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Abstract

In this thesis we design iterative signal processing algorithms for OFDM re-
ceivers operating in cellular communication systems. The focus is on receiver
algorithms capable of coping with harsh propagation and interference condi-
tions, where traditional receiver designs perform poorly. Such conditions in-
clude channels with maximum excess delay exceeding the duration of the cyclic
prefix, highly Doppler dispersive channels, and severe co-channel interference.
These conditions cause intersymbol and/or intercarrier and co-channel interfer-
ence which severely impair the performance of traditional receivers. We treat
these problems from the perspective of designing algorithms for interference-
aware receivers operating in 4G-like systems. However, the relevance of our
solutions extends beyond the 4G use case as we expect such interference sce-
narios to become increasingly frequent and important with the deployment of
the upcoming 5G systems.

To combat the different types of interference, we advocate that a joint design
of the receiver processing that accounts for the interfering signals is required. To
realize this joint design, we use tools from compressed sensing and variational
Bayesian inference. By exploiting the assumption that the channel impulse re-
sponse consists of a few non-negligible multipath components, i.e. is sparse, we
formulate the channel estimation as a sparse signal reconstruction problem and
employ techniques from sparse Bayesian inference to solve it. Then, using vari-
ational inference we embed the sparse channel estimator in iterative structures
that include the rest of the receiver’s tasks: interference cancellation, equaliza-
tion and data decoding. Numerical evaluations conducted in setups simulating
the above harsh conditions show that the receivers implementing the proposed
algorithms successfully reconstruct and cancel the interference and perform
closely to receivers with perfect interference cancellation capabilities.

To conclude, we highlight the role of interference-aware receiver algorithms
in 5G systems. Current and previous cellular systems have adopted a conser-
vative design strategy, in which interference-free reception at the user devices
is prioritized at the expense of spectral efficiency. This design has been made
with the goal of allowing for low-cost user devices. The increased spectral
efficiency requirements and the deployment of dense, heterogeneous cellular
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networks expected for 5G systems however, challenge such a design. To meet
the future system’s targets, it is expected that 5G systems will move part of the
computational power demands to the user devices in order to allow for greater
flexibility on the network side. With this in mind, advanced receivers imple-
menting algorithms like those developed in this work are potential enablers of
a device-centric system architecture.



Resumé

I denne afhandling designer vi iterative signalbehandlingsalgoritmer til OFDM
modtagere i cellulære kommunikationssystemer. Fokus er på modtager algo-
ritmer der kan håndtere barske kanal og interferens betingelser, hvor tradi-
tionelle modtagere ikke fungerer. Dette inkluderer trådløse kanaler med mak-
simal forsinkelse der overstiger varigheden af det cykliske præfiks, kanaler med
stor Dopplerspredning og svær ko-kanalinterferens. Sådanne kanaler giver in-
tersymbol og/eller intercarrier og ko-kanalinterferens som alvorligt forringer
ydeevnen af traditionelle modtagere. Vi behandler disse problemer ved at de-
signe algoritmer til 4G-lignende systemer, der kan håndtere interferensen. Rel-
evansen af vores løsninger strækker sig ud over 4G systemer, hvor vi forventer
sådanne interferens scenarier vil blive hyppigere og vigtigere med introduktio-
nen af kommende 5G-systemer.

For at bekæmpe de forskellige typer af interferens, er vi fortalere for et
samlet design af modtageren, der tager højde for de interfererende signaler.
For at realisere dette samlede design bruger værktøjer fra komprimeret sensing
og variational Bayesiansk inferens. Ved at antage at kanal impuls responset
består af nogle få dominerende multipath komponenter, dvs. er sparsom, kan
vi formulere kanal estimeringen som en sparsom rekonstruktion og anvende
teknikker fra sparsomme Bayesiansk inferens for at løse det. Derefter bruger
vi variationel inferens til at integrere den sparsomme kanal estimator i iter-
ative strukturer, der omfatter resten af receiverens opgaver: annullering af
interferens, kanal korrektion samt afkodning af data. Numeriske evalueringer
der simulerer de ovennævnte barske kanal forhold viser at de foreslåede mod-
tager algoritmer kan rekonstruere og annullere interferensen således de opnår
en ydeevne tæt på den der opnås med algoritmer der perfekt kan annullere
interferensen.

Afslutningsvis fremhæver vi interferens-opmærksomme modtager algorit-
mers rolle i 5G-systemer. Nuværende og tidligere cellulære systemer har an-
vendt en konservativ design strategi, hvor interferens-fri modtagelse på brugeren-
hederne prioriteres på bekostning af spektral effektivitet. Dette design er blevet
anvendt for at tillade billige brugerenheder. De øgede krav til spektral effek-
tivitet og indsættelsen af tætte heterogene cellulære netværk, der forventes i
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5G-systemer, anfægter en sådan konstruktion. For at imødekomme de frem-
tidige systemkrav, forventes det at 5G systemer vil øge beregningskravet til
brugerenhederne for at give større fleksibilitet på netværkssiden. Med dette i
tankerne, er avancerede modtagere algoritmer, som dem der udvikles i dette
arbejde, potentielle katalysatorer for en brugerenheds-centreret system arkitek-
tur.
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Chapter 1

Background and Thesis
Overview

In this chapter we discuss the design of the current mobile communication sys-
tems and the motivation for deploying the next generation of wireless systems
known under the generic name of 5G. In this context, we present the main
drivers and requirements for 5G, together with some of the challenges that
they will likely impose on the design of the upcoming wireless receivers. We
dedicate the second and third sections of this chapter to a presentation of the
methodology and the structure of this thesis.

1 Brief overview of 5G trends
The design of the future 5G cellular systems is driven by a rapid increase
of the number of active users in the network consuming multimedia content.
Often, this content has to be delivered to a user equipment operating at high
velocities, or at cell-edge. In addition, the number of nodes operating in the
network is expected to increase dramatically, since not only human users will
be connected. The emergence of machine-type communication will require
that the systems allow access to an unprecedentedly high number of devices
which inevitably impose big challenges in terms of latency and reliability of the
network: while machines connected to the network may not have very stringent
bit rate requirements, their operation may be very sensitive to latency and
connectivity (e.g. alert and control systems).

Ensuring high data rates and/or low latency in these scenarios is a chal-
lenging task for the current 4G cellular systems. Therefore standardization
efforts are put towards specifying a set of requirements to enable an enhanced
cellular system design, and thus the evolution from 4G to 5G systems. The

3



1. Brief overview of 5G trends

new system is expected to deliver data rates of 10+ Gbps and ensure at least
100 Mbps and very low latency (< 1ms) in a network in which the mobile data
traffic is doubling every year [1]. These stringent requirements lead to several
research initiatives likely to influence the 5G design. The authors of [2] call
them “disruptive” trends, emphasizing the idea that only with the redesign of
the system’s architecture these goals can truly be achieved. We briefly dis-
cuss them in the following and point the reader to [2, 3] for a more thorough
analysis.

Millimeter wave communication: With the exhaustion of the microwave
frequencies by the current wireless systems, the community has turned its atten-
tion towards millimeter wave (mmW) frequencies, unappealing up to recently
due to the severe propagation conditions (high path loss and absorption). How-
ever, the deployment of a hybrid architecture consisting of small outdoor cells
and isolated indoor cells, and the advancement in antenna techniques make
these propagation challenges surmountable. To support this claim, the results
of outdoor measurement campaigns [4] showed that the above conditions do
not significantly impact the propagation of mmW for cells with radius of ∼ 200
m, demonstrating the feasibility of using this spectrum in small cells.

Massive MIMO: Also known as large scale antenna systems, massive MIMO
refers to systems in which the number of antennas at the base station is much
larger than the number of users simultaneously allocated to a time-frequency
resource [5]. The increased spectral efficiency and the vanishing of noise and
interference when the number of antennas grows infinitely large, make massive
MIMO an appealing technology. However, its deployment requires not only a
full and costly redesign of the hardware structure of the base station, but also
enhancing its signal processing capabilities, e.g. the acquisition of the channel
state information at the base station becomes challenging as the reuse of pilots
across neighboring cells creates pilot contamination.

Increased densification: The deployment of uncoordinated small cells, the
increase of density of active mobile users in the network, and the emergence of
device-to-device communication are all predicted features of the 5G systems.
They all however entail the simultaneous usage of time-frequency resources by
different devices, and therefore they incur the cost of increased co-channel in-
terference. Combating this type of interference is a highly investigated topic
and solutions range from precoding-based interference management at the base
station to interference cancellation at the user terminal [6]. However, the het-
erogeneity of the 5G network and the ad-hoc deployment of the indoor small
cells make the interference avoidance task more complicated than ever, requir-
ing flexible solutions both at the base station and at the mobile device.

4



2. Problem statement and research methodology
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Fig. 1.1: Power spectral density (PSD) for an OFDM waveform with subcarrier spacing of
(A) 1/T and (B) 0.8/T , also called packed-OFDM, where T is the OFDM symbol duration.

Advanced receivers: Also called smart devices, their emergence is favored
by the receiver-oriented 5G design and by the fast-paced evolution of the pro-
cessing capabilities of the modem [7]. These receivers should be able to cope
not only with the ripples of network densification but also operate in very high
mobility scenarios. Furthermore, given the widespread adoption and well un-
derstanding of OFDM for cellular systems, this technology stays in the compe-
tition for 5G waveforms [3]. To increase the spectral efficiency, OFDM might
suffer changes such as shortening/discarding the cyclic prefix, reducing the
subcarrier spacing (see the example in Fig. 1.1 and [3] for a more detailed
discussion), etc. making the receiver prone to intercarrier and intersymbol in-
terference. All these conditions challenge the operation of the OFDM receiver
and require the redesign of the algorithms implemented in it.

While the technologies listed above are expected to impact the deployment
of 5G systems, combining them in a successful system design will undoubtedly
be a challenging task, both technologically and economically, requiring the
cooperation of standardization, academic and industry bodies.

2 Problem statement and research methodol-
ogy

In this work, we are focusing on the challenges that the severe interference con-
ditions pose on the functioning of the wireless receiver. Namely, we investigate
the operation under self-interference, due to delay- and Doppler- dispersion in
the channel, and co-channel interference. These conditions already pose prob-
lems to the operation of 4G modems and, as discussed in this chapter, they will
be drivers for the evolution towards 5G systems. Furthermore, although yet to
be defined, the 5G systems are likely to bear some resemblance to 4G, by utiliz-
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3. Thesis structure

Derivation of a signal
model tailored to
the studied inter-
ference conditions.

1

Derivation of an
estimation model.

2
Proposed design
of a receiver al-
gorithm using 2.

3
Testing of the

solution proposed in
3 through simulations

in the conditions
specified in 1.

4

Chapter 2 Chapter 3
Chapter 4

Fig. 1.2: Research methodology

ing similar technologies, e.g. OFDM-like transmission. Finally, encouraged by
the evolution towards advanced receivers, we design receiver algorithms able to
cope with these harsh conditions by relying on study cases of 4G-like systems.
Choosing these study cases allows us to clearly formulate the problem, design
appropriate solutions, test them and draw conclusions which will allow us in the
future to devise receiver solutions in the 5G setup – once all its “ingredients”
have been specified.

We apply the methodology described in Fig. 1.2 to conduct our studies
of receiver design for the above conditions: each study consists of deriving a
signal model and a subsequent approximate model which enable us to cast a
simple probabilistic model. Based on the latter we design receiver algorithms
which we finally test through simulations using the initial signal model. This
methodology can be recognized in each of the articles (Papers A-D) that con-
form the main contribution of the thesis. In addition, the remaining chapters
of Part I follow this methodology by offering insights into: the formulation of
each studied problem (Chapter 2), the mathematical tools used in the design
of the solutions (Chapter 3), and the conclusions of our studies (Chapter 4).

Lastly, this project is a joint endeavor meant to facilitate the knowledge
exchange between industry and academia. The study of the above harsh in-
terference conditions and the consequential algorithm development enable us
to formulate conclusions that the chip manufacturers can use as guidelines to
revise the design of the baseband modems for the current cellular systems and
develop an enhanced design for the future generations of modems.

3 Thesis structure
The remainder of this thesis is organized as follows.

Part I consists of Chapter 1 (this chapter) to Chapter 4.

Chapter 2 analyzes three main causes of interference studied in this thesis.
The analysis is made in the context of 4G with an outlook towards 5G systems,

6



3. Thesis structure

the deployment of which is expected to make the interference problem even
more severe. Each section of the chapter discusses one of the three causes:
Section 1 looks at the operation of the receiver in OFDM systems with reduced
(or discarded) CP. Section 2 deals with the transmission over highly Doppler
dispersive channels and Section 3 treats the co-channel interference problem
arising from the synchronous usage of the same time-frequency resources by
several users. Lastly, Section 4 introduces some strategies for dealing with
interference by going beyond the conventional capabilities of current receivers.

Chapter 3 discusses the mathematical tools used in the design of solutions
to the problems enunciated in Chapter 2. Section 1 introduces variational
Bayesian inference for solving joint optimization problems and presents the
mean-field belief-propagation framework that we use in the design of the re-
ceiver algorithms. Section 2 presents the sparse Bayesian inference methodol-
ogy and background. The chapter ends with examples of how these tools have
been applied in the field of wireless communications.

Chapter 4 lists the main contributions of this thesis and summarizes the
conclusions of the study.

Part II includes the papers A to D the contributions of which have been
listed in Chapter 4.

In this chapter we introduced the main 5G trends and challenges. Given the
broadness of this topic and the ongoing standardization efforts, we limited the
discussion to general concepts that are believed to influence the deployment of
the new system and discussed the impact of the interference on the operation of
the receiver. We will retake in more detail the interference analysis, e.g. types,
causes, and discuss solutions to mitigate it in the next chapters following the
structure presented above.
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Chapter 2

Severe Interference in
OFDM: an Outlook
Towards 5G

In this chapter we bring forward three interference scenarios which encum-
ber the operation of the wireless OFDM receiver. Already relevant in the
4G context, these scenarios represent particularly important challenges for 5G
systems, the deployment of which will make them frequent use cases. In the
following, we discuss how interference impairs the receiver performance in these
scenarios, and what design changes the receiver algorithm needs to undergo in
order to overcome the performance degradation.

In Section 1 we discuss the self-interference arising as a result of utilizing a
cyclic prefix (CP) of insufficient duration. In Section 2 we tackle the intercar-
rier interference problem arising when operating over highly Doppler-dispersive
channels, while in Section 3 we discuss co-channel interference as a result of
network densification.

1 Towards a shorter cyclic prefix
The wireless CP-OFDM transmitter generates OFDM waveforms including a
cyclic prefix (CP) from a transmit bit stream. As long as the duration of the CP
is larger than the maximum excess delay of the multipath wireless channel, the
transmission is interference free. The insertion of CP is however a compromise
solution since it results in spectral efficiency loss which is directly proportional
to the CP duration. Two characteristics of the OFDM waveform are preserved
at reception: (i) the subcarriers remain orthogonal to each other and (ii) no
previous OFDM waveforms overlap with the current one. These characteristics

9



1. Towards a shorter cyclic prefix

are fundamental to the operation of the classical wireless receiver whose entire
design is based on the assumption that (i) and (ii) are always true. What (i)
and (ii) imply is that the observed signal at any subcarrier is the transmit
signal at the same subcarrier weighted by the corresponding channel gain and
corrupted by noise. The resulting structure of the observed signal is one of the
advantages of the OFDM transmission and enables the receiver to implement
a simple and fast equalization scheme, and to operate on the received signal in
a sequential manner: estimate channel responses using apriori known symbols
(pilots), equalize, demodulate and decode. This is an appealing property of
the technology, and together with its widespread usage in wireless networks is
a strong argument that favors the adoption of OFDM in 5G.

However, since the spectrum has become an expensive commodity, OFDM
spectral efficiency could be improved by relaxing the orthogonality require-
ments and/or by shortening or even removing the CP. Such a departure from
OFDM is made at the expense of introducing intercarrier and intersymbol in-
terference (generically called self-interference). Nevertheless, allowing for some
amount of self-interference and properly equipping the receiver to deal with
it, might prove to be a beneficial strategy. In fact, the wireless community
is already advocating the design of so-called advanced receivers endowed with
higher computational power and that implement algorithms capable of more
complex equalization and decoding [2, 7, 8].

Following the above reasoning, one part of our work studies the design of
receiver algorithms that cope with self-interference arising from CP of insuf-
ficient duration in OFDM systems. Two arguments motivate our choice: (a)
this situation, although not very frequently, does occur in currently deployed
4G systems, and (b) since the problem is likely to become increasingly relevant
in a 5G context, the conclusions of our study could provide useful insights into
the design of the future receivers. Therefore, having laid out the setting of this
study, we pose the following questions:
• How can accurate channel state information still be acquired when the
pilots are also corrupted by intercarrier and intersymbol interference?

• How can accurate equalization of a received signal corrupted by self-
interference be performed?

The straightforward answer to the two questions above is that the presence of
self-interference calls for a rethinking of the classical receiver design. Channel
estimation, equalization and decoding should be treated as a joint task by an
interference aware receiver, which means that channel responses and data esti-
mates need to be refined iteratively. However, since highly inaccurate estimates
are expected to be computed in the first iterations, to really benefit from such
a structure, a receiver algorithm should account for the uncertainties in these
estimates. This can be accomplished by using soft values for both the chan-
nel and data estimates. Although rarely used in the context of self-interfering
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OFDM transmission due to insufficient CP length, the idea of operating with
soft data estimates to iteratively cancel the interference has been previously
explored [9, 10]. Harnessing this idea however was made without changing
the underlying design of the receiver, traditionally based on breaking down
the task of recovering the transmitted information bits into smaller indepen-
dent subtasks such as channel estimation, equalization and decoding. Hence,
such designs rely on the assumption that accurate channel state information
is available at the receiver prior to equalization. As we have discussed above,
this assumption is completely unrealistic since the pilots are corrupted by in-
terference and they do not provide a dense enough sampling to capture the
strongly selective behavior of the channel frequency response. In this work
we move away from such a design and formulate a joint optimization problem
employing the tools described in Chapter 3.

2 Towards receivers for high Doppler scenarios
In this section we discuss the operation of the wireless receiver in highly
Doppler-dispersive environments. The motivation for this study is two-fold:

i) 4G/LTE systems have been designed to support mobility but not to si-
multaneously optimize for performance. Namely, the design of the OFDM re-
ceiver relies on the assumption that strict subcarrier orthogonality is preserved,
and coping with scenarios in which intercarrier interference severely affects the
quality of the reception is accomplished through retransmissions, adapting the
modulation and coding scheme etc. Aiming for low complexity receivers, 4G
system design promotes trading off spectral efficiency for reliability. However,
with the expected increase in computational power in the mobile devices, an
interference-aware receiver, able to cancel or reject the interference from the
received signal, might represent a viable compromise solution for the future.

ii) In 5G systems, solutions for coping with high-Doppler are much more
relevant due to the emergence of two trends: 1) operation at mmW frequen-
cies and 2) high performance for high velocity users. On the one hand, the
scarcity of the microwave spectrum makes the utilization of the frequencies in
the 3 – 300 GHz range inevitable for the future 5G systems [2]. On the other
hand, 5G systems need to ensure a good receiver performance in very high
mobility scenarios, e.g. car or train to infrastructure communication, which
are increasingly common [11]. It is important to note that 1) and 2) do not
occur simultaneously, since the usage of mmW is reserved for small cells accom-
modating users with low or moderate mobility, while high speed users will be
served by base stations operating in microwave frequency bands. Nevertheless,

11



3. Coping with network densification

each trend considered individually forces the receiver to operate over highly
Doppler dispersive channels.

In this work, we study the design of receivers operating over high-Doppler
channels in 4G-like systems. We expect that the obtained conclusions will be
useful to the design of both the waveforms and parameters of 5G systems,
and their corresponding receivers. The classical OFDM receiver operating over
such channels experience intercarrier interference, a condition for which it has
not been designed. Since the interference affects both data and pilot subcar-
riers, the performance of both the channel estimator and the decoder will be
affected, and a similar situation as that discussed in Section 1 arises. During
one OFDM symbol, the receiver observes at subcarrier k a signal yk which is
the superimposition of the transmit symbol xp at every subcarrier, indexed
by p, each weighted by a channel gain Hk,p and corrupted by AWGN wk:
yk = Hk,kxk +

∑
p 6=kHk,pxp + wk. At high Doppler frequencies, the rapid

time-varying channel impulse response incurs the loss of subcarrier orthogonal-
ity and thus a power leakage among all subcarriers. A visual representation of
this effect is given in Fig. 2.1.

Historically, canceling intercarrier interference has been treated as an equal-
ization problem and solutions have been designed under the assumption that
accurate channel state information is available [12–15]. In a system in which
pilot symbols are multiplexed in frequency with data symbols this assumption
is not justified. Our solution relies on the design of algorithms which account
for the Doppler effect both when acquiring the channel state information and
when equalizing the signal [16, 17]. In our work we follow this approach and
find answers to the following questions:

• What channel features can a receiver algorithm exploit to reconstruct the
time variations of the channel response?

• What is the performance improvement of an iterative scheme that uses
soft symbol estimates to refine the channel estimates and vice versa?

3 Coping with network densification
The emergence of 5G systems favors a heterogeneous network architecture, in
which ad-hoc densely deployed small cells, that share the spectrum with each
other and with the overlay network create co-channel interference [1, 18]. The
network heterogeneity makes the interference much harder to mitigate using
network-level interference management schemes as previous cellular systems
do. This is only one of the 5G scenarios which favors the occurrence of co-
channel interference. Another one is the increased number of user equipments
simultaneously active that operate in the vicinity of each other, but belong to
different networks (i.e. are served by base stations which do not cooperate). Ei-
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3. Coping with network densification

Fig. 2.1: Sampled channel transfer function F (tn, fk) (top left and right), and entries of
the channel frequency matrix H (bottom left and right), corresponding to one realization of
the channel impulse response h(t, τ ) =

∑L

l=1 hl exp(2πjflt)δ(τ − τl) for different maximum
Doppler frequencies. The time-varying channel impulse response consists of L multipath
components, where hl, fl = νDfs cos θl and τl are respectively the complex weight, Doppler
shift and delay of the lth multipath component, Ts is the sampling time of the system, fs
is the subcarrier spacing and νD is the maximum Doppler shift normalized to fs, tn =
nTs, fk = kfs.
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ther scenarios imply a large number of wireless devices causing to the so-called
phenomenon of “network densification”. Studies of this phenomenon and its
implications gained popularity in recent years and the tremendous number of
research articles dealing with co-channel interference stands proof of that. Since
it became a thoroughly investigated research topic, diverse solutions to cope
with interference have been proposed and they range from system redesign
to distributed processing among mutually interfered devices, see [19–21] and
the references therein. One can claim that a common denominator of these
solutions is the 5G-favored “device centric architecture” supported by the de-
velopment of smart devices of high computational power i.e. the advanced
receivers [2].

Given the broadness of this topic, we restrain the discussion to solutions
that challenge the redesign of the classical wireless MIMO OFDM receiver.
We further narrow down the scope to consider only algorithms that cancel
interference locally without cooperating with the interferers. We study the
scenario in which several devices are synchronously receiving data in the same
frequency bands and given their proximity, they interfere on each other. In
this case, the receiver, being interference aware, has two main options: either
to neglect the interference or to attempt at estimating and canceling it. In this
work, we are seeking answers to the following research questions:

• When estimating the MIMO sub-channels, of either desired or interfering
users, which are the channel features that can be leveraged to design the
channel estimator?

• When the receiver has access to the modulation alphabets and codes
of the interferers, to what extent does it benefit from exploiting this
information (e.g. to estimate the interfering signals). Otherwise, what
alternative approaches can the receiver undertake to estimate and cancel
co-channel interference?

4 Receiver design following the 5G trends
The take-home message from the presentation of the development trends to-
wards 5G from Sections 1, 2, and 3 is that interference (be it self-induced or
of multiuser nature) will be increasingly common in the future wireless com-
munication systems and will impose important challenges on the design of the
5G receiver. This receiver has to acquire accurate channel information and
accurately estimate the desired bit stream using signals corrupted by inter-
ference. Since the two tasks are interdependent, there is a need for a design
that accounts for interference both when performing channel estimation and
detection. In the following we introduce two approaches which enable such a
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Fig. 2.2: Magnitudes of (A) a realization of a sparse channel impulse response h(τ ) =∑L

l=1 hlδ(τ − τl), where hl and τl are the gain and delay of the lth multipath component, (B)
the channel transfer function F (kfs) = 1/

√
N
∑L

l=1 hl exp(−2πjkfsτl) and (C) the channel
baseband impulse response αp = 1/

√
N
∑N−1

k=0 F (kfs) exp(2πjkp/N), p ∈ {0, 1, ...,N − 1}
for a bandwidth B = Nfs, with N subcarriers spaced by fs.

design. In the next chapter, we will introduce the theoretical foundations of
the methods used for this design.

Application of variational Bayesian inference to design receiver al-
gorithms

The deployment of 5G mandates the device-centric architecture of a network
consisting of advanced receivers. This context favors the design of more com-
plex algorithms for interference-aware receivers. In this work we resort to vari-
ational Bayesian inference to design algorithms able to cope with the harsh in-
terference conditions. The proposed receiver algorithms are tailored to OFDM
systems experiencing interference arising in each of the scenarios described in
Sections 1, 2, and 3. Their common denominator is the joint design of all re-
ceiver’s tasks. The design is enabled by casting an approximate system model
and associating to it a probabilistic model. Then, applying variational tech-
niques allow us to estimate all the unknowns of the system (channel responses,
noise variance, information bits from the desired and interfering users, etc.).

