

Aalborg Universitet

A Simple Method for Static Load Balancing of Parallel FDTD Codes

Franek, Ondrej

Published in:
Electromagnetics in Advanced Applications (ICEAA), 2016 International Conference on

DOI (link to publication from Publisher):
10.1109/ICEAA.2016.7731461

Publication date:
2016

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Franek, O. (2016). A Simple Method for Static Load Balancing of Parallel FDTD Codes. In Electromagnetics in
Advanced Applications (ICEAA), 2016 International Conference on (pp. 587-590). IEEE. DOI:
10.1109/ICEAA.2016.7731461

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60670765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ICEAA.2016.7731461
http://vbn.aau.dk/en/publications/a-simple-method-for-static-load-balancing-of-parallel-fdtd-codes(8b96dfb3-81b1-4ac8-b29b-c6de732a7040).html

A Simple Method for Static Load Balancing of
Parallel FDTD Codes

O. Franek1

Abstract—A static method for balancing computational loads
in parallel implementations of the finite-difference time-
domain method is presented. The procedure is fairly
straightforward and computationally inexpensive, thus
providing an attractive alternative to optimization techniques.
The method is described for partitioning in a single mesh
dimension, but it is shown that it can be adapted also for 2D
and 3D partitioning in approximate way, with good results. It
is applicable to both homogeneous and heterogeneous parallel
architectures, and can also be used for balancing memory on
distributed memory architectures.

1 INTRODUCTION

For about three decades, the computational power of
microprocessors had been exponentially growing,
thanks to the largely self-fulfilling Moore's law.
Increasing clock frequencies and memory capacities
had allowed electromagnetic simulations of
electrically larger objects to be finished in less time.
This was changed approximately 10 years ago, when
problems with excessive heat dissipation forced the
chip manufacturers to start deploying multiple cores
instead of increasing clock rates. Software that wants
to utilize the new multi-core architecture now has to
be parallelized. Thus, an efficient parallel code,
something that once was characteristic of
supercomputing, has become a necessity for all
implementations.

The well-known Yee algorithm of the finite-
difference time-domain (FDTD) method [1] can be
viewed as easily parallelizable. The discretized
electric and magnetic fields of the computational
domain form multidimensional arrays which are
updated in each time step by means of nested loops,
one for each dimension. Parallelization is achieved
by splitting the loops and assigning computation of
portions of the field arrays to separate threads
running on separate processors (cores). This is fairly
straightforward for basic FDTD operations, where all
field components require the same amount of
operations: the loops are divided uniformly so that
each thread serves a portion of the field arrays having
the same size. On ideal circumstances, the speedup of
such multithreaded code will be approaching the
number of threads.

However, in most realistic scenarios the FDTD
algorithm contains extra features such as field
sources, probe readouts, and, most importantly,

dispersive and non-linear materials, which typically
require additional numerical operations and auxiliary
variables throughout the discretization mesh. As a
result, those threads that serve the non-standard parts
of the field arrays are loaded more and finish their
work later, while the other threads have to wait,
leading to less than optimal speedup.

We have faced this problem while performing
calculations on elongated domains, simulating radio
wave propagation along a wind turbine blade, using
our in-house parallel FDTD code. To mitigate
spurious reflections from the perfectly matched layer
(PML) boundaries at shallow angles, we were forced
to employ up to 50 cells deep PML, which led to
significant load imbalance between segments
partially or entirely filled with PML and those
serving the regular portions of the FDTD mesh.

Load balancing algorithms can generally be
categorized as static or dynamic [2]. In a typical
FDTD simulation, distribution of materials, sources,
probes and other features increasing the load is
known before the simulation starts and does not
change during the run, which allowed us to use static
load balancing in this situation. Dynamic load
balancing appears to be more complex to implement
on a memory distributed system with message
passing between the threads, mainly due to the fact
that the information on the materials in the FDTD
mesh needs to be redistributed when adjusting the
segment dimensions. Parallel FDTD algorithms with
load balancing have been reported [3–6], but mostly
utilizing optimization techniques, which we
considered as unnecessary given the nature of our
problem.

