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We consider the computation of the coexistence pressure of the liquid-solid transition of a system
of hard spheres from direct simulation of the inhomogeneous system formed from liquid and solid
phases separated by an interface. Monte Carlo simulations of the interfacial system are performed
in three different ensembles. In a first approach, a series of simulations is carried out in the
isothermal-isobaric ensemble, where the solid is allowed to relax to its equilibrium crystalline
structure, thus avoiding the appearance of artificial stress in the system. Here, the total volume of the
system fluctuates due to changes in the three dimensions of the simulation box. In a second
approach, we consider simulations of the inhomogeneous system in an isothermal-isobaric ensemble
where the normal pressure, as well as the area of the �planar� fluid-solid interface, are kept constant.
Now, the total volume of the system fluctuates due to changes in the longitudinal dimension of the
simulation box. In both approaches, the coexistence pressure is estimated by monitoring the
evolution of the density along several simulations carried out at different pressures. Both routes are
seen to provide consistent values of the fluid-solid coexistence pressure, p=11.54�4�kBT /�3, which
indicates that the error introduced by the use of the standard constant-pressure ensemble for this
particular problem is small, provided the systems are sufficiently large. An additional simulation of
the interfacial system is conducted in a canonical ensemble where the dimensions of the simulation
box are allowed to change subject to the constraint that the total volume is kept fixed. In this
approach, the coexistence pressure corresponds to the normal component of the pressure tensor,
which can be computed as an appropriate ensemble average in a single simulation. This route yields
a value of p=11.54�4�kBT /�3. We conclude that the results obtained for the coexistence pressure
from direct simulations of the liquid and solid phases in coexistence using different ensembles are
mutually consistent and are in excellent agreement with the values obtained from free energy
calculations. © 2008 American Institute of Physics. �DOI: 10.1063/1.2901172�

I. INTRODUCTION

The accurate location of first-order phase transitions
from computer simulation requires the use of special numeri-
cal techniques.1 One of the most widely used approaches
involves the computation of the free energy of each phase,
from which the location of the transition follows from the
numerical solution of the equilibrium conditions of equality
of temperature, pressure and chemical potential.1 The free
energy at any thermodynamic condition is generally evalu-
ated from a numerical integration of some first-order deriva-
tive of the free energy along a reversible path that links the
system under consideration with a reference state for which
the free energy is known. For fluid phases, one typically
considers the ideal gas phase as reference state, whereas for
the solid phase, the reference system is taken to be an ideal
Einstein crystal with the same structure as the solid of
interest.2 Once a single point on the coexistence curve has
been determined, the rest of that curve can be calculated by
numerical integration of the Clausius–Clapeyron equation.3

Though the free energy route to the location of phase
transitions involving the solid phase proves to be quite accu-
rate, the calculation of a single coexistence point typically
requires many simulations, so a more straightforward ap-
proach would therefore be highly desirable. It was with this
idea in mind that Ladd and Woodcock devised in the late 70s
the direct coexistence method, in which the liquid-solid co-
existence properties are estimated from the simulation of the
two phases in coexistence.4–6 Though the first applications of
the method were not very successful, probably due to the
small system sizes and short lengths of the simulations con-
sidered at the time, the method is now becoming increasingly
popular. Some recent applications include the study of fluid-
solid coexistence in simple fluids,7–12 metals,13–16 silicon,17

ionic systems,18 hard dumbells,19 nitromethane,20 and
water.21–29 These works share the approach to the calculation
of the melting properties from the direct simulation of the
inhomogeneous fluid-solid system, using either Monte Carlo
�MC� or molecular dynamics �MD� schemes. Both simula-
tion techniques are equally valid, although MD is the tech-
nique of choice if one is interested in dynamical properties,
such as crystal-growth rate just to mention an example.a�Electronic mail: eva.noya@gmail.com.
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The interface between a hard-sphere crystal and its melt
under coexistence conditions has been the subject of a num-
ber of simulation studies.9–11 The most extensive of these
works is due to Davidchack and Laird,11 who examined the
structure and dynamics of the fcc �111� and �100� crystal-
liquid interfaces for systems of about 10 000 hard spheres
using constant-energy MD simulation. As the overall volume
of the system is kept constant in the course of their simula-
tions, possible stress in the bulk solid was eliminated by trial
adjustment of the dimensions of the simulation cell. They
report a value of 11.55�5�kBT /�3 for the liquid-solid coex-
istence pressure, where � is the diameter of the hard spheres.
This value is consistent with more recent estimates based on
free-energy calculations1,30–33 and lower than the value of
11.70�18�kBT /�3 reported by Hoover and Ree.34