Application of compressed sensing to design channel estimators

This approach is motivated by a particular feature of the wireless propaga-
tion channel. In many propagation environments, the impulse response of the
wireless propagation channel can be characterized as the superimposition of a
few multipath components of non-negligible power, each with its own complex
gain and delay, i.e. the channel is sparse [22–24]. The sparsity property of the
channel translates in the fact that the channel impulse response consists of a
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number of components much smaller than its baseband representation [25] –
see Fig.2.2.

Delay-domain channel sparsity manifests itself under different forms: when
the propagation environment consists of big obstacles, the wireless channel
exhibits a few clusters of multipath components in delay domain and the liter-
ature refers to such channel as clustered-sparse [26]; MIMO subchannels exhibit
sparse common support [27] meaning that the delay supports of the impulse
responses of the sub-channels at different receive antennas are identical due
to the small antenna separation. Traditional OFDM channel estimation does
not take advantage of this property and employs various training based meth-
ods [28, 29] to retrieve the channel frequency responses which are used afterward
for equalization.

Becoming increasingly popular, the strategy of exploiting the channel spar-
sity proves to be advantageous for a receiver operating in various “harsh” in-
terference scenarios, when the pilot signals alone are not sufficient to perform
accurate channel estimation. As a result, more and more channel estimation
schemes successfully apply techniques from compressed sensing by capitalizing
on the delay-domain sparsity [22, 23, 26, 27, 30].
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Chapter 3

Bayesian Inference
Frameworks

In this chapter we introduce the mathematical tools used in the design of the
proposed receiver algorithms. The task of the receiver algorithm is to recover
the transmitted bits vector u = [u1, ..,um, ...,uN ] from a received signal vector
y = f(H, u, w), where f(H, u, w) stands for all the transformations that the
bit vector u undergoes before it reaches the receiver, with H and w denoting
the channel matrix and noise vector respectively. To minimize the bit error
probability, the MAP bit decoder is employed, i.e. ûm = arg maxum p(um|y).
Solving the MAP problem is however typically intractable since neither H nor
w are known, hence, classical receiver algorithms split the problem of recovering
u from y into simpler problems. A typical approach consists of dividing the
receiver functionality into three tasks: channel estimation, equalization and
decoding. The tasks are performed sequentially by different receiver’s blocks.

By contrast, in this work, we aim at designing a receiver algorithm in a
holistic manner: we use the variational inference framework to formulate the
problem of recovering the transmitted bits as an optimization problem with a
global objective function. Specifically, we use a method combining mean-field
(MF) and belief propagation (BP), as it has favorable properties that will be
detailed in Section 1. In Section 2 we turn our attention to sparse Bayesian
inference (SBI) which we employ to design sparse estimators of the channel
impulse response. The Bayesian formulation of MF-BP and SBI makes them
easily incorporable in the joint receiver design.
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1. Variational Bayesian inference

1 Variational Bayesian inference
This section is organized as follows: Section 1.1 introduces concepts from vari-
ational Bayesian inference, Section 1.2 explains the factor graph representation
and Section 1.3 describes the MF-BP algorithm in its message-passing imple-
mentation.

1.1 Brief introduction
Variational Bayesian inference (VBI) encompasses tools/methods for comput-
ing approximations of the marginal probability density functions (pdfs)/pmfs,
of latent variables in a probabilistic system. Here, the word variational is
broadly used to designate “mathematical tools that express the quantity of in-
terest as the solution of an optimization problem.” The optimization problem
is often relaxed “by approximating the function to be optimized [. . . ]. Such
relaxations, in turn, provide a means of approximating the original quantity
of interest ” [31]. They aim at replacing the original intractable optimization
problem by a feasible one.

Consider a probabilistic system consisting of a set Z of unknown (latent)
random variables and characterized by a joint pdf that factorizes according to

p(z) ∝
∏
fa∈F

fa(za), (3.1)

where z is a vector containing all random variables zi ∈ Z, za is the vector
of all variables zi that are argument of the local function fa included in the
set of functions F . In our application, p(z) is the posterior distribution of
the latent variables in the probabilistic system model given an observation
y. Applying Bayesian inference on the model (3.1) is about computing some
marginals of this joint pdf. In complex systems (i.e. with |Z| very large and
complex interdependencies between the elements of this set) the computation
of these marginals is not always tractable, so we have to resort to efficient,
feasible methods to solve this problem.

The VBI framework provides iterative methods that compute so-called be-
liefs, which - at best - coincide with the marginals in special cases, and oth-
erwise are approximations thereof. In this framework the inference problem is
formulated as that of minimizing the Gibbs free energy, or an approximation of
it, [32] for the model (3.1). Solving the minimization problem for a selected free
energy leads to a set of stationary point equations that are implicit functions
of the beliefs. The sought iterative algorithm is a fixed-point algorithm de-
rived from the stationary point equations1. In this work we make use of three
fixed-point algorithms: MF [33], BP [34], and a combination of both called

1Many fixed-point algorithms can be derived from a set of implicit equations.
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z1z3

fa

z2

fbfd
z4

mfd→z4

nz4→fd

fc

z4

S1

S2

Fig. 3.1: Example of factor graph representation of p(z1, z2, z3, z4) =
fa(z1, z2)fb(z2, z3, z4)fc(z1, z3)fd(z4). S1 and S2 are examples of two disjoint sub-
graphs.

MF-BP [35]. These iterative algorithms are described in their message-passing
implementation in Section 1.3.

1.2 Factor graph representation
The (bipartite) factor graph of a probabilistic model p(z) provides a visual
representation of the factorization in (3.1). It consists of a variable node for
each variable zi, a factor node for each factor fa, and edges which connect
a variable node zi to a factor node fa 2 if, and only if, zi is an argument of
fa. Similarly, a subgraph is a bipartite graph that includes a subset of the
factor nodes of the graph, all nodes of the variables connected to the factors
of this subset, and the corresponding edges from factor to variable nodes. We
define two subgraphs of a bipartite factor graph to be disjoint if the subsets of
factors in the subgraphs are disjoint. Note that two disjoint subgraphs can have
common variable nodes. We use N (zi) ⊆ F to denote the subset of functions
fa that have variable zi as an argument and N (fa) ⊆ Z for the subset of
variables that are arguments of fa – see the example in Fig. 3.1.

VBI methods we are interested in can be formulated as message-passing
algorithms that iteratively exchange messages along the edges of the factor
graph. For each edge, two messages are computed: one from the variable node
to the factor node and vice-versa, where by message we understand a positive
real-valued function of the variable associated with the variable node. The
message from variable node zi to the neighboring factor node fa is denoted by
nzi→fa and the message from fa to zi is mfa→zi . A message-passing algorithm
typically consists of an initialization phase, in which some messages in the
graph are initialized and an iterative phase, in which messages are sequentially
updated according to a specified scheduling until convergence or a stopping
criterion is satisfied. The beliefs are then retrieved from the values of the

2By abuse of language we identify a variable (factor) node with the variable (factor) it
represents.
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messages.

1.3 Message passing formulation of the combined MF-BP
In the following we briefly introduce the MF and BP methods and present the
message-passing approach resulting from combining them.

MF iteratively computes a “simplified” belief of the joint pdf in (3.1) that
minimizes the Gibbs free energy. The tractability of the minimization is ensured
by choosing a simple structure for this belief, e.g. a full factorization in the
beliefs of single latent variables, or a partial factorization in beliefs of groups
of said variables. The two variants are called naive MF and structured MF
respectively [36]. MF algorithms yield simple update expressions for conjugate
exponential models, guaranteeing convergence (by ensuring that the variational
free energy is non-increasing from one iteration to the other) but, in general,
not the exact solution. Another drawback of the method is that it is not
compatible with hard constraints [35].

The fixed points of BP are the stationary points of the Bethe free energy [37]
for the model (3.1). BP applied on a factor graph computes exact marginals of
the global pdf in (3.1) if the factor graph has a tree structure. The compatibility
of the BP with hard constraints and the computation of exact marginals in a
tree graph make the method a very appealing choice. If the factor graph
contains cycles however, the beliefs yielded by BP are only approximations
of the marginals. Note that the factor graphs of the probabilistic systems
considered in this work precisely share this property. Lastly, applying BP to a
probabilistic model with both discrete and continuous variables may generate
highly complex algorithms.

As discussed above, MF and BP have their own pluses and minuses. Hence,
a solution which combines them, and thus exploits the virtues of both and
circumvents their drawbacks, is highly beneficial. Such a solution is developed
by the authors of [35] who propose a unified message-passing approach which
combines the two methods. The method consists of decomposing the factor
graph into two disjoint subgraphs, each implementing either MF or BP, and
specifies how to propagate messages between the two subgraphs. The fixed
points of MF-BP are the stationary points of a region-based free energy for the
model (3.1) [35]. Both MF and BP can be derived as particular instances of
MF-BP.

Specifically, we consider the joint pdf (3.1) and we define two subgraphs, a
MF subgraph and a BP subgraph, which together contain all the factor nodes
in the graph. We use FMF(FBP) to denote the set of factor nodes in the
MF (BP) subgraph, where FMF ∩FBP = ∅ and FMF ∪FBP = F . Given this
decomposition, the joint pdf (3.1) can be expressed as

p(z) ∝
∏

fa∈FMF

fa(za)
∏

fb∈FBP

fb(zb) (3.2)
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The method in [35] specifies the messages to be passed in each subgraph and
at the variable nodes belonging to both subgraphs. The message from a factor
node fa ∈ FMF to the variable node zi ∈ N (fa) reads

mMF
fa→zi(zi) ∝ exp

∑
za\zi

logfa(za)
∏

j:zj∈N (fa)\zi

nzj→fa(zj)

 . (3.3)

The message from a factor node fa ∈ FBP to the variable node zj ∈ N (fa) is

mBP
fa→zi(zi) ∝

∑
za\zi

fa(za)
∏

j:zj∈N (fa)\zi

nzj→fa(zj). (3.4)

We note that the update rule for the messages outgoing factor nodes belonging
to the MF (BP) subgraphs coincides with the standard MF (BP) rule for such
messages. The message passed by a variable node zi ∈ Z to a factor node
fa ∈ N (zi) is

nzi→fa(zi) ∝
∏

fc∈N (zi)∩FMF

mMF
fc→zi(zi)

∏
fc∈N (zi)∩FBP\fa

mBP
fc→zi(zi). (3.5)

Lastly, to retrieve the belief of zi ∈ Z the following rule is applied:

q(zi) ∝
∏

fc∈N (zi)∩FMF

mMF
fc→zi(zi)

∏
fc∈N (zi)∩FBP

mBP
fc→zi(zi). (3.6)

Note that by setting FMF = ∅ (FBP = ∅) we obtain the computation rules for
BP(MF).

2 Sparse Bayesian inference
Sparse Bayesian inference (SBI) is a generic framework that encompasses meth-
ods for reconstructing sparse signals from a noisy linear system. This is accom-
plished by formulating a fully probabilistic model of the system and imposing a
prior distribution on the signals of interest which favors sparse solutions (a so-
called sparsity inducing prior) [38, p.212]. Reconstruction algorithms belonging
to SBI are generally invoked when the system is underdetermined (thus with
many solutions) and additional characteristics of the signal, such as sparsity,
need to be exploited [39]. Imposing sparsity-inducing priors can therefore be
thought of as a method that implements Occam’s razor. In the following we
describe SBI for reconstructing sparse signals in the single and multiple mea-
surement vector models.
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2.1 Single measurement vector (SMV) model

Sparse signal recovery [38, 40] deals with recovering a signal t ∈ CN that admits
a sparse representation in the following model:

y = t+w
t = Φx

(3.7)

where the matrix Φ ∈ CN×M is called a dictionary matrix, and w is a white
Gaussian noise vector with precision (inverse variance) λ. The signal t admits
a K−sparse representation if it can be expressed as the linear combination of
K �M columns of Φ, i.e. t =

∑
k∈K φkxk, where φk is the kth column of Φ,

and the set K of cardinality K contains all the indices of the non-zero entries
of x. This implies that the vector x ∈ CM has only K non-zero entries, i.e. x
is sparse. The goal becomes to estimate the entries of the sparse vector x given
the observation y ∈ CN and the dictionary Φ.

Based on the above considerations, one approach is to formulate the MAP
estimation problem: x̂ = arg maxx p(x|y) = arg maxx p(y|x)p(x) where p(y|x)
= CN(y|Φx,λ−1IN ), or, equivalently, x̂ = arg maxx log p(x|y) = arg minx
‖ y−Φx ‖22 +λ−1g(x), where g(x) ∝ − log(p(x)). 3 This problem is a reg-
ularized least-squares regression with regularization term g(x) dependent on
the choice of prior p(x). The aim is thus to compute x̂ by choosing a computa-
tionally convenient prior p(x) which favors sparse solutions. Common choices
are the Laplacian prior, [41], Jeffreys prior [42, 43], etc. Note that the choice
of prior may not reflect the true pdf of x. The prior is selected in such a way
that the resulting MAP estimator promotes sparsity.

An alternative approach to estimating sparse x in (3.7) is to select a hi-
erarchical prior model for x, i.e. a prior dependent on some latent variables
γ that should also be estimated from the available observations y. With the
appropriate choice of p(γ), priors such as Laplacian, Jeffreys etc. can be ex-
pressed using a hierarchical prior model. The optimization problem is then
reformulated as MAP estimation of γ. Once an estimate γ̂ is obtained, the
mean of the posterior p(x|γ̂, y) is a “commonly accepted point estimate” [44]
of x.

Note that the two approaches above have been termed Type I and Type II
estimation, respectively. For a more detailed discussion on the choice of priors
and its implications on the performance of the estimators employing them we
refer the reader to [44].

Hierarchical models have been successfully applied to the design of sparse
channel estimators. We focus the discussion on two of such sparsity inducing
priors that have been used in our work: the Gamma-Gaussian prior [38, 45, 46]

3Here x ∝ y denotes x = ay for some positive constant a.
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Fig. 3.2: Contour plots of the restriction to R2 of log(p(x1,x2)) for two settings of a and b.

and the Bernoulli-Gaussian prior [47, 48]. 4

The Gamma-Gaussian hierarchical modeling of x is

p(x,γ) =
M∏
m=1

p(xm|γm)p(γm)

p(xm|γm) = CN(xm|0, γ−1
m )

p(γm) = Gam(γm|a, b)

(3.8)

where CN(·|µ,σ2) is the complex Gaussian pdf with mean µ and variance
σ2, Gam(·|a, b), is the Gamma pdf with shape and rate parameters a and b

respectively, and γm is the precision of the mth weight. Selecting large values
for γm (e.g. by setting a large value for the shape a or a small one for the rate
b) leads to p(xm|γm) being very peaked around zero.

We illustrate the sparsity-inducing property of this prior in the follow-
ing. With the model (3.8), we obtain the marginal p(x) =

∫
p(x,γ)dγ =∏M

m=1 p(xm) where p(xm) ∝ (|xm|2 + b)−(a+1). In Fig 3.2 we depict the con-
tours of the restriction of p(x) to RM for M = 2 and different values of a and
b. We observe that the larger a grows or conversely, the smaller b becomes the
more concentrated along the x−axes p(x) becomes. This concentration along
the axes promotes sparsity as shown in the numerical studies presented in [46].

In the Bernoulli-Gaussian model, each sample xm is described as xm =

4Although in this work Type II estimators are used, we restrict ourselves to discussing the
sparsity-inducing properties of the hierarchical priors from the Type I estimation perspective.
This choice is motivated by the simplicity of interpretation of Type I estimation, which
significantly eases the exposition. Given the merely illustrative purpose of the discussion, we
consider this simplification to be justified, and refer the reader to [44] for the interpretation
of prior distributions in Type II estimation.
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Fig. 3.3: Contour plots of the restriction to R2 of log(p(x1,x2)) for two settings of p and
ν0 with ν1 = 3.

rmsm with5

p(rm) = CN(rm|0, ν)
p(sm) = Bern(sm|p)

(3.9)

where p ∈ [0, 1] is the rate of the Bernoulli pdf Bern(·|p). The vector s collecting
all sm is called the support of the signal: sm = 1 denotes the presence of the
signal at position m and sm = 0 denotes its absence, and ν gives the variance
of the non-zero entries of x.

An alternative version of the Bernoulli-Gaussian model is that employed
in [48]: p(x, s) =

∏M
m=1 p(xm|sm)p(sm), p(xm|sm) = CN(xm|0, νsm) and

p(sm) = Bern(sm|p) with rate p ∈ [0, 1]. Fig. 3.3 shows how different val-
ues of p and ν0 in this model influence the sparsity of x. Decreasing p and ν0
leads to p(x) being more concentrated along the axes.

With either choice of priors, one can then estimate θ ∈ {γ, s, r} based
on which estimates of x are computed. In the following we give an exam-
ple of sparse signal reconstruction. To derive the algorithm described below,
we employ the message-passing formulation of the mean-field approximation
introduced in Section 1 of this chapter.

5The entries sm are drawn independently, as are the entries rm,m = 1 . . .M .
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Fig. 3.4: Factor graph representation of p(x,λ, γ|y) and expression for the beliefs of x,λ, γ.

Variational SBI example: We consider the system (3.7) in which p(y|x,λ) =
CN(y|Φx,λ−1IN ) where λ > 0 is the unknown noise precision. We select
the hierarchical prior (3.8) and choose an improper prior for the noise preci-
sion [49]: p(λ) ∝ 1/λ. We then express the posterior pdf as p(x,λ,γ|y) ∝
fo(x,λ)fm(x,γ)fn(λ)fp(γ) where fo(x,λ) = p(y|x,λ), fm(x,γ) = p(x|γ),
fn(λ) = p(λ), fp(γ) = p(γ). The posterior pdf has the factor graph represen-
tation from Fig. 3.4. Using mean-field update (3.3) for the messages passed
from the factor nodes in the factor graph in Fig. 3.4, we compute the be-
liefs of γ, x and λ using (3.6): q(γ) ∝

∏M
m=1 Gam(γm|a+ 1, b+

〈
|xm|2

〉
x),

q(λ) ∝ Gam(λ|N ,
〈
‖ y−Φx ‖22

〉
x) and q(x) ∝ CN(x|µx, Σx) where Σx =(

〈λ〉λ ΦHΦ + 〈diag(γ)〉γ
)−1

and µx = 〈λ〉λ ΣxΦHy. 6 Iterating between the
updates above is performed until some convergence criterion is fulfilled, then
an estimate x̂ = µx is returned. Fig 3.5 shows how different settings for a and
b yield solutions with different diversities7 dx̂. We observe that as a increases
and/or b decreases, the diversity of x̂ decreases, since the prior p(x) becomes
more concentrated along the axes as discussed previously.

2.2 Multiple measurement vector (MMV) model
Reconstructing sparse signals in the single measurement vector model (3.7) is
an extensively studied problem and many algorithms which exploit the sig-
nal sparsity have been developed. However, when P > 1 observation vectors
sharing the same sparsity structure are available, instead of solving P recon-
struction problems, one can benefit from exploiting the “sparsity structure”
of the signals of interest and formulate a joint estimation problem [50–52] in
the model: Y = ΦX + W where Y ∈ CN×P is the measurement matrix con-
sisting of P measurement vectors8 Y·,p, p = 1, ...,P , while X ∈ CM×P is the
unknown source matrix, each row representing a source vector, and W is the
noise matrix. The source matrix exhibits row sparsity as a result of two im-
portant characteristics: (i) the column vectors X·,p, p = 1, ...,P are sparse and

6By 〈f (x)〉x we denote the expected value of f (x) w.r.t. to the pdf of x.
7Following [43], we define the diversity of x ∈ CM as the cardinality of the set containing

all entries of x above the noise floor: dx = |{xm : |xm|2 > λ−1, 1 ≤ m ≤M ]}|.
8We use Y·,p and Yn,· to denote the pth column and nth row of Y respectively.
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Fig. 3.5: Magnitudes of the entries of the sparse signal x and of the estimated x̂ for two
different parameter settings: a = 0.01, b = 1 (blue plot) and a = 1, b = 0 (red plot).
To obtain the observations y in (3.7), we generate the dictionary Φ with entries Φn,m =
exp(−j2πnm/M),n ∈ [0 : N − 1],m ∈ [0 : M − 1], for N = 50,M = 70 and the vectors
w ∼ CN (0,λ−1IM ) with λ = 102 and x = diag(s)r, where p(r) = CN(r|0, IM ) and the
entries of s are drawn independently from a Bernoulli distribution with rate p = 0.1.

(ii) they show a common sparsity structure [50] implying that thier non-zeros
entries are at the same positions. The probabilistic modeling of the system
typically relies on the assumption that the sources Xm,·,m = 1, ...,M are mu-
tually independent and so, a sparsity inducing prior similar to the SMV model
is employed (e.g. p(Xm,·|γm) = CN(Xm,·|0, γ−1

m B) and p(γm) as in (3.8)).
The MMV model can then be recast as a SMV model by applying the trans-
formations y = vec(YT), T = Φ⊗ IP , w = vec(WT), and X = vec(XT). 9

Doing so yields y = Tx + w. Algorithms applying the SBI methodology can
then be used to estimate x = [X1,·, ..., XM ,·]

T which consists of M blocks with
intra-block correlation determined by the covariance matrix B.

3 Wireless communications applications
In this section we give an overview of applications which use the tools intro-
duced in the previous sections.

3.1 Iterative receiver design
MF has been successfully applied to the design of receivers for wireless com-
munications, specifically in the design of channel estimators. We note here
the works [53–56] which propose estimators of either the impulse [53] or fre-

9The operator vec(A) returns a column vector consisting of all columns of A stacked on
top of one another.
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quency [55] response of the channel, or investigating how different belief fac-
torizations impact the accuracy of the estimates [53].

Initially applied to decoding of convolutional [57] or turbo [58] codes, BP
gained popularity in recent years. Gaussian approximations of the classical
BP messages have been proposed and employed in the design of algorithms for
joint detection and channel estimation [59].

A typical application of MF-BP is to the design of iterative algorithms for
joint decoding and channel estimation in [60–62], [35, Section IV]. A com-
mon feature of these algorithms is that channel response and noise precision
estimation is performed by applying MF, while demodulation and decoding is
performed using BP. The method allows for a flexible design of the receiver
algorithms with various degrees of complexity, i.e. one iteration may consist
of updating all or only a specific subset of the unknown variables of the sys-
tem. Joint iterative receivers that resort to similar inference schemes have been
proposed in [63–65].

We find MF-BP particularly suitable for designing receiver algorithms of
systems undergoing harsh interference conditions. The method allows for
the incorporation of sparsity-inducing priors for the channel weights, enabling
therefore the design of sparse channel estimators. By applying MF-BP we are
able to approximate the posterior densities of the following variables in the
probabilistic system model: the noise precision, the vector of channel weights,
the vector of their variances, the modulated data symbols, the coded bits, and
the information (uncoded) bits. Consequently, the algorithms embed soft-in
soft-out decoding. Yielding soft symbol estimates is a key feature that enables
successful interference cancellation because it allows for the data-aided channel
estimator to account for the uncertainty in the estimates of the data symbols at
any given iteration. In the initial iterations, we expect the symbol decisions to
be highly inaccurate, due to the impossibility to cancel the interference before
performing a first detection round. Such uncertainty in the symbol decisions is
accounted for in the channel estimation phase through the step of re-learning
the dictionary matrix (see papers A – C in Part II).

3.2 Channel estimation
Since in many propagation environments the channel impulse response is sparse
[24], the application of SBI methods to channel estimation (see [22, 24, 66, 67]
and the references therein) gained popularity in recent years. To formulate
the estimation problem, the typical approach involves as a first step several
approximations of the system model which we will discuss next. SBI is then
applied to the approximate model.

In the following, we take as a study case the typical pilot-based OFDM
channel estimation in which P known complex symbols called pilots, occupying
specific time-frequency resources are sent over the wireless channel. By x ∈

27
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CP we denote the vector collecting all the pilot symbols transmitted during
one OFDM symbol and by f = [fp1 ..fpK ] the vector collecting all subcarrier
frequencies used to transmit the pilots. We consider the sparse channel with
impulse response

g(τ ) =
L∑
l=1

βlδ(τ − τl) (3.10)

consisting of a small number L of multipath components, with the lth com-
ponent having the gain βl and delay τl. For the purpose of this discussion we
assume that the channel is invariant during one OFDM symbol.

The pilot-based channel estimator needs to reconstruct the channel fre-
quency response at all subcarrier frequencies based on observing the signals on
the P pilot subcarriers collected in the vector y ∈ CP which is processed to
yield a vector t = diag(x)−1y reading

t = h(p) +w = Aβ+w (3.11)

with Ak,l = exp(−2πjfpkτl), k ∈ [1 : P ], l ∈ [1 : L], h(p) is the channel
frequency response at pilot positions, w is the noise vector and A ∈ CP×L is
the dictionary matrix. If the delay vector τ were known, we could construct
the dictionary matrix and compute estimates β̂ of β (using for example the
least squares estimator). Then, the estimate of the frequency response hi at a
subcarrier frequency fi could be computed as ĥi =

∑L
l=1 β̂l exp(−2πjfiτl).

However, since τ is typically unknown, an approximation h̃ of the true h is
derived instead. This is usually accomplished by imposing a dense delay grid
ξ = {ξl = (l− 1)∆τ ; l ∈ [1 : K]} with resolution ∆τ , length K, and a vector
α ∈ CK so that the approximate channel frequency response at ith subcarrier
is h̃i =

∑K
l=1 αl exp(−2πjfiξl). The response h̃ is a good approximation of h

if a sufficiently fine resolution ∆τ and a length K � L are selected. Then, due
to the channel sparsity, we expect that the approximation holds for a vector α
having many zero entries. Consequently, we can now write the standard model
for compressed sensing:

t = Dα+w (3.12)

with Dk,l = exp(−2πjfpkξl), k ∈ [1 : P ], l ∈ [1 : K]. We can then use SBI to
compute sparse estimates of the vector α and subsequently, of the vector h̃.