In this contribution, we describe how we
addressed the load balancing problem for parallel
FDTD algorithm with 3D mesh segmentation without
resorting to optimization. Being a fairly
straightforward approach, it may prove useful to
anyone writing parallelized FDTD code or other code
having similar characteristics to FDTD—the
formulation is quite general. To our best knowledge,
this approach has not yet been published.

2 METHOD DESCRIPTION

A necessary condition for implementing the proposed

1 APNet Section, Department of Electronic Systems, Faculty of Engineering and Science, Aalborg University, Niels Jernes Vej 12, DK-9220
Aalborg Ø, Denmark, e-mail: of@es.aau.dk, tel.: +45 9940 9837, fax: +45 9815 1583.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

method is that the segmentation of the computational
domain follows a mesh/torus parallel architecture,
either homogeneous or heterogeneous. In the
following, we describe the load balancing process in
detail for 1D segmentation, and then discuss its
application to 2D and 3D cases.

2.1 1D Segmentation

In this case, the entire computational domain is to be
partitioned in number of segments along single

dimension. Let us assume that along this dimension,
each slice of the FDTD mesh numbered ,
with thickness of one cell is characterized by certain
load density , corresponding to the relative
computational load of all operations in the particular
slice. Our objective is to find slice numbers of
segment boundaries , , so that the total
loads on all segments are balanced.

Following a naive approach, we could choose

. (1)

However, that would result in imbalance as the total
loads of the segments

may have generally different values due variability in
 along the mesh.
In order to achieve balanced loads we express the

cumulative loads at each slice as a function of the
position

so that the load between slices and can be
expressed simply as

From here it follows that if we want to partition the
computational domain in terms of loads, we should
do it in the cumulative load domain and then
recalculate the segment boundaries in the mesh
domain using the inverse function

.

In the common case that the cluster is
homogeneous, we will divide the total load
equally into segments and translate their
boundaries

(compare with (1)) to the mesh coordinates

.

Since the cumulative load is a function of a discrete
variable , the inversion will be accompanied by
rounding to the nearest mesh coordinate.

For better illustration of the procedure, let us now
assume a special, yet very common case of an FDTD
domain with continuous intervals of lengths
with constant load densities throughout the
intervals, where . These intervals may
represent volumes filled with PML layers, dispersive,
or other media requiring more calculations per cell
than the regular FDTD update equations. Our
objective is to distribute portions of the mesh equally
among segments to achieve balanced loads. The

Figure 1: Example of an elongated FDTD domain with
PML layers at each end, to be partitioned into
homogeneous segments.

procedure is depicted in Fig. 1 for volumes
(regular FDTD mesh, , with two PML layers at
opposite ends,) to be partitioned into

 homogeneous segments.
Given the definitions of the media lengths and

load densities above, we can express the mesh
positions of the media boundaries as

and the cumulative loads at the media boundaries can
be calculated as

.

The next step is to divide the loads equally into
segments, and so the cumulative loads at the segment
boundaries will be

,

where is the total load of the entire domain. After
we find mapping from the segment indices to the
media indices , , such that condition

is satisfied (assuming), we can determine the
mesh positions between the segments with
balanced loads from

.

If any segment covers only one media volume with
constant load density, then the size of that segment
can be expressed by

,

but this simple rule does unfortunately not apply to
segments containing two or more media.

Comparing the naive and the balanced scheme, the
best case of load reduction per segment between the
two schemes is given by the ratio between the
average and maximum load densities

,

where is the total number of cells along the mesh.

This is indeed only the best case, which occurs when
a segment in the naive scheme is fully occupied by
medium with the highest load density. Note that the
speedup of the proposed method is reciprocal to the
load reduction .

2.2 2D and 3D Segmentations

If the FDTD code is intended to be deployed on
distributed memory machine with message passing, it
is advisable to partition the domain in all 3 spatial
dimensions of the mesh, as this is expected to
minimize the communication between the segments.
Unfortunately, in the case of 2D or 3D mesh/torus
arrangement of segments it is not generally possible
to achieve perfect load balance between the segments
and it might be necessary to resort to optimization
techniques to find the minimum load.

However, we have experienced that applying the
1D procedure described above independently on each
mesh dimension leads to segmentation that is not
very far from the result obtained by optimization. For
each dimension of the mesh, will be the number of
FDTD cells, and will be the number of segments,
along that particular dimension. Then, we can utilize
the same procedure as described in section 2.1 and
achieve sufficient speedup, even in the 2D or 3D
case, while avoiding potentially expensive
optimization.