In principle, the direct simulation of systems with a
liquid-solid interface can be conducted in different en-
sembles. In this work, we examine different routes to the
evaluation of the liquid-solid coexistence pressure as ob-
tained from direct simulation of the two phases in coexist-
ence using different ensembles. All simulations are imple-
mented according to standard Metropolis MC algorithms and
are undertaken in the following ensembles: �1� Constant-
pressure ensemble in which the volume fluctuates as a result
of changes in the three dimensions of the simulation box;
this corresponds to the standard NpT ensemble, where N is
the number of particles, p is the pressure, and T is the tem-
perature. �2� Constant-pressure ensemble in which the vol-
ume fluctuates as a result of changes in the longitudinal di-
mension �perpendicular to the planar interface� of the
simulation box with fixed transverse dimension. This corre-
sponds to the NpNAT ensemble, where pN is the input �nor-
mal� pressure, and A is the area of the interface. �3� Variable-
shape constant-volume �VSNVT� ensemble in which the
longitudinal and transverse dimensions of the simulation box
are allowed to fluctuate subject to the constraint of fixed
overall volume. Note that, while in the VSNVT ensemble the
coexistence properties can be obtained as an ensemble aver-
age over a simulation of the interface at equilibrium, in the
NpT and NpNAT ensembles it is not possible to have an
interface at equilibrium �since the exact value of the coexist-
ence pressure, with all the significant digits, is not known a
priori, it is not possible to perform a NpT or NpNAT simu-
lation at the exact conditions of coexistence�. In the constant-
pressure approaches, the coexistence properties will be deter-
mined by performing simulations at different conditions and
observing the growth or the melting of the crystal.

The direct simulation of the liquid-solid coexistence in
each of the above �or possibly other� ensembles has advan-
tages and disadvantages. The microcanonical ensemble,
where the total energy is kept constant, has been the natural
choice in a number of MD studies of the liquid-solid coex-
istence properties. Under these conditions, the transfer of
heat poses a limit to the rate at which equilibrium is
achieved. On the other hand, coupling the system to a ther-
mostat leads to crystallization rates much higher than those
found experimentally:35 this is an advantage for the compu-
tation of the melting point, but not for the calculation of
dynamical properties. Also, the solid is likely to be under

stress when the simulation is carried out under standard
constant-volume conditions, as the crystalline structure is not
allowed to relax to equilibrium in the direction parallel to the
interface. This is expected to yield inaccurate estimates of
the melting point.36 This problem can be alleviated by under-
taking constant-pressure �or more appropriately, constant-
stress� simulations. This method has the additional advantage
that fluctuations in the volume will generally allow for larger
changes in the relative amounts of liquid and solid in the
system, this resulting in higher equilibration rates. However,
the use of the standard constant-pressure method is not
strictly valid for the simulation of systems with interfaces, as
the pressure is a tensor property in this case, with different
values of the normal and transverse �relative to the interface
for planar interfaces� components of the pressure tensor. The
normal component will be equal to the equilibrium pressure
throughout the system; though this is also the case for the
tangential pressure in the bulk phases, the latter component
will be different from the bulk pressure in the interfacial
region. As long as this region remains small compared to the
longitudinal dimension of the system, one may anticipate
that the anisotropy of the pressure tensor will be small so the
standard constant-pressure scheme will be approximately
valid. This �small� inconsistency can be removed by the con-
sideration of a constant-pressure scheme in which the vol-
ume of the system is changed by varying the longitudinal
dimension of the simulation box while keeping the trans-
verse �interfacial� area constant. This procedure, however,
cannot relax possible imbalanced bulk strain in the trans-
verse direction in the crystal phase. Alternatively, one may
consider the simulation of the fluid-solid interface in a ca-
nonical ensemble where the shape of the simulation box is
allowed to change subject to the constraint that the total vol-
ume �as well as the number of particles and temperature� is
kept fixed.32,37,38 As the longitudinal and transverse dimen-
sions of the simulation cell are allowed to change, the solid
is expected to relax to equilibrium without building up bulk
stress, as it would be the case in a standard constant-volume
simulation.

