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Magnetic fields are often used for characterizing transport in nanoscale materials. Recent magnetotransport
experiments have demonstrated that ballistic transport is possible in graphene antidot lattices (GALs). These
experiments have inspired the present theoretical study of GALs in a perpendicular magnetic field. We
calculate magnetotransport through graphene antidot barriers (GABs), which are finite rows of antidots arranged
periodically in a pristine graphene sheet, using a tight-binding model and the Landauer-Biittiker formula.
We show that GABs behave as ideal Dirac mass barriers for antidots smaller than the magnetic length and
demonstrate the presence of magnetic edge states, which are localized states on the periphery of the antidots due
to successive reflections on the antidot edge in the presence of a magnetic field. We show that these states are robust
against variations in lattice configuration and antidot edge chirality. Moreover, we calculate the transmittance
of disordered GABs and find that magnetic edge states survive a moderate degree of disorder. Due to the long
phase-coherence length in graphene and the robustness of these states, we expect magnetic edge states to be

observable in experiments as well.

DOLI: 10.1103/PhysRevB.94.045438

I. INTRODUCTION

Graphene antidot lattices (GALs), which are periodic
perforations in a graphene sheet, may open a band gap in the
otherwise semimetallic material [1-7]. An advantage of GALs
is that the size of the band gap can be tuned by geometrical
factors. Recent magnetotransport experiments have demon-
strated that ballistic transport is possible in GALs [8,9], which
gives rise to interesting phenomena such as magnetoresistance
oscillations due to cyclotron orbits that are commensurate with
the antidot lattice. Ballistic transport in pristine graphene has
been demonstrated several times and even at room temperature
[10-15], but ballistic transport in GALSs has previously been
hindered by defects introduced by top-down fabrication of the
antidots. The recent demonstrations [8,9] of ballistic transport
in GALs were achieved by minimizing interaction with the
substrate by using hexagonal boron nitride (hBN) substrates
and by reducing edge roughness by encapsulating the graphene
flake in hBN before etching the antidot lattice [8].

Previous theoretical studies on nanostructured graphene
in magnetic fields have primarily focused on the density of
states and optical properties [16—19]. The density of states of a
structure under a magnetic field reveals a self-similar structure
known as Hofstadter’s butterfly [20]. In particular, Hofstadter
butterflies of GALs have revealed band-gap quenching induced
by perpendicular magnetic fields [16]. Transport calculations
have yet to reveal if band-gap quenching also gives rise to
quenching of the transport gap. Using the Dirac approximation,
perforations in a graphene sheet are modeled as local mass
terms rather than potentials [7]. Within this description, it
has been demonstrated that a single graphene antidot supports
localized edge states in the presence of magnetic fields [19].
Conceptually, one may think of these as edge states due to
repeated reflections of electrons on the antidot edge provided
the radius of the cyclotron motions is small compared to the
antidot radius. We will refer to these as “magnetic edge states,”
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not to be confused with spin-polarized edge states, such as
those observed on extended zigzag edges [21]. Hence, by such
states, we simply mean states that are localized near an antidot
due to the magnetic field.

Magnetic edge states occur when the electron wave inter-
feres constructively with itself in a pinned orbit around the
antidot, which gives rise to Aharonov-Bohm-type oscillations.
In conventional semiconductors, such as GaAs, Aharonov-
Bohm oscillations due to antidots in two-dimensional electron
gases have been studied theoretically [22-24] and observed
experimentally [25-27]. Additionally, a theoretical study
predicts the presence of Aharonov-Bohm-type oscillations
in graphene nanorings [28]. We likewise predict magnetic
edge states to be present in GALs and due to the long
phase-coherence length in graphene, we expect these to be
observable in experiments as well. Cyclotron orbits were
recently imaged in pristine graphene using cooled scanning
probe microscopy [29,30]. It would be remarkable if this
technique could be used for direct observation of magnetic
edge states in graphene antidots.

