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aAalborg University, Aalborg, Denmark
bComputer Vision Center, Barcelona, Catalonia Spain
cUniversity of Barcelona, Catalonia Spain
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ABSTRACT

Depth images have granted new possibilities to computer vision researchers across the field. A promi-
nent task is scene understanding and segmentation on which the present work is concerned. in this
paper, we present a procedure combining well known methods in a unified learning framework based
on stacked classifiers; the benefits are two fold: on one hand, the system scales well to consider
different types of complex features and, on the other hand, the use of stacked classifiers makes the
performance of the proposed technique more accurate. The proposed method consists of a random
forest using random offset features in combination with a conditional random field (CRF) acting on
a simple linear iterative clustering (SLIC) superpixel segmentation. The predictions of the CRF are
filtered spatially by a multi-scale decomposition before merging it with the original feature set and
applying a stacked random forest which gives the final predictions. The model is tested on the renown
NYU-v2 dataset and the recently available SUNRGBD dataset. The approach shows that simple multi-
modal features with the power of using multi-class multi-scale stacked sequential learners (MMSSL)
can achieve slight better performance than state of the art methods on the same dataset. By using
MMSSL, the method shows good improvements on the major performance metrics compared to the
base models and this displays that the method is effective in this problem domain.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Through cheap and readily available multimodal sensors,
current and future robotics can gain a perception of their sur-
roundings. To be useful, however, meaning has to be extracted
from the sensor data. As such, semantic segmentation of scenes
is a foundation for robots and machines to navigate and act in
the human-centric world.

A number of works have investigated the problem of indoor
semantic segmentation previously. The majority of them are
focused on the NYU-v2 dataset provided in (Silberman et al.,
2012). A sample image from the dataset is shown in figure 1.
While the dataset has 894 classes in total, most works consider a
semantic 4-class problem originally stated in (Silberman et al.,

∗∗Corresponding author: Tel.: +45-26714763;
e-mail: mt@hst.aau.com (Mikkel Thøgersen)

2012), others increase the number of classes to 13 and 40. In
this work, 4-class segmentation is investigated.

The NYU-v2 dataset is a sequel to their first dataset, NYU-
v1 (Silberman and Fergus, 2011), where the authors propose the
initial solution to this problem and provide the first densely la-
beled RGB-D dataset for indoor semantic segmentation. Their
approach is based on an initial segmentation followed by an
evaluation of three types of potentials in an energy function: a
unary appearance potential incorporating a range of feature de-
scriptors including location priors, SIFT features etc.; a class
transition potential and lastly a spatial smoothness term. In a
more recent work, by (Khan et al., 2014), the dominant lines
and vanishing points of the scene are used to align the scene to
the major surfaces, e.g. the floors and walls. Using a combi-
nation of color and depth based edges the scene is superpixe-
lated using a k-means clustering, the resulting regions are sub-
sequently fitted with a plane and features are extracted and com-
bined in a Conditional Random Field (CRF).
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(a) (b)
Fig. 1. (a) A sample scene from the NYU-v2 dataset; (b) Normalized in-
painted depth map of the same scene.

In (Müller and Behnke, 2014) they used a Random Forest
(RF) to do an initial pixel-wise class prediction, as originally
proposed in (Stückler et al., 2013). This initial segmentation is
later aggregated in a Simple Linear Iterative Clustering (SLIC)
segmentation on which a CRF infer the final class labels. Their
approach showed state-of-the-art results. A multi-scale CRF is
proposed in the more recent work (Hamedani and Harati, 2014).
Here a downsampled version of the image is inferred and the
predictions are propagated through a multi-scale CRF pyramid.
They also explore the use of a temporal pairwise potential to
enforce the beliefs through video sequences.

In (Puertas et al., 2015) they present the Multi-class Multi-
scale Stacked Sequential Learning (MMSSL) framework. The
idea is to stack subsequent classifiers and cumulatively extend
the feature sets with filtered versions of each classifiers pre-
dictions. Results show improved performance in 1D and 2D
sequential problems.