Note that in a practical communication system the matrix A in (3.11) is no
longer a Fourier dictionary since the channel frequency response experienced by
the receiver contains effects induced by the transceiver structure e.g. transmit
and receive filters. While the receive filters responses may be known and can
be accounted for when designing the dictionary, the same thing cannot be
said about the transmit filters responses; hence, some additional assumptions
need to be made to facilitate the design of an approximate dictionary D. We
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investigate the effect of the mismatch between dictionaries A and D in paper
D of Part II.

Once the expression of the approximate signal (3.12) is derived, the proba-
bilistic model can be next cast. SBI channel estimators using either of the two
hierarchical models introduced earlier (Gamma-Gaussian [53, 66] or Bernoulli-
Gaussian [68, 69]) can be designed to estimate α. Due to their Bayesian for-
mulation, these estimators are easily incorporated in iterative receiver schemes
implementing approximate Bayesian inference [68, 70] that perform joint chan-
nel estimation and data detection. The estimation of the MIMO subchannels
with sparse common support is solved in [27] by transforming the MMV model
into an SMV model and applying the algorithm in [38], while the estimation
of sparse time-varying channels from correlated observation vectors is tackled
in [71].
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Chapter 4

Thesis Contributions and
Outlook

In this chapter we detail the contributions of the thesis and provide an outlook
of this work. This chapter is structured as follows: Section 1 briefly introduces
the main contribution of each paper (a full version of which can be found in
Part II) and Section 2 sketches the patents – filed or granted – generated within
this project.

1 Research articles
The research articles presented in the following propose various receiver de-
signs for the harsh interference conditions described in Chapter 2 and channel
estimation techniques, utilizing the tools described in Chapter 3.

Paper A: Message-passing receiver for OFDM systems over
highly delay-dispersive channels
In this paper we propose an algorithm for receivers operating in insufficient CP
conditions. The algorithm is derived by applying MF-BP to obtain a joint de-
sign of the following tasks: data-aided estimation of the sparse channel impulse
response and the noise variance, reconstruction and cancellation of intersym-
bol and intercarrier interference, and decoding over a block of symbols. The
variational Bayesian framework that we employ allows us to easily incorpo-
rate sparsity constraints on the prior of the channel weights to obtain sparse
estimates of them.

Numerical evaluations show that the receiver implementing our algorithm
exhibits good decoding performance compared with the reference receivers, jus-
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tifying therefore the approximations and modeling choices that we resorted to
in our design. The good performance is also an indicator that intercarrier and
intersymbol interference can be efficiently mitigated. Therefore a reduction or
even a removal of the cyclic prefix at the benefit of increased spectral efficiency
might be a sensible 5G strategy. Finally, the algorithm is versatile since it
pertains to various sizes of the processed block, schedules for updating the dif-
ferent quantities of interest, channel estimation strategies. This virtue enables
the tunning of the algorithm for either performance boosting or complexity
reduction.

Paper B: OFDM receiver for fast time-varying channels
using block-sparse Bayesian learning
In response to the problem risen in Section 2 of Chapter 2, we design an algo-
rithm for receivers operating in high mobility scenarios where the orthogonality
of the subcarriers cannot be preserved. To formulate the channel estimation
problem, we employ a basis expansion model to characterize the time-variant
behavior of each multipath component. This model yields a fixed small num-
ber of unknown coefficients associated with each channel weight. Then, to
approximate the time-variation of each component, and hence the intercarrier
interference, it suffices to estimate these coefficients. However, under the as-
sumption of a sparse channel, many components are negligible, and so are all
associated coefficients. The vector collecting all these coefficients will therefore
exhibit many zero entries occurring in blocks, i.e. will be block-sparse. This
particular pattern allows us to formulate the channel estimation problem as one
of reconstructing block-sparse signals. As in Paper A, we employ MF-BP to
formulate a receiver algorithm performing block-sparse, data-aided channel es-
timation on the above approximate model, along with intercarrier interference
cancellation and data decoding.

The numerical study shows that the receiver implementing our algorithm
successfully outperforms the reference receivers. Its very good performance
validates the model described above. This is also an indicator that very-high
mobility 5G users can operate well, as long as they are equipped with algo-
rithms tailored to account for the large Doppler spread of the fast time-varying
channels.

Paper C: Interference-aware OFDM receiver for channels
with sparse common supports
In this paper we investigate different OFDM receiver implementations for oper-
ation in co-channel interference conditions. We design a MF-BP algorithm that
performs joint channel estimation, interference cancellation and decoding. To
that end we rely on two assumptions: that the MIMO-subchannel responses are
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sparse and those associated to a same transmit antenna have a common sup-
port. The latter assumption stems from the fact that the number of multipath
components and respective delays of the channel responses corresponding to a
given transmitter and all receive antennas are expected to be equal, since these
antennas are collocated. The channel estimation problem, of both desired and
interfering channels, is formulated as one of reconstructing sparse signals from
multiple measurement vectors that share the same unknown sparse support. It
is solved using sparse Bayesian inference.

In this paper we explore through simulations how the proposed design and
the information about the interfering signal impact the overall receiver perfor-
mance in different signal-to-interference power regimes. Our results show that
a receiver which knows the modulation and code of the interferer has excellent
interference cancellation capabilities, and hence granting access to this infor-
mation can be a useful 5G feature. An encouraging finding is that even when
receiver makes mismatched assumptions about these parameters, it still out-
performs interference-unaware receivers, and has good performance in medium
signal-to-interference regime. To conclude, enabling the receiver to estimate
the interfering channels has clear benefits. However, there are several aspects
that need to be taken into account such as reference signals design, inter-cell
synchronization, etc.

Paper D: Sparse channel estimation including the impact
of the transceiver filters with application to OFDM
Traditionally, the dictionary matrix used in the estimation of sparse wireless
channels is obtained from the discrete Fourier transform, based on the as-
sumption that the channel frequency response can be approximated as a linear
combination of a small number of multipath components. In practical com-
munication systems, however, the channel response observed at the receiver
includes additional effects to those induced by the propagation channel. This
composite channel embodies, in particular, the impact of the transmit and re-
ceive filters. Hence, the assumption of the channel frequency response being
sparse in the classical Fourier dictionary becomes merely a (coarse) approxi-
mation.

In this work, we derive a signal model, and subsequently a novel dictionary
matrix, for sparse estimation that accounts for the impact of transceiver filters.
Employing the proposed dictionary proves beneficial to the performance of the
receiver and it is particularly suited for the operation over sparse channels.
Based on the results of this study we conclude that using a dictionary including
the responses of the transceiver filters results in more accurate estimates of
the channel frequency response, and that compressed channel estimation is a
promising technique which 5G systems could benefit from.
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2 Industrial innovation
Herein we list and sketch the patents that have been generated based on the
ideas presented in the papers reported in Section 1.

Patent E: Methods and devices for channel estimation and
OFDM receiver
This patent has been filed in relation to paper A. The patent describes the
architecture of an OFDM receiver able to operate over channels with responses
characterized by a maximum excess delay larger than the cyclic prefix adver-
tised by the serving base station. The patent specifies how the channel esti-
mation and decoding should be performed in order to cope with the resulting
intercarrier and intersymbol interference.

Patent F: Methods and devices for channel estimation for
mobile systems of insufficient cyclic prefix length
Also filed in relation to paper A, this patent proposes a pilot-based channel
estimator for an OFDM receiver operating in insufficient CP conditions. The
estimator uses an approximate signal model to reconstruct and cancel the in-
terference and estimate the gains and the delays of the multipath components.
The design of the algorithm relies on the application of methods from sparse
Bayesian inference.

Patent G: Devices and methods for processing one or more
received radio signals
This patent describes the architecture of an OFDM receiver able to operate in
highly Doppler-dispersive channels. The architecture uses the estimation model
developed in paper B and relies on interconnecting the channel estimator, the
equalizer and the detector to enable the reconstruction and cancellation of
interference both when estimating the channel responses and when decoding
the data.

Patent H: Channel estimation technique
Developing the idea presented in paper D, this granted patent describes a pilot-
based channel estimator for an OFDM receiver that computes sparse estimates
of the channel impulse response. The design of the channel estimation block
incorporates the responses of the transceiver filters, making it thus device-
dependent.
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3 Conclusions and outlook
In this thesis we propose algorithms for enabling the operation of the OFDM
receiver in severe interference conditions. Based on the technological trends
that are driving the definition of upcoming 5G systems, we expect that such
severe operating conditions will become increasingly relevant in such systems.

To reiterate, we investigate interference scenarios arising due to a) the chan-
nel maximum excess delay exceeding the duration of the cyclic prefix, b) the
high mobility of the user equipment and c) the usage of the same time-frequency
resources by multiple users. For each of these situations, we derive joint channel
estimation, equalization and decoding schemes for interference-aware receivers.
The design of these schemes relies on a probabilistic modeling of the system
under the conditions a), b) or c) which exploits the sparsity of the wireless prop-
agation channel and on the application of MF-BP, the latter method enabling
a unified design of all receiver’s tasks.

Exploiting the sparsity of the channel to estimate its frequency response is
accomplished in a two-step method: first, to avoid the estimation of the mul-
tipath components delays, we impose the delays to be constrained on a fixed
grid with sufficiently fine resolution so that the channel frequency response is
well approximated and second, we impose hierarchical models over the channel
weights which favors sparse solutions. In this context, we investigate sparse
Bayesian estimators using two such models,: a Gamma-Gaussian prior and a
Bernoulli-Gaussian prior. Applying MF-BP enables the incorporation of the
channel estimator in a joint Bayesian receiver design. The additional benefits of
using this framework are 1) that the estimation uncertainties (in the estimated
channel, desired bit stream) are accounted for when reconstructing the inter-
ference and 2) the flexibility of the iterative algorithm whose parameters can
be tuned to allow for trading complexity with performance. Even though the
improved performance of the proposed receiver algorithms comes at the price
of a higher complexity, given the steady increase of computation capability of
the modem, we expect that practical implementations of these algorithms will
become feasible in the future.

In order to understand the effects of a), b) and c) on the operation of the
wireless receiver, we treat each problem independently and formulate signal
models and algorithms designed for the conditions imposed in each scenario.
Although it simplifies the channel estimation, the gridded-delay approach yields
a mismatched model of the signal used in the algorithm design relative to the
true model. Including the delay estimation in the algorithm design is a feature
that could be beneficial to the overall receiver performance, at the expense of
increasing complexity. Nevertheless, it constitutes a research question worth
investigating. Formulating a prior of the channel weights which mimics the
channel property to exhibit clustering of multipath components in delay domain
is another research avenue to be considered when designing sparse channel
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estimators.
In this work we choose OFDM as a base technology for our study. Two

main reasons have justified our choice: it is a well understood technology, with
a worldwide adoption that is heading the competition for the 5G waveform,
and all other 5G contenders ( see [72] for details) are “incremental departures
from OFDM” [3]. However, a further study could consists of the development
of algorithms for the joint treatment of a), b) and c) and tailored to a multi-
carrier system which offers better spectral efficiency, e.g. by relaxing the strict
subcarrier orthogonality.

We emphasize the importance of studying receiver designs for harsh inter-
ference conditions in 4G-like systems. The conclusions of each study do not
only offer valuable insights into the design of receivers for 5G systems but also
help formulate guidelines for the design of these systems, the latter having
direct consequences on the performance and complexity of 5G receivers.

Lastly, this project has been conducted as an industry-academia coopera-
tion. The outcomes of the studies performed throughout the project provide
insights and guidelines meant to help the modem evolution towards enhanced
baseband algorithms that can ensure the operation of the user equipment in
extreme conditions. The operation of such equipment however is conditioned
on the overall design of the communication system, a matter addressed by
standardization bodies. Therefore, coordinated efforts from both sides (stan-
dardization community and chip manufacturers) are key to enabling designs of
algorithms like those proposed in this work.
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1. Introduction

Abstract
Propagation channels with maximum excess delay exceeding the duration of
the cyclic prefix of wireless OFDM-based systems – like 4G and potentially
its successors – cause intersymbol and intercarrier interference which, unless
accounted for, drastically impair the receiver performance.

Using tools from variational Bayesian inference and sparse signal recon-
struction, we derive an iterative algorithm that performs estimation of the
channel impulse response and the noise variance, interference reconstruction
and cancellation and data decoding over a block of symbols.

Simulation results show that the receiver employing our algorithm outper-
forms receivers applying traditional interference cancellation and pilot-based
schemes, and it approaches the performance of an ideal receiver with perfect
channel state information and perfect interference cancellation capabilities.

We highlight the relevance of our algorithm and the related study in the
context of both 4G/LTE and 5G. By enabling the 4G receiver experiencing the
above harsh conditions to locally cancel the interference, our design circumvents
the spectral efficiency loss incurred by extending the duration of the cyclic prefix
– a handy yet dissipative solution. Furthermore, it sets the premises for the
development of advanced receivers for future multicarrier systems like 5G in
which the strict subcarrier orthogonality will most likely be relaxed.

1 Introduction

1.1 Motivation

Problem statement

Multipath propagation in the wireless channel causes multiple copies of the
transmitted signals to arrive at the receiver with distinct weights, delays, di-
rections and with distinct Doppler frequencies in time-varying conditions. If
not appropriately dealt with, this phenomenon causes intersymbol interference
(ISI) in the received signal. Current OFDM systems preempt ISI by prepend-
ing to each OFDM symbol a cyclic prefix (CP) whose duration is selected (and
fixed) larger than the typical1 maximum excess delay (MED) of the channels
in which the systems are designed to operate. When this condition is fulfilled,
the observed signal at each subcarrier consists of the symbol transmitted on
that subcarrier multiplied by the channel gain at the subcarrier frequency plus
additive white Gaussian noise (AWGN). This is the traditional signal model
employed in the design of OFDM receivers. Since the CP insertion comes

1By typical MED, we mean the MED specified in standardized vehicular and pedestrian
channels from [1] that are widely used in the design and testing of wireless modems.
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1. Introduction

at the cost of reduced spectral efficiency, it is highly inadvisable to extend
its duration to cope with “worst-case" propagation conditions [2]. Therefore,
when this situation occurs, the receiver is forced to operate over a channel
with MED larger than the CP duration, i.e. in the so-called insufficient CP
condition. In this case, the receiver experiences a signal impaired by both ISI
and inter-carrier interference (ICI) [3], generically called self-interference, caus-
ing an overall degradation of the system performance [2, 4, 5]. Specifically,
the observed signal at each subcarrier contains now the noisy contribution of
the signals transmitted on all subcarriers during the current and the previous
signaling intervals. Receivers designed using the traditional (interference free)
signal model will therefore erroneously estimate the channel, and then use this
erroneous estimate to poorly equalize and decode the received signals.

Insufficient CP conditions in 4G/LTE

Propagation conditions in which the channel MED exceeds the normal CP du-
ration of 4.69µs [6] occur infrequently but often enough to deserve attention
and be accounted for in 4G/LTE. Such conditions have been documented in
the literature on several occasions [7–9]. For example, the authors of [7] re-
port channel impulse responses (CIR) with MED > 15µs measured in Manch-
ester city center. Similarly, measurement campaigns carried out in Helsinki [9]
revealed PDPs with multipath components arriving at ∼ 6.6µs having the
strongest power (see [9, Fig. 5]), leading to a MED of ∼ 7µs. The propagation
conditions enumerated above have been classified by the wireless propagation
community as bad urban (BU) or hilly terrain (HT) environments and standard
channel models that mimic those conditions have been developed and adopted
in the 3GPP standards to test wireless communication systems [8, 10]. Specif-
ically, two propagation models, among others, are of interest for our work,
i.e. the typical BU [8, Section 2.4.2.3] and the typical HT [8, Section 2.4.2.4]
channel models. The PDPs of both models exhibit two clusters of multipath
components leading to a MED exceeding 10µs. The first cluster is the result
of propagation via scatterers located between and around the serving base sta-
tion and the mobile terminal, while the second cluster of non-negligible power
is caused by reflections and scattering from tall and distant scatterers.

System adaptation in 4G/LTE

A potential solution to cope with such harsh conditions is to allow for an adap-
tive setting of the system parameters. The authors of [11] investigate several
parameters, including the CP duration, that can be adjusted to minimize the
performance degradation. However, LTE systems implement a multiple access
scheme in which users are multiplexed in time and frequency by transmitting
over only a subset of the available subcarriers and OFDM symbols in a given
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frame. Hence the base station is forced to select and broadcast a single CP,
which cannot be optimal with respect to all the different channel conditions
experienced by all served users. Adapting the CP in a conservative manner,
i.e. setting a CP large enough to accommodate the users experiencing the
longest excess delay, would only result in an unnecessary reduction of spectral
efficiency of all users. Instead, to avoid that communication completely fails,
the systems possess other kinds of link adaptation mechanisms e.g. lowering
the modulation and/or coding rate of the user experiencing insufficient CP
conditions, using more retransmissions per packet etc. This approach however
discriminates users served by a same base station since those undergoing insuf-
ficient CP conditions will experience a lowered quality of service compared to
those operating in nominal conditions.

Outlook towards 5G

With the advent of 5G systems, the trend observed in the design of waveforms of
many candidate OFDM-based systems is towards a removal of the CP or at least
a shortening of its duration [12], making the resulting self-interference a more
stringent and frequent problem. To cope with it, these systems will instead rely
on advanced signal processing algorithms implemented in 5G receivers equipped
with sufficient computational power. Such receivers are generically classified as
advanced receivers or smart devices [13–15]. They are expected to cancel the
self-interference through more complex equalization and detection [16].

Bearing in mind the above considerations, we believe that an algorithm
tailor-made for receivers operating in insufficient CP conditions represents a vi-
able option for OFDM-like wireless communication systems. On the one hand,
such an algorithm is an enabler towards providing users undergoing worst-case
propagation conditions the same quality of service as those experiencing nomi-
nal propagation conditions. On the other hand, the design of such an algorithm
and the insights that it provides constitute valuable input to the development
of spectrally efficient 5G systems. Hence, the relevance of the problem and of
the solution that we present in this paper are to be seen within the context of
both 4G/LTE and 5G.
1.2 Previous work on OFDM receivers for insufficient CP

conditions
Most receiver algorithms proposed for OFDM systems operating in insufficient
CP conditions consist of an initial ISI cancellation step, followed by iterative
ICI cancellation. Among these schemes we mention the operator-perturbation
technique (OPT) and parallel/serial interference cancellation (P/SIC) [2]. It-
erative methods that remove ISI and reconstruct the OFDM symbols cyclicity
have been proposed in [17] and further developed in [18–20]. Other methods
use tap-selection algorithms in decision-feedback equalizers (DFE). These al-
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gorithms increase the span of the equalizer in sparse channels with large delays
spreads [21, 22]. The aforementioned interference cancellation algorithms lead
to excellent receiver performance under the assumption of perfect channel state
information (CSI) at the receiver. However, little attention has been paid to
the problem of how to acquire accurate CSI under insufficient CP conditions.
Most works [23, 24] assume perfect CSI to be already available at the receiver.
Others [4, 25] propose the use of coarse estimates obtained from pilot-based
channel estimators, derived under the assumption that the CIR is well approx-
imated by a truncated baseband representation.

To summarize, current OFDM receivers designed to operate in insufficient
CP conditions focus almost entirely on canceling the resulting interference at
equalization. They either discard the channel estimation problem or treat it
as an independent receiver task, i.e. by assuming that the channel estimates
obtained by neglecting the self-interference are sufficiently accurate. However,
in a typical OFDM system, like LTE, pilot symbols are multiplexed with data
symbols [6]. In insufficient CP conditions, this implies that a) pilots are also cor-
rupted by self-interference, and hence, a pilot-based channel estimation method
will perform poorly unless the interference is reconstructed and canceled, and
b) the low pilot density does not allow for accurate estimation of the highly
frequency-selective channel.

In view of the above, we advocate that an OFDM receiver for insufficient CP
conditions should be designed such that all its building blocks are interference
aware: ISI and ICI should be accounted both when retrieving the channel
weights and when performing data detection.

Receivers that treat jointly the channel estimation and detection tasks have
been earlier proposed to cancel the ICI arising from Doppler-dispersion of the
channel [26] or impulsive noise [27]. However, these works and our work treat
significantly different problems due to the specificities of the considered appli-
cations.

1.3 Proposed approach and theoretical background
In this paper we propose an iterative algorithm for OFDM receivers operat-
ing in insufficient CP conditions. The algorithm performs data-aided channel
estimation, ISI and ICI cancellation, noise variance estimation, equalization
and decoding by applying tools from variational Bayesian inference (VBI). The
channel estimation block of the proposed algorithm is designed under the as-
sumption that the CIR is sparse, i.e. it is composed of a few non-zero multipath
components, and hence can be implemented using sparse Bayesian inference
(SBI).

SBI is a Bayesian formulation of compressed sensing which encompasses
strategies for reconstructing sparse signals by formulating a probabilistic frame-
work of the system and imposing a prior distribution on the signals of interest
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which favors sparse solutions [28]. Precisely because of its Bayesian formu-
lation, SBI is particularly well suited for embedding in a Bayesian inference
framework. We include it in our probabilistic model by defining sparsity-
inducing prior distributions for the weights of the CIR. Similar approaches have
been proposed earlier to estimate sparse CIR, but in traditional (interference
free) signal models [29] [30]. In fact, the authors of [30] use the expectation-
maximization framework to also formulate an iterative algorithm that performs
joint channel estimation and symbol detection, however without including de-
coding as part of the joint structure. To embed soft-in soft-out decoding in
the joint design of our interference-aware receiver algorithm, we resort to a
particular VBI technique as discussed next.

VBI techniques comprise methods for obtaining approximations of the pos-
terior probability densities – called beliefs – of unobserved variables in a prob-
abilistic model. The use of this type of inference techniques for the design of
wireless receivers has become widespread in recent years [31–36]. In this work
we use the hybrid framework proposed in [37] which combines the popular be-
lief propagation (BP) [38] and mean-field approximation (MF) [39] – to which
we will generically refer to as MF-BP.

1.4 Contribution
The main contribution of this article is the derivation of a joint receiver for
OFDM systems in insufficient CP conditions. The receiver iteratively per-
forms data-aided, interference-aware channel and noise variance estimation,
self-interference reconstruction and cancellation, channel equalization and data
decoding. By using MF-BP on the probabilistic model of the communication
system, we obtain a unified design of the above tasks. To the authors’ knowl-
edge, such an integrated design has not been proposed for OFDM receiver in
insufficient CP conditions before. In the following, we detail each of the design
traits that enable our solution:

• We develop a mathematical model of the signal received in insufficient CP
conditions which allows us to express the resulting self-interference using
the complex weights and delays of the CIR and the current and previous
transmitted signals. We formulate two (equivalent) representations of
the model, one suitable for the design of the detector, and one tailored to
the estimation of the channel weights. The latter representation linearly
maps the CIR weights to the received signal through a dictionary matrix
which includes ISI and ICI. This alternative expression of the received
signal is the foundation for a compressed-sensing-based formulation of
the channel estimator, which accounts for ISI and ICI.

• To design the channel estimator and detector we derive the corresponding
approximate signal models which allow us to circumvent the estimation of
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the delays (inherently needed to reconstruct ISI and ICI). Specifically, we
assume that the delays of the multipath components lie on a grid with
certain resolution. This enables us to model and reconstruct the self-
interference without the explicitly estimating the multipath components’
delays. By combining the delay-discretization approximation with the
assumption that the CIR is sparse, we apply the SBI framework and
select a probabilistic model characterizing the system which allows us to
obtain tractable solutions.

• To obtain accurate weight estimates, the proposed algorithm includes a
dictionary matrix learning step: i.e. after the reconstruction of ISI and
ICI, the dictionary matrix is re-computed. This is an essential step which
enables the channel estimation block to account for the self-interference
when refining the estimates of the channel weights.

• The algorithm is designed within a framework in which a global objective
function is optimized. As a result, we obtain a coherent iterative structure
where the different constituent blocks operate and exchange information
between them following a unified principle.

We evaluate the performance of the proposed algorithm and other state-
of-art algorithms using Monte Carlo simulations. Our results reveal that the
state-of-art algorithms, which are designed under the assumption of perfect
CSI at the receiver, are sensitive to inaccuracies in the channel estimates and
experience considerable BER performance degradation. On the contrary, the
proposed receiver benefits from the joint design of channel estimator and equal-
izer, performing significantly closely to ideal receivers having perfect CSI.

The remainder of this paper is organized as follows: in Section 2.1 we de-
velop a model for the OFDM signal received when operating in insufficient CP
conditions. In Section 2.2 we derive an approximate signal and probabilistic
models tailored to the application of SBI. In Section 3.1 we describe the theo-
retical foundations of the iterative receiver algorithm described in Section 3.2
– 3.4. In Section 4 we carry out several performance studies in which we com-
pare our receiver algorithm with other schemes. We present our conclusions in
Section 5.

Notation: By [1 : P ] we denote the set {p ∈ N|1 ≤ p ≤ P}. The (i, j)
element of matrix A is denoted as A[i, j] and I is the identity matrix. We define
the (m,n) element of the N × N discrete Fourier transform matrix (DFT)
F as F [m,n] = 1/

√
Ne

−j2πmn
N . The superscripts (·)T and (·)H designate

transposition and Hermitian transposition respectively. The notation ‖ · ‖2
stands for the Euclidian norm and δ(·) is the Dirac delta function. For a
set A we define the indicator function as IA(x) = 1, if x ∈ A and IA(x) =
0, otherwise. The row-wise concatenation of two matrices A, B reads [A|B]. A
function f : E → F maps the set E to the set F and its support is supp(f) =
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2. System model

{x ∈ E| f(x) 6= 0}. The convolution of two functions f and g is denoted by
f ∗ g. We use CN(·|a, B) to designate a multivariate complex Gaussian pdf
with mean vector a and covariance matrix B, and Ga(·; a, b) for the gamma
pdf with shape and rate parameters a and respectively b. The expected value
of f(x) w.r.t. the pdf q(x) is 〈f(x)〉q(x).