The purpose of this work is to assess the applicability
and efficiency of direct simulations undertaken in different
ensembles, where either the pressure, the normal pressure, or
the volume are kept constant, for the prediction of the melt-
ing pressure. A comparison of the results will allow us to
assess the error introduced when the simulation of the inter-
facial system is performed under constant-pressure condi-
tions. Though the results reported here are limited to the
liquid-solid coexistence of hard spheres, we believe that our
conclusions are completely general and should be of appli-
cation to a wider class of more complex systems.

II. METHOD

The first step to implement the direct coexistence
method is to build a liquid-solid interface. For that purpose,
we generated a fcc lattice with 6�6�18 unit cells �2592
atoms� at a density close to the expected coexistence value of
the hard-sphere solid. This box was replicated and expanded
along the z direction so as to obtain a density close to the
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expected coexistence density of the liquid. These two boxes
were joined together along the xy face. The whole liquid-
solid system will therefore include a total of 5184 hard
spheres. According to this procedure, this initial configura-
tion is free of overlaps. The liquid side of the system was
first allowed to equilibrate while keeping the particles of the
solid region fixed at their lattice sites. We observe that after a
short simulation of about 40 000 MC cycles �1 cycle is de-
fined here as N attempts to displace the particles� the initial
crystalline structure of the liquid side is lost. Next, a short
simulation is carried out but now allowing the crystalline
structure of the solid region to relax while keeping the par-
ticles in the liquid side fixed. This initial stage was under-
taken at constant overall volume. We consider periodic
boundary conditions in all directions, which results in the
stabilization of two planar �100� solid-liquid interfaces per-
pendicular to the z direction. Note that the specific type of
atomic plane at the surface is expected to be relevant for the
study of interfacial or dynamical properties but not for the
determination of the coexistence properties. The simulation
box was orthorhombic with linear dimensions of approxi-
mately Lx=Ly �9.5�, and Lz�59�. According to David-
chack and Laird,11 the width of the liquid-solid interface is
about 7–8 �, so our choice of Lz should ensure bulk behavior
in the solid and liquid regions far from the interfaces.

A first set of MC simulations was carried out in the
standard NpT ensemble. Owing to the cubic symmetry of the
solid fcc structure, we made use of a tetragonal scaling of the
simulation box to sample volume fluctuations. This involves
a coupled change of the transverse box dimensions Lx and Ly

that changes the area of the interface �so that the cubic sym-
metry of the solid is preserved� accompanied by an indepen-
dent attempt to change Lz. The maximum particle displace-
ment was adjusted so as to ensure an acceptance ratio of
about 40% of the attempted translational moves. As for the
trial volume moves, we found that an efficient sampling of
the configurational space was achieved using maximum box-
length changes of �Lx /�=�Ly /�=10−4, and �Lz /�=2
�10−3. This choice ensures an acceptance ratio of about
30% of the attempted volume moves. If the input pressure is
above the coexistence pressure, the fluid will tend to crystal-
lize, with an accompanying increase of the overall density of
the system. By contrast, if the input pressure is below the
melting point, the solid will tend to melt and the total density
of the system will decrease. Monitoring the evolution of the
total density along trajectories at different pressures will
therefore allow us to bracket the coexistence pressure.