Likewise, (Cohen and Carvalho, 2005) shows how using a
base classifier with a consecutive classifier acting on the pre-
dictions of the base classifier can improve segmentation results
considerably in 1D sequential problems. To obtain the im-
proved performance, a contextual feature is created from the
confidence map of the base classifier, and this is where the
method gains its discriminative power, especially when com-
bined with non-contextual classifiers. They explore a number of
different classifiers and evaluate stacked versions. Their results
on some datasets are impressive, especially they test a stacked
CRF and find that it can improve the results of the standard
CRF. Their work is further developed in (Gatta et al., 2011)
where they add a multi-scale decomposition acting as the con-
textual feature. Instead of a single distance of contextual infor-
mation, as used in (Cohen and Carvalho, 2005), multiple dis-
tances are used which outperforms previous methods.

Also in (Sampedro et al., 2014), classifiers are stacked it-
eratively until some stopping criteria. They call it the Iter-
ative Multi-class Multi-scale Stacked Sequential Learning or
IMMSSL. The paradigm is used on 3D medical volume scans,
but has not previously been tested on 3D data for indoor seman-
tic segmentation which is not sequential in the same manner as
for volume imaging.

In this work we explore and enhance current work on se-
mantic segmentation in indoor cluttered scenes. Specifically,
this paper focuses on introducing the MMSSL framework on
the methods that have previously been proven effective for
the semantic segmentation problem (Müller and Behnke, 2014;

Fig. 2. Model overview. Features are extracted from the RGB-D images,
aggregated in superpixels and fed to the CRF. A multi-scale decomposi-
tion of the predictions from the CRF is created and used in an RF which
predicts the final labels.

Hamedani and Harati, 2014; Khan et al., 2014). The result-
ing model is trained and tested on the NYU-v2 dataset and the
SUNRGBD dataset (Song et al., 2015) which contains refor-
matted data from the NYU-v2, Berkeley B3DO (Janoch et al.,
2013) and SUN3D (Xiao et al., 2013) datasets. The data in
SUNRGBD is captured from four different RGBD sensors and
contains eight times as much data as the NYU-v2 dataset. This
works shows the first four-class segmentation attempt of the
SUNRGBD dataset and compares this to the original four-class
problem posed with the popular NYU-v2 dataset.

The rest of the paper is organized as follows: Section 2
presents the approach for semantic RGB-D scene segmentation,
describing features and stacked classifiers. Section 3 shows the
experiments. Finally, Section 4 concludes the paper.

2. RGB-D Scene Segmentation

Our proposed technique for RGB-D scene segmentation is a
combination of the methods of previous works with the addi-
tion of the MMSSL framework. Several of the related works,
and in particular the state of the art, use the SLIC segmenta-
tion. Because of its proven performance and efficiency it is also
adopted as the main segmentation in this work. An initial pixel-
wise RF, similar to the one presented in (Müller and Behnke,
2014), is used to give an initial approximate class label. It is
based on random offset features, which have a strong resem-
blance to HAAR features, as used in (Viola and Jones, 2004).
The implementation is not the exact implementation presented
in (Müller and Behnke, 2014), but with similar characteristics.
The confidence map from the RF classifier is used as a feature
amongst an array of other features as the input to a CRF. This
constellation with an RF and a CRF makes up the base classifier
of the MMSSL construction.

Applying the base model onto the training data gives class
confidences for each pixel. The idea of MMSSL is to use
these confidences of the base classifier as a super feature and
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Table 1. Parameters for the initial Random Forest.
Parameter value
Num. of features 40
Num. of samples 1.56 · 106

Num. of trees 20
Num. of sample at each decision split 7
Minimum num. of samples at leaf 10

combine it together with the original features as the input to
a stacked classifier. The stacked classifier work consecutively
and can actively learn the mistakes of the base classifier, cor-
rect them and improve the overall performance. As mentioned
before (Gatta et al., 2011) used a multi-scale decomposition
of the confidences of the base classifier instead of just using
the confidences. This improved results and a similar feature is
constructed here.

