

Aalborg Universitet

Model Driven Development of Data Sensitive Systems

Olsen, Petur

Publication date:
2014

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Olsen, P. (2014). Model Driven Development of Data Sensitive Systems.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60661206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/model-driven-development-of-data-sensitive-systems(8d9ab9b6-4b55-460d-9803-de58a58839d0).html

Model Driven Development of
Data Sensitive Systems

Petur Olsen

Ph.D. Dissertation

May 12, 2014

Aalborg University
Department of Computer Science

Title:
Model Driven Development of Data Sensitive Systems

PhD Student:
Petur Olsen

Supervisors:
Associate Professor Arne Skou
Professor Kim G. Larsen

Paper A:
Authors: Petur Olsen, Kim G. Larsen, and Arne Skou
Title: Present and Absent Sets: Abstraction for Testing of Reactive Systems with Databases
Outlet: MBT 2010. ENTCS, Volume 264 Issue 3, December 2010, pages 53-68

Paper B:
Authors: Andreas Engelbredt Dalsgaard, René Rydhof Hansen, Kim Gulstrand Larsen, Mads

Chr. Olesen, Petur Olsen, and Jǐŕı Srba
Title: Model Checking with Lattices
Outlet: Unpublished

Paper C:
Authors: Andreas Engelbredt Dalsgaard, René Rydhof Hansen, Kenneth Yrke Jørgensen, Kim

Gulstrand Larsen, Mads Chr. Olesen, Petur Olsen, and Jǐŕı Srba
Title: opaal: A Lattice Model Checker
Outlet: NFM 2011, Pasadena, CA, USA, April 18-20, 2011. LLNCS, Volume 6617, pages

487-493

Paper D:
Authors: Fides Aarts, Faranak Heidarian, Petur Olsen, and Frits Vaandrager
Title: Automata Learning Through Counterexample-Guided Abstraction Refinement
Outlet: Unpublished

Paper E:
Authors: Petur Olsen, Johan Foederer, and Jan Tretmans
Title: Model-Based Testing of Industrial Transformational Systems
Outlet: ICTSS 2011, Paris, France, November 7-9, 2011, Volume 7019, pages 131-145

This thesis has been submitted for assessment in partial fulfillment of the PhD degree. The thesis
is based on the submitted or published scientific papers which are listed above. Parts of the papers
are used directly or indirectly in the extended summary of the thesis. As part of the assessment,
co-author statements have been made available to the assessment committee and are also available
at the Faculty. The thesis is not in its present form acceptable for open publication but only in
limited and closed circulation as copyright may not be ensured.

Abstract

Model-driven development strives to use formal artifacts during the development
process. Formal artifacts enables automatic analyses of some aspects of the
system under development. This serves to increase the understanding of the
(intended) behavior of the system as well as increasing error detection and
pushing error detection to earlier stages of development.

The complexity of modeling and the size of systems which can be analyzed
is severely limited when introducing data variables. The state space grows
exponentially in the number of variable and the domain size of the variables.
This quickly leads to state-space explosion problems and usually results in data
being abstracted away in the models. This works great for systems where the
particular values of the variables do not significantly alter the execution of the
system. Examples of this type of system are transport protocols or pure storage
systems, where the actual values of the data is not relevant for the behavior of
the system. For many systems the values are important. For instance the control
flow of the system can be dependent on the input values. We call this type of
system data sensitive, as the execution is sensitive to the values of variables.

This theses strives to improve model-driven development of such data-sensitive
systems. This is done by addressing three research questions. In the first
we combine state-based modeling and abstract interpretation, in order to ease
modeling of data-sensitive systems, while allowing efficient model-checking and
model-based testing. In the second we develop automatic abstraction learning
used together with model learning, in order to allow fully automatic learning
of data-sensitive systems to allow learning of larger systems. In the third we
develop an approach for modeling and model-based testing of stateless systems
with very large input and output domains.

Keywords: Model-based development, model-based testing, data-sensitive sys-
tems, model learning.

i

Resumé

Modeldrevet udvikling stræber efter at bruge formelle artefakter under ud-
viklingsprocessen. Formelle artefakter tillader automatisk analyse af nogle as-
pekter af systemet under udvikling. Dette øger forst̊aelsen af (den tilsigtede)
opførsel af systemet, og forbedrer fejlfinding og skubber fejlfinding til tidligere
faser af udviklingen.

Kompleksiteten af modelleringen og størrelsen af systemer der kan analyseres
bliver svært begrænset ved introduktion af data variable. Tilstandsrummet
vokser eksponentielt i antallet af variable og i størrelsen af deres domæner. Dette
leder hurtigt til for store tilstandsrum og gør ofte at data bliver abstraheret
væk i modellerne. Dette virker godt for systemer hvor bestemte værdier ikke
ændrer opførslen af systemet signifikant. Eksempler p̊a denne type systemer
er transport protokoller og systemer der kun gemmer værdier, hvor de faktiske
værdier ikke er relevant for systemets opførsel. For mange systemer er værdierne
vigtige. For eksempel kan systemets eksekverings sti ændre sig afhængigt af
input værdier. Vi kalder denne type af systemer data følsomme, eftersom deres
opførsel er følsom for variables værdier.

Denne afhandling forsøger at forbedre modeldrevet udvikling af datafølsomme
systemer. Dette gøres ved at gribe tre forsknings spørgsm̊al an. I det første kom-
binerer vi modeldrevet udvikling og abstrakt fortolkning for at gøre det lettere
at modellere datafølsomme systemer, og samtidig tillade effektiv verifikation og
modelbaseret test. I det andet udvikler vi automatisk abstraktions læring som
bliver brugt sammen med model læring, for at muliggøre fuldautomatisk model
læring af datafølsomme systemer og muliggør læring af større systemer. I det
tredje udvikler vi en fremgangsm̊ade for modellering og modelbaseret test af
tilstandsløse system med meget store input of output domæner.

Nøgleord: Modelbaseret udvikling, modelbaseret testing, datafølsomme sys-
temer, model læring.

iii

Contents

1 Model-Driven Development 1

2 Requirements 5

2.1 Temporal Logics . 5

2.1.1 Linear Temporal Logic . 6

2.1.2 Computational Tree Logic 8

2.2 Sequence Charts . 9

2.2.1 Live Sequence Charts . 10

2.3 Constraint Systems . 10

2.4 Property Specification Language 11

2.5 Quantitative Requirements . 12

2.5.1 Timed Linear Temporal Logic 12

2.5.2 Timed Computation Tree Logic 13

3 Behavioral Models 15

3.1 Labeled Transition Systems . 15

3.2 Extended Finite-State Machines 16

3.3 Timed Automatons . 17

3.4 Other Modeling Formalisms . 19

3.4.1 Process Algebra . 19

3.4.2 Petri Nets . 20

3.4.3 UML State Machines . 21

4 Model Checking 25

4.1 State Reachability . 25

4.2 LTL Model-Checking . 26

4.3 Symbolic States . 29

4.4 Model Checking and Static Analysis 31

5 Model-Based Testing and Learning 33

5.1 Model Learning . 35

v

CONTENTS

6 Thesis 37

6.1 Research Question I . 37

6.2 Research Question II . 39

6.3 Research Question III . 40

7 Future Work 47

7.1 Research Question I . 47

7.2 Research Question II . 47

7.3 Research Question III . 48

Papers 49

A Present and Absent Sets 49

1 Introduction . 50

2 Related Work . 51

3 Model-Based Testing . 51

3.1 Online Testing . 51

3.2 Offline Testing . 52

4 Present and Absent Sets . 52

5 Extended Finite-State Machines 56

6 Database FSM . 57

7 Present-Absent FSM . 57

8 Translation . 58

8.1 No Knowledge . 58

8.2 Full Knowledge . 59

9 Advantages . 60

10 Example . 60

10.1 No Knowledge . 62

10.2 Full Knowledge . 63

11 Conclusion . 64

B Model Checking with Lattices 67

1 Introduction . 68

2 Lattice Transition Systems . 69

2.1 Preliminaries . 70

2.2 Lattice Transition System 71

3 General Model Checking Algorithm 72

4 Lattice Guided Abstraction Refinement 75

5 Applications . 78

5.1 Present-Absent Sets . 78

5.2 Protocols with Asynchronous Communication 78

5.3 Cache Analysis . 80

5.4 Timed Automata . 81

6 Conclusion . 81

vi

CONTENTS

C opaal: A Lattice Model Checker 83
1 Introduction . 83
2 Examples . 85

2.1 Database Programs . 85
2.2 Asynchronous Lossy Communication Protocol: Leader Elec-

tion . 86
2.3 Cache Analysis . 89
2.4 Timed Automata . 89

3 Conclusion . 89

D Automata Learning Through Counterexample-Guided Abstrac-
tion Refinement∗ 91
1 Introduction . 92
2 Preliminaries . 95
3 Inference of I/O Automata . 96

3.1 Basic Framework for Inference of I/O Automata 96
3.2 Inference Using Abstraction 97

4 Symbolic Abstraction . 99
5 Counterexample-Guided Abstraction Refinement 102

5.1 Basic Assumptions on SUTs and Abstractions 102
5.2 Abstraction Learning Algorithm 104

6 Experiments . 106

E Model-Based Testing of Industrial Transformational Systems 109
1 Introduction . 110
2 Problem Description . 111

2.1 Testing at Océ . 113
3 Modeling the Controller . 114

3.1 Dependencies . 115
4 Testing . 116

4.1 Diagnosis . 117
5 Implementing the Test Tool . 117

5.1 Test case generation . 118
5.2 Run Time . 119
5.3 Invalid Test Cases . 119

6 Status and Discussion . 120
7 Modeling a Livestock Stable Controller 121
8 Conclusion . 123

Bibliography 125

vii

Chapter 1

Model-Driven Development

Software is usually developed in phases. The prevalent phases identified in the
traditional waterfall model, as seen in Figure 1.1, are [87]: Analysis, Design,
Implementation, Test, and Operation.

Most system development starts from some ideas. These stem from the (end)
user which identifies some system or area which needs improving and often only
has a vague description of wanted change. The development of the system is
done in the five phases.

1. The problem area and desired improvements are analyzed to gain knowl-
edge about the domain and to specify requirements. In larger projects,
this analysis traditionally results in a requirements document, detailing
the requirements of the system.

2. The requirements are used to develop a design of the system. Tradition-
ally the design can consist of various architectures, design patterns, class
diagrams, etc.

3. The design is used to guide an implementation of the system.

4. The implementation is tested. This can be anything from white-box unit
testing to black-box integration testing.

5. The system is then put into operation and possibly monitored for opera-
tional status.

The waterfall model states that these phases are carried out in progression.
More iterative (and realistic) approaches often specify that parts of the system
are analyzed, designed, implemented and tested, before moving on to other parts
of the system. Though the life-cycles differ, the main activities are usually the
same five.

The assets produced during the development are largely informal. We call
them informal since they have no formal semantics. The lack of formal seman-
tics generally has two consequences. Firstly, the requirements can be interpreted

1

Ideas

Analysis

Design

Implementation

Test

Operation

Figure 1.1: Waterfall development process

in different ways. For instance, two developers reading the same informal re-
quirements might understand them differently, or one developer explaining a
requirement to another might not get his idea across as intended. This discrep-
ancy in understanding of the requirements makes it unlikely that the delivered
system behaves as intended.

Second, the requirements can be inconsistent, since no automatic analysis
can be performed. Conflicting requirements could for instance be, requiring
that a coffee machine always outputs coffee within 10 seconds when a button is
pressed, and also requiring that the coffee machine should be able to produce
tea on the same button. For this simple example it is easy to spot a conflict, but
with a large requirements document describing complex systems, it is difficult
to guarantee that no inconsistencies are present.

Model-Driven Development (MDD) focuses on formal requirements and mod-
els as artifacts in the development process in order to bridge the gap between
informal requirements and implemented system. Figure 1.2 gives an overview

2

CHAPTER 1. MODEL-DRIVEN DEVELOPMENT

Ideas

Analysis

Design

Implementation

Test

Operation

Formal
Requirements

Formal
Model

System
Model

Model-Based
Testing

Model
Learning

Code
Generation

Simulation
Validation
Verification

Analysis
Consequence
Consistency

Monitoring

Figure 1.2: Overview of MDD

of MDD in the context of the waterfall model. MDD has been successfully used
with other development processes [50], but for the sake of simplicity we will
describe it in the context of the waterfall model here.

The analysis phase focuses on developing a set of formal requirements for
the system. The requirements are often a set of properties that must hold for
the system. These describe what the system must do. Since these requirements
are formal, they can be automatically analyzed with respect to consistency and
the consequences of these requirements can be analyzed.

The design phase focuses on formal behavioral models of the system, often
in the form of state machines. These models describe what the system should
do, how it should react to events, etc. Again, since the models are formal,
automatic analysis can be performed. The model can be held up against the

3

requirements with simulation, validation, and verification. These analyses give
good indications of the correctness of the model, and can state if the model
adheres to the requirements.

The implementation is done as usual, with inputs from the formal require-
ments and models. Having formally verified requirements and models, reduces
the chance of the requirements changing during the implementation phase, as
any inconsistencies would have been caught.

As seen on Figure 1.2, two more activities can be involved in the implemen-
tation. The formal model can be used to generate code for the implementa-
tion. This has been used for complete controller synthesis (as done by Uppaal
TIGA [18]) and for generating the scaffolding for the implementation (as done
by such tools as Rational Rhapsody). In the case of legacy systems or third party
software, it is possible to learn a model of the implementation [15]. This learned
model can be composed with existing models to check for interoperability with
systems where no models are available.

During testing, the formal model can be used to automatically generate test
cases with an approach called Model-Based Testing (MBT) [97]. Test cases are
generated that cover the model. This coverage can be done using different met-
rics, e.g. state coverage or transition coverage. The test cases can be executed
on the system under test (SUT) and the output can be verified using the model.
This can give a good indication as to whether the SUT implements the model
correctly and thereby adheres to the requirements.

Since testing can be seen as environment emulation combined with imple-
mentation monitoring, the same techniques can be used for monitoring during
operation [53]. Operation monitoring can be done using the monitoring and
output verification techniques from MBT. No test cases are generated, but the
system is monitored. The inputs and outputs are checked with respect to the
model. This can be used to ensure the system is operating as intended, and to
monitor the actual environment the system is running under. This can also be
done a posteriori by collecting data during operation and analyzing them later.

In recent year the industry has started adopting MDD. Several research
projects, such as MBAT1, strive to mature MDD and MBT for use in the in-
dustry. MBAT includes several industrial partners, such as Daimler (project
coordinator), Airbus, Siemens, and Volvo.

This thesis deals with modeling both the requirements and the behavior and
how to use these together with model checking and model-based testing. The
following chapters explain these aspects in greater detail.

1http://www.mbat-artemis.eu/home/

4

Chapter 2

Requirements

Capturing requirements is about specifying what the system should do; what
properties it should adhere to. Good requirements generally have the follow-
ing ten characteristics [38]: Unitary, Complete, Consistent, Non-Conjugated
(Atomic), Traceable, Current, Feasible, Unambiguous, Specify Importance, and
Verifiable. Building requirements with these characteristics is difficult, and
much work and research has gone into improving this process and reducing
errors in the requirements. In the formal approach, requirements are written in
formal languages for which some properties can be verified.

Since the formal languages have unambiguous semantics, the requirements
written in them are also unambiguous. Formal semantics also allow automatic
or semi-automatic consistency checks.

The following sections describe some formalisms for capturing requirements.

2.1 Temporal Logics

For reactive systems the correctness of a system can not simply be stated as a
function from input to output, since the systems continuously react to inputs
and produce outputs. The correctness of reactive systems is often expressed as
properties of the traces the system can produce. The traces can either focus
on the states visited during the run (state based) or focus on the transitions
taken (action based). Traces can also record both states and actions, but for
complexity reasons, usually only one is tracked.

Temporal logics can be used to express behavior, in terms of traces or trees.
An often desired property of reactive systems is deadlock freedom. A deadlock
is a state in which no progress is possible. The classic example of a deadlock is
a set of processes circularly waiting for each other. Process p1 holds resource a
and waits for resource b to be available, process p2 holds resource b and waits
for resource a to become available. The processes can never progress beyond
this point; we have a deadlock.

The property stating that deadlocks do not occur is called a safety property;

5

2.1. TEMPORAL LOGICS

intuitively it states that something bad never happens. To ensure progress in the
system a different kind of property is used, called liveness property, or sometimes
progress property. Informally, a liveness property states that something good
will happen. Other types of properties exist, and liveness and safety properties
can be further divided into subtypes. For instance a liveness property can
express [16, p. 121]

• eventuality (eventually the machine will produce coffee),

• repeated eventuality (the machine will produce coffee infinitely often), and

• starvation freedom (if the machine is asked, then it will eventually produce
coffee).

To verify such properties we need formal languages to specify the desire property.
Popular languages include Linear Temporal Logic (LTL) [80] and Computational
Tree Logic (CTL) [31].

2.1.1 Linear Temporal Logic

LTL is a temporal logic expressing properties of traces or runs of systems. It
extends propositional or predicate logic with modalities to refer to infinite be-
havior. LTL is called linear because time is viewed as path based and progresses
in a linear fashion, i.e. each step has a single successor.

The basic LTL-formulas are formed over atomic propositions, Boolean con-
junction ∧, Boolean negation ¬, and the two basic temporal modalities© (next)
and U (until). The atomic propositions (a ∈ AP) are state-labels in a tran-
sition systems. These are often used to express assertions on the model, e.g.
x < 5 or that the discrete location in the model is y. The next-modality states
properties about the next step, i.e. ©ϕ holds if ϕ holds in the next step. The
until-modality holds if one property holds until another holds, i.e. ϕ1Uϕ2 holds
in the current step if ϕ1 holds in this step and all future steps until at some
point ϕ2 holds. LTL-formulas are formed according to the following grammar:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2 | (ϕ)

where a ∈ AP .
Using this basic grammar other Boolean connectives such as disjunction ∨

and implication → can be derived. The modalities present in most temporal
logics are

• ♦ eventually, or F for Future (derived from trueUϕ) and

• � always, or G for Globally (derived from ¬♦¬ϕ).

These can be derived using the modalities present in the basic grammar. De-
riving more complex modalities and Boolean connectives allows more complex
formulas to be expressed more succinctly.

Modalities can be combined to form new modalities. For instance, ♦�a
(eventually forever a) describes a path where at some moment a will hold and
continue to hold forever.

6

CHAPTER 2. REQUIREMENTS

Semantics of LTL

An LTL formula describes properties of traces or runs of systems. This means
a trace can either satisfy an LTL formula or not. A trace can be expressed as
a word of (a set of) atomic propositions observed along the trace. That is, an
infinite sequence of elements from 2AP . (This assumes all traces are infinite.
This is generic since any transition system with finite traces can be transformed
into one with only infinite trace, by adding transitions from terminal states to
a sink state, satisfying the empty set of atomic propositions and with itself as
sole successor. The semantics can also be lifted to support finite traces.) The
semantics of an LTL formula ϕ can now be defined as a language Words(ϕ)
containing all infinite words over the alphabet 2AP that satisfy ϕ [16].

Words(ϕ) = {σ ∈ (2AP)ω | σ |= ϕ}

Here the satisfaction relation |=⊆ (2AP)ω× LTL is the smallest relation with
the following properties [16]:

σ |= true

σ |= a iff a ∈ σ[0]

σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 6|= ϕ

σ |=©ϕ iff σ[1 . . .] |= ϕ

σ |= ϕ1Uϕ2 iff ∃j ≥ 0.σ[j . . .] |= ϕ2 and σ[i . . .] |= ϕ1, forall 0 ≤ i < j

Where, for σ = A0A1A2 . . . ∈ (2AP)ω, σ[j] = Aj and σ[j . . .] = AjAj+1Aj+2
The semantics for the derived operators can be derived from these semantics.

Examples

The no-deadlocks property mentioned can be expressed in LTL if the deadlock
proposition is defined as an atomic proposition that holds for a state when it
has no successors. The property can then be expressed as:

�¬deadlock

Mutual exclusion can be expressed using propositions crit1 and crit2, stating
that processes p1 and p2 are in the critical section, respectively. The following
formula states that it is always the case that one process is not in the critical
section:

�(¬crit1 ∨ ¬crit2)

A deadlock can be seen as a non-desirable property of reactive systems. Con-
versely, termination can be seen as a desirable property of non-reactive systems.
The property that a system eventually terminates can be expressed as follows:

♦terminate

7

2.1. TEMPORAL LOGICS

The following specifies that a request will always lead to a grant:

�(request→ ♦grant)

The three liveness properties mentioned above can be expressed as:

• ♦ϕ, eventually ϕ

• �♦ϕ, always eventually ϕ

• �(ϕ1 → ♦ϕ2), if ϕ1 then eventually ϕ2

As mentioned LTL views time in a linear fashion, and each state only has one
successor. But transition systems often have branches, and possible executions
often fold out into a tree structure. For an LTL formula to hold in a state it is
implicitly specified that it must hold for all possible executions from that state.
This makes it impossible to specify properties in LTL which should only hold
on some execution paths. CTL can be used for these properties.

2.1.2 Computational Tree Logic

In contrast to LTL, CTL is a branching-time logic, and sees the entire tree of
possible runs through the system. A branching-time logic uses path quantifiers
to express which paths a property holds for. The quantifiers are the existential
quantifier ∃ and the universal quantifier ∀. As an example, ∃♦ϕ expresses that
there exists a path on which there is a state where ϕ holds, and ∀�ϕ expresses
that on all paths ϕ holds in all states.

The syntax of CTL is separated into path formulas and state formulas, where
path formulas express properties that hold for entire paths (infinite sequence of
states) and state formulas express properties that hold for a single state.

CTL state formulas over the set AP of atomic proposition are formed ac-
cording to the following grammar [16, p. 317]:

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | (Φ) | ∃ϕ | ∀ϕ

where a ∈ AP and ϕ is a path formula. CTL path formulas are formed according
to the following grammar:

ϕ ::=©Φ | Φ1UΦ2

where Φ, Φ1, and Φ2 are state formulas.

Semantics of CTL

The semantics of CTL formulas are defined by two satisfaction relations; one
for state formulas, and one for path formulas.

Let a ∈ AP be an atomic proposition, TS = (S,Act,→, I, AP,L) be a
transition system without terminal states, state s ∈ S, Φ, Ψ be CTL state

8

CHAPTER 2. REQUIREMENTS

formulas, and ϕ be a CTL path formula. The satisfaction relation |= is defined
for state formulas by [16, p. 320]:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not s |= Φ
s |= Φ ∧Ψ iff (s |= Φ) and (s |= Ψ)
s |= ∃ϕ iff π |= ϕ for some π ∈ Paths(s)
s |= ∀ϕ iff π |= ϕ for all π ∈ Paths(s)

For path π, the satisfaction relation |= for path formulas is defined by:

π |=©Φ iff π[1] |= Φ
π |= ΦUΨ iff ∃j ≥ 0.(π[j] |= Ψ ∧ (∀0 ≤ k < j.π[k] |= Φ))

where for path π = s0s1s2 . . . and integer i ≥ 0, π[i] denotes the (i+ 1)th state
of π, i.e., π[i] = si.

LTL and CTL are incomparable. There are formulas that can be expressed
in LTL but not CTL and vice versa.

Examples

Deadlock absence and Mutual exclusion can be described similarly to LTL:

∀�¬deadlock

and
∀�(¬crit1 ∨ ¬crit2).

The following formula specifies that both p1 and p2 will enter the critical section
infinitely often:

(∀�∀♦crit1) ∧ (∀�∀♦crit2)

2.2 Sequence Charts

An important aspect to model is the communication between systems, or sub-
systems. Communication between systems can be seen as a scenario of messages
sent back and forth. Scenarios can represent behavior which is allowed or for-
bidden. These types of scenarios can be modeled using scenario based modeling.
Modeling scenarios can be used to give the developers an overview of the com-
munication channels in the system. It can also be used to specify use-scenarios
of the system as a part of the requirements.

One of the original scenario based modeling formalisms, are the Message
Sequence Charts (MSC) [14]. Figure 2.1 shows an example of a MSC. The MSC
describes a set of processes, depicted as boxes along the top of the chart. The
vertical line going down each process illustrates the lifeline of the process. A
m-labeled arrow from process p to process q, represents an allowed transfer of
message m from p to q. The chart is read from top to bottom, so the order of
messages in the system must follow that of the MSC.

9

2.3. CONSTRAINT SYSTEMS

p q

m

Figure 2.1: Example MSC

User Machine

Press button

Coffee

Figure 2.2: Example LSC

MSC have very limited power, since only allowed behavior can be expressed,
it can not describe required or forbidden behavior. Live sequence charts are
proposed as a more powerful replacement for MSC.

2.2.1 Live Sequence Charts

Live Sequence Charts (LSC) [36] can describe required behavior, as well as
forbidden behavior. The LSC is divided into a pre-chart (which specifies the
premise) and a main chart (which specifies the conclusion). If in any system
run, the behavior in the pre-chart is observed, then the behavior in the main
chart must follow immediately. Using LSC more behavior can be expressed.

LSC model scenarios and communication in a very intuitive and graphical
way. LSC focus on statements of the form: When event A occurs, perform
action B or Perform action A then action B then require event C to occur.
Figure 2.2 shows an excerpt of the requirements for a coffee machine as a LSC.
The dashed area represents the pre-chart and the square area represents the
main chart. Uncontrollable actions are represented with dashed arrows and
solid arrows represent controllable actions.

2.3 Constraint Systems

The previously mentioned formalisms are good for modeling requirements for
reactive and state-based systems. However, some systems are not characterized

10

CHAPTER 2. REQUIREMENTS

by a system state, but rather by the generation of output values, based on
input values. Such systems are known as transformational systems or constraint
systems [45] (or functions in mathematical terms).

A constraint system is a set of constraints on the output values, based on
the input values. A constraint is a boolean formula, where the binary variables
may be replaced with predicates over the values. This can be used to specify
requirements for systems. For instance, the simple constraint: x2 = y states
that the squared value of x should equal the value of y. This type of requirement
leaves the details to the implementation, while precisely expressing the desired
behavior.

The example does not distinguish inputs and outputs. If x is the input,
the system is required to calculate the square of x and output it in y. If y is
the input, the system is calculates the square root of y and outputs it in x.
However, if y is negative, the system can not calculate the square root. The
formula ¬(y ≥ 0)∨x2 = y, ensures that the square root is only calculated when
y is non-negative. To make modeling this type of requirement less cumbersome,
the implication → operator is used. Now the requirement can be expressed as
y ≥ 0→ x2 = y.

As a real world example, consider the controller inside a printer. Given
a document in some standard format, such as PS or PDF, it translates the
document into a printer specific format which can be printed directly on the
hardware. Say the printer supports duplex printing, the number of printed
pages can be verified by the formula

PageCount > 0 ∧ Printing = Duplex→ SheetCount = dPageCount/2e

specifying that if the number of pages printed is greater than zero and the
printing type is duplex, then the number of sheets printed must be half the
number of pages, rounded up.

2.4 Property Specification Language

Property Specification Language (PSL) [1, 2] (formerly Sugar Formal Property
Language) is an assertion language developed by Accellera. PSL is used to spec-
ify properties for simulation and verification of hardware designs. The language
was initially developed by IBM, and has been chosen as standard by Accellera,
and is now an IEEE 1850 standard.

A property can consist of four types of expressions composed to form the
property [1]. Boolean expressions describe behavior over one clock cycle. Se-
quential expressions describe multi-cycle behavior. Temporal expressions de-
scribe relations over time between boolean expressions and sequences.

Lets consider an example (taken from [1]). Boolean expressions are formed
using normal syntax, for example the formula

ena || enb

11

2.5. QUANTITATIVE REQUIREMENTS

specifies a clock cycle in which at least one of the signals ena and enb are
asserted. The sequential expression

{req; ack; !cancel}

describes a sequence where req is asserted in the first cycle, ack in the second,
and cancel does not hold in the third. These are connected using temporal
operators to get the property

always {req;ack;!cancel}(next[2] (ena || enb))

specifying that the sequence {req;ack;!cancel} is always followed by either
ena or enb two cycles late. Adding the assert directive

assert always {req;ack;!cancel}(next[2] (ena || enb))

specifies that this property should hold for the design and needs to be verified.
Specifications written in the standard PSL language can be compiled to

a formula in LTL. Specifications written using the PSL Optional Branching
Extension can be compiled to a CTL formula.

2.5 Quantitative Requirements

So far we have dealt with properties for constraint systems and reactive systems,
for both of which the correctness depends on the computations of the system.
Some systems have other quantitative properties which define correct behav-
ior. This type of system is called a quantitative system. The correctness of a
quantitative system depends not only on the inputs and outputs, but also on
the quantitative boundaries. The quantitative properties could for instance be
time or price, or some other cost function. Desired properties of such systems
specify boundaries on the quantitative properties of the system, e.g. when the
user presses the button, produce coffee within 5 seconds, or produce a plastic
chair using less than 1.5 liters of oil.

2.5.1 Timed Linear Temporal Logic

Several timing extension have been proposed to LTL, e.g. Metric Temporal
Logic (MTL) [12], Timed Propositional Temporal Logic (TPTL) [13], Explicit-
Clock Temporal Logic (XCTL) [49], and Metric Interval Timed Logic (MITL) [11].

Each uses different approaches to extending LTL with timing. For example
MTL adds timing bounds to the next and until operators, and two new time
bounded operators: since and previous. This approach has been shown to be
undecidable in general. MITL uses a slightly different approach, where only
a time bounded until operator is available, and the time bound can not be
a singular interval, i.e. it can not specify a precise moment in time. MITL
formulas are formed according to the syntax:

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2,

12

CHAPTER 2. REQUIREMENTS

where a ∈ AP is an atomic proposition and I is a non-empty interval of the
form: [a, b], [a, b), [a,∞), (a, b], (a, b), (a,∞), where a ≤ b for a, b,∈ R+. The
case where I is singular is not allowed; where I = [a, a].

