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Validating Function Arguments in Python Signal
Processing Applications

Patrick Steffen Pedersen‡∗, Christian Schou Oxvig‡, Jan Østergaard‡, Torben Larsen‡

F

Abstract—Python does not have a built-in mechanism to validate the value
of function arguments. This can lead to nonsensical exceptions, unexpected
behaviour, erroneous results and the like. In the present paper, we define
the concept of so-called application-driven data types which place a layer of
abstraction on top of Python data types. With this concept in mind, we discuss
the current argument validation solutions of PyDBC, Traitlets and Numtraits,
MyPy, PyValid, and PyContracts. We find that they share the issue of expressing
the validation scheme in terms of Python objects rather than in terms of the
data they hold. Consequently, we lay out a suggestion for a validation strategy
including what qualifies as a validation scheme, how to create an interface
which promotes both usability and readability, and which Python constructs to
encourage using for validation encapsulation. A reference implementation of the
suggested validation strategy is part of the open-source Python package, Magni
which is thus presented along with a number of examples of the usages of this
package.

Index Terms—Function Argument Validation, Application-driven Data Types,
Signal Processing, Computational Science

Introduction

Python is a dynamically typed language that does not have a built-
in mechanism to ensure that the value of an argument passed to
a function conforms to the intentions of that particular argument.
This can lead to nonsensical exceptions, unexpected behaviour,
erroneous results and the like. In signal processing applications
and scientific computing in general, large amounts of numerical
data are passed to any number of functions that inherently impose
limitations upon that data. If such functions do not validate
their arguments, these limitations may be violated without raising
exceptions leading to potentially erroneous results. Thus, although
impairing the performance, explicit validation may not only spare
the user a lot of frustration by providing useful exceptions but may
also prevent erroneous results and thereby ensure the credibility of
works in scientific computing.

The usage of explicit function argument validation could
be considered "unpythonic"1 as it goes against dynamic typing
[CVS13] and duck typing [CVS13] by not relying on documen-
tation, clear code and testing to ensure correct usage. Even so,
there exist a number of solutions for validating function arguments
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in Python relying on a wide range of language constructs and
interfaces. The validation capabilities of these solutions vary
greatly from type, attribute, and value checks to fully customisable
checks. Among these solutions are PyDBC, Traitlets and Num-
traits, MyPy, PyValid, and PyContracts which are all discussed
later. Most of the solutions do, however, seem to have an interface
which relates to the data model used by Python and therefore
translates to Python check in a straightforward way.

Unfortunately, there are a number of shortcomings with the ex-
isting validation strategies as implemented in the existing Python
packages with validation capabilities; in particular in signal pro-
cessing applications. Some of the existing solutions lack general-
ity, some do not promote readability, and some are inconvenient
to use. However, the primary issue is that the validation scheme of
function arguments is expressed in terms of Python objects rather
than in terms of the data they hold, and this poses a number of
problems. Even with these shortcomings, the existing solutions
represent a large variety of validation strategies which are an
obvious source of inspiration.

In the present effort, we suggest the concept of so-called
application-driven data types as a signal processing data model
for programming. These data types are intended for expressing the
validation scheme of function arguments. Furthermore, based on
existing solutions, we lay out a new strategy for validating function
arguments in Python signal processing applications. Finally, we
present the open-source Python package, Magni which includes a
reference implementation of the suggested validation strategy, and
we show a number of examples of the usage of this package.

The remainder of the present paper is organised as follows.
We first take a look at validation in Python at a glance before
presenting the concept of application-driven data types. Next, we
discuss some of the existing solutions with an emphasis on the
validation strategies they represent. Drawing on the observations
made, we then present the suggested Python validation strategy.
Following this specification, we detail a reference implementation
of it and give examples of its usage. Finally, we conclude on
what is achieved by the presented validation strategy and reference
implementation as well as when to use them. All code examples
have been run with Python 2.7 unless otherwise noted, all trace-
backs have been removed to save space, and exception messages
and the like have been broken across multiple lines using trailing
backslashes where necessary.