This super feature combined with the original feature set is
used as the input for another RF, which acts as the stacked clas-
sifier. Finally the classifications of the stacked RF are aggre-
gated back into the original SLIC segmentation to make the
classifications more coherent. The complete model pipeline is
depicted in figure 2.

2.1. Random Forest
An initial estimate of the classes is obtained through the use

of a Random Forest with random offset features that captures
subtle details of either the depth channel or the Lab color space
channels. This approach is similar to the one originally pro-
posed in (Stückler et al., 2013). For every pixel, two random
offsets within a certain range are chosen. A randomly sized
rectangular patch around each offset are summed; the feature
now consists of the absolute difference between these two sums.
Obviously this has similarities to the Haar-like features, (Viola
and Jones, 2004) and enjoys the same benefit of integral images.

Initially thousands of randomized offsets and patch sizes are
trained on the data. Following, the out-of-bag samples are
tested with the trained model and by using the errors of these,
the discriminative power of each of the random features can be
evaluated. Based on this evaluation, by looking at the out of
bag error, a subset of the random features can be selected and
the model is retrained to obtain the first RF model. The pa-
rameters of the RF are shown in table 1 and the corresponding
response from the trained RF is shown in figure 3. Finally, the
predictions of this classifier are aggregated in a segmentation
and used as a feature in the CRF classifier.

2.2. Segmentation
Similar to other state of the art approaches (Müller and

Behnke, 2014; Silberman and Fergus, 2011; Silberman et al.,
2012) the proposed system is centered around a CRF that acts
on an over segmentation of the input imagery. The outcome
is a classification of the individual superpixels. To obtain the
super pixel segmentation, the localized k-means based SLIC
algorithm (Achanta et al., 2012) is used in this work, which is
renown for its speed and ability to create near uniform segments
while preserving contours. It is an important part of the model,
as it defines the boundaries of the segmentation and some fea-
tures are derived from it.

(a) (b)
Fig. 3. Shows the Random Forest response together with the ground truth
on the right.

2.3. Generic Features

A set of primitives are extracted from the data, as these are
used as a basis for several of the features. These are the trivial
Cartesian coordinates and the normals. The normals are cal-
culated as the cross product estimates (Klasing et al., 2009).
Several more elaborate methods are available, however in this
context the normals will be averaged over regions which will
act as a filter.

From the obtained data, a set of features are readily avail-
able. For the individual superpixels, the features include: Color
using the Lab color space, the normal and the standard devia-
tion of the normal which captures curvature in either direction.
Also, a blurred gradient of the image and the depth map are in-
cluded to provide clues on areas with high change of color and
depth. For the case of pairwise potentials, all of the above and
3D Cartesian coordinates are used. Most are calculated as the
absolute difference with the exception of the color and normal
features. The pairwise color feature is modulated to penalize in
a non-linear fashion:

fcolDiff(R1,R2) = exp(−β ||c1 − c2||
2), (1)

where R1 and R2 are two adjacent superpixels, c1 and c2 are the
Lab colors of the superpixels and β controls the attenuation of
the feature. The normals are compared using a normalization of
the difference of angles and they are also compared w.r.t their
inclination in spherical coordinates.

2.4. Dominant normal direction

An important concept of the model is estimating the layout
of the room and finding the dominant axes of the room, e.g. the
floor and wall normals. The Manhattan principle is the assump-
tion that lines and edges in indoor imagery are aligned with ei-
ther the floor or the walls (Coughlan and Yuille, 2003). Extend-
ing this to surfaces is a natural step, as the edges and lines only
exist where surfaces meet. Based on this extended Manhattan
principle - that major surfaces are aligned with the floor or the
walls - the normals of the scene are investigated using a mean
shift clustering, usually providing 4 to 8 candidate dominant di-
rections. To illustrate these dominant directions, a visualization
of the normals and their distribution for a given scene is shown
in figure 4. As several authors (Müller and Behnke, 2014; Sil-
berman et al., 2012; Gupta et al., 2013) similarly have noticed,
the floor normal can be found by taking the candidate nearest
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(a) (b)
Fig. 4. (a) Shows a scene plotted in 3D Cartesian coordinates, besides it,
in (b) a plot of the concentration of normals is shown, it is created using
a histogram of the normals, where the concentrations are plotted as ele-
vations on a sphere, corresponding to the direction of the normals. Notice
the three main bulges (red color), they correspond to the three dominant
normal directions in the image.