Using MITL (with the standard derived operators) it is possible to specify
properties such as, every press will be followed by coffee within 5 seconds.

�[0,∞)(Press→ ♦[0,5)Coffee).

However it is not possible to specify that coffee will follow a press after exactly
5 seconds.

�[0,∞)(Press→ ♦[5,5]Coffee).

2.5.2 Timed Computation Tree Logic

To specify timing requirements CTL has been extended with time into timed
computation tree logic (TCTL) [16]. TCTL allows timing boundaries by adding
a time interval to the until operator. This can be used to extend the modal
operators with time intervals as well.

The syntax of TCTL is again separated into state formulas and path for-
mulas. The state formulas Φ are the same as CTL with the addition of atomic
clock constraints. The path formulas ϕ are changed to only contain the until
operator, which is extended with a time interval.

Φ ::= true | a | g | Φ1 ∧ Φ2 | ¬Φ | (Φ) | ∃ϕ | ∀ϕ

ϕ ::= Φ1U
JΦ2

where a ∈ AP , g ∈ ACC(C) is the set of atomic clock constraints over the set
of clocks C, and J ⊆ IR≥0 is an interval whose bounds are natural numbers.

The coffee machine property mentioned above can be expressed with the
formula

∀�(Press→ ∀♦[0,5)Coffee).

Uppaal [19, 22], a modern timed automaton model checker uses a simplified
version of TCTL. The Uppaal query language does not support nested path
formulas and has slightly different syntax with some added syntactic sugar. The
universal and existential quantifiers are written A and E, respectively, and the
always and eventually are written [] and <>, respectively. To express the for-
mula above we add a clock x which is reset when the user presses the button.
The formula can be expressed as

A[] (Press imply A<>(Coffee and x<5)).

However, this makes use of nested path formulas and is not possible. For this
type of query Uppaal has a leads to operator (written -->), where ϕ ψ
is equivalent to ∀�(ϕ→ ∀♦ψ). The formula can now be expressed as

13

2.5. QUANTITATIVE REQUIREMENTS

Press --> (Coffee and x<5).

Uppaal has also been extended for cost optimal reachability analysis in Uppaal
CORA [20]. CORA is used to specify priced timed automatons and can calculate
the minimum cost for which a property can be verified.

14

Chapter 3

Behavioral Models

Developing the behavioral models is often considered the most time consuming
phase of MDD. Modeling the system requires carefully studying the informal
and formal requirements, and developing a formal model which conforms to
them.

The modeling phase has the inherent choice of granularity in the model. If
the model is too precise about all minor aspects of the system, it becomes too
complicated, both for maintaining and for verification. If, on the other hand,
the model is too coarse, there might be errors is the design which are not caught.

There are many different languages for representing formal models. The
choice of modeling formalism highly depends on the system and what types of
analysis and testing to be performed.

3.1 Labeled Transition Systems

Transition systems are a general class of models, which can be represented as
graphs, with nodes as states, and directed edges as transitions. Transition sys-
tems are generally seen as an intuitive format for modeling state-based reactive
systems, since a state in the transition system can represent one (or more) states
in the implemented system.

Labeled Transition Systems (LTS) [96] are a very simple state-based mod-
eling formalism. Its simplicity makes it possible to analyze, verify and prove
properties. Since LTS are simple and well understood, they are often used as an
underlying semantics for other formalisms, where the semantics are described
as a translation to LTS.

Definition 1. A labeled transition system is a 4-tuple (S,L, T, s0), where:

• S is a non-empty set of states,

• L is a countable set of labels,

• T ⊆ S × (L ∪ {τ}))× S is the transition relation, and

15

3.2. EXTENDED FINITE-STATE MACHINES

• s0 ∈ S is the initial state.

L represents the observable interaction of a system, τ /∈ L represents an unob-
servable internal action.

An example of a vending machine modeled as an LTS can be seen in Fig-
ure 3.1. The state p1 is the initial state, symbolized by the anonymous incoming

p1

p2p3 p4

coin?

τ τ

Coffee! Tea!

Figure 3.1: Example LTS

arrow. The LTS models a system which accepts a coin and non-deterministically
produces coffee or tea. Even though LTS have no notion of inputs and outputs,
the standard convention of symbolizing outputs with ! and inputs with ? is used.
Once the coin is inserted it is not possible to known which state the system is
in until coffee or tea is observed.

3.2 Extended Finite-State Machines

Extended Finite-State Machines (EFSM) [101] are an extension allowing data
variables in the machine, and conditional branching depending on the value of
variables.

Definition 2. An extended finite-state machine is a 7-tuple (Q, q0,Σ,Γ, V, ψ, δ),
where:

• Q is a finite, non-empty set of states.

• q0 ∈ Q is the initial state.

• Σ is the input alphabet, a non-empty finite set of events.

• Γ is the output alphabet, a non-empty finite set of events.

• V is a finite set of variable names.

• ψ ⊂ V → V al assigns initial values to the variables.

• δ ⊆ Q× (Σ ∪ Γ ∪ τ)× B(V)×A(V)×Q is the state transition relation.

16

CHAPTER 3. BEHAVIORAL MODELS

δ relates a source state q, and an label l, to a target state q′, given the current

state of variables, ψ. This is written: q
l−→ q′, and corresponds to a transition

in the system. The labels are on the form e[g]/a, where e ∈ Σ∪Γ∪ τ , g ∈ B(V)
is a guard of boolean formula over the variables, and a ∈ A(V) is a set of
assignments with a standard expression language. A transition is only active if
the guard evaluates to true.

EFSM can be used to model systems with data dependencies. An example
EFSM can be seen is Figure 3.2. In the example a label with no guard is always

p1

p2p3 p4

coin?/c = x

τ [c > 5]/ τ [c ≤ 5]/

Coffee!/c = 0 Tea!/c = 0

Figure 3.2: Example EFSM

enabled. The variable c is internal and x represents an input variable. The
machine models a system which produces coffee if a coin of value more than 5
DKK is inserted, otherwise tea is produced.

As mentioned LTS is often used as underlying semantics for formalisms. This
is also done of EFSM, where the semantics are described as a translation from
EFSM to LTS. The semantics for EFSM = (Q, q0,Σ,Γ, V, ψ, δ) are defined as
LT S = (S,L, T, s0) where,

• S = Q× V alV ,

• L = Σ ∪ Γ,

• T contains an edge (q, v̄)
l−→ (q′, v̄′) for all (q, l, g, a, q′) ∈ δ where the guard

g evaluates to true given the values in v̄, and v̄′ = v̄[a],

• s0 = (Q, v̄), where v̄ is a vector containing the values of variables according
to ψ.

Here, v̄[a] refers to the values of the variables in v̄ after the assignments in a
have been performed. The number of state in LT S (or the size of the state-space
of the EFSM) is |Q|×|V al||V |. In case the set of possible values V al is infinite,
then the LT S becomes infinite.

3.3 Timed Automatons

Timed Automaton (TA) [10, 19] have been created specifically to model em-
bedded systems with timing properties. TAs describe real-time systems, whose

17

3.3. TIMED AUTOMATONS

p1

p2

c ≤ 2c ≤ 4 c ≤ 5

p3 p4

coin?/c := 0

τ [c = 2]/ τ [c = 2]/

Coffee!/ Tea!/

Figure 3.3: Example TA

semantics can be described using infinite state labeled transition systems, where
actions of transitions are either delay quantities (non-negative reals), or discrete
actions. This class of labeled transition systems is often referred to as timed
labeled transition systems.

The syntax of TAs is essentially finite-state automatons extended with a fi-
nite collection of real-valued clock variables. The locations and edges of the TAs
are decorated with constraints on the clock variables, restricting (and enforcing)
when discrete transitions corresponding to the edges of the timed automaton
may (or must) be taken.

A clock constraint is a conjunctive formula of atomic constraints of the form
x ∼ n or x− y ∼ n, where x, y ∈ C are real-valued clock variables, ∼∈ {≤, <,=
, >,≥}, and n ∈ N. B(C) denotes the set of clock constraints. Note that even
though the clocks are real-valued, the constraints are limited to integer values.

Definition 3. A timed automaton is a tuple (S, s0,Σ, E, I) where

• S is a finite set of states,

• s0 ∈ S is the initial state,

• Σ is a finite alphabet of labels,

• E ⊆ S × B(C)× Σ× 2C × S is the set of edges, and

• I : N → B(C) assigns invariants to locations.

We write s
g,a,r−−−→ s′ when (s, g, a, r, s′) ∈ E, to represent an edge from s to s′

with clock constraints g, label (or action) a, and r ∈ 2C represents the clocks
which will be reset on the transition.

Figure 3.3 shows the example coffee machine as a timed automaton with clock
constraints. Edges in the example are on the form a[g]/r, invariants are written
next to their associated state. The example models a system which after a coin
is inserted waits two seconds before deciding to make coffee or tea, and then
produces coffee within two seconds, or tea within three seconds.

18

CHAPTER 3. BEHAVIORAL MODELS

Figure 3.4: Example TA in Uppaal syntax

TA are used as formalism in several model checking tools, e.g. Uppaal [22]
and Kronos [104]. The tools extend the formalism with new features as syn-
tactic sugar to ease the development of models, such as data variables, arrays,
structures etc. The example coffee machine from Figure 3.3 is shown using
Uppaal syntax in Figure 3.4.

Again the semantics can be expressed as LTS. States in the LTS are made
for each S × RC+, so the state of the LTS is seen as a pair (s, u) where s ∈ S
and u maps each clock in C to a value from R+. Two types of transitions are
possible in the LTS, delays and actions, defined as

• (s, u)
d−→ (s, u+ d) if u and (u+ d) satisfy I(s), where d ∈ R+ and

• (s, u)
a−→ (s′, u′) if s

g,a,r−−−→ s′, u satisfies g, u′ is the same as u with the
clocks in r reset, and u′ satisfies I(s′).

An example trace for the automaton in Figure 3.3 could be:

(p1, 0)
3.4−−→ (p1, 3.4)

coin?−−−→ (p2, 0)
2.0−−→ (p2, 2.0)

τ−→

(p3, 2.0)
1.3−−→ (p3, 3.3)

Coffee!−−−−−→ (p1, 3.3).

3.4 Other Modeling Formalisms

3.4.1 Process Algebra

Process algebra (or process calculi) (e.g. π-calculus [71], CSP [54], CCS [70],
or ACP [24]) focus on modeling concurrent systems. They allow modeling of
processes with channel communication and parallel composition of processes.
Process algebra are often used to model communication protocols and have
been used for verifying e.g. authentication [91] and key-exchange protocols [86].

Generally process algebra have a notion of processes and communication
between processes using message-passing through channels. The precise syn-
tax and semantics differ, and some formalisms incorporate timing, stochastic
behavior, etc. As an example of a process algebra we consider Calculus of
Communicating Systems (CCS).

19

3.4. OTHER MODELING FORMALISMS

CCS is a formal language for describing patterns of interaction in concurrent
systems. CCS has syntax for defining processes and for composition of processes
and describing the interaction between the processes.

Consider the process

CM = coin.coffee.0.

This process describes a system which accepts a coin, then produces coffee, and
then stops. This can be extended with a non-deterministic choice

CM = coin.(coffee.0 + tea.0),

describing a machine which produces either coffee or tea after receiving a coin.
By making the machine recursive we get an infinite coffee/tea producing machine

CM = coin.(coffee.CM + tea.CM).

This machine can be interleaved with a process for a person inserting coins

Person = coin.Person.

The interleaving machine describes a system which produces beverages infinitely
often

(CM |Person)\coin ≡

M = (coffee.M + tea.M)

3.4.2 Petri Nets

A Petri net (or Place/Transition Net) [79, 84] is a modeling formalism often
used for modeling distributed systems. The Petri net consists of a Petri net
graph and a marking, assigning tokens to places in the Petri net graph. A Petri
net graph consists of places, transitions, and arcs between them.

Definition 4. A Petri net graph is a 3-tuple (S, T,W), where

• S is a finite set of places,

• T is a finite set of transitions, and

• W : (S × T) ∪ (T × S) → N is a multiset of arcs, which assigns arc
multiplicatives to arcs between places and transitions (and vice versa).

Definition 5. A Petri net is a 4-tuple (S, T,W,M0), where

• (S, T,W) is a Petri net graph and

• M0 ∈M : S → N is the initial marking.

20

CHAPTER 3. BEHAVIORAL MODELS

p1

p2

p3
t1

2

1

1

Figure 3.5: Example Petri Net

p1

p2

p3
t1

2

1

1

Figure 3.6: Example Petri Net after transition is fired

An example of a Petri net can be seen in Figure 3.5. Circles represent places,
squares represent transitions, and arrows between them represent arcs. The
number next to the arcs represent the multiplicative. The dots in the places
represent the marking. In the example place p1 has two tokens and p2 has
one. Arcs going into a transition represent tokens the transition consumes,
arcs going out of transitions represent tokens the transition produces. The
multiplicative on the arcs represents how many tokens are consumed/produced.
When all incoming arcs to a transition have enough tokens the transition is
enabled and can be fired. When the transition fires, all incoming tokens are
consumed (removed), and all outgoing are produced (created). In the example
the transition t1 is enabled because p1 has two tokens, which is required by

the arc p1
2−→ t1, and p2 has one token, which is required by the arc p2

1−→ t1.
When t1 fires, two tokens are consumed from p1 and one token from p2 leaving
both places empty. One token is produced in place p3, resulting in the Petri net
shown in Figure 3.6. Petri nets are good for modeling concurrency and are often
used for modeling distributed systems and in particular work flows. Petri nets
have been extended with quantitative properties, e.g. time [28] and cost [6].

3.4.3 UML State Machines

A well-known modeling formalism is the Unified Modeling Language (UML) [48].
UML is a standardized general-purpose modeling language. As such it has a lot
of features and is intended for modeling several different areas of systems, such

21

3.4. OTHER MODELING FORMALISMS

S1S1

S4S4

S2S2

S3S3

a2

a1

Figure 3.7: Example UML State Machine

S1S1

S2S2 S4S4
a1

Figure 3.8: Example UML State Machine Simplified

as system structure, behavior, and architecture, it has even been used to model
business processes and data structure.

For modeling the behavior of systems, (Behavioral) UML State Machines
are used. UML State Machines have several extensions over the simpler finite
automatons, most notably, they are hierarchical. This means that when an
outer (or composite) state is reach, control is said to be transfered to an inner
state machine. The inner state machine can have internal transitions as well
as external transitions to other outer state machines. An example UML State
Machine is seen in Figure 3.7. Frames with a heading represent (possibly com-
posite) states. Solid black circles represent initial states. Black circles with a
ring represent final states. S1 waits for action a1, then transfers control to the
initial state of S2. Once control reaches the final state of S2 it is transfered
outside S2 to S4.

Nesting state machines can be used to abstract detailed behavior and get an
overview for the functionality of the machine. By hiding the internal behavior
of S2 the machine is simplified, and an overview is easier to comprehend. This
simplified machine is shown in Figure 3.8.

Due to the many features of UML, it has been difficult to develop a formal
semantics. Some work has been done, but it has been found problematic to
define all the more advanced features [63, 43]. Due to the large feature set

22

CHAPTER 3. BEHAVIORAL MODELS

and the lack of formal semantics, it becomes difficult to make automatic model-
checking and analysis of UML models. Those who try use a limited set of
features from UML, e.g [60] and the Rhapsody environment [88].

23

Chapter 4

Model Checking

Now that we have examined how to model requirements and how to model
behavior, we can combine these two with model checking, to analyze whether
the behavioral models adhere to the requirements. How this is done and which
techniques are used depends on which formalisms are used and which types of
queries are being posed.

Some formalisms go well together, for instance specifying behavior of state
machines with temporal logics. On the other hand specifying state-based be-
havior with constraint systems is not directly possible. This section focuses on
model checking state machines with temporal logics.

4.1 State Reachability

Using LTS as modeling formalism, a simple property to check is whether a
given desired goal state sg is reachable. A general state reachability algorithm
is shown in Algorithm 1.

The algorithm keeps two sets, waiting and passed. The waiting set contains
the states which have been reached but not yet checked. The passed set contains
the states which have been checked. The algorithm starts with the initial state
in the waiting set. The algorithm keeps removing states from the waiting set
and checking all successors of this state for the goal state. If the goal state is not
found the successor states are added to the waiting set, unless they are already
in either the waiting set or the passed set.

If the goal state is reached the algorithm terminates positively. If the waiting
set becomes empty the entire state space has been traversed. If the goal state
has not been reached the algorithm terminates negatively.

This simple algorithm can only check if a certain state is reachable. The
temporal logic formulas defined in Chapter 2 are formed over atomic propositions
AP . Atomic propositions are simple facts known about the state of the system,
e.g. “x equals 5” or more abstract “the coffee machine is empty”. These are
often used when translating more complex formalisms to transition systems. We

25

4.2. LTL MODEL-CHECKING

Algorithm 1: Reach(F , qg)
Input: LTS L = (S,L, T, s0), a goal state sg ∈ S
Output: “sg is reachable” or “sg is not reachable”

1: waiting := {s0}
2: passed := ∅
3: while waiting 6= ∅ do
4: Select and remove s from waiting
5: passed := passed ∪ {s}
6: for all s′, where T (s, l) = s′ do
7: if s′ = sg then
8: return “sg is reachable”
9: end if

10: if s′ /∈ waiting ∪ passed then
11: waiting := waiting ∪ {s′}
12: end if
13: end for
14: end while
15: return “sg is not reachable”

extend LTS with atomic propositions:

Definition 6. A transition systems TS, over a set of atomic propositions AP ,
is a 5-tuple (S,L, T, s0, P), where:

• (S,L, T, s0) is a LTS,

• P : S → 2AP is a proposition labeling function.

With the atomic propositions we can modify the reachability algorithm to
check if a state with the desired propositions is reachable. Algorithm 1 can
only be used to check reachability (or its dual, safety). So this is a very specific
class of simple (non-nested) LTL properties. To check nested properties a more
complex LTL model-checking algorithm is needed.

4.2 LTL Model-Checking

An LTL model-checking algorithm is a decision procedure, which given a tran-
sition system TS and LTL formula ϕ returns “yes” if TS satisfies ϕ (written
TS |= ϕ) and returns “no”, together with a counter-example, if TS 6|= ϕ.

The model-checking algorithm relies on the following observations:

TS |= ϕ ⇐⇒ Traces(TS) ⊆Words(ϕ)
⇐⇒ Traces(TS) ∩Words(¬ϕ) = ∅
⇐⇒ Traces(TS) ∩ Lω(A) = ∅

26

CHAPTER 4. MODEL CHECKING

p1

p2p3 p4

{}

{coin?}

{coin?, coffee!} {coin?, tea!}

coin?

τ τ

Coffee! Tea!

Figure 4.1: LTS using atomic propositions

With Traces(TS) being the set of all atomic proposition traces of TS, Words(ϕ)
being all words of atomic propositions in AP that satisfy ϕ, and Lω(A) =
Words(¬ϕ) being the language accepted by a non-deterministic Büchi automa-
ton (NBA) for ¬ϕ. The observations specify that TS satisfies ϕ iff its set of
traces is a subset of the set of all words satisfying ϕ. In other words, if the
intersection of the set of traces and the words not satisfying ϕ is the empty set.

The idea of the model-checking algorithm is to generate a NBA A which
accepts on Words(¬ϕ) and constructing the product transition system TS⊗A.
If there exists an infinite run π in TS ⊗A satisfying the accepting condition of
A then TS 6|= ϕ and (in the case of safety properties) a prefix of π is returned
as counter example, otherwise TS |= ϕ. For more information see [16].

To illustrate the approach, let us consider an example. Recall the example
LTS in Figure 3.1, on page 16. To allow model checking on this LTS, we will
add atomic propositions to the states. The set of atomic propositions will be
AP = {coin?, coffee!, tea!}. The atomic proposition coin? represents a state
where a coin has been entered, but no beverage has been produced. The atomic
propositions coffee! and tea! represent coffee and tea producing states, respec-
tively. This LTS is shown in Figure 4.1.

On this LTS we would like to verify that coffee is always returned after a
coin is inserted. This can be done with the LTL property

�(coin?→ ♦coffee!).

We need the negation of this property

¬(�(coin?→ ♦coffee!)).

An NBA of this property can be generated using different algorithms. Since
the complexity of the model checking problem depends on the size of the NBA,
much research has gone into reducing the size of the NBA (see e.g. [47]). A
reduced NBA accepting precisely the traces which satisfy the LTL property is
shown in Figure 4.2. This NBA accepts if at some point a state is observed
which does not have the proposition coffee! but has the proposition coin? and

27

4.2. LTL MODEL-CHECKING

init

acc

coffee! ∨ ¬coin?

¬coffee! ∧ coin?coffee!

¬coffee!

Figure 4.2: Büchi automaton of LTL property

p1, init p1, acc

p2, acc

p3, init p4, acc

coin? coin?

τ
τ

coffee! tea!

Figure 4.3: Product transition system

all states hereafter do not have coffee!. This precisely represents a state in
which entering a coin does not lead to coffee being produced.

We now construct the product transition system, TS, of this NBA and the
LTS of our system. The states in TS are the product of states in the NBA
and the LTS. Transitions are allowed in TS if there is a transition in the LTS
and the atomic propositions in the goal state agree with the transition label in
the NBA. The product transition system is shown in Figure 4.3. Unreachable
states and atomic propositions are omitted, and accepting states in the NBA
are marked as accepting. The task is now to check that there is no infinite trace
in TS which visits an accepting state the NBA infinitely often. Quite obviously
the trace 〈p1, init〉(〈p2, acc〉〈p4, acc〉〈p1, acc〉)ω visits acc of the NBA infinitely
often. Thus we have Traces(TS) ∩ Lω(A) 6= ∅ and therefore TS 6|= ϕ.

This should not be surprising since LTS can choose to produce tea instead
of coffee. If we remove p4 in the LTS, and thereby remove to possibility to make
tea, then the product transition system would be unable to go to 〈p4, acc〉 and
would thus be unable to make an infinite trace with an accepting state.

28

CHAPTER 4. MODEL CHECKING

4.3 Symbolic States

Algorithm 1 traverses the state space by enumerates all states. For small LTSs
this is not a problem, but as the LTS grows performance issues arise. The
problem becomes evident when LTS are used as underlying semantic for other
formalisms. For instance EFSM can be translated into LTS with one state for
each variable valuation. This reduces the problem of model checking EFSM
to that of model checking LTS. However, the state space of the LTS grows
exponentially in the number of variables and the domain size of the variables of
the EFSM. In the case of infinite domains, the state space becomes infinite and
enumeration is impossible.

To solve this problem, symbolic states are introduced. A symbolic state
covers several states in the underlying LTS. In the case of EFSM, this can be
done using predicate abstraction over the variables. Instead of having a state
in the LTS for each valuation of the variables in the EFSM, we can abstract the
values into predicates and store the value of the predicates instead.

Consider the example in Figure 3.2 on page 17. We have one variable c, so
the number of states in the underlying LTS is |Q| × |V al| (the number of states
in the EFSM times the size of the domain of c). If V al is infinite, the state space
becomes infinite, but we can bound the size of V al to enable model checking.
For instance V al = {1, 2, . . . , 100}makes the size of the state space 4×100 = 400
states, which can easily be enumerated. If, however, we had two variables the
size would be 4 × 1002 = 40000, and for three variables 4 × 1003 = 4000000.
We can see that the state space quickly grows too big for model checking, this
is commonly referred to as state-space explosion.

If we examine the example we can see that the precise value of the variable
is not used. The variable is only checked for being less than or equal to 5 or
greater than 5. Using this we can abstract the value away and store the value
relative to 5. We only need a single predicate c ≤ 5, if this predicate is true, we
know the original value was less than or equal to 5, otherwise it is greater than
5. When a value is input to the machine, we update the predicate instead of
storing the value, and the guards check the predicate for which transitions are
enabled.

Using this predicate abstraction the size of the state space becomes 4×2 = 8
states. For two predicates the size is 4× 22 = 16 states, even for ten predicates
the size is only 4 × 210 = 4096, which is quite manageable. This abstraction
even works when V al is infinite, so long as the number of predicates is finite.

Binary encodings such as this can be very efficiently handled using Binary
Decision Diagrams (BDD) [7]. A BDD is a data structure for representing
boolean functions. By encoding the states and state transition function as
binary functions and using symbolic states as demonstrated above, the entire
model can be encoded as BDDs. This allows for very efficient implementations
of model checkers, which can handle large state spaces.

In the case of TA, the variables are real-valued clocks. This makes the
state space uncountable, which makes it impossible to enumerate all states.
To abstract the exact values of the clock variables we may first benefit from

29

4.3. SYMBOLIC STATES

observing the largest value kc which clock c is compared to in any clock guard
or invariant in the TA. Once c reaches a value above kc the precise value becomes
irrelevant, since all values above kc show the same behavior. Since the clocks
are only used in invariants and guards, both of which are formed over clock
constraints, we can use techniques similar to predicate abstraction, however,
since the values are real-valued, and the values represent clocks, it becomes
more complicated. The idea is to split the clock valuations into regions, where
clocks in the same region satisfy the same clock constraints and allow the same
behavior. For each clock, c, its value domain is separated into regions based on
the positive integer numbers as such:

• A region is made for each integer, c = n, for n ∈ 0, 1, . . . , kc,

• for each pair of adjacent integers, a region is made, n < c < n + 1, for
n ∈ 0, 1, . . . , kc − 1, and

• a region is made based on the highest integer kc a clock c is compared to
in a guard or invariant, kc < c.

This separates the possible values of each clock into finitely many regions. For a
set of clocks, regions are made for all combinations of regions of each individual
clock. To guarantee correct behavior for time delays, a diagonal constraint is
added:

• For each pair of distinct clocks c and d, and integers n < kc and m < kd.
The region described by n < c < n+ 1∧m < d < m+ 1 is separated into
three regions. One for each of the cases: frac(c) < frac(d), frac(c) =
frac(d), and frac(c) > frac(d). Where frac(c) represents the fractional
part of the real number c.

This makes the state space finite and enumerable, however it becomes very large,
as the entire domain of valuations is split into small, discrete areas. Consider
for instance the TA in Figure 3.3. For the one clock c we can observe the largest
constant kc = 5. This means the set of regions is:

{c = 0, c = 1, c = 2, c = 3, c = 4, c = 5,

0 < c < 1, 1 < c < 2, 2 < c < 3,

3 < c < 4, 4 < c < 5, c > 5}

For just a single clock with highest constant 5 we have 12 regions. If we add a
second clock, also with highest constant 5, the set of regions is bound by 1152.
As shown in [10] the number of regions grows exponentially in the number of
clocks and their highest constants.

To reduce the state space further, clock constraints are used to union the
regions into zones, to obtain a coarser abstraction. This makes the size of the
state space dependent on the number of clocks and clock constraints. Model
checking tools often store zones in a data structure called difference bound
matrix (DBM) [21]. This technique, with some further implementation tricks
makes model checking TA much more efficient. For further details see [65, 16].

30

CHAPTER 4. MODEL CHECKING

4.4 Model Checking and Static Analysis

Static analysis [74] (or program analysis) is a set of techniques for statically
analyzing the dynamic behavior of programs. It is most known for its pervasive
use in compilers, e.g. to remove dead code, or avoid re-computation of available
results. Recently static analysis has been used to analyze code for bugs and
to verify invariants. Rice’s theorem [85] teaches us that deciding non-trivial
properties of programs is impossible. Therefore, static analysis performs under-
(over-)approximations of the possible computations of the program to be able
to guarantee that some behavior can (not) be exhibited.

For several years a link between model checking and static analysis has been
suspected and researched. The traditional view is that static analysis performs
approximations of the solution set very efficiently, while model checking per-
forms an exact analysis of the solution set with more performance issues. How-
ever, advances in both areas have blurred this simplistic view. It has been shown
how static analysis can be seen as an instance of model checking [89, 90, 92] and
how model-checking can be seen as an instance of static analysis [75].

The general idea is to use techniques from one field and applying them in the
other, or to use both techniques in tandem, to increase precision of the approach,
while reducing complexity and execution time. Much recent research tries to
bridge the gap between static analysis and model checking. For instance [93] uses
the static analysis technique of slicing (normally used to reduce the syntactical
size of applications) to reduce the size of models in Uppaal before performing
model checking, to improve verification speed. In [26] static analysis is used to
compute partial order information which is used to reduce the state space for
model checking. In [89] static analysis is used to create an abstract form of the
system, which is then analyzed using model checking.

31

Chapter 5

Model-Based Testing and
Learning

The verification techniques used in model checking can prove correctness of the
system design. It must be noted that this is correctness of the models of the
system, but in principle says nothing about the actual system. Model-Based
Testing (MBT) is used to bridge the gap between the models and the actual
system (often called system under test (SUT)).

MBT uses models describing required behavior to automatically generate
test cases, and uses the models as oracles to automatically validate the outcome
of test case execution. The description of MBT presented here is based on the
formal testing approaches developed by Jan Tretmans [98, 95]. The approach is
said to be formal, specification based, active, black-box, functionality testing.
Figure 5.1 shows an overview of the process. This process does not assume any
specific formalisms. Rather it presents a generic overview of how a MBT process
is arranged.

We start with a specification of required behavior. This specification is some
model presented in a formal language, such as those mentioned in Chapter 3.
Let SPEC be the set of all valid expressions in this language, the specification
s is an element in this language s ∈ SPEC.

The implementation is the system we want to test, the SUT. This can be
anything from a simple software system to physical hardware devices with sen-
sors and actuators. The implementation is viewed as a black-box system, as
such, we can only interact with it through its interfaces. The process of testing
aims to judge correctness based on behavior on these interfaces.