In the present work, we study the transport properties of
graphene antidot barriers (GABs), i.e., finite rows of antidots in
an otherwise pristine graphene sheet, in the presence of perpen-
dicular magnetic fields. In our transport calculations, we use
the Landauer-Biittiker formalism with a tight-binding model,
which is widely used for calculating the quantum transport
in nanoscale devices [31-39]. The magnetic field is included
in the Hamiltonian by a Peierls substitution. The calculations
utilize the recursive Green’s function (RGF) method, which
greatly reduces the calculation time, while retaining accuracy.
Furthermore, we compare the tight-binding results to both an
ideal Dirac mass barrier and a gapped graphene model. We
find that Dirac mass barriers provide a good description of
the transport gap for GABs with small antidots provided the
magnetic field is not too strong. Furthermore, we find evidence
of magnetic edge states on the antidots and demonstrate simple
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scaling of these, allowing predictions for larger systems.
Finally, we calculate the transmittance of disordered GABs
and compare this to the corresponding transmittance in ordered
GABs.

II. THEORY AND METHODS
A. Tight-binding model

In this section, we will use the RGF method with a tight-
binding model in order to calculate transmittance of electrons
through GABs in a magnetic field. The barrier regions are
periodic perpendicular (y direction) to the transport direction
(x direction). We also calculate the density of states (DOS) of
fully periodic GALs and compare these to the transmittance
of GABs.

In the nearest-neighbor orthogonal tight-binding model, the
Hamiltonian can be written as

A= Zl‘,’jéj@j + H.c., @))]

i<j

where the hopping parameter #;; is taken as —y for nearest
neighbors and vanishing otherwise. The magnetic field is
included by performing the Peierls substitution #;; — #;;€'%i,
where ¢;; = (e/h) frr,-j A - dl is the Peierls phase, A is the
vector potential, and r; is the position of atom i. The magnetic
field in the leads is taken to zero, which means the vector
potential in the Landau gauge is given by

0, x<0O
Ar)=§yBx, ¥=4qx, 0<x<d 2)
d, x>d,
where d is the width of the barrier; see Fig. 1. Note that the
vector potential cannot be set to zero in the x > d region,
as this would imply an infinite magnetic field at the x = d
interface. In this gauge, the Peierls phase becomes

eB _ _
= %()’j — yi)Xi +X;). 3)

We present calculations for triangular, rotated triangular,
rectangular, and honeycomb GALs in the notation of Ref. [2].
We will use hexagonal antidots with armchair edges and denote
the antidot lattices by {L,S}, where L and S are the side
lengths, in units of the graphene lattice constant a = 0.246 A,
of the GAL unit cell and the antidot, respectively; see Fig. 1.
For rectangular lattices, we use L, and L, to denote the
side lengths in the x and y directions, respectively. In our
calculations, we chose L, ~ L, = L in order for the unit
cell to be approximately square. Unless stated otherwise,
calculations are made on triangular GABs and assume periodic
boundary conditions along the y direction. Calculations on
GALs also assume periodic boundary conditions along the
x direction and the results are k averaged in the periodic
directions. The number of k points in each direction is taken
as the odd integer closest to 400/L.

We also perform calculations on a gapped graphene model
where, instead of introducing antidots, a band gap is opened
by using a staggered sublattice potential of A on one sublattice
and —A on the other, opening a band gap of E, = 2A [40].
The advantage of this method compared to using the actual

®ij
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Triangular

U

FIG. 1. GAB unit cells used in transport calculations and corre-
sponding vector potential and magnetic field. The unit cells shown
here all have four rows of antidots in the transport direction, the
same antidot size, and similar neck widths. The gray and blue atoms
represent the system and semi-infinite leads, respectively. The dashed
red lines outline the corresponding GAL unit cells.

antidot geometry is that it is computationally much faster due
to the reduced width of the unit cell in the y direction.

We use the RGF method to extract properties such as
transmittance and DOS. This method has the same accuracy
as direct diagonalization, but is considerably faster. The
method is outlined in Refs. [41,42] and relies on calculating
certain block elements of the retarded Green’s function G =
[(E+ie)l —H—%;, —Zg]! by slicing the system into
smaller cells, which only couple to themselves and their nearest
neighbors. H is the Hamiltonian matrix and ¥; and X are
the self-energies of the semi-infinite pristine graphene left
and right leads, respectively. Also, ie is a small imaginary
factor added to the energy. While ¢ should, in principle, be
infinitesimal, we apply a finite but small value for numerical
stability and, in practice, take & = y10~* in all calculations.
The lead self-energies are omitted when calculating the DOS
of the GALs, as these are additionally periodic along the
x direction. Moreover, in the absence of leads, the vector
potential in the Landau gauge simply reduces to A = yBx.
The GAL unit cells are indicated by the dashed red lines in
Fig. 1. The RGF algorithms require the Hamiltonian to be
block tridiagonal. In the case of GABs, the Hamiltonian is
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TABLE 1. The B field is written as B = nBy,, where B, =
h/(edymn) 1s the minimal B field that satisfies periodicity of
the Peierls phase, with ypi, = a/2+/3 for transport in the zigzag
direction. The n at which the relative flux is unity is given by
Nmax = 2h/(\/geazBmin)-