1. For an informal yet fitting definition, see http://stackoverflow.com/
questions/25011078/what-does-pythonic-mean
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Validation in Python at a glance

For the purpose of exemplifying the concepts discussed in this
section, we define a simple Python function for returning the
square root of the first item of a sequence. Obviously, only a
sequence with a non-negative, numerical first item, a0 ∈ R≥0,
should be a valid argument of this function.
def do_something(a):

print(a[0]**0.5)

To quote the Zen of Python2, "there should be one-- and preferably
only one --obvious way to do it" when faced with solving a
task in Python, and the obvious ways to solve common tasks
are oftentimes referred to as pythonic idioms. When it comes to
function argument validation in Python, the most pythonic idiom
is to clearly document what a function expects and then just try to
use whatever gets passed to the function and either let exceptions
propagate or catch attribute errors and raise other exceptions
instead. This approach is well-suited for Python because it is a
dynamically typed language. Basically, this means that variables,
such as the function argument in the example, are not limited to
hold values of a certain type. Instead, we can pass a number, a
sequence, a mapping, or any other type to the example function.
Regardless of the type, Python tries to use whatever value gets
passed to the function which is a consequence of duck typing. The
basic principle is that if a bird looks like a duck, swims like a
duck, and quacks like a duck, then it probably is a duck. That is,
if a value exhibits the desired behaviour, then that value probably
is valid. Translated to our example, if the value of the function
argument, a, has the __getitem__ attribute which Python uses
internally for retrieving the first item, then a probably is valid.
Thus, the most pythonic idiom would rely on documentation, clear
code, and testing to ensure correct usage rather than explicitly
testing function arguments to ensure conformity to the intentions
of the function.

What happens, then, if the value of a function argument
is invalid by the reckoning of duck typing? This is the case
with the following call as the built-in int type does not define
__getitem__:
>>> integer = 42
>>> do_something(integer)
TypeError: ’int’ object has no attribute \
’__getitem__’

With the following call, a TypeError exception is raised with a
message that "’int’ object has no attribute ’__getitem__’".
Even with this simple example, such an exception message is
less sensible than desired. Furthermore, such an exception is
as likely to occur in some obscure function call and, thus, be
accompanied by a traceback with more levels than anyone would
want. However, at least the presence of an exception indicates that
something did not go as expected. What happens, however, if the
value of a function argument is valid by the reckoning of duck
typing but does not conform to the intentions of the function?
This is the case with the following call as the built-in dict
type defines __getitem__ but with a different purpose than
the __getitem__ of sequences:
>>> dictionary = {-1: 0, 0: 1}
>>> do_something(dictionary)
1.0

The intention of the function is to operate on the first item of the
function argument, but dictionary is unordered meaning that

2. See https://www.python.org/dev/peps/pep-0020/

there is no such thing as a first item. However, the call does not
raise an exception because of duck typing. This is an example of
unexpected or erroneous behaviour.

The two examples of calls presented showcase how the lack of
function argument validation can lead to hard-to-debug exceptions
or even worse to unexpected or erroneous behaviour. The benefit
of explicit function argument validation is that the mentioned
problems should be avoided. Furthermore, by having such val-
idation for functions that are part of a public API of released
packages, the package is made more trustworthy and user-friendly.

How to Test for Validity

One way to test for validity would be to check if the value of
a variable has a certain type. That is, to determine the validity
based on what a value is. For example, we could rewrite the
do_something example in the following way:

def do_something(a):
if not isinstance(a, list):

raise TypeError(’Descriptive message.’)

if not isinstance(a[0], int):
raise TypeError(’Descriptive message.’)

print(a[0]**0.5)

Obviously, this approach to validation goes against dynamical
typing as it restricts variables to only hold values of certain types.
In the example, amay hold values of the type list or of a derived
type, and the first item of a may hold values of the type int or of
a derived type. Clearly, the validation in the above example is too
restrictive: as the intention of the function is to allow a sequence
with a non-negative, numerical first item, the following call should
pass but instead fails the validation checks:

>>> sequence = (0., 1.)
>>> do_something(sequence)
TypeError: Descriptive message.

The issue is that a number of Python types represent sequences,
and a number of Python types represent numbers. This could be
accounted for in the example, but the point to stress is that the
programmer should not have to know about every single Python
type, nor should he or she have to explicitly list a large number of
Python types for each validation check.