2 System model
In this section we develop the signal model and the associated probabilistic
model of an OFDM system transmitting across a channel with MED longer
than the CP duration. Since signals transmitted in the previous signaling
interval interfere with the signals received in the current signaling interval, our
derivation considers all signals received over one signaling block.

2.1 Model of the OFDM signal received in insufficient
CP conditions

During the nth signaling interval a vector un ∈ {0, 1}K of information bits
is encoded with a code rate R and interleaved into the vector cn = C(un) =

[c(0)Tn , ..., c(ND−1)T
n ]

T
∈ {0, 1}K/R, with C denoting the coding and interleaving

mapping. The entries of c(d)n ∈ {0, 1}Q, d ∈ [0 : ND − 1] are c(d)n [q], q ∈ [0 :
Q− 1],RNDQ = K. The code vector cn is modulated onto a vector of complex
symbols that are interleaved with pilot symbols producing the symbol vector
xn ∈ CN . The k-th entry xn[k] of xn is a pilot symbol if k ∈ P and a data
symbol if k ∈ D, where P = {p0, ..., pNP−1} and D = {d0, ..., dND−1} represent
the subsets of pilot and data indices respectively so that P ∪D = [0 : N − 1],
P ∩ D = ∅. Specifically, for k = pj , xn[k] ∈ Sp and for k = di, xn[k] =

M(c(i)n ). The function M : {1, 0}Q → Sd denotes the complex modulation
mapping, and the sets Sp and Sd are complex symbol constellations.

The symbol vector xn is passed through an inverse DFT block, yielding
the vector sn = FHxn. A µ-sample long cyclic prefix (CP) is prepended to
sn to produce the vector of samples of the OFDM symbol transmitted in
the nth signaling interval. These samples are modulated using a transmit
pulse-shape filter with response ψtx(t), supp(ψtx) = [0,T ] yielding the OFDM
waveform transmitted in the nth signaling interval: sn(t) =

∑N−1
i=−µ sn[i]·

ψtx (t− (i+ n(µ+N))Ts) , t ∈ ∆n, where sn[−i] = sn[N − i], i ∈ [1 : µ],
∆n =

[
((n − 1)µ + nN )Ts, (nµ + (n + 1)N)Ts

)
and Ts represents the sam-

pling time. Alternatively, we can express sn(t) = (s̃n ∗ ψtx)(t) where s̃n(t) =∑N−1
i=−µ sn[i]δ(t− (i+ n(µ+N))Ts).
The signal transmitted across the wireless channel consists of a block of B

consecutive OFDM waveforms: s(t) =
∑n=B−1
n=0 sn(t). The channel impulse
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response (CIR) is considered invariant over one signaling block2. The CIR
exhibits L̄ multipath components, i.e.

ḡ(t, τ ) = ḡ(τ ) =
L̄−1∑
l=0

ᾱ[l]δ(τ − τ̄ [l]), t ∈ ∆0 ∪ ...∪ ∆B−1. (A.1)

It is entirely characterized by the number of multipath components L̄, complex
gains in ᾱ ∈ CL̄ and delays3 in τ̄ ∈ RL̄. Contrary to classical signal models, we
allow the delays to exceed the duration of the CP, µTs. We restrain however
our analysis to responses with a maximum excess delay no longer than the
duration of the OFDM symbol, i.e. τ̄ [L− 1] ≤ (µ+N)Ts.

The received signal is the convolution of the transmitted signal and the CIR,
corrupted by additive white Gaussian noise (AWGN): s(t) ∗ ḡ(t, τ ) + w(t) =∑n=B−1
n=0 s̃n(t) ∗ψtx(t) ∗ ḡ(t, τ ) +w(t). The receive filter with response ψrx(t),

supp(ψrx) = [0,T ], is applied to the received signal to yield the signal r(t) =∑n=B−1
n=0 s̃n(t) ∗ ḡ(t, τ ) ∗ φ(t) + w̄(t), where φ(t) = (ψtx ∗ ψrx)(t), supp(φ) =

[0, 2T ] and w̄(t) = (w ∗ψrx)(t). Since τ̄ [L− 1] ≤ (µ+N)Ts the restriction of
r(t) to the nth signaling interval ∆n contains the contributions of the nth and
(n− 1)th transmit OFDM waveforms:

r(t) =
n∑

m=n−1

N−1∑
i=−µ

sm[i]
L̄−1∑
l=0

ᾱ[l]φ (t− τ̄ [l]− (i+m(µ+N))Ts)

+ w̄(t), t ∈ ∆n.

(A.2)

The signal in (A.2) is sampled with rate (Ts)−1. For each n ∈ [0 : B − 1], the
samples at time instants in ∆n corresponding to the CP are discarded while the
remaining samples are collected in the vector of observations rn with entries
rn[k] = r((k+ n(µ+N))Ts), k ∈ [0 : N − 1].

We define the composite CIR during the nth signaling interval to be q̄(τ ) =∑L̄−1
l=0 ᾱ[l]φ (τ − τ̄ [l]) with supp(q̄) = [τ̄ [0], τ̄ [L− 1] + 2T ]. This enables us to

express the kth entry, k ∈ [0 : N − 1], of rn as rn[k] =
∑N−1
i=−µ sn−1[i]q̄((k− i+

(µ+N))Ts) +
∑N−1
j=−µ sn[j]q̄((k− j)Ts) + w̄n[k], where w̄n[k] = w̄((k+ n(µ+

N))Ts) is the kth entry of the noise vector w̄n.
The vector rn is passed through a DFT block to yield yn = Frn, which

equivalently reads:

yn = H̄xn +FC̄FHxn +FS̄FHxn−1 + ξn, n = [0 : B − 1] (A.3)
2We consider the OFDM communication system to work with short blocks over which the

CIR can be treated as static.
3We assume, without loss of generality, that the entries of the delay vector τ̄ are sorted

in ascending order, i.e., τ̄ [l] < τ̄ [l+ 1], l ∈ [0 : L̄− 1].
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where ξn = Fw̄n. The diagonal matrix H̄ and the matrices C̄ and S̄ have
entries

H̄ [i, i] =
M̄−1∑
v=0

√
Nq̄(vTs)F [i, v] (A.4a)

C̄[m, i] = −q̄((N +m− i)Ts)I[0:Ē−1](m)I[m+(N−Ē−µ):N−µ−1](i) (A.4b)

S̄[m, i] = q̄((N + µ+m− i)Ts)I[0:Ē−1](m)I[m+(N−Ē):N−1](i) (A.4c)

where m, i ∈ [0 : N − 1]. We define M̄ = d(τ̄ [L̄− 1] + 2T )/Tse and Ē =
M̄ − µ.

We observe in (A.3) the explicit ICI and ISI contributions in the received
signal through the terms containing the matrices C̄ and S̄ respectively.

The dependency of yn on the CIR can be made more explicit by reformu-
lating (A.3) as

yn = Ānᾱ+ ξn, n = [0 : B − 1] (A.5)

where Ān = V̄nΦ̄ and V̄n = Xn

√
NFN×M̄ + Ξ̄n.

The entries of the matrix Φ̄ ∈ CM̄×L̄ are Φ̄[m, l] = φ(mTs − τ̄ [l]), m ∈ [0 :
M̄ − 1], l ∈ [0 : L̄− 1] and the matrix Xn ∈ CN×N is diagonal with diagonal
entries Xn[i, i] = xn[i], i ∈ [0 : N − 1]. We define Ξ̄n =

[
0N×µ|Ῡn

]
∈ CN×M̄ .

The rows of the matrix Ῡn ∈ CN×Ē are Ῡn[k, ·] = 1
N

(
xT
n−1$− xT

n

)
Λ̄

(k), k ∈
[0 : N − 1]. The matrix $ ∈ CN×N is diagonal with diagonal entries $[i, i] =
ωµi, i ∈ [0 : N − 1]. The matrix Λ̄

(k) ∈ CN×Ē has entries Λ̄(k)[a, b] =∑Ē−1
u=0 χ(u, b + µ, k, a), a ∈ [0 : N − 1], b ∈ [0 : Ē − 1] with χ(u, r, k, a) =

ωu(k−a)+raI[u+µ+1,M̄−1](r).

2.2 Proposed estimation model
From the signal model presented in (A.3) and its equivalent representation
(A.5) one can observe that in order to decode the transmitted message un, n =
[0 : B − 1], the receiver needs to deal with a set of unknown random variables
which are not, in principle, of direct interest to the receiver. These variables,
usually referred to as nuisance parameters, comprise the entries in the vector
of channel weights ᾱ, and the vector of multipath delays τ̄ , the component
variance of the noise vector ξn, and the symbols in xn,n ∈ [0 : B − 1]. One
possible approach to design the receiver is to attempt the joint estimation of
all the unknown variables in the model. Such strategy leads, however, to severe
tractability problems, mainly due to the difficulty in estimating the vector of
multipath delays τ̄ . To overcome this difficulty, we adopt an SBI approach for
channel estimation. SBI techniques for channel estimation are founded on the
assumption that the CIR is sparse, i.e. composed of a few dominant multipath
components. Since the delays of these multipath components are unknown at
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the reception, the CIR during the nth signaling interval is approximated as
the sum of a large number of multipath components whose delays are evenly
spaced within a given delay range, i.e.

g(t, τ ) = g(τ ) =
L−1∑
l=0

α[l]δ(τ − τs[l]), t ∈ ∆0 ∪ ...∪ ∆B−1 (A.6)

Here we define the postulated vector of channel weights α ∈ CL with entries
α[l] from (A.6); the delay vector with delay resolution ∆τ is τ s ∈ RL with
entries τs[p] = p∆τ , p ∈ [0 : L− 1]. We select L such that L � L̄. Given the
approximation (A.6) in conjunction with the aforementioned sparsity assump-
tion, we expect α to be sparse, i.e. many of its entries to be zero. Exploiting
this property, the SBI framework enforces sparse estimates of α by employing
a probabilistic model that assigns a sparsity-inducing prior distribution to this
vector.

Following the above rationale, we formulate a new (approximate) estimation
model by applying the approximation (A.6) to the signal model (A.3) and (A.5).
To that end, we define the approximate dictionary matrix An ∈ CN×L with
entries

An[a, b] =
M−1∑
k=0

Vn[a, k]Φ[k, b], a ∈ [0 : N − 1], b ∈ [0 : L− 1], (A.7)

where M = d(τs[L− 1] + 2T )/Tse and Φ[k, b] = φ(kTs − τs[b]). The matrix
Vn is defined analogously to V̄n by replacing M̄ with M . We obtain thus the
following approximations of (A.5) and (A.3):

yn = Anα+ ξn, (A.8a)
yn = Hxn +FCFHxn +FSFHxn−1 + ξn, n = [0 : B − 1]. (A.8b)

The noise vector ξn is white and Gaussian, i.e. p(ξn) = CN(ξn; 0,λ−1IN ). The
matrices H, C, S are also defined analogously to H̄, C̄, S̄ in (3.1) by replacing
M̄ with M , and q̄ with q(τ ) =

∑L−1
l=0 α[l]φ (τ − τs[l]).

Using (A.8a), we can express the joint pdf of all unknown random variables
of the system as

p(u0, ..., uB−1, c0, ..., cB−1, x0, ..., xB−1,λ,α, y0, ..., yB−1) ∝

p(λ)p(α)
B−1∏
n=0

p(yn|xn, xn−1,λ,α)I{M̄(cn)}(xn)I{C(un)}(cn)p(un)
(A.9)

where p(yn|xn, xn−1,λ,α) = CN(yn; Anα,λ−1IN ) and x−1 = 0.
The factors I{M̄(cn)}(xn) =

∏ND−1
k=0 I

{M(c(k)n )}
(xn[dk]) and I{C(un)}(cn)

enforce modulation and coding constraints. We assume that the information
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3. Message passing receiver design for insufficient CP conditions

bits are generated using a binary symmetric source, i.e. p(un) =
∏K−1
v=0 p(un[v]),

with p(un[v]) = 1
2 , un[v] ∈ {0, 1}. We select the noise precision prior to be the

non-informative, i.e. p(λ) ∝ 1/λ. To enforce sparsity on the estimator of α we
use a sparsity-inducing probabilistic modeling of the prior pdf p(α). We model
the entries in α as Gaussian scale mixtures, i.e. p(α,γ) = p(α|γ)p(γ) with
p(α|γ) = CN(α; 0, Γ) and Γ = diag(γ). Following the approach in [28, 40],
we select the mixing density as p(γ) =

∏L−1
p=0 Ga(γ[p]; ε, η).

3 Message passing receiver design for insuffi-
cient CP conditions

Given the estimation model (A.8) and its probabilistic description (A.9), the
task of the receiver is to retrieve the transmitted bit vectors un,n ∈ [0 : B− 1].
The optimum receiver computes p(un[k]|yn,n ∈ [0 : B − 1]) for each n ∈ [0 :
B − 1], k ∈ [0 : K − 1]. The high complexity of the involved marginalization
procedure prevents any feasible implementation of this receiver. Instead we re-
sort to variational Bayesian inference techniques, which estimate the posterior
probability distributions of each variable in the probabilistic model, i.e. the
information bits, the channel weights, the noise variance, and the transmitted
symbols. Specifically, we design a message-passing receiver algorithm that im-
plements the approximate inference technique [37] applied to the factor graph
representation [41] of (A.9). In the design we will use both representations
(A.8a) and (A.8b) of the signal model. The representation (A.8a) is suitable
for deriving estimators of the weight vector α. Furthermore, since this vector
consists of few non-zero elements, finding such estimators corresponds to solv-
ing a sparse Bayesian learning problem. The representation (A.8b) is tailored
for retrieving the data symbols xn, which is done by solving a classical equal-
ization problem. However, given that An in (A.8a) depends on xn, xn−1 and
C, S, H in (A.8b) depend on α, the two problems cannot be treated separately.

3.1 MF-BP message-passing technique: preliminaries
Consider a probabilistic model consisting of a set Z of random variables and
characterized by a joint pdf that factorizes according to p(z) ∝

∏
fa∈F fa(za),

where z is a vector containing all random variables zi ∈ Z and za is a vector
with all variables zi that are argument of the local function fa belonging to
the set of functions F . The (bipartite) factor graph of the probabilistic model4
specified by p(z) consists of a variable node for each variable zi, a factor node
for each factor fa, and edges which connect a variables node zi to a factor node

4Factor graphs provide graphical representations of the statistical dependencies of the
variables in a probabilistic model. Note that a probabilistic model can have different (equiv-
alent) graphical representation.
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3. Message passing receiver design for insufficient CP conditions

fa if, and only if, zi is an argument of fa [41]. Given the above probabilis-
tic model, a typical inference problem is computing the marginal pdfs of the
variables of interest, i.e. p(zi). Computing the marginals, however, is often
infeasible - especially for large probabilistic models with complex dependen-
cies - and approximate inference approaches are sought instead. Approximate
inference techniques work with beliefs - i.e. approximate pdfs - q(zi) of the
marginals, such that q(zi) ≈ p(zi). The computation of the beliefs is often
iterative and can typically be formulated as a message-passing algorithm in
the factor graph associated to the probabilistic model. Messages are iteratively
exchanged along the edges of the graph, according to some specified updating
rules, called scheduling, until convergence is reached. Eventually the beliefs
q(zi) are retrieved.

The MF-BP framework [37] divides the set F of factor nodes into two dis-
joint sets FBP and FMF, i.e. FBP ∪FMF = F , FBP ∩FMF = ∅. Denoting the
message passed from the factor node fa to the variable node zi ∈ za as mfa→zi
and the message exchanged in the opposite direction as nzi→fa , the rules [37] for
updating the messages and the beliefs q(zi) are defined in Table A.1. By abuse

Table A.1: MF-BP rules

mMF
fa→zi

(zi) ∝ exp
(∑

za\zi
logfa(za)

∏
j:zj∈N (fa)\zi

nzj→fa
(zj)

)
,

fa ∈ FMF, zj ∈ N (fa) (I)

mBP
fa→zi

(zi) ∝
∑

za\zi
fa(za)

∏
j:zj∈N (fa)\zi

nzj→fa
(zj),

fa ∈ FBP, zj ∈ N (fa) (II)

nzi→fa
(zi) ∝

∏
fc∈N (zi)∩FMF

mMF
fc→zi

(zi)
∏

fc∈N (zi)∩FBP\fa
mBP

fc→zi
(zi),

zi ∈ Z, fa ∈ N (zi) (III)

q(zi) ∝
∏

fc∈N (zi)∩FMF
mMF

fc→zi
(zi)

∏
fc∈N (zi)∩FBP

mBP
fc→zi

(zi), zi ∈ Z (IV)

N (zi) ⊂ F is the subset of functions fa that have variable zi as an argument.
N (fa) ⊂ Z is the subset of variables that are arguments of fa.

of terminology, we refer to messages of the form (I) and (II) as respectively MF
and BP messages. Note that the MF-BP framework is presented above under
the assumption that all variables zi ∈ Z are scalar variables and, hence, the
computed beliefs represent approximations of marginal pdfs of scalar variables.
In practice, it is possible to group variables into a single vector variable, say zg
with entries zi ∈ Zg for some Zg ⊆ Z. In this case, the vector-valued variable
is represented in the factor graph as a single node. The message computation
is formally extended to apply to such vector-valued variable, and the algorithm
computes a joint belief q(zg) approximating the joint marginal pdf p(zg). The
selected grouping of variables reflects an assumption on the constraints that
the beliefs should fulfill, as discussed in [37]. In the remainder of this sec-
tion we will explore two different grouping options - and, consequently, two
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fOn
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Fig. A.1: Factor graph representation of the probabilistic model (A.10).

different factor graphs and two different message-passing algorithms - for the
probabilistic model (A.9).

3.2 Computation of messages and beliefs
In the following, we apply the MF-BP framework to the probabilistic model
presented in Section II. First, we express the joint pdf (A.9) as

p(u0, ..., uB−1, c0, ..., cB−1, x0, ..., xB−1,λ,α,γ, y0, ..., yB−1) =

fW (λ)fH(α,γ)fV (γ)
B−1∏
n=0

fOn(xn, xn−1,λ,α)fCn(cn, un)·

ND−1∏
k=0

fMn,k (xn[dk], c
(k)
n )

K−1∏
v=0

fUn,v (un[v]),

(A.10)

where fOn(xn, xn−1,λ,α) = p(yn|xn, xn−1,λ,α), fW (λ) = p(λ), fH(α,γ) =
p(α|γ), fV (γ) = p(γ), fMn,k (xn[dk], c

(k)
n ) = I

{M(c(k)n )}
(xn[dk]), fCn(cn, un) =

I{C(un)}(cn), and fUn,v (un[v]) = p(un[v]) = 1/2. Based on (A.10), we cast
the factor graph depicted in Fig. A.1.

We further define FMF = {fW , fV , fH, fOn |n = [0 : B − 1]} and FBP =
F\FMF. Henceforth, we will refer to the subgraph corresponding to the fac-
torization

∏
fa∈FBP

fa(xa) as the BP part, and similarly to that representing∏
fa∈FMF

fa(xa) as the MF part. We chose to treat the vectors α and γ as
single variables, each represented by a single variable node. An alternative
representation with individual (separate) variable nodes for each of the entries
of α and γ will be discussed later in this section.

An analogy can be made between passing of messages along edges of the
graph and the typical operations of an OFDM receiver, as we will see in

59



3. Message passing receiver design for insufficient CP conditions

the following. Propagating messages from the node fOn , to all factor nodes
fUn,k , k ∈ [0 : K − 1] and back (i.e. exchanging messages in the (upper) BP
part of the graph) corresponds to soft5 demapping, soft decoding, deinterleav-
ing, interleaving, soft coding and soft mapping. Computing the beliefs of λ,α,γ
in the (lower) MF part of the graph corresponds to channel estimation.

Computation of the beliefs of the data symbols
The information inferred on xn from the observation vectors yn, together
with estimates of the channel weights and the noise precision, are propa-
gated upwards in the graph through the set of messages mMF

On→xn[dk ]
, n ∈ [0 :

B−1] . Subsequently, the messages nxn[dk ]→fMn,k
,mBP

fMn,k→c
k
n[m]

, nckn[m]→fCn
,

mBP
fCn→un[a]

, nun[a]→fUn,a
k ∈ [0 : ND − 1],m ∈ [0 : Q− 1], a ∈ [0 : K − 1], cor-

responding to the operations of soft demapping and decoding, are computed.
Similarly, propagating the messages downwards, i.e. mBP

fUn,a→un[a]
, nun[a]→fCn ,

mBP
fCn→ckn[m]

, nckn[m]→fMn,k
, mBP

fMn,k→xn[dk ]
, is equivalent to soft encoding and

re-mapping. It is well known that propagation of BP messages through nodes
fMn,k and fCn corresponds to classical demapping [42] and decoding algorithms
for most channel codes (e.g. the BCJR algorithm for convolutional codes [41],
or the turbo-decoding algorithm for turbo codes [43, 44]). We now focus on
the computation of the beliefs of the data symbols, which read

q(xn[dk]) ∝mMF
fOn→xn[dk ]

(xn[dk]) m
MF
fOn+1→xn[dk ]

(xn[dk])

mBP
fMn,k→xn[dk ]

(xn[dk]).
(A.11)

Using (A.8b), the first two factors in (A.11) are given by

mMF
fOn→xn[dk ]

(xn[dk]) ∝

exp
(
−〈λ〉q(λ)

〈
‖ yn −Mxn −Nxn−1 ‖22

〉
q(xn\dk )q(xn−1)q(α)

)
,

(A.12)

where the entries of xn\dk are xn\dk [d] = xn[d], if d 6= dk and xn\dk [d] = 0, if
d = dk, M = H+FCFH and N = FSFH, and

mMF
fOn+1→xn[dk ]

(xn[dk]) ∝

exp
(
−〈λ〉q(λ)

〈
‖ yn+1 −Mxn+1 −Nxn ‖22

〉
q(xn\dk )q(xn+1)q(α)

)
.

(A.13)

5Henceforth, we use the terminology "soft operations" to designate operations that produce
soft values of a model parameter, i.e. compute the first and second moments of said parameter
with respect to its (current) belief.
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The product of messages (A.12) and (A.13) is the message nxn[dk ]→fMn,k
which

can be recast as nxn[dk ]→fMn,k
(xn[dk]) ∝ CN(xn[dk];µxn[dk ],σ

2
xn[dk ]

) with

(
σ2
xn[dk ]

)−1
= 〈λ〉q(λ)

〈
‖M[·, dk] ‖22

〉
q(α)

+ 〈λ〉q(λ)
〈
‖ N[·, dk] ‖22

〉
q(α)

(A.14)

µxn[dk ]

(
σ2
xn[dk ]

)−1
= 〈λ〉q(λ)

(〈
MH[·, dk]

〉
q(α)
·〈

yn −Mxn\dk −Nxn−1
〉
q(xn\dk )q(xn−1)q(α)

+〈
NH[·, dk]

〉
q(α)

〈
yn+1 −Nxn\dk −Mxn+1

〉
q(xn\dk )q(xn+1)q(α)

)
.

(A.15)

The computation of 〈M〉q(α) , 〈N〉q(α) ,
〈
MHM

〉
q(α)

and
〈
NHN

〉
q(α)

is pro-
vided in Appendix B. The BP message in (A.11) reads

mBP
fMn,k→xn[dk ]

(xn[dk]) ∝
∑

c(k)n ∈{0,1}Q

fMn,k (xn[dk], c
(k)
n )

Q−1∏
v=0

n
c
(k)
n [v]→fMn,k

(c
(k)
n [v]).

(A.16)

Once q(xn[dk]) in (A.11) is computed, 〈An〉q(xn−1)q(xn) ,
〈
AH
nAn

〉
q(xn−1)q(xn)

,
n ∈ [0 : B − 1] can be updated – see Appendix B.

Computation of the beliefs of the channel weights and the noise pre-
cision
The belief of the noise precision reads q(λ) ∝ mMF

fW→λ(λ)
∏B−1
n=0 m

MF
fOn→λ

(λ),

with
∏B−1
n=0 m

MF
fOn→λ

∝ λNBexp
(
−λ
∑B−1
n=0

〈
‖ yn −Anα ‖22

〉
q(xn),q(xn−1),q(α)

)
and mMF

fW→λ(λ) ∝ 1/λ. Subsequently, we obtain
q(λ) ∝ Ga(λ;NB,

∑B−1
n=0

〈
‖ yn −Anα ‖22

〉
q(xn),q(xn−1),q(α)

). The first moment
of q(λ) can be expressed in closed form:

〈λ〉q(λ) =
NB∑B−1

n=0
〈
‖ yn −Anα ‖22

〉
q(xn),q(xn−1),q(α)

. (A.17)

For the computation of 〈An〉q(xn−1)q(xn) and
〈
AH
nAn

〉
q(xn−1)q(xn)

, we refer
to Appendix B. We propose two approaches for the estimation of the chan-
nel weights: in the first one, all weights are jointly estimated, i.e. the belief
q(α) is computed; in the second approach, the beliefs of the individual weights
q(α[p]), p ∈ [0 : L− 1] are computed by assuming a fully factorized belief, i.e.
q(α) =

∏L−1
p=0 q(α[p]).
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3. Message passing receiver design for insufficient CP conditions

Joint update of the channel weights

The factor graph in Fig. A.1 represents the probabilistic model tailored to
the first approach; as a result, the vector of channel weights α and the vector
γ of their prior parameters are represented each by one variable node. The
belief of γ is the product of two messages: q(γ) ∝ mMF

fV→γ(γ) m
MF
fH→γ(γ)

with mMF
fV→γ ∝

∏L−1
p=0 γ[p]

ε−1exp (−ηγ[p]) and mMF
fH→γ(γ) ∝

∏L−1
p=0 γ[p]

−1

exp
(
−γ[p]−1 〈|α[p]|2〉

q(α)

)
. It factorizes as q(γ) =

∏L−1
p=0 q(γ[p]) with its

factors being generalized inverse Gaussian pdfs [45]. The first inverse moments
of its entries have a closed form expression:

〈
γ[p]−1〉

q(γ)
=

(〈
|α[p]|2

〉
q(α)

η

)− 1
2 Kε−2

(
2
√
η 〈|α[p]|2〉q(α)

)
Kε−1

(
2
√
η 〈|α[p]|2〉q(α)

) , p ∈ [0 : L−1],

(A.18)
where Kv(·) is the modified Bessel function of the second kind and order v ∈ R.