Lattice configuration d Buin (2h/+/3ea?)
Triangular 3LNa 1/LN
Rotated triangular LNa 3/LN
Rectangular L.Na 3/L.N
Honeycomb 3LNa 1/LN

block tridiagonal by construction, but in the case of GALs, it
is not, due to periodicity in the x direction coupling the first
cell to the last (Nth) one. In this case, the Hamiltonian can
easily be made block tridiagonal by merging cells such that
cells 1 and N are merged, 2 and N — 1 are merged, and so
forth. The result is that the diagonal blocks double in size, but
the resulting matrix is block diagonal.

Due to the additional periodicity of the system in the x
direction for GALs, we require the Peierls phase to be an
integer multiple of 27 for a pair of neighbor sites on either
end of the unit cell in order for the Hamiltonian to be periodic.
This limits the B fields that can be used in a calculation, but
is remedied by creating a supercell consisting of several unit
cells, as was also done in Ref. [16]. The minimal B field
which ensures periodicity is denoted Bp,,. The B field is
then written as B = nBp,, where n is an integer. When the
magnetic flux ® = B+/3a%/2 through a graphene unit cell
equals one flux quantum ¥y = h/e, the energy spectrum is
restored. Therefore, we only let the relative magnetic flux
density ®/®y € [0;1]. The n at which the relative flux is
unity is denoted 7. The minimal field is summarized for the
different lattice configurations in Table I. In practice, we take
advantage of the fact that a given B field can be obtained by
several supercell sizes and then always choosing the smallest,
as was done in Ref. [16].

The local DOS (LDOS) on atom i is proportional to the
diagonal element of the Green’s function,

1
Li(E) = —;Im{Gii}, “

and the full DOS is then the sum of all local contributions,

D(E) =Y Li(E). (5)

The conductance of the system is given by the Landauer-

Biittiker formula G = ZhizT, where T = Tr{FLGTFRG} is the

transmittance. Finally, the bond current between atoms i and
j at low temperature and low bias V, can be calculated as
[32,43]

4¢*V,

Iinj(E) = ———Im{H;;A}}. (6)

where A) = GT'; G' is the left-lead spectral function.
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FIG. 2. Magnetic edge state with cyclotron radius R. for an
antidot with circumference C.

B. Magnetic edge states

A prominent feature of GALs is the presence of magnetic
edge states. Semiclassically, a magnetic edge state is a state
which is confined to the antidot due to repeated reflections
off the antidot due to the presence of an applied magnetic
field, as illustrated in Fig. 2. In this section, we derive an
approximate condition for the occurrence of magnetic edge
states. To this end, we will rely on a simple continuum (Dirac)
model of gapped graphene. In this model, the energy is given
by E = £+ h2v2k> + A2, where vp = +/3ay /2h ~ 10° m/s
is the Fermi velocity.

The cyclotron radius is given by R, = m*v/eB [44], where
v is the speed of the electron and m™ is the cyclotron effective
mass (or dynamical mass), which is semiclassically given by

[44-46]
2
m* = s [8A(E)i| . (7
2| OE lp_g,

Here, A(E) is the area enclosed by the orbit in k space and
given by A(E) = wk*(E) for rotationally symmetric band
structures. In the gapped graphene model, we can write

hvpk(E) = VE? = A?, and so

n(E* - A?)
R2v:

The cyclotron effective mass is then

E

m*=v—2, |E] > A, C))
F

A(E) = |El = A. ®)

which is exactly the same result as for pristine graphene
[29,45]. The cyclotron effective mass is thus independent of
band gap, given by E, = 2A. It therefore does not change
between the pristine graphene in the leads and the antidot
regions as long as the energy satisfies |E| > A. The cyclotron
radius is then given by