Another way to test for validity would be to check if the value
of a variable displays a certain behaviour. That is, to determine
the validity based on what a value can do. For example, we could
rewrite the do_something example in the following way:

def do_something(a):
if not hasattr(a, ’__getitem__’):

raise TypeError(’Descriptive message.’)

if not hasattr(a[0], ’__pow__’):
raise TypeError(’Descriptive message.’)

print(a[0]**0.5)

Clearly, this approach to validation is along the lines of duck
typing as it explicitly checks for the presence of the required
attribute. In the example, a may hold values of any type that
defines the __getitem__ attribute, and a[0] may hold values
of any type that defines the __pow__ attribute. Unlike with the
first way to test for validity, the validation in the above example is
not restrictive enough as already explained using the example with
the dictionary. The same check could be achieved in a cleaner and

https://www.python.org/dev/peps/pep-0020/
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more thorough way using abstract base classes3, but this solution
would essentially suffer from the same type of problem.

Neither of the two ways to test for validity mentioned, consider
the fact that the square root operation is only defined for non-
negative a[0] values if complex numbers are ignored. Thus, a
third way to partially test for validity would be to check if the
value of a variable is in a set of valid values. That is, to determine
validity based on what a value contains. For example, we could
rewrite the do_something example in the following way:
def do_something(a):

if len(a) < 1:
raise ValueError(’Descriptive message.’)

if a[0] < 0:
raise ValueError(’Descriptive message.’)

print(a[0]**0.5)

Obviously, this approach would have to be combined with some-
thing else to ensure that a is indeed a sequence and a[0] is indeed
a number as covered by the first two ways to test for validity.

The Concept of Application-Driven Data Types

The approaches presented in the previous section do not even
consider less common although valid cases such as non-derived
types that only implicitly define the required attributes. Even more
so, it is apparent that there is no straightforward way to test for
validity based solely on what a value is, can do, or contains. A
possible explanation for this is that all three approaches express
the validation scheme in terms of Python objects rather than
in terms of the data they hold. Indeed, it was easy to identify
and in plain writing express that the function argument of the
do_something example must be a sequence with a non-
negative, numerical first item. Expressing the validation scheme
in this way does provide a layer of abstraction.

Instead of checking if the value of a is a certain Python type,
it would be convenient to be able to check if the value of a is a
sequence. Likewise, instead of checking if the value of a[0] is
a certain Python type containing a non-negative value, it would
be convenient to be able to check if the value of a[0] is a
non-negative, numerical type. Both "sequence" and "non-negative,
numerical type" are examples of data types at a higher abstraction
level than actual Python types, and we will name these abstractions
application-driven data types.

In the context of scientific computing and signal processing
in particular, the most relevant and interesting application-driven
data types are numerical types. Here, an application-driven data
type is some "mental" intersection between math and computer
science in scientific computing and signal processing in particular.
For example, the set of real-valued matrices with dimensions m
times n, Rm×n, is an example of an application-driven data type. If
the user is able to test the validity of a function argument against
this application-driven data type, there is no need for the user to
consider the distinction between Python floats, numpy generics,
numpy ndarrays, and so on.

Existing Solutions

As mentioned in the introduction, there exist a number of solutions
to validating function arguments in Python relying on a wide range
of language constructs and interfaces and thereby representing

3. See https://docs.python.org/2/glossary.html#term-abstract-base-class

a large variety of validation strategies. As these strategies are a
source of inspiration for any new validation strategy, this section
is used to briefly discuss some existing solutions with a focus on
the three aspects which make up the suggested validation strategy:
1) The validation schemes that can be expressed and through that
the abstraction level of the application-driven data types. 2) The
way the interface of the implementation allows the validation
scheme to be specified. 3) The Python constructs used to allow
Python to validate the function arguments against the validation
specification. Additionally, the relevant versions of Python are
mentioned as 4) under each solution. Thus, the emphasis of this
section is not to give a complete review of all existing solutions.

PyDBC

Although the original PyDBC4 is long outdated, it represents
an approach worth mentioning. The package allows so-called
contracts to be specified using method preconditions, method
postconditions, and class invariants. Thus, function argument
validation can be performed using method preconditions. In the
following example, the function argument, a, of the function,
exemplify is validated to be a real scalar in the range [0;1]:

import dbc
__metaclass__ = dbc.DBC

class Example:
def exemplify(self, a):

pass # do something

def exemplify__pre(self, a):
assert isinstance(a, float)
assert 0 <= a <= 1

When an invalid value is passed, the following assertion error
occurs:

>>> example = Example()
>>> example.exemplify(-0.5)
AssertionError

As for validation strategy, the following observations are made:

1. As shown in the example above, the validation
function, exemplify__pre contains custom validity
checks, as PyDBC does not include any functionality for
specifying a validation scheme.