The belief of the channel weight vector reads
q(α) ∝ mMF

fH→α(α)
∏B−1
n=0 m

MF
fOn→α(α) where the two factors are

mMF
fOn→α(α) ∝ CN

(
α; 〈λ〉q(λ) Σ′α 〈An〉Hq(xn),q(xn−1)

yn, Σ′α
)

with

Σ′α =
(
〈λ〉q(λ)

〈
AH
nAn

〉
q(xn),q(xn−1)

)−1
, andmMF

fH→α(α) ∝ CN(α; 0,
〈
Γ−1〉−1

q(γ)
).

The product of Gaussian pdfs can be recast as a Gaussian pdf, i.e. q(α) ∝
CN(α;µα, Σα) with

Σα =

(
〈λ〉q(λ)

B−1∑
n=0

〈
AH
nAn

〉
q(xn),q(xn−1)

+
〈
Γ−1〉

q(γ)

)−1

(A.19a)

µα = 〈λ〉q(λ) Σα

B−1∑
n=0
〈An〉Hq(xn),q(xn−1)

yn. (A.19b)

Separate update of the channel weights

Since the updates (A.19) are computationally expensive, we propose next a
solution that avoids large matrix inversions and the evaluation of compli-
cated updates. To that end, we utilize two approximations: (i) we employ
the naive MF approximation [39] by assuming the belief of α to factorize as
q(α) =

∏L−1
i=0 q(α[i]); (ii) we restrict the belief of γ to a Dirac delta function at

the mode γ̂ = [γ̂[0], ..., γ̂[L− 1]] of q(γ) obtained in the paragraph preceding
(A.18): q̂(γ) =

∏L−1
i=0 q̂(γ[i]) =

∏L−1
i=0 δ(γ[i]− γ̂[i]), γ̂[i] = argmaxγ[i]q(γ[i]).

As a consequence of (i), each of the scalar variables α[i] and γ[i] is rep-
resented with its own variable node in the corresponding factor graph, as de-
picted in Fig. A.2. Here we define fHi(α[i], γ[i]) = p(α[i]|γ[i]) and fVi(γ[i]) =
p(γ[i]), with p(α[i]|γ[i]) = CN(α[i]; 0, γ[i]) and p(γ[i]) = Ga(γ[i]; ε, η).
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3. Message passing receiver design for insufficient CP conditions

α[0] α[L− 1]

fOn
fOn+1

fOB−1
fOn−1fO0

λ

fH0
fHL−1

γ[0] γ[L− 1]

fV0 fVL−1

fW

Fig. A.2: MF subgraph corresponding to the fully factorized belief of the channel weights.

Following (ii), we substitute the first inverse moment updates for the entries
in γ in (A.18) by updates more easy to evaluate, i.e the inverse of

γ̂[i] =
ε− 2 +

√
(ε− 2)2 + 4η 〈|α[i]|2〉q(α[i])

2η , i ∈ [0 : L− 1]. (A.20)

Consequently, the belief of each channel weight α[i] reads
q(α[i]) ∝ mfHi→α[i]

∏B−1
n=0 mfOn→α[i] ∝ CN(α[i];µα[i],σ2

α[i]) with

σ2
α[i] =

(
〈λ〉q(λ) ς [i] + γ̂[i]−1

)−1
(A.21a)

µα[i] = 〈λ〉q(λ) σ
2
α[i]θ[i] (A.21b)

where ς [i] =
∑B−1
n=0

〈
‖ An[·, i] ‖22

〉
q(xn),q(xn−1)

and θ[i] =∑B−1
n=0

(
〈A∗n[i, ·]〉q(xn),q(xn−1)

yn −
∑L−1
p=0,p6=i 〈A∗n[i, ·]An[·, p]〉q(xn),q(xn−1)

·
〈α[p]〉(q(α[p]))

)
.

The separate weights estimation scheme updates consecutively the belief
of each channel weight α[i] by iteratively computing nα[i]→fHi

, mMF
fHi→γ[i]

,
nγ[i]→fVi

, mMF
fVi→γ[i]

, nγ[i]→fHi and mMF
fHi→α[i]

until convergence, while keep-
ing the beliefs of α[j], j 6= i fixed. Since many iterations are needed before the
convergence of each belief q(α[i]) is achieved, we propose a recursive update of
γ[i] and consequently of α[i], inspired by [46]. The above iterative computation
of messages can be expressed as a recursive procedure to update the estimates
of γ, which can be written in the form γ̂[i]new = gi(γ̂[i]old). The function gi
characterizing the recursion can be obtained by inserting (A.21b) and (A.21a)
in (A.20), which yields

gi(γ̂[i]) =
ε− 2
2η +

√(
ε− 2
2η

)2
+
γ̂[i]

(
(ci + qi)γ̂[i] + c2

i

)
η(γ̂[i] + ci)2 (A.22)

where c−1
i = λς [i] and qi = ς [i]−2|θ[i]|2. If the iterative computation of mes-

sages described above converges, it does it to a fixed point of gi. We need
thus the solutions of γ̂∗[i] = gi(γ̂∗[i]), which corresponds to solving the cubic
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3. Message passing receiver design for insufficient CP conditions

equation

γ̂∗[i]
(
ηγ̂∗[i]3 + [2ηci − (ε− 2)] γ̂∗[i]2+[

ηc2
i − ci(2ε− 3)− qi

]
γ̂∗[i]− (ε− 1)c2

i

)
= 0.

(A.23)

For the discussion on finding the solution of (A.23), see Appendix A. Once the
fixed point γ̂∗[i] has been obtained, the belief of α[i] is updated using (A.21b)
and (A.21a).

3.3 Description of the receiver algorithm
It can be seen from the updates presented in Section 3.2 that computing the
beliefs of the current (n) data symbols xn[d], d ∈ D implies computing messages
from nodes corresponding to the next (n+ 1), and previous (n− 1) signaling
intervals in the transmission block. Consequently, there are multiple scheduling
options i.e. selections of the order in which the different messages, and hence
the updates of the beliefs, are performed.

In one instance, one could choose to wait until all yn,n ∈ [0 : B− 1] signals
in the block have been received and estimate all un,n ∈ [0 : B − 1] using a
forward-backward scheduling, with messages propagating in a first stage from
left to right in the factor graph in Fig. A.1 and in a second stage from right to
left. This scheduling, however, is computationally and memory expensive, in
addition to implying some latency. Its implementation is therefore impractical
in real-time receivers. As an alternative which overcomes the aforementioned
disadvantages of the forward-backward algorithm, we propose a scheduling that
performs an instance of the forward stage only. An additional virtue of the later
scheduling is that the estimate of un can be obtained once the observation yn
is available.

Algorithm 1 implements the forward processing and thus works sequentially,
i.e. at each signaling interval n, the algorithm makes use of the observations
yk, k ≤ n and the soft estimates of xk′ , k′ ≤ n− 1. Then, it updates the es-
timates of the channel weights, noise precision and current symbol vector xn
and consequently un. This scheduling results from setting all future messages,
i.e. messages that require access to variables from future signaling intervals,
to constants. Specifically, in the computation of q(xn[dk]) in (A.11), q(λ)
before (A.17), and q(α) before (A.19), we set: mMF

fOn+1→xn[dk ]
(xn[dk]) = 1,∏B−1

k=n+1 m
MF
fOk→λ

(λ) = 1, and
∏B−1
k=n+1 m

MF
fOk→α(α) = 1, respectively. The al-

gorithm iterates between data and channel updates until convergence is reached,
or the number of performed iterations exceeds a maximum value. We define
two types of iterations: (1) an outer iteration – which is completed when an
estimate of the current data symbols xn is obtained, and (2) an inner iteration
– which is completed when an estimate of the channel weights α is obtained.
We denote the maximum number of outer and inner iterations as Mo and Mi
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3. Message passing receiver design for insufficient CP conditions

Algorithm 1 Proposed receiver algorithm
1: set ∆τ , L and 〈xn[dk ]〉q(xn [dk ]) = 0,

〈
|xn[dk ]|2

〉
q(xn [dk ])

= 0, k ∈ [0 : ND − 1], n = [0 :

B − 1]
2: for current symbol i ∈ [0 : B − 1] do
3: initialize 〈λ〉q(λ),

〈
γ−1
〉
q(γ)

, 〈α〉q(α),
〈
ααH

〉
q(α)

and the bounds for outer (Mo[i]) and
inner (Mi[i]) iterations

4: for IT = 1 : Mo[i] do
5: for it = 1 : Mi[i] do
6: compute 〈λ〉q(λ) using (A.17)
7: if (joint α update - scheme 3.2) then
8: compute 〈γ〉q(γ) with (A.18) and µα, Σα with (A.19)
9: else if (separate α update - scheme 3.2) then
10: for p ∈ [0 : L− 1] do
11: compute 〈γ[p]〉q(γ[p]) with (A.23) and µα[p], σ2

α[p], with (A.21)
12: end for
13: end if
14: end for
15: compute 〈xi[dk ]〉q(xi [dk ]),

〈
|xi[dk ]|2

〉
q(xi [dk ])

, with (A.14), (A.16) and

〈Ai〉q(xi),q(xi−1)
with (A.7) and

〈
AH
i

〉
q(xi),q(xi−1)

yi and
〈

AH
i Ai

〉
q(xi),q(xi−1)

16: end for

respectively. Note that the higher the index of the signaling interval, the more
observation vectors are available for estimating the channel weights and the
noise precision. Therefore computation of the channel updates at a given sig-
naling interval may need fewer iterations than in the previous intervals. To
account for that, one may set a number of maximum iterations that decreases
with the signaling index.

3.4 Computational complexity
We discuss next the main sources of complexity of Algorithm 1, together with
potential complexity reductions alternatives.

Updating the channel weights The complexity of computing µα and Σα
using the joint update method from (A.19) are O(L2) and O(L3). The com-
plexity of the matrix inversion involved in the computation of Σα can be re-
duced by invoking Woodbury matrix identity when M < L: after re-writing
the matrix 〈λ〉q(λ)

∑B−1
n=0

〈
AH
nAn

〉
q(xn),q(xn−1)

= ΦHΣnΦ, the covariance ma-
trix becomes6 Σα = ∆−1 − ∆−1ΦHK−1

n Φ∆−1, where Kn = Σn
−1 + Φ∆−1ΦH

is inverted at a cost O(M3). Using the separate update method from (A.21)
we compute the entries of the vectors µα and σ2

α, of complexity O(L) each.

6We define Σn = 〈λ〉q(λ)
∑B−1

n=0

〈
VH
nVn

〉
q(xn),q(xn−1)

∈ CM×M and the diagonal matrix

∆ =
〈

Γ−1
〉
q(γ)

.
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Alternatively, by choosing a different factorization of the beliefs of the channel
weights, similar to that proposed in [47], e.g. q(α) =

∏g=L/z
g=1 q(αg), where

the vector αg has z < L entries, we can reduce the problem to estimating L/z
groups of channel weights, and thus computing L/z variance matrices Σαg of
complexity O(z3). Using the separate update method in (A.21) is equivalent
to setting z = 1.

Learning the dictionary This step consists of recomputing the products〈
AH
i

〉
q(xi),q(xi−1)

yi and
〈
AH
i Ai

〉
q(xi),q(xi−1)

at the costs O(NL) and O(NL2)

respectively. The products are used in (A.19) or (A.21), and (A.17) to refine
the channel and noise precision estimates. The two updates can be performed
either (i) after each or (ii) all data symbol estimate(s) has/have been obtained.
To avoid the complexity cost incurred in case (i), i.e. performing channel esti-
mation ND times with complexity described in the above paragraph, Algorithm
1 implements variant (ii).

4 Performance evaluation
We consider a SISO CP-OFDM system with the parameters given in Table
A.2. The CP duration, subcarrier spacing and pilot density are chosen follow-
ing [6]. We use a stochastic channel model with a long CIR inspired by the

Table A.2: OFDM system parameters.

N Pilot density Mo- Subcarrier Channel TCP Block
& pattern dulation space [kHz] coding [µs] [no. symbols]

64 17% QPSK 15 1/3 4.69 4
equally spaced (133, 171, 165)8

measurement campaigns reported in [7, 9]. Following the model proposed in [8]
the CIR consists of two clusters. Cluster (1) contains the multipath compo-
nents with delays smaller than the CP duration, while cluster (2) comprises the
components with delays beyond the CP length. Cluster (1) is the result of the
propagation medium between the serving base station and the mobile termi-
nal, whereas cluster (2) exists due to the reflections from distant tall scatterers.
The CIR over the block duration can be written as ḡ(τ ) =

∑L̄(1)−1
l=0 ᾱ(1)[l]δ(τ −

τ̄(1)[l]) +
∑L̄(2)−1
l=0 ᾱ(2)[l]δ(τ − τ̄(2)[l]), where ᾱ(k) and τ̄ (k) contain the weights

and delays of the L̄(k) multipath components in cluster (k), k ∈ [1 : 2].
We define the power-delay profile (PDP): P (τ ) = Qexp(− τv )I[0,TCP ](τ ) +

aQexp(TCP−τv )I(TCP ,τ̄M ](τ ) where v = 1µs, a is the power attenuation fac-
tor of the cluster (2), Q is a scaling parameter, and τ̄M is the channel MED.
The joint pdf of the unknown parameters is p

([
ᾱ(k), τ̄ (k), L̄(k); k ∈ [1 : 2]

])
=
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4. Performance evaluation

Table A.3: Receivers used for benchmarking. All receivers use BCJR decoding. Channel
estimation in a given signaling interval, say n, is performed by using all observation vectors
up to n: yk, k ≤ n.

Receiver Channel Estimation Equalization
PSER pilot-based channel estimation using SBI one-tap equalizer

(ISI/ICI are ignored)
SIC perfect channel state information (CSI) successive interference

cancellation [2]
PSE-SIC pilot-based channel estimation using SBI successive interference

cancellation [2]
LMMSE equalization
with perfect ISI & ICI

GAR perfect CSI cancellation and know-
ledge of noise precision

∏2
k=1 p(ᾱ(k)|τ̄ (k))p(τ̄ (k)|L̄(k))p(L̄(k)), where p(τ̄ (k)|L̄(k)) =

∏L̄(k)−1
l=0 p(τ̄(k)[l]).

The number of components L̄(k) is Poisson distributed L̄(k) ∼ Poisson(µL̄k ).
The delays are independent and uniformly distributed, i.e. τ̄(1)[l] ∼ Unif(0,TCP ),
τ̄(2)[l] ∼ Unif(TCP , τ̄M ). The conditional pdf of ᾱ(k) reads p(ᾱ(k)|τ̄ (k)) =∏L̄(k)−1
l=0 CN

(
ᾱ(k)[l]|0,P (τ̄(k)[l])

)
. We assume τ̄(1) = 0 which corresponds to

perfect time synchronization of the receiver. Unless stated otherwise, CIR real-
izations are generated using the above model with τ̄M = 10µs, µL̄1 = µL̄2 = 5,
a = 1.

4.1 Tested receivers
We evaluate the receiver design proposed in Section 3 with the two different
configurations. One receiver, which we abbreviate as MPR-J, implements Al-
gorithm 1 with joint channel weight estimation described in Section 3.2. The
second receiver, abbreviated as MPR-S, implements Algorithm 1 with separate
(disjoint) channel weights estimator from Section 3.2. We set ε = 0.5 and η = 1
as in [48], and initialize

〈
γ−1〉

q(γ)
= 1 and 〈λ〉q(λ) = 1. We benchmark the

bit-error rate (BER) performance of the two proposed receivers against that
of the receivers listed in Table A.3. GAR and PSER represent respectively
the lower and upper performance bounds. SIC and PSE-SIC have been chosen
to highlight how the errors stemming from imperfect channel estimation and
detection, impact the overall BER: since SIC works with perfect CSI, the de-
tection block is the sole source of error; because PSE-SIC treats ISI and ICI as
AWGN when estimating the channel weights, we expect its performance to be
further impaired by channel estimation errors. The purpose of evaluating SIC
and PSE-SIC is to illustrate the necessity of a joint design of channel estimator
and equalizer, since an equalizer that performs close to optimally with perfect
CSI may, however, perform very poorly when inaccurate channel estimates are
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Fig. A.3: (a) MSE at the last symbol in the block versus the delay resolution, (b) MSE
versus the OFDM symbol number and (c) estimated noise precision versus the number of
total iterations at 8 dB SNR. The legend applies to all figures.

used instead. To test the performance of the channel estimators implemented
in MPR-J and MPR-S, their MSE are also evaluated and compared to the MSE
of the estimator in PSER, as well as of a genie-aided MMSE channel estimator
(GAE) that knows all the symbols in the block, the delays of all multipath
components and the noise variance.

Three design parameters need to be set for MPR-J, MPR-S and likewise for
PSER: (i) the delay resolution, (ii) the MED assumed by the CIR estimator,
(iii) and the number of iterations of the algorithm. Based on a survey of the
literature on channel measurements [7, 9, 10], we assume max(τ s) = 10µs.
To investigate the influence of (i) and (iii), we assess the performance of the
proposed receivers in the system specified in Table A.2. With this setup, we
vary the delay resolution of the receivers and observe the MSE performance.
In Fig. A.3.a we observe that the MSE of all channel estimators reaches its
minimum value for a delay resolution ∆τ ≤ 100ns. Fig. A.3.b indicates that all
receivers benefit from the increased number of observations, however, MPR-J
and MPR-S exhibit the largest MSE improvement due to the data-aided nature
of their CIR estimators. To set the number of iterations, we monitor the noise
precision estimate which is a good convergence indicator since it measures
the distance between the observed signal and the signal reconstructed using
the channel and symbol estimates. Fig. A.3.c depicts the estimated noise
precision over the total number of iterations7.

4.2 Numerical study

Varying the power attenuation factor of cluster (2)

Fig. A.4 depicts the BER of the proposed receivers and the benchmarkers
for three different values of the power attenuation factor: a = 0.1, a = 0.5,
inspired by the HT and BU models [8], and a = 1 which emulates very harsh

7By total number of iterations we mean the overall number of channel and noise precision
updates since the initialization of the algorithm. In the simulations we set the total number
of iterations for MPR-S, MPR-J and PSER to 12.
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Fig. A.4: BER at SNR= 4 dB versus attenuation factor a.
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Fig. A.5: (a) - (b) MSE and estimated noise precision versus SNR (legend applies to both
figures). Fig. (c) - (d) BER versus SNR, and BER at SNR= 4 dB versus the OFDM symbol
number (legend applies to both figures). The attenuation factor is a = 1.

propagation conditions similar to those reported in [9]. MPR-J and MPR-S
exhibit a robust behaviour w.r.t. a, the latter exhibiting only a slight BER
increase at a = 1. By contrast, PSE-SIC and PSER are more sensitive to ISI
and ICI, their BER displaying a steady degradation.

Fig. A.5.a and Fig. A.6.a show that the channel estimator of MPR-J ex-
hibits a marginally better MSE performance than MPR-S at high SNR, which
could be attributed to the joint estimation of the channel weights. Unlike
PSER, both MPR-J and MPR-S correctly estimate the noise precision, see
Fig. A.5.b. The erroneous estimate returned by PSER results from both the
poor quality of the channel estimate and the lack of an interference cancel-
lation scheme. As depicted in Fig. A.5.c and Fig. A.6.b both MPR-J and
MPR-S clearly outperform PSER and PSE-SIC in terms of BER. Due to the
poor accuracy of the pilot-based channel estimates, PSE-SIC does not ben-
efit from sequentially canceling the interference and shows a BER similar to
that of PSER. Lastly Fig. A.5.d shows that increasing the observation size
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Fig. A.6: (a) - (b) MSE and BER versus SNR. The attenuation factor is a = 0.5.
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and (b) a = 0.5.

leads to an increase in the number of pilot symbols which determines the BER
improvement of PSER and PSE-SIC.

Varying the assumed MED

In this study we vary max(τ s) in the interval [4.6, 12]µs. The BER perfor-
mance is shown in Fig. A.7.a and Fig. A.7.b for two values of the attenuation
factor. When max(τ s) = 4.6µs, the receivers cannot detect the multipath com-
ponents in cluster (2). The slight performance improvement that MPR-J and
MPR-S exhibit relative to PSER and PSE-SIC is due to the data-aided nature
of the channel estimation. As the assumed MED approaches the true MED,
τ̄M = 10µs, the proposed receivers start accounting for ISI and ICI and show
a rapid improvement of their BER. Even though the delay range in which the
channel estimators look for multipath components is smaller than the true one,
MPR-J and MPR-S are able to find an equivalent channel representation which
cancels the interference and enables a reliable decoding of the data symbols.
Selecting max(τ s) > τ̄M leads to performance degradation, less significant as
a decreases. Concluding, MPR-J and MPR-S are robust to underestimation,
as long as the assumed MED is larger than the CP length.
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Increasing the number of multipath components

We generate channel realizations with increasing number of multipath compo-
nents in each cluster. Fig. A.8 shows that, as the channel becomes less sparse
– i.e. the number of multipath components increases – the MSE of the channel
estimates for all receivers slightly degrades, as does the MSE bound provided
by GAE. Hence, even though the assumption of a sparse channel response is
no longer fulfilled, the estimators in MPR-J and MPR-S still yield an accu-
racy very close to that of an ideal estimator. The effect is opposite in terms
of BER performance: the increased degrees of freedom, due to the growing
number of multipath components, enable the receivers’ decoders to resolve the
data symbols with increased accuracy. We note nonetheless that the proposed
receivers exhibit an overall robust behavior w.r.t. the level of sparsity of the
channel. The reason for this is that, even when the true response holds tens
of multipaths components, the channel estimator can still find a sparse repre-
sentation that closely approximates the true channel response with only a few
components.

5 Conclusion
To overcome the performance degradation experienced by the traditional OFDM
receiver when operating in insufficient CP conditions, we propose an iterative
algorithm capable of reconstructing and canceling the self-interference. Nu-
merical evaluations show that the receivers implementing the proposed algo-
rithm perform close to a genie-aided receiver, even under particularly harsh
propagation conditions. By contrast, due to the separate processing of chan-
nel estimation and data detection, the benchmark receivers suffer noticeable
degradations. This finding indicates that a joint design of all receiver blocks
like the one we propose, is necessary for attaining high BER performance.

Our design is versatile in several respects: the variety of schedules that
can be selected for updating the different messages and beliefs, the number of
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OFDM symbols that can be processed jointly in a block, and the implementa-
tion of various channel estimation schemes, e.g. group or separate estimation
of the channel weights. This diversity of options allows for trading off compu-
tational complexity for performance – and vice-versa – in the algorithm design
to better adjust to the practical constraints imposed by the considered system.
Furthermore, the proposed scheme can be turned on and off depending on the
channel conditions. It suffices that the receiver is equipped with an estimator of
the maximum excess delay at the cost of a slight complexity increase compared
to classical receivers.

To conclude, we stress that our solution offers new perspectives in terms of
the waveform design for future cellular systems like 5G. Given the scarcity of the
spectrum, the 5G systems need to be optimized for both spectral efficiency and
high data rate. The former requirement implies relaxing the strict subcarrier
orthogonality, making the later requirement even harder to achieve without
equipping the receiver with self-interference cancellation capability. This is
precisely what our receiver does. In a system with reduced CP length and
receivers equipped with this capability, all users served by the same base station
experience a similar quality of service/transmission performance regardless of
whether the maximum excess delay of their channel exceeds the CP length or
not.

A Computing the fixed points of (A.22)

We re-write8 (A.23) as γf(γ) = 0 where f(γ) = ηγ3 + [2ηc− (ε− 2)] γ2 +[
ηc2 − c(2ε− 3)− q

]
γ − (ε − 1)c2. Clearly, γ = 0 is always a fixed point of

(27), so we focus the following discussion on computing the fixed points cor-
responding to the roots of f(γ). In this work, we are interested in the case
0 ≤ ε ≤ 1 and η > 0 that we analyze below. For a more elaborate study
and other setting of ε and η, we refer to [48]. Since limγ→−∞f(γ) = −∞,
and f(0) ≥ 0, f(γ) has at least one negative root. To find the two remaining
roots, we make use of the fact that limγ→∞f(γ) =∞ and analyze the station-
ary points of f(γ), denoted by s(1) and s(2). If at least one of the stationary
points is complex, then f(γ) has at least one complex root (and consequently
its conjugate), and therefore, no positive root exists [49, Gauss-Lucas Thm]. If
both stationary points s(1), s(2) are real and s(2) < 0 (where, without loss of
generality we assume s(1) ≤ s(2)), then f(γ) has no positive root. If s(2) > 0,
f(γ) can have one or two positive roots.

To summarize, f(γ) has either no positive root (when s(2) ≥ 0 and f(s(2)) >
0 or s(2) < 0) or two positive roots9 (when s(1) ≤ s(2), s(2) ≥ 0 and f(s(2)) ≤ 0).