E

R. = . 10
evp B (10

In order to have a magnetic edge state, the electron must
form a stationary wave on the periphery on the antidot. As
an approximation, we analyze the case where the electron
is reflected off a straight line with length equal to the
circumference of the antidot C. In order to form a stationary
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wave, there must be an integer multiple of cyclotron diameters
along the length of the line, as illustrated in Fig. 2, which is
equivalent to 2n R, = C, where n is an integer equal to the
number of reflections for a complete circuit of the antidot. The
B fields that satisfy this requirement with » reflections are then
B, =2nE/evpC. In addition, we require the electron wave
function to be in phase after one orbit. The electron gains a
phase on one orbit of ¢ = fP k - dl = kD, where P is the path
traveled by the electron and D = nw R, = wC/2 is the total
distance traveled. We thus require kD = m2m, where m is an
integer. Here, we use the approximation fivpk = +/ EZ — A2 ~
E, which is a good approximation when £ > A. The energies
that satisfy the phase requirement are then £ = 4mhvp/C and
we may finally write the B-field requirement as

_ 8mnh
o eC?
The oscillation period of magnetoresistance caused by mag-
netic edge states is then given by AB = 8m#/eC?. We see that

doubling the antidot circumference, equivalent to quadrupling
the area, decreases the oscillation period by a factor of four.

B, Y

III. RESULTS

Previous transport calculations of GABs without a magnetic
field have found their transport gap to be in good agreement
with those predicted for Dirac mass barriers (DMBs) [33,38].
These are modeled using the Dirac approximation with a local
mass term in order to open a band gap in the barrier region.
A derivation of the transmittance of a DMB in a magnetic
field is included in the appendix. Figure 3 shows a comparison
between the transmittance of GABs with that of DMBs and
gapped graphene with similar gap sizes. Note that care must
be taken in the DMB model in the B — 0 limit, as the
magnetic length then tends to infinity. We note that our B = 0
T results are consistent with the nonmagnetic DMB expression
in Ref. [38]. An excellent qualitative match is seen between
the DMB and the gapped graphene barrier in almost all cases.
The match between these simplified models and GABs is
quite good near the onset of the transport gap, particularly for
smaller antidots. However, discrepancies appear as the energy
is increased towards higher-order GAB features, as the antidot
size increases, and as the field is increased further (not shown).
The DMB and gapped graphene models are therefore good for
approximating the transport gap given that the magnetic field
is not too large.

A. Comparison with DOS

Figure 4 shows a comparison between DOS and transmit-
tance of {L,6} GABs for four different lattice configurations as
well as for a gapped graphene model. L was chosen such that
the neck widths were approximately the same (~1.3 nm) for all
lattices. The transport calculations were performed with four
rows of antidots in the transport direction. The figure shows
that the transmittance spectra retains most of the features of
the DOS for all lattice configurations and for gapped graphene.
The gapped graphene model shows no transmittance between
the band gap and first Landau level. A similar situation arises
in the GABs, where we can identify a geometric band gap

PHYSICAL REVIEW B 94, 045438 (2016)

{10,2}

{10,4}

{10,6}
T T T

B=0T

0.6 - .

B=5T
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0.4
0.2

Transmittance
o
T
|
1

0.8 |- .

B=15T

0.2 - -+

0 ! ! | |
0 005 0.1 0 005 0.1 0 005 01 0.15

Energy [v]

FIG. 3. Transmission through {10, S} triangular GABs containing
four rows of antidots in the transport direction, as well as gapped
graphene (GG) barriers and Dirac mass barriers (DMBs) with
the same length (d = 16.5 nm) and band gaps as the GABs.
All calculations were made for k, = 0. The tight-binding (TB)
calculations are divided by two for comparison with the single valley
Dirac result.

and a Landau-level gap, which are outlined for the triangular
lattice (top panels in Fig. 4) with dashed red and yellow lines,
respectively. The differences between the spectra are greatest
for small fields. Notice that transport is not fully suppressed
in the band-gap regions, due to the finite width of the barrier.
We observe rather high transmittance in the geometric energy
gap regions of the rotated triangular lattice, while the transport
gap appears larger than the band gap for the rectangular lattice.
Additionally, there is rather high transmittance in the band-gap
region of the honeycomb lattice, and the secondary band gap
is completely invisible in transport.

