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A Simple Method for Static Load Balancing of
Parallel FDTD Codes

O. Franek1

Abstract—A static  method for balancing computational  loads
in  parallel  implementations  of  the  finite-difference  time-
domain  method  is  presented.  The  procedure  is  fairly
straightforward  and  computationally  inexpensive,  thus
providing an attractive alternative to optimization techniques.
The  method  is  described  for  partitioning  in  a  single  mesh
dimension, but it is shown that it can be adapted also for 2D
and 3D partitioning in approximate way, with good results. It
is applicable to both homogeneous and heterogeneous parallel
architectures, and can also be used for balancing memory on
distributed memory architectures.

1 INTRODUCTION

For about three decades, the computational power of
microprocessors  had  been  exponentially  growing,
thanks  to  the  largely  self-fulfilling  Moore's  law.
Increasing clock frequencies and memory capacities
had  allowed  electromagnetic  simulations  of
electrically larger objects to be finished in less time.
This was changed approximately 10 years ago, when
problems with excessive heat  dissipation forced the
chip manufacturers to start deploying multiple cores
instead of increasing clock rates. Software that wants
to utilize the new multi-core architecture now has to
be  parallelized.  Thus,  an  efficient  parallel  code,
something  that  once  was  characteristic  of
supercomputing,  has  become  a  necessity  for  all
implementations.

The  well-known  Yee  algorithm  of  the  finite-
difference  time-domain  (FDTD)  method [1]  can  be
viewed  as  easily  parallelizable.  The  discretized
electric  and  magnetic  fields  of  the  computational
domain  form  multidimensional  arrays  which  are
updated in each time step by means of nested loops,
one  for  each  dimension.  Parallelization  is  achieved
by splitting the loops and assigning computation of
portions  of  the  field  arrays  to  separate  threads
running on separate processors (cores). This is fairly
straightforward for basic FDTD operations, where all
field  components  require  the  same  amount  of
operations:  the  loops  are  divided  uniformly so  that
each thread serves a portion of the field arrays having
the same size. On ideal circumstances, the speedup of
such  multithreaded  code  will  be  approaching  the
number of threads.

However,  in  most  realistic  scenarios  the  FDTD
algorithm  contains  extra  features  such  as  field
sources,  probe  readouts,  and,  most  importantly,

dispersive and non-linear  materials,  which typically
require additional numerical operations and auxiliary
variables  throughout  the  discretization  mesh.  As  a
result, those threads that serve the non-standard parts
of  the field arrays  are loaded more and finish their
work  later,  while  the  other  threads  have  to  wait,
leading to less than optimal speedup.

We  have  faced  this  problem  while  performing
calculations on elongated domains, simulating radio
wave propagation along a wind turbine blade, using
our  in-house  parallel  FDTD  code.  To  mitigate
spurious reflections from the perfectly matched layer
(PML) boundaries at shallow angles, we were forced
to  employ up  to  50  cells  deep  PML,  which  led  to
significant  load  imbalance  between  segments
partially  or  entirely  filled  with  PML  and  those
serving the regular portions of the FDTD mesh.

Load  balancing  algorithms  can  generally  be
categorized  as  static  or  dynamic  [2].  In  a  typical
FDTD simulation, distribution of materials, sources,
probes  and  other  features  increasing  the  load  is
known  before  the  simulation  starts  and  does  not
change during the run, which allowed us to use static
load  balancing  in  this  situation.  Dynamic  load
balancing appears to be more complex to implement
on  a  memory  distributed  system  with  message
passing between the threads,  mainly due to the fact
that  the  information  on  the  materials  in  the  FDTD
mesh  needs  to  be  redistributed  when  adjusting  the
segment dimensions. Parallel FDTD algorithms with
load balancing have been reported [3–6], but mostly
utilizing  optimization  techniques,  which  we
considered  as  unnecessary  given  the  nature  of  our
problem.

In  this  contribution,  we  describe  how  we
addressed  the  load  balancing  problem  for  parallel
FDTD algorithm with 3D mesh segmentation without
resorting  to  optimization.  Being  a  fairly
straightforward  approach,  it  may  prove  useful  to
anyone writing parallelized FDTD code or other code
having  similar  characteristics  to  FDTD—the
formulation is quite general. To our best knowledge,
this approach has not yet been published.

2 METHOD DESCRIPTION

A necessary condition for implementing the proposed
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method is that the segmentation of the computational
domain  follows  a  mesh/torus  parallel  architecture,
either  homogeneous  or  heterogeneous.  In  the
following, we describe the load balancing process in
detail  for  1D  segmentation,  and  then  discuss  its
application to 2D and 3D cases.

2.1 1D Segmentation

In this case, the entire computational domain is to be
partitioned  in   number  of  segments  along  single

dimension. Let us assume that along this dimension,
each slice of the FDTD mesh numbered ,
with thickness of one cell is characterized by certain
load  density  ,  corresponding  to  the  relative
computational load of all operations in the particular
slice.  Our  objective  is  to  find  slice  numbers  of
segment boundaries , , so that the total
loads on all segments are balanced.

Following a naive approach, we could choose

. (1)

However, that would result in imbalance as the total
loads of the segments

may have generally different values due variability in
 along the mesh.
In order to achieve balanced loads we express the

cumulative loads at each slice as a function of the  
position

so  that  the  load  between  slices   and   can  be
expressed simply as

From here it follows that if we want to partition the
computational  domain in terms of loads,  we should
do  it  in  the  cumulative  load  domain  and  then
recalculate  the  segment  boundaries  in  the  mesh
domain using the inverse function

.