to the upwards axis of the estimated Cartesian coordinate sys-
tem. While the previous works use methods like clustering the
normals into 10 clusters and choosing the one which is closest
to alignment with the y-axis, the method used here is somewhat
more elaborate and can also find walls. In this model, the can-
didates, P, from the mean shift clustering are evaluated using
the following expression:

nfloor = argmax
p∈P

exp

−
(
|pθ − θstd|

180

)λf
(
1 −

pµ∑
p∈P

pµ

) . (2)

In addition to choosing the candidate, p, with a normal direc-
tion, pθ, close to some standard floor inclination, θstd, the eval-
uation ensures that there is sufficient support - e.g. the number
of normals, pµ, pointing in the same direction as the candidate.
Also, the importance of inclination compared to support is con-
trolled by adjusting the λf-parameter.

Once the floor direction is determined, the wall normals are
found in a similar fashion from the remaining dominant normal
candidates. When finding the wall normals, the assumption is
that candidate directions are perpendicular to the floor normal
and to other candidates - assuming that rooms are rectangular.
This does not hold for rooms with more complex walls, but per-
forms well in practice. Initially the vertical angle differences,
pθ̂, between the floor normal and the candidates are calculated
and 90◦ is subtracted, so that candidates with an angle differ-
ence close to zero are more likely to be wall. Afterwards the
process continues iteratively following these steps:

• (This step is skipped on first iteration). The candidates are
compared with the found wall normals in the horizontal
direction by finding the angle difference, pϕ̂, and subtract-
ing whichever multiple of 90◦ is closest to the found value.
This has the effect that candidates that are perpendicular or
opposing to the already found wall normals are most likely
to be wall.

• On every iteration the remaining candidates are evaluated
using:

nwall = argmax
p∈P

exp

−
(
|pθ̂ + pϕ̂|

180

)λw
(
1 −

pµ∑
p∈P

pµ

) ,
(3)

(a) (b)

(c) (d)
Fig. 5. Normal features based on the dominant normal directions. The
original image is shown in figure 1. (a) Intensity image of the vertical nor-
mal feature. (b) Intensity image of the floor probability. (c) Similar to (a),
the wall normal feature compares the normals to the found wall normal
directions. Lastly, (d) is similar to (b), using the normals of the walls.

where λw controls the importance of either term. If the
evaluation equation returns a value greater than some
threshold, the candidate is accepted as a wall normal, oth-
erwise the process is stopped.

Knowing the normals of each structure entity, their surfaces
are found in the scene by fitting a plane to a point on the sur-
face. Using the assumption about rectangular rooms, the fur-
thest point in the opposite direction of one of the entities nor-
mals must be a point on the entity. Having a point and a normal
for an entity, a plane can be constructed and used for assigning
a wall and floor probability.

Because the floor normal is known, it is possible to find
all upwards pointing surfaces by comparing normals using the
scalar product and an exponentiation:

fflat(n) = (n · nfloor − 1)α, (4)

where α attenuates the feature. These normal features, amongst
other similar features, are shown in figure 5.

The floor plane provides a means of finding the height of each
individual superpixel. The height is divided into bins to better
accommodate the nature of CRF features. The bins are set to
span 2.5 meters, assuming that most scenes do not exceed this
height, in case they do they are assigned to the last bin.