A striking similarity between all GAB lattice configurations
is the narrow bands in the Landau-level gap region. We will
demonstrate that these are due to magnetic edge states, i.e.,
states that are localized on the periphery of the antidots
by the magnetic field, as illustrated in Fig. 2. According to
Eqg. (10), the edge states here all have cyclotron radii which
are smaller than the antidot radius. The similarity between the
panels of the figure demonstrates that the magnetic edge states
are robust against lattice configuration. The reason for the
relatively high transmittance of these states is that the antidots
are close enough to their neighbors that the states couple
between antidots. Magnetically induced band-gap quenching

045438-4
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logy4(D)
-3 —2.5 —2 —1.5 -1
s
iangular B

Gapped graphene

Energy, E/v
o

0 0.02 0.04 0.06 0.08
Magnetic flux, ®/®¢

0.04 0.06 0.08 0.1
Magnetic flux, ®/®¢

FIG. 4. Comparison between transmittance (left) and DOS (right) of {L,6} GABs in different lattice configurations. L is chosen to give the
systems approximately the same neck width (~1.3 nm). For the triangular antidot lattice, this corresponds to a {10,6} system. The transport
calculations are made with four rows of antidots in the transport direction. The dashed lines in the top panels outline the geometric band gap
(red) and the Landau-level gap (yellow). The two bottom panels show a A = 0.1y gapped graphene system. The dashed red lines in the bottom
panels show the first 10 Landau levels of massive Dirac fermions, E, = /A2 + 2v2he Bn [16]. For the gapped graphene model, we plot

2 x log,((T') due to the generally lower transmittance for this system.
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is observed both in the DOS and in transmittance. The
quenching seems to be due to magnetic edge states as the
magnetic edge state bands begin to form at the quenched
band gap. Band-gap quenching may therefore disappear if the
distance between antidots is increased sufficiently or if a large
degree of disorder is introduced.

Since magnetic edge states are localized on the antidot
edge, these are of course absent in the gapped graphene model.
The gapped graphene model in Fig. 4 has approximately the
same band gap as the {10,6} triangular GAB. However, at
these B-field values, there is little resemblance between their
transmittance spectra. For instance, in the GAB, the transport
gap is quenched by the magnetic field, while the transport gap
is retained in the gapped graphene model. It was argued in
Ref. [16] that band-gap quenching occurs when the magnetic
length become sufficiently small that the eigenstates do not
sample the lattice sufficiently for the band gap to be fully
resolved. In gapped graphene, however, the band gap is not
introduced by geometrical effects and is therefore retained.
Another notable difference between the gapped graphene
model and the GAB is that practically all transmittance, except
for the Landau levels, is suppressed in the gapped graphene
model for large magnetic fields, which is not the case for the
GAB. The gapped graphene result is consistent with results
by De Martino et al. [47], who showed that Dirac electrons
incident on a wide magnetic barrier (i.e., either wide spatial
region or large magnetic field) will be totally reflected by

PHYSICAL REVIEW B 94, 045438 (2016)

the barrier independent of the angle of incidence. The GAB
result is also consistent with the results by Xu et al. [31]
that magnetic barriers in graphene nanoribbons are unable
to completely suppress electron transport due to successive
reflections on the nanoribbon edge. GALs can be viewed as a
connected network of graphene nanoribbons, so the similarity
to the nanoribbon case is expected.

The periodic features in the transmittance of the gapped
graphene model are Fabry-Pérot-type oscillations, which are a
result of the additional phase factor that comes from the mag-
netic field. Additional calculations show that the oscillations
double in frequency when the device length is doubled, hence
demonstrating the Fabry-Pérot-type nature of the oscillations.
This type of oscillations in transmittance has previously been
observed in graphene nanoribbons in a magnetic field [31].
Additionally, we observe excellent agreement between the
gapped graphene model and the predicted Landau levels.

B. Magnetic edge states

In order to show that the narrow bands in transmittance
are indeed edge states, we show the bond current and LDOS
of a {10,6} triangular GAB at different magnetic fields and
at different energies in Fig. 5. It is clear that the bond
currents at these bands are localized around the antidots,
whereas the bond currents elsewhere are not. The shown
bond currents are averaged over small area elements, which is

Energy, B/y

0 0.02 0.04 0.06
Magnetic flux, ®/®q

FIG. 5. LDOS (gray shading) and bond current (blue arrows) of a {10,6} triangular GAB for different B-field strengths at energies of
(a),(d),(e) E = 0.2y or (b),(c) E = 0.3y. The main panel shows the transmittance of the system. Here, we plot ,/[log,,(T")| in order to enhance

the contrast.
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—~30 |
10 0.06

@)D

| |
0 0.02 0.04

FIG. 6. Transmittance as a function of applied magnetic field at
an energy of E = 0.2y for four different rectangular antidot lattice
systems with N, antidots in the transport direction.

why bond currents appear inside some of the antidots. This
averaging may also give rise to a visual artifact, where it
can appear as if the Kirchoff’s current law is not obeyed on
small scale. However, we have verified that the bond currents
themselves do satisfy the current law. Additionally, the lengths
of the arrows are scaled such that the longest arrow in all
plots have the same length. In the case of circular current
paths or large transverse currents, this can make it appear
as if the current does not propagate through the barrier and
therefore make it seem like the transmittance should be lower
than it is.

