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Post-buckling optimization of composite structures us{oger’s
method

Seren R. Henrichséh, Paul M. Weavet, Esben Lindgaard and Erik Lund

IDepartment of Mechanical and Manufacturing Engineeringlbarg University (AAU), Fibigerstraede 16, 9220
Aalborg East, Denmark
2Advanced Composites Centre for Innovation and Sciencearapnt of Aerospace Engineering, University of
Bristol, University Walk, Bristol, BS8 1TR, United Kingdom

SUMMARY

Thin-walled structures, when compressed, are prone tolingcKro fully utilize the capabilities of such
structures, the post-buckling response should be comrsidend optimized in the design process. This
work presents a novel method for gradient based design gatiion of the post-buckling performance
of structures. The post-buckling analysis is based on Ksiesymptotic method. To perform gradient
based optimization, the design sensitivities of the Kdidéetors are derived and new design optimization
formulations based on the Koiter factors are presented. droposed optimization formulations are
demonstrated on a composite square plate and a curved plaged the post-buckling stability is optimized.

KEY WORDS: Asymptotic post-buckling; Composite strucsir€omposite optimization; Continuous
fiber angle optimization; Koiter's method; Post-bucklingtimization

1. INTRODUCTION

Thin-walled structures are often designed such that bogldioes not occur during service. To
ensure a structure does not buckle, the specified buckladjitoften much greater than the design
load. If a structure can be allowed to buckle during opematibus operating in the post-buckling
regime, it enables the possibility to design lighter and emefficient structures. To enable such an
approach, the engineer must optimize the post-bucklingorese of the structure. Fiber reinforced
polymers are ideally suited for such design tasks, as theserials allow a high degree of tailoring
of the considered structure, and thus applied here for tis¢-lpackling design optimization of
structures.

When optimizing structures, robustness of the resultingctire is of major importance, as
the imperfection sensitivity can increase during the opation process 1. One method is
to collect these into an equivalent geometric imperfectéma use that to evaluate the knock-
down in performance. Refs2[ 3] demonstrate robust design optimization by combining "stlor
shape imperfection optimization and laminate optimizatithereby efficiently decreasing the
imperfection sensitivity of laminated composite strueturA different approach is to handle all
imperfections simultaneously by modeling the uncertastising statistics, therefore quantifying
the imperfections arising from material, geometry, load.,eand perform robust buckling
optimization based on the uncertainties, see e4for a review of different approaches. Many
textbooks describe the coupling between imperfectionsklmg load factor, and post-buckling
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stability, see e.g.,q]. Focusing on simple i.e., distinct buckling load factotBe sensitivity
towards imperfections relates to the stability of the gmstkling response. Generally speaking,
a stable post-buckled structure is less sensitive towangsiifections than an unstable post-buckled
structure. Because of these considerations, the postigeskability can be utilized to design robust
structures.

Post-buckling analysis of plates and shells has been dulgjeouch research. Driven by the
aerospace industry, large research projects have beeeroedcwith the post-buckling response
of stringer stiffened composite plate and shell structuRefs. B, 7, 8] present overviews and
recommendations for analysis and design of stringer sefigpanels. These kinds of structures are
used in the design of aerospace structures. Post-buckialgsas is computationally expensive, as
it involves non-linearities. Often a path following algihwin like the arc-length method is used to
trace the equilibrium curved[ 10]. One powerful method to reduce the computational time is to
apply asymptotic methods. In asymptotic methods the nueali problem is substituted by a series
of simpler problems, which are fast and easy to salvdé [Furthermore, asymptotic methods extract
the essential properties of the considered probléeth For bifurcation buckling, these properties
relate to the type of buckling i.e., symmetric/asymmetmcl dhe stability of the post-buckling
response. In asymptotic methods the response is assumeudiop in a self-similar manner, and
it cannot capture effects not included in the asymptoti@esmon. Regardless, asymptotic methods
have demonstrated applicability for post-buckling anialg$ structures.

The early work in asymptotic post-buckling analysis wasdraried by Koiter, who developed
the so-called Koiter's method P]. The method was developed to explain the large discrepanci
between experiments and theoretical calculations obdeénvbuckling of shell structures i.e., as a
tool to evaluate the imperfection sensitivity of structib®sed on an approximation of the initial
post-buckling response. Much research has been basedsomdhinod, and ref.1f3] provides a
comprehensive review of asymptotic post-buckling analyEhe analytical methods developed in
[12] have been extended to multiple buckling modes and noratipee-buckling response, see
e.g., [L4, 15]. The demand for analyzing general structures led to theofiske Finite Element
Method, and 16, 17, 18] have demonstrated Koiter's method using frame and stesthehts. Koiter
analysis with a geometrically non-linear pre-bucklingp@sse within a finite element framework
has been demonstrated with co-rotational shell elemenfsdl and shell elements based on a
Total Lagrangian form ing0]. Recently, ref. 1] demonstrated Koiter analysis combined with the
Differential Quadrature Method.

Koiter's method is only valid for a small post-buckling ramglo extend the validity of the
asymptotic approximation refs22, 23] developed the so-called Asymptotic Numerical Method
(ANM). In ANM the Taylor like expansion from a Koiter analgsis post-processed by Padé
approximants, thereby increasing the precision of the asytic approximation.