As mentioned earlier, the standard constant-pressure pro-
cedure discussed above is not strictly correct for the simula-
tion of inhomogeneous systems characterized by an aniso-
tropic pressure tensor. We have also considered simulations
of the liquid-solid interfacial system in the NpNAT ensemble.
Here, pN is the input �normal� pressure, which is coupled to
variations of Lz. The cross section of the simulation, and
therefore the interfacial area A, remains constant in the
course of the simulations. In order to guarantee a strain-free
bulk solid during the simulation, Lx and Ly were chosen at
each value of the normal pressure pN to fit the appropriate
equilibrium value of the lattice parameter as given from the

analytical equation of state of Hall.39 Note that this was not
necessary for the simulations carried out in the NpT en-
semble, as the possible lateral stress is removed from the
system due to the fluctuations in the transverse dimensions of
the simulation box. As far as the computation of the coexist-
ence pressure is concerned, we considered the same bracket-
ing procedure as the one used in the NpT series.

A third series of simulations was performed in the
VSNVT ensemble. Fluctuations in the transverse and longi-
tudinal dimensions of the box were performed in a way simi-
lar to those considered in the NpT simulations, but with the
additional constraint that the net result of the overall shape
fluctuation should preserve the total volume. The VSNVT
ensemble has already been used for other applications.32,37,38

We should note that, in principle, simulations undertaken in
this ensemble should result in a strain-free solid phase after
equilibration. At variance with the constant-pressure series,
the coexistence properties can now be computed from sam-
pling equilibrium configurations of the liquid-solid inhomo-
geneous system in a single simulation. One may anticipate
that the global system will only achieve equilibrium if the
starting configuration is chosen close to the expected coex-
istence conditions. We computed the �integrated� normal
�pN� and tangential �pT� components of the pressure tensor
according to the mechanical route in the course of the VS-
NVT simulations. These components can be formally defined
from their local components counterparts, which depend on
z, as40

pN =
1

V
� drpzz�r� =

1

Lz
� dzpzz�z� , �1�

pT =
1

V
� dr

�pxx�r� + pyy�r��
2

=
1

Lz
� dz

�pxx�z� + pyy�z��
2

.

�2�
For the present application, the pressure can be calculated
from the running average of the pair virials of those molecu-
lar pairs with relative distances in the range � to �+�r in the
limit �r→0.41,42 This is equivalent to the computation of the
virial contribution of pair overlaps that would occur when an
isotropic scaling transformation of the coordinates from r to
r�1−��1/3 is carried out,41,42 where � is a small dimensionless
parameter. This transformation involves a virtual decrease in
the volume of the system from V to V�1−��, where � and �r
can be seen to be related by41

�r���
�

=
1

�1 − ��1/3 − 1. �3�

One can show41 that the normal and tangential components
of the pressure can be expressed as

�pN = � +
1

V��
i

�
j�i

zij
2

rij

Hij

�r���	 , �4�

�pT = � +
1

V��
i

�
j�i

xij
2 + yij

2

2rij

Hij

�r���	 , �5�

where the limit �r���→0 is implicitly assumed. Here, the
angular brackets denote an ensemble average; �=N /V,
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where N is the total number of particles; �=1 / �kBT� is the
inverse temperature; and Hij is unity if particles i and j over-
lap after the coordinate transformation, and zero otherwise.

In practice, the components of the pressure were evalu-
ated for a grid of values of � �here, we consider �=0.025,
0.020, 0.015, 0.010, and 0.005� and the running averages
were finally obtained from extrapolation to �→0. Besides
the coexistence pressure, we have obtained the coexistence
densities by averaging the density profile ��z� over distances
well removed from the interfaces, where each phase is ex-
pected to exhibit bulk behavior. The density of the solid can
be alternatively calculated from the equilibrium values of the
lattice parameters, which in turn can be expressed in terms of
the running averages of the transverse dimensions of the
simulation box.