2. Without any functionality for specifying a validation
scheme, there is no fixed interface, and the user instead
writes a number of assert statements to validate the
function arguments.

3. The Python constructs used rely on object oriented
Python by using metaclasses. When the metaclass cre-
ates the class, it rewrites the function exemplify to
first invoke the function named exemplify__pre
when exemplify is called following a fixed naming
scheme.

4. PyDBC was intended for Python 2.2 and has not been
changed since 2005, but the package does work with
Python 2.7. It does, however, not work with Python 3,
but the same functionality could indeed be implemented
in Python 3.

4. See http://www.nongnu.org/pydbc/

https://docs.python.org/2/glossary.html#term-abstract-base-class
http://www.nongnu.org/pydbc/
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Traits, Traitlets, and Numtraits

Traits5 is an extensive package by Enthought which provides
class attributes with the additional characteristics of customis-
able initialisation, validation, delegation, notification, and even
visualisation. Traitlets6 is a lightweight Traits-like module which
provides customisable validation, default values, and notification.
Finally, Numtraits7 adds to Traitlets with a numerical trait with
more versatility in validation than that of the numerical traits of
Traitlets. Thus, although hardly as intended by the developers,
function argument validation can be performed using an attribute
for each function argument. In the following example, the function
argument, a, of the function, exemplify is validated to be a real
scalar in the range [0;1]:
from numtraits import NumericalTrait
from traitlets import HasTraits

class Example(HasTraits):
_a = NumericalTrait(ndim=0, domain=(0, 1))

def exemplify(self, a):
self._a = a

pass # do something

When an invalid value is passed, the following assertion error
occurs:
>>> example = Example()
>>> example.exemplify(-0.5)
traitlets.traitlets.TraitError: _a should be in \
the range [0:1]

As for validation strategy, the following observations are made:
1. The validation scheme of Traitlets requires specifying
a static Python type, allows specifying a valid range
of values for numerical types, and allows specifying
relevant properties for other specific types. Furthermore,
the validation scheme of the numerical trait of Numtraits
does not require specifying a static Python type but
allows specifying the number of dimensions and the
shape of a value.

2. As shown in the example above, the interface of
the implementation lets the user specify the validation
scheme using a single call for each function argument
with named arguments, named keyword arguments and
in some cases unspecified keyword arguments using
**kwargs.

3. The Python constructs used rely on object oriented
Python by using descriptors which modify the retrieving
and modification of attribute values of objects. Thus,
when assigning a new value to an attribute, the relevant
descriptor validates the new value.

4. Traitlets and Numtraits work with Python 2.7 and with
Python 3.3 or above.

Annotations, Type Hints, and MyPy

PEP 31078 is a Python enhancement proposal on function an-
notations which is a feature which has recently been added to
Python. This PEP allows arbitrary annotations without assigning
any meaning to the particular annotations. PEP 4849 is a PEP on
type hints which attach a certain meaning to particular annotations

5. See http://docs.enthought.com/traits/
6. See http://traitlets.readthedocs.org/
7. See http://github.com/astrofrog/numtraits/

to hint the type of argument values and return values of functions.
The most important goal of this is static analysis, but runtime
type checking is mentioned as a potential goal also. For more
information, see PEP 48310 on the theory of type hints and PEP
48211 for a literature overview for type hints. MyPy12 is a static
type checker which, thus, does not enforce data type conformance
at runtime. In the following example, the function argument, a, of
the function, exemplify is validated to be a real scalar:
def exemplify(a: float):

pass # do something

exemplify(’0’)

When the script above is passed to MyPy using Python 3.5, the
following message is produced:
$ mypy example.py
example.py:4: error: Argument 1 to "exemplify" has \
incompatible type "str"; expected "float"

As for validation strategy, the following observations are made:
1. The validation scheme of MyPy requires specifying a
static Python type or a union of static Python types. This
is hardly surprising for a static type checker.