According to Eq. (11), the oscillation period of the
transmittance with respect to the B field only depends on
the circumference of the antidot. This is in agreement with the
observation that the energies of the edge state bands are nearly
linearly dependent on the B field, thus giving rise to the same
oscillation period for all energies. Increasing the magnetic field
corresponds to decreasing the cyclotron radius, which in turn
should decrease the average electron distance from the antidot.
This is indeed the case, which is apparent when comparing
Figs. 5(d) and 5(e). According to Eq. (11), the oscillation
period is independent of lattice configuration (as confirmed by
Fig. 4), number of antidots, and whether the system is periodic
or nonperiodic, i.e., a graphene nanoribbon. In Fig. 6, we show
the transmittance of GABs and nanoribbons with one and four
rows of antidots in the transport direction. We find indeed
that the oscillation period is unaffected by both the number of
antidots and periodicity, supporting the validity of Eq. (11).
For the GABs, we see increased transmittance on the edge
state resonances, due to these being the only available states.
However, for the nanoribbons, we see decreased transmittance
on the edge state resonances. In the nanoribbon case, there is
transmission along the edges of the system at these energies
without the antidot. Introducing the antidots then gives the
electrons a possibility to couple to the antidot magnetic edge
states and backscatter. This explains the increased (decreased)
transmittance at the edge state resonances for the GAB
(nanoribbon) case. Additional calculations show that zigzag
antidots with similar circumference have approximately the

PHYSICAL REVIEW B 94, 045438 (2016)
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FIG. 7. Transmittance of {10,6},{15,9}, and {20,12} triangular
GAB:s in scaled units.

same oscillation period as armchair antidots (not shown). This
demonstrates that the magnetic edge states are additionally
robust against antidot edge chirality.

In Fig. 7, we compare the transmittance of different
{L,0.6L} triangular GABs, where the energy and magnetic
field axes have been scaled with L and L2, respectively. We
see that by plotting on scaled axes, the spectrum is very nearly
conserved. The scaling with respect to the B-field is consistent
with Eq. (11), which states that the oscillation period due to
magnetic edge states is inversely proportional to the square
of the circumference. It is remarkable that Eq. (11) correctly
predicts (i) the periodicity of the edge state bands, (ii) the
insensitivity to the lattice arrangement of the antidots, and
(iii) the behavior under uniform geometry scaling. Addi-
tionally, the geometry scaling shows that even though the
structures we consider here are probably too small for current
experimental realization, our conclusions should hold for
larger structures at smaller magnetic fields and energies.
Finally, Fig. 7 shows that the transmittance of the magnetic
edge states decreases as the distance between antidots is
increased, which is expected as these states are localized to
the edges of antidots.

C. Disorder

The systems we have considered until now have been fully
ordered. However, experimental samples tend to have varying
degrees of disorder. It is therefore important to understand
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Energy, E/v Energy, E/vy

Energy, E/v

0 0.02 0.04 0.06 0.08 0.1
Magnetic flux, ®/®q

FIG. 8. Ensemble-averaged transmittance of (a) an ordered
{10,6} triangular GAB and of disordered systems with (b) o = 0.5
and (c) o = 1. The area of the antidots is on average the same in
the disordered and ordered systems. An example of the disordered
antidots in the two cases is shown as an inset. In order to highlight
the features in the plot, we plot 7T above and log 7T below the
dashed green line. The dotted red lines are plotted according to
E;/y = s/a; + b®/®,, where a; and b ~ 31.668 were determined
by least-squares fitting.