III. RESULTS

We start by presenting the results obtained from simula-
tions in the NpT ensemble. The starting configuration is de-
picted in Fig. 1�a�, where one can observe that the fluid has
already crystallized in the proximity of the solid after the
preliminary equilibration stage. This behavior had already
been observed in previous simulations,9 but should not affect
the calculations. One can choose to start with different rela-
tive amounts of liquid and solid, as long as the system ac-
commodates bulk regions of each phase. The results obtained
from a series of direct simulations in the NpT ensemble are
shown in Fig. 2. This figure shows the evolution of the total
density for different trajectories generated at different pres-
sures. In what follows, we express the pressure and density
in conventional reduced units, p*=�p�3 and �*=��3, re-
spectively. It can be seen that at p*�11.55, the density in-
creases, which is an indication that the liquid is trying to
freeze. After running sufficiently long, the density is seen to
reach a plateau, with fluctuations around a solidlike value of
�*�1.04. At this point the full liquid region has crystallized.
This can also be checked by visual inspection of configura-
tions of the system �see Fig. 1�b��. By contrast, the density of
the system at p*	11.53 decreases as the simulation pro-
ceeds, which indicates that the liquid phase is growing at the

expense of the solid, i.e., the solid exhibits a tendency to
melting. Once again, the density reaches a plateau with os-
cillations around an average liquidlike value of �*�0.93,
which shows that the initial solid region has fully melted. As
before, this is corroborated by looking at configurations of
the system in this region �see Fig. 1�c��. This series of simu-
lations allows us to accurately determine an upper and a
lower limit of the coexistence pressure that leads to an esti-
mate of p*=11.54�2� for the melting point of hard spheres.
According to the results included in Fig. 2, we infer that
quite long simulations are needed to fully crystallize the fluid
phase �for pressures above the melting point� or to fully melt
the solid phase �for pressures below the melting point�.
Moreover, it can be observed that longer simulations are gen-
erally required for pressures close to the coexistence point.
Indeed, at p*=11.53 and p*=11.52, the solid was observed
to melt completely only after 107 MC cycles.

We have also estimated the melting point of hard spheres
from MC simulations undertaken in the NpNAT ensemble.
Figure 3 shows the results obtained using this approach.

FIG. 3. �Color� Evolution of the total density along different MC trajectories
as obtained from direct simulations in the NpNAT ensemble for inhomoge-
neous systems of hard spheres containing two liquid-solid interfaces at dif-
ferent pressures.

FIG. 1. �a� Starting configuration used in the series of direct simulations in
the NpT ensemble. �b� and �c� are the final configurations at p*=11.70
�above the melting point� and p*=11.45 �below the melting point�,
respectively.

FIG. 2. �Color� Evolution of the total density along different MC trajectories
as obtained from direct simulations in the NpT ensemble for inhomogeneous
systems of hard spheres containing two liquid-solid interfaces at different
pressures.
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From the evolution of the density at different pressures, we
observe that the melting pressure as obtained from NpNAT
simulations is about p*=11.54�2�, which is in excellent
agreement with the value estimated from NpT simulations.
These results indicate that the error introduced by the use of
the NpT ensemble in the presence of the interface is small for
systems with the dimensions considered here, the error being
similar to the intrinsic uncertainty of the direct coexistence
method. Further evidence will be given later. As observed in
the NpT series, quite long NpNAT simulations are required to
drive the initial configuration to one phase or the other, with
simulations of similar length in both implementations.
Slightly shorter simulations seem to be needed in the former
case, probably because the change in volume is due to fluc-
tuations in the three directions of the simulation box, which
results in higher destabilization rates of the initial configura-
tion.

The results presented so far show that the NpT ensemble
is a valid choice to estimate the coexistence properties of a
fluid-solid transition. It has the advantage over the NpNAT
approach that the same starting configuration can be used for
generating the different constant-pressure trajectories, as the
fluctuations along the x and y directions will allow the solid
phase to relax to its equilibrium structure. This is also a clear
advantage over simulations performed under conditions that
do not allow possible imbalanced stress in the solid phase to
relax.