2. As mentioned, the syntax of annotations is given by
PEP 3107, and the format of the type hints is given by
PEP 484 making the type hints explicit and readable
although a less well-known feature of Python.

3. The Python constructs used rely only on annotations
and runs offline and separately of normal execution of
Python code.

4. PEP 484 was accepted for Python 3.5, but the syntax
is compatible with that of PEP 3107 which was accepted
for Python 3.0, and thus MyPy works with Python 3.2
or above. Furthermore, PEP 484 suggests a syntax for
Python 2.7 using comments instead of annotations, and
MyPy supports this and thus also works with Python
2.7.

PyValid

As the name suggests, PyValid13 is a Python validation package,
and it allows validation of function arguments and function return
values. In the following example, the function argument, a, of the
function, exemplify is validated to be a real scalar:
from pyvalid import accepts

@accepts(float)
def exemplify(a):

pass # do something

When an invalid value is passed, the following assertion error
occurs:
>>> exemplify(0)
pyvalid.__exceptions.ArgumentValidationError: The \
1st argument of exemplify() is not in a \
[<type ’float’>]

As for validation strategy, the following observations are made:
1. The validation scheme for PyValid requires specifying
one or more static Python types and acts as a runtime

8. See https://www.python.org/dev/peps/pep-3107/
9. See https://www.python.org/dev/peps/pep-0484/
10. See https://www.python.org/dev/peps/pep-0483/
11. See https://www.python.org/dev/peps/pep-0482/
12. See http://mypy.readthedocs.org/
13. See http://uzumaxy.github.com/pyvalid/

http://docs.enthought.com/traits/
http://traitlets.readthedocs.org/
http://github.com/astrofrog/numtraits/
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0483/
https://www.python.org/dev/peps/pep-0482/
http://mypy.readthedocs.org/
http://uzumaxy.github.com/pyvalid/
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type checker. Thus, in terms of validation scheme capa-
bilities, this is equivalent to MyPy.

2. As shown in the example above, the interface of
the implementation lets the user specify the validation
scheme using a single call for an entire function with a
single argument or keyword argument for each validated
function argument.

3. The Python constructs used rely on decorators by
including an accept decorator in order to precede
function execution by function argument validation.

4. PyValid works with Python 2.6 or above and with
Python 3.

PyContracts

PyContracts14 is a Python package that allows declaring con-
straints on function arguments and return values. In the following
example, the function argument, a, of the function, exemplify
is validated to be a real scalar in the range [0;1]:
from contracts import contract

@contract(a=’float,>=0,<=1’)
def exemplify(a):

pass # do something

When an invalid value is passed, the following assertion error
occurs:
>>> exemplify(-0.5)
contracts.interface.ContractNotRespected: Breach \
for argument ’a’ to exemplify().
Condition -0.5 >= 0 not respected
checking: >=0 for value: Instance of \
<type ’float’>: -0.5
checking: float,>=0,<=1 for value: Instance of \
<type ’float’>: -0.5
Variables bound in inner context:

As for validation strategy, the following observations are made:
1. The capabilities of PyContracts allows specifying any
conceivable validation scheme. This is achieved in part
through built-in capabilities including specifying one or
more static types in a flexible way, specifying value
ranges, and specifying flexible length/shape constraints.
And in part through custom specifications by using so-
called custom contracts.

2. As shown in the example above, the interface of
the implementation lets the user specify the validation
scheme using a single call for an entire function with
a single keyword argument for each validated function
argument. The validation schemes for the individual
arguments are specified using a custom string format.
As the validation scheme becomes more advanced, the
specification becomes less Python-like and less read-
able. For example, the following was taken from an
official presentation and allows an argument to be a
list containing a maximum of two types of objects:
list(type(t)|type(u)).

3. The Python constructs used rely on decorators by
including a contract decorator in order to precede
function execution by function argument validation. De-
pending on the preference of the user, the validation
scheme is either specified through arguments of the
decorator, through annotations in the form of type hints

14. See http://andreacensi.github.com/contracts/

or custom annotations, or through docstrings following
a specific format.