Design optimization using asymptotic methods is a relgtivaexplored area. Analytical models
combined with asymptotic expansions were implementederPBNDA2 computer code and used
to design minimum weight stiffened panelsl]. Ref. [25] applied Koiter's method to minimize the
axial end shortening strain at a fixed load level for variabigle tow plates by optimizing first the
lamination parameters and secondly search for a lamindkesivnilar properties. Optimization of
the post-buckling path tangent angle for constant and bfgriangle composite cylindrical shells
is performed in 26] using genetic algorithms, where the potential of enhamtive post-buckling
stability of structures is demonstrated. In this work wespré a novel and generic method for
post-buckling design optimization of laminated composftactures. The optimization is based on
Koiter's method, which is used to extract the essential grigs of the post-buckling response.
Based on the information, we optimize the post-bucklinditity of structures.

Continuous Fiber Angle Optimization (CFAQ) is used for agtiing the post-buckling stability
of the considered structures, so the fiber angles are useesggmdvariables in this work. CFAO
is known to result in non-convex design spaces with severedll minima. Regardless, this
parametrization is used as the laminate parametrizatiorotisthe focus of this work, and the
equations are derived in a general sense, thus they can thevithedifferent parametrizations like
thickness variables, lamination parameters, DiscreteeN&tOptimization etc.
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The remainder of the paper is organized as follows: Seéipresents different approaches for
defining a post-buckling criteria and the approach seleictditis work. In SectiorB the equations
needed to conduct the asymptotic post-buckling analysip@sented. Sectigipresents the design
sensitivity analysis for the asymptotic post-bucklingp@sse. The considered objective functions
are presented in Sectidn Section6 and Section7 demonstrate the formulations through two
examples which are a square plate and a curved panel. Lastfindings are summed in Sectidn

2. POST-BUCKLING STABILITY CRITERIA

When considering the post-buckling response of standardtstal elements such as beams, plates
and shells, loaded in compression, two different displao@nfields are of primary interest; the
load-end shortening and the load-out-of-plane respomspsst-buckled design is not necessarily
optimum for both responses, as demonstratedng8] for infinitely long, simply supported plates
with symmetric and unsymmetric laminate layup and hereirfifite dimension plates and panels
without imposing constraints on the laminate layup. Coosetly, it is important to determine
which of the post-buckling responses is dominating thafaibf the structure.

Defining post-buckling criteria based on the required inplgroperties; compliance, end-
shortening, end-strain etc., can be used if the failure ef dtructure is governed by in-plane
properties. This has been demonstrated in €8] fpr buckling of plates. When optimizing the end
shortening properties, the structure is allowed to buchtkthe buckled shape is allowed to develop,
but the effect of buckling on the inplane properties is miaiga. Only the inplane response at the
end load is considered, thus these objectives do not cartsidethe buckles develop. Consequently,
a structure which does not possess any significant pre-igcidsponse can be designed. This is
demonstrated inZ9], where the effect of applying a compliance criterion foabes which exhibit
shap-through behavior is shown. Here, the pre-bucklingiehof the structure is severely affected
and a structure which exhibits snap-through buckling ataléad level is obtained.

The second approach is to minimize the out-of-plane effectie post-buckling response. If
e.g., a stringer stiffened panel is considered, skin-baogldoes not cause gross failure of the panel.
However, the buckled skin can induce a mode | crack openihgdsn the skin and stringer and
hence trigger skin-stiffener separation. This failure haadsm has been observed for a wind turbine
blade, where failure of the blade was caused by skin bucklimbsubsequent delamination between
the skin and main spa8{)]. When minimizing the out-of-plane effects in the postklirgg response
the development of the post-buckled shape is associatb@w/large an increase in load as possible.

The second approach followed in this work defines the poskiing stability as the resistance
towards development of buckles i.e., the more stable thetstre the larger the load to cause a
given out-of-plane deflection is required. The post-butklresponse is obtained using Koiter's
asymptotic analysis. Here the post-buckling stability étedmined by the Koiter factors, in the
remainder also called the Koiter andb-factors or simply the- andb-factors. These factors give
the change in the load factor in the post-buckling regime= Kbiter factors are global factors for
the structure and not related to the response of a singledegfreedom. Defining a global factor
ensures that the overall performance of the structure isnigetd, and that change in the buckling
mode shape can be accounted for during the optimization.

3. ASYMPTOTIC POST-BUCKLING ANALYSIS

The equations needed in order to conduct the asymptotielpm&iing analysis are conveniently
derived using the Budiansky-Hutchinson notation. If theder is not familiar with the Budiansky-
Hutchinson notation, we refer to e.gl4] 31]. The strain is defined using a set/afperators relating
the displacements to the strains, providing a compactinotdtroughout the derivation, and noting
that the symbols have different properties depending oappéed theory, e.g., beam, plate, or shell
theory. In this work we focus on the continuum version. The-tioear strain relation represented
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in the Budiansky-Hutchinson notation is given by
1
€e=1(u)+ §l2 (u) 1)

Heree are the straing, is the displacement field, contains the linear part of the strains, dpnthe
non-linear part of the strains. In index notation, Equafibris equivalent to

1 1
€ij = 5 (Wij +u50) +5 (Ukiun,g)

ll(u) l2(u)

When clarification is necessary, we switch to index notatma the tensors have the same definition
as the corresponding Budiansky-Hutchinson quantity. iguthe derivation a bilinear operathg
is needed, and it is given by

lo(u+v) =l (u) + 2l (u,v) + I3 (v)

hi (u,v) = 3 (Uk,iVk,j + Uk, ki)