MBT aims to check whether the SUT conforms to a specification s. Since
the specification is a mathematical object taken form the formal domain SPEC
and the implementation is a real system, we can not formally reason about
conformity between them. The trick here is to assume that the SUT can be
modeled by some formal model in the domain MOD. We assume that for
an implementation there exists a model i ∈ MOD which precisely describes

33

Specification
s ∈ SPEC

Implementation
i ∈MOD

Test Generation

Test Cases
Ts ⊆ TEST

Test Execution

i passes Ts
i fails Ts

imp

Figure 5.1: Model-Based Testing process (adapted from [98])

the behavior of the implementation. This allows us to reason formally about
implementations, and we can now define an implementation relation imp ⊆
MOD×SPEC. An implementation model i ∈MOD is said to be correct with
respect to s ∈ SPEC if i imp s.

A test case is an experiment with stimuli applied to the SUT and expect
responses from the SUT. Test cases are also elements of a formal language
t ∈ TEST . A successful execution of test case t on implementation i is expressed
as i passes t, unsuccessful execution is expressed as i fails t ⇐⇒ i pas6 ses t.
For a test suite we have T ⊆ TEST : i passes T ⇐⇒ ∀t ∈ T : i passes t.

Test cases are generated in test suites by some algorithm genimp : SPEC →
P(TEST). We require this algorithm to generate test suites such that we can
learn whether the implementation conforms to the specification. That is, we
care looking for test suites such that ∀i ∈ MOD : i imp s ⇐⇒ i passes Ts.
Such a test suite is said to be complete (sound and exhaustive) since a correct
implementation will pass, and a failed test case means the implementation is
not correct. Such an algorithm is said to be complete if the generated suite is
complete for all specifications.

To summarize: We have a formal specification of required behavior s ∈
SPEC; we assume a model exists which precisely describes the implementa-

34

CHAPTER 5. MODEL-BASED TESTING AND LEARNING

tion i ∈ MOD ; we generate a suite of test cases Ts ∈ P(TEST) such that
i passes Ts ⇐⇒ i imp s.

The test case generation and execution can be done in two separate phases
as it is implied above. This approach is called off-line testing, where a complete
batch of test cases is generated, to be executed on the SUT later. This approach
has the benefits that it is easier to reason about the test cases regarding coverage
and the exact same sequence of tests can be re-run. Off-line testing has two
major disadvantages. First, it requires the specification to be analyzed in its
entirety. This limits the size of systems that can be handled due to state-space
explosion. Second, in the case of non-deterministic systems, a test case is not
simply a series of inputs and outputs, but a tree which branches for every non-
deterministic choice in the system. This may lead to very large test cases.

Test case generation and execution can also be interleaved, where a single
step in a test case is generated, executed, and validated, before generating the
next step in the test case. This approach is called on-line testing. In on-line
testing the test case generation tool runs a simulation of the specification and is
connected directly with the SUT. The testing tool observes the current state of
the specification and selects an enabled input. The input is sent to the SUT, and
possible outputs are observed. The state of the simulation is updated according
to inputs and outputs. This approach is very good at handling large and non-
deterministic systems. The state space of the system is more manageable, since
only the subset of possible current states is stored. If this set becomes empty,
then there is no possible way for the system to be in a correct state, i.e. the
test case fails. Non-determinism is less of a problem since outputs are directly
observed. In highly non-deterministic systems, the number of possible states can
still be too big. However, the size of manageable systems is usually significantly
larger, than for complete model-checking.

This generic testing framework can be instantiated with several different
formalisms and its principles are used in several tools, e.g. TorX [99], Uppaal
TRON [100]. TorX uses LTS and the ioco conformance relation as formalisms.
TRON is as testing tool for testing real-time systems. It uses Uppaal TA
formalism for modeling systems, and the relativized timed conformance relation.

5.1 Model Learning

So far we have assumed that a formal model is available as part of the system
development. However, in some cases a formal model is not available. This
could be in the case of legacy systems, or third-party systems, where formal
specifications are normally not available. In these cases, automatic learning of
a formal representation of an already implemented system is desirable.

This can be done using the L∗ algorithm developed by Angluin [15]. While
the algorithm is originally developed for learning languages of deterministic
finite automatons (DFA), it has been converted to allow learning of Mealy ma-
chines [76] as well as I/O automata [5]. The algorithm assumes a teacher which
knows a Mealy machine (MM) M, and a learner which initially only knows

35

5.1. MODEL LEARNING

Learner SUT

Input

Output

Figure 5.2: Model learning

Learner Mapper SUT

Abstract
Input

Abstract
Output

Concrete
Input

Concrete
Output

Figure 5.3: Model learning with mapper

the input language of M. To infer a MM equivalent to M, the learner can
pose two types of queries to the teacher: membership queries and equivalence
queries. Membership queries ask if a string w is in the language accepted byM.
Equivalence queries ask if an hypothesized MM H is equivalent to M. In case
the hypothesis is wrong the learner provides a counterexample. This general
setup is depicted in Figure 5.2.

If instead of a MM, the teacher has an actual system, this setup can be used
to learn a model of the behavior of this system. This is implemented in the tool
LearnLib [81]1. While this process is automatic, it is very limited in the size
of systems, it is possible to learn. The limit seems to be in the order of 40.000
states [69]. Particularly the algorithms are unable to handle data dependent
systems, due to state-space explosion.

To alleviate this problem Aarts et al. [3] have proposed to introduce a mapper
between the learner and teacher. This mapper translates concrete values from
the system and teacher into abstract values used by the learner. This way the
learner only observes a small set of abstract values, as opposed to the full set of
concrete values. The setup with the added mapper is depicted in Figure 5.3.

These abstractions have been shown to be useful for learning realistic sys-
tems. The problem is that the abstractions are unknown a priori. Finding these
abstraction requires either intimate knowledge of the SUT or requires running
the learning process and observing the system manually, to determine possible
abstractions. This abstraction can either be too coarse (the learned model is too
simplistic), too detailed (the state space will be too large to allow efficient learn-
ing), or simply incorrect, thereby introducing non-determinism to the learner,
in which case the learning will fail.

The ability to automatically learn such abstractions would greatly increase
the usability the model learning, and increase the size of system which can be
learned automatically.

1http://www.learnlib.de

36

Chapter 6

Thesis

The issues mentioned in the preceding chapters usually deal with state-space
issues related to data variables. As mentioned these issues are often dealt with
by abstracting away the data related parts during modeling. This technique
can work very well for some types of systems, where data is only transported
and stored. In some systems, however, the control flow depends heavily on the
values of variables. We call such systems (or part of a system) data sensitive,
since the execution of the system is sensitive to the data values.

In this thesis we deal with improving the quality of data-sensitive systems.
Specifically we employ formal methods, such as model checking and model-based
testing, and combine these with techniques from static analysis to reduce the
state spaces. If we recall Figure 1.2 on page 3 showing an overview of model-
driven development. Figure 6.1 shows an updated version with dashed boxes
representing contributions from this thesis. The thesis improves the processes
in three areas:

(I) Modeling and model checking of data-sensitive state-based systems,

(II) Model learning of data-sensitive state-based systems, and

(III) Model-based testing of data-sensitive systems, through the use of con-
straint systems.

The following sections describe the research question for each area.

6.1 Research Question I

Several modeling formalisms have been presented, several of which include data
variables of some sort. All of these operate on data at a low level, which is
not well suited for modeling complex data. This combined with the state-space
explosion problem makes modeling and model checking of data-sensitive systems
difficult. Therefore we pose the following research question:

37

6.1. RESEARCH QUESTION I

Ideas

Analysis

Design

Implementation

Test

Operation

Formal
Requirements

Formal
Model

System
Model

Model-Based
Testing

Model
Learning

Code
Generation

Simulation
Validation
Verification

Analysis
Consequence
Consistency

Monitoring

(I)

(II)

(III)

Figure 6.1: Contributions

Can we make a general modeling formalism, combining state-based
modeling and abstract interpretation, which covers a wide variety of
applications, while allowing efficient modeling and model checking.

This research question is dealt with in three papers, Paper A, Paper B, and
Paper C.

The first paper originated from ideas for improving MBT of data sensitive
systems. The idea was to model a database as two sets: present-set and absent-
set. The present-set contains elements which are known to be present in the
database, while the absent-set contains elements known to be absent from the
database. Elements which are neither in the present- nor absent-set, are said
to be unknown, and can be either present or absent from the database. This

38

CHAPTER 6. THESIS

research led to the definition of the present-absent abstraction and how it can
be used in MBT.

The second paper strives to generalize the modeling formalism presented in
the first paper. It was observed that the abstraction employed fitted very well
with the lattice framework used in abstract interpretation. It was also observed
that other abstractions used in a similar manner fitted the same framework,
notably the abstraction used for cache modeling [35]. This led to joint work
formulating the lattice transition system (LaTS). A LaTS is a transition system
where the state of the system is a combination of a discrete state and an element
from a lattice. This enables abstract model checking, where instead of traversing
all data values individually, the algorithm can use least upper bound and greatest
lower bound to make an abstract state space exploration. This approach was
extended with a CeGAR approach, able to refine the abstraction in case of an
inconclusive answer.

The third paper details the implementation of this approach in the proto-
typing tool oppaal.

Together, these three papers present a novel approach to modeling data-
sensitive systems, together with algorithms and an implementation improving
the performance of model checking data-sensitive systems.

6.2 Research Question II

This work builds on previous work of Fides Aarts and Frits Vaandrager. As
mentioned, the problem with automatically learning systems, is the state space.
This is particularly true when learning data-sensitive systems. To enable learn-
ing of larger systems, abstractions are introduced. This lead us to the research
question:

Is it possible to automatically learn an abstraction to allow auto-
matic efficient learning of large systems.

In Paper D we introduced an approach to automatically learn such abstractions.
The approach works on a restricted class of extended finite state machines. The
system is not allowed to perform data operations on values, the system is only
allowed to observe values on inputs and store them, check for equality on values,
and return observed values as outputs. The system is only allowed to store the
first and last occurrence of a value, but we expect this restriction to be easy to
lift.

The approach is to have a mapper which learns the abstraction running in-
between the learner (LearnLib) and teacher (SUT), during the learning phase.
The mapper holds the currently known abstraction and tries to translate be-
tween concrete values and abstract values. If the mapper is unable to translate
values according to the current abstraction, or the current abstraction produces
non-determinism to the learner, the abstraction needs to be refined.

The idea in refining the abstraction is to examine the trace which shows
non-deterministic behavior. Due to the restrictions on the SUT, we know that

39

6.3. RESEARCH QUESTION III

only values that are present more than once on a trace can cause the non-
determinism. In case several values are present more than once, the algorithm
introduces fresh values until a new abstraction has been found.

The approach has been implemented in a prototype and has been shown to
work on real life examples (biometric passport, session initiation protocol) as
well as academic examples (alternating bit protocol).

6.3 Research Question III

We are presented with the problem of testing controllers for professional printers.
The problem is posed by the printer manufacturer Océ-Technologies B.V. Océ
were experiencing increasing load during testing, and were interested in reducing
the number of test cases but not suffer in reduced test quality. The printer
controller is a stateless system. The input is a set of parameter values describing
a document to be printed and the output is a set of parameter values to the
printer hardware describing how each sheet should be printed. Since this is not
a reactive system, state machines are not suited for modeling. Therefore we
pose the research question:

Are constraint systems useful as oracle and for test case generation,
in an industrial context.

In Paper E we present an approach to MBT, using constraint systems as oracle,
and combinatorial testing as test case generation. Constraint systems are used to
model the relationships between input values and output values. The constraint
system is formed as a set of boolean formulas with implications. The premise
of the implication is a conjunction of boolean formulas on the input values, and
the conclusion is on the output values. E.g. if A represents an input value and
B represents an output value, then a formula could be: A < 3⇒ B = 5. These
models were used as oracle during test case execution. For test case generation,
combinatorial testing was used to generate test cases with pair-wise coverage.
The approach was implemented in the Python testing framework used at Océ,
and was entered into their nightly test runs.

This approach resulted in measurable coverage (which they did not have
before), and we got good coverage using a comparatively small number of test
cases. Having models describing the relations between inputs and outputs also
increased the developer’s knowledge about the system, and reduced the effort
required to locate the error in the code.

The following sections briefly present the papers of this dissertation. Each is
presented with coauthor information, publication outlet, and an overview for
contributions.

40

CHAPTER 6. THESIS

Paper A: Present and Absent Sets

Petur Olsen, Kim G. Larsen, and Arne Skou

In: Proc. Sixth Workshop on Model-Based Testing, Paphos, Cyprus. Electr.
Notes Theor. Comput. Sci., 264(3):53–68, 2010

We present a new abstraction of reactive systems interacting with databases.
This abstraction is intended to be used for model-based testing. We abstract
the database into two sets: present set and absent set, and present a proof of
this abstraction. We present two extensions of FSM, the DBFSM and PAFSM.
DBFSM are a form of FSM incorporating databases. PAFSM are an abstraction
of DBFSM using present-absent sets. Depending on what type of testing is to be
done, the translation is tailored to fit this purpose. We show how this translation
is related to the present-absent abstraction. Finally, we illustrate the approach
through a small example and show how this can be used for testing with the
model-based testing tool Uppaal TRON.

Contributions

• Abstraction of reactive system interacting with databases.

• Extension of FSM to DBFSM, representing systems interacting with databases.

• Abstraction of DBFSM to PAFSM, corresponding to the abstraction of
systems.

• Describe MBT of PAFSM.

41

6.3. RESEARCH QUESTION III

Paper B: Model Checking with Lattices

Andreas Engelbredt Dalsgaard, René Rydhof Hansen, Kim Gulstrand Larsen,
Mads Chr. Olesen, Petur Olsen, and Jǐŕı Srba

Unpublished.

Model checking is a verification technique based on searching through a state
space. As the state spaces are often large or even infinite due to unbounded data
structures, techniques to tackle this problem have been investigated. We intro-
duce a novel abstract model of labelled transition systems where states of the
system are paired with elements from a lattice that provides a suitable abstrac-
tion of the real data. We present a general reachability algorithm with different
update functions to account for different degrees of abstraction and prove the
correctness and termination of the algorithm. Furthermore, we develop the no-
tion of Lattice Guided Abstraction Refinement (LaGAR) for iterative recovery
of precision that might be lost due to the applied abstraction. The usability of
the framework is demonstrated on a number of applications that include com-
munication protocols, databases, cache analysis and zones in timed automata.
Prototype implementations in some of the application domains indicate promis-
ing results.

Contributions

• Generalize the approach to fit other applications.

• Provide model-checking algorithms, with proofs.

• Provide CeGAR approaches to automatically refine the abstractions.

42

CHAPTER 6. THESIS

Paper C: opaal: A Lattice Model Checker

Andreas Engelbredt Dalsgaard, René Rydhof Hansen, Kenneth Yrke Jørgensen,
Kim Gulstrand Larsen, Mads Chr. Olesen, Petur Olsen, and Jǐŕı Srba

In: NASA Formal Methods, volume 6617 of Lecture Notes in Computer Science,
pages 487–493. Springer, 2011.

We present a new open source model checker, opaal, for automatic verification
of models using lattice automata. Lattice automata allow the users to incor-
porate abstractions of a model into the model itself. This provides an efficient
verification procedure, while giving the user fine-grained control of the level of
abstraction by using a method similar to Counter-Example Guided Abstrac-
tion Refinement. The opaal engine supports a subset of the Uppaal timed
automata language extended with lattice features. We report on the status of
the first public release of opaal, and demonstrate how opaal can be used for
efficient verification on examples from domains such as database programs, lossy
communication protocols and cache analysis.

Contributions

• Implement the approach.

• Executed experiments.

43

6.3. RESEARCH QUESTION III

Paper D: Automata Learning Through Counter-
example-Guided Abstraction Refinement∗

Fides Aarts, Faranak Heidarian, Petur Olsen, and Frits Vaandrager

Unpublished.

Updated version published in: FM 2012: Formal Methods - 18th International
Symposium, Volume 7436 of Lecture Notes in Computer Science, Paris, France,
August 27-31, 2012.

State-of-the-art tools for active learning of state machines are able to learn
state machines with at most in the order of 10.000 states. This is not enough
for learning models of realistic software components which, due to the presence
of program variables and data parameters in events, typically have much larger
state spaces. Abstraction is the key when learning behavioral models of realis-
tic systems. Hence, in most practical applications where automata learning is
used to construct models of software components, researchers manually define
abstractions which, depending on the history, map a large set of concrete events
to a small set of abstract events that can be handled by automata learning tools.
In this article, we show how such abstractions can be constructed fully auto-
matically for a restricted class of extended finite state machines in which one
can test for equality of data parameters, but no operations on data are allowed.
Our approach uses counterexample-guided abstraction refinement: whenever
the current abstraction is too coarse and induces nondeterministic behavior,
the abstraction is refined automatically. Using a prototype implementation of
our algorithm, we have succeeded to learn – fully automatically – models of
several realistic software components, including the biometric passport and the
SIP protocol.

Contributions

• Present algorithm for automatic learning abstraction while learning a sys-
tem.

• Present CeGAR approach to automatically refine abstractions.

• Present prototype implementation.

• Learn real-life systems.

44

CHAPTER 6. THESIS

Paper E: Model-Based Testing of Industrial Trans-
formational Systems

Petur Olsen, Johan Foederer, and Jan Tretmans

In: Proc. 23rd IFIP Int. Conference on Testing Software and Systems (ICTSS’11),
Paris, France, November, 2011

We present an approach for modeling and testing transformational systems in
an industrial context. The systems are modeled as a set of boolean formulas.
Each formula is called a clause and is an expression for an expected output
value. To manage complexities of the models, we employ a modeling trick for
handling dependencies, by using some output values from the system under test
to verify other output values. To avoid circular dependencies, the clauses are
arranged in a hierarchy, where each clause depends on the outputs of its chil-
dren. This modeling trick enables us to model and test complex systems, using
relatively simple models. Pairwise testing is used for test case generation. This
manages the number of test cases for complex systems. The approach is devel-
oped based on a case study for testing printer controllers in professional printers
at Océ. The model-based testing approach results in increased maintainability
and gives better understanding of test cases and their produced output. Using
pairwise testing resulted in measurable coverage, with a test set smaller than
the manually created test set. To illustrate the applicability of the approach,
we show how the approach can be used to model and test parts of a controller
for ventilation in livestock stables.

Contributions

• Present approach to model requirements for non-state-based systems.

• Present modeling tricks to manage complexities.

• Present approach for generating test-cases for the requirements.

• Implement the approach in industrial context.

45

Chapter 7

Future Work

MDD of data-sensitive systems is a complex problem with ongoing improve-
ments from several fronts, both academic and industrial. On the academic
side ongoing work is striving to invent and improve modeling formalisms to
ease modeling, developing new (or improving old) algorithms to improve perfor-
mance and quality, while on the industry side tool development and integration
are needed.

Several avenues of improvement are available for the subjects discussed in
this thesis. These are discussed below.

7.1 Research Question I

With regards to modeling databases in Uppaal several improvements can be
made. The simplistic view on databases can be extended, modeling patterns can
be made for each type of relational pattern (one-to-one, one-to-many, etc.). This
can also be extended to automatic translation of a relational database schemes
to models capturing these relations. Currently, ongoing work is striving to
integrate test-case generation directly into the Uppaal GUI. This work could
be extended to include testing of database systems.

The LaTS modeling formalism can be implemented in Uppaal, and model-
checking and MBT algorithms can be extended to support them. This can
be extended to include the CeGAR algorithm to allow dynamic abstraction
refinement.

All this needs to be tried and performance tested on real-life applications.

7.2 Research Question II

The obvious improvement in this area, is lifting the restrictions on the SUT.
First we can lift the restriction that only first and last occurrences of values may
be stored. This restriction was mainly introduced to simplify the algorithm by

47

7.3. RESEARCH QUESTION III

reducing the number of possible abstractions. Lifting this restriction greatly
increases the complexity of the algorithm and its running time.

Currently, the available abstractions for the value of a parameter are first and
last. Adding the possibility to store arbitrary values, the available abstractions
would need to increase, but how? We expect a possible abstraction is to make
the abstraction based on where in the model the value was stored. E.g. the
value of a parameter store from state A would get a different abstraction from
the value store from state B. This would possibly allow learning of more systems.

The second restriction to be lifted is that no data operations are allowed on
parameter values. This restriction was introduced to be able to track a value
through the system. This restriction can be lifted (or reduced) by allowing few
and simple known operations on values. For instance by allowing values to be
added, it can be checked which of the input values were added to produce the
output values.

For unknown operations, it might be possible to use invariant checkers, such
as Daikon [42], to learn relationships between input values and output values.

Finally, a possible research area could be to incorporate the database ab-
stractions from research question I into the learning. Using the approach of
present-absent sets it might be possible to learn the behavior of a system, re-
gardless of the initial internal state. This would require knowledge of the struc-
ture of the database. It might also be possible to learn the structure of the
database while learning the abstraction and behavior.

7.3 Research Question III

This project illustrates how MBT can be employed in an industrial context,
but the systems developed were prototypes, so improvements need to be made
here. Currently the boolean formulas were implemented directly in the Python
framework. Some way of abstractly describing the system as boolean formulas,
and using these as oracle would be preferable.

This would also enable analysis and verification of the requirements. Sanity
checks could be added to increase the confidence on the requirements. This could
also be combined with other models of other aspects of the printer controller.

Finally, only a small part of the controller was modeled, this could be ex-
tended. Doing this would also give indications on how well suited this approach
is to model complex industrial systems. Also, some experience on the maintain-
ability of the models is needed.

48

Paper A

Present and Absent Sets:
Abstraction for Testing of
Reactive Systems with
Databases

Petur Olsen

Department of Computer Science
Aalborg University
Aalborg, Denmark
petur@cs.aau.dk

Kim G. Larsen

Department of Computer Science
Aalborg University
Aalborg, Denmark
kgl@cs.aau.dk

Arne Skou

Department of Computer Science
Aalborg University
Aalborg, Denmark
ask@cs.aau.dk

Abstract We present a new abstraction of reactive systems interacting with
databases. This abstraction is intended to be used for model-based testing. We

49

1. INTRODUCTION

abstract the database into two sets: present set and absent set, and present a
proof of this abstraction. We present two extensions of FSM, the DBFSM and
PAFSM. DBFSM are a form of FSM incorporating databases. PAFSM are an
abstraction of DBFSM using present-absent sets. Depending on what type of
testing is to be done, the translation is tailored to fit this purpose. We show
how this translation is related to the present-absent abstraction. Finally, we
illustrate the approach through a small example and show how this can be used
for testing with the model-based testing tool Uppaal TRON.

1 Introduction

Testing is generally considered the most widely used technique for error detec-
tion in software systems. Many systems today are heavily dependent on data-
bases, there is however no efficient technique for testing systems using databases
available. Several problems arise when testing systems dependent on databases.
For instance, the test executed is dependent on the state of the database. Con-
sider a test case requiring a user to be created. Running this test case after the
user has been created is not possible without deleting the user first. Another
problem is the huge amount of data stored in such databases.

Recently automated techniques and formal approaches have been developed
for testing. One such being model-based testing (MBT) [53, 97, 98]. Doing
MBT of a database systems is not trivial however. Consider modeling the entire
database, this would require huge models and would not be practically possible.
Some abstraction is needed in order to make MBT applicable to testing database
systems.

This paper presents one such abstraction. We model the database as two
sets, the present set and the absent set. The present set is an under-approximation
of the data present in the database, and the absent set is an under-approximation
of the data not present in the database. This way we can abstract over an infinite
amount of databases with two small sets.

To enable model-based testing using this abstraction we present two new
forms of FSM: DBFSM and PAFSM. We show that the present-absent abstrac-
tion is used to translate from DBFSM to PAFSM, and how specifications for
testing can be developed using PAFSM. Additionally we show an example and
how test cases can be generated from this example.

In this paper we consider reactive systems which interact with databases in
a shallow manner, meaning no complex operations on the data are performed.
Rather the system can insert or remove values to and from the database and
the control flow of the systems can depend on the presence or absence of values.
We refer to this simplistic view as databases althought databases are far more
complex. The simplistic view in this paper is a starting point and is intended
to be extended with a more complex view of databases.

The paper is structured as follows: Section 2 describes some related work.
Section 3 describes model-based testing in its two forms, online and offline.
Section 4 through 7 describe the theoretical parts of this paper. First the

50

PAPER A. PRESENT AND ABSENT SETS

present-absent abstraction is explained and proved. Then extended finite-state
machines are explained, and these are further extended to include databases
and present absent sets. The abstraction and translation between DBFSM and
PAFSM is described in Section 8. A short example is presented in Section 10,
and Section 11 concludes the paper.

2 Related Work

Ran et al. [83, 82] have proposed a similar approach, in a system they call Au-
toDBT. They model web-based systems using FSMs, and model the databases
as two sets, the actual database, and a synthesized database. The synthesized
database contains values not in the actual database, but available for testing.
The synthesized database is used when the test is required to input some value
into the database. These two databases are similar to our present-absent sets.
They differ however, in that we only model a small subset of the data in the ac-
tual database. Additionally the testing algorithm differs in that AutoDBT gen-
erates guards to be executed before every test case, to ensure that the database
is in a conforming state, whereas we populate the modelled databases according
to the actual database to ensure that the model is always in a conforming state.
Ran et al. do not specify what happens if the system never enters a conform-
ing state for a specific test case. Additionally AutoDBT only supports offline
testing whereas our approach supports both online and offline testing.

3 Model-Based Testing

Model-based testing originates in the formal approaches developed by Tretmans
[97, 98], and implemented in the tool TorX [99]. These approaches have been
extended to include real-time by Hessel et al. [53], and implemented in Uppaal
TRON [64]. Also, a number of commercial UML-based tools are emerging, such
as Qtronic and ATG.

Even though the aspects of this paper do not concern with real-time directly,
it is intended to be used to extend Uppaal TRON to allow testing of data
intensive systems. Uppaal TRON assumes timed automata as specification
and supports conformance testing of real-time systems. Since the abstraction
presented in this paper differs somewhat depending on whether the purpose
is online or offline testing, a short description of these two types of testing is
presented.

3.1 Online Testing

Online testing merges test-case generation and execution into one activity. The
test cases are dynamically derived from a simulation of the model and sent to
the implementation under test (IUT) directly. Output from the IUT is ob-
served and the state of the model is updated accordingly. The advantages of
online testing include easier handling of non-determinism and the reduction in

51

4. PRESENT AND ABSENT SETS

state-space. Non-determinism is easier to handle since the IUT is dynamically
observed, thereby revealing which non-deterministic choices have been taken,
eliminating the need for the test tool to track unnecessary states. The state-
space is reduced for the same reason. Disadvantages include the difficulty to
reason about coverage and the arbitrarily long traces complicating the process
of linking an erroneous test case to an error in the IUT.

3.2 Offline Testing

Offline testing involves generating a batch of test cases prior to executing them
on the IUT. Test cases are generated by model-checking for a specific purpose
and storing the trace from the model-checker. This trace serves as a test case to
be executed to test the purpose. The advantages of offline testing include the
ability to specify and reason about coverage in a very precise manner. Disad-
vantages include problems with handling non-determinism and the requirement
of model-checking the model, requiring the entire state space to be explored,
which can lead to state-space explosion. Handling non-determinism is a prob-
lem since the test case needs to take into account all possible outcomes of a test
purpose. Consider a test case requiring a user to be present in the database.
If the user is not present he needs to be created before the test can proceed.
Some test-case execution tools do not support such non-determinism. QTP,
an industrially used test-case execution tool, only supports static test cases of
produced inputs and observed outputs. This problem of requiring static test
cases is major when testing databases which inherently depend on an internal
state and evolve dynamically during testing.

4 Present and Absent Sets

We now introduce the present and absent set abstraction originally proposed in
[77]. The abstraction abstracts a database into two sets; the present set and
the absent set. The present set is an under-approximation of the values which
are present in the database and the absent set is an under-approximation of the
values which are not in the database. This can be seen as a three-valued-logic,
where if the value is in the present set it corresponds to true, if the value is in
the absent set it corresponds to false, and if the value is in neither it corresponds
to unknown. If the value is in both sets it corresponds to an erroneous state,
this should be avoided. This abstraction allows us to abstract over an infinite
number of databases and abstract away from the actual content of the database,
using a relative small set of values.

We define the following sets [77]:

D is a set of elements (e.g. records, relations, tuples etc.) The complete
set of values that can be entered into the database.

Dn ⊂ D is the concrete state of a database. The database used by the real
system and can contain huge amounts of data.

52

PAPER A. PRESENT AND ABSENT SETS

C ⊂ D is a set of representative elements. These can be chosen intuitively or
by some heuristic, e.g. a few from each table.

Pn ⊆ C is the present set, containing the elements known to be present in
database Dn.

An ⊆ C is the absent set, containing the elements known to be absent from
database Dn.

d ∈ D is an element in the actual system.

c ∈ C is an element in the abstract system.

Figure 1 illustrates these sets. Pn can grow to fill the entire space C ∩Dn

and An can grow to fill the entire space C \Dn. Some interesting observations
follow from these sets:

Pn ⊆ Dn every element in the present set must be in the database.

An ∩Dn = ∅ no element in the absent set can be in the database.

Pn = An = ∅ means no knowledge about the contents of database Dn.

Pn ∪An = C means everything is known about database Dn, given the
current C.

Pn ∩An = ∅ must always hold. The same element can never be present in
and absent from the same database at the same time.

Figure 1: Sets of the present-absent abstraction

Three operations are allowed on the database: insert, remove, and query
for presence. These operations are defined below on databases and present-
absent sets. Queries are split into positive and negative since these are handled
differently.

53

4. PRESENT AND ABSENT SETS

Insert Inserting into the database results in a new state with the inserted
element added:

D′n = Dn ∪ {c}

This corresponds to adding the element to the present set and removing it from
the absent set:

P ′n = Pn ∪ {c}
A′n = An \ {c}

Remove Removing from the database results in a new state without the re-
moved element:

D′n = Dn \ {c}

In the present-absent sets this results in removing from the present set and
adding to the absent set:

P ′n = Pn \ {c}
A′n = An ∪ {c}

Positive Query This means that the element is in the database:

c ∈ Dn

If a query is positive we know the element is in the database, this means that
we can add the element to the present set. We need to assert that the element
is not in the absent, this is a consistency check.