8For the ease of notation, we discard the index i in both the function argument and its
coefficients and we replace γ̂∗[i] by γ.

9If f (s(2)) = 0, then s(2) is a double root.
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If f(γ) has no positive root, then we select γ∗ = 0 as the fixed point.10 When
f(γ) has two positive roots, we select the fixed point corresponding to the
largest root of f(γ).

B Derivation of the expectations used in sec-
tion 3.2

The matrices 〈M〉q(α) , 〈N〉q(α), and 〈An〉q(xn−1)q(xn) are obtained by replac-
ing α, xn−1, xn in the definitions after (A.8) by their respective expected
values over their belief as obtained in (A.19) - or (A.21) - and (A.11). To
update

〈
AH
nAn

〉
q(xn−1)q(xn)

,
〈
MHM

〉
q(α)

and
〈
NHN

〉
q(α)

, we compute the
diagonal matrix S2H =

〈
HHH

〉
q(α)

, the matrices S2C =
〈
CHC

〉
q(α)

, SHC =〈
CHFHH

〉
q(α)

, S2S =
〈
SHS

〉
q(α)

from Table A.4 and
〈
ΞH
nΞn

〉
q(xn−1)q(xn)

=[
0 0
0 S2Υn

]
, S2Υn =

〈
ΥH
nΥn

〉
q(xn−1)q(xn)

.

Table A.4: Matrices definitions

S2H [i, i] = N
∑L−1

l=0

∑L−1
l′=0 (FΦ)[i, l](FΦ)∗[i, l′]Sα[l, l′]

S2C [i, v] =
∑E−1

m=0

∑L−1
l=0

∑L−1
l′=0 Φ[N +m− i, l]Φ[N +m− v, l′]Sα[l, l′]·

I[m+N−E−µ:N−µ−1](i)I[m+N−E−µ:N−µ−1](v)

S2S [i, v] =
∑E−1

m=0

∑L−1
l=0

∑L−1
l′=0 Φ[N + µ+m− i, l]Φ[N + µ+m− v, l′]Sα[l, l′]·

I[m+N−E:N−1](i)I[m+N−E:N−1](v)

SHC [i, v] = −
√
N
∑L−1

l=0

∑L−1
l′=0 Sα[l, l

′]
∑E−1

a=0 Φ[N + µ+ a− i, l′]
∑M−1

k=0 Φ[k, l]F ∗[v, a]·
F [v, k]I[a+N−E−µ:N−µ−1](i)

S2Υn [a, b] =
∑N−1

m,i,j=0

(
Sxn−1 [i, j]$∗[j, j]$[i, i]−$∗[j, j]

〈
x∗n−1[j]

〉
q(xn−1)

〈xn[i]〉q(xn) −

$∗[i, i] 〈xn−1[i]〉q(xn−1)
〈x∗n[i]〉q(xn) + Sxn [i, j]

)
(Λ(m)[i, a])∗Λ(m)[j, b],

We define Sα =
〈
ααH

〉
q(α)

. The matrix Sxm =
〈

xmxH
m

〉
q(xm)

is obtained from (A.11).
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1. Introduction

Abstract
We propose an iterative algorithm for OFDM receivers operating over fast
time-varying channels. The design relies on the assumptions that the chan-
nel response can be characterized by a few non-negligible separable multipath
components, and the temporal variation of each component gain can be well
characterized with a basis expansion model using a small number of terms. As
a result, the channel estimation problem is posed as that of estimating a vector
of complex coefficients that exhibits a block-sparse structure, which we solve
with tools from block-sparse Bayesian learning. Using variational Bayesian in-
ference, we embed the channel estimator in a receiver structure that performs
iterative channel and noise precision estimation, intercarrier interference can-
cellation, detection and decoding. Simulation results illustrate the superior per-
formance of the proposed receiver over state-of-art receivers.

1 Introduction
OFDM systems operating over fast time-varying channels experience orthogo-
nality loss between all system subcarrier frequencies. As a result, the observed
signal is affected by intercarrier interference (ICI), which can severely degrade
the receiver performance. A wide range of algorithms have been proposed in
the literature to suppress or mitigate ICI [1]. They typically iterate between
channel estimation, ICI cancellation and data detection [2, 3]. Among these
we mention receivers implementing decision-feedback equalization (DFE), such
as that proposed in [4] which performs channel estimation and ICI cancella-
tion in the frequency domain, followed by linear equalization. Another popular
category of receiver algorithms approximate the frequency-domain channel ma-
trix to a banded version to equalize OFDM signals received over time-varying
channels (see [5], [6] and the references therein). When designing channel es-
timators for receivers operating in such conditions, it is widespread to model
the selective behavior of the channel (in time and/or frequency) by means of
either: (a) an autoregressive (AR) process [2], or (b) a basis expansion [7, 8].
Estimation of the channel reduces then to estimating the model parameters,
either pilot-based (by neglecting ICI) [9] or data-aided [10]. As an example of
approach (a), the authors of [11] model the channel response as an AR process
of low order to reflect the channel’s low degrees of freedom. They apply the
expectation-maximization (EM) algorithm to design a receiver algorithm that
neglects ICI and iterates between hard symbol detection and channel estima-
tion. Similar modeling is employed in [12] to design a channel estimator using
approximate message passing techniques. The authors of [10] undertake the
modeling approach (b) and employ space-alternating generalized EM to imple-
ment an iterative receiver algorithm which accounts for ICI. At each iteration
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the algorithm computes the hard estimate of the data symbol modulating a
single subcarrier, after having canceled the ICI estimated at the previous itera-
tion. Using hard symbol estimates, and hence not accounting for uncertainties
in the symbols decisions, is detrimental to the performance of the receiver when
it operates over very fast time-varying channels. This is because the hard sym-
bol decisions are highly inaccurate at the initial iteration and impair the ability
of the channel estimator to refine its output at the subsequent iterations.

To overcome the above shortcomings, we propose an algorithm that iterates
between estimation of the channel time-varying weights and noise precision, ICI
cancellation, detection and decoding of the signals in one transmission frame.
Our algorithm is developed using two main tools: block-sparse Bayesian learn-
ing (BSBL) which is a Bayesian formulation of compressed sensing [13, 14],
and the mean-field belief-propagation (MF-BP) framework [15] appertaining
to variational Bayesian inference. The BSBL methodology was recently ap-
plied to other communication problems such as estimating MIMO channel re-
sponses [16] or channel responses which exhibit delay clustering [17], while MF-
BP was previously used for designing iterative receiver algorithms [15, Section
IV], [18]. We formulate the channel estimation as a sparse signal recovery prob-
lem: the actual time-varying channel response (TV-CR) is approximated as the
sum of many multipath components with delays placed on a grid of sufficiently
fine resolution. The time-variant weights of these components are represented
using a basis expansion model (BEM). Since typically the actual TV-CR con-
tains only a few dominant multipath components, many components in the
approximate model are zero, so that the vector collecting the BEM coeffi-
cients of all these components has many zero entries occuring in blocks, i.e. is
block-sparse. We apply recovery tools from BSBL to estimate this vector, and
thereby obtain an estimate of the approximate TV-CR. The channel estimator
is integrated in the iterative algorithm using the MF-BP framework. In this
framework, the use of soft symbol decisions results naturally from the computa-
tion of approximate posterior distributions, called beliefs. In this way, a unified
iterative structure of all receiver tasks is obtained. We compare the proposed
algorithm against other iterative algorithms. The first one, inspired by [11], is
designed under the prevalent assumptions of negligible ICI and sparse TV-CR
modeled using approach (a). The second algorithm is that proposed in [10] and
thus based on approach (b). Simulation results show that the receiver imple-
menting our algorithm outperforms selected reference algorithms and achieves
BER performance close to that of a genie-aided receiver.

Notation: By [P ] we denote the set {p ∈ N|0 ≤ p ≤ P}. The matrix A
has the (i, j) entry A[i, j]. Its ith line and jth column are A[i, ·] and A[·, j]
respectively. The operator ⊗ designates the Kronecker product. The expected
value of f(x) w.r.t. the probability density function (pdf) q(x) is 〈f(x)〉q(x),
while the expected value of a function f(x1, ...,xN ) w.r.t. to the pfds of all its
variables but one, e.g. xi, is 〈f(x1, ...,xN )〉q(∼xi). We use Ga(·; a, b) for the
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gamma pdf with shape and rate parameters a and b respectively and CN(·|a, B)
for the multivariate complex Gaussian pdf with mean vector a and covariance
matrix B.

2 System model
We assume an OFDM transmission of B symbols. During the ith transmission
interval, i ∈ [B − 1], a vector ui ∈ {0, 1}K of information bits is encoded with
a code rate R and interleaved into the vector ci = [(c(0)i )T, ..., (c(ND−1)

i )T]T

with entries c(k)i ∈ {0, 1}Q, k ∈ [ND − 1],RNDQ = K. The code vector ci is
modulated onto a vector of ND complex symbols that are interleaved with NP
pilot symbols producing the symbol vector xi ∈ CN ,N = NP +ND. The m-th
entry xi[m] of xi is a pilot symbol if m ∈ P and a data symbol if m ∈ D 1. The
vector xi is passed through an inverse DFT block to yield the vector si to which
a µ-sample long cyclic prefix (CP) is prepended. A frame of B OFDM symbols
is sent over a time-varying channel with response composed of L̃ multipath
components: g̃(t, τ ) =

∑L̃−1
l=0 h̃l(t)δ (τ − τ̃l) , where h̃l(t) and τ̃l model the

time-varying gain and delay of the lth multipath component2. The receiver
observes a signal which is the convolution of the transmitted signal and the TV-
CR g̃(t, τ ) corrupted by additive white Gaussian noise. This signal is lowpass
filtered, sampled and the CP samples are discarded. The remaining samples
are collected in B vectors that are passed through a DFT block, yielding

yi = H̃ixi +wi = diag[H̃i]xi + z̃i +wi, (B.1)

i ∈ [B− 1] and the matrix H̃i ∈ CN×N has entries H̃i[m, p] = 1
N

∑L̃−1
l=0

∑N−1
k=0

h̃l[iN + k]exp
(
j2πk(p−m)

N − j2πpτ̃l
NTs

)
, with h̃l[iN + k] = h̃l(kTs + i(µ+N)Ts).

The noise vector wi has the pdf p(wi) = CN(wi; 0,λ−1IN ). The diagonal
matrix diag[H̃i] retains the diagonal entries of H̃i. The vector z̃i ∈ CN collects
the ICI at all subcarriers: z̃i[m] =

∑N−1
p=0,p6=m H̃i[m, p]xi[p].

3 Proposed iterative receiver

3.1 Approximate observation model

To decode ui, we need first to estimate H̃i. Since estimating all the unknown
variables involved in H̃i (i.e. all τ̃l, h̃l[iN + k], L̃) is computationally in-

1Here, P = {p0, ..., pNP−1} and D = {d0, ..., dND−1}, P ∪D = [N −1], P ∩D = ∅, are the
subsets of pilot and data indices respectively, and xi[dk ] =M(c(k)i ), whereM : {1, 0}Q → Sd
denotes the complex modulation mapping, and Sd is the complex symbol constellation with
cardinality 2Q.

2 We assume that the maximum excess delay does not exceed the CP duration.
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3. Proposed iterative receiver

tractable, we seek an approximate model of this matrix whose parameters can
be estimated with tractable complexity. First, we assume a grid of L uniformly
spaced delays [19] with selected resolution ∆τ . Then, we select the approximate
model for the TV-CR: g(t, τ ) =

∑L−1
l=0 hl(t)δ (τ − l∆τ ) , where hl(t) represents

the postulated time-varying complex weight of the lth component with delay
l∆τ . Since the TV-CR of the typical wireless channel exhibits a few dominant
components, we expect that, by choosing a sufficiently fine delay resolution
∆τ and L � L̃, g(t, τ ) can be used to obtain a good approximation of the
matrices H̃i, with only a few non-zero weights hl(t) [20]. Second, we write
each postulated complex gain hl(t) in g(t, τ ) as a linear combination of D
orthonormal basis functions ψ(0)(t), ...,ψ(D−1)(t): hl(t) =

∑D−1
d=0 αl[d]ψ

(d)(t)
3. Several bases have been proposed in the literature [7, 10, 21] to model the
channel time-varying behavior. Most of them are based on the Karhunen-Loeve
(KL) expansion. Since the true Doppler spectrum of the channel is typically
unknown at the receiver, the basis is often selected as the KL basis for an
assumed Doppler spectrum, e.g. a flat or Jakes’ Doppler spectrum. For each
l ∈ [L− 1], we sample hl(t) at t = (k + i(µ+N))Ts, k ∈ [N − 1], i ∈ [B − 1]
and collect the samples hl[iN + k] = hl(kTs + i(µ + N)Ts) in the vector
hl ∈ CNB . Then, hl = Ψαl, where Ψ[iN + k, d] = ψ(d)(kTs + i(µ+N)Ts)

and αl = [αl[0], ...,αl[D− 1]]T. This formulation enables us to approximate
(B.1) by

yi = Hixi +wi = diag[Hi]xi + zi +wi, (B.2)
where the approximate ICI vector zi has entries zi[m] =

∑N−1
p=0,p6=mHi[m, p]xi[p],

m ∈ [N − 1], and the approximate channel matrix Hi ∈ CN×N has entries
Hi[m, p]= 1

N

∑L−1
l=0

∑N−1
k=0 Ψ[iN + k, ·]αl exp

(
j2πk(p−m)

N − j2πpl∆τNTs

)
. We collect

all the vectors αl, l ∈ [L− 1] in α = [αT
0 , ...,αT

L−1]
T.

Note that in the model of the approximate channel matrix Hi, for a given
selection of the basis functions Ψ, the only unknown variables are the vectors αl
used to model hl(t). With this approximate model, we circumvent the explicit
estimation of the multipath delays τ̃l, l ∈ [L̃− 1] and the number of multipath
components L̃ in g̃(t, τ ). Instead, the DL entries of α need to be estimated.
Since only a few hl(t), l ∈ [L− 1] are expected to be non-zero, we postulate
that Hi can approximate H̃i well with only a few non-zero vectors αl. This
implies that the vector α will have few non-zero entries occurring in blocks of
length D, i.e. the vector α is block-sparse. Assuming a block-sparse α enables
the use of compressed sensing tools to retrieve its entries. Thus, we recast (B.2)
as

yi = Aiα+wi, (B.3)

Ai[m, ·] =
∑L−1
l=0

∑N−1
k=0 Ωi[lN + k, ·]

∑N−1
p=0

xi[p]
N · exp

(
−2πj pl∆τ/Ts+k(m−p)

N

)
,

3D ≥ d2fDNTsBe + 1 and D � NB. Due to the page limitation we refer the reader
to [10], [21] for more details on how to select D.
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3. Proposed iterative receiver

m ∈ [N − 1], Ωi = IL ⊗Ψi, and Ψi[k, d] = Ψ[iN + k, d], d ∈ [D− 1].

3.2 Proposed receiver algorithm

Probabilistic model

To enforce the block-sparse structure on α, we employ BSBL. BSBL is a
Bayesian framework for compressed sensing which “explores and exploits the
intra-block correlation" [13], i.e. makes use of the correlation between the
entries of a block to retrieve block-sparse variables. This is accomplished
by imposing a prior distribution for the variable of interest which encour-
ages block-sparse estimates. We choose p(α) =

∏L−1
l=0 p(αl) with p(αl) =∫∞

0 p(αl|γ[l])p(γ[l])dγ[l] where p(αl|γ[l]) = CN(αl|0, γ[l]−1V) with V ob-
tained from the Doppler power spectrum of the channel4 [10]. For this model,
γ[l] controls the sparsity of the lth block, i.e. when γ[l] takes large values, the
lth block of α, namely αl is close to zero [13]. We select the sparsity inducing
prior p(γ) =

∏L−1
l=0 Ga(γ[l]; a, b), where the vector γ collects all γ[l], l ∈ [L−1].

The selection yields p(α|γ) = CN(α|0, Γ−1 ⊗V), where Γ = diag(γ). The a
posteriori pdf for (B.3) is p([ub, cb, xb; b ∈ [B − 1]],α,γ,λ|[yb; b ∈ [B − 1]]) ∝
fn(λ)fa(α,γ)fp(γ)

∏B−1
n=0 fon(xn,λ,α)fcn(cn, un)·

∏ND−1
k=0 fmn,k (xn[dk], c

(k)
n )∏K−1

v=0 fbn,v (un[v]), where fn(λ) = p(λ) = 1/λ, fon(xn,λ,α) = p(yn|xn,λ,α) =
CN(yn|Anα,λ−1IN ), fa(α,γ) = p(α|γ), fm(γ) = p(γ), fbn,v (un[v]) =

p(un[v]) = 1/2, fmn,k (xn[dk], c
(k)
n ) = 1

{M(c(k)n )}
(xn[dk]) and fcn(cn, un) =

1{C(un)}(cn).
5 The two latter factors enforce respectively modulation and cod-

ing constraints.

MF-BP

The bipartite factor graph [22] corresponding to the above probabilistic model
is depicted in Fig. B.1. We define the set of variable nodes connected to the
factor node f as N (f), and similarly, the set of factor nodes connected to a
variable node θ as N (θ). Following the MF-BP framework we divide the set of
factor nodes into two disjoint sets. The MF (BP) subgraph contains the nodes
of the factor in the set FMF = {fp, fn, fa, foi}

(
FBP = {fmn,k , fcn , fbn,v}

)
.

The messages mBP
g→θ, where g ∈ FBP and θ ∈ N (g) and mMF

f→θ, where f ∈ FMF
and θ ∈ N (f) are updated using respectively the second and the third defi-
nitions in [15, eq. (22)]. The updates are iteratively computed until conver-
gence or a stopping criterion is achieved. Then, the belief of any variable θ in

4Alternatively, V could be estimated [13]. Simulation results have shown, however, con-
vergence issues; in this case, a robust selection of V as described in Section 4 is preferred
instead.

5 The indicator function 1A(x) takes value 1 if x ∈ A and 0 otherwise.
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Fig. B.1: Factor graph of the probabilistic model.

Fig. B.1, q(θ) =
∏
f∈N (θ)∩FMF

mMF
f→θ(θ)

∏
g∈N (θ)∩FBP

mBP
g→θ(θ) approximates

p(θ|y0, ..., yB−1).

a) Estimating the BEM coefficients: The belief q(α) ∝ mMF
fa→α(α)

∏B−1
n=0

mMF
fon→α(α) is recast as q(α) = CN(α|µα, Σα) where

µα = 〈λ〉q(λ) Σα

B−1∑
n=0
〈An〉Hq(xn) yn

Σα =

(
〈λ〉q(λ)

B−1∑
n=0

〈
AH
nAn

〉
q(xn)

+ 〈Γ〉q(γ) ⊗V−1
)−1

.

b) Retrieving the block-sparse structure: The belief q(γ) ∝ mMF
fa→γ(γ)·

mMF
fp→γ(γ) fully factors into a product of Gamma pdfs with

〈γ[l]〉q(γ[l]) = (a+ 1)
(
b+

〈
αH
l V−1αl

〉
q(α)

)−1
, l ∈ [L− 1].

c) Estimating the noise precision: The belief q(λ) ∝ mMF
fn→λ(λ)

∏B−1
n=0

mMF
fon→λ

(λ) is a Gamma pdf with first moment

〈λ〉q(λ) = NB

(
B−1∑
n=0

〈
‖ yn −Anα ‖22

〉
q(∼λ)

)−1

.

86



4. Numerical evaluation

d) Canceling ICI and decoding: Using (B.2) we get q(xi[dk]) ∝
mMF
foi→xi[dk ]

(xi[dk]) m
BP
fmi,k→xi[dk ]

(xi[dk]), where mMF
foi→xi[dk ]

(xi[dk]) =

CN(xi[dk]|µi,dk , ρi,dk ) with

µi,dk = ρi,dk 〈λ〉q(λ)

〈Hi[·, dk]Hyi
〉
q(∼xi[dk ])

−
∑
j 6=k

Ki[k, j]
〈
xi[dj ]

〉
q(xi[dj ])


ρ−1
i,dk = 〈λ〉q(λ)Ki[k, k],where Ki[k, j] =

〈
HH
i [·, dk]Hi[·, dj ]

〉
q(∼xi[dk ]).

Note the implicit ICI cancellation: before updating µi,dk , the ICI caused by
all xi[dj ], dj ∈ D, dj 6= dk is removed from the received signal yi, and a nearly
interference-free signal (the last term in the expression of µi,dk) is employed
instead. Propagating BP messages through nodes fmi,k and fci corresponds
to classical demapping and decoding respectively [23], hence we leave out their
updates. After the beliefs q(xi[dk]) are computed, 〈Ai〉q(xi) and

〈
AH
i Ai

〉
q(xi)

are updated. The proposed algorithm is set with fixed values for ∆τ ,L and Ψ.
It initializes 〈λ〉q(λ), 〈γ〉q(γ) and 〈xi〉q(xi) ,

〈
|xi|2

〉
q(xi)

, i ∈ [B − 1], and then
iterates among the updates a) – d).

4 Numerical evaluation
We generate realizations of the TV-CR g̃(t, τ ) from Section 2 as follows. The
number of multipath components L̃ is drawn from a Poisson distribution with
mean µL̃. Given L̃, to each component l ∈ [L̃− 1] a random vector (τ̃l, zl,ϕl,
[ϑl,k, ςl,k; k ∈ [M − 1]]) is associated: the delay τ̃l is uniformly distributed
on [0,µTs]; given τ̃l, the gain zl is a zero-mean complex Gaussian variable
with variance v0exp(−m0τl); the mean azimuth ϕl and the phases ςl,k are
drawn from a uniform distribution on [0, 2π). Given ϕl, the azimuths ϑl,k
are drawn from a von Mises distribution with mean ϕl and concentration κv.
Consequently, the time-varying gain of the lth multipath component reads
h̃l(t) = zl

∑M−1
n=0 exp[j(2πfDt cosϑl,n + ςl,n)]. Table B.2 lists the system and

channel parameter settings.
We abbreviate the receiver implementing the proposed algorithm as RxBEM-

sparse. We obtain V by assuming Jakes’ Doppler power spectrum and we
choose the discrete cosine orthogonal basis functions [10]. We set ∆τ = 100ns,
L = dµTs/∆τe and a = 2, b = 0.1 and assume known fD. We initialize
〈λ〉q(λ) = 1, 〈γ〉q(γ) = 1. To assess the benefits of jointly exploiting the chan-
nel sparsity and iteratively canceling ICI we compare RxBEM-sparse against
the benchmark receivers from Table B.1. For channel estimation benchmark-
ing we use a genie-aided channel estimator (GAE) which performs LMMSE
estimation of α in (B.3) with known dictionary matrix6 and noise variance. In

6 The dictionary matrix Ai is constructed under the assumption that the modulated
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5. Conclusion

Table B.1: Benchmark receivers

Benchmarker Implementation
RxAR (based on [11]) - Algorithm in Appendix with
- neglects ICI a sparse channel estimator.
RxRef-ss - Alg. from [10] enhanced
- cancels ICI iteratively with iterative decoding.
- estimates hard symbols - knows the noise variance.

- assumes Ts-spaced delays.
RxRef (see RxRef-ss) - assumes ∆τ -spaced delays.
GAR (genie) - perfect channel information.
- cancels ICI perfectly - knows the noise variance.

Table B.2: Setting of the parameters for the simulations.

System TV-CR
N = 100,µ = 7,NP = 17 1/m0 = 3µs
B = 10, fc = 2.6 GHz M = 3,κv = 10
fs = 15 kHz, Ts = (Nfs)−1, µL̃ = 10
QPSK , 1/3 code rate fD = 1.2 kHz

Fig. B.2 we observe that the average MSE for all receivers exhibits a satura-
tion when they operate in the high SNR regime. This behavior is due to the
estimation model mismatch stemming from the choice of basis, the fixed delay
grid and the errors in the estimates of the data symbols. In particular, RxRef–
ss exhibits the highest sensitivity to these mismatches as it employs a delay
vector with Ts-spaced entries. Even though there is still a notable gap between
the average MSEs of RxBEM-sparse and GAE, RxBEM-sparse performs very
closely to GAR in terms of BER outperforming all benchmark receivers. This
shows that efficient receivers can accommodate some errors in the estimation
of the channel and still operate closely to the optimal performance. Canceling
ICI using hard symbol estimates proves detrimental to the BER performance
of both RxRef and RxRef–ss, particularly in the high SNR regime. In this case,
an algorithm which neglects ICI, such as RxAR is preferred.

5 Conclusion
To develop a tractable algorithm for OFDM receivers operating over fast time-
varying channels, we employ the BEM method to model the TV-CR weights.
Assuming a finely sampled delay support enables a design which harnesses the
block-sparse structure of the resulting BEM vector and thus overcomes the
task of explicitly estimating the delays. In the studied conditions, a receiver

symbols, the concentration parameter, the mean azimuth and the delay of each multipath
component are known.
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Fig. B.2: Average MSE of the channel frequency response versus SNR (left), BER versus
SNR (right) and BER versus iteration index at 12 dB SNR (right insert).

implementing our algorithm successfully cancels ICI and performs closely to a
genie-aided receiver.

A Algorithm derived using [11]
We assume block fading βi[l] = hl (i(µ+N)Ts) and use [11]: βi = ρβi−1 +vi,
p(vi[l]|θ[l]) = CN(vi[l]|0, (1− ρ2)θ[l]) , p(θ[l]) = Ga(θ[l]; a, b).

Algorithm Algorithm derived using [11] and MF-BP.