)

Hereu andwv represent two different displacement fields. Theoperator is used when varying the
total potential energy

de =11 (du) + 111 (u, du) 3)

3.1. Theory

To perform the asymptotic analysis we assume that a crhifiaication point has been determined,
and that the displacements and the load factor can be exgpémtdehe post-buckling regime using
a Taylor-like representation

X=X+ A€+ DAE% + e E3 + ... 4)
u ="u(\) + 1 ul + ‘u = "u(N) + tul + 2ul? £ 3ul + .. (5)
€ ="e(\) + et +%e? + %€ + ... (6)
o="o(\)+let+%a +3a6 + ... @)

Here is the post-buckling load factor normalized with respedhtapplied load). is the critical
buckling load factorg, b, andc are the first three Koiter factors which are non-dimensidhalis
the pre-buckling displacement fieldy through3« are the post-buckling displacement fields, and
is the perturbation variablé€. e and®-3o are the expanded strains and stresses Withing the
pre-buckling quantities. The expansions foru, €, ando are assumed to be valid asymptotically
as¢ — 0. From Equation4) some important properties of the post-buckling load factn be
determined. The initial post-buckling load factor is doated by thex)\. part, since¢™| < |¢] for

n > 2. If a)\. is non-zero then the initial post-buckling response is alvlst sincet can assume
both positive and negative values. On the other hand) if« |¢| for small|¢| then the initial post-
buckling response is dominated by the factor, and the stability of the system is governed by the
sign of theb-factor. A graphical interpretation is that thefactor is the slope of the post-buckling
path and the-factor is the curvature of the path inféa— \ plot. The post-buckling displacement
field is represented by thl: displacement field and a correction displacement ftalg which is
orthogonal td'u. “u is represented by the post-buckling displacement figldSw, . .. which are
orthogonal to'u, but not necessarily mutually orthogonal. The expandeairstrare obtained by
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differentiating the expanded displacements as

1 1
€ij =3 (w5 () 4 Quz0(A) + uri (N 2w 5 (N) + 5 (Mg + g + Mgt ) €

2

+%(%%j+2%ﬂ+guhﬁuhﬁa€2+%(%%j+3WJ+3WW%%Jé)g

+ % (0 ki (M) ug ; + Ouk7j()\)1’ll,k’i) &+ % (Ouk,i()\)QukJ + Oukyj()\)Qukﬂ-) &2

+ % (Qwre,s (A ukj + Qi (N i + iy + T tung) €+ (8)
:% (Cui 5(A) + 5 (A) + Ot (N (V)

+ % (lui,j + 1uj7i + Ouh,z‘()\)luk,j + Ouk,j (A)lukﬂ-) ¢

+ % (2Ui,j + QUN + luk,ilukJ’ + Ouk,i(A)QukJ’ + Ouk,j (A)Qukﬂ-) &2

+ % Cui g+ 2wji + " i (A wr + Qe (V) s + Mg Pun + Mk Pur) € + ... (9)

and is equivalent to

e =1, (Cu() + 5 (u(0) + (1 () + I (). 'w)) €+ <11 (u) + 215 (lu)) &
s (a0, ) €+ (1 () + 1 (N, P + (P u)) €+ .. (10)

By assuming linear pre-bucklingu()\) = \°« and %e(\) = \%. Linear pre-buckling implies
that o (Ou) = 0 because the operator contains the non-linear part of ttaénstAdditionally,

l11 (Ou,v) = 0 for any displacement field, because the pre-buckling strains are small, and any
product with these strains is much smaller than the remgiténms. From this, we can reduce
Equation (0) to

e= AL (u)+1 ('u) € + (11 () + 313 (lu)> &1 (1 () + 1 (‘w2u)) € +... (11)
—— ——

Ve le ) 3¢
€

The strains are coupled to the stresses by a linear congitygeratorH, given by Equation(2).
o =H (e (12)

From this the stresses have the same form as the strains ati&u|( 1).
The principle of virtual displacements is used to derivedfaations needed for the asymptotic
analysis. In tensor form the variational form of the totalstic potential is given by3[l]

n*
5H(ut) :/ Uijéeij dV — / )\EZ&LL dv — / )\FL&LL ds — Z )\Rf&ﬂf
\%4 \%4 S k=1

:/ Uijéeij dV — / )\TL(SUZ dQ2 =0 (13)
14 Q
Here B;, F;, andR; are the load distributions for body, surface, and discreael$, respectively,

and they are collected ifi;, where defines definite integration. Using the Budiansky-Hutcbins
notation the variation of the total potential energy is gibgy

Sll(u) =0 -5 — AT - 6u =0 (14)

By comparing Equation13) and Equation 14), the - operator is defined as multiplication and
definite integration. Equationl) is valid in both a pre- and post-buckling configuration. To
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determine the Koitet- andb-factors, equationsl, (5), and (L1) are inserted into Equatiori4),
and the terms are collected in powers afs

Mo 1 (Su) — AT - Su + [)\COO' <l (lu, 5u) +la-0 (du) + a. (00' -l (6u) —T - 5u)] £

+ [Alo -1 (Pu, du) + (aXlo + o) - 111 ("u, 6u) + %o - 1y (6u) + bAc (Yo -1y (Ju) — T - 6u)] &
+ [)\COO' <l (Bu, 5u) +30 1 (6u) + (a)\coo' + 10'1) <l (Qu, 5u)] IS