the effects of disorder and find out which features of the
transmittance remain. The effects of disorder are investigated
by ensemble averaging transmittance over different realiza-
tions of unit cells with disordered antidots. The antidots were
created by first removing six carbon atoms at the locations of
the antidots and then iteratively removing edge atoms accord-
ing to a Gaussian weight profile w(r) = & Y ¢~ F—1l*/@0%),
where r is the position of the atom, r; are the centers of the anti-
dots in the ordered system, and o is the standard deviation mea-
sured in graphene lattice constants a. A large (small) o gives
rise to a large (small) degree of disorder. This creates antidots
that are roughly centered at the position of the ordered system
but with disordered edges. In order to decrease the effects of
periodicity, the unit cells are doubled in size in the periodic
direction such that there are eight antidots in the unit cells in-
stead of four. The ensemble size is determined by convergence
testing, and is about 50-100 in the cases we study here.
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The ensemble-averaged transmittance of two disordered
systems with 0 = 0.5 and o = 1, respectively, is shown in
Fig. 8 where it is compared to the ordered system. The figure
shows that as the amount of disorder is increased, the rich
substructure in transmittance observed in the ordered system is
almost completely washed out. However, some of the features
of the ordered system do remain. These features form narrow
transmittance bands that are highlighted by the fitted red
curves in the figure. They are also present in the ordered
system, but here they are almost completely disguised by the
rich substructure in the transmittance, which is absent in the
disordered systems.

Both the Landau levels of pristine graphene, E, =

,/Zv%heBn [16], and the energy levels of a single graphene

antidot in a magnetic field [19] scale as /B. Therefore, we
fit the features in the transmittance spectrum to an expression
of the form E;/y = /a; + b®/ P, where ¢; and b are fitting
parameters, which are determined by least-squares fitting. In
all cases, we find b ~ 31.668 although no explanation for this
observation has been found. The fitted curves are shown as the
dotted red lines on the plots. The fit shows that these features
do indeed scale approximately as +/B, albeit with an offset.

Both magnetically induced band-gap quenching and mag-
netic edge states in the Landau gap are present for the o = 0.5
disordered system. However, compared to the ordered system,
the initial band gap is decreased and the magnetic edge
state bands are broadened. For the o = 1 disordered system,
the edge state bands are broadened sufficiently so that they
are almost impossible to identify. Additionally, the band-gap
quenching for this system is less pronounced. The broadening
of the magnetic edge state bands is expected as the antidot
circumference now differs between individual perforations
and, according to Eq. (11), a variation in circumference of 5%
will lead to a 10% change in the magnetic edge state band
position. Hence, transmittance features within the Landau
gap may be difficult to observe experimentally in disordered
samples. In contrast, the robustness of the features above the
Landau gap, combined with the long phase-coherence length
in graphene, suggests that these states will also be observable
in experiments even in the presence of disorder.

IV. CONCLUSIONS

Using a recursive Green’s-function method, we have calcu-
lated electronic transmission and density of states of graphene
antidot barriers and graphene antidot lattices, respectively, in
magnetic fields. We find, in general, electronic transmission
and density of states spectra to be in good agreement. We
have additionally derived an expression for the transmittance
of Dirac mass barriers in magnetic fields and found that this
provides a good description of the transport gap of graphene
antidot barriers for small antidot sizes and low to moderate
field strengths. Calculations of gapped graphene barriers, i.e.,
graphene with a staggered sublattice potential, are in good
agreement with the Dirac mass barrier, and therefore show the
same limitations.

We find that antidots support magnetic edge states, which
are robust against variations in lattice configuration, antidot
edge chirality, periodicity, and number of antidots. Moreover,
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we observe that these edge states survive a modest degree
of disorder. The robustness of these states suggests that they
will also be observable in experiments even in the presence
of disorder. Furthermore, we find that our results scale in a
simple manner with system size, thus allowing calculations on
small structures to generalize to larger structures. Additionally,
we observe magnetically induced band-gap quenching in both
density of states and transmittance due to magnetic edge states.
In the presence of mild disorder, some fine structure is washed
out, but several characteristic and prominent transmission
bands are found to survive.
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APPENDIX: DIRAC MASS BARRIER

We can estimate the transmittance through a GAB in a mag-
netic field by using the Dirac equation with mass term and mag-
netic field. The mass term and magnetic field are nonzero only
in the barrier region, thereby creating a magnetic Dirac mass
barrier (DMB). We calculate the transmission through this
system by matching wave functions at the interfaces on either
side of the barrier at x = 0 and x = d. We denote the regions
where x < 0,0 < x > d,and x > d asregion I, I, and III, re-
spectively. The wave functions are given by the eigenstates of a
generalized Dirac equation, which arises from the substitution
p — m, where T = p + €A is the generalized momentum,