3 EXAMPLE

Our simulation of ultrawideband signal propagation
along a wind turbine blade (more details about the
topic can be found in [7]) required a computational
domain with size 764 × 945 × 11824 cells (see
Fig. 2), plus 50 cells of PML in each direction,
exceeding a total of 10 billion mesh cells. The
domain was partitioned in 2 × 3 × 48 = 288 separate
processes with distributed memory, each process
having approximately cubic-shaped array partition to
serve for better efficiency of message passing
between the processes. For reasons of simplified
addressing, the PML layers in our FDTD code are

Figure 2: Elongated FDTD domain for simulation of wind turbine blade.

y = 945

x = 764

z = 11824

positioned at the upper end of all three coordinates,
with wraparound (periodic) boundaries between
them. We measured the time required to calculate one
time step as the minimum across ten first time steps
and three independent attempts, to even out
fluctuations caused by the computing nodes.

With uniform partitioning, the last segment had
dimensions 432 × 348 × 248 cells, and one time step
took 5.71 s. The proposed load balancing method
gave 389 × 291 × 164 as the size of the last segment,
with the remaining domain partitioned uniformly,
which was exactly the same result as obtained from
optimization. The time for calculating one step was
then reduced to 4.47 s, ie. by 22 %.

Since the simulation required 21000 time steps,
the original total simulation time of approx. 33 hours
has been cut by more than 7 hours. This clearly
demonstrated usefulness of the proposed method.

4 CONCLUSION

It has been shown that the proposed method of
balancing the load for parallel FDTD method gives
significant improvement in running times and its
results compare well with optimization, while being
straightforward and computationally inexpensive
procedure. Although tested only on homogeneous
architecture, the formulation is general enough to be
equally applicable to heterogeneous architectures.
Finally, it should also be noted that the method is not
limited to balancing the computational load—it may
as well be used to balance memory requirements on
distributed memory parallel architectures.

Acknowledgment

This work was supported by the Innovation Fund
Denmark (InnovationsFonden) project of “Intelligent
Rotor for Wind Energy Cost Reduction” (project
code 34-2013-2). The author also gratefully
acknowledges the support from the Danish e-

Infrastructure Cooperation (DeIC) for the Linux
cluster “Fyrkat” at Aalborg University, Denmark.

References

[1] A. Taflove, and S. C. Hagness, Computational
Electrodynamics: The Finite-Difference Time-
Domain Method, Artech House, 3rd ed., 2005.

[2] C. Xu, and F.C. Lau, Load Balancing in Parallel
Computers: Theory and Practice, Springer
Science & Business Media, 1996.

[3] S.A. Seguin, M.A. Cracraft, and J.L. Drewniak,
“Static and quasi-dynamic load balancing in
parallel FDTD codes for signal integrity, power
integrity, and packaging applications,” in IEEE
International Symposium on Electromagnetic
Compatibility, vol. 1, Aug. 2004, pp. 107–112.

[4] H. Wang, A. Trakic, L. Xia, F. Liu, and
S. Crozier, “An MRI dedicated parallel FDTD‐
scheme,” Concepts in Magnetic Resonance Part
B: Magnetic Resonance Engineering, vol. 31,
no. 3, 2007, pp. 147–161.

[5] R. Shams, and P. Sadeghi, “On optimization of
finite-difference time-domain (FDTD)
computation on heterogeneous and GPU
clusters,” Journal of Parallel and Distributed
Computing, vol. 71, no. 4, 2011, pp. 584–593.

[6] N. Zakaria, A.J. Pal, and S.N.M. Shah,
“Stagewise optimization of distributed clustered
finite difference time domain (FDTD) using
genetic algorithm,” International Journal of
Innovative Computing, Information and Control,
vol. 9, no. 6, June 2013, pp. 2303–2326.

[7] O. Franek, S. Zhang, T.L. Jensen, P.C.F. Eggers,
K. Olesen, C. Byskov, and G.F. Pedersen, “Wind
Turbine Blade Deflection Sensing System Based
on UWB Technology,” in International
Conference on Electromagnetics in Advanced
Applications (ICEAA), 2016. (submitted)