P ′n = Pn ∪ {c}
assert c /∈ An

Negative Query This means that the element is not in the database:

c /∈ Dn

We can update the present-absent sets similarly to positive query:

A′n = An ∪ {c}
assert c /∈ Pn

Theorem 1. Operations on Pn and An are consistent and sound with respect
to an actual Dn in the following sense:

(i) The Pn and An captured info does not contradict.

(a) ∀c ∈ Dn ⇒ c /∈ An
(b) ∀c /∈ Dn ⇒ c /∈ Pn

54

PAPER A. PRESENT AND ABSENT SETS

(ii) Pn and An capture part of the Dn state.

(a) ∀c ∈ Pn ⇒ c ∈ Dn

(b) ∀c ∈ An ⇒ c /∈ Dn

Proof. We construct a proof by induction. We show that the properties hold for
Pn ∪An = ∅ and show for each action that the properties hold after applying it
on arbitrary sets.

(i) We assume no knowledge about the database; Pn∪An = ∅. Theorem 1.i.a
holds since the right side of the arrow is always true since An is empty,
similarly for 1.i.b. Theorem 1.ii.a holds since Pn is empty so the right side
of the arrow never needs to be evaluated, similarly for 1.ii.b.

(ii) We assume arbitrary sets Pn and An adhering to the requirements above.
For each operation we now show that the properties hold after applying
the operation.

(a) Insert: After inserting c, 1.i.a holds since c is removed from An. 1.i.b
holds since Dn contains c. 1.ii.a holds since both Pn and Dn contain
c. 1.ii.b holds since An does not contain c.

(b) Remove: After removing c, 1.i.a holds since Dn does not contain c.
1.i.b holds since c is removed from Pn. 1.ii.a holds since Pn does not
contain c. 1.ii.b holds since Dn does not contain c.

(c) Positive Query: After a positive query for c, 1.i.a holds since we assert
that An does not contain c. 1.i.b holds since Dn contains c. 1.ii.a
holds since we add c to Pn. 1.ii.b holds since An does not contain c.

(d) Negative Query: After a negative query for c 1.i.a holds since Dn does
not contain c. 1.i.b holds since we assert that Pn does not contain
c. 1.ii.a holds since Pn does not contain c. 1.ii.b holds since Dn does
not contain c.

Theorem 2. For any operation performed on Dn, Pn, and An, yielding D′n,
P ′n, and A′n, the captured info in P ′n and A′n is more precise, i.e.

Pn ∪An ⊆ P ′n ∪A′n.

Proof. The proof is easy to see. When ever we remove an element from either Pn
or An (during insert and remove operations) we always add the same element to
the other set. This means the union of the sets can never shrink. During query
operations we add an element to one of the sets and don’t remove anything,
meaning the union grows.

55

5. EXTENDED FINITE-STATE MACHINES

Corollary 1. Once Pn and An capture the entire knowledge of Dn, i.e. Pn ∪
An = C, performing operations will always keep the property

Pn ∪An = C

Since the knowledge can never shrink, once we have reached maximum
knowledge we will stay at maximum knowledge.

5 Extended Finite-State Machines

Before introducing the novel FSMs we present EFSMs [101] on which DBFSM
and PAFSM are based. An EFSM is an FSM extended with internal variables.

Definition 1. An extended finite-state machine is a 7-tuple (Q, q0,Σ,Γ, V, ψ, δ),
where:

• Q is a finite, non-empty set of states.

• q0 ∈ Q is the initial state.

• Σ is the input alphabet, a non-empty finite set of labels.

• Γ is the output alphabet, a non-empty finite set of labels.

• V is a finite set of variable names.

• ψ ⊂ V × Int assigns integer values to the variables.

• δ is a state transition relation.

δ relates a source state q, and an action a, to a target state q′, given the
current state of variables, ψ. This is written: q

a−→ q′, and corresponds to a
transition in the system. There are five types of actions:

• inputs, σ ∈ Σ

• outputs, γ ∈ Γ

• the null action, τ

• boolean conditions

• variable updates

A boolean condition action is only enabled if the condition evaluates to true.
Boolean conditions and variable updates may use regular arithmetic and rela-
tional operators.

56

PAPER A. PRESENT AND ABSENT SETS

6 Database FSM

A database finite-state machine (DBFSM) is an EFSM where variables can
have a type we call database. The database type has three operations: insert,
remove, and query for membership, corresponding to the same operations on a
real database. In the context of the present-absent abstraction, DBFSM should
be seen as a system containing a real database.

Definition 2. A database finite-state machine is a 8-tuple (Q, q0,Σ,Γ, V, ψ,D, δ),
where:

• Q, q0, Σ, Γ, V , ψ, and δ are defined as for EFSM.

• D is a set of databases.

A database can hold an infinite amount of values from variables. Three
functions are defined for operating on databases: Insert(d, v), Remove(d, v),
Query(d, v), where d ∈ D, v ∈ V . Insert(d, v) inserts the value of v into
database d, Remove(d, v) removes the value of v from database d, and Query(d, v)
returns a boolean, being true if the values of v is present in the database and
false otherwise.

This formalism gives us a convenient way to model systems using databases.
However DBFSMs are infinite state systems and therefore not suited for mod-
eling and testing.

7 Present-Absent FSM

We now introduce PAFSM which are an abstraction of DBFSM. The abstraction
is done according to the present-absent abstraction.

Definition 3. A present-absent finite-state machine is a 9-tuple (Q, q0,Σ,Γ, V, ψ,
DP,DA, δ), where:

• Q, q0, Σ, Γ, V , and δ are defined as for DBFSM.

• ψ ⊂ V ×V alues assigns integer values to the variables. V alues is a finite
set of integer values.

• DP is a set of sets, each of size |V alues|, representing the present sets.
One for each database in the DBFSM.

• DA is a set of sets, each of size |V alues|, representing the absent set. One
for each database in the DBFSM.

DP (d) represents the present set for database d, DA(d) represents the absent
set for database d.

57

8. TRANSLATION

This abstraction allows us to abstract over an infinite set of databases with a
small set of sets. Additionally the PAFSM is finite-state, which enables straight
forward state-space exploration. The requirement for integer values can easily
be lifted to any value. Additionally the restriction is not a problem in practice,
since the integer values can be translated into real database properties in the
adapter prior to sending them to the IUT.

8 Translation

We now present the translation from DBFSM to PAFSM. Two translations
are presented, they differ in the way unknown values are handled. The first
translation assumes full knowledge of the database, and enters an error state if
at any time an unknown value is observed. The second assumes no knowledge
and is allowed to nondeterministically choose whether an unknown value should
be treated as present or absent.

The DBFSM and PAFSM are the same in every aspect except transitions
using one of the three operations on databases; insert, remove, and query. For
the two translation it is explained who these are handled.

8.1 No Knowledge

This translation assumes no knowledge about the database, i.e. Pn ∪ An = ∅.
This is suited for online testing where the knowledge of the database can be
derived during test execution. This translation can also be used to generate
abstract traces, or trees, where branches in the tree correspond to choices in the
model. This way offline test cases can be generated.

Insert

If the value is in the present set this transition has no effect. If the value is in
the absent set, it is added to the present set and removed from the absent set.
If the value is in neither present nor absent the value is added to the present
set.

Remove

If the value is in the present set, it is removed from the present set and added
to the absent set. If the value is in absent set this transition has no effect. If
the value is in neither present nor absent the value is added to the absent set.

Query

If the value is in the present set, return true. If the value is in the absent set
return false. If the value is in neither, non-deterministically choose true or false
and add the value to the corresponding set.

58

PAPER A. PRESENT AND ABSENT SETS

This translation is conforming to the present-absent abstraction, in that each
action updates the sets according to the abstraction. When using this transla-
tion for online testing, the non-deterministic choices allow the model-checker to
be in both states at the same time, and reduce the state space when observations
from the IUT reveal which choice was correct. When trees are generated for
offline testing the tester can traverse the tree and follow branches according to
the output observed. How the non-determinism is handled in practice is shown
in more detail in the concrete example in Section 10.

8.2 Full Knowledge

This translation requires full knowledge about the database, i.e. Pn ∪ An = C.
This translation is basically the same as above, except we remove the unknown
aspect of the three-valued-logic. This translation is suited for offline testing,
where complete and static traces need to be generated to simplify the test
execution.

Insert

Since we have full knowledge about the database we know that the value is
either in present or absent and never in both. Taking the transition adds the
value to the present set and removes it from the absent set.

Remove

Taking the transition adds it to the absent set and removes it from the present
set.

Query

If the value is in the present set we return true, otherwise return false. We do
not need to consult the absent set since we have eliminated the unknown factor.

This translation also conforms to the present-absent abstraction. Since we start
with maximum knowledge about the database we know that all values are in ei-
ther the present or the absent set. From Corollary 1 we know that we never lose
knowledge. This enables us to simplify the query operations. This translation
is specifically well suited for offline testing where static traces are required.

There are two issues using this approach: It requires the state of the database
to be known a priory and it requires the test-case generation to be re-executed
prior to each execution of the test suite (not for each test case or test purpose,
only for the entire test suite.) The state of the database only needs to be checked
before executing the test suite the first time, since the state after executing
the test suite can be stored and used as input for the next execution. The
requirement to re-execute the test-case generation can be a major problem. The
model checking and test-case generation might take a long time to complete,

59

9. ADVANTAGES

and requiring this for each test-suite execution might significantly increase the
execution time required to execute the test.

To alleviate this problem it might be possible to generate a strategy to bring
the databases into a specific known state. This way test cases can be generated
with this state as starting point, and at the end of test execution the database
is returned to the desired state.

9 Advantages

There are several advantages using the present-absent abstraction over using
databases. Initially the state-space is reduced considerably compared to mod-
eling the entire database.

Traditional testing of databases require the database to be in a specific state
when beginning the test, and require the tests to be executed in a specific order,
to ensure the database is always in a known state. Using the present-absent sets
and MBT, we can enter a subset of the state of the database into the present
and absent sets, then rerun the test case generation, based on the current state
of the database. This way we can abstract away from the initial state of the
database, and still get automatic testing.

Traditionally testing is not performed on the system in actual use, since
the test cases can interact arbitrarily with the actual database. By proving
correctness on the present-absent sets, and proving that the test cases will only
interact with the specific test data, the tests can be executed on the actual
running system. By observing the state of the database the state of the system
can be entered into the sets, and the tests can be executed, only affecting the
test data in the database.

During online testing it is possible to start the testing process without any
knowledge about the database, i.e. Pn ∪ An = ∅. This way the state of the
database can be dynamically learned by observing the system. As more knowl-
edge is gained, the state space is reduced, and the testing can be guided in the
desired direction.

10 Example

To illustrate the abstraction and test-case generation, an example is presented.
This example is manufactured by hand since no tool support has been developed
yet. The specification of the IUT is a network of timed automata in Uppaal
syntax. Three network of timed automata are presented: one modeling the sys-
tem using databases, one translation assuming no knowledge and one assuming
full knowledge.

The example is a simple system where users can login and perform some
work. In the system we have a single database, consisting of the users which
are currently logged in. The users have three actions: login, logout, and work.
The user can only login if he has not already logged in. He can only logout if

60

PAPER A. PRESENT AND ABSENT SETS

Figure 2: Example using databases

Figure 3: The user

he is logged in. The work can only be requested if he is logged in. When the
user performs an action the system will return either OK or Error.

Figure 2 illustrates the system using databases. This is used as the spec-
ification of the IUT. The specification is a timed automaton implemented in
Uppaal. The Q method queries the login database, called dbLogin, and returns
true if cid is in the database.

The system has three input channels: work?, login?, and logout?, and two
output channels: OK! and Error!. The input channels are use by the user to
query the system, the output channels are used to return to the user. The shared
variable currentId is used to pass the id of the calling user to the system, and
used by the user to ensure the result is returned to the correct user. The Add

and Remove methods are used to add and remove cid to and from the database
respectively.

Figure 3 illustrates the user of the system. This is an unintelligent user which
presses all buttons in random order. Another type of user is one which follows

61

10. EXAMPLE

the specification of the system. In this example such a user would for instance
only try to request work if he knew he was logged in. The locations WorkOK and
WorkErr are dummy locations used to specify test purposes (similar for login
and logout). For instance to test whether a user is able to request work and get
a positive response, Uppaal is asked for a trace where the user template enters
the WorkOK location. The same user is used in all the examples.

We now explain how the model is translated using the two approaches ex-
plained above. We also explain how these model can be used for testing.

10.1 No Knowledge

Figure 4 illustrates the system where no knowledge is assumed. Each query
to the database is translated into a call to the method IsLogin, which has
three possible outcomes: TRUE, FALSE, and UNKNOWN, corresponding to the three
valued logic in the abstraction. IsLogin consults the present and absent sets
and returns based on the values. If the value is unknown a non-deterministic
choice is available, either return OK and add the user to the present set, or return
Error and remove the user from the set. The methods Login and Logout handle
this. This has the effect of updating the database when the correct choice is
observed from the IUT. Notice that when the result of a login action is unknown
both the OK and the Error choice add the user. This is because, returning Error
means the user is in the database, therefore we add him. If we return OK the
user is not in the database, and we should remove him, however, since the login
was successful the user is now added to the database, therefore we add him.

It can be seen that we do not make any consistency check on the present-
absent sets, i.e. check for Pn ∩ An 6= ∅. This is because we can verify that this
can never be the case using the model checker with the following query:

A[] forall (id:UserID) !(Present(id) && Absent(id))

This query states: It is always the case that no user is in present and absent at
the same time. If this query verifies there can occur no inconsistencies in the
model.

This system starts with both sets empty. Whenever a choice is taken the sets
are updated accordingly. If an online test is executed with this system as the
specification, Uppaal would take both choices and keep track of two states in
the system. When the actual action is observed from the IUT all nonconforming
states are discarded. By running this system in the simulator in Uppaal we
can simulate an online test where Uppaal makes the choice for the IUT. It can
be seen that after executing for a while we reach a situation where we have full
knowledge about the database, i.e. Pn ∪An = C.

This system has been tested against an implementation using Uppaal TRON.
The systems was instantiated with ten users. A mutant is made, in which the
login action has a 1/500 chance to fail to update the database. The system has
been implemented such that the database is filled with random values at initial-
ization. This way the tester has no way of knowing the state of the database

62

PAPER A. PRESENT AND ABSENT SETS

Figure 4: Example with no knowledge

when starting the test. The test was run ten times on the correct implementa-
tion and ten times on the mutant. Each successful test executed about 22.000
action (input and output combined). One of the mutant runs failed to detect the
mutant, this is due to the randomness of the mutant. The tests have shown us
that the present-absent set approach has the capabilities to automatically test
a system which interacts with a database without knowledge about the state of
this database prior to testing.

We can also use this translation to generate abstract traces. A tree will be
generated for each test purpose. A branch in the tree corresponds to a choice
in the model. Uppaal CoVer can be used to generate these trees.

10.2 Full Knowledge

Figure 5 illustrates the system with full knowledge assumed. This system is
similar to the system with no knowledge. Since we have full knowledge we can
remove all transitions where the database state is unknown. This simplifies the
model. This model is useful for generating static traces to be used for offline
testing, by a static testing tool. To generate the traces the Uppaal model
checker can be asked whether a template can reach a specific location and get
a trace of how to reach this location. This trace can be used as a test case.

We use the dummy locations in the user template, Figure 3. The following
query is used to test if the user with ID 0 can successfully login:

E<> Users(0).LoginOK

Verifying this with all users absent generates the following trace:

Users.Login[0]!

IUT.LoginOK[0]!

Meaning: First user with ID 0 sends a login request to the IUT, then the
IUT sends loginOK to user 0. To show that we can generate different traces

63

11. CONCLUSION

Figure 5: Example with full knowledge

depending on the state of the database, we run the verifier again with all users
present in the database. This generates the following trace:

Users.Logout[0]!

IUT.LogoutOK[0]!

Users.Login[0]!

IUT.LoginOK[0]!

Here we can see that the user first has to log out, before he can log in success-
fully. This shows that by updating the state of the database we can generate
static traces which conform to the state of the database.

This simplistic example serves to illustrate the abstraction, but it is not repre-
sentative of a realistic database system. Extending the user table in the database
with properties can easily be achieved by creating present and absent sets for
each property. This approach can also be extended to include relations between
tables. A one-to-many relation can be modeled using present and absent sets
for each entry in the one relation, these sets can hold the values which the cor-
responding entry relates to. How this preforms in practice needs to be analyzed
in future work.

11 Conclusion

We have introduced the abstraction from a database into present and absent
sets and a proof of this abstraction. We have introduced two new forms of
FSMs, the DBFSM and PAFSM and explained how to translate from DBFSM
to PAFSM. Furthermore, we have explained two different translations and how
these relate to the present-absent abstraction.

We have illustrated an example of a simple system using a database, and
how this system can be translated into a system using present and absent sets.
We have explained how test cases can be generated from this system, as well as
the benefits of using our approach when performing online and offline testing.

We are able to perform online testing of systems without taking any assump-
tions about the state of the database into account. As the test progresses, we
gradually gain more knowledge about the state of the database. This increase of

64

PAPER A. PRESENT AND ABSENT SETS

knowledge will reduce the state space of the simulation model, as well as enable
us to potentially guide the testing in a desired direction.

We enable two forms of offline testing. One without assuming any knowledge
about the state of the database. We are able to generate abstract traces which
automatically learn the state of the database and make choices accordingly to
reach the desired state. By examining the state of the database prior to gener-
ating the test cases, we are able to generate static traces which can be executed
without any branching. This removes the problem of state dependency when
performing offline testing on database systems. There are some potential per-
formance issues with this approach, but we are hopeful as to finding a solution
to these problems.

As future work we plan to extend the simplistic view of database presented
in this paper. We plan to measure the effectiveness of this approach on larger
examples, preferably industrial. We are currently working on extending the
Uppaal model checker to improve the effectiveness of model checking systems
using present and absent sets.

65

Paper B

Model Checking with
Lattices

Andreas Engelbredt Dalsgaard
René Rydhof Hansen
Kim Gulstrand Larsen
Mads Chr. Olesen
Petur Olsen
Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark.
{andrease,rrh,kgl,mchro,petur,srba}@cs.aau.dk

Abstract Model checking is a verification technique based on searching through
a state space. As the state spaces are often large or even infinite due to un-
bounded data structures, techniques to tackle this problem have been investi-
gated. We introduce a novel abstract model of labelled transition systems where
states of the system are paired with elements from a lattice that provides a suit-
able abstraction of the real data. We present a general reachability algorithm
with different update functions to account for different degrees of abstraction
and prove the correctness and termination of the algorithm. Furthermore, we
develop the notion of Lattice Guided Abstraction Refinement (LaGAR) for it-
erative recovery of precision that might be lost due to the applied abstraction.
The usability of the framework is demonstrated on a number of applications
that include communication protocols, databases, cache analysis and zones in
timed automata. Prototype implementations in some of the application domains
indicate promising results.

67

1. INTRODUCTION

Figure 1: A small database system handling login, logout and work requests

1 Introduction

Over the past two decades, model checking has been applied with great success
to validation and verification in a wide variety of areas, including hardware and
software designs, control programs and critical safety and security properties of
communication protocols. More recent applications include schedulability [25]
and worst-case execution time (WCET) [35] analysis of embedded real-time
systems as well as test-case generation for graphical user interfaces. This diver-
sity of application areas is reflected in the availability of many different model
checkers and special purpose logics inspired by particular application areas.

Common to almost all of these applications of model checking is the notion of
an underlying concrete system with a very large—or sometimes even infinite—
concrete state space. To enable model checking of such systems it is necessary to
construct an abstract model of the concrete system, where some system features
are only modelled approximately and system features that are irrelevant for
given verification purposes are “abstracted away”.

One feature that is often abstracted away is that of data. Many important
systems such as communication protocols, memories, bounded buffers, queues,
and databases operate on data values from a potentially infinite domain: an
input operation can result in an infinite number of different states corresponding
to the infinitely many data values. Traditionally, model checking has completely
ignored the data part and opted for verification of only the control aspect (this
is usually finite-state) and ignore the transfer of data. Although systems of the
above type do operate on data values from a potentially infinite set of data,
they often never perform any computation on these data values. Rather, such
systems only input, store, compare, copy or output values as illustrated by the
small database system in Figure 1, where the component D is intended to hold
the set of user-names currently logged in.

In fact, for such data-insensitive systems various behavioural properties may
possibly be settled by only tracking a few representative data values (see the
seminal work by Jonsson and Parrow [59]), thus leading to a significant reduction
in the size of the state space to be considered. As an example the database
system of Figure 1 may be abstracted based on a small set of selected user-names
S. In this over-approximate abstraction the database component D is replaced

68

PAPER B. MODEL CHECKING WITH LATTICES

by two subsets P and A of S representing sets of user-names known to be present
respectively absent in the database, and transitions are enabled provided their
guards are not in conflict with this knowledge of present and absent user-names1.
Ordered by component-wise reverse set-inclusion, the pairs (P,A) constitute a
(finite) complete lattice, where less knowledge about the database (i.e. smaller
sets) allow for more behaviour in the abstraction.

Ordering abstract data values in this manner is very similar to the use of lat-
tices as found in the area of program analysis in general, and abstract interpre-
tation in particular [74], where the systematic construction of (sound) abstract
models from concrete systems has been studied extensively. Here lattices, and
operations on lattices, are used as the fundamental abstraction mechanism that
facilitates the design and development of hierarchies of abstractions exploring
the trade-off between precision of the model and the cost of analysis/verification.

In this paper we define and discuss a new formalism combining lattices and
model-checking, lattice transition systems (LaTS), specifically designed to be
well-suited for modelling, model checking, and reasoning about abstract models
as well the relation to the underlying concrete systems. Lattice transition sys-
tems extend labelled transition systems with elements drawn from a lattice that
gives an abstract representation of (parts of) the concrete system. In addition
to the formalism itself, we present a general reachability model checking algo-
rithm for lattice transition systems. The general model checking algorithm can
be instantiated with different update-algorithms allowing for varying degrees of
approximation.

The approximative nature of abstract models may cause inconclusive verifi-
cation results during model checking, i.e., it is inconclusive if it is not possible
to realise the abstract error-trace in the underlying concrete system. One well-
known approach to dealing with the problem of inconclusive results is Counter
Example Guided Abstraction Refinement (CEGAR) [52, 17] where an inconclu-
sive result (a counter example) is used to make (the pertinent parts of) the
abstract model sufficiently concrete that a conclusive result is reached. We
present a similar approach for lattice transition systems, called Lattice Guided
Abstraction Refinement (LaGAR) where the structure of the lattices in the ab-
stract model is used to guide and control the refinement (concretisation) of the
abstract model.

We finish by presenting a variety of applications of the framework developed
in this paper, including asynchronous communication protocols, present/absent
technique for databases, abstract caches and zones in timed automata.

2 Lattice Transition Systems

In this section we define lattice transition systems, a model we will use in the
rest of the paper. We start by briefly reviewing the basic lattice and order
theoretic notions and definitions. For a more thorough treatment see e.g. [37].

1Dually, one may aim at an under-approximation, where transitions are enabled only if
their guards can be determined satisfied by the knowledge of P and A.

69

2. LATTICE TRANSITION SYSTEMS

2.1 Preliminaries

A partial order on a set L is a reflexive, anti-symmetric and transitive relation
v⊆ L × L. The pair (L,v) is called a partially ordered set. Let (L,v) be a
partially ordered set and let X ⊆ L. An element ` ∈ L is an upper bound of X
if x v ` for every x ∈ X. If furthermore ` v `′ for all upper bounds `′ of X then
` is the least upper bound of X and is denoted as

⊔
X. The binary least upper

bound
⊔
{x, y} is written as x t y. The notion of lower bounds of X and the

greatest lower bound of X (denoted by
d
X if it exists) are defined analogously.

The binary greatest lower bound
d
{x, y} is written as x u y. Note that least

upper bounds and greatest lower bounds for a given set X are unique.

An element ` ∈ L such that ` v `′ for all `′ ∈ L is called the least element of
(L,v) and is denoted as ⊥L or ⊥ when L is clear from the context. Conversely,
the greatest element of (L,v) is an element ` ∈ L such that `′ v ` for all `′ ∈ L
and is denoted as >L or > when L is clear from the context.

Definition 1 (Join Semi-Lattice and Lattice). A partially ordered set L = (L,v
) where L 6= ∅ is a join semi-lattice if ` t `′ exists for all `, `′ ∈ L. If moreover
` u `′ exists for all `, `′ ∈ L then L is called a lattice.

In this paper we consider only finite lattices in order to ensure the termina-
tion of the algorithms.

Example 1. Consider the lattice for the abstraction of a database into present
and absent sets mentioned earlier. Let D ⊆ U be a database containing elements
from some universe U of possible values. As an abstraction over this universe
we select a small set of representative values, S ⊆ U . We present two subsets
of S the present set P , and the absent set A. Adapting terminology from the
abstract interpretation community, this forms a must analysis, that is, a value
in the present set must be in the database, and a value in the absent set may
not be in the database.

({e}, {e})

(∅, ∅)

({e}, ∅) (∅, {e})

Figure 2: Lattice example

The set of databases abstracted over with a con-
crete set of present and absent sets is the seman-
tics of (P,A): [[(P,A)]] = {D ⊆ U|P ⊆ D ∩ S ∧
A ⊆ S\D}. For instance the present-absent sets
({e}, {f}) abstract over all databases which contain
e while not containing f . These present-absent sets
can be ordered in a lattice, where smaller sets ab-
stract over more databases, and therefore give more
behaviour in the model. This lattice is defined as
((S × S),v) where (P,A) v (P ′, A′) ⇐⇒ P ′ ⊆
P ∧A′ ⊆ A and (P,A)t (P ′, A′) = (P ∩P ′, A∩A′).
An example of this lattice with S = {e} is given in Figure 2.

70

PAPER B. MODEL CHECKING WITH LATTICES

Figure 3: Abstraction of the database system using present and absent sets.

2.2 Lattice Transition System

Definition 2 (Lattice Transition System). A lattice transition system (LaTS)
is a triple T = (S,L,−→) where S is a finite set of states, L = (L,v) is a
(finite) lattice and −→⊆ S×L×S×L is the transition relation, usually written
as (s, `) −→ (s′, `′) whenever (s, `, s′, `′) ∈−→, such that for all s1, s2 ∈ S and
`1, `2, `

′
1 ∈ L if (s1, `1) −→ (s2, `2) and `1 v `′1 then (s1, `

′
1) −→ (s2, `

′
2) for

some `′2 ∈ L with `2 v `′2.

The behavioural requirement used at the end of the definition is called the
monotonicity property. Configurations of an LaTS are pairs of the form (s, `)
where s ∈ S and ` ∈ L and −→∗ denotes the reflexive and transitive closure of
−→.

Definition 3 (Path). A finite path in an LaTS T is a finite sequence σ =
(s0, `0)(s1, `1) · · · (sn, `n) such that (si, `i) −→ (si+1, `i+1) for all i, 0 ≤ i ≤
n− 1.

In addition to the standard notion of path we also define abstracted paths.

Definition 4 (Abstracted Path). An abstracted finite path in an LaTS T is a
finite sequence σ̂ = (s0, `0)(s1, `1) · · · (sn, `n) such that ∃`′i+1 ∈ L : (si, `i) −→
(si+1, `

′
i+1) and `′i+1 v `i+1 for all i, 0 ≤ i ≤ n− 1.

In the section to follow, we find an efficient way to answer the following
question (state-reachability problem): given an initial configuration (s0, `0) and
a target state sg, is there some lattice element ` such that (s0, `0) −→∗ (sg, `)?

Example 2. We have seen how a database can be abstracted into present and
absent sets in Example 1. We will now present an LaTS which produces over-
approximate behaviour with respect to a concrete database system. The ab-
stract system is presented in Figure 3. The queries and updates of the database
have been changed to querying and updating the present and absent sets. For
example e is in D is changed to querying whether e may be present, i.e.,
e is not in A.

The initial configuration of the system without any knowledge of the database
is (Idle, (∅, ∅)). Assuming we have at least two users: e and f . Logging in with

71

3. GENERAL MODEL CHECKING ALGORITHM

Algorithm 2: Reach(T , (s0, `0), sg)

Input: LaTS T = (S,L,−→), initial configuration (s0, `0), a goal state
sg ∈ S

Output: “sg is reachable” or “sg is not reachable”
1: waiting := {(s0, `0)}
2: passed := ∅
3: while waiting 6= ∅ do
4: Select and remove (s, `) from waiting
5: passed := passed ∪ {(s, `)}
6: for all (s′, `′), where (s, `) −→ (s′, `′) do
7: if s′ = sg then
8: return “sg is reachable”
9: end if

10: waiting := Update(passed ,waiting , (s′, `′))
11: end for
12: end while
13: return “sg is not reachable”

Algorithm 3: Update(passed ,waiting , (s, `)) *** Simple Update ***

Input: Sets of states passed and waiting and a configuration (s, `)
Output: Updated set waiting

1: if ∃(s, `) ∈ waiting ∪ passed then
2: return waiting
3: else
4: return waiting ∪ {(s, `)}
5: end if

e gives the following path: (Idle, (∅, ∅)) → (Login, (∅, ∅)) → (Idle, ({e}, ∅)).
Performing a login with user f produces the following steps: (Idle, ({e}, ∅)) →
(Login, ({e}, ∅)) → (Idle, ({e, f}, ∅)). We can also generate an abstract path:
(Idle, (∅, ∅)) → (Login, (∅, ∅)) → (Idle, (∅, ∅)), since ({e}, ∅) v (∅, ∅), because
the unknown database has at least as much behaviour as the database with e
logged in.

3 General Model Checking Algorithm

In Algorithm 2 we present the pseudocode for a general model checking reach-
ability algorithm. The algorithm explores the graph using waiting and passed
sets and depending on the chosen update function performs a different level of
abstraction.