Aw) gl (w) _ k(w)

Lzf —Aw) (4 V)
Here, A(x) = A(x)/hvg, where A(x) is a mass term, which
we set equal to A inside the barrier to open a band gap of 2A,
and vanishing elsewhere. k = E /hvg is the magnitude of the

wave vector corresponding to energy E in graphene in the
absence of a B field or mass term. Also,

rri =én, tim,

(AD)

(A2)

are the standard linear combinations of the x and y components
of momenta that occur in the Dirac equation for graphene
charge carriers in the £ = =£1 valley. From now on, we shall
assume identical contributions from the valleys and drop the
& index. To set a constant magnetic field of strength B in
the Z direction in the barrier, we choose a Landau gauge;
see Eq. (2). Since this gauge, and the system in general, is
invariant along ¥, we can write the spinor components of the
wave function in terms of Bloch functions,

(Iﬂl) _ (f(x)>eikvy
Yo ) \g) ’

Region I. As the vector field is zero in region I, the wave
functions here are identical to those in pristine graphene. The
total wave function can be written as a sum of an incoming

(A3)
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(right-going) component of unit amplitude and a reflected (left-
going) component, giving

1 1 ikyx 1 —ikyx | ikyy
e A e

where 0, = tan’l(ky /ky) and r is the reflection coefficient.

Region II. In region II, the wave functions are solutions
of Eq. (Al) with nonzero mass and B field. Making the
substitutions p, — —ihd, and p, — hk, and rearranging
gives

(A4)

[—02 + W. (0] f(x) = K £ (),

R 5 (AS)
[—07 + W_(0)]g(x) = kg(x),
where
<2 1 x\?
Woil) =A": =+ (ky+ 5 ) (A6)
Iy Iy

where [ = /h/eB is the magnetic length.

By using the substitutions z = \/E(kylg +x/lg) and v =
(k* — Az)lé/Z — 1, the expression for f(x) becomes the
Weber differential equation,

2

1
(af+v+§—%>f(x)=o,

which has solutions in the form of parabolic cylinder functions
D, (%£z). This allows us to write

L
V2

Moreover, g(x) can be related to f(x) using Eq. (Al), and
using the identity 9. D,(z) = 5 D,(z) — Dy+1(z), we find

(A7)

f(x) = —=[aD\(z) + BD\(=2)]. (A8)

i
X)=—"—"=C OlDV Z) — Dv —2)]. A9
8(x) lB(k+A)[ +1(2) = BDy41(—2)] (A9)
The full wave function in region II is then
! aDy(z) + BDy(—2) -
\Ijll = —F V2i ek
V2 \iamaDui1(2) = BDus1(=2)]
(A10)

Region II. In region III, the magnetic field and mass terms
are set to zero again. However, unlike, e.g., Klein tunneling
problems where the wave function has a similar form to
region I, here we must account for the constant vector potential
remaining in this region. The vector potential cannot be set to
zero in this region, as this would imply an infinite magnetic
field in the interface between regions II and III. We define a
wave vector,

eB
K=K,x+ <ky + ?d>§', (A11)
in this region, and enforcing conservation of energy, which is
equivalent to conservation of the magnitude of the momentum
K =k, gives

d? d
2=k

K, = [k k-

FTE T (Al12)
B
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The wave function in region III is then

_ L ikt
Wlll—ﬁ(e59K>€ .

Boundary matching. Continuity of the spinor wave function
components at the interfaces gives the following set of
simultaneous equations, which can be solved for r,«,f,
and t:

(A13)

1+ r =aD,(z0) + BDy(—20),
te'®d = a D, (z4) + BD,(—za),

PHYSICAL REVIEW B 94, 045438 (2016)

4 . V2i
W —pe™ = ———[aD — BD,y1(—20)],
e re lB(k—i—A)[a vi1(20) = BDyy1(—20)]
. V2i
te! O tKd) — T __[oD, — BDyi1(—24)].
e lB(k—i—A)[a +1(2g) = BDyy1(—2z4)]

(A14)

These four equations are all linear in the coefficients, which
makes it straightforward to formulate them as a matrix
problem and solve for the coefficients numerically. We can
then calculate the reflectance and transmittance as R = |r|?
and T = |t|2Re{KX/kX} =1—R. The K,/k, factor is
necessary in order to account for the change in longitudinal
momentum. Note that the expressions for R and T are exactly
the same as those used in optics.
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