of rules. Therefore, for a
TS fuzzy model, the expression h(x(k), p(k)) corre-
sponds to (2), and (15) must be obtained from the
derivative of this expression with respect to each of
adaptive parameters of the fuzzy model.

As can be seen in (2) and (3), function h(·) is
linear with respect the set of adaptive parameter of
consequents, al

ji, so:

∂hi

∂aL
JI

=























wL
I x̃J

MI
∑

l=1

wl
I

if i = I

0 if i 6= I,

where L, J and I determine the particular parame-
ter aL

JI of the possibleset of consequent parameters.
Moreover, for each parameters set of the member-
ship function of antecedent, we obtain:

∂hi

∂σ
L
JI

=

n
∑

j=0

∂











Mi
∑

l=1

wl
ia

l
ji

Mi
∑

l=1

wl
i











∂σ
L
JI

x̃j (16)

Only the I-th output depends of the σ
L
JI param-

eter, thus,
∂hi

∂σ
L
JI

= 0 if i 6= I. (17)

Developing the partial derivate of (16), and con-
sidering (17):

∂











MI
∑

l=1

wl
Ial

jI

MI
∑

l=1

wl
I











∂σ
L
JI

=

=

∂

(

MI
∑

l=1

wl
Ial

jI

)

∂σ
L
JI

MI
∑

l=1

wl
I −

∂

(

MI
∑

l=1

wl
I

)

∂σ
L
JI

MI
∑

l=1

wl
Ial

jI

(

MI
∑

l=1

wl
I

)2 ,

(18)

Considering that σ
L
JI parameter is only present

in L rule of I-th output, is easy to deduce that

∂

(

MI
∑

l=1

wl
Ial

jI

)

∂σ
L
JI

=
∂wL

I

∂σ
L
JI

aL
jI , (19)

and working in a similar way,

∂

(

MI
∑

l=1

wl
I

)

∂σ
L
JI

=
∂wL

I

∂σ
L
JI

. (20)

Replacing (19) and (20) in (18):

∂











MI
∑

l=1

wl
Ial

jI

MI
∑

l=1

wl
I











∂σ
L
JI

=

=
∂wL

I

∂σ
L
JI











aL
jI

MI
∑

l=1

wl
I −

MI
∑

l=1

wl
Ial

jI

(

MI
∑

l=1

wl
I

)2











=

=
∂wL

I

∂σ
L
JI











MI
∑

l=1

wl
I(aL

jI − al
jI)

(

MI
∑

l=1

wl
I

)2











Replacing the above expression in (16), we obtain

the final expression to calculate
∂hi

∂σ
L
JI

when i = I:

∂hI

∂σ
L
JI

=
∂wL

I

∂σ
L
JI

n
∑

j=0











MI
∑

l=1

wl
I(aL

jI − al
jI)

(

MI
∑

l=1

wl
I

)2











x̃j (21)
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Finally, to conclude the calculation of (21) is nec-
essary determine the derivative of the degree of ac-
tivation from the rules of the fuzzy model, wl

i, with
respect to each of the parameters of the antecedents.
Obviously, this calculation is dependent on the type
of membership function that is used for each an-
tecedent. However, is possible to express in a gen-
eral form:

∂wL
I

∂σ
L
JI

=
∂

∂σ
L
JI

(

n
∏

q=1

µL
qI(xq(k), σ

L
qI)

)

,

or a more developed form:

∂wL
I

∂σ
L
JI

=
∂µL

JI(xJ (k), σ
L
JI)

∂σ
L
JI

n
∏

q=1,q 6=J

µL
qI(xq(k), σ

L
qI) (22)

Note that
∂µL

JI(xJ (k), σ
L
JI)

∂σ
L
JI

in (22) represents

the derivative of the membership function that is
defined by the parameters set σ

L
JI , thus, the cal-

culation of this derivative depends on the type of
membership function used and it can be performed
from the expression that defines it. For example,
for a Gaussian membership function

µGaussian[c, β](x) = e
−

(x−c)2

β2 ,

where σ is the vector [c, β],

∂µ[c, β](x)

∂c
=

2(x − c)

β2
µGaussian[c, β](x),

and

∂µ[c, β](x)

∂β
=

2(x − c)2

β3
µGaussian[c, β](x).

Note it is not necessary that the membership
functions are differentiable, but it is enough to
be piecewise differentiable. Piecewise membership
functions could provide a jump discontinuity in its
derivative, however, since the set of singular points
is a null set. In numerical implementations this
means that it is possible to suppose that its deriva-
tive is a point infinitesimally close to the right, to
the left, or as the average of these derivatives.

5. Conclusions

First results obtained by authors to apply the ex-
tended Kalman filter in estimation of adaptive pa-
rameters of a fuzzy system completely general, i.e.
without restrictions on the size of the input or out-
put vectors, or the type or distribution of member-
ship functions used in the definition of fuzzy sets of
the model has been presented in this paper.

This article presents the solution of this problem
in a theoretical level from the state models obtained
by authors in previous works. In a forthcoming

work will present the realization of a theoretical al-
gorithm developed in this work, along with several
examples of application.

Future work seeks to make practical applications,
which will be compared for the purposes of accu-
racy and computational efficiency in a reliable way
to assess the use of extended Kalman filter in para-
metric adaptation of fuzzy systems obtained from
input/output data of a unknown system.
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