4. PyContracts works with Python 2 and with Python 3.

The Suggested Python Validation Strategy

This section lays out a suggestion for a Python validation strategy
for validating function arguments in signal processing applica-
tions. This strategy uses the introduced concept of application-
driven data types and the observations made on the strategies
of existing solutions. As mentioned in the previous section, the
suggested validation strategy is made up of three aspects which
are discussed separately in the following.

The Suggested Validation Schemes

As described in a previous section, we want to specify validation
schemes in terms of application-driven data types rather than in
terms of what a valid Python object is, can do, or contains.
Needless to say, a translation must still be made from application-
driven data types to Python data types, but this task is left for the
validation package according to the suggested validation strategy.
For an early implementation, any application-driven data type will
allow only a limited set of Python data types. This does, however,
not mean that the application-driven data type is limited to a few
Python data types. Rather, more Python data types may be added
along the way as long as they provide the necessary attributes
with the desired interpretation. Thus, effectively, the suggested
validation strategy can be considered less strict than static type
checking but more strict than duck type checking.

The numerical trait of the Numtraits package has an inter-
esting approach which is not too different from the concept of
application-driven data types. The numerical trait does not distin-
guish between Python data types as long as they are numerical,
and this corresponds to the most general numerical application-
driven data type able to assume any numerical value of any shape.
Furthermore, the numerical trait allows restricting the data type
to more restrictive data types by specifying a number of dimen-
sions, a specific shape, and/or a range of valid values. Indeed,
signal processing applications could benefit from having such an
application-driven data type. However, in some applications it may
be necessary to work with boolean values, integral values, real
values, or complex values only. Therefore, it should be possible
to restrict the data type to suit these cases in addition to the other
possible restrictions allowed by numerical traits.

To summarise, in Python signal processing applications, there
should be an application-driven data type representing the most
general numerical value being able to assume any numerical value
of any shape. This data type should be able to be restricted to less
general data types by specifying the mathematical set, the range
or domain of valid values, the number of dimensions, and/or the
specific shape of the data type. The suggested validation schemes
should be expressed in terms of the desired application-driven data
type.

The Suggested Interface Type

Most of the existing solutions which were mentioned in the
previous section specify the validation scheme of all function
arguments of a function in a single call to the validation package
in question. This is not the case with the traits of the Trailets and
Numtraits packages which only specify the validation scheme of
a single function argument in each call to the validation package.

http://andreacensi.github.com/contracts/
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From the perspective of the authors, the latter approach yields the
better readability. Therefore, the suggested interface type should
only let the user specify the validation scheme of a single function
argument in each call.

As for the specifics of the interface, the validation scheme
must be easy both for the programmer to state and for users to
read. The PyContracts details its own format where the validation
scheme is given by a string. However, it would be desirable to use a
more standard Python interface to ease the usages even if it means
having to be more verbose. On the other hand, the numerical
trait of the Numtraits package uses named named arguments and
keyword arguments which relate to the possible restrictions of
the application-driven data types. From the perspective of the
authors, the latter approach works well with application-driven
data types and result in logical, easy to use interfaces. Therefore,
the suggested interface should use named arguments and keyword
arguments related to the possible restrictions of the general numer-
ical application-driven data type to specify the validation scheme
of function arguments.

The Suggested Python Constructs to Use

There are a lot of Python constructs which could potentially be
used as showcased by the existing solutions. PyContracts allows
the user to specify the validation scheme through the docstring
of a function. However, most users would not expect docstrings
to be parsed to yield the validation scheme, and furthermore the
format used to specify the validation scheme would not be obvious
because of the lack of restrictions put on docstrings. Therefore,
docstrings are not suggested as a Python construct to use here.
Annotations, as used by MyPy, are relatively new to Python,
but that should not disqualify them from being used. However,
the format used would not be obvious because there are few
restrictions put on annotations so with the exception of type hints
which are insufficient for this purpose. Therefore, annotations are
not suggested as a Python construct to use here.

Next, there are the object oriented Python constructs. Meta-
classes, as used by, PyDBC, have existed for a long time. However,
these have changed over time, and so the metaclass attribute
feature of Python 2 no longer works in Python 3, and only one
metaclass is allowed per class in the more recent Python versions.
Furthermore, the behaviour of metaclasses makes them impair
the readability, especially to users that are unfamiliar with the
construct. Therefore, metaclasses are not suggested as a Python
construct to use here. Descriptors, as used by Traits, Traitlets,
and Numtraits, are another feature applicable to object oriented
Python, and these can provide flexibility and readability. However,
they are limited to object oriented Python, and furthermore it
seems unpythonic to validate function arguments by invoking
descriptors through class instance attribute assignment. Therefore,
descriptors are not suggested as a Python construct to use here.