+ [(AL0 +%0) - li1 ("u,6u) + A (Yo - 11 (Ju) =T - 6u)| &+ =0 (15)
This equation is valid for any value @f hence each coefficient must be zero. This defines four

problems providing all the data needed to perform the poskling analysis.
The zeroth order problem is the pre-buckling equilibriumatipns, and is

Yol (6u) =T -6u=0 (16)

This term is present in all the higher order equations, semtian (L5), and can be removed from
the system of equations. Reducing the first order problemhbyzeroth order problem, the first
post-buckling problem becomes

Yo ly (6u) + \lo - 11y (1u, 5u) =0 a7

This is a linear eigenvalue buckling problem, dndis the corresponding buckling mode shape. The
second order problem is used to obtain both the second paktifg displacement field,u, and
the Koitera-factor. The derivation of théu displacement field and the Koiterfactor is reported
several places in literature, e.gl3[ 14, 16, 20, 31], hence only the end results are restated here as

20 -1 (6u) + 2\Lo - 11y (2u, 5u) =-lo.l (lu, 5u) (18)

This problem is equivalent to Equatioh7d) with a pseudo load vector, however it is singular. The
a-factor can be determined by

3lo .y (lu)
200 -1y (Tu)
As previously mentioned is zero for symmetric buckling, and if it is non-zero the blirod is
asymmetric. The last step is to determinetifactor. Theb factor can be determined from the third
order problem.

ade = (29)

20 -1, (lu) + 2l - 114 (1u, 2u)
00 - 15 (Tu)

Based on this the equations for conducting asymptotic poskling analysis assuming linear pre-

buckling displacements have been derived.

DA, = — (20)

3.2. Asymptotic post-buckling analysis in Finite Elementrf

To determine the governing equations needed in Finite Hi¢maalysis, the Budiansky-
Hutchinson operators are translated. Only Equatiaéy(20) are needed to perform the analysis.
In the remainder of the papé&U refer to the global nodal displacement vectors for disptaamst
field k. Equation {6) is the linear static problem, and in Finite Element form is

K,U=R (21)

Here K, is the linear stiffness matriX,U is the pre-buckling displacement vector, aRdis the
reference load vector. Equatio®d) is the linear buckling problem given in Finite Element foas

(Ko+\K)) @, =0, j=1,2,... (22)

HereK?! is the global stress stiffness matrix where the supersaeipt to the stress field used to
calculate the stress stiffness matnl; is the eigenvector corresponding to buckling load factor
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A;j. The eigenvalues are assumed to be ordered Witk A\, < A2 < A3... < A, and we define
U = ®,. The first post-buckling problem Equatiohd] is in Finite Element form given as

(Ko + \K) *U = Q (23)

The left hand side of Equatior2®) is similar to Equation2), hence is singular. The right hand
side vectorQ is the pseudo load vector given by Equati@d)( and it is used to determine the
post-buckling displacementdJ,

1
Q=- (K}, + 5K0L> lu (24)
HereK! is calculated in the same mannerk&$ with the difference being that ther-stress field

is used instead of théo-stress fieldKz, is an unsymmetric stiffness matrix which couples the
non-linearl, operator to the linedy operator, and is

Ko, = Koy, (* Z / BJEB, (‘U°) dV (25)

Here superscript refers to an element quantity and the summation over all ehsninvolves
assembly to global leveB, is the linear strain displacement matrR,is the constitutive matrix,
B. (1Ue) is the nonlinear strain-displacement matrix constructg@dgithe buckling mode shape,
V. is the volume of the element, and is the number of finite elements. The singularity from
Equation 23) is removed by imposing the orthogonality conditidn:= K,'U using a perturbed

Lagrangian method.
Ko+ A\K? L U\ [ Q
L” —€ ] { w [ ] 0 (26)

Heree is the penalty factor. Through numerical studies, diffe@ices of penalty factor did not
show any effect on the analysis results, thus 1 in this work. i is the Lagrange multiplier. The
orthogonality condition does not alter the skyline of thigimral matrix, hence the sparseness of the
system matrix is unaltered. The displacement field is netwedlculate the Koites- andb-factors.
Thea-factor is given by

JyofBL (‘U )av'Ue 310"k, 'U | 3NA('U)

== == - 27
va oTB, (U dVUs ~ 2007R, U~ 20U, ) @)

N4 is the numerator for the).-factor, andD is the denominator for all Koiter factors. Finally, the
b-factor is given by

) 2L [y o3 B (*U°) AV U + 2 [, o By ('U°) dV 2U*
== [y, ol BL (1U) dV 1U*

e=1

2U'Ko,'U+ LUK 'U+2'U' K 2U N2 (1U,20)
D ~ D (°U,'U)

(28)

Here NP is the numerator for the)\.-factor andK,;, is a symmetric stiffness matrix relating the
l>-operator to thé,-operator, and it is given by

Krr =K (! Z/ (B; (*U%))" EB; (*U%) aV (29)

The Koiter factors and sensitivities hereof are efficiemidyculated by a summation of element
contributions, hence the globKl,;, andK; matrices should not be used, and they are only shown
here for completeness.