Our estimates of the coexistence pressure of the fluid-
solid transition of hard spheres obtained from direct coexist-
ence methods are found to be in excellent agreement with the
values obtained from other methods. According to computa-
tions reported recently by two of us33 using free-energy
based methods, the melting transition for systems of hard
spheres takes place at p*=11.54�4� in the thermodynamic
limit. Similar values are obtained by Frenkel and Smit1 �p*

=11.567�, Wilding and Bruce31 �p*=11.50�9��, Speedy30

�p*=11.55�11��, and Fortini and Dijkstra32 �p*=11.57�10��.
We have also explored to what extent our reported values of
the coexistence pressure are affected by finite-size effects.
For the particular case of the liquid-solid transition in hard
spheres it is known that for systems of finite size31,33,43 the
transition takes place at pressures below the value obtained
in the thermodynamic limit. This effect, however, is only
expected to be noticeable for systems of, approximately, less
than 1000 particles; we should therefore anticipate that
finite-size effects must be small for the sizes considered here.
Nonetheless, we decided to check this point by determining
the coexistence pressure using the Einstein molecule
approach33 for systems containing similar number of par-
ticles to the ones considered here. In particular, we have
computed the Helmholtz free energy of a cubic fcc crystal
consisting of N=5324 hard spheres at a density of �*

=1.040 86, obtaining the value F / �NkBT�=4.9575, which is
very close to its value in the thermodynamic limit.2,33,34,44–47

From this value, and using the analytical equation of state of
Kolafa et al.48 for the fluid phase and that of Hall39 for the
solid phase, we find that the liquid-solid coexistence pressure
is p*=11.54 for N=5324, which is essentially equal to its
value in the thermodynamic limit within the accuracy of our

calculations. We therefore conclude that the size of the
samples considered in our simulations was large enough, so
that finite-size effects were negligible.

We now turn to present the results obtained from simu-
lations performed in the VSNVT ensemble �see Fig. 4�. The
initial configuration was generated in a way similar to that
considered in the NpT series. The simulation is divided into
20 blocks each consisting of 2.5�105 cycles, where one
cycle amounts to N trial molecular displacements followed
by one trial change of either the longitudinal or the trans-
verse dimension of the simulation box �the other dimension
is changed so as to keep the total volume constant�. Block
averages of the normal and tangential components of the
pressure were computed from Eqs. �4� and �5�. The system
was found to reach equilibrium quite quickly, probably be-
cause the starting configuration was already close to the ap-
propriate equilibrium conditions. The densities of the coex-
isting solid and fluid phases were obtained from the
equilibrium density profile, the corresponding values being
�

sol
* =1.0369�33� and �

liq
* =0.9375�14�. The coexistence den-

sities are in very good agreement with values obtained from
free energy calculations: �

sol
* =1.0376, �

liq
* =0.9391 �Frenkel

and Smit1�; �
sol
* =1.0367�10�, �

liq
* =0.9387�10� �Fortini and

Dijkstra32�; and �
sol
* =1.0372, �

liq
* =0.9387 �Vega and Noya33�.

These values are also consistent with the values �
sol
* =1.037,

�
liq
* =0.938 reported by Davidchack and Laird11 from

constant-energy MD simulations of the liquid-solid system.
As for the coexistence pressure, we find p

N
* = p*=11.54�4�,

which is fully consistent with the values reported from
constant-pressure simulations and free energy calculations.

The value of the tangential pressure obtained from
VSNVT simulations was found to be p

T
*=11.53�5�, which

shows that the anisotropy of the pressure tensor is rather
small for the present application. This gives additional evi-
dence that the use of the NpT ensemble is fully justified here.
It is to be noted that the anisotropy of the pressure tensor
�p
 pN− pT is related to the surface stress S �see, for ex-
ample, Ref. 11� by

S = 1
2�

0

Lz

dz�pN�z� − pT�z�� = 1
2Lz�pN − pT� , �6�

where pN�z�
 pzz�z�, and pT�z�= �pxx�z�+ pyy�z�� /2. The last
equality in Eq. �6� follows from the definitions given in Eqs.
�1� and �2�; the factor 2 appearing in Eq. �6� accounts for the
existence of two interfaces in the system. It is to be noted

FIG. 4. Snapshots of the �a� starting and �b� final configurations used in the
variable-shape constant-volume �VSNVT� simulation.
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that S reduces to the usual surface tension for fluid-fluid
interfaces. Considering the value �S�2=−0.17�6� reported
by Davidchack and Laird for the surface stress of the �100�
solid-liquid interface, one could predict a value �p*

=2S /Lz=−0.006�2� after using a typical value �Lz /��60�
for the dimensions of the systems considered here. This is
consistent with our resulting value of �p*=0.01�6�.