Decorators, as used by PyValid and PyContracts, are a well-
known and general Python construct. However, it is not imme-
diately apparent if something goes on "under the hood", and
the pythonic approach is to specify the validation scheme of all
function arguments in a single decorator call, both of which affect
readability. Therefore, decorators are not suggested as a Python
construct to use here.

The suggested Python construct values explicit over implicit
and promotes readability. The suggestion is to define and explicitly
call a nested validation function with no arguments. There are

a number of obvious alternatives which are not suggested for
different reasons:

• It is not suggested to precede the function code by calls
directly to a validation package because this does not
clearly separate validation from the rest of the code.

• It is not suggested to use arguments for the validation
function because this could potentially lead to error-prone
validation if the validation function arguments are wrongly
named or ordered, or the function arguments are renamed
or reordered.

• It is not suggested to use a global rather than nested vali-
dation function because this could potentially separate the
validation from the function and thus reduce readability.

Magni Reference Implementation

A reference implementation of the suggested valida-
tion strategy is made available by the open source
Magni Python package [OPA+14] through the subpackage
magni.utils.validation. The subpackage contains the
following functions:

decorate_validation(func)
disable_validation()
validate_generic(

name, type_, value_in=None, len_=None,
keys_in=None, has_keys=None, ignore_none=False,
var=None)

validate_levels(name, levels)
validate_numeric(

name, type_, range_=’[-inf;inf]’, shape=(),
precision=None, ignore_none=False, var=None)

Of these, validate_generic and validate_levels are
concerned with validating objects outside the scope of the present
paper. The function, disable_validation can be used to
disable validation globally. Although discouraged, this can be
done to remove the overhead of validating function arguments.
As the name suggests, decorate_validation is a decorator,
and this should be used to decorate every validation function with
the sole purpose of being able to disable validation. Using the
suggested validation strategy with Magni, the following structure
is used for all validation adhering to the suggested Python
constructs to use:

from magni.utils.validation import decorate_validation

def func(*args, **kwargs):
@decorate_validation
def validate_input():

pass # validation calls

validate_input()

pass # the body of func

The remaining function, validate_numeric, is used to val-
idate numeric objects based on application-driven data types as
proposed by the suggested validation scheme of the validation
strategy. This is done using the interface as proposed by the
suggested interface type of the validation strategy: The type_
argument is used for specifying one or more of the boolean,
integer, floating, and complex subtype specifiers. The
range_ argument is used for specifying the set of valid values
with a minimum value and a maximum value both of which
may be included or excluded. The shape argument is used for
specifying the shape with the entry, -1 allowing an arbitrary shape
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for a given dimension and any non-negative entry giving a fixed
shape for a given dimension.

The remaining arguments of validate_numeric are not
directly related to the validation scheme but rather to the sur-
rounding Python code. The precision argument is used for
specifying one or more allowed precisions in terms of bits per
value. The name argument is used for specifying which argument
of the function to validate with the particular validation call. The
ignore_none argument is a flag indicating if the validation call
should ignore None objects and thereby accept them as valid. The
var argument is irrelevant to the scope of the present paper and
the reader is referred to the documentation for more information.

Additional resources for magni are:

• Official releases: doi:10.5278/VBN/MISC/Magni
• Online documentation: http://magni.readthedocs.io
• GitHub repository: https://github.com/SIP-AAU/Magni

Examples

As mentioned in relation to the suggested validation schemes,
there should be an application-driven data type representing the
most general numerical value being able to assume any numerical
value of any shape. The following example validates a variable
against exactly this application-driven data type. The validation
only fails when a non-numerical object is passed as argument to
func.
from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric
import numpy as np

def func(var):
@decorate_validation
def validate_input():

all_types = (’boolean’, ’integer’,
’floating’, ’complex’)

validate_numeric(
’var’, all_types, shape=None)

validate_input()

pass # the body of the func

When valid values are passed, nothing happens:
>>> func(42)
>>> func(3.14)
>>> func(np.empty((5, 5), dtype=np.complex_))

However, when a non-numerical object is passed, the following
exception occurs:
>>> func(’string’)
TypeError: The value(s) of >>var<<, ’string’, must \
be numeric.