In  the  common  case  that  the  cluster  is
homogeneous,  we  will  divide  the  total  load  
equally  into   segments  and  translate  their
boundaries

(compare with (1)) to the mesh coordinates

.

Since the cumulative load  is a function of a discrete
variable  ,  the  inversion  will  be  accompanied  by
rounding to the nearest mesh coordinate.

For better illustration of the procedure, let us now
assume a special, yet very common case of an FDTD
domain with   continuous intervals of lengths  
with  constant  load  densities   throughout  the
intervals, where  . These intervals may
represent volumes filled with PML layers, dispersive,
or  other  media requiring more  calculations per  cell
than  the  regular  FDTD  update  equations.  Our
objective is to distribute portions of the mesh equally
among   segments  to  achieve  balanced  loads.  The

Figure 1: Example of an elongated FDTD domain with
PML layers at each end, to be partitioned into  
homogeneous segments.



procedure is  depicted  in  Fig. 1  for   volumes
(regular FDTD mesh, , with two PML layers at
opposite ends,  ) to be partitioned into

 homogeneous segments.
Given  the  definitions  of  the  media  lengths  and

load  densities  above,  we  can  express  the  mesh
positions of the media boundaries as

and the cumulative loads at the media boundaries can
be calculated as

.

The  next  step  is  to  divide  the  loads  equally  into
segments, and so the cumulative loads at the segment
boundaries will be

,

where  is the total load of the entire domain. After
we find mapping from the segment indices   to the
media indices , , such that condition

is satisfied (assuming ), we can determine the
mesh  positions   between  the  segments  with
balanced loads from

.

If  any segment covers only one media volume with
constant  load density,  then the size of that  segment
can be expressed by

,

but this simple rule does unfortunately not apply to
segments containing two or more media.

Comparing the naive and the balanced scheme, the
best case of load reduction per segment between the
two  schemes  is  given  by  the  ratio  between  the
average and maximum load densities

,

where  is the total number of cells along the mesh.

This is indeed only the best case, which occurs when
a segment in the naive scheme is fully occupied by
medium with the highest load density. Note that the
speedup of the proposed method is reciprocal to the
load reduction .

2.2 2D and 3D Segmentations

If  the  FDTD  code  is  intended  to  be  deployed  on
distributed memory machine with message passing, it
is  advisable  to  partition the domain in  all  3  spatial
dimensions  of  the  mesh,  as  this  is  expected  to
minimize the communication between the segments.
Unfortunately,  in  the  case  of  2D or  3D mesh/torus
arrangement of segments it is not generally possible
to achieve perfect load balance between the segments
and it  might  be  necessary to  resort  to  optimization
techniques to find the minimum load.

However,  we have experienced that  applying the
1D procedure described above independently on each
mesh  dimension  leads  to  segmentation  that  is  not
very far from the result obtained by optimization. For
each dimension of the mesh,  will be the number of
FDTD cells, and   will be the number of segments,
along that particular dimension. Then, we can utilize
the same procedure as  described in  section 2.1 and
achieve  sufficient  speedup,  even  in  the  2D  or  3D
case,  while  avoiding  potentially  expensive
optimization.

3 EXAMPLE

Our simulation of  ultrawideband signal  propagation
along a  wind turbine  blade  (more  details  about  the
topic can be found in [7]) required a computational
domain  with  size  764  ×  945  ×  11824  cells  (see
Fig. 2),  plus  50  cells  of  PML  in  each  direction,
exceeding  a  total  of  10  billion  mesh  cells.  The
domain was partitioned in 2 × 3 × 48 = 288 separate
processes  with  distributed  memory,  each  process
having approximately cubic-shaped array partition to
serve  for  better  efficiency  of  message  passing
between  the  processes.  For  reasons  of  simplified
addressing,  the  PML layers  in  our  FDTD code are

          
Figure 2: Elongated FDTD domain for simulation of wind turbine blade.

y = 945

x = 764

z = 11824



positioned at the upper end of all three coordinates,
with  wraparound  (periodic)  boundaries  between
them. We measured the time required to calculate one
time step as the minimum across ten first time steps
and  three  independent  attempts,  to  even  out
fluctuations caused by the computing nodes.

With  uniform partitioning,  the  last  segment  had
dimensions 432 × 348 × 248 cells, and one time step
took  5.71 s.  The  proposed  load  balancing  method
gave 389 × 291 × 164 as the size of the last segment,
with  the  remaining  domain  partitioned  uniformly,
which was exactly the same result as obtained from
optimization. The time for calculating one step was
then reduced to 4.47 s, ie. by 22 %.

Since  the  simulation  required  21000  time  steps,
the original total simulation time of approx. 33 hours
has  been  cut  by  more  than  7  hours.  This  clearly
demonstrated usefulness of the proposed method.

4 CONCLUSION

It  has  been  shown  that  the  proposed  method  of
balancing the load for  parallel  FDTD method gives
significant  improvement  in  running  times  and  its
results compare well with optimization, while being
straightforward  and  computationally  inexpensive
procedure.  Although  tested  only  on  homogeneous
architecture, the formulation is general enough to be
equally  applicable  to  heterogeneous  architectures.
Finally, it should also be noted that the method is not
limited to balancing the computational load—it may
as well be used to balance memory requirements on
distributed memory parallel architectures.
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