8 S. R. HENRICHSEN ET AL.

4. DESIGN SENSITIVITY ANALYSIS FOR ASYMPTOTIC POST-BUCKING

The objective of this work is to maximize the post-bucklingkslity of laminated composite
structures by gradient-based optimization techniqueg€eFtorm design optimization of the post-
buckling response, the design sensitivities of the Koietdrs,a andb, and the critical buckling

load factor\. are needed. The direct differentiation method is used tveldre design sensitivities.

4.1. Sensitivity analysis of the pre-buckling displacerfietd

The linear pre-buckling displacements are used to caleWath Koiter factors and the critical
buckling load factor, hence the sensitivities of the prekiing displacement field9U, with
respect to a set of generalized design variableare needed. The sensitivities are determined by
differentiation of Equation4d1). Assuming design independent loads the sensitivitiehefload
vector are zero. dOU K IR
00
d:cz dx; U+ dx;
~

The already factored stiffness mati&, can be reused for the calculation of the pre-buckling
displacement sensitivities, thereby enhancing comprtatiefficiency.

(30)

4.2. Sensitivity analysis of (simple) buckling load fastor

The sensitivities of the pre-buckling displacement field amployed in the calculation of the
design sensitivities of the buckling load factors. In thisrkvonly simple i.e., distinct buckling

load factors are considered. The buckling load factor $gitigs are calculated by differentiating
Equation £2), pre-multiplying by® ;, rearranging the equations, and assuming that the eigemsec

areK?-orthonormalized.
dA; dK dKY
—J<1>JT< NIy >q>] (31)

dx; dx; J dzx;

Please note thaL is a function of the displacements, hence is dependent oalathents.

Equation 1) is solved using semi-analytic design sensitivity analyiis approach also facilitates
easy implementation of different design variablgg ]It is important to note that the stress stiffness
matrix is a function of both the design variables and thelprekling displacement field, hence
K% =K! (a:i, U (:cz-)). The sensitivities oK, andK? are calculated using central differences at
the element leveld2, 33).

dK8 7K8 (Zz —+ ALL‘Z) — K8 (QCZ — AZJ

- 32
dl‘,‘ 2Axi ( )
dK%e  KO° (2 + Ax;, U + A'U°) — KO° (2 — Ax;, "U° — AU*) 33

The change in element displacemenfdUe is approximated using a first order Taylor expansion

d'ue

Tq

AOUe ~

Ax;

The first order Taylor expansion is also used when the changhs displacement field&!U and
A?U are calculated.

4.3. Sensitivity analysis of (simple) eigenvectors

The sensitivities of a simple eigenvec®y cannot be determined by differentiation of EquatiB®)(
because the system matrix is singular with a rank deficiefidy mstead Nelson's metho@4] is
applied to calculate the sensitivities. The principle indda’s method is to rescale the eigenvector
and remove the singularity. The sensitivities of the oldjgigenvector are determined based on the
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sensitivity of the scaled eigenvector. The scaled eigenvd¥ ; is determined by

W, = 1<I>j (34)
q

Hereq is chosen such that
maX|W]4| =W"=1, I= 1,...,nP°F
l
The entry with the maximum absolute value for eigenvegisireferred to as and the component

W, nPoF is the number of degrees of freedom in the model. Recall freatién4.2 that ®, is
KY-orthonormalized, and by differentiation

d®; 1. .d(-KY)
T 0 T o
& (K)o =t g % (35)
- d®; . . o .
To ellmlnated— from Equation 85) Equation 84) is differentiated.
T
de; dg .. | dW;

- d . .
It is important to note thatd—q # 0 in the general case since a changekify affects theK?-
X

o . . d .
orthonormalization, hence the scaling required betvieeandW ;. To calculate(gq_ Equation 86)

. . . . d®, . . .
is substituted into Equatiorf), and d:p-] is eliminated.
dg 25T oy AW, ¢ Td(_Kg)
=—¢*®T (-KY) —L — 1T - P, 7
dlEi q J ( a) dl‘Z 2 J dlEz J (3 )

The unknown quantities are the rescaled eigenvector aatisg dx-j . To obtain theseW, is
substituted into Equatior2®), and the resulting expression is differentiated to become

aw; _

(Ko + AcKY) e R (38)

where the right hand side vectBr,; is given as
dK dK, dX.
Rul = ( 9

This system is still singular. In order to remove the singtyehe normalization condition oW ;
is differentiated

K, )W,

dw:m
i (39)
dl‘i

This result is substituted into Equatio&8) by changing the appropriate entrieski, K2, and
R.,1, i.e.,

Ko(m, k) = K%(m, k) = Ko(k,m) = K%(k,m) = 0,
Ko(m,m) =1, R,1(m) =0,

k=1,...,nP°F, k#m

The new system matrix and pseudo load-vector are c&letlandR?’,, respectively. This system

of equations is not singular, and can be solved directly
korIWi _ _pr (40)

dzi ul

When the sensitivities ofW; are obtained using Equatiot() these are substituted into

Equation 87) and Equation36). From this the eigenvector sensitiviti%{i are obtained. For
T
j = 1 the sensitivities of théU displacement field are obtained.
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4.4. Sensitivity analysis of the post-buckling displacarfield
2
The sensitivities of the post-buckling displacement fi%(—:ltfJ are used when determining the

T
sensitivities of the Koiteb-factor. The post-buckling displacement field sensitgtare obtained
in a similar manner as the pre-buckling displacement fiehdisgities. Assuming that the buckling
load and buckling mode shape sensitivities are known, thsitbéties of the?U displacement field
are obtained by differentiation of the extended system ahé&qns, Equation®)

22U dKo dAc .o dK9D Y dQ
Ko+ XK) L } dx; - ( dz; - dz; Kot A dz; v dz; (41)
A - _
L — du dL” 21y
dQ

The derivative— is non-zero, and it is given as

T

aQ dK!  1dKo. ) L1 d'U
= c 4 U- (K!+:-K

dl‘i ( dlEz + 2 dlEz 7 + 2 oL dl‘Z

Furthermore the sensitivities of thievector are given as

L dKo, U
= U+ K
de;  dxy o dx;

The extended system of equations in Equatiah) {s not singular, and the post-buckling sensitivities
are obtained by back-substitution.