Lemma 1. Algorithm 2 terminates for any of the update functions given in
Algorithms 3, 4 and 5.

72

PAPER B. MODEL CHECKING WITH LATTICES

Algorithm 4: Update(passed ,waiting , (s, `)) *** Cover Update ***

Input: Sets of states passed and waiting and a configuration (s, `)
Output: Updated set waiting

1: if ∃(s, `′) ∈ waiting ∪ passed : ` v `′ then
2: return waiting
3: else
4: return waiting r {(s, `′′) | `′′ v `} ∪ {(s, `)}
5: end if

Proof. Termination follows from the fact that once a pair is removed from the
waiting list it is never again added to the waiting list. This can be easily verified
by inspecting all three update functions that never add any (s, `) to the waiting
list if this pair is already present in the passed list. This, together with the
assumption that the number of states as well as the number of lattice elements
are finite sets, implies termination.

It is easy to realize that Algorithm 2 with the simple update implements a
search though the whole state space of the lattice transition system. Depending
on the way the waiting list is organized, it can implement e.g. depth-first search,
breath-first rearch, random search and others. The correctness of this search
algorithm is well known.

We shall now argue that the monotonicity property is enough to prove the
soundness and completeness also for our algorithm with the cover update.

Theorem 1 (Correctness of Algorithm 2 with Cover Update). Let T = (S,L,−→
) where L = (L,v) be a lattice transition system. Let (s0, `0) be its initial config-
uration such that s0 ∈ S and `0 ∈ L and let sg ∈ S. The call Reach((s0, `0), sg)
of Algorithm 2 using the cover update in Algorithm 4 returns “sg is reachable”
if and only if there is some ` ∈ L such that (s0, `0) −→∗ (sg, `).

Proof. “⇒”: We want to show that if the algorithm returns “sg is reachable”
then (s0, `0) −→∗ (sg, `) for some ` ∈ L. This fact can be derived by observing
the validity of the following loop invariant: “whenever (s, `) ∈ waiting then
(s0, `0) −→∗ (s, `)”. The invariant is surely true before entering the while loop
of Algorithm 2 (because initially waiting = {s0, `0}) and it is preserved during
the execution of the algorithm as the set waiting can only contain the pairs of
the form (s′, `′) where (s, `) −→ (s′, `′) for some (s, `) already present in the
waiting set (and hence satisfies the invariant).

“⇐”: We will show by induction on n that if (s0, `0) −→n (sn, `n) then
the pair (sn, `

′
n) for some `′n such that `n v `′n will eventually appear in the

waiting set (unless the state sg was discovered before that). The base case
n = 0 is trivial. Assume that the claims holds for some n > 0 and consider a
computation (s0, `0) −→n (sn, `n) −→ (sn+1, `n+1). By induction hypothesis
the pair (sn, `

′
n) where `n v `′n will eventually appear in the waiting set. The

definition of the cover update function guarantees that a pair (sn, `
′′
n) for some

73

3. GENERAL MODEL CHECKING ALGORITHM

Algorithm 5: Update(passed ,waiting , (s, `)) *** Join Update ***

Input: Sets of states passed and waiting and a configuration (s, `)
Output: Updated set waiting

1: if ∃(s, `′) ∈ waiting ∪ passed : ` v `′ then
2: return waiting
3: else if ∃(s, `′) ∈ waiting ∪ passed then
4: return waiting r {(s, `′)} ∪ {(s, `′ t `)}
5: else
6: return waiting ∪ {(s, `)}
7: end if

`′′ such that `′n v `′′n will be eventually removed from the waiting set at line 4
of the reachability algorithm. Because (sn, `n) −→ (sn+1, `n+1) we get (thanks
to monotonicity) that (sn, `

′′
n) −→ (sn+1, `

′
n+1) for some `′n+1 such that `n+1 v

`′n+1. As long as sn+1 6= sg the pair (sn+1, `
′
n+1) will be added to the waiting

set, unless some pair (sn+1, `
′′
n+1) with `′n+1 v `′′n+1 is already present in the

waiting or passed set (and hence it was previously present in the waiting set
too). In any of these two cases, the induction step is established.

We now define an alternative update function presented in Algorithms 5 that
provides an overapproximation.

Theorem 2 (Correctness of Algorithm 2 with Join Update). Let T = (S,L,−→
) where L = (L,v) be a lattice transition system. Let (s0, `0) be its initial config-
uration such that s0 ∈ S and `0 ∈ L and let sg ∈ S. The call Reach((s0, `0), sg)
of Algorithm 2 using the join update in Algorithm 5 returns “sg is not reachable”
only if there is no ` ∈ L such that (s0, `0) −→∗ (sg, `).

Proof. The proof is similar to the direction “⇐” in the proof of Theorem 1.
The only difference is that when adding a pair to the waiting set we change the
lattice value to the join with the lattice value of some other already investigated
element with the same state component (if it exists). The correctness follows
from the fact that such join is always above the lattice value of the added pair.
The rest is the same as in Theorem 1.

Notice that the other direction in Theorem 2 does not hold in general.

Example 3. Consider again the database system from Example 2. We want
to check that no two users can work at the same time. Using the simple up-
date algorithm, Algorithm 2 returns the correct answer that such a state is not
reachable. However, doing so explores all permutations of present and absent
sets, because the database might be any of them. Using cover update will also
answer correctly, but generates a much smaller state space due to exploiting the
lattice ordering.

Another property we want to check is that the database can never become
full. In such a setting the property cannot be proven with an initial unknown

74

PAPER B. MODEL CHECKING WITH LATTICES

database, since then the database might already be full. Proving the property
with an initial empty database can be done using the simple update, but this
explores all permutations. Cover update can also prove the property, but will
not perform better, since every reachable state has one concrete database. Join
update will on the other hand join lattice elements, and cannot give a con-
clusive answer for this query. For a system with 2 users e, f it will find two
states (Init, ({e}, {f})) and (Init, ({f}, {e})) joining them to reach the state
(Init, (∅, ∅)). This state abstracts over the full database, but is not reachable
in the concrete system.

In Section 4 we give a method for doing a more refined reachability search,
when using the join update gives inconclusive results.

4 Lattice Guided Abstraction Refinement

The approximative nature of model checking with join update, as described in
the previous section, may result in inconclusive verification results such that a
verification result in the abstract model may not be necessarily realizable in the
underlying concrete system. In this case it may be possible to use the lattice
structure to derive a more precise approximation that avoids the inconclusive
verification result previously encountered.

In this section we describe such an approach to abstraction refinement,
called Lattice Guided Abstraction Refinement (LaGAR), inspired by the CE-
GAR (counter example guided abstraction refinement) principle [52, 17] The
LaGAR approach depends on a few application specific heuristics: a method
for determining the feasibility of a path and a method for refining an approxi-
mation given an infeasible path. These are formalised in the following.

Definition 5 (Path feasibility function). A path feasibility function determines,
in a domain-specific manner, whether an abstracted path is feasible in an LaTS
T = (S,L,−→):

pathfeasible : (S × L)∗ → {True, False}

The path feasibility function usually corresponds to finding concrete lattice
elements for each step in the path, i.e., a concrete path.

Some way of recording the abstractions used in the current state space explo-
ration is needed. At its most abstract this can be viewed as an oracle, answering
queries as to whether two lattice elements are allowed to be joined in a given
state.

Definition 6 (Joining oracle). A joining oracle is a function able to answer
questions of the form:

strategyjoining : S × L× L→ {True, False}

given an LaTS T = (S,L,−→).

75

4. LATTICE GUIDED ABSTRACTION REFINEMENT

The joining oracle can answer that at one state all lattice elements are to be
joined, or no elements are to be joined, but it can also answer very selectively
which lattice elements to join. In this way the oracle can exploit additional
knowledge about the domain: e.g. for integer values, in some parts of the state
space the exact value of a variable is needed, in other parts only the parity is
relevant, and in yet other parts the signed-ness is important.

The oracle need not be perfect. It might give an approximation that leads
to an abstracted path to a goal state, which is then deemed infeasible by the
path feasibility function. In this situation the oracle is allowed to reconsider
some of its answers, at the cost of recomputing the parts of the state space that
depended on those answers: a join at some state is allowed to be split. Which
state to split at is given by a state split heuristic.

Definition 7 (State split heuristic). A state split heuristic determines, in a
domain-specific manner, which state to split at, given an infeasible abstracted
path in an LaTS T = (S,L,−→):

hsplitstate : (S × L)∗ → S

We can now present the complete algorithm for LaGAR exploration of a
LaTS in Algorithm 6. The explorations will start from an abstraction level close
to that of the join update (depending on the joining oracle) and become less
abstract until it at some point becomes the same as the cover update, unless a
conclusive answer is found before that. The correctness of the algorithm follows
from the fact that it returns “sg is reachable” only if the path is indeed feasible
(if-test at line 11) and from the correctness of the algorithm with cover update
studied in the previous section.

The termination of the LaGAR algorithm depends on the behaviour of the
heuristics. We will now give one set of sufficient criteria for ensuring termination
of the algorithm.

Theorem 3 (LaGAR Termination). The LaGAR algorithm terminates, if:

1. strategyjoining , pathfeasible and hsplitstate are computable functions.

2. strategyjoining respects previous choices across splits such that it only splits
further, i.e., if strategyjoining(s, `, `′) = False for some state s and some
lattice elements `, `′, then it holds invariantly from then on.

3. After a split, something is actually split, i.e., for at least one pair of lattice
elements `, `′ and some state s, where before the split strategyjoining(s, `, `′) =
True, after the split strategyjoining(s, `, `′) = False.

Proof. The number of tuples (s, `, `′) is finite by assumption. Because of re-
quirements 2 and 3, only finitely many splits can occur. The exploration can
thus only be repeated a finite number of times.

76

PAPER B. MODEL CHECKING WITH LATTICES

Algorithm 6: CEGAR(T , (s0, `0), sg)

Input: LaTS T = (S,L,−→) (with path feasibility function pathfeasible,
state split heuristic hsplitstate , and joining oracle strategyjoining),
initial configuration (s0, `0), a goal state sg ∈ S

Output: “sg is reachable” or “sg is not reachable”
1: waiting := {(s0, `0)}
2: passed := ∅
3: pred := ∅ ; predecessor edges
4: while waiting 6= ∅ do
5: Select and remove (s, `) from waiting
6: passed := passed ∪ {(s, `)}
7: for all (s′, `′), where (s, `) −→ (s′, `′) do
8: pred := pred ∪ {(s′, `′)→ (s, `)} ; record predecessor
9: if s′ = sg then

10: σ̂ := (s0, `0) . . . (sg, `
′) ; some abstracted path from sg to s0 in the

reverse configuration graph given by vertices passed ∪ {(sg, `′)} and
edges pred

11: if pathfeasible(σ̂) then
12: return “sg is reachable”
13: else
14: ; path was not feasible, due to abstraction
15: ssplit := hsplitstate(σ̂)
16: ; redo exploration from ssplit
17: redo := {(t, `′′)|(ssplit,)→ (t, `′′) ∈ pred}
18: passed := passed \ {(t,)|t descendant of ssplit}
19: waiting := waiting \ {(t,)|t descendant of ssplit} ∪ redo
20: pred := pred \ {(,)→ (t,)|t descendant of ssplit}
21: end if
22: else
23: ; add (s′, `′) to waiting, possibly abstracting by joining
24: joinelements := {`′′|(s′, `′′) ∈

passed ∪ waiting ∧ strategyjoining(s′, `′, `′′) = True}
25: `joined := `′ t (

⊔
joinelements)

26: pred := pred ∪ {(s′, `joined)→ (t, `′′′)|`′′ ∈ joinelements s.t.
(s′, `′′)→ (t, `′′′) ∈ pred}

27: passed := passed \ {(s′, `′′)|`′′ ∈ joinelements}
28: waiting := waiting ∪ {(s′, `joined)} \ {(s′, `′′)|`′′ ∈ joinelements}
29: end if
30: end for
31: end while
32: return “sg is not reachable”

Example 4. Using the LaGAR approach on the “database not full” property
from Example 3 we can give conclusive results, without resorting to full state

77

5. APPLICATIONS

Number of users simple update cover update

2 224 (<1s) 56 (<1s)
3 2352 (2s) 336 (<1s)
4 21952 (28s) 1792 (2s)
5 192080 (8:22m) 8960 (9s)
6 - 43008 (48m)
7 - 200704 (4:38m)

Figure 4: Experimental data for the property “no two users can work at the
same time”.

space exploration. By employing our knowledge about the problem, we can
implement a refined oracle which only allows joining of lattice elements when
the outcome does not abstract over a full database. Implementing this refined
oracle is in our case done by hand, but could also be deduced automatically by
examining the error path found using a näıve always joining oracle.

5 Applications

To evaluate the applicability of the lattice model checking framework we have
implemented a prototype lattice model checker in Python. With the prototype
we have made a number of experiments. In this section our experiments and
some of the applications of the framework will be described.

5.1 Present-Absent Sets

The two properties from the running example have been verified as described
in Example 3 and Example 4. The results in Figure 4 illustrate that the cover
update can significantly reduce the state space and the verification time, allow-
ing verification of larger systems. The results in Figure 5 shows that join can
be inconclusive, but the use of the LaGAR method can yield conclusive results
while significantly reducing the state space. The results for the näıve oracle
have been included to illustrate that the initial exploration is very fast, quickly
finding an (infeasible) abstracted path to the error state. This path can then
be used to deduce the refined oracle.

5.2 Protocols with Asynchronous Communication

A wide range of applications of our framework is provided by communication
protocols where messages are asynchronously passed via an unreliable (lossy
and duplicating) medium. As long as we are interested in safety properties,
such a communication can be modelled as a set of already sent messages called
pool. Initially the set pool is empty. Once a message it sent, it is added to the
set pool and it remains there for ever (duplication). As the protocol parties are

78

PAPER B. MODEL CHECKING WITH LATTICES

Number of users simple update join (näıve oracle) join (refined oracle)

6 1162 (2s) (Inconclusive) 39 (<1s) 174 (<1s)
7 2746 (4s) (Inconclusive) 45 (<1s) 370 (<1s)
8 6312 (15s) (Inconclusive) 51 (<1s) 787 (1s)
9 14228 (56s) (Inconclusive) 57 (<1s) 1238 (2s)
10 31614 (4:19m) (Inconclusive) 63 (<1s) 976 (2s)
11 69478 (21:35m) (Inconclusive) 69 (<1s) 1036 (2s)
12 - (Inconclusive) 75 (<1s) 1707 (3s)
13 - (Inconclusive) 81 (<1s) 3112 (8s)
14 - (Inconclusive) 87 (<1s) 6083 (21s)
15 - (Inconclusive) 93 (<1s) 12380 (1:06m)
16 - (Inconclusive) 99 (<1s) 25900 (4:18m)
17 - (Inconclusive) 105 (<1s) 66490 (25:01m)

Figure 5: Experimental data for the property “database cannot become full”.

not forced to read any message from pool and we ask about safety properties,
lossiness is covered by the definition too.

It is obvious that 2pool , i.e. the set of all subsets of pool, together with the
subset ordering is a complete lattice. As long as the set of messages is finite and
all parties in the protocol behave in the way that their steps are conditioned
only on the presence of a message in the pool and not its absence, the system
will satisfy the monotonicity property and we can apply our framework to verify
safety properties.

As a very simple example let us discuss the asynchronous leader election pro-
tocol [46]. Here we have N agents with their unique identifications 0, 1, . . . , N−1
and they select a leader with the highest id. Each agent is running concurrently
and in a completely asynchronous way the piece of code in Algorithm 7.

Algorithm 7: Agent(id)

1: Send message id to agent (id+ 1) mod N .
2: Receive a message id′ from agent (id− 1) mod N .
3: if id < id′ send message id′ to agent (id+ 1) mod N .
4: if id = id′ output “I am the leader”.
5: if id > id′ resend the message id to agent (id+ 1) mod N .
6: goto line 2

The safety property we are interested in is that during any run of the protocol
at most one agent will ever output “I am the leader”.

The messages stored in the pool can be modelled as pairs (target , id) ∈
{0, . . . , N − 1}× {0, . . . , N − 1} where target is the id of the agent to whom the
message is sent and id is the actual content of the message so that the problem
fits into our framework. We established the correctness of the protocol using the

79

5. APPLICATIONS

Number of agents simple update cover update join update

2 8 (<1s) 6 (<1s) 5 (<1s)
4 144 (<1s) 22 (<1s) 12 (<1s)
5 840 (5s) 37 (<1s) 17 (<1s)
6 5760 (5:20m) 58 (<1s) 23 (<1s)
7 45360 (671:02m) 86 (1s) 30 (<1s)
10 - 222 (13s) 57 (<1s)
15 - 682 (4:21m) 122 (2s)
25 - 2927 (283:16m) 327 (12s)
50 - - 1277 (4:19m)
100 - - 5052 (98:45m)

Figure 6: Experimental data for the leader election protocol

classical search through the whole state space using the simple update, using
our reachability algorithm with cover update and also using the join update.
In all three cases the results were conclusive and enabled us to claim that the
protocol is correct. The experimental data in Figure 6 confirm the large savings
in the number of explored states (more precisely in the number of states that
ever appear in the waiting list) necessary to establish the correctness result.

It is clear that already the cover optimization, which is always complete and
sound, reduces the state space considerably. The fact that the join optimization
gave conclusive results that were enough to establish the correctness of the
protocol is a consequence of the simple nature of the studied protocol. In more
complicated ones the LaGAR approach will be necessary in most situations.
In the future work we plan to experiment with larger case studies from the
Web Service protocol stack, in particular with WS-Atomic Transaction [72] and
WS-Business activity [73] protocols.

5.3 Cache Analysis

To ensure safe scheduling of real-time systems the Worst-Case Execution Time
(WCET) of each task in the system is required [103]. One major part of deter-
mining WCETs for modern processors is accounting for the effects of the mem-
ory cache. Efficient abstractions exist for analysing some types of caches [8],
which we have implemented as a lattice. By recasting the cache analysis into
our framework we gain the ability to give WCET guarantees, and gradually
refining those guarantees by being more and more concrete with regards to the
data-flow of the program.

On a simple program (binary search in array of size 100) and a simple cache
we get the same WCET using all approaches. The complete state space is 5726
states (computed in 6s), cover update reduces this to 4043 states (3s), while join
only needs to store 3944 states (3s). On more complex examples join will start
to give overapproximated guarantees, which can be refined using LaGAR.

80

PAPER B. MODEL CHECKING WITH LATTICES

5.4 Timed Automata

The theory of timed automata [10] is a good example of the wide applicability
of our framework. Timed automata are finite state machines equipped with
a finite number of real-valued clocks. Transitions in timed automata can be
conditioned on a particular range of clock values and as an effect some of the
clocks can be reset. The transition system generated by timed automata has
infinitely (even uncountably) many states as configurations in timed automata
consist of the actual states together with the clock values.

The theory of regions [10] and zones (see e.g. [51, 21]) was developed in order
to provide a suitable finite-state abstraction of the clock values. For example a
zone is a collection of clock valuations that satisfy a set of integer upper- and
lower-bound constraints on the clock values and differences of clock values. As
one can without loss of generality restrict the integer values that appear in the
constraints by the largest constant that is present in a given timed automaton,
we end up with only finitely many possible zones. We can now consider an
abstracted transition system where configurations are pairs (s, Z) such that s
is a location of the automaton and Z is a zone represented in a finite way by a
set of constraints. Moreover, the set of all zones together with the classical set
inclusion forms a (finite) lattice.

Our reachability algorithm with simple update then restates the basic reach-
ability algorithm for timed automata, the cover update corresponds to zone in-
clusion check which is also well known in the theory of timed automata, and the
join operation provides a convex-hull over-approximation. We refer to e.g. [21]
for more information. All these algorithms are implemented in verification tools
like Uppaal [19] and numerous case studies confirm their efficiency in practice.

6 Conclusion

We have presented a novel formal model of lattice transition systems. The
model was motivated by numerous concrete applications and we generalized
the domain-specific ideas into an abstract framework. We only require that
the transition relation of our model is monotonic with respect to the lattice
elements, in order words, the higher we are in the lattice the more behaviour is
possible. This property allowed us to prove the correctness of our reachability
algorithms with different levels of abstraction.

The cover update termination condition of the algorithm was proved sound
and complete and already on its own provided a significant reduction of the
searchable state space on our examples. Further reduction of the state space
can be achieved by applying the join, however, at the expense of the possibility
of inconclusive answers. To account for this, we suggested a LaGAR refinement
algorithm that repeatedly splits selected join nodes and eventually provides a
conclusive answer.

Finally, we have argued about the applicability of the framework based on
several concrete examples from different domains. Our initial experimental find-

81

6. CONCLUSION

ings look very promising and in the future we plan to make the proposed algo-
rithm more widely available by introduction of user-defined lattice-types in the
verification tool Uppaal [19].

82

Paper C

opaal: A Lattice Model
Checker

Andreas Engelbredt Dalsgaard
René Rydhof Hansen
Kenneth Yrke Jørgensen
Kim Gulstrand Larsen
Mads Chr. Olesen
Petur Olsen
Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark.
{andrease,rrh,kyrke,kgl,mchro,petur,srba}@cs.aau.dk

Abstract We present a new open source model checker, opaal, for automatic
verification of models using lattice automata. Lattice automata allow the users
to incorporate abstractions of a model into the model itself. This provides
an efficient verification procedure, while giving the user fine-grained control of
the level of abstraction by using a method similar to Counter-Example Guided
Abstraction Refinement. The opaal engine supports a subset of the Uppaal
timed automata language extended with lattice features. We report on the
status of the first public release of opaal, and demonstrate how opaal can
be used for efficient verification on examples from domains such as database
programs, lossy communication protocols and cache analysis.

1 Introduction

Common to almost all applications of model checking is the notion of an under-
lying concrete system with a very large—or sometimes even infinite—concrete

83

1. INTRODUCTION

state space. In order to enable model checking of such systems, it is necessary to
construct an abstract model of the concrete system, where some system features
are only modelled approximately and system features that are irrelevant for a
given verification purpose are “abstracted away”.

The opaal model checker described in this paper allows for such abstrac-
tions to be integrated in the model through user-defined lattices. Models are
formalised by lattice automata: synchronising extended finite state machines
which may include lattices as variable types. The lattice elements are ordered
by the amount of behaviour they induce on the system, that is, larger lattice el-
ements introduce more behaviour. We call this the monotonicity property. The
addition of explicit lattices makes it possible to apply some of the advanced
concepts and expressive power of abstract interpretation directly in the models.

Lattice automata, as implemented in opaal, are a subclass of well-structured
transition systems [44]. The tool can exploit the ordering relation to reduce the
explored state space by not re-exploring a state if its behaviour is covered by
an already explored state. In addition to the ordering relation, lattices have
a join operator that joins two lattice elements by computing their least upper
bound, thereby potentially overapproximating the behaviour, with the gain of a
reduced state space. Model checking the overapproximated model can however
be inconclusive. We introduce the notion of a joining strategy affording the user
more control over the overapproximation, by specifying which lattice elements
are joinable. This allows for a form of user-directed CEGAR (Counter-Example
Guided Abstraction Refinement) [52, 17]. The CEGAR approach can easily be
automated by the user, by exploiting application-specific knowledge to derive
more fine-grained joining strategies given a spurious error trace. Thus providing,
for some systems and properties, efficient model checking and conclusive answers
at the same time.

The opaal model checker is released under an open source license, and can be
freely downloaded from our webpage: www.opaal-modelchecker.com. The tool
is available both in a GUI and CLI version, shown in Fig. 1. The Uppaal [19]
GUI is used for creation of models.

The opaal tool is implemented in Python and is a stand-alone model check-
ing engine. Models are specified using the Uppaal XML format, extended with
some specialised lattice features. Using an interpreted language has the advan-
tage that it is easy to develop and integrate new lattice implementations in the
core model checking algorithm. Our experiments indicate that although opaal

uses an interpreted language, it is still sufficiently fast to be useful.
Users can create new lattices by implementing simple Python class interfaces.

The new classes can then be used directly in the model (including all user-defined
methods). Joining strategies are defined as Python functions.

An overview of the opaal architecture is given in Fig. 2, showing the five
main components of opaal. The “Successor Generator” is responsible for gen-
erating a transition function for the transition system based on the semantics
of Uppaal automata. The transition function is combined with one or more
lattice implementations from the “Lattice Library”.

The “Successor Generator” exposes an interface that the “Reachability Checker”

84

PAPER C. OPAAL: A LATTICE MODEL CHECKER

Figure 1: opaal GUI and CLI

can use to perform the actual verification. During this process a “Passed-
Waiting List” is used to save explored and to-be explored states; it employs
a user-provided “Joining Strategy” on the lattice elements of states, before they
are added to the list.

2 Examples

In this section we present a few examples to demonstrate the wide applicability
of opaal. The tool currently has a number of readily available lattices that are
used to abstract the real data in our examples.

2.1 Database Programs

In recent work by Olsen et al. [78], the authors propose using present-absent sets
for the verification of database programs. The key idea is that many behavioural
properties may be verified by only keeping track of a few representative data
values.

85

2. EXAMPLES

Figure 2: Overview of opaal’s architecture.

This idea can be naturally described as a lattice tracking the definite present-
and absent-ness of database elements. In the model, this is implemented using
a bit-vector lattice. For the experiment we adopt a model from [78], where
users can login, work, and logout. The model has been updated to fit within
the lattice framework, as shown in Fig. 3. In the code in Fig. 4, the construct
extern is used on line 3 to import a lattice from the library. Subsequently two
lattice variables, pLogin and aLogin, are defined at line 4 and 5, both vectors of
size N USERS. The lattice variables are used in the transitions of the graphical
model, where e.g. a special method “num0s()” is used to count the number of
0’s in the bitvector. The definition of a lattice type in Fig. 5 is just an ordinary
Python class with at least two methods: join and the ordering.

We can verify that two users of the system cannot work at the same time us-
ing explicit exploration, or by exploiting the lattice ordering to do cover checks,
see Fig. 6.

Another property to check is that the database cannot become full. For
this property we can exploit a CEGAR approach: A näıve joining strategy will
give inconclusive results, but refining the joining strategy not to join two states
if the resulting state has a full database, leads to conclusive results while still
preserving a significant speedup, see Fig. 7.

2.2 Asynchronous Lossy Communication Protocol: Leader
Election

Communication protocols where messages are asynchronously passed via an un-
reliable (lossy and duplicating) medium can be modelled as a lattice automaton.
As long as we are interested in safety properties, such a communication can be
modelled as a set of already sent messages called pool. Initially the set pool
is empty. Once a message it sent, it is added to the set pool and it remains
there forever (duplication). As the protocol parties are not forced to read any
message from pool and we ask about safety properties, lossiness is covered by

86

PAPER C. OPAAL: A LATTICE MODEL CHECKER

pLogin[i] = 0 ; aLogin[i] = 1

aLogin.setall()

pLogin[i] = 1 ;
aLogin[i] = 0

Bad

not aLogin[i]

not pLogin[i]

aLogin[i] == 0

pLogin[i] == 0

Logout

Work

aLogin.num0s() ==
N_USERS

Login

Init

aLogin.num0s() < (N_USERS − 1)

work[i]?

workErr[i]!

loginOK[i]!

login[i]?

logoutErr[i]!

workOK[i]!

logoutOK[i]!

logout[i]?

Figure 3: Database model

1 const i n t N USERS = 17 ;
2 . . .
3 extern In t e r sB i tVec to r ;
4 In t e r sB i tVec to r pLogin [N USERS] ;
5 In t e r sB i tVec to r aLogin [N USERS] ;

Figure 4: Lattice variables

the definition too.
It is obvious that 2pool , i.e. the set of all subsets of pool, together with the

subset ordering is a complete lattice. As long as the set of messages is finite and
all parties in the protocol behave in the way that their steps are conditioned
only on the presence of a message in the pool and not on its absence, the system
will satisfy the monotonicity property and we can apply our model checker.

We have modelled the asynchronous leader election protocol [46] in opaal.
Here we have N agents with their unique identifications 0, 1, . . . , N−1 and they
select a leader with the highest id. Experimental data, for the property that

1 class In t e r sB i tVec to r :
2 def j o i n (s e l f , other) :
3 . . .
4
5 def l e (s e l f , o ther) :
6 . . .

Figure 5: Lattice library (in Python)

87

2. EXAMPLES

Number of users explicit exploration cover check

2 224 (<1s) 56 (<1s)
3 2352 (2s) 336 (<1s)
4 21952 (28s) 1792 (2s)
5 192080 (8:22m) 8960 (9s)
6 - 43008 (48s)
7 - 200704 (4:38m)

Figure 6: Explored states and time for the property “no two users work at the
same time”

of users explicit exploration joining (näıve) joining (refined)

8 6312 (15s) (Incon.) 51 (<1s) 787 (1s)
9 14228 (56s) (Incon.) 57 (<1s) 1238 (2s)
10 31614 (4:19m) (Incon.) 63 (<1s) 976 (2s)
11 69478 (21:35m) (Incon.) 69 (<1s) 1036 (2s)
12 - (Incon.) 75 (<1s) 1707 (3s)
16 - (Incon.) 99 (<1s) 25900 (4:18m)
17 - (Incon.) 105 (<1s) 66490 (25:01m)

Figure 7: Explored states and time for the property “database cannot become
full”

Number of agents explicit exploration cover check joining

5 840 (5s) 37 (<1s) 17 (<1s)
6 5760 (5:20m) 58 (<1s) 23 (<1s)
7 45360 (671:02m) 86 (1s) 30 (<1s)
15 - 682 (4:21m) 122 (2s)
25 - 2927 (283:16m) 327 (12s)
50 - - 1277 (4:19m)
100 - - 5052 (98:45m)

Figure 8: Explored states and time for the leader election protocol

only the agent with the highest id can become leader, are provided in Fig. 8. The
cover check column refers to using only the monotonicity property to reduce the
explored state-space. We can see that while being exact (no overapproximation),
the speed-up is considerable. Moreover, using the join strategy provides even
more significant speed-up while still providing conclusive answers.