Another feature, derived from the dominant normal direction,
is the room layout feature. The idea is simple: flipping the 3D
scene, such that it is viewed from above. Once this is done, the
walls will be the bounding periphery and can be detected by fol-
lowing the camera rays out in every direction, see figure 6. By
looking at the camera rays and finding the last point registered
in each line from the camera, the last point will approximately
be a part of the wall. Following, a probability can be assigned
to all points that are vertically aligned with this furthest point,
effectively separating the walls and the rest of the scene. In this
work, the feature is a complimentary feature to the dominant
normal directions. This feature and assumptions are inspired



5

(a) (b)
Fig. 6. (a) Room layout view of the sample image shown in figure 1. The
3D point cloud has been rotated, such that a ’top view’ of the scenery is
obtained. (b) By warping the image to the field of view of the kinect camera
this image is obtained. The walls can be found by following each vertical
line from the bottom and up and stopping when there is no gray pixels
left (marked with green in the image). See an example of the probability
assignments from the room layout feature on figure 8(b).

Fig. 7. Shows how well the found up-vector corresponds to the accelerom-
eter data from the kinect (based on NYU-v2 data).

by the work of (Cadena and Košecka, 2013). An example is
given in figure 6.

To display the dominant normal directions features and how
they interact with other simple features, figure 8 shows a scene
with the corresponding features. The first image (a) shows the
dominant normal directions as a coordinate frame in the scene.
The red arrow to the right is the up vector measured by the ac-
celerometer in the kinect camera when the image was taken.
This can be considered as ground truth. Looking at the scene
behind; the walls are assigned a probability by fitting a plane
to them (the blue and green shade), however the door opening
breaks the assumption of having purely rectangular rooms so
most of the front wall is not registered (it should have a green
color). Fortunately, the other features can redeem this. Image
(b) shows the outcome of the room layout feature, it captures
exactly the front most wall which the previous features did not.
Finally, image (c) shows the wall normal comparison feature
which generally includes any wall-aligned surface and there-
fore includes too much. The three features together captures
different aspects and combined with the learners, the end result
is shown in image (d).

To explore how well the scenes are aligned, the found up
vectors are compared to that of the accelerometer data from the
kinect. The comparison is shown in figure 7. It shows that the
approach taken in this work is on par with (Silberman et al.,
2012) and exceeds for getting most scenes within 10◦.

2.5. Multi-scale Sequential Stacked Classifier

The MMSSL framework is a way to improve the results of a
model by adding another discriminative classifier on top of the

(a) (b)

(c) (d)
Fig. 8. (a) Dominant normal directions and wall (blue + green) and floor
(red) probability assignments. The arrows on the left show the dominant
normal directions and the right arrow shows the accelerometer ground
truth up vector. (b) Room layout feature. (c) Wall normal feature. (d)
Final assignments.

existing one. The stacked classifier is trained with a multi-scale
decomposition of the confidence map of the base classifier as
well as the original feature set. This effectively corrects errors
of the base classifier.

The multi-scale decomposition is generated by analyzing the
distribution of nearby pixels confidence maps in multiple dis-
tances from the point in question. For a point p with the pixels
Pi situated in some half-closed distance intervals from p de-
noted by i = {1, 2, ..., n}, the multi-scale decomposition is the
averaged distribution of the confidence map, C, of each class,
c = {1, 2, ..., k}, in each interval. It can be described as:

an(c−1)+i =

∑
i Cc(Pi)
|Pi|

, (5)

where Cc refers to the confidence map for the class c. The vec-
tor a is the resulting feature vector for p. In effect, this decom-
position creates a feature vector that is linear in size with the
number of classes, e.g kn, as a consequence the framework is
suited for problems with a relatively low number of classes, al-
though it can be compressed when dealing with a large number
of classes (Puertas et al., 2015). Notice that the points in Pi are
found as the points with an Euclidean distance from the query
point p falling in the interval i. A depiction of the decompo-
sition is shown in figure 9. For each sphere in the image, the
distribution of each class is found, these distributions then con-
stitutes the super feature. In this work the distances used are: 2,
5, 11 and 30 cm.