4.5. Sensitivity analysis of Koiter a-factor
The sensitivity of Equation?{) yields the change in asymmetry of the post-buckling resppand
are determined by

dNAD — NAQ

d(a).) 3 dz, da;
=——— ! 42
The sensitivities ofV4 and D are given in Equatior4@) and @4), respectively, as
dN4 rdKo, AU T
o <1U T + T (Koo +K{,) | 'U (43)

The sensitivities 0K, are obtained by central differences in the same manner astiBgu33).
The sensitivities oD are determined in the same mannen&a$

T

dD dK d°U d'u
S § e ) Ko, 'U+ U Kop, (44)
The sensitivities of the-factor are obtained by expanding the left hand side of Bqud#2) and
isolating da
T
da).)  dX.
da do; | day
2 9% d% 45

The sensitivities are efficiently calculated by a summatiorthe element level.
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4.6. Sensitivity analysis of Koiter b-factor

The sensitivities of the Koiteb-factor are calculated in the same manner asdtiactor, see
Equation ¢2) and @5), and they are

dNEB dD
——D - NP
dl‘i - D2
d(bAe) bd)\C
db de;  day
= —t 47
The sensitivities ofVZ are the only unknown quantities, and are
ANB [, 1 (dKo, _dKZ 1, rdKp a2u’
=U (—+2—YL)+-'U —|'U Koz +2K3; ) 'U
dxi < < dxl + dxl + 2 dl‘,‘ + dl‘,‘ ( oL + OL)
T T d'u
+ (2U (KOL + QK&) +1'U KLL) P (48)

Krr

. . dK . . .

is calculated in the same mannerﬂa(fisO—L. All the derived expressions have been validated
T T
using finite difference approximations.

5. ASYMPTOTIC POST-BUCKLING OBJECTIVE FUNCTIONS

The Koiter factors are used to optimize the initial postilimg response of all structures
considered.

When the bifurcation is symmetric= 0 and the initial post-buckling response is governed by
the Koiterb-factor. To maximize the post-buckling stability we corgichaximization of the Koiter
b-factor. This formulation is

Obijective: max b (49)
Subjectto: z < x; <T Vi (50)
la| <@ (51)
Ae > Mt (52)
N> =23, (53)
(Ko +M\K2) @ =0 (54)

This formulation only considers the post-buckling curvattactor i.e., the Koiteb-factor, in the
objective as this factor defines the post-buckling stabiltquation §0) prescribes the bounds
on the design variables, which in the case of CFAO should bxtesl such that these are not
reached in the optimization process. We have chosen thedsdorbe the initial angle-180.9°.
These bounds are only used when calculating the move limitiseé optimization. If asymmetric
buckling is encountered a constraint on the maximufactor can be applied, see Equatidii)

In Equation b2) a constraint on the critical buckling load factor can beliggpto ensure that
the structure does not buckle at a low load, the lowest aabé&pbuckling load factoh; can be
determined as a fraction of the optimum buckling load faftom a buckling load maximization
procedure. To avoid that the critical buckling load factomiultiple, Equation¥3) is used. In the
equation,\, is the minimum acceptable value of the buckling load factarger than the critical
one. The buckling problem in Equatiof4) is not included directly into the optimization, but is
solved explicitly prior to the solution of the optimizatipnoblem, hence a nested approach is used
in this work.



12 S. R. HENRICHSEN ET AL.

An alternative approach is to maximize the. product, as the product is present in the expansion
of the load factor. This formulation is

Objective: max bA. (55)
Subjectto: z < x; <T Vi (56)
la| <@ (57)
N> A =23, (58)
(Ko + \KY) ®; =0 (59)

In this formulation, the critical buckling load factox,, is implicitly maximized in the objective
function, see Equatiorbf), hence a constraint on the critical buckling load facterdsapplied. The
remainder of the constraints are the same as the constimiBtgiations $0)-(54). The difference
between the two formulations is whether the critical bundlioad factor is considered in the
objective or not, and thus whether only the post-bucklingyature factor or a trade-off between
the curvature factor and the critical buckling load factoosd be considered.

When an asymmetric post-buckling response is present thiéerkKe-factor is non-zero.
Consequently the initial post-buckling response is urdstdh order to minimize the asymmetry
the a-factor should be as close to zero as possible. Here, we nziaithe absolute value of the
a-factor given by Equation$(Q)-(64).