88

PAPER C. OPAAL: A LATTICE MODEL CHECKER

2.3 Cache Analysis

To ensure safe scheduling of real-time systems, the estimation of Worst-Case
Execution Time (WCET) of each task in a given system is necessary [103]. One
major part of determining WCETs for modern processors is accounting for the
effects of the memory cache. Efficient abstractions exist for analysing some
types of caches [8], which we have implemented as a lattice. By recasting the
cache analysis into our framework we gain the ability to give WCET guarantees,
and gradually refine those guarantees by being more and more concrete with
respect to the data-flow of the program.

On a simple program (binary search in array of size 100) and a simple cache
we get the same WCET using all approaches. The complete state space has
5726 states (computed in 6s), cover update reduces this to 4043 states (3s),
while join only needs to store 3944 states (3s). On more complex examples join
will start to give overapproximated guarantees, which can be further refined.

2.4 Timed Automata

It is well-known that the theory of zones of timed automata (see e.g. [51, 21]) is
a finite-state abstraction of clock values with a lattice structure. A zone-lattice
is currently being developed for use in opaal, but has not matured to a point
where meaningful experiments can be made yet.

3 Conclusion

We presented a new model checker, opaal, for lattice automata and provided a
number of applications. The expressiveness of the formalism, derived from well-
structured transition systems, promises broad applicability of the tool. Our
initial experiments indicate that careful abstraction using the techniques imple-
mented in opaal lead to efficient verification.

We plan on extending the foundations of opaal to additional formalisms
such as Petri nets, as well as on improving the performance of the tool by
rewriting core parts in a compiled language. Of course, additional lattices and
areas of application are also to be investigated.

89

Paper D

Automata Learning
Through
Counterexample-Guided
Abstraction Refinement∗

Fides Aarts1

Faranak Heidarian1**

Petur Olsen2

Frits Vaandrager1

1

Institute for Computing and Information Sciences
Radboud University Nijmegen
P.O. Box 9010
6500 GL Nijmegen
the Netherlands

2

Department of Computer Science
Aalborg University
Aalborg, Denmark

*This research was supported by European Community’s Seventh Framework Programme
under grant agreement no 214755 (QUASIMODO).

**Research supported by NWO/EW project 612.064.610 Abstraction Refinement for Timed
Systems (ARTS).

91

1. INTRODUCTION

Abstract State-of-the-art tools for active learning of state machines are able
to learn state machines with at most in the order of 10.000 states. This is not
enough for learning models of realistic software components which, due to the
presence of program variables and data parameters in events, typically have
much larger state spaces. Abstraction is the key when learning behavioral mod-
els of realistic systems. Hence, in most practical applications where automata
learning is used to construct models of software components, researchers man-
ually define abstractions which, depending on the history, map a large set of
concrete events to a small set of abstract events that can be handled by au-
tomata learning tools. In this article, we show how such abstractions can be
constructed fully automatically for a restricted class of extended finite state
machines in which one can test for equality of data parameters, but no opera-
tions on data are allowed. Our approach uses counterexample-guided abstrac-
tion refinement: whenever the current abstraction is too coarse and induces
nondeterministic behavior, the abstraction is refined automatically. Using a
prototype implementation of our algorithm, we have succeeded to learn–fully
automatically–models of several realistic software components, including the
biometric passport and the SIP protocol.

1 Introduction

The problem to build a state machine model of a system by providing inputs
to it and observing the outputs resulting, often referred to as black box system
identification, is both fundamental and of clear practical interest. A major
challenge is to let computers perform this tasks in a rigorous manner for systems
with large numbers of states. Tools that are able to infer state machine models
automatically by systematically “pushing buttons” and recording the resulting
behavior will have numerous applications in different domains. For instance,
they may help us to understand and analyze the behavior of legacy software
and can be used to automatically derive tests to check that a protocol behaves
in accordance with a reference implementation.

Within active learning it is assumed that a learner infers an automaton
through interaction with a teacher. The well-known L∗ algorithm of Angluin [15],
for instance, assumes that the teacher knows a FSMM. The learner (initially)
only knows the set of actions and her task is to learn a machine that is equiva-
lent toM. The teacher will answer two types of questions: membership queries
(“is string w in the language accepted by M”) and equivalence queries (“is
an hypothesized machine H correct, i.e., equivalent to the machine M?”). In
case of a no-answer, the teacher will also provide a counterexample that proves
that the learner’s hypothesis is wrong, that is, a distinguishing word from the
language. After posing a finite number of queries, the algorithm will terminate
with a final hypothesis H that is equivalent to M.

Figure 1 illustrates how active learning can be used to obtain models of
“reactive” systems. The core of the teacher now is a SUT (System Under Test),
a (physical) system to which we can apply inputs and whose outputs we may

92

PAPER D. AUTOMATA LEARNING THROUGH
COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT∗

Figure 1: Active learning of reactive systems

observe. The learner interacts directly with the SUT to infer a model. Since the
SUT cannot respond to equivalence queries, the teacher is also equipped with
a tool for model based testing (MBT). Given a hypothesized model, this tool
“approximates” equivalence queries by generating a long test sequence using
some model based testing algorithm. If the SUT passes this test, that is, the
output that is generated by the SUT agrees with the output predicted by the
model, then we assume that the model is correct. If the output of the SUT is
different from the output of the model, this constitutes a counterexample that is
forwarded to the learner. It is important to note that in this setting the learner,
in general, is not perfect: due to incomplete coverage, it may occur that the
implementation M passes the test for an hypothesis H, even though M and
H are not equivalent. Using the scheme of Figure 1, Niese [76] developed an
adaptation for active learning of deterministic Mealy machines. This approach
has been implemented in the LearnLib tool [81] and has, for instance, been
applied successfully to learn computer telephony integrated (CTI) systems [56].
LearnLib, which is the winner of the 2010 Zulu competition, is currently able
to learn state machines with up to 30.000 states.

During the last few years important developments have taken place on
the borderline of verification, model-based testing and automata learning, see
e.g. [23, 66, 81]. There are many reasons to expect that by combining ideas
from these three areas it will become possible to learn models of realistic soft-
ware components with state-spaces that are many orders of magnitude larger
than what state-of-the-art tools can currently handle. Last year, Aarts, Jonsson
and Uijen proposed a new method for automatically learning models of large
state machines [3]. Their idea is to place a so-called mapper A in between the
SUT M and the learner, which transforms the interface of the SUT by an ab-
straction that maps (in a history dependent manner) the large set of actions of
the SUT into a small set of abstract actions. By combining the abstract machine
H learned in this way with information about the mapper A, one can effectively
learn a (symbolically represented) over-approximation of the behavior of SUT
M. Roughly speaking, the learner is responsible for learning the global “control

93

1. INTRODUCTION

modes” in which the system can be, and the transitions between those modes,
whereas the mapper records some relevant state variables (typically computed
from the data parameters of previous input and output actions) and takes care
of the data part of the SUT. The approach of [3] has been inspired by ideas
from predicate abstraction [67]. The feasibility of the approach is illustrated by
learning models of (fragments of) realistic protocols such as SIP and TCP [3],
and of the new biometric passport [4]. The learned SIP model is an extended
finite state machine with 29 states, 3741 transitions, and 17 state variables with
various types (booleans, enumerated types, (long) integers, character strings,..).
This corresponds to a state machine with an astronomical number of states and
transitions, thus far fully out of reach of automata learning techniques. A major
limitation of the approach of [3], however, is that the abstraction mapping has
to be provided by the user, based on a priori knowledge of the SUT.

In this article, we address this problem and develop an algorithm that com-
putes the mapper fully automatically. Nondeterminism arises naturally when
we apply abstraction: it may occur that the behavior of a SUT is fully deter-
ministic but that due to the mapper (which, for instance, abstracts from the
precise value of certain input parameters), the system appears to behave non-
deterministically from the perspective of the learner. In [3] LearnLib is used
as the basic learning tool, and therefore the abstraction of the SUT as defined
by the mapper may not exhibit any nondeterminism: if it does then one has to
refine the abstraction. This is exactly what has been done repeatedly during
the manual construction of the abstraction mappings in the case studies of [3].
In this article, we formalize this procedure and describe the construction of the
mapper in terms of a counterexample guided abstraction refinement (CEGAR)
procedure, similar to the approach developed by Clarke et al [32] in the context
of model checking. Our algorithm applies to a restricted class of extended fi-
nite state machines in which one can test for equality of data parameters, but
no operations on data are allowed. Using a prototype implementation of our
algorithm, we have succeeded to learn – fully automatically – models of several
realistic software components, including the biometric passport and the SIP
protocol.

The idea to use CEGAR for learning state machines has also been explored
recently by Howar at al [55], who developed and implemented a CEGAR proce-
dure for the special case in which the abstraction is static and does not depend
on the execution history. As we illustrate in this paper, our approach is ap-
plicable to a much richer class of systems, which for instance includes the SIP
protocol and the various components of the Alternating Bit Protocol. We ex-
pect that our CEGAR based approach can be further extended to systems that
may apply simple or known operations on data, using technology for automatic
detection likely invariants, such as Daikon [42]. Even though the class of sys-
tems to which our approach currently applies is limited, the fact that we are
able to learn models of systems with data fully automatically is a major step
towards a practically useful technology for automatic learning of models of soft-
ware components.

For reasons of space, all proofs have been omitted from this paper. (We

94

PAPER D. AUTOMATA LEARNING THROUGH
COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT∗

heavily use the characterization of the ioco preorder in terms of alternat-
ing simulations [5].) The models that we learned using our CEGAR algo-
rithm and that are described in the experiments section, are available via
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/.

Acknowledgement We thank Gábor Angyal and Harco Kuppens for their
help with linking our tool with the CADP toolset, which allowed us to check
that the learned models are indeed equivalent to the original models of the SUT.

2 Preliminaries

We model reactive systems by a simplified interface automata [39].

Definition 1 (IA). An interface automaton (IA) is a tuple I = 〈I,O,Q, q0,→〉
where

• I and O are disjoint sets of input and output actions,

• Q is a non-empty set of states,

• q0 ∈ Q is the initial state, and

• →⊆ Q × (I ∪ O) × Q is the transition relation. We write q
a−→ q′ if

(q, a, q′) ∈→.

The output actions are assumed to be under the control of the system whereas
input actions are under control of the environment. An action a is enabled in
state q, noted q

a−→, if q
a−→ q′ for some state q′. We write outI(q) or just out(q)

if I is clear from the context, for the set {a ∈ O | q a−→} of output actions enabled
in state q. I is said to be:

• input-deterministic if for each state q ∈ Q and for each input action i ∈ I
there is at most one outgoing transition of q with label i: q

i−→ q′ ∧ q i−→
q′′ ⇒ q′ = q′′;

• output-deterministic if for each state q ∈ Q and for each output action
o ∈ O there is at most one outgoing transition of q with label o: q

o−→
q′ ∧ q o−→ q′′ ⇒ q′ = q′′;

• deterministic if it is both input- and output-deterministic;

• output-determined if each state has at most one outgoing output transi-
tion;

• input-enabled if each input action is enabled in each state, that is q
i−→,

for all q ∈ Q and all i ∈ I. An I/O automaton(IOA) is an input-enabled
IA.

95

3. INFERENCE OF I/O AUTOMATA

A state q is called quiescent if it enables no output actions. Let δ be a fresh
action symbol (not in I ∪ O). Then the δ-extension of I, notation Iδ, is the
IA obtained by adding δ to the set of outputs, and δ-loops to all the quiescent
states of I. We write Oδ = O ∪ δ.

We extend the transition relation to sequences by defining, for σ ∈ (I ∪O)∗,

→∗ to be the transitive and reflexive closure of
a−→. We use ε to denote the

empty sequence. We say that state q is reachable if q0
σ−→∗ q, for some σ. We

write q
σ−→∗ if q

σ−→∗ q′, for some state q′. We say that σ ∈ (I ∪O)∗ is a trace of

I if q0
σ−→∗, and write Traces(I) for the set of traces of I. We write I after σ

for the set {q ∈ Q | q0 σ−→∗ q} of states of I that can be reached with trace σ.
Let I1 and I2 be IAs with the same signature. Then I1 and I2 are input-output
conforming, notation I1 ioco I2, if

∀σ ∈ Traces(Iδ2) : out(Iδ1 after σ) ⊆ out(Iδ2 after σ).

The ioco relation is the main notion of conformance in the model based testing
theory of Tretmans [94, 98].

An IA I is behavior-deterministic if, for each σ ∈ Traces(Iδ), the set
out(Iδ after σ) contains at most one element. Note that any deterministic
output-determined IA is behavior-deterministic. Note also that if I is an IOA,
out(Iδ after σ) always contains at least one element. Hence, for a behavior-
deterministic IOA I, out(Iδ after σ) is a singleton set, for each σ. Finally, note
that when I1 ioco I2 and I2 is behavior-deterministic, then I1 is behavior-
deterministic as well.

3 Inference of I/O Automata

3.1 Basic Framework for Inference of I/O Automata

We present a (slight variation of) the approach of [5] for active learning of
I/O automata. In this approach we assume a teacher, who knows a behavior-
deterministic IOA T = 〈I,O,Q, q0,→〉, and a learner, who initially knows a
deterministic IA P = 〈I,O, P, p0,→′〉, called the learning purpose. We require
T ioco P. The task of the learner is to learn the part of T whose behavior is
compatible with P. The teacher records the current state of T , which initially is
q0, and the learner records the current state of P, which initially is p0. Suppose
the teacher is in state q and the learner is in state p. The learner may engage
in four types of interactions with the teacher:

1. If an input transition p
i−→ ′p′ is enabled in P then the learner may present

input i to the teacher. The learner then jumps to p′ and the teacher jumps

to some state q′ such that q
i−→ q′.

2. The learner may send an output query to the teacher. There are two
possibilities. If state q is quiescent, then the teacher remains in state
q and returns answer δ to the learner. Otherwise, an output transition

96

PAPER D. AUTOMATA LEARNING THROUGH
COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT∗

q
o−→ q′ is selected by the teacher, the teacher jumps to q′, and returns

answer o to the learner. The learner then jumps to a state p′ that can be
reached by the response o or δ (by the assumptions we know such a state
exists).

3. The learner may order a reset. Both the learner and the teacher then
return to their initial state, p0 and q0, respectively.

4. The learner may present an hypothesis to the teacher, which is an IA H
such that H ≤δAI P. We say that H is correct if T ioco H. In this case
the teacher returns the answer yes. If a hypothesis is not correct then Hδ
has a trace σ such that the unique output o enabled by T δ after σ is not
amongst the outputs enabled by Hδ after σ. The teacher then returns the
answer no together with counterexample σo.

Lemma 1. Suppose hypothesis H is behavior deterministic and output deter-
mined. Then H is correct iff H is behavior equivalent (bisimilar) to the syn-
chronous product of T and P.

An algorithm for learning I/O automata is an effective procedure which,
for all finite T and P, allows the learner to come up with a correct, behavior-
deterministic and output determined hypothesisH after a finite number of inter-
actions with the teacher. In [5], it is shown that any algorithm for learning Mealy
machines can be transformed into an algorithm for learning I/O automata. Ef-
ficient algorithms for learning Mealy machines (and hence I/O automata) have
been implemented in the tool Learnlib [81].

3.2 Inference Using Abstraction

In order to learn an over-approximation of a “large” IOA T = 〈I,O,Q, q0,→〉,
we place a mapper between the teacher and the learner, which translates the
concrete actions in I and O to abstract actions in X and Y , and vice versa. The
task of the learner is to infer an IA with alphabet X and Y . The behavior of
the mapper is fully determined by an abstraction A.

Definition 2 (Abstraction). An abstraction for a set of inputs I and a set of
outputs O is a tuple A = 〈I, X, Y,Υ〉, in which

• I = 〈I ∪O, ∅, R, r0,→〉 is a deterministic IOA,

• X and Y are finite sets of abstract input and output actions, and

• Υ ⊆ R× (I ∪O)× (X ∪ Y) is a relation that relates, for each local state,
concrete actions to abstract ones. We write aΥrz instead of (r, a, z) ∈ Υ
and require

1. aΥrz implies a ∈ I ⇐⇒ z ∈ X
(inputs are related to inputs, and outputs to outputs)

97

3. INFERENCE OF I/O AUTOMATA

2. ∀r ∈ R ∀z ∈ X ∪ Y ∃a ∈ I ∪O : aΥrz
(abstract actions have related concrete actions)

3. ∀r ∈ R ∀a ∈ I ∪O ∃z ∈ X ∪ Y : aΥrz
(concrete actions have related abstract actions)

4. ∀r ∈ R ∀o ∈ O ∀y, y′ ∈ Y : oΥry ∧ oΥry
′ ⇒ y = y′

(each concrete output has at most one related abstract output)

The behavior of the mapper for A can be defined as follows:

• Initially, it is in state r0.

• If the mapper is in state r and receives an abstract input action x from
the learner, it non-deterministically picks a concrete action i such that
iΥrx, forwards i to the teacher, and updates its state to r′, where r′ is

the unique state such that r
i−→ r′.

• If the mapper receives an output query from the learner, it forwards this
query to the teacher, without changing its current state,

• If the mapper is in state r and receives an output o ∈ O from the teacher,
it forwards the unique abstract output y such that oΥry to the learner
and updates its state to r′, where r′ is the unique state such that r

o−→ r′.
If the mapper receives a δ action from the teacher, this is forwarded to
the learner and the state remains unchanged.

• If the mapper receives a reset from the learner, it changes its current state
to r0 and forwards the reset to the teacher.

• If the mapper receives an hypothesisH = 〈X,Y, S, s0,→〉 from the learner,
it constructs interface automaton A ‖ H and forwards this as an hypoth-
esis to the teacher. Here, A ‖ H is the interface automaton 〈I,O,R ×
S, (r0, s0),→conc〉, where →conc is given by the rule:

r
a−→ r′ s

z−→ s′ aΥrz

(r, s)
a−→conc (r′, s′)

Intuitively, A ‖ H is a concrete version of the abstract hypothesis H.

• If the mapper receives yes from the teacher in response to a validity
query, it forwards this response to the learner and the learning is done. If
the mapper receives the answer no with a concrete counterexample, then
the mapper translates this counterexample to an abstract counterexample
using relation Φ. Here relation Φ, which relates sequences over I ∪Oδ to
sequences over X ∪ Yδ, is defined inductively by:

– εΦε

– if σΦρ, r0
σ−→∗ r and aΥrz then (σa)Φ(ρz)

98

PAPER D. AUTOMATA LEARNING THROUGH
COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT∗

Define T ‖ A, the parallel composition of T and A, to be the IOA 〈X,Y,Q ×
R, (q0, r0),→abst〉, where transition relation →abst is given by the rule:

q
a−→ q′ r

a−→ r′ aΥrz

(q, r)
z−→abst (q′, r′)

Lemma 2. Suppose H and A ‖ H are behavior deterministic and output deter-
mined. Then T ‖ A ioco H if and only if T ioco A ‖ H.

Theorem 1. Assume that we have a learner that only generates hypothesis H
such that H and A ‖ H are behavior deterministic and output determined. Then
a teacher for T and a mapper for A together behave like a teacher for T ‖ A.

Lemma 2 and Theorem 1 form the basis for our abstraction approach: if
we succeed to propose a correct hypothesis for the “small” model T ‖ A, then
we can convert this into a correct hypothesis for the “large” model T . The
main problem in practice is that T ‖ A may not be behavior deterministic. In
this case T ‖ A ioco H will not hold, and hence Lemma 2 can not be applied.
The challenge therefore is to find abstractions A such that T ‖ A is behavior
deterministic.

4 Symbolic Abstraction

Even though our general approach for using abstraction in automata learning
is phrased most naturally at the semantic level, our CEGAR algorithm and the
specific restrictions on SUTs that it requires can only be phrased using a syn-
tactic (symbolic) formulation of interface automata. Therefore, in this section,
we present a general syntax for symbolic interface automata and abstractions.

We assume a first-order language with (typed) variables, function, predicate
and constant symbols. We assume that each variable v comes equipped with a
type type(v), which is the set of values that it may take. Also, each term t has
an associated type type(t). We use ≡ to denote syntactic equality of terms. If V
is a set of variables, then a valuation for V is a function that maps each variable
in V to an element of its domain. We write Val(V) for the set of all valuations
for V . If ξ is a valuation for V and ϕ is a formula with free variables in V ,
then we write ξ |= ϕ to denote that ξ satisfies ϕ. Similarly, if t is a term then
we write JtKξ for the value to which t evaluates under valuation ξ. If V ′ ⊆ V
then ξdV ′ denotes the restriction of ξ to the variables in V ′. If v1, . . . , vn are
variables in V and t1, . . . , tn are terms, then we write ξ[v1, · · · , vn := t1, · · · , tn]
for the valuation in which all the variables have the same values as in ξ except
for v1, . . . , vn which are evaluated to Jt1Kξ, . . . , JtnKξ, respectively.

We employ a slight variation of Jonsson’s [58] approach for specification
of distributed systems and define a symbolic interface automaton by means of
a program-like notation with guarded multiple assignments. Each assignment
statement is labeled with an event which can denote either reception or trans-
mission of a message.

99

4. SYMBOLIC ABSTRACTION

Definition 3. An event signature Σ is a triple 〈EI , EO, T 〉, where

• EI is a finite set of input event primitives,

• EO is a finite set of output event primitives, with EI ∩ EO = ∅,

• T is a set that contains exactly one event term for each ε ∈ EI ∪EO. Here
an event term for ε is an expression ε(p1, . . . , pm) in which p1, . . . pn are
pairwise different variables. We require that the sets of variables occurring
in different event terms of T are disjoint.

Let E ⊆ EI ∪EO. We write T dE to denote the subset of event terms in T build
using event primitives in E.

Intuitively, an event signature specifies the possible interactions between an
interface automaton and its environment.

Definition 4 (SIA). A symbolic interface automaton S is a tuple 〈Σ, V,Θ,A〉,
where

• Σ = 〈EI , EO, T 〉 is an event signature,

• V is a finite set of variables, referred to as state variables,

• Θ is an assertion, referred to as the initial condition, whose free variables
are in V ,

• A is a finite set of input transitions and output transitions. Input tran-
sitions in are of the form

event εI(p1, · · · , pm) when g do 〈v1, · · · , vn〉 := 〈t1, · · · , tn〉

where εI ∈ EI , εI(p1, . . . , pm) ∈ T , v1, · · · , vn are distinct variables in
V , g is an assertion and t1, · · · , tn are terms with free variables in V ∪
{p1, · · · , pm}. Output transitions in A are of the form

event εO(u1, · · · , um) when g do 〈v1, · · · , vn〉 := 〈t1, · · · , tn〉

where εO ∈ EO, εO(p1, . . . , pm) ∈ T , v1, · · · , vn are distinct variables
in V , g is an assertion, and u1, · · · , um and t1, · · · , tn are terms with
free variables in V . We require that all the terms occurring in actions
from A are appropriately typed. For instance, we require for each output
transition that, for each valuation q ∈ Val(V) with q |= g an for each index
j, JujKq ∈ type(pj).

An SIA is input enabled if, for each input event primitive, the disjunction of
the set of guards of transitions for that event primitive is equivalent to true. A
symbolic I/O-automaton S is an input-enabled SIA.

100

PAPER D. AUTOMATA LEARNING THROUGH
COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT∗

A transition τ states that if under a suitable instantiation of the variables the
condition g is true, then the assignment statement 〈v1, · · · , vn〉 := 〈t1, · · · , tn〉
can be performed together with an interaction specified by εI(p1, · · · , pm) or
εO(u1, · · · , um). It is furthermore the intention that input transitions are con-
trolled by the environment whereas output transitions are controlled by the
automaton in which they occur. In an input transition, values of d1, · · · , dm
are received from the environment. We require di ∈ type(pi), for p1, · · · , pm the
formal parameters of the event term. In an output transition, however, we can
think of u1, · · · , um in εO(u1, · · · , um) as being generated by the specification
and allow them to be arbitrary terms (of the right type).

Definition 5 (SA). Let Σc = 〈EI , EO, Tc〉 be an event signature. A symbolic
abstraction (SA) for Σc is a triple M = 〈S,Σa,Ψ〉, where

• S = 〈〈EI ∪ EO, ∅, Tc〉, V,Θ,A〉 is a deterministic SIOA,

• Σa = 〈EX , EY , Ta〉 is an event signature, referred to as the abstract event
signature, such that the variables that occur in Tc and Ta are disjoint, and

• Ψ is a set of triples of the form 〈ε(p1, · · · , pm), 〈ε′(q1, · · · , qk), ϕ〉, where
ε(p1, · · · , pm) ∈ Tc, ε′(q1, · · · , qk) ∈ Ta, ε ∈ EI ⇔ ε′ ∈ EX , and ϕ is a
formula over {p1, · · · , pm} ∪ {q1, · · · , qk} ∪ V . We require that ϕ satisfies
the four conditions stated in Definition 2.

The behavior of the mapper in the symbolic case is essentially the same as
the behavior of the non-symbolic mapper, except that if the symbolic mapper
receives a validity query H = 〈X,Y,H, h0,→〉 from the learner, it constructs
a symbolic interface automaton M ‖ H and forwards it as a validity query
to the teacher. Here, M ‖ H is the SIA 〈Σ, V̄ , Θ̄, Ā〉, where V̄ = V ∪ {`oc},
Θ̄ = Θ ∧ (`oc = h0) and For each transition

event εI(p1, · · · , pm) when g do 〈v1, · · · , vn〉 := 〈t1, · · · , tn〉

in A with εI ∈ EI there are corresponding transitions in Ā generated by the
rule:

〈εI(p1, · · · , pm), εX(q1, · · · , qk), ϕ(p1, · · · , pm, q1, · · · , qk, v1, · · · , vn)〉 ∈ Ψ

h
εX(d1,··· ,dk)−−−−−−−−→ h′

event εI(p1, · · · , pm) when g do 〈v1, · · · , vn〉 := 〈t1, · · · , tn〉
event εI(p1, · · · , pm)

when g ∧ `oc = h ∧ ϕ(p1, · · · , pm, d̂1, · · · , d̂k, v1, · · · , vn)
do 〈v1, · · · , vn, `oc〉 := 〈t1, · · · , tn, h′〉

We postulate that, for each abstract parameter qj and for each value d ∈
type(qj), there exists a constant d̂ in our first order language defining it. Simi-
larly, for each transition

event εO(u1, · · · , um) when g do 〈v1, · · · , vn〉 := 〈t1, · · · , tn〉

101

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT

in A with εO ∈ EO there are corresponding actions in Ā generated by the rule:

〈εO(p1, · · · , pm), εY (q1, · · · , qk), ϕ(p1, · · · , pm, q1, · · · , qk, v1, · · · , vn)〉 ∈ Ψ

h
εY (d1,··· ,dk)−−−−−−−−→ h′

event εO(u1, · · · , um) when g do 〈v1, · · · , vn〉 := 〈t1, · · · , tn〉
event εO(u1, · · · , um)

when g ∧ `oc = h ∧ ϕ(u1, · · · , um, d̂1, · · · , d̂k, v1, · · · , vn)
do 〈v1, · · · , vn, `oc〉 := 〈t1, · · · , tn, h′〉

5 Counterexample-Guided Abstraction Refine-
ment

5.1 Basic Assumptions on SUTs and Abstractions

Our tool allows us to use CEGAR to learn models from a very specific class
of SIAs, which we call scalarset SIAs. The scalarset datatype was introduced
by Ip and Dill [57] as part of their work on symmetry reduction in verification.
Operations on scalarsets are restricted so that states are guaranteed to have
the same future behaviors, up to permutation of the elements of the scalarsets.
Using the symmetries implied by the scalarsets, Ip and Dill showed that a verifier
can automatically generate a reduced state space. In order to simplify learning,
we only allow scalarset datatypes. On scalarsets no operations are allowed, we
only assume the presence of a finite set C of constants. In addition, no predicate
symbols may be used in SIAs except for the equality predicate symbol. The
formal definition of a scalarset SIA is presented below.

Definition 6 (SSIA). A scalarset SIA is an SIA S = 〈Σ, V,Θ,A〉 such that

• If Σ = 〈EI , EO, T 〉 then the type of all the variables that occur in T is
equal to N.

• All variables in V have type N ∪ {⊥}.

• Input transitions in A are of the form

event εI(p1, · · · , pn)

when g

do (〈v1, · · · , vq〉 := 〈t1, · · · , tq〉)

where tj ∈ {p1, · · · , pn} ∪C ∪ V and g is a boolean combination of equali-
ties of the form t = t′ such that t, t′ ∈ {p1, · · · , pn} ∪ C ∪ V .

• output transitions in A are of the form

event εO(u1, · · · , um)

when g

do (〈v1, · · · , vq〉 := 〈t1, · · · , tq〉)

102

PAPER D. AUTOMATA LEARNING THROUGH
COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT∗

where ti, ui ∈ C ∪ V and g is a boolean combination of equalities of the
form t = t′ such that t, t′ ∈ C ∪ V .

We enforce that a scalarset SIA may only record the first and the last occurrence
of an input parameter. We say that variable v records the last occurrence of
input parameter p if (0) Θ⇒ v =⊥ holds, (1) each input transition in which p
occurs contains an assignment v := p, (2) v does not appear anywhere else in
either the left-hand or right-hand side of assignments. We say that variable v
records the first occurrence of input parameter p if (0) Θ ⇒ v =⊥ holds, (1)
for each transition with guard g in which p occurs either g ⇒ v =⊥ holds and
the transition contains an assignment v := p, or g ⇒ v 6=⊥ holds and v is not
mentioned in the assignments, (2) v does not appear anywhere else in either
the left-hand or right-hand side of assignments. We require that whenever a
transition contains an assignment of the form v := p, v either records the first
or the last occurrence of p.