IV. CONCLUSIONS

We have estimated the coexistence pressure of the fluid-
solid transition of hard spheres using direct coexistence
methods, which involve simulations of systems containing a
fluid and a solid phase separated by an interface. The MC
simulations were carried out according to the prescriptions of
several statistical ensembles. First, we performed simulations
in two different constant-pressure ensembles, one in which
the three dimensions of the simulation box are allowed to
fluctuate �NpT�, and a variant in which the area of the inter-
face remains constant and the volume is sampled from fluc-
tuations of the normal dimension of the box �NpNAT�. Rig-
orously, only the latter implementation is correct in the
presence of an interface: in the NpT ensemble, one is impos-
ing an isotropic input pressure to a system characterized by
an anisotropic pressure tensor. The use of the NpT ensemble
for the present application will only be justified as long as
the anisotropy of the pressure tensor, �p, turns out to be
small. As �p scales with the inverse of the longitudinal di-
mension of the simulation box, one should ensure that Lz is
large enough. This will generally be the case for the geom-
etries of the box used in direct simulation methods, where
one is bound to use quite elongated boxes to avoid the mu-
tual interaction of the two surfaces.

In both constant-pressure ensembles, the coexistence
properties have been determined by performing simulations
at different pressures and monitoring the evolution of the
density along each trajectory �the density increases when the
crystal grows and it decreases when the crystal melts�. We
find that both approaches lead to the same value of the co-
existence pressure �p*=11.54�, which is fully consistent with
the values obtained from free energy calculations. This indi-
cates that the error introduced by the use of the NpT en-
semble is quite small and seems to be within the accuracy of
the direct simulation method. This makes us to believe that
introducing a barostat for the investigation of the fluid-solid
coexistence properties through direct coexistence simulations
is a valid procedure �provided that the system is sufficiently
large�, and eliminates the possible risk of having the solid
under stress �which may indeed occur when the volume and
geometry of the simulation box remain constant�.

Further evidence of the above conclusions was given
from simulations performed in a variable-shape constant-
volume ensemble. This scheme is expected to be particularly
well suited to the direct simulation of two coexisting phases
involving a crystalline solid, and allows the solid to relax to
its equilibrium structure without introducing a barostat. Cer-
tainly, relaxation will be favored by considering volume-
preserving changes of the simulation box consistent with the
symmetry of the crystalline structure. The coexistence prop-

erties can be obtained by sampling from equilibrium con-
figurations of the interfacial systems. The coexistence pres-
sure corresponds to the normal pressure, for which we find a
value �p*=11.54�4�� in full agreement with the estimates
from the constant-pressure simulations given here as well as
with results from constant-energy MD simulations11 and free
energy calculations.1,30–33 The coexistence densities deter-
mined from VSNVT simulations, �

sol
* =1.0369�33�, and �

liq
*

=0.9375�14� are consistent with the values obtained from
other techniques. For the systems considered here, we have
explicitly computed the anisotropy of the pressure tensor and
found that is rather small. This provides a stringent valida-
tion of the NpT methodology when applied to the study of
the melting transition from direct simulations.

In summary, we have assessed the efficiency of direct
simulation methods to the determination of the coexistence
properties at the melting transition. These methods may pro-
vide an interesting route to test data obtained from free en-
ergy calculations. We have also shown that direct simulation
methods can be implemented within different ensembles, the
resulting data being indistinguishable within the estimated
statistical errors. The value of p*=11.54 at the melting tran-
sition of hard spheres seems to be now firmly established,
and turns out to be slightly lower than the original value of
11.70 reported by Hoover and Ree.34 Though the present
investigation has been limited to systems of hard spheres, we
may anticipate that most of our conclusions are expected to
hold for other systems.
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