This super feature or multi-scale decomposition is added to
the initial feature set to form an extended feature set which is
the input to the stacked classifier for the final classification. As
a stacked classifier an RF is chosen which is trained on the ex-
tended dataset, and finally the predictions are aggregated in the
superpixel segmentation giving the final labeling.
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Fig. 9. Depiction of the multi-scale decomposition. From the query point in
the center, there are two intervals, I1 and I2 that each generates a sphere.
In each interval, the distribution of the confidence map is extracted, which
gives the resulting feature vector.

3. Experiments

The proposed model is tested on the NYU-v2 and SUN-
RGBD datasets. The NYU-v2 dataset is composed of 1449
densely labeled RGB-D images captured using a Kinect cam-
era. The dataset is provided with in-painted depth maps, solv-
ing the common problem of filling holes in data from depth-
sensing technologies. The manual colorization method of Levin
et al. (Levin et al., 2004) is used for the in-painting. The
dataset includes a standard data split introduced with the first
paper on the dataset (Silberman et al., 2012). This gives a to-
tal of 795 densely labeled training images and 654 test images
spanning various different scenarios, from kitchens to public li-
braries. The SUNRGBD dataset consists of 10335 RGB-D im-
ages, 5284 training samples and 5051 test samples. The dataset
comes with 37 annotated classes, however in this paper, only
a four-class problem is considered and hence the 37 classes
are translated into the four classes used here. Following the
available literature on the subject, the two commonly compared
measures are per class accuracy and pixel accuracy.

3.1. Ablation Study

To examine the importance of features and methods, differ-
ent settings are tested. The baseline is given as the generic fea-
tures with the conditional random field. Each setting is shown
in table 3, where the feature groups have been abbreviated ac-
cording to table 2. The CRF alone with the generic feature set
is discriminative enough to get fair results on the three classes
with least variance, whereas it fails to classify the props class.
This is a natural cause of the fact that the props class spans a
wide variety of objects making it hard to find discriminative fea-
tures for such a class, particularly with only the generic feature
set. Adding the normal features with especially the vertical nor-
mal feature gives better results on the props class, as it can be
used to separate objects on tables and on the floor. In general,
it increases the performance across all classes.

To test whether the room layout feature has a positive ef-
fect, it is tested by itself with the CRF, it adds some descriptive
power however not as much as the normal features. This ap-
peals to the intuitive sense, as it can only tell whether a given
pixel is inside the bounding walls or is in fact the walls.

Table 2. Feature reference table.

Feature sets Node Edge

Generic features G
Lab color • •

3D position •

Normal • •

Std. dev. of the normal • •

Blurred depth gradient magnitude • •

Blurred image gradient magnitude • •

Room Layout features RL
Room layout wall probability • •

Inverse room layout wall probability • •

Normal features N
Discrete height • •

Vertical normal comparison • •

Wall normals comparison • •

Floor probability • •

Wall probability • •

Continuous height •

NYU-v2 SUNRGBD

Fig. 10. Confusion matrix of the NYU-v2 and SUNRGBD results.

As expected, combining the two feature sets shows an in-
crease on all measures. Adding the RF initial predictions gives
a large boost to the props class. It captures subtle details of
data set and this pays off. Unfortunately it takes its toll on the
furniture class. This is probably due to the fact that the props
label is often assigned to areas with a high change in contrast,
which is also often the appearance of furniture. This effect is
also visible in the results shown in figure 12. Finally adding
the stacked RF and the multi-scale decomposition improves ac-
curacy to all classes from the predictions of the base classifier.
While the CRF is useful at pruning impurities in region classifi-
cations, it also has a tendency to merge across regions, where it
is unwanted. The added contextual awareness of the multi-scale
decomposition can prune these faulty labeled regions. The ab-
lation study shows that the inclusion of MMSSL improves the
performance on the major metrics of both datasets. One dif-
ference between the two datasets is the accuracy on the Props
class; On the NYU-v2 this has good performance when the ini-
tial RF is introduced, however in the SUNRGBD this does not
seem to be the case. This may simply be because of the differ-
ence in the datasets, but it could also be due to the translation
from the 37 classes to 4 classes, where the Props class may be
even more diverse than for the NYU-v2 dataset.