1: set L, ∆τ and init. 〈λ〉q(λ), 〈θ〉q(θ), 〈xi〉q(xi)
,
〈
|xi|2

〉
q(xi)

2: for iout = [1 : OM ]
3: f for iin = [1 : IM ] and i ∈ [B − 1]

4: Σ−1
βi

=

〈
λ ‖Ei ‖2

2 + (diag(θ))−1

(1−ρ2)sgn(i)

〉
q(∼βi)

,

5: µβi
=Σβi

〈
λEH

i yi+ ρsgn(i)

(1−ρ2)sgn(i) (diag(θ))−1 µβi−1

〉
q(∼βi)

6: 〈λ〉q(λ) = NB

(∑B−1
n=0

〈
‖ yn −Enβn ‖2

2
〉
q(∼λ)

)−1

7:
〈
θ[l]−1

〉
q(θ[l])

=

(
b

SB [l]

) 1
2 Ka−2(2

√
bSB [l])

Ka−1(2
√
bSB [l])

8: f end for
9: 〈xi[dk ]〉q(xi [dk ]),

〈
|xi[dk ]|2

〉
q(xi [dk ])

← d), dk ∈ D
10: end for
———————
ρ = J0(2πfD(µ+N)Ts), Ei[p, l] = xi[p] exp(−j2πpl∆τfs)

SB [l]=

B−1∑
n=0

(
〈|βn [l]|2〉

q(βn)
+〈|βn−1 [l]|2〉q(βn−1)

−2<{ρ}
)

(1−ρ2)sgn(n)

J0(x) is the Bessel function of the first kind and order 0. Kp(x) is the modified Bessel
functions of the second kind, and order p.
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1. Introduction

Abstract
We design an algorithm for MIMO OFDM receivers operating in co-channel
interference conditions using Bayesian inference. The channel estimation prob-
lem is formulated as one of sparse signal reconstruction using multiple measure-
ment vectors. What sets our work apart is that the proposed design harnesses
the sparse common support of, respectively, the desired and interfering MIMO
sub-channels by adopting a Bernoulli-Gaussian prior for the weights of the im-
pulse responses of these sub-channels. Then, applying a variational Bayesian
inference method we derive an algorithm that performs joint channel estima-
tion, interference cancellation and decoding. Simulation results show how the
performance of the proposed receiver depends on its knowledge of the interfering
signals’ modulation and code. When these are known, our receiver approaches
the performance of a genie-aided receiver with perfect interference cancellation.
Even with mismatched assumptions on the modulation and code, our proposed
implementation still outperforms receivers which neglect the interference.

1 Introduction
Spectrum sharing and network densification, two key features of 5G networks,
make the co-channel interference (CI) problem increasingly stringent [1] in the
downlink. Favored by a device-centric 5G network architecture [2], algorithms
for intelligent MIMO receivers (i.e. receivers with increased computational
power capable of performing interference rejection/cancellation) became in-
creasingly popular in recent years.

We can group the interference-aware receivers into two categories. The
first category includes receivers implementing algorithms that suppress CI by
performing interference rejection combing (IRC) [3], [4] under the assumption
that accurate channel estimates are available. The second category contains
more advanced receivers that implement various interference cancellation tech-
niques to estimate and remove CI. Several algorithms in this category exploit
the available information about the interferers and perform desired and inter-
fering symbol detection and channel estimation. Prior to detecting the symbols
in an interfering signal, however, the receiver needs to obtain its modulation
alphabet, either by getting access to the control channels carrying this infor-
mation (not possible with the current system design), by estimating it, or by
assuming a fixed alphabet, at the risk of this assumption being mismatched [5].
Receivers from both categories face a common challenge: the channel state in-
formation (CSI) for all – desired and interfering – MIMO sub-channels has
to be acquired. This is typically accomplished by estimating the sub-channel
responses using the reference signals, the so-called pilots, of each transmitter.
When the pilots are interference-free (a condition however difficult to ensure in
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practice) accurate CSI can be computed [1, 3]. However, without cooperation,
data symbols from transmitters simultaneously utilizing the same spectrum
will interfere with each others’ pilots. A pilot-based channel estimator there-
fore yields poor-quality CSI that further impairs the equalization and causes
an overall degradation of the receiver’s performance. Hence, there is a need
for algorithms which account for the interference both when acquiring CSI and
when equalizing the desired signal. Such alternative is proposed in [6]. The
authors present iterative schemes for soft symbol detection and estimation of
the frequency responses of the sub-channels under the assumption that their
prior covariance matrix is known. However, as the channel covariance matrix
is typically unknown, some degradation of the overall performance is expected.

Contrary to the above approaches, our design embeds an estimator of the
impulse responses of the MIMO sub-channels that exploits two assumed proper-
ties of these responses, namely that they are sparse [7] and those associated with
the same transmit antenna have a common support [8]. The first assumption
is motivated by the fact that, in many propagation environments, the impulse
response of the channel (including a transmit antenna and a receive antenna)
consists of only a few significant multipath components. The second assump-
tion is motivated by the fact that the receive antennas are co-located. As a
result, the sets of delays of the significant components of the impulse responses
associated with the same transmit antenna are identical. Their amplitude may,
however, differ. We say therefore that these responses exhibit a sparse common
support (SCS) [9]. Under these two assumptions we pose the channel estima-
tion problem as one of reconstructing sparse signals from multiple measurement
vectors (MMV) that share the same unknown sparse support [10] and employ
a Bernoulli-Gaussian prior model for the weights of the MIMO sub-channels.
To the authors’ knowledge, such model has not been applied before to design
receiver algorithms tailored for operating in co-channel interference conditions.
Note that our receiver requires only prior knowledge of the maximum excess de-
lay of the channels, in contrast to [6] which assumes knowledge of the channel’s
frequency autocorrelation function. To embed the channel estimator in a joint
receiver design, we apply the variational Bayesian inference method combining
mean-field and belief propagation [11]. The method was used successfully in
the recent years to design algorithms that perform joint channel estimation and
decoding [12, 13].

We test our receiver against the receiver in [6] and a genie-aided receiver
based on [4] and analyze its sensitivity to mismatched information about the in-
terfering signals in various signal-to-interference (SIR) regimes. The numerical
evaluation shows that, even though the pilots of different transmitters overlap,
our receiver successfully exploits the SCS property and approaches the perfor-
mance of the genie-aided receiver. Knowledge of the interferers’ modulation
and code yields significant performance gains, which indicates that enabling
access to this information could be an advantageous feature for future 5G sys-
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tems.
Notation: By [N : P ] we denote the set {p ∈ N| N ≤ p ≤ P} and by

[P ] the set [1 : P ]. The matrix A has the (i, j) entry A[i, j], while its ith
row and jth column are A[i, ·] and A[·, j] respectively; vec(A) returns a col-
umn vector consisting of all columns of A stacked on top of one another, and
A[r1 : rN , ·] = [A[r1, ·]T . . .A[rN , ·]T]T. The diagonal matrix A = diag(a)
has the entries of the vector a on its diagonal. The operator ⊗ designates
the Kronecker product. The expected value of f(x1, ...,xN ) w.r.t. to the pdf
of xk is 〈f(x1, ...,xN )〉xk , while the expected value w.r.t to the pfds of all its
variables but xi, is 〈f(x1, ...,xN )〉∼xi . We use CN(·|a, B) for the multivariate
complex Gaussian probability density function (pdf) with mean vector a and
covariance matrix B, Bern(·|p) for the Bernoulli distribution with parameter
p ∈ [0, 1], U(·|a, b) for the uniform pdf in the interval [a, b], and Poiss(·|µ)
for the Poisson distribution with parameter µ > 0. We define the indicator
function 1S(x) = 1, if x ∈ S and 1S(x) = 0, otherwise. We use the notation
d(a, b) for the Hamming distance between the vectors a and b and <{x} for
the real part of x.

2 Signal model
We consider a MIMO system with T antennas synchronously transmitting
OFDM signals and a receiver equipped with R antennas. We identify a trans-
mit (receive) antenna with its index t ∈ [T ] (r ∈ [R]). Similarly we identify
the sub-channel including transmit antenna t, the propagation environment,
and receive antenna r with the pair (t, r). We assume that the antennas in
[U ] ⊆ [T ], 1 ≤ U ≤ T , send signals intended to the receiver, while the remaining
I = T −U antennas [U + 1,T ] send interfering signals. A transmitter t ∈ [T ]
generates a vector u(t) ∈ {0, 1}K of information bits which it encodes with a
code rate C to the vector c(t) = C(u(t)) = [(c(t)1 )T, ..., (c(t)Nd

)T]T ∈ {0, 1}K/C ,

where c(t)k ∈ {0, 1}Q,K = NdQC, and C denotes the coding and interleaving
mapping. This codeword is mapped to the vector x(t)

d ∈ CNd with entries
x
(t)
d [k] = M(c(t)k ), k ∈ [Nd], with M denoting the complex modulation map-

ping. The symbols are interleaved with Np pilots from the vector x(t)
p to yield

the vector x(t) ∈ CN ,N = Nd +Np of transmitted symbols. The ik ∈ [N ] en-
try of x(t) is x(t)[ik] = x

(t)
d [k] · 1D(t)(ik) + x

(t)
p [k] · 1P(t)(ik), where D(t) (P(t))

is the subset of Nd data (Np pilot) indices of transmitter t, and D(t) ∩P(t) = ∅.
The vector x(t) is then modulated to yield an OFDM waveform, including a
cyclic prefix (CP) of duration dc which is sent across the wireless channel. We
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model the impulse response of sub-channel (t, r) as

g(t,r)(τ ) =
∑

m∈[L(t) ]

h(t,r)[m]δ
(
τ − τ (t)[m]

)
, (C.1)

where h(t,r)[m] and τ (t)[m] are the weight and delay1 of the mth multipath
component. These parameters are collected in the vectors h(t,r) ∈ CL(t) and
τ (t) ∈ RL(t) respectively. In (C.1) we assumed that the receive antennas are
closely spaced so that for each t ∈ [T ], the impulse responses of the sub-channels
(r, t) r ∈ [R] consist of the same number L(t) of multipath components with
the same delay vector τ (t). The signal received at antenna r is sampled and
OFDM demodulated (after removing the CP). The resulting vector of samples
y(r) ∈ CN is given by

y(r) =
∑
t∈[T ]

X(t)D(t)h(t,r) + ξ(r), (C.2)

where D(t)[n,m] = exp
(
−j2π(n− 1)∆fτ (t)[m]

)
, n ∈ [N ], m ∈ [L(t)], ∆f is

the subcarrier spacing, X(t) = diag
(
x(t)

)
and the noise vector has the pdf

p(ξ(r)) = CN(ξ(r)|0,λ−1IN ).

3 Message-passing receiver design

3.1 Estimation model

Instead of estimating L(t) and τ (t) needed to reconstruct the channel frequency
responses D(t)h(t,r) in (C.2), we assume the delays to be restricted to a grid
τ̄ ∈ RL∆ with entries τ̄ [k] = (k− 1)∆τ , k ∈ [L∆] where ∆τ is the chosen delay
resolution. This enables us to define a dictionary D̄ ∈ CN×L∆ with entries
D̄[n, k] = exp (−j2π(n− 1)∆f(k− 1)∆τ ) ,n ∈ [N ], k ∈ [L∆], and a vector
h̄(t,r) ∈ CL∆ for every t ∈ [T ] and r ∈ [R] so that D̄h̄(t,r) ≈ D(t)h(t,r). For this
approximation to be accurate, a fine enough resolution ∆τ and a large value
L∆ � max(L(1), ..,L(T )) need to be selected. With these choices, we expect
that the channel frequency responses can be well approximated using vectors
h̄(t,r) having many zero entries, i.e. being sparse [14].

Then, we approximate (C.2) by y(r) =
∑
t∈[T ] X(t)D̄h̄(t,r) + ξ(r) and cast

the MMV Y = Φ̄H̄+Ξ, where we define the matrices Y = [y(1) . . .y(R)], Ξ =
[ξ(1) . . . ξ(R)], Φ̄ = [X(1)D̄ . . .X(T )D̄] ∈ CN×L̄, and L̄ = TL∆. The matrix
H̄ ∈ CL̄×R has block-entries H̄[(t− 1)L∆ + 1 : tL∆, ·] = [h̄(t,1) . . . h̄(t,R)], t ∈

1We assume that for each t ∈ [T ], the maximum excess delay does not exceed the CP
duration.
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[T ]. Given the small spatial separation of the receive antennas we assume that
the vectors h̄(t,1), ..., h̄(t,R) have the same sparsity pattern, i.e. they have a
common sparse support. This implies that H̄ has many zero rows, i.e. H̄ is
row-sparse. We exploit this property to estimate H̄ as follows. We model each
row of H̄ as H̄[l, ·] = s[l]vT

l , l ∈ [L̄], where vl ∈ CR is the complex weight
vector of the lth component, and s[l] ∈ {0, 1} is the lth entry of the binary
vector s. The vector s gives the delay support of all sub-channels, i.e. s[l] = 0
sets H̄[l, ·] = 0. We choose p(vl) = CN (vl|0, K) with K ∈ CR×R known. We
model p(s[l]|ζ) = Bern(s[l]|ζ), and p(ζ) = U(ζ|0, 1). We re-write the MMV as

y = Ωvec(H̄) + vec(Ξ) (C.3)

where y = vec(Y) and Ω = IR ⊗ Φ̄. The posterior pdf of all latent variables
in the model, given the observation (C.3) reads

p
(
[vl; l ∈ [L̄]], [x(t)

d , c(t), u(t); t ∈ [T ]], s, ζ,λ|y
)
∝

p(y|s,λ, [vl; l ∈ [L̄]] , [x(t)
d ; t ∈ [T ]])p(λ)·

p(ζ)
L̄∏
l=1

p(s[l]|ζ)p(vl)
∏
t∈[T ]

1{C(u(t))}(c
(t))·

ND∏
k=1

1
{M(c(t)

k
)}
(x

(t)
d [k]))

K∏
j=1

p(u(t)[j]),

(C.4)

where the first factor is the likelihood p(y|s,λ, [vl; l ∈ [L̄]] , [x(t)
d ; t ∈ [T ]]) =

CN(y|Ωvec(H̄),λ−1INR). The factors 1{M(c(t)
k

)}
(x

(t)
d [k])) and 1{C(u(t))}(c

(t)), t ∈

[T ], k ∈ [Nd] enforce modulation and coding constraints. We assume p(u(t)[j]) =
1/2, t ∈ [T ], j ∈ [K] and select a non-informative prior for the noise precision,
i.e. p(λ) ∝ 1/λ.

Table C.1: Definition of the factors in (C.4)

fn(λ) = p(λ)
fa(ζ) = p(ζ)

fhl
(vl) = p(vl), l ∈ [L̄]

fs(s, ζ) =
∏L̄

l=1 p(s[l]|ζ)
fo(s,λ, [vl; l ∈ [L̄]] , [x(t)

d ; t ∈ [T ]]) =

= p(y|s,λ, [vl; l ∈ [L̄]] , [x(t)
d ; t ∈ [T ]])

f
u(t)

j

(u(t)[j]) = p(u(t)[j]), j ∈ [K]

fc(t) (c
(t), u(t)) = 1{C(u(t))}(c

(t)), t ∈ [T ]

f
m(t)

k

(xd
(t)[k], c(t)

k
) = 1

{M(c(t)
k

)}
(xd

(t)[k]), k ∈ [Nd]

We collect the functions defined in Table C.1 in the set F and cast the
factor graph of (C.4) in Fig. C.1.
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s
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ζ
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λ
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x
(t)
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1
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Nd
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Fig. C.1: Factor graph representation of (C.4).

3.2 Algorithm description
To design an algorithm that iterates between channel, noise and interference
estimation, equalization and decoding we apply the MF-BP inference frame-
work [11], that combines belief propagation (BP) [15] and mean-field approxi-
mation (MF) [16]. The application of this method to joint channel estimation
and decoding is presented in [11, Section IV]. Using MF-BP we compute an
approximation (also called belief) q(z) of the posterior probability density of
any unobserved variable z ∈ {vl; l ∈ [L̄]} ∪

{
x(t)

d , c(t), u(t); t ∈ [T ]
}
∪ {s, ζ,λ}

by iteratively exchanging messages on the factor graph. We denote a mes-
sage from factor node f to the neighboring variable node z as mf→z and the
message in the opposite direction as nz→f and we compute their updates us-
ing [11, eq. (22)]. The belief q(z) is computed using [11, eq. (21)] as the
product of all messages sent to the variable node z. Following [11], we define
a MF and a BP subgraph of the factor graph in Fig. C.1. To that end, we
split the set F into two disjoint sets FMF and FBP such that FMF ∪FBP = F
and FMF ∩ FBP = ∅. The MF (BP) subgraph contains the factor nodes in
the set FMF(FBP) and the variable nodes connected to them. Here, we choose
FBP = ∪t∈[T ]{fu(t)

1
, ..., f

u(t)
K

, fc(t) , fm(t)
1

, ..., f
m(t)
Nd

} and FMF = F\FBP.

Support detection

We restrict the belief of the sparsity rate to be q(ζ) = δ(ζ− ζ̂) where ζ̂ coincides
with the mode of the unconstrained belief (see [11, Section II.D] for details),
i.e.

ζ̂ = arg max
ζ

{
mfa→ζ(ζ)mfs→ζ(ζ)

}
=
‖ ŝ ‖0
L̄

(C.5)

where ŝ is defined in the following. To that end we re-write (C.3) as

y = As+ vec(Ξ), (C.6)
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where A ∈ CNR×L̄ has the entries A[a, l] =
∑
r∈[R] Ω[a, (r− 1)L̄+ l]vl[r], a ∈

[NR], l ∈ [L̄].
The belief of s reads q(s) ∝ mfo→s(s)mfs→s(s), where the two factors

are mfs→s(s) = ζ̂‖s‖0(1− ζ̂)L̄−‖s‖0 and mfo→s(s) = CN (s|ε, Υ), with ε =
Υ
〈
λAHy

〉
∼s and Υ−1 =

〈
λAHA

〉
∼s. We define ŝ = arg maxs∈{0,1}L̄ ln(q(s)),

where

ln(q(s)) =
(

ln ζ̂

1− ζ̂
1+ 2<{

〈
λAHy

〉
∼s
}
)T

s− sTΥ−1s+ const. (C.7)

where 1 is a vector with all L̄ entries equal to one. To avoid an exhaustive search
over s, we use a single-replacement routine instead to update ŝ as described
in Algorithm 1 (lines 6:9). The routine iteratively computes (C.7) for the
vectors that differ from the current estimate sold at one location at most, i.e.
with Hamming distance less than or equal to one. The vector that yields the
maximum value of (C.7) is used to update the support.

Channel weights estimation

The belief of the channel weight vector vl, l ∈ [L̄] reads q(vl) ∝ mfo→vl(vl)·
mfhl→vl(vl) = CN(vl|µl, Σl) with

µl = Σl

〈
λŝ[l]

Ω(l)H
y−

∑
k 6=l

J(l,k)vT
k

〉
∼vl

(C.8a)

Σl =
〈
K−1 + λ|ŝ[l]|2J(l,l)

〉−1

∼vl
(C.8b)

where we define J(l,k) =
(

Ω(l)
)H

Ω(k) and Ω(l) = [Ω[·, (r − 1) · L̄+ l], r ∈
[R]], l, k ∈ [L̄].

Noise precision estimation

The belief of the noise precision is q(λ) ∝ mfn→λ(λ)mfo→λ(λ), which yields
the pdf of a Gamma distribution with mean

〈λ〉λ = NR
〈
‖ y−Aŝ ‖22

〉−1
∼λ. (C.9)
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Decoding

The belief of x(t)d [k], k ∈ [Nd] is q(x
(t)
d [k])∝m

fo→x(t)d [k]
(x

(t)
d [k])mf

m(t)
k
→x(t)d [k]

(x
(t)
d [k])

where the first factor ism
fo→x(t)d [k]

(x
(t)
d [k]) = CN

(
x
(t)
d [k]|m(t)[k], v(t)[k]

)
with

m(t)[k] = v(t)[k]
〈
λ(n(t)

k )Hỹ(t)
k

〉
∼x(t)d [k]

v(t)[k] =
〈
λ(n(t)

k )Hn(t)
k

〉−1

∼x(t)d [k]
.

(C.10)

The vectors n(t)
k ∈ CR and ỹ(t)

k ∈ CR are defined as n(t)
k = [M (t)[(r −

1)N + ik, ik], r ∈ [R]]T, ỹ(t)
k = [ỹ(t)[(r − 1)N + ik], r ∈ [R]]T, where M(t) =

[diag(m(1,t))...diag(m(R,t))]T ∈ CNR×N , m(r,t) = D̄H̄[(t−1)L∆ + 1 : tL∆, r] ∈
CN and ỹ(t) = y−

∑
t′ 6=t M(t′)x(t′). The second factor reads

mf
m(t)
k
→x(t)d [k]

(x
(t)
d [k]) ∝

∑
c(t)
k
∈{0,1}Q

f
m(t)
k

(xd
(t)[k], c(t)k )

Q∏
j=1

n
c
(t)
k

[j]→f
m(t)
k

(c
(t)
k [j])

(C.11)

where n
c
(t)
k

[j]→f
m(t)
k

(c
(t)
k [j]) = m

f
c(t)
→c(t)

k
[j]
(c

(t)
k [j]). It is well known that prop-

agating messages through node f (t)c corresponds to classical decoding e.g. [17],
hence we do not detail the updates of n

c
(t)
k

[j]→f
m(t)
k

.

Algorithm summary and complexity study

Algorithm 1 below summarizes the updates presented in Section 3.2. The
initialization stage (lines 1:2) is followed by the iterative stage. Channel esti-
mation (lines 4:11) and data detection and decoding (lines 12:16) are performed
iteratively until a maximum number of iterations Mo has been reached.

We discuss next the main sources of complexity of the algorithm, namely
a) the support detection (lines 6:9), b) the channel weights update (line 5) and
c) the detection and decoding (lines 12:16).

Support detection: To update the support, (C.7) has to be computed for
L̄+ 1 vectors belonging to the set

{
s̄|d(s̄, sold) ≤ 1

}
. The computational com-

plexity is dominated by the updates of the products
〈
AH〉

x(1),...,x(T ),v1,...,vL̄
y

and
〈
AHA

〉
x(1),...,x(T ),v1,...,vL̄

at the costsO(NRL̄) andO(NRL̄2) respectively.

Channel weights updates: To compute µl and Σl,
〈

Ω(l)
〉

x(1),...,x(T )
y

and
〈(

Ω(l)
)H

Ω(k)

〉
x(1),...,x(T )

, l, k ∈ [L̄] are updated at costs O(NR2) and
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O(NR3) respectively. Note however that the matrices Ω(l), l ∈ [L̄] built by
selecting R columns of the matrix Ω = IR ⊗ Φ̄ are sparse, each holding NR
nonzero entries, hence the complexity can be further reduced toO(NR) for each
of the two products above using a sparse BLAS routine [18]. The complexity
of updating µl and Σl, l ∈ [L̄] are O(R2) and O(R3) respectively, the latter
potentially being reduced to O(R2.373) [19].

Detection and decoding: We need to update the TNd messagesm
fo→x(t)d [k]

,

k ∈ [Nd] defined as the product of factors in (C.10). The cost of updating
m(t)[k] and v(t)[k] is O(R) for each.

Algorithm 1 Proposed iterative algorithm
1: set ∆τ , L∆, Mo, Mi and initialize 〈λ〉λ, ŝ

2:
〈
x
(t)
d [k]

〉
x
(t)
d [k]

=

〈
|x(t)d [k]|2

〉
x
(t)
d [k]

= 0, k ∈ [Nd], t ∈ [T ]

3: for o = 1 : Mo do
4: for i = 1 : Mi do
5: compute Σl and µl using (C.8) for l ∈ [L̄]
6: do
7: do sold = ŝ
8: do ŝ = argmaxs∈{s̄|d(s̄,sold)≤1}ln(q(s)) using (C.7)
9: while ŝ 6= sold

10: compute ζ̂ using (C.5) and 〈λ〉λ using (C.9)
11: end for
12: for t ∈ [T ] and k ∈ [Nd] do
13: compute m

fo→x
(t)
d [k]

(x
(t)
d [k]) using (C.10)

14: compute mf
m(t)

k
→x

(t)
d [k]

(x
(t)
d [k]) using (C.11)

15: compute
〈
x
(t)
d [k]

〉
x
(t)
d [k]

,
〈
|x(t)d [k]|2

〉
x
(t)
d [k]

16: end for
17: end for

4 Numerical evaluation
We generate the MIMO system described in Section 2 using the parameter
setting from Table C.2. The receiver is equipped with R = 2 antennas and
receives signals from two transmitters, one serving, (U = 1), and one interfer-
ing, (I = 1). The pilots of both transmitters are uniformly spaced and have
the same subcarrier pattern, i.e. the pilots of the transmitters overlap in fre-
quency. We consider four variants of Algorithm 1 the features of which are
detailed in the first four rows of Table C.3. NI neglects the interference. SM
demodulates the signal of the interferer and estimates the impulse responses
of its sub-channels based on the erroneous assumption that both transmitters
use the same modulation alphabet. KM does the same operation as SM, but
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in addition knows the modulation alphabet of the interferer. KMD knows the
modulation and coding scheme (MCS) of the interferer and demodulates and
decodes the interfering signal. It also estimates the responses of the interfering
sub-channels. For benchmarking we use IF which implements Algorithm 1 and
operates in interference-free conditions (I = 0), and Ref and RefD (see Table
C.3) which implement [6] with a robust assumption on the prior covariance
matrix [20]. We also use a genie-aided (GA) receiver possessing perfect CSI.
Specifically, GA knows all D(t)h(t,r) in (C.2) and the noise variance, and per-
forms MMSE-IRC equalization [4]. GAIF is GA operating in interference-free
conditions.