In the next example, the application-driven data type is any non-
negative real scalar, i.e., R≥0.
from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric

def func(var):
@decorate_validation
def validate_input():

real = (’integer’, ’floating’)
validate_numeric(

’var’, real, range_=’[0;inf]’)

validate_input()

pass # the body of the func

When valid values are passed, nothing happens:

>>> func(0)
>>> func(3.14)

However, when a complex object or a negative float is passed, the
following exception occurs:

>>> func(1j)
TypeError: The value(s) of >>var.dtype<<, \
<type ’complex’>, must be in (’integer’, ’floating’).

>>> func(-3.14)
ValueError: The value(s) of >>min(real(var))<<, \
-3.14, must be >= 0.

Notice, that the range_ argument in the validation call of the
previous includes the values zero and infinity using [...]. One
or both of these values could be excluded using (...) or ]...[
as is the case in the next example, i.e., R>0.

from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric

def func(var):
@decorate_validation
def validate_input():

real = (’integer’, ’floating’)
validate_numeric(

’var’, real, range_=’(0;inf)’)

validate_input()

pass # the body of the func

When a valid value is passed, nothing happens:

>>> func(3.14)

However, when a zero-valued object is passed, the following
exception occurs:

>>> func(0.)
ValueError: The value(s) of >>min(real(var))<<, \
0.0, must be > 0.

In the final example, the application-driven data type is any real
matrix with its first dimension equal to 5, i.e. R5×n for any non-
negative integer n.

from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric
import numpy as np

def func(var):
@decorate_validation
def validate_input():

real = (’integer’, ’floating’)
validate_numeric(

’var’, real, shape=(5, -1))

validate_input()

pass # the body of the func

When a valid value is passed, nothing happens:

>>> func(np.empty((5, 5)))
>>> func(np.empty((5, 10)))

However, when an R10×5 object or an R5×5×5 object is passed,
the following exception occurs:

>>> func(np.empty((10, 5)))
ValueError: The value(s) of>>var.shape[0]<<, 10, \
must be 5.

>>> func(np.empty((5, 5, 5)))
ValueError: The value(s) of >>len(var.shape)<<, 3, \
must be 2.

http://dx.doi.org/10.5278/VBN/MISC/Magni
http://magni.readthedocs.io
https://github.com/SIP-AAU/Magni
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Requirements

The required dependencies for magni (as of version 1.4.0) are:

• Python >= 2.7 / 3.3
• Matplotlib [Hun07] (Tested on version >= 1.3)
• NumPy [vdWCV11] (Tested on version >= 1.8)
• PyTables15 (Tested on version >= 3.1)
• SciPy [Oli07] (Tested on version >= 0.14)

It should be noted that the requirements other than
Python and NumPy are due to magni rather than
magni.utils.validation. In addition to the above require-
ments, magni has a number of optional dependencies but none of
these are relevant to the usage of magni.utils.validation.

Quality Assurance

The Magni Python package has been developed according to best
practices for developing scientific software [WAB+14], and every
included piece of code has been reviewed by at least one person
other than its author. Furthermore, the PEP 816 style guide is
adhered to, no function has a cyclomatic complexity [McC76]
exceeding 10, the code is fully documented, and an extensive test
suite accompanies the package. More details about the quality
assurance of magni is given in [OPA+14].

Conclusions

We have argued that function arguments should be validated
according to data types at a higher abstraction level than actual
Python types, and we have named these application-driven data
types. Based on a discussion of existing validation solutions, we
have suggested a Python validation strategy including three as-
pects: 1) The validation schemes that can be expressed. 2) The way
the interface of the implementation allows the validation scheme
to be specified. 3) The Python constructs used to allow Python
to validate the function arguments. A reference implementation of
this strategy is available in the open source Magni Python package
which we have presented along with a number of examples. In
short, magni and more generally the validation strategy should
be used to abstract function argument validation from Python to
signal processing, to make validation ease to write, and to enhance
readability of validation.
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