3.2. Results and Comparisons

In figure 12, sample results are displayed, along with the pre-
dictions at each step of the model. The initial segmentation us-
ing only the RF shows a very rough segmentation, with a high
amount of impurities and scattered labellings. This is mended
in the CRF with the SLIC segmentation, where the resulting la-
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Table 3. Table of feature sets used in the ablation study. The abbreviations used in the table refer to the sets shown in table 2.
Methods Features Floor Struct. Furn. Props Pr. class acc. Pix. acc.

N
Y

U
v2

CRF G 85.3 77.6 60.5 1.8 56.3 60.0
CRF G+N 92.8 77.3 78.0 14.5 65.7 68.9
CRF G+RL 83.0 76.4 74.2 2.7 59.1 64.1
CRF G+N+RL 94.3 78.8 81.1 13.8 67.0 70.6
CRF+RF G+N+RL 93.3 79.4 74.0 33.4 70.0 71.5
CRF+RF+RFS G+N+RL 95.5 80.5 77.1 35.3 72.1 73.8

SU
N

R
G

B
D CRF+RF G+N+RL 85.8 88.8 83.4 4.8 65.7 79.8

CRF+RF+RFS G+N+RL 86.7 88.1 82.7 21.6 69.8 80.9

Table 4. State of the art comparison.

NYUv2 Floor Structure Furniture Props Per class acc. Pix. acc.
Müller and Behnke (Müller and Behnke, 2014) 94.9 78.9 71.1 42.7 71.9 72.3
Couprie et al. (Couprie et al., 2013) 87.3 87.8 45.3 35.5 63.5 64.5
Khan et al. (Khan et al., 2014) 87.1 88.2 54.7 32.6 65.6 69.2
Gupta et al. (Gupta et al., 2013) 82 73 64 37 65 64.9
Nico Höft et al. (Höft et al., 2014) 77.9 65.4 55.9 49.9 62.0 61.1
Ours 95.5 80.5 77.1 35.3 72.1 73.8

SUNRGBD Floor Structure Furniture Props Per class acc. Pix. acc.
Ours 86.7 88.1 82.7 21.6 69.8 80.9
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Fig. 11. Posterior class distributions for the NYU-v2 dataset. The x-axis shows the confidence level of the classified samples while the y-axis shows the
normalized distribution of the samples. The red dashed line at 0.5 represents the classifier decision boundary.

bellings are coherent and respect most object boundaries. It has
however a tendency to merge across boundaries. This problem
is solved using the stacked RF; notice how in the third image
column, that the hole underneath the arm rest of the chair is la-
beled correctly as floor. This is one of the ways the multi-scale
decomposition works with contextual awareness.

To show the comparative performance, table 4 shows the
results of current and previous state-of-the-art methods with
the average class accuracy measure, which is equivalent to the
mean of the confusion matrix diagonal and the pixel accuracy.
The unlabeled pixels in the ground truth are disregarded for
these measures. As shown in the table, our approach excel on
some measures and obtains an increment in state-of-the-art re-
sults on the NYU-v2 dataset. The confusions matrix is also sup-
plied in figure 10. Finally the posterior class distributions are
shown in figure 11. The red area represents the class being in-
vestigated, while the blue area represents the other classes. It is
clear from the distributions that the floor class is very separable,
while the other classes are less separable with the features and
classifiers chosen here. Worst is the props class, where most of
the true samples are found to be beneath the decision boundary.

4. Conclusion and Discussion

We presented a model for semantic segmentation of cluttered
indoor scenes. The method is based on the stacking of a Con-
ditional Random Field and Random Forests. The results show
that the model excels the CRF classifier and adds a heightened

contextual awareness by including the multi-scale decomposi-
tion. The model is tested on two public datasets, the SUN-
RGBD on which we show the first four-class performance re-
sults and the NYU-v2 where it shows comparable and better
performance than state of the art.
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