Table C.2: Parameter setting of the considered MIMO system

Transmitters
Serving transmitter Interfering transmitter

N 600 600
pilot density 25% 25%

data modulation 16-QAM QPSK
pilot modulation QPSK QPSK

C 1/3 1/3
dc 4.69µs 4.69µs

Channel impulse response
p(L(t)) = Poiss(L(t)|5) and p(τ (t)[l]) = U(τ (t)[l]|0, dc) 2

p(h(t,r)[l]|τ (t)[l]) = CN
(
h(t,r)[l]|0,V exp(−106τ (t)[l])

)
3

where t ∈ [T ], l ∈ [L(t)], r ∈ [R] and V is a scaling parameter.

The BER performance of the receivers in low and medium SIR regimes is
shown in Fig. C.2 and C.3 respectively. IF performs very closely to GAIF. Its
excellent performance indicates accurate channel and noise precision estima-
tion, validating the usefulness of exploiting the SCS property. Obtaining the
MCS of the interferer and decoding the interfering signal is highly beneficial in
both SIR regimes and determines KMD to show a BER performance close to
that of IF. This indicates good CI cancellation capabilities. Exploiting the SCS
property proves to be advantageous for KMD which outperforms RefD. Not de-
coding the interfering signal causes KM and Ref to exhibit a BER degradation
compared to KMD and RefD, however their performance is still similar to that
of GA in both SIR regimes. The similar performance of KM and Ref stems
from the inaccuracy in the detected symbols which does not allow for a further
refinement of the channel estimates and therefore an accurate CI cancellation.
At low SIR, even if SM performs worse than KM, it still outperforms NI. At
medium SIR, SM exhibits less degradation compared to KM and Ref, revealing
the benefit of reconstructing the signal and estimating the impulse responses
of the interferer’s sub-channels even under mismatched assumptions.

2The event {L(t) = 0} is discarded. Given L(t), the delays are drawn independently.
3The weights are drawn independently.
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5. Conclusion

Table C.3: NI, SM, KM, KMD use the setting Mo = 10, Mi = 5, K = IR, ∆τ = 100ns,
L∆ = d dc

∆τ e and are initialized with 〈λ〉λ = 1 and ŝ = 1.

Rx. Knows Demod. Decodes Estimates
MCS interfering interfering interferer
interferer signal signal channels

NI − − − −
SM − X − X
KM X X − X
KMD X X X X
Ref X X − X
RefD X X X X
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Fig. C.2: BER versus SNR at 0 dB SIR.
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Fig. C.3: BER versus SNR at 5 dB SIR.

5 Conclusion
The numerical evaluation shows that a receiver implementing the proposed
algorithm successfully cancels the co-channel interference and decodes the de-
sired signal when it knows the interferer’s modulation and code. Even when
only the modulation alphabet is known, detecting the interfering signal and
estimating the impulse responses of its sparse sub-channels is highly benefi-
cial to the receiver. These results demonstrate the usefulness of exploiting the
sparse common support property and acquiring information about the inter-
ferer’s transmission. Even when the modulation alphabet of the interferer is
unknown, a receiver that mistakenly assumes it to be identical to that of the
desired data performs better than a receiver which neglects the interference
entirely.

Lastly, we emphasize that the algorithm is capable of coping with an ar-
bitrary number of interfering signals. Furthermore, its design allows for dif-
ferent scheduling options, therefore enabling the implementation of various
interference-aware receivers that trade computational complexity for perfor-
mance, and vice-versa.
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1. Introduction

Abstract
Traditionally, the dictionary matrices used in sparse wireless channel estima-
tion have been based on the discrete Fourier transform, following the assump-
tion that the channel frequency response (CFR) can be approximated as a linear
combination of a small number of multipath components, each one being con-
tributed by a specific propagation path. In practical communication systems,
however, the channel response experienced by the receiver includes additional
effects to those induced by the propagation channel. This composite channel
embodies, in particular, the impact of the transmit (shaping) and receive (de-
modulation) filters. Hence, the assumption of the CFR being sparse in the
canonical Fourier dictionary may no longer hold. In this work, we derive a sig-
nal model and subsequently a novel dictionary matrix for sparse estimation that
account for the impact of transceiver filters. Numerical results obtained in an
OFDM transmission scenario demonstrate the superior accuracy of a sparse
estimator that uses our proposed dictionary rather than the classical Fourier
dictionary, and its robustness against a mismatch in the assumed transmit fil-
ter characteristics.

1 Introduction
Many channel models proposed for wireless communication systems character-
ize the impulse response of the radio channel as the sum of a few dominant
multipath components, each associated with a delay and a complex gain [1]. As
a result, the channel frequency response (CFR), defined as the Fourier trans-
form of the channel impulse response (CIR), admits a sparse representation
in a specific Fourier dictionary. Methods from compressed sensing (CS) and
sparse channel representations have been proposed to devise estimators of the
radio channel responses that exploit this property [2–5].

However, the receiver of a wireless communication system observes a com-
posite channel response that includes the impact of the propagation channel
together with other effects, such as those induced by antenna or transceiver
filter1 responses. The combination of these effects results in a composite CFR
that exhibits sparsity in a different (a priori unknown) dictionary. This natu-
rally raises two questions: (i) can a CS-based estimator using classical Fourier
dictionaries still yield precise sparse estimates of the composite channel?, and
(ii) if this is not the case, which dictionary should the estimator use in order
to produce accurate sparse estimates of the composite channel response?

The authors of [6] showed that the performance of CS algorithms is highly
sensitive to mismatches in the used dictionary matrix. Such a situation is

1Hencefort, we use the term “transceiver filter” to designate either the transmit (shaping)
or the receive (demodulation) filters.
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1. Introduction

encountered when CS-based channel estimators are applied to a signal model
which incorrectly assumes perfect low-pass transceiver filters. To the authors’
knowledge, only a few contributions have explored the effects of transceiver
filters on sparse estimators before. In [3], the authors apply CS techniques to
estimate the channel in a multicarrier system using perfect low-pass filters in
highly mobile setups; they observe that the discrete delay-Doppler spreading
function is approximately sparse. In this contribution we are, however, inter-
ested in the limitations that the practical implementation of such transceiver
filters impose on the accuracy that sparse (or CS-based) estimators can attain.
In [7], an OFDM system with transceiver filters is also analyzed. The author
claims that, under the conditions of a sufficiently large bandwidth (e.g. 256
MHz), the resulting composite channel response appears approximately sparse.
It is, however, unclear whether this conclusion holds for systems employing a
smaller bandwidth as, e.g., an LTE system [1].

In this article we derive a model for the received OFDM signal with a dic-
tionary explicitly accounting for the distortion introduced by transceiver filters.
We then apply a CS-based channel estimator to this signal model and to the
classical model which neglects this distortion [2, 4, 5]. Numerical investiga-
tions are conducted considering an LTE system as use-case. They reveal that
the performance of the sparse estimator, measured in terms of mean squared
error (MSE) of the CFR estimates, is significantly improved when it is applied
in combination with our proposed dictionary, compared to when it is applied
in combination with the classical Fourier dictionary. These investigations also
demonstrate that the sparse estimator used in combination with the former
dictionary is robust towards mismatches between the true and assumed char-
acteristics of the filters, and that it performs well even in scenarios where the
channel response exhibits a large number of multipath components.

The remainder of this paper is organized as follows. In Section 2 we derive
an OFDM received signal model which includes the effects of the transceiver
filters. Based on this, we propose in Section 3 a novel design of the dictionary
used by sparse channel estimators. In Section 4 we test the performance of
the aforementioned estimators. In Section 5 we sum up the observations and
conclude the paper.

Notation: Boldface uppercase and lowercase letters designate matrices and
vectors, respectively. The diagonal matrix A = diag(a) has the entries of the
vector a as diagonal elements. We denote by [A]i,j the (i, j)th element of the
matrix A. We define the N ×N discrete Fourier transform (DFT) matrix with
F ∈ CN×N , [F]m,n = 1/

√
Ne−j2πmn/N ,m,n ∈ [0 : N − 1]; I is the identity

matrix. A function f which maps the set E to the set F is denoted as f : E → F
and its support is supp(f) = {x ∈ E| f(x) 6= 0}; the notation |F| denotes the
cardinality of F . We represent the convolution of two functions f and g as
f ∗ g; δ(·) is the Dirac delta function. The notation [P1 : P2] denotes the set
{p ∈N|P1 ≤ p ≤ P2}. The superscripts (·)T and (·)H denote transposition and
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2. Signal model

Hermitian transposition respectively. The notation ‖ a ‖0 denotes the number
of non-zero entries of a.

2 Signal model
We consider a single-input single-output (SISO) OFDM system model. By
contrast to the traditional approach [5], we account for the response of the
transceiver filters in the derivation of the model. The message consists of a
vector u = [u0, ...,uNB−1]

T of information bits which are encoded with a code
rate R = NB/NC and interleaved to yield the vector c = [c0, ..., cNC−1]

T. The
code vector is modulated onto a vector of complex symbols that are multiplexed
with the pilot symbols producing the symbol vector x = [x0, ...,xN−1]

T. The
symbol xi is a pilot symbol if i ∈ P or a data symbol if i ∈ D, where P
and D represent the subsets of pilot and data indices respectively, so that
P ∪D = {0, ...,N − 1}, P ∩D = ∅, |P| = NP and |D| = ND. We refer to P
as the pilot pattern. The symbol vector x is passed through an inverse DFT
block, yielding s = [s0, ..., sN−1]

T = FHx. Next, s is appended a µ-sample
long cyclic prefix (CP) and the entries of the resulting vector are modulated
using a transmit shaping filter with impulse response ψtx(t) to produce the
continuous-time OFDM signal

s(t) =
N−1∑
n=−µ

snψtx(t− nTs), t ∈ [−µTs,NTs) (D.1)

where Ts is the sampling period. We assume that supp(ψtx) = [0,T ], with T =
aTs, a > 0. The signal s(t) is sent across a wireless channel with CIR g(τ )
modeled as the sum of L (specular) multipath components, with the complex
gains β = [β0, ...,βL−1]

T and delays τ = [τ0, ..., τL−1]
T:

g(τ ) =
L−1∑
l=0

βlδ(τ − τl). (D.2)

We assume that g(τ ) remains invariant over the duration of one OFDM symbol.
At the reception, the signal appears as the convolution of the transmitted signal
(D.1) and the CIR (D.2) corrupted by additive white Gaussian noise n(t) with
spectral height σ2, i.e.

z(t) = (s ∗ g)(t) + n(t). (D.3)
The received signal is next passed through a receive demodulation filter with
response ψrx(t),2 supp(ψrx) = [0,T ], producing the output

r(t) = (z ∗ψrx)(t) =
N−1∑
n=−µ

sn(ψtx ∗ g ∗ψrx)(t− nTs) + ν(t) (D.4)

2Without loss of generality, we assume ψrx(t) and ψtx(t) have energy one.
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where ν(t) = (ψrx ∗ n)(t). The output signal r(t) is sampled and the CP is
discarded, yielding the vector r = [r0, ..., rN−1]

T with the entries

rk = r(kTs) =
N−1∑
n=−µ

snq((k− n)Ts) + ν(kTs), (D.5)

k ∈ [0 : N − 1]. In the above expression, we defined the composite channel
response q(t) = (g ∗ ψtx ∗ ψrx)(t) = (g ∗ φ)(t), supp(q) ⊆ [0, τL−1 + 2T ], with
φ(t) = (ψtx ∗ ψrx)(t), supp(φ) = [0, 2T ]. The noise samples in (D.5) form
a circularly-symmetric complex Gaussian process with variance λ−1, λ ≥ 0
that is uncorrelated when the autocorrelation of ψrx(t) satisfies the Nyquist
criterion.3

We observe that decreasing the system bandwidth, i.e. increasing the sam-
pling period Ts, results in widening the convolved response of the transceiver
filters φ(t). As a result, for large bandwidths (small Ts) the composite response
exhibits an approximately specular behavior as the response φ(t) decays fast,
which justifies disregarding the filters’ effects [7]. Conversely, when employing
a smaller bandwidth (larger Ts) as e.g. in 20 MHz LTE systems, each multipath
component in (D.2) is convolved with the slow-decaying response φ(t). Under
such conditions, q(t) is not well approximated by a specular response anymore.

In order to avoid inter-symbol interference, it must be ensured that rk = 0
for k > N + µ, which implies that q((k− n)Ts) = 0 for k− n ≥ µ+ 1. When
this condition is satisfied, the signal y = [y0, ..., yN−1]

T observed after the DFT
processing at the receiver reads

y = Fr = XMβ+ ξ (D.6)

where X = diag(x0, ...,xN−1), M =
√
NFΦ, β is defined before (D.2), ξ =

Fν,ν = [ν(0Ts), ..., ν((N − 1)Ts)]T ∈ CN , and Φ ∈ RN×L, [Φ]n,l = φ(nTs −
τl),n ∈ [0 : N − 1], l ∈ [0 : L− 1].

In order to estimate the CFR at all subcarriers, i.e. h = Mβ, we use the
NP observations corresponding to the pilot subcarriers given by the pattern
P. The received signal observed at each pilot subcarrier y(P) is divided by the
corresponding known transmitted symbol. We note that the superindex (·)(P)
applied to a matrix A denotes a matrix A(P) that contains the rows of A
corresponding to the pattern P. The vector of observations used for estimating
the channel vector reads

t = [X(P)]−1y(P) = M(P)β+ [X(P)]−1ξ(P). (D.7)

Thus, the observation t contains the samples of the CFR at the pilot subcarrier
frequencies corrupted by noise. By contrast, the traditional observation model

3The receive filter’s autocorrelation Arx(t) = ψrx(t) ∗ ψrx(−t) satisfies the condition
Arx(kTs) = 0, ∀k 6= 0.
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[2, 5] disregards the effects of transceiver filters. In this case,

t = T(P)β+ [X(P)]−1ξ(P) (D.8)

where T ∈ CN×L has the entries [T]n,l = e
−j2π n

NTs
τl ,n ∈ [0 : N − 1], l ∈

[0,L− 1] and τl ∈ τ . We will next discuss the effects of using the model (D.7)
instead of (D.8) in the context of sparse channel estimation.

3 Compressed sensing inference for channel es-
timation

If the matrix M –and, hence, M(P )– was known, estimating h would be equiv-
alent to estimating the entries of the vector of complex channel gains β. Un-
fortunately, neither the dimensions of β and τ (i.e. the number of multipath
components in (D.2)) nor the entries of τ , which the matrix M depends on,
are known. In order to overcome this limitation we employ methods from CS
to estimate the CIR and consequently the CFR h. To that end, a discretized
version of the CIR in (D.2) is used:

ḡ(τ ) =
K−1∑
k=0

αkδ(τ − τ̄k) (D.9)

where τ̄k = k∆τ , k ∈ [0 : K − 1] and we define α = [α0, ...,αK−1]
T and

τ̄ = [τ̄0, ..., τ̄K−1]
T.

3.1 Canonical compressed channel sensing model
Making use of (D.9), the canonical linear model used in compressed channel
sensing [5, 8] approximates the observation model by:

t ≈ H(P)α+w (D.10)

where w ∈ CNP is circularly-symmetric Gaussian distributed with zero-mean
and covariance matrix λ−1I, and the matrix H ∈ CN×K has entries

[H]n,k = e
−j2π n

NTs
τ̄k , (D.11)

n ∈ [0 : N − 1], k ∈ [0 : K − 1]. By choosing a sufficiently small sampling
interval ∆τ and sufficiently large K � L, many entries of α are expected to be
either zero or close to zero, i.e. α is expected to be approximately sparse.

Various CS methods [2, 5] have been proposed to compute sparse estimates
of α in (D.10). Once an estimate α̂ has been obtained, the estimated CFR is
computed as ĥ = Hα̂.
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3.2 Novel compressed channel sensing model
We note that the model (D.10) is based on two drastic approximations of the
true observation model (D.7): (i) the approximated observation model (D.8)
that disregards the transceiver filters’ effects, and (ii) the discretized CIR (D.9).
While the approximation (ii) is necessary, we amend the approximation (i) and
recast the CS model to

t ≈ H(P)
φ α+w (D.12)

with Hφ ∈ CN×K defined as

[Hφ]n,k =
√
N

N−1∑
m=0

[F]n,mφ(mTs − τ̄k), (D.13)

n ∈ [0 : N − 1], k ∈ [0 : K − 1]. We then apply CS techniques to the model
(D.13) and obtain sparse estimates α̃; similarly, we compute the estimated
CFR h̃φ = Hφα̃.

We note that the CFR h is L-sparse4 in the dictionary M defined in (D.6).
However, since M is unkown apriori, we employ the two approximate dictio-
naries Hφ and H and consequently assume that h is approximately sparse in
Hφ and H. In CS, the usage of approximate dictionaries is typically referred
to as dictionary mismatch [6]. In the case of the dictionary Hφ, the mismatch
is caused by the discretization of the delay domain carried out in (D.9); for the
dictionary H, an additional source of mismatch is present due to the neglection
of the transceiver filter responses. Hence, we conjecture that a sparse estimator
employing (D.12) instead of (D.10) will provide a more accurate estimate of
h. This conjecture is based on the fact that, when using the dictionary from
(D.13), α̃ would correspond to an estimate of the CIR g in (D.2), while utiliz-
ing (D.11) would yield an estimate α̂ of the composite channel q defined after
(D.5). For small-to-medium bandwidths, the latter approach will result in es-
timates of α with more non-zero entries than those obtained with the former
approach, due to the effect of the filters response φ on the composite response
q. Thus, a less accurate reconstruction of the CFR is expected.

3.3 Sparse channel estimation using sparse Bayesian learn-
ing

We use a Bayesian inference method commonly referred to as sparse Bayesian
learning (SBL) to obtain sparse estimates of α in the CS models in (D.10) and
(D.12). SBL makes use of models of the prior pdf p(α) that strongly penalize
non-sparse estimates in maximum-a-posteriori based estimators [9], [10]. In

4A signal a is L-sparse in a dictionary A if a vector b exists with ‖ b ‖0= L s.t. a = Ab.
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Table D.1: Parameter settings

Sampling time Ts 32.55 ns
Bandwidth B 20 MHz
CP length 144 Ts
Modulation 64 QAM

Turbo-encoder rate 948/1024
Decoder BCJR [12]

Number of subcarriers N 1200
Number of pilots/time slot NP 400

this work, we have selected the prior model proposed in [2], where the prior
pdf of α is formulated as

p(α) = p(α; ε, η) =
∫ ∞

0
p(α|γ)p(γ; ε, η)dγ (D.14)

with p(α|γ) =
∏K−1
k=0 p(αk|γk), p(γ; ε, η) =

∏K−1
k=0 p(γk; ε, η), where p(αk|γk)

is a Gaussian pdf with zero-mean and variance γk, and p(γk; ε, η) is a Gamma
pdf with shape and rate parameters ε and η, respectively. Using the above prior
model, the estimation algorithm presented in [2] is applied to the observation
models (D.10) and (D.12).

4 Performance evaluation

4.1 Setup
In this section we study the performance of the SBL channel estimator using
our proposed dictionary matrix design in a SISO LTE OFDM setup [1], with
the settings specified in Table D.1. The pilots are arranged according to the
pattern specified in [11]. Both transmit and receive filters are truncated square-
root raised cosine filters with roll-offs rTX and rRX respectively, and duration
T = 3Ts.

We employ two different versions of the SBL estimator proposed in [2]. One
version of the estimator, which we coin SE, uses the classical dictionary matrix
design in (D.11). The second version, referred to as SE(F) henceforth, uses our
proposed dictionary matrix design in (D.13), which accounts for the responses
of the transceiver filters. For both estimators, we use the parameter setting
(ε = 0.5, η = 1,K = 500, ∆τ = 10ns), see (D.9) and (D.14). For benchmarking
purposes, we consider two additional estimators: (i) a genie-aided estimator
(GAE) [13] that assumes perfect knowledge of multipath components delays,
i.e. uses the dictionary M from (D.6), and (ii) a robust design of the classical
Wiener filter estimator, which we refer to as robust Wiener filter (RWF). The
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Table D.2: Scenario A. Channel Power Delay Profile

Delays [µs] 0 0.5 1.6 2.3 3.3
Power [dB] -1 0 -3 -5 -7

latter estimator is designed assuming that the channel has a maximum excess
delay of 5 µs and a robust covariance matrix following [14]. Note that this
assumption is also implicitly made in the design of SE and SE(F) via the
aforementioned parameter setting.

We assess the accuracy of the investigated estimators by evaluating the
performance, in terms of MSE of the CFR estimates and coded bit-error rate
(BER), of a receiver employing them. The receiver is evaluated in two different
propagation scenarios, each characterized by a specific channel model. In both
scenarios, block fading is assumed. Scenario A employs a sparse 3GPP-like
channel, modeled as specified in [1]: the CIR consists of five multipath compo-
nents, with associated delays drawn independently from a uniform distribution
with a 10 ns range, centered around the delays specified in Table D.2.5 Scenario
B employs the model introduced in [15], and later studied in [16]. The CIRs
generated from the model exhibit a number of clustered multipath components
which varies over different realizations, with cluster and within-cluster delays
following Poisson arrival processes with rates Λ and λ, respectively. The con-
ditional second moments of the channel gains are modeled by the power-delay
constants (Γ, γ). We set [1/Λ, 1/λ] [µs] = [0.3, 5] and [Γ, γ] [ns] = [600, 200],
leading to channel realizations that contain, in average, fifteen multipath com-
ponents. Scenario A enables us to determine whether the filters’ effects impair
the receiver performance when they are not accounted for. Scenario B allows
the total number of multipath components to vary over different realizations
in order to account for the variabiliy of scatterers in the environment, intro-
ducing therefore an additional degree of freedom compared with the channel
in Scenario A. The harsher channel conditions of Scenario B allow us to draw
further conclusions on the performance of the studied estimators.

4.2 Numerical results
In Fig. D.1 we depict the performance of the sparse estimators in terms of MSE
of the CFR in Scenarios A and B respectively when the transmit and receive
filters are perfectly matched (rTX = rRX = 0.5). In both scenarios, we observe
that the mismatched dictionary matrix used in SE degrades the estimator’s
performance as the SNR increases. Since it accounts for the filter’s responses
in the dictionary matrix, SE(F) performs closely to GAE for all SNR values;

5We ensure in this way that the true delays are not integer multiples of the delay resolution
we have selected for the sparse estimator - see (D.9).
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Fig. D.1: Comparison of the MSE performance of the investigated channel estimators in
Scenario A (left) and Scenario B (right).

the slight performance degradation that SE(F) suffers in Scenario B at high
SNR is caused by the presence of numerous multipath components. However,
in both scenarios SE(F) outperforms SE and RWF.

In practical situations, the characteristics of the transmitter’s radio fre-
quency front end may be unknown by the receiver. As a result, the receiver
often possesses incomplete information for computing the dictionary matrix.
This provides an incentive to study how the mismatch between the transmit
and receive filters affects the accuracy of the estimator. To conduct this inves-
tigation, we fix the receive filter roll-off to rRX = 0.5, and vary the transmit
filter roll-off rTX. The GAE and SE(F) estimators assume rTX = rRX, re-
gardless of the actual value of rTX. The resulting MSE is depicted in Fig.
D.2 for the two scenarios at 30 dB SNR. As expected, SE(F) achieves its best
performance when the roll-off factor of the transmit and receive filters coin-
cide (rTX = rRX = 0.5). However, even in the case of a roll-off mismatch,
SE(F) always outperforms SE. Hence, SE(F) is robust against mismatches of
the assumed filter roll-off parameters.

Fig. D.3 depicts the BER performance of a receiver employing the inves-
tigated channel estimators. We have selected as an ideal reference a receiver
which has knowledge of the true CFR coefficients. We observe that, in Scenario
A, SE(F) performs almost as well as the ideal reference, with a gain of up to
1 dB with respect to SE. The harsher channel conditions in Scenario B lead
to a less significant benefit of using SE(F). Nonetheless, a receiver employing
SE(F) always performs better than a receiver employing SE.
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Fig. D.2: Comparison of the robustness of the investigated estimators towards mismatched
filter parameters (rRX = 0.5, rTX ∈ [0.2 0.8]) in Scenario A (left) and Scenario B (right).
The estimators assume rTX = rRX = 0.5.
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Fig. D.3: Comparison of the BER performance of a receiver using SE, SE(F), and RWF in
Scenario A (left) and Scenario B (right).

5 Conclusion
In this paper we have analyzed the effect that transceiver filters have on the
accuracy of selected state-of-art sparse channel estimation techniques. Tradi-
tional CS techniques for channel estimation employ Fourier dictionaries, which
fail to embed the transceiver filters’ responses. As a result, the CS-based chan-
nel estimators operate with mismatched dictionaries which degrade their esti-
mation accuracy. To overcome this limitation, we have proposed a novel design
of the dictionary matrix which accounts for the filters’ responses, allowing thus
for sparser representations of the channel response.

To evaluate the validity of the proposed solution, we applied an SBL estima-
tor that includes either this new dictionary or the traditional Fourier dictionary
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to an OFDM communication system. Numerical results illustrated that the
SBL estimator employing our dictionary design always performs better than
when it uses the classical dictionary. Additionally, we observed that our pro-
posed dictionary matrix is especially advantageous in scenarios in which the
channel exhibits a high degree of sparsity. Furthermore, even when the receiver
possesses imperfect information about the filters’ responses, the proposed dic-
tionary yields a robust behavior of the sparse estimator.

Finally, we point out that, even though this study has been restricted to
a particular choice of estimator, the proposed dictionary can be applied to
any sparse channel estimator derived within the CS framework. Hence, we
conclude that the dictionary matrix design proposed in this work will be a
valuable tool to enable robust and accurate CS-based channel estimation in
future generations of wireless receivers.
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