Objective: min |af (60)
Subjectto: z < x; <T Vi (61)
b>b (62)
Ae >N (63)
(Ko +M\K2) @, =0 (64)

The absolute value of thefactor is considered in Equatiof). This is done because a negative

a-factor still provides an asymmetric response, since thieigstion factor¢ in Equation ¢) can

be assigned with the opposite sign. This objective fundamon-differentiable afa| = 0, but the

chance of reaching zero is negligibly small, and comparassiog e.g.a> as objective|a| yields

a better scaling of the optimization problem wheh< 1, and thus should show better precision.

Minimizing the absolute-factor can affect the post-buckling curvature, and thusdfign 62) can

be applied to constrain the Koitgifactor, thereby securing a minimum post-buckling curvatu
Lastly, we also consider maximization of the critical bucgl load factor. This optimization

is used to gain a benchmark on the performance of the comsidstructures. The optimization

problem is formulated using a bound formulation to ensurginaous derivatives3b, 36]

Objective: magc I6; (65)
Subjectto: 5 —X; <0 Vj (66)
2<z;<T Vi (67)
(Ko+\KD) @, =0 (68)

In Equation 65) and ©6) § is the bound variable. Applications of the optimizatiomhadations are
demonstrated in the following sections.

6. SIMPLY SUPPORTED SQUARE PLATE

The first example is the square plate shown in Figunéth dimensions and load given in Takble
The plate is simply supported along all four edges. The leagbplied as a displacement along edge
1 to ensure that the edge remains straight under loadingtfiree remaining edges are forced
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(2)u- =0, u, coupled

@ Uy = Uy =0
<
(D) u. = 0, u, coupled

@uz:uyZO

Figure 1. Load and supports for square plate. Coupled dedirséde where the edge is forced straight but
free to expand and contract. The loAds applied as a displacement along the edge. The encirclatiens
refer to the edge number.

lag——
lag——
l——
l——
l——
lag——
- R
lag——
l——
l——
l——
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lag——

Table I. Dimensions and load for the square plate. Table Il. Material properties for the glass fiber
reinforced polymer used in the plate.

Parameter Unit

Side length/ m] 1.0 Parameter Unit

Thickness¢ [m] 0.002 E, [GPa] 30.6

Load,R [kN] 1.0 E, [GPa] 8.7
G2y, Go. [GPa] 3.24
Gy [GPa] 2.9
Vay [[1 0.29

straight by restraining the normal displacement on edgesd34a and by coupling the normal
displacement along edge 2, such thats free to expand and contract, but the displacements remain
the same, see Figufle As a consequence, the plate is free to expand and contrdet jadirection.
The material used for the plate is a glass fiber reinforcegimet with material properties given
in Tablell. The plate is modeled using 400 9-noded shell elements basedfirst order shear
deformation theory. This mesh provides a converged salutith respect to displacements, stresses,
and Koiter factors. The mesh is also sufficient to repredentriore complicated stress fields from
the optimized structures. No special measures were takarotd locking of the isoparametric shell
finite elements used. This problem is circumvented by hawirsgfficiently fine mesh which has
been verified by mesh refinement studies. The elements anpepianto 10x 10 patches i.e., four
elements per patch. Within a patch, the elements are forchdve the same fiber orientation. No
restrictions on the fiber angles between the patches arecedfo

The fiber angle8 are used as design variables for the optimizations, anditieegence criterion

, S AG2 o ,
is chosen to b ﬁ < 0.00001 or the optimization is stopped after a maximum
S (60— 6,
=1 ? =1

of 200 design iteration steps. The method of moving asyrept@MA) from [37] is chosen as
optimizer. All numerical results are generated using thkadnse finite element based analysis and
design optimization code MUST (the MUItidisciplinary Skesis Tool) B8].

6.1. Analysis of the plate

To validate the code, and obtain further insight into thébpgm, a series of analyses are carried out
prior to conducting the post-buckling optimization.
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Figure 2. Normalized load-end shortening responsé-igure 3. Comparison between Koiter analysis and
for the analytical model given in Eq69) and the  geometrically non-linear analysis, GNL, for all fiber
implementation of Koiter's method using the Finite angles equal to Displacement refers to either the
Element Method. All fiber angles are equal tom  end shortening, Koiter x and GNL x, or 1/100 of the
the comparison. normal deflection for the center node, Koiter z and
GNL z. The load has been normalized with respect
to the critical buckling load factor.

Analytical results exist for the load-end shortening of sq@are plate for orthotropic materials.
Ref. [21] generalizes the results from3J] by removing the constraint on the post-buckling mode
shape, and obtained Equatidi¥d) for the load-end shortening response of the structure

2,3
_ w2t 274, 4 4, 4 ) 272,,2, 2
R)\. = OB m2(ar?,) (Exa Ian* + Ezalym + {2Ezoa/yz + 4Gy [a z/yx] } lxlym n )
i i 2
Rb\. — Emwzt(alfnn‘l-&-lé'rn‘l) wo g o — 1 [mr
¢ 161213 m? v R T T tElly 2778\

(69)
wherel, andl, are the plate side lengths in the x and y directions, respdgtin andn are the
number of half waves in the plate,is the ratio betweef, andE,, andv,, is the minor Poisson’s
ratio. In Figure2 a comparison between the analytic results and the numeriettiod is shown.
Good correlation between the models is observed.