For each event signature, we define a family of symbolic abstractions, pa-
rametrized by what we call an abstraction table. Our CEGAR procedure starts
with the simplest of these abstractions (essentially the empty table). If this ab-
straction is sound (in the sense that T ‖ A is behavior deterministic) learning
will succeed. Otherwise, we refine the abstraction and add an entry to our table.
Since there are only finitely many possible abstractions and we know that the
abstraction that corresponds to the “full” table is sound, our CEGAR approach
will always terminate successfully.

Definition 7 (Abstraction table). Let Σ be an event signature, let P be the set
of variables that occur in the terms in Σ for input event primitives, and let U
be the set of variables that occur in the terms in Σ for output event primitives.
We associate to each input parameter p ∈ P two unique variables vfp and vlp,

and define V f = {vfp | p ∈ P} and V l = {vlp | p ∈ P}. An abstraction table for
Σ is a function

F : (P ∪ U)× {0, . . . , N − 1} → C ∪ V f ∪ V l ∪ {⊥},

where N = 2 · |P | + |C|. We require that if an entry in the table is undefined,
all subsequent entries in the same row are undefined as well: F (p, j) =⊥ ∧j <
k ⇒ F (p, k) =⊥. Furthermore, each variable or constant occurs at most once
in a row: F (p, j) = F (p, k) 6=⊥⇒ j = k. Finally, the rows corresponding to the
output parameters contain all variables and constants: p ∈ U ⇒ F (p, j) 6=⊥.
We write: f(p) = |{j|F (p, j) 6=⊥}| for the number of variables and constants
defined for parameter p.

Definition 8 (Abstraction induced by table). Let Σc = 〈EI , EO, Tc〉 be a (con-
crete) event signature and let F be an abstraction table for Σc, as above. We
define MF to be the symbolic abstraction 〈S,Σa,Ψ〉, where

• S is the input and output enabled scalarset SIA 〈〈EI ∪EO, ∅, Tc〉, V,Θ,A〉,
in which

103

5. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT

– V = V f ∪ V l is the set of state variables,

– Θ given by Θ(v) =⊥, for all v ∈ V ,

– for each event term εI(p1, . . . , pm) ∈ T dEI , A contains a transition
of the form

event εI(p1, · · · , pn) when (〈vfp1 , · · · , v
f
pn〉 =⊥)

do (〈vfp1 , · · · , v
f
pn〉 := 〈vlp1 , · · · , v

l
pn〉 := 〈p1, · · · , pn〉)

and a transition of the form

event εI(p1, · · · , pn) when (〈vfp1 , · · · , v
f
pn〉 6=⊥)

do (〈vlp1 , · · · , v
l
pn〉 := 〈p1, · · · , pn〉)

– for each event term εO(p1, . . . , pm) ∈ T dEO, A contains a transition
of the form

event εO(p1, · · · , pm) when true do nop

• Σa = 〈EX , EY , Ta〉 is an abstract event signature such that, for each con-
crete event primitive in EI and EO we have an abstract event primitive
with the same arity in EX and EY , respectively. If ε(p1, · · · , pm) is a
concrete event term and ε′(q1, · · · , qm) is the corresponding abstract event
term then the type of qi equals {−1, 0, · · · , f(pi)− 1}.

• For each pair of a concrete event term ε(p1, · · · , pm) and matching abstract
event term ε′(q1, · · · , qm), Ψ contains a triple 〈ε(p1, · · · , pm), ε′(q1, · · · , qm), ϕ〉.
For inputs, ϕ expresses that, for each i, either qi ≥ 0 and pi = F (pi, qi)
holds, or qi = −1 and pi is different from all the variables and constants
mentioned in the row for pi in F . For outputs, ϕ expresses that, for each
i, qi equals the smallest j for which pi = F (pi, j) holds, if there is such a
j, and qi equals −1 otherwise.

The reader may check that in the above definition Ψ satisfies the four condi-
tions from Definition 2 (use that the domain of the parameters is unbounded).

5.2 Abstraction Learning Algorithm

In our CEGAR algorithm, we begin with the abstraction generated by the table
in which, for each p ∈ P , the corresponding row is empty. As a technical trick,
we assume that all concrete traces of the SUT are started by a special event
instance γ(c1, · · · , c|C|), where ci’s are constants of C. We define the skeleton
of a trace to be the sequence of respective event terms of event instances of that
trace. Two traces are said to be conformable if they have the same skeletons.

104

PAPER D. AUTOMATA LEARNING THROUGH
COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT∗

Definition 9 (position). For a trace σ, we define a position π ∈ N × N to be
an ordered pair (α, β) in which α is the index of an action in the trace and β is
the index of a parameter in that action. Pos(σ) is the finite set of all positions
in trace σ. For two positions π1 and π2 of Pos(σ), we define ≤σ, such that

π1 ≤σ π2 ⇔ α1 ≤ α2 ∧ α1 = α2 → β1 ≤ β2.

≤σ is a total ordering on Pos(σ). We denote π1 <σ π2 when π1 ≤σ π2 and
π1 6= π2

For each position, we have a parameter that is the name of the parameter
in the event term and we refer to it by parσ(π). Furthermore, we have the value
of that parameter in the position, notation valσ(π). For the special action γ,
parσ returns the constant name and valσ returns the constant value.

Definition 10 (visibility). A position π is f-visible is σ, if it is the first occur-
rence of par(π) in σ. On the other hands, π is l-visible from π′, if it is the last
occurrence of par(π) in σ before π′

To find the right entries of abstraction table, we observe the traces where
the current abstraction table present non-deterministic behavior to the learner.
To observe non-determinism and to find new entries for abstraction table, we
introduce edges on traces.

Definition 11 (edge). An edge is an ordered pair (π1, π2) of positions where π2
is called the head and π1 is called the tail of the edge. We impose the condition
π2 <σ π1 on the edges; in the other words, the edges are assumed to be backward.

For each trace we define two sets of edges:

1. Green Edges: (π1, π2) is green if val(π1) = val(π2) and either

vfpar(π2)
∈ F (par(π1)) ∧ π2 is f-visible,

or

vlpar(π2)
∈ F (par(π1)) ∧ π2 l-visible from π1;

or par(π2) is a constant of C and par(π2) ∈ F (par(π1)).

2. Black Edges: (π1, π2) is black if

• π1 has no outgoing green edge,

• val(π1) = par(π2), and

• π2 is either f-visible or l-visible from π1.

The implementation follows the two phases of LearnLib: the membership
phase and the equivalence phase. During the membership phase, LearnLib
poses membership queries to the SUT to construct an hypothesis. Once an hy-
pothesis has been constructed, it generates some long test sequences to check if
the hypothesis is correct. The concretization of abstract input actions is done

105

6. EXPERIMENTS

differently for the two types of queries. During membership queries the algo-
rithm only selects fresh values for concrete actions. That is, when F (par(π)) =⊥
for some position π in the abstract trace, val(π) is set to a fresh value in the
concrete trace. When F (par(π)) 6=⊥, the value in the concrete trace is set to
the corresponding value according to the abstraction, val(π) := val(F (par(π))).

Abstracting the concrete outputs from the SUT becomes trivial when all
concrete values are distinct. The algorithm simply looks through the trace and
finds a value equal to the output value and assigns the abstraction for the input
value.

During the equivalence phase, instead of selecting fresh values when
F (par(π)) =⊥, random values are selected. The abstraction of concrete outputs
is done using the hypothesis supplied from LearnLib. If the SUT generates an
output which the hypothesis disagrees with, a counterexample has been found.
Now there are 2 possibilities. It can be a counter example showing that the
hypothesis learned by LearnLib is incorrect, or it can show that T ‖ A is not
behavior deterministic. To determine which case it is, the trace is converted
into a membership query by converting all values in the trace into distinct val-
ues (except values present in green edges) and rerunning the trace on the SUT.
Only if the resulting output has the same abstraction as the original counterex-
ample, it is forwarded to LearnLib. If however the abstraction is different, the
counterexample trace is a witness that the current abstraction is too coarse.

Once a counterexample is found the abstraction needs to be refined. This is
done by identifying black edges which are only present in the trace, and trying
to remove them by introducing fresh values. Black edges which can not be
removed are added as new entries in the abstraction table.

The following lemma is crucial for termination of our algorithm. In the finest
abstraction, in which the table is completely filled, there are no black edges and
hence can be no counterexample, that is, T ‖ A is behavior deterministic!

Lemma 3. If two conformable traces have the same green edges and black edges,
then their abstractions are identical.

6 Experiments

We have implemented and applied our approach to infer models of realistic sys-
tems represented as Mealy machine style SIAs. For each system abstractions of
the input and output have been learned automatically, which will be exemplified
by means of the Session Initiation Protocol (SIP) as presented in [3]. Initially,
no abstraction for the input is defined in the learner, which is translated to all
parameter values being -1. As a result every parameter in every input action is
treated in the same way and the mapper randomly selects a fresh concrete value.
The learner proceeds by sending output queries in this way and constructs the
abstract Mealy machine shown in Figure 2. When the hypothesis is checked
for correctness, parameter values in test traces may be duplicated, which may
lead to non-deterministic behavior. In the SIP experiment, the input sequence
IINVITE, IACK, IPRACK, IPRACK leads in one case to an O481 output and

106

PAPER D. AUTOMATA LEARNING THROUGH
COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT∗

in the other case to an 0200 output, see Figure 3. To resolve this problem, we
need to refine the input abstraction. Therefore, we identify the green and black
edges for both traces and try to remove black edges that are present in one
trace, but not in the other. The algorithm first successfully removes black edge
No. 1 by replacing the parameter value of the second input with a fresh value
and observing the same output as before. However, removing black edge No. 2
changes the final outcome of the trace to an O481 output. As a result, we need
to refine the input abstraction by adding an equality check between the first
parameter of the last IINVITE message and the first parameter of an IPRACK
message to every IPRACK input. Apart from refining the input alphabet, every
concrete output parameter value is abstracted to either a constant or a previous
occurrence of a parameter. The abstract value is the index of the corresponding
entry in the abstraction table. After every input abstraction refinement, the
learning process needs to be restarted. We proceed until the learner finishes the
inference process without getting interrupted by a non-deterministic output.

Table 1 gives an overview of the systems we learned with the number of
input refinement steps, total output queries and total time needed. We have
checked that all models inferred are bisimilar to their SUT. For this purpose we
combined the learned model with the abstraction and used the CADP tool set1

for equivalence checking.

Figure 2: Hypothesis of SIP protocol

Figure 3: Non-determinism in SIP protocol

1http://www.inrialpes.fr/vasy/cadp/

107

6. EXPERIMENTS
S

y
st

e
m

u
n

d
e
r

te
st

In
p

u
t

re
fi

n
e
m

e
n
ts

T
o
ta

l
o
u

tp
u

t
q
u

e
ri

e
s

T
o
ta

l
ti

m
e

A
lt

er
n

at
in

g
B

it
P

ro
to

co
l

-
S

en
d

er
1

1
9
3

1
8

se
co

n
d

s
A

lt
er

n
at

in
g

B
it

P
ro

to
co

l
-

R
ec

ei
ve

r
2

1
4
5

3
3

se
co

n
d

s
A

lt
er

n
at

in
g

B
it

P
ro

to
co

l
-

C
h

an
n

el
0

3
1

2
8

se
co

n
d

s
B

io
m

et
ri

c
P

as
sp

or
t

3
2
1
9
9

3
0

se
co

n
d

s
S

es
si

on
In

it
ia

ti
on

P
ro

to
co

l
2

8
9
7

1
3

se
co

n
d

s
F

ar
m

er
-W

ol
f-

G
oa

t-
C

ab
b

ag
e

P
u

zz
le

4
6
8
8

5
9

se
co

n
d

s

T
ab

le
1
:

L
ea

rn
in

g
st

a
ti

st
ic

s

108

Paper E

Model-Based Testing of
Industrial Transformational
Systems

Petur Olsen*

Department of Computer Science
Centre for Embedded Software Systems
Aalborg University
Aalborg, Denmark
petur@cs.aau.dk

Johan Foederer

Test Automation
Océ-Technologies B.V.
Venlo, The Netherlands
johan.foederer@oce.com

Jan Tretmans**

Model-Based System Development
Radboud University
Nijmegen, The Netherlands
tretmans@cs.ru.nl

Embedded Systems Institute
Eindhoven, The Netherlands

*Work performed while visiting Radboud University and Océ-Technologies B.V.
**This work has been supported by the EU FP7 under grant number ICT-214755: Quasi-

modo.

109

1. INTRODUCTION

Abstract We present an approach for modeling and testing transformational
systems in an industrial context. The systems are modeled as a set of boolean
formulas. Each formula is called a clause and is an expression for an expected
output value. To manage complexities of the models, we employ a modeling trick
for handling dependencies, by using some output values from the system under
test to verify other output values. To avoid circular dependencies, the clauses
are arranged in a hierarchy, where each clause depends on the outputs of its chil-
dren. This modeling trick enables us to model and test complex systems, using
relatively simple models. Pairwise testing is used for test case generation. This
manages the number of test cases for complex systems. The approach is devel-
oped based on a case study for testing printer controllers in professional printers
at Océ. The model-based testing approach results in increased maintainability
and gives better understanding of test cases and their produced output. Using
pairwise testing resulted in measurable coverage, with a test set smaller than
the manually created test set. To illustrate the applicability of the approach,
we show how the approach can be used to model and test parts of a controller
for ventilation in livestock stables.

1 Introduction

Océ is a leading company in designing and producing professional printers. As
the complexity of these printers grows, both due to features added and due to
the requirement to support several input formats and backwards compatibility,
the task of effectively testing the printer controller becomes very difficult. In
this paper we present a model-based approach to improve the testing of the
controller software of Océ printers.

We consider the part of the controller which processes input job descriptions
and sends commands to the hardware. The system considered is in its abstract
form a simple function. It takes a set of parameter values as input and computes
a set of output parameter values. Input parameters are specific settings to
a print job (number or pages, duplex/simplex, etc.), and the output is the
description, in terms of output parameters, of the actually printed job. The
dependencies between inputs and outputs are not trivial, and as the number of
input parameters is over 100 and the number of output parameters is 45, the
size of the system makes testing a difficult task.

The controller is modeled using a set of constraint clauses on the input pa-
rameter values, in the form of boolean formulas. Each clause relates a set of
input values to an expected output value. The approach that we take in this
paper is similar to that of QuickCheck [30] and Gast [61], both of which
are automatic testing tools for functional programming languages, that gener-
ate random test cases. Both tools are less suited for use at Océ, since, being
based on functional programming languages, they are cumbersome to integrate
into existing test frameworks, whereas randomness makes structured genera-
tion of test cases and coverage determination more challenging. This led us to
implement an internal prototype in Python to handle the testing.

110

PAPER E. MODEL-BASED TESTING OF INDUSTRIAL
TRANSFORMATIONAL SYSTEMS

Others have tried similar approaches to testing real world applications, such
as Lozano et al. [68], who model a financial trading system with constraint
systems. This leads us to believe that the approach is applicable to other types
of systems as well. To further evaluate this approach we analyze how it can
be used to model parts of the controller software for a ventilation system for
livestock stables.

While the final goal is to detect faults in the SUT, this has not been the main
focus in this project. Rather the focus has been to take steps toward creating a
maintainable, large-scale model-based testing environment. It was not our aim
to compare numbers of bugs found in model-based and manual testing.

This paper presents the problem of testing printer controller software. We
present an approach to modeling the controller as a set of boolean formulas,
including a modeling trick to enable us to make relatively simple models for the
complex system. We present the testing process and how the desired coverage
can be achieved. Additionally we present some discussions on using model-based
testing in an industrial setting, and which benefits this approach has given Océ.
Finally, to illustrate the applicability of our approach, we show how it can be
adopted to model and test part of the controller software for a ventilation system
for livestock stables.

2 Problem Description

The problem is to test the controller of Océ printers. Océ produces professional
printers, an example of which is shown in Figure 1.

• A is the input module with four input trays.

• B is the actual printer module.

• C is an output location called the High Capacity Stacker (HCS).

• D is an output location which supports stapling, called the Finisher.

This example is a small configuration of a printer. Several input modules can
be attached and different output locations with different finishing options are
supported.

The controller in these printers basically has two tasks: (i) handling the
printing queues, and (ii) processing an input job description and sending the
corresponding commands to the printing hardware. The part of the controller
handling the printing queues can be seen as a reactive system, which continu-
ally monitors for job descriptions, sends them through the job processor to the
printing hardware, and allows the user to perform actions on a user interface,
for instance to cancel a job. This part can be modeled using some form of
state machine. The part handling job processing, however, does not operate
reactively. It accepts one job description at a time, and produces output for
that job. Such a system can be seen in its abstract form as a simple, stateless
function, accepting a set of input parameter values and returning a set of output

111

2. PROBLEM DESCRIPTION

Figure 1: VarioPrint 6250. A) Input module with four trays. B) Printer module.
C) High capacity stacker output location. D) Finisher output location.

parameter values. This is the part of the controller which this project focuses
on, and which will be tested.

A job description consists of two parts: a document in a Printer Description
Language (PDL) format and an optional ticket describing how to print the doc-
ument. Several PDL and ticket formats are supported, each supporting different
features and using different formats for expressing features. Some features are
supported in both the PDL and the ticket, requiring the job processor to handle
contradictions. Example input parameters include output location, stapling,
and punching.

As output the job processor presents a set of parameter values for each sheet
to be printed. These values are sent to the printer hardware which prints the job
as specified. Example output parameters also include output location, stapling
and punching, however the relationship between the inputs and outputs is not
as simple as it might seem.

First, there are the contradictions. Stapling, for instance, can be specified
both in the PDL and in the ticket, in which case the ticket will overrule the
PDL. While stapling is enabled, an output location can be selected which does
not support stapling, in which case the output location is overruled to one
which does support stapling. However, there might not be any output locations
attached to the printer which support stapling, in which case the stapling is
disabled and the output location is as specified. Just for these two simple
parameters we already have a lot of cases.

In addition to contradictions, there are different formats for specifying val-
ues. Specifying stapling in a ticket, for instance, has ten possible values: None,
Top, TopLeft, Left, . . . , and Saddle. The stapling output from the job processor
only has five: None, Portrait, Landscape, Booklet, and Saddle (the orientation
of the paper and the output location determine where the specific staple is lo-

112

PAPER E. MODEL-BASED TESTING OF INDUSTRIAL
TRANSFORMATIONAL SYSTEMS

cated). Similarly other PDLs and ticket formats might have different formats
for specifying stapling. Translating between these formats is not trivial.

On top of all these are the settings of the job processor. For instance the
limit for the number of pages which the printer can staple can vary. Several
other settings are available in the job processor.

It is clear that the job processor needs to handle all peculiarities in the input,
as well as any settings of the printer. The job processor needs to support all
configurations of printers, and needs to be able to print any job on any configu-
ration, albeit possibly with some functionalities disabled. The configuration and
settings of the printer can be seen as inputs to the job processor. Adding these
to the PDL and ticket, and looking at all available parameters, the number of
parameters for the job processor comes to well over 100. These facts make the
job processor a very complex system, and testing such a system is not trivial.

2.1 Testing at Océ

The current testing process at Océ involves running a job description on a
simulation of the hardware. When running the job processor on the simulated
hardware, the output is presented in the form of a so-called APV file. This
APV file contains all parameters for each printed sheet. Currently there are 45
parameters in the APV file.

The resulting APV file is analyzed manually. If deemed correct it is saved as
a reference for future test runs. In subsequent automatic test runs the output
can be checked against the reference and the result of the test can be determined.

There are several issues with this testing process. The first is maintainability
when updating the job processor to support more parameters. This requires all
test cases to be updated to support this parameter. Secondly, changing some
requirements, which lead to failing test cases, requires the new APV file to be
manually analyzed again. This manual analysis is very time consuming and
error prone. It occurs that errors survive through the development process
because of faulty analysis of the APV file.

The execution time of the test cases is also becoming an issue. Nightly
runs, executing the complete set of test cases, have to finish in the morning, to
present the results to the engineers. At the current number of test cases some of
these runs do not complete in time. Due to expansions and new developments
the number of test cases is expected to double, in the near future. This poses
big requirements to the computer farm running the nightly tests, and requires
expensive expansions. Therefore it is desirable to reduce the number of test
cases, but the quality of the complete test set must not suffer.

Currently a test case is a Python script which sets up the printer, generates
one or more job descriptions, and sends them to the controller in a specified
order. These test cases are designed by test engineers who know the system
intimately. The test cases are designed to find likely errors, and are very specif-
ically designed, such that a failing test case gives some hint to where the error
occurs. For instance, a test case might focus on stapling by generating several
job descriptions with different stapling positions. If this test case fails the error

113

3. MODELING THE CONTROLLER

is most likely in the stapling module. This gives very specific test cases and to
get good coverage it requires a lot of test cases. This leads to the desire to have
structurally generated test cases which have some measure of coverage, while
minimizing the number of test cases.

In the current framework there is no uniform way of defining test cases.
This stems from the different formats for PDLs and tickets, and the fact that
current test cases are directly coded at a low level in Python. Since these
are often generated in batches in for-loops, it can be difficult for other testers
and developers to understand exactly what a test case does. This leads to
problems with understanding test cases, and once a test case fails, it can also
be troublesome to understand precisely what the parameters of the failing job
were.

This presents four areas where Océ wants to improve their testing process:

• maintainability,

• execution time,

• coverage, and

• understanding of test cases.

We will improve on these aspects, by implementing a model-based approach to
testing.

3 Modeling the Controller

The job processor is in its abstract form a simple, stateless function. It takes a
number of input parameter values and computes a number of output parameter
values. We modeled the job processor as a collection of Boolean formulas, where
each formula specifies the value for one output parameter through an implication
with on the left-hand side a conjunction of input parameter constraints, and on
the right-hand side an output parameter constraint:

i1 = v1 ∧ i2 = v2 ∧ · · · ∧ in = vn ⇒ up = vp (E.1)

This formula expresses that the expected output of parameter up is value vp if
input parameters ij have values vj for 1 ≤ j ≤ n, respectively. Each of these
formulas is called a clause in the model.

For integer parameters we also allow comparisons like ij ≤ vj , e.g., to refer
to equivalence classes of input parameters. As an example, a simplified clause
of the staple position could look like this:

(Staple = TopLeft ∧ SheetCount ≤ 100)⇒ (E.2)

StaplePos = Portrait

This specifies that the output parameter for Staple Position StaplePos has value
Portrait if the input parameter Staple is TopLeft and there are less than 101
sheets.

114

PAPER E. MODEL-BASED TESTING OF INDUSTRIAL
TRANSFORMATIONAL SYSTEMS

For integer output parameters we allow the expected output to be calculated
by a function on the input parameters. For instance if the Plexity is set to Duplex
(printing on both sides of the paper), SheetCount becomes half of the number
of printed pages: SheetCount = dPages/2e.

The actual job processor model has many more parameters and also more
possible values for the parameters, resulting in many more clauses. A complete
job processor model consisting of such a collection of clauses must first be verified
for completeness and consistency, i.e., checked whether the collection indeed
specifies a function from input parameters to output parameters, but such a
verification is orthogonal to testing.

Satisfaction of the model has been used as oracle for our testing process.
This means that the model is instantiated with actual output parameter values
of the job processor implementation, together with the corresponding input
parameter values. (Section 4 will deal with choosing input values). If all clauses
hold the test passes; if a clause does not hold then the test fails and the output
parameter specified in the false clause is wrong.

3.1 Dependencies

As seen above the model for staple position depends on two input values, and
the complete model is even bigger. If we have a look at a simplified clause of
the output location OutputLoc:

(TicketOutputLoc = HCS ∧ Staple = TopLeft∧
SheetCount ≤ 100)⇒ (E.3)

OutputLoc = Finisher

then we can see that it depends on the input parameters Staple and SheetCount.
This is because the output location should only be overridden if a staple was
requested, and the printer is actually able to staple. This causes a chain of
dependencies, where the output location clause must contain all – transitive –
dependencies in its clause. These chains clutter the clauses and make modeling
cumbersome, since there are a lot of these type of dependencies. To simplify the
clauses we can observe that a part of (E.3) can be substituted with (E.2). Sub-
stituting (Staple = TopLeft ∧ SheetCount ≤ 100) for StaplePos = Portrait
we get the simpler clause:

(TicketOutputLoc = HCS ∧ StaplePos = Portrait)⇒
OutputLoc = Finisher

We can see that the output location actually depends on the output parameter
StaplePos. Formally, we allow (ij = vj) from Equation E.1 to refer to input-
and output parameters.

One potential problem arises with this approach. If there are circular depen-
dencies, we can not trust the results. To avoid circular dependencies we arrange
all clauses in a hierarchy, where the leaves have no dependencies and parents

115

4. TESTING

depend on the parameters of their children. As long as this hierarchy is kept, it
is safe to use some output parameters to verify other output parameter values.
This approach simplifies the clauses significantly, and enables us to model these
complex systems.

4 Testing

Testing a job processor implementation involves three steps:

• Selecting input values,

• executing the SUT with the input values, and

• verifying output from the SUT using the model.

Executing the SUT is done using the existing framework for automatic testing at
Océ. Verifying the outputs is done using the model, as explained in the previous
section. To select input values we look at the complete set of input parameters
supported by the model, and the domains of these parameters. Instantiating
each parameter constitutes a single test case. This can be done randomly, to
generate a set of test cases, or it can be done structurally, based on some coverage
criterion.

It has been shown in several projects [33, 34, 41, 27, 102] that most software
errors occur at the interaction of a few factors, i.e. most errors are triggered by
particular values for only a few input parameters, whereas the error is indepen-
dent from the values of the other input parameter. Some projects report up to
70% of bugs found with two or fewer factors and 90% with three or fewer [33, 62],
others show up to 97% of bugs found with only two factors [102]. This, com-
bined with the fact that the number of test cases needs to be minimized, leads
to combinatorial testing techniques, such as pairwise (or more generally n-wise)
testing. The number of test cases in n-wise testing for fixed n grows logarith-
mically compared to exponential growth for testing all possible combinations.

The coverage of output parameters is not guaranteed by using the combina-
torial testing technique. Pairwise testing does, however, tend to cover most of
the unintended uses of the system, and many of the paths which lead to special
cases, whereas manually generated test cases tend to focus on normal operation
of the system. Once a test suite has been created, the output coverage can be
analyzed, and the test suite can be updated to add any required coverage.

Test cases are generated based on a set of input parameters and their do-
mains. A test case is an assignment of each input parameter to a single value
from its domain. A test specification is a set of relations between input param-

116

PAPER E. MODEL-BASED TESTING OF INDUSTRIAL
TRANSFORMATIONAL SYSTEMS

eter name and the discrete domain of that parameter:

(P 1, {v11 , v12 , . . . , v1n1
})

(P 2, {v21 , v22 , . . . , v2n2
})

...

(Pm, {vm1 , vm2 , . . . , vmnm
}).

Given such a test specification, algorithms can generate a set of test cases which
cover all pairs of values. That is, for every vik and vjl where i 6= j, P i = vik and

P j = vjl for at least one test case.
For instance if we have three input parameters: TicketOutputLoc, Staple,

and SheetCount, the test specification could be:

(TicketOutputLoc, {Finisher,HCS})
(Staple, {None, Top, Left})

(SheetCount, {≤ 100, 101})

Each pairwise combination of values, e.g. TicketOutputLoc = Finisher and
Staple = Left, must be present in at least one test case. In this case six test
cases are needed. Generating complete coverage would require 12 test cases.

4.1 Diagnosis

The automatic test case generation based on a job specification can be used as
a tool in diagnosis. Reducing the domain of one or more parameter in the job
specification, can provide information about the fault. As an example consider
the job specification above, and consider a fault has been found with one of
the generated test cases. Reducing the domain of Staple to {None}, and re-
running test case generation and test case execution, can help locate the fault
in the SUT. If, for instance, none of these new test cases finds the fault, it tells
us that the fault only occurs when a staple is requested. This tells us that the
error is either in the staple module, or occurs at the interaction between the
staple module and some other part of the controller. Using this approach the
test engineers can easily generate new sets of test cases to help locate bugs in
the SUT.

5 Implementing the Test Tool

Other projects to improve the testing process, have previously been carried out
at Océ. Experiences from these projects have shown that integrating tooling
with existing frameworks can be difficult and cumbersome, and introducing new
tools and frameworks requires some learning effort from the engineers. This
led us to implement a prototype tool for this project by hand. The existing

117

5. IMPLEMENTING THE TEST TOOL

framework for automated testing has a lot of tooling and libraries for testing
the job processor, therefore it was decided to integrate the prototype into this
framework. The existing framework is written in Python, so Python is the
language of choice.

The clauses are implemented as if-then-else statements. To give a logical
grouping of clauses, all clauses pertaining to the same output parameter are
grouped into the same Python class. This way a class is said to check an
output parameter by implementing all clauses for that parameter. To ease
implementation several output parameters can be checked by the same class.

The entire set of actual input values and output values is passed to each
class. This enables the class to access any values needed in the clauses to verify
their respective output value. The classes access the values they need and then
go through a series of if-then-else statements that implement the clauses in the
formal approach. Once an expected value is found, it is checked against the
actual output value, and an appropriate response is added to the return set.

The return set contains OK or Error responses from each class, and is
returned back to the test system. Here it can be analyzed and all errors found
by the model, can be returned to the engineer.

Once an output value has been verified, it is removed from the set of output
values, which is passed to subsequent classes. This feature has two effects. First,
it enables us to check whether all output values have been verified, by examining
if the set is empty when all classes have been invoked. Second, it enforces the
hierarchy required to detect circular dependencies as explained in Section 3.1.
This is enforced since a circular dependency would result in a missing value in
the latter class in the circle. This also means that classes with dependencies
need to be invoked first, and classes with no dependencies are invoked last.

5.1 Test case generation

N-wise testing has currently been implemented using the tool jenny1. jenny is
an executable which accepts as input, the domain size of each input parameter
and generates a set witnessing n-wise coverage of all input parameter values.
Currently jenny is always executed for pairwise coverage. This could be ex-
tended, if the coverage requirements increase. A wrapper has been written
around jenny. A test specification is passed to the wrapper, which generates a
jenny query for the domain sizes of the parameters. jenny returns a set of test
cases which are translated back into the specific values in the test specification.
As an example consider the test specification:

(TicketOutputLoc, {Finisher,HCS})
(Staple, {None, Top, Left})

(SheetCount, {≤ 100, 101})

The wrapper generates a query for jenny with three parameters with domain
size two, three, and two respectively. jenny generates six test cases:

1http://burtleburtle.net/bob/math/jenny.html

118

PAPER E. MODEL-BASED TESTING OF INDUSTRIAL
TRANSFORMATIONAL SYSTEMS

1a 2a 3b

1b 2c 3a

1b 2b 3b

1a 2b 3a

1b 2a 3a

1a 2c 3b

Each line represents a test case. The number represents the input parameter.
The letter represents the value of the parameter. The test case 1b 2c 3a is
translated into (TicketOutputLoc = HCS, Staple = Left, SheetCount =≤
100).

This way test cases are generated based on the test specification as created
by the test engineer. In the case of diagnosis the engineer can reduce the domain
sizes in the test specification, and rerun the wrapper to get a new set of test
cases.

5.2 Run Time

The time required to execute a single test case is highly dependent on the
number of pages printed in that test case; depending on the hardware running
the simulator, printing a single page can take up to half a second. This fact
means that test cases with a lower number of pages are preferred. In the model
for testing the stapling module the equivalence classes for the number of sheets
are:

• 1 (too few sheets),

• 2 (too few sheets for duplex),

• 3− 100,

• >= 101 (too many sheets).

Including all these in the pairwise test case generation would include many
jobs with 100 pages or more. However, it can be observed that if the staple
limit works for a single test case, it most likely works for all test cases. This
observation leads us to implement the possibility to add manually generated
jobs to the test set. By adding two jobs with 100 and 101 sheets printed, we
reduce the equivalence classes for staple limit to three and by choosing a low
value for the equivalence class 3− 100 the number of sheets printed can be kept
low in all other jobs. This dramatically reduces the time required to execute
the test suite, while still keeping acceptable coverage.

5.3 Invalid Test Cases

Since the PDL and ticket formats support different features, it is possible to
generate invalid test cases. For instance, one ticket format supports accounting
options, so we need to have input parameters for accounting. However, if we

119

6. STATUS AND DISCUSSION

generate a test case with accounting activated, while using a ticket format which
does not support accounting, the test tool is unable to generate the job for the
controller, since activating accounting in this ticket format is not possible. This
is an invalid test case, since it can not be executed on the SUT.

These invalid combinations need to be removed from the pairwise coverage.
This is because the pairs covered by an invalid test case are not executed on the
system. Excluding simple combinations of parameter values is supported in the
current version. More complex exclusions, such as employed by e.g. AETG [33],
ATGT [29], or Godzilla [40] might be required in the future.

6 Status and Discussion

It was chosen to focus on modeling the stapling capabilities of the printers, as an
initial step. The currently implemented models support four parameters: PDL
format, page count, output location, and staple location. The four parameters
have domain sizes two, three, three, and eight respectively. This set is pairwise
covered in 27 test cases. To cover the upper page limits for stapling four test
cases are manually added, bringing the total number of test cases generated
from this project to 31.

It is difficult to say precisely how this coverage compares to the current set
of test cases, as a lot of test cases touch stapling, while testing other areas of
the controller as well. Of the manually generated test cases a total of 170 test
cases use stapling. Looking at all the parameters and parameter values used
in these 170 test cases, we observe 11 parameters with domains ranging from
two to nine. Getting pairwise coverage of all these input parameters can be
achieved with only 86 test cases. These parameters are not currently supported
by the model, so the test cases can not be executed at this time. This shows
us that once the models are extended, the number of test cases can be reduced.
Determining if the fewer number of test cases will locate as many or more errors
will require further work.

The choice of implementing a prototype in Python proved very useful. This
also supports previous experience in similar projects. Integrating with the exist-
ing Océ framework was very easy. In the current version of the tool, implement-
ing the models as Python classes is cumbersome and requires some copy-paste.
With further development and refactoring, we expect to build a viable environ-
ment for developing models.

Using a model-based approach gives the engineers far better understanding
of the test cases and their outcome. The new framework gives better overview
of which parameter values are selected in each test case, and the models can be
used to give a hint as to where an error is located in the code. The controllable
test case generation can also be used for analysis, to find the precise interactions
between parameters which cause the error.

The issues with maintenance are also improved, as making changes to the
requirements only requires updating the model, then all test cases should work.
Updating and implementing the models is not trivial, and errors in the model

120

PAPER E. MODEL-BASED TESTING OF INDUSTRIAL
TRANSFORMATIONAL SYSTEMS

could cause false positives and false negatives. However, since the same models
are used by all test cases, it is more likely that errors in the model will be found.

Currently only pairwise coverage is supported. As the usage of this approach
grows in Océ, it will be seen how effective this coverage is in locating faults. It
might be the case that the coverage needs to be supplemented by manually
generated test cases, or replaced by a different coverage measure. Currently
no analysis of output coverage is done. This requires engineers to manually
examine the test cases, and possibly supplement with additional cases.

Even though the focus in this project was not to detect faults in the SUT,
one unknown fault has been located. The unknown fault has not been located
by the old set of manual test cases. This also indicates that the coverage criteria
might be good.

Based on the advantages of the model-based approach, Océ has decided to
continue development of this prototype, and extend models to continue improv-
ing the testing process.

7 Modeling a Livestock Stable Controller

Since our approach shows promising results for modeling and testing printer
controllers, and the literature shows similar approaches used in other types
of systems, we wanted to examine if our approach could be applied in other
companies. We have initiated contact with a company designing and producing
ventilation systems for livestock stables, to examine how the approach applies
there. The controller for these systems is split into several components, each
of which monitors some input sensors and controls some output actuators. The
inputs are continuous measurements of e.g. temperature. The outputs are either
on/off values or a percentage value describing how much power should be given
to, for instance, a ventilator. Calculation of the two types of output are done
in a standard way.

For on/off -type of controllers there are two important parameters: t, and
Tδ. The value of t describes when the output should be activated. To avoid
oscillation between on and off, Tδ describes how far below t the input has to
fall before deactivating the output. It can be observed that between t− Tδ and
t this controller shows nondeterministic behavior. This nondeterminism can be
seen as an internal state in the controller, storing its previous output value. For
inputs between t and t−Tδ the controller outputs the same value as previously.
For inputs below t−Tδ the output is always off, and above t the output is always
on. Figure 2 illustrates the possible values.

For percentage-type of controllers the output value is a linear function of the
input. The function is described by two parameters: p and Pδ. The value of p
describes when the output must start increasing. Pδ describes how far above p
the output must reach 100%. Below p the output is always 0%, above p + Pδ
the output is always 100%. In between the output grows linearly from 0% to
100%. Figure 3 illustrates the function.

Components can have several inputs based on the same patterns, to form

121

7. MODELING A LIVESTOCK STABLE CONTROLLER

Input

O
u

tp
u

t

On

Off

t− Tδ t

Figure 2: Graph for on/off val-
ues

Input

O
u

tp
u

t

100%

0%

p p+ Pδ

Figure 3: Graph for percentage
values

more complex components. For instance, a component can have a temperature
reading and a humidity reading as input, and can activate a ventilation fan as
output. The ventilation fan should be activated when the temperature reaches
above some value while the humidity is below some value. Both inputs will have
Tδ values for when the fan should be deactivated again.

Currently test cases for the system are generated manually. A test engi-
neer examines the parameters of the component and generates a set of inputs
generating an acceptable coverage, and generates corresponding expected out-
puts. Subsequently the test cases are executed automatically and the expected
outputs are compared to the actual outputs.

This type of system can be modeled within our framework, with a single
modification. We need to handle the nondeterministic behavior. This can be
done by representing the model as a hybrid automaton[9] by handling the state
as an input. We make a fresh input parameter to represent the state of the
model. The domain of this parameter is the state space of the model. This
way the clauses in the model can depend on the state the system is in and
act accordingly. However, in this simple setting this seems like too complex a
solution. We only need a single state variable; a Boolean. We only need to
know the value of this variable one time step backward. This can be easily be
handled in the current setting of transformational systems. The problem with
adding this functionality is that pairwise test case generation will not work since
test cases become traces, where each step depends on the previous one. Some
work needs to be done to find a good way to generate test cases for this type of
system. The test case generation needs to generate valid test cases and provide
coverage of the data in input parameters as well as coverage of the state space
of the model.

With this modification a large set of manually generated test cases, can be
automatically generated from simple models. Future test cases can easily be
created by instantiating the model with the required values.

This shows that the approach is indeed applicable for different types of sys-
tems, even though it was developed for testing printer controllers. The diversity

122

PAPER E. MODEL-BASED TESTING OF INDUSTRIAL
TRANSFORMATIONAL SYSTEMS

of the SUTs shows that there are potentially several industrial areas where sim-
ilar approaches could be applied to improve the testing process.

8 Conclusion

This paper has presented the initial steps towards a model-based testing frame-
work for testing printer controllers at Océ. The approach has proved promising
in improving the testing process and the quality of test cases. Advantages of
the approach include: improved maintenance, reduced number of test cases,
measurable coverage, and better understanding of the test results. While the
approach seems promising at improving the testing process, further work is
needed to state this for certain. While test cases can now be generated based
on coverage requirements, it is unclear if the generated test set will locate as
many errors as the old test cases. Also development of the model requires some
significant effort, but it is expected to prove valuable in the long run. Based
on the outcome of this project, Océ has decided to continue with the model-
based approach. Finally, we illustrated that the approach is useful for modeling
and testing controller software for ventilation systems in livestock stables. This
diverse usefulness of our approach indicates that several other industrial areas
could benefit from similar approaches.

The connection to the current way of working at Océ, and usability of the
methods by Océ in their current environment, were among the main require-
ments and starting points of this project. This did not always lead to the most
sophisticated, or theoretically new solutions, and sometimes even to ad-hoc so-
lutions, e.g. to establish the connection to the existing Python tooling. Future
work will include the use of more sophisticated approaches, such as using SAT-
solvers or SMT tooling to solve, check, and manipulate Boolean formulas.

123

Bibliography

[1] Property Specification Language: Reference Manual. Technical report,
2004. http://www.eda.org/vfv/docs/PSL-v1.1.pdf.

[2] Property Specification Language Tutorial. Technical report, 2004.
http://www.project-veripage.com/psl tutorial 1.php.

[3] F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state
communication protocols using regular inference with abstraction. In
A. Petrenko, J.C. Maldonado, and A. Simao, editors, 22nd IFIP Interna-
tional Conference on Testing Software and Systems, Natal, Brazil, Novem-
ber 8-10, Proceedings, volume 6435 of Lecture Notes in Computer Science,
pages 188–204. Springer, 2010.

[4] F. Aarts, J. Schmaltz, and F.W. Vaandrager. Inference and abstraction of
the biometric passport. In T. Margaria and B. Steffen, editors, Leveraging
Applications of Formal Methods, Verification, and Validation - 4th Inter-
national Symposium on Leveraging Applications, ISoLA 2010, Heraklion,
Crete, Greece, October 18-21, 2010, Proceedings, Part I, volume 6415 of
Lecture Notes in Computer Science, pages 673–686. Springer, 2010.

[5] Fides Aarts and Frits W. Vaandrager. Learning i/o automata. In Paul
Gastin and François Laroussinie, editors, CONCUR, volume 6269 of Lec-
ture Notes in Computer Science, pages 71–85. Springer, 2010.

[6] Parosh Aziz Abdulla and Richard Mayr. Minimal cost reachability/cov-
erability in priced timed petri nets. In Proceedings of the 12th Interna-
tional Conference on Foundations of Software Science and Computational
Structures: Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, FOSSACS ’09, pages 348–363,
Berlin, Heidelberg, 2009. Springer-Verlag.

[7] S.B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
27:509–516, 1978.

[8] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm.
Cache Behavior Prediction by Abstract Interpretation. In SAS ’96: Pro-
ceedings of the Third International Symposium on Static Analysis, pages
52–66, London, UK, 1995. Springer-Verlag.

125

BIBLIOGRAPHY

[9] Rajeev Alur, Costas Courcoubetis, Thomas Henzinger, and Pei Ho. Hy-
brid automata: An algorithmic approach to the specification and verifica-
tion of hybrid systems. In Robert Grossman, Anil Nerode, Anders Ravn,
and Hans Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes
in Computer Science, pages 209–229. Springer Berlin / Heidelberg, 1993.
10.1007/3-540-57318-6 30.

[10] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, April 1994.

[11] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of
relaxing punctuality. J. ACM, 43(1):116–146, January 1996.

[12] Rajeev Alur and Thomas A. Henzinger. Real-time logics: complexity and
expressiveness. In Logic in Computer Science, 1990. LICS ’90, Proceed-
ings., Fifth Annual IEEE Symposium on e, pages 390 –401, jun 1990.

[13] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM,
41(1):181–203, January 1994.

[14] Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An analyzer for
message sequence charts. In SOFTWARE CONCEPTS AND TOOLS,
pages 304–313, 1996.

[15] Dana Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[16] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[17] T. Ball and S. Rajamani. The SLAM toolkit. In CAV, pages 260–264.
Springer, 2001.

[18] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury,
Kim G. Larsen, and Didier Lime. Uppaal-tiga: time for playing games!
In Proceedings of the 19th international conference on Computer aided
verification, CAV’07, pages 121–125, Berlin, Heidelberg, 2007. Springer-
Verlag.

[19] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on up-
paal. In Marco Bernardo and Flavio Corradini, editors, Formal Methods
for the Design of Real-Time Systems: 4th International School on For-
mal Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer–
Verlag, September 2004.

[20] Gerd Behrmann, Kim Larsen, and Jacob Rasmussen. Priced timed
automata: Algorithms and applications. In Frank de Boer, Marcello
Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal
Methods for Components and Objects, volume 3657 of Lecture Notes in

126

BIBLIOGRAPHY

Computer Science, pages 162–182. Springer Berlin / Heidelberg, 2005.
10.1007/11561163 8.

[21] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and
tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors,
Lectures on Concurrency and Petri Nets, volume 3098 of LNCS, pages
87–124. Springer Berlin / Heidelberg, 2004.

[22] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. Uppaal — a tool suite for automatic verification of real-time sys-
tems. In Rajeev Alur, Thomas Henzinger, and Eduardo Sontag, editors,
Hybrid Systems III, volume 1066 of Lecture Notes in Computer Science,
pages 232–243. Springer Berlin / Heidelberg, 1996. 10.1007/BFb0020949.

[23] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Stef-
fen. On the correspondence between conformance testing and regular
inference. In M. Cerioli, editor, Fundamental Approaches to Software En-
gineering, 8th International Conference, FASE 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3442 of Lec-
ture Notes in Computer Science, pages 175–189. Springer, 2005.

[24] J. A. Bergstra and J. W. Klop. Algebraic methods: theory, tools and
applications. chapter ACP: a universal axiom system for process speci-
fication, pages 447–463. Springer-Verlag New York, Inc., New York, NY,
USA, 1989.

[25] Thomas Bøgholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen,
and Kim G. Larsen. Model-based schedulability analysis of safety critical
hard real-time java programs. In JTRES ’08: Proceedings of the 6th
international workshop on Java technologies for real-time and embedded
systems, pages 106–114, New York, NY, USA, 2008. ACM.

[26] Guillaume Brat and Willem Visser. Combining static analysis and model
checking for software analysis. In Proc. ASE 2001, pages 262–271. IEEE
Computer Society, 2001.

[27] Kevin Burr and William Young. Combinatorial test techniques: Table-
based automation, test generation and code coverage. In Proceedings of
the Intl. Conf. on Software Testing Analysis and Review, pages 503–513.
West, 1998.

[28] J. Byg, K.Y. Joergensen, and J. Srba. An efficient translation of timed-
arc Petri nets to networks of timed automata. In Proceedings of the 11th
International Conference on Formal Engineering Methods (ICFEM’09),
LNCS. Springer-Verlag, 2009.

[29] Andrea Calvagna and Angelo Gargantini. A logic-based approach to
combinatorial testing with constraints. In Bernhard Beckert and Reiner

127

BIBLIOGRAPHY

Hähnle, editors, Tests and Proofs, volume 4966 of Lecture Notes in
Computer Science, pages 66–83. Springer Berlin / Heidelberg, 2008.
10.1007/978-3-540-79124-9 6.

[30] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for ran-
dom testing of haskell programs. In Proceedings of the fifth ACM SIG-
PLAN international conference on Functional programming, ICFP ’00,
pages 268–279, New York, NY, USA, 2000. ACM.

[31] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Logic of
Programs, pages 52–71, 1981.

[32] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[33] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gard-
ner C. Patton. The aetg system: An approach to testing based on combi-
natorial design. IEEE Trans. Softw. Eng., 23:437–444, July 1997.

[34] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton. The combinatorial
design approach to automatic test generation. Software, IEEE, 13(5):83
–88, September 1996.

[35] Andreas Engelbredt Dalsgaard, Mads Chr. Olesen, Martin Toft, René Ry-
dhof Hansen, and Kim Guldstrand Larsen. Metamoc: Modular execution
time analysis using model checking. In Björn Lisper, editor, WCET, vol-
ume 15 of OASICS, pages 113–123. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, 2010.

[36] Werner Damm and David Harel. Lscs: Breathing life into message se-
quence charts. Form. Methods Syst. Des., 19:45–80, July 2001.

[37] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[38] A.M. Davis. Software requirements: objects, functions, and states. PTR
Prentice Hall, 1993.

[39] L. de Alfaro and T.A. Henzinger. Interface automata. In V. Gruhn, edi-
tor, Proceedings of the Joint 8th European Software Engineering Confer-
ence and 9th ACM SIGSOFT Symposium on the Foundation of Software
Engineering (ESEC/FSE-01), volume 26 of Software Engineering Notes,
pages 109–120, New York, September 2001. ACM Press.

[40] Richard A. DeMillo and A. Jefferson Offutt. Constraint-based automatic
test data generation. IEEE TRANSACTIONS ON SOFTWARE ENGI-
NEERING, 17(9):900–910, 1991.

128

BIBLIOGRAPHY

[41] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A. Iannino.
Applying design of experiments to software testing: experience report. In
Proceedings of the 19th international conference on Software engineering,
ICSE ’97, pages 205–215, New York, NY, USA, 1997. ACM.

[42] M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1-3):35–45, 2007.

[43] Harald Fecher, Jens Schönborn, Marcel Kyas, and Willem-Paul de Roever.
29 new unclarities in the semantics of uml 2.0 state machines. In Proceed-
ings of the 7th international conference on Formal Methods and Software
Engineering, ICFEM’05, pages 52–65, Berlin, Heidelberg, 2005. Springer-
Verlag.

[44] A. Finkel and P. Schnoebelen. Well-structured transition systems every-
where! Theoretical Computer Science, 256(1-2):63–92, 2001.

[45] Thom Frühwirth and Slim Abdennadher. Principles of constraint systems
and constraint solvers, 2005.

[46] H. Garcia-Molina. Elections in a distributed computing system. IEEE
Trans. Comput., 31(1):48–59, 1982.

[47] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata transla-
tion. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceed-
ings of the 13th International Conference on Computer Aided Verification
(CAV’01), volume 2102 of Lecture Notes in Computer Science, pages 53–
65, Paris, France, July 2001. Springer.

[48] Object Management Group. Unified Modeling Language.
http://www.uml.org/, 1997.

[49] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal logic. In
Logic in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual
IEEE Symposium on e, pages 402 –413, jun 1990.

[50] Lise Tordrup Heeager and Peter Axel Nielsen. Agile software development
and its compatibility with a document-driven approach? A case study, page
205. Monash University Press, 2009.

[51] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111(2):193–
244, 1994.

[52] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Lazy abstraction. In POPL ’02: Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 58–70, New York, NY, USA, 2002. ACM.

129

BIBLIOGRAPHY

[53] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen,
Paul Pettersson, and Arne Skou. Testing real-time systems using uppaal.
In Formal Methods and Testing, pages 77–117, 2008.

[54] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, August 1978.

[55] F. Howar, B. Steffen, and M. Merten. Automata Learning with Auto-
mated Alphabet Abstraction Refinement. In Verification, Model Checking,
and Abstract Interpretation (VMCAI’11), January 23-25, 2011, Austin,
Texas, USA, 2011.

[56] H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in
automata learning. In W.A. Hunt Jr. and F. Somenzi, editors, Computer
Aided Verification, 15th International Conference, CAV 2003, Boulder,
CO, USA, July 8-12, 2003, Proceedings, volume 2725 of Lecture Notes in
Computer Science, pages 315–327. Springer, 2003.

[57] C. Norris Ip and David L. Dill. Better verification through symmetry.
Form. Methods Syst. Des., 9:41–75, August 1996.

[58] B. Jonsson. Compositional specification and verification of distributed
systems. ACM Transactions on Programming Languages and Systems,
16(2):259–303, March 1994.

[59] Bengt Jonsson and Joachim Parrow. Deciding bisimulation equivalences
for a class of non-finite-state programs. Inf. Comput., 107(2):272–302,
1993.

[60] Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala Latvala, and
Ivan Porres. Model checking dynamic and hierarchical uml state ma-
chines. In Proceedings of the 3rd Workshop on Model Design and Valida-
tion (MoDeVa 2006), 2006.

[61] Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plasmeijer.
Gast: generic automated software testing. In Proceedings of the 14th in-
ternational conference on Implementation of functional languages, IFL’02,
pages 84–100, Berlin, Heidelberg, 2003. Springer-Verlag.

[62] Richard Kuhn and Michael Reilly. An investigation of the applicability
of design of experiments to software testing. In Proceeding of the 27th
NASA/IEEE Software Engineering Workshop. IEEE, 2002.

[63] Sabine Kuske. A formal semantics of uml state machines based on struc-
tured graph transformation. In Proceedings of the 4th International Con-
ference on The Unified Modeling Language, Modeling Languages, Con-
cepts, and Tools, «UML» ’01, pages 241–256, London, UK,
UK, 2001. Springer-Verlag.

130

BIBLIOGRAPHY

[64] K.G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time
systems using uppaal. In Formal Approaches to Testing of Software, Linz,
Austria, September 21 2004. Lecture Notes in Computer Science.

[65] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Model-checking
for real-time systems. In Fundamentals of Computation Theory, pages
62–88, 1995.

[66] M. Leucker. Learning meets verification. In F.S. de Boer, M. M. Bon-
sangue, S. Graf, and W.P. de Roever, editors, Formal Methods for Com-
ponents and Objects, 5th International Symposium, FMCO 2006, Ams-
terdam, The Netherlands, November 7-10, 2006, Revised Lectures, vol-
ume 4709 of Lecture Notes in Computer Science, pages 127–151. Springer,
2006.

[67] C. Loiseaux, S. Graf, J. Sifakis, A. Boujjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6(1):11–44, 1995.

[68] Roberto Castañeda Lozano, Christian Schulte, and Lars Wahlberg. Test-
ing continuous double auctions with a constraint-based oracle. In Pro-
ceedings of the 16th international conference on Principles and practice of
constraint programming, CP’10, pages 613–627, Berlin, Heidelberg, 2010.
Springer-Verlag.

[69] Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. Next
generation learnlib. In Proceedings of the 17th international conference
on Tools and algorithms for the construction and analysis of systems:
part of the joint European conferences on theory and practice of software,
TACAS’11/ETAPS’11, pages 220–223, Berlin, Heidelberg, 2011. Springer-
Verlag.

[70] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[71] Robin Milner, Joachim Parrow Y, and David Walker Z. Modal logics for
mobile processes. Theoretical Computer Science, 114:149–171, 1993.

[72] E. Newcomer and I. (chairs) Robinson. Web services atomic trans-
action (WS-atomic transaction) version 1.2, 2009. http://docs.oasis-
open.org/ws-tx/wstx-wsat-1.2-spec.html.

[73] E. Newcomer and I. (chairs) Robinson. Web services business ac-
tivity (WS-ws-businessactivity) version 1.2, 2009. http://docs.oasis-
open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-os.html.

[74] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

131

BIBLIOGRAPHY

[75] Flemming Nielson and Hanne Riis Nielson. Model checking is static anal-
ysis of modal logic. In C.-H. Luke Ong, editor, FOSSACS, volume 6014
of Lecture Notes in Computer Science, pages 191–205. Springer, 2010.

[76] Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD
thesis, University of Dortmund, 2003.

[77] Petur Olsen, Kim G. Larsen, Marius Mikucionis, and Arne Skou. Present
and absent sets: Abstraction for data intensive systems suited for testing.
In R. Huuck, G. Klein, and B. Schlich, editors, Doctoral Symposium on
Systems Software Verification (DS SSV’09), volume AIB-2009-14 of Aach-
ener Informatik Berichte, pages 26–28, Aachen, Germany, 2009. RWTH
Aachen University.

[78] Petur Olsen, Kim G. Larsen, and Arne Skou. Present and absent sets:
Abstraction for testing of reactive systems with databases. Electr. Notes
Theor. Comput. Sci., 264(3):53–68, 2010.

[79] Carl Adam Petri and Wolfgang Reisig. Petri net. Scholarpedia, 3(4):6477,
2008.

[80] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57,
1977.

[81] Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria.
Learnlib: a framework for extrapolating behavioral models. Int. J. Softw.
Tools Technol. Transf., 11(5):393–407, October 2009.

[82] Lihua Ran, Curtis Dyreson, and Anneliese Andrews. Autodbt: A frame-
work for automatic testing of web database applications. Lecture Notes
in Computer Science, 3306/2004:181–192, 2004.

[83] Lihua Ran, Curtis Dyreson, Anneliese Andrews, Renée Bryce, and
Christopher Mallery. Building test cases and oracles to automate the
testing of web database applications. Inf. Softw. Technol., 51(2):460–477,
2009.

[84] Wolfgang Reisig. Petri nets and algebraic specifications. Theor. Comput.
Sci., 80(1):1–34, March 1991.

[85] H. G. Rice. Classes of recursively enumerable sets and their decision prob-
lems. In Transactions of the American Mathematical Society, volume 74,
pages 358–366, mar. 1953.

[86] A.W. Roscoe. Modelling and verifying key-exchange protocols using csp
and fdr. Computer Security Foundations Workshop, IEEE, 0:98, 1995.

[87] W. W. Royce. Managing the development of large software systems. In
Proceedings of IEEE WESCON, volume 26, pages 1–9, August 1970.

132

BIBLIOGRAPHY

[88] Ingo Schinz, Tobe Toben, Christian Mrugalla, and Bernd Westphal. The
rhapsody uml verification environment. In Proc. SEFM 2004, pages 174–
183. IEEE, 2004.

[89] David Schmidt and Bernhard Steffen. Program analysis as model checking
of abstract interpretations. In Giorgio Levi, editor, Static Analysis, vol-
ume 1503 of Lecture Notes in Computer Science, pages 351–380. Springer
Berlin / Heidelberg, 1998. 10.1007/3-540-49727-7 22.

[90] David A. Schmidt. Data flow analysis is model checking of abstract in-
terpretations. In Proceedings of the 25th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’98, pages 38–48,
New York, NY, USA, 1998. ACM.

[91] Steve Schneider. Verifying authentication protocols in csp. Software En-
gineering, IEEE Transactions on, 24(9):741–758, 1998.

[92] Bernhard Steffen. Data flow analysis as model checking. In Takayasu
Ito and Albert Meyer, editors, Theoretical Aspects of Computer Software,
volume 526 of Lecture Notes in Computer Science, pages 346–364. Springer
Berlin / Heidelberg, 1991. 10.1007/3-540-54415-1 54.

[93] C. Thrane and U. Sorensen. Slicing for uppaal. In Student Paper, 2008
Annual IEEE Conference, pages 1 –5, feb. 2008.

[94] J. Tretmans. Test generation with inputs, outputs, and repetitive quies-
cence. Software–Concepts and Tools, 17:103–120, 1996.

[95] Jan Tretmans. A Formal Approach to Conformance Testing. PhD thesis,
University of Twente, 1992.

[96] Jan Tretmans. Conformance testing with labelled transition systems: Im-
plementation relations and test generation. Computer Networks and ISDN
Systems, 29(1):49 – 79, 1996. ¡ce:title¿Protocol Testing¡/ce:title¿.

[97] Jan Tretmans. Testing concurrent systems: A formal approach. In CON-
CUR, pages 46–65, 1999.

[98] Jan Tretmans. Model based testing with labelled transition systems. In
Robert Hierons, Jonathan Bowen, and Mark Harman, editors, Formal
Methods and Testing, volume 4949 of Lecture Notes in Computer Science,
pages 1–38. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-78917-
8 1.

[99] Jan Tretmans and Ed Brinksma. Torx: Automated model based test-
ing. In Proceedings of the First European Conference on Model-Driven
Software Engineering, page 12 pp., 2003.

[100] Uppaal-TRON. Uppsala University and Aalborg University.
http://www.cs.aau.dk/ marius/tron/, 2006.

133

BIBLIOGRAPHY

[101] Gregor von Bochmann and Jan Gecsei. A unified method for the spec-
ification and verification of protocols. In IFIP Congress, pages 229–234,
1977.

[102] Dolores R. Wallace and D. Richard Kuhn. Failure modes in medical device
software: an analysis of 15 years of recall data. In ACS/ IEEE Interna-
tional Conference on Computer Systems and Applications, pages 301–311,
2001.

[103] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter P.
Puschner, Jan Staschulat, and Per Stenström. The Worst-Case Execution
Time Problem - Overview of Methods and Survey of Tools. Trans. on
Embedded Computing Sys., 7(3):1–53, 2008.

[104] Sergio Yovine. Kronos: A verification tool for real-time systems. (kronos
user’s manual release 2.2). International Journal on Software Tools for
Technology Transfer, 1:123–133, 1997.

134