Figure3 compares the Koiter analysis to a geometrically non-lif€L) analysis. This study
gives an estimate of the range of validity for the Koiter gsil. It is immediately observed that the
out-of-plane displacementis better approximated thaetigeshortening. This result is as expected,
because the in-plane displacements in the small defleclite fheory are given by the derivative
of the out-of-plane displacements plus the in-plane daspteents from the load. Because of that,
the error in out-of-plane displacements in the Koiter asiglpccumulates in the end shortening
curve. Additionally, the Koiter analysis does not captimegoftening behavior of the GNL analysis
in the post-buckling region. This limitation is caused by $mall number of terms included in
the expansion, and the precision increases when additiermas are included, as demonstrated in
e.g., 2. Even though only the two first expansion parameters areidied in the analysis, the
error in displacements for the Koiter analysis is within 5%tlee non-linear solution at a load
factor of approximately 6.5 and 2.2 for the out-of-plane and end shortening displacements,
respectively. The buckling mode shape is shown in Figuamd the x-component of the post-
buckling mode shape in Figute The post-buckling displacement field is a bi-axial cortitac
with the y-component identical to a rotation of°9@f the x-component.

To generate a qualitative overview of the response of thee pkurface plots of the critical
buckling load factor\. and the Koiters-factor are shown. These plots are generated using two
patches, i.e., one for the elements with a negative y-coatejd;, and one design variable for the
elements with a positive y-coordinaig,. A Koiter analysis is conducted for all angles between
+90° with an interval of 3. The surfaces are shown in Figui@and7 for A\, andb, respectively.
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Figure 4. Z-component of the buckling mode shape Figure 5. X-component of the post-buckling mode
Ly, for the plate with all fiber angles aligned &.0 shape,?U, for the plate with all fibers aligned
at @°. The y-component is identical when a®90
counterclockwise rotation is performed. The z-
component is zero for all nodes.
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Figure 6. Surface plot of the critical buckling load factar, as a function of the fiber anglés and 6.

Two weak global maxima are present i#.,= —0> = +45°, furthermore two local maxima are located at

01 = 62 = £45°. Nine minima are present with the global minima being any lio@ation between 0and

+90°. Local minima are present 8t = 6 = 0°, §; = 03 = £90°, andd; = —0s = £90°. Left isometric
view, right top view.

It can be realized from the figures that the optimizationswareconvex with several local maxima,
and that the global optimum is multiple in the case of two glesariables. Furthermore, having two
design variables then the maxima for one function corredpaa minima for the other function.
Note that a global maximum in one function is not necessaffipe with a global minimum in the
other function. A lower buckling load for the optimized stture is to be expected when optimizing
the post-buckling stability compared to maximizing the ldingy load.
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Figure 7. Surface plot of the Koitérfactor as a function of the fiber anglés and6s. Five weak global

maxima are present & = 0 = 0°, §; = 05 = £90°, andd, = —0 = £90° and four local maxima are

present at any combination betweérehd+-90°. The weak global minima are presentat= —0s = +£45°
and the local minima at; = 0, = +45°. Left isometric view, right top view.

6.2. Buckling load optimization

The single layered clamped square plate is chosen as thefsiple to demonstrate the capabilities
of the proposed method. This example is simple, yet it detnates the differences between the
different formulations.

Initially buckling load maximization is carried out. Froris$ the upper bound on the buckling
load is obtained, in order to have a baseline for compariagehlults from the Koiter optimization.
Furthermore, the maximum buckling load is used to formuth&constraints in Equations§3),
(53), and 68). The optimum move-limit strategy and initial fiber angles the buckling load
maximization were determined by testing the 12 combinatiohinitial move limits (1%, 5%,
and 10%) and initial fiber angles10-45°, 45°, and 90). The optimum combination of move-
limit and initial angle was found to be 5% move-limits and aitiél angle of 0 with an optimum
buckling load factor\, = 0.8241 [-]. The optimum fiber angles are shown in Fig@e€The layup is
symmetric around both the x- and y-axis even though no symymenstraints have been applied in
the optimization. The fiber angles are aligned close to e@het45°, or 9¢° with a +45° majority.
The @ patches are located along edge 2 and 4, and thp&@hes around the y-axis. The remainder
of the structure consists af45° patches which is in good agreement with the general theary fo
buckling of orthotropic plates stating that the optimum fibegle for a single patch plate with the
given boundary conditions is 45The two lowest buckling loads are located within 0.1%, dndst
care must be taken to avoid multiple buckling loads durirggbst-buckling optimization.

6.3. Post-buckling optimization

Both post-buckling formulations with and without bucklifgad constraints are demonstrated for
the plate. For both optimizations it is generally obsenreat tising the optimum fiber angles from
the buckling load maximization provides a good initial staress for the post-buckling optimization
compared to using initial fiber angles aligned at845°, or 9C°. Initially the post-buckling stability
is optimized without considering constraints on the buaklioad factors.

Optimizing the post-buckling stability results in a de@ed buckling load for most structures
compared to the maximum attainable value as demonstrafeidime6 and7. Furthermore, since
the optimization problem is non-convex, different initeaigles result in different optima. This is
demonstrated in Tablé where a maximization of the Koitérfactor is conducted. Differences
in both the critical buckling load factor and thdactor are present. For this specific set of initial
angles, a larger critical buckling load factor also resutmn increaseé-factor. This is not a general
tendency, but rather a consequence of the choice of initiglea In Figurec and Figurer it is
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Figure 8. Optimum fiber angles for buckling load maximizatas the single layer square plate. The settings
used to obtain this result are 5% move-limits and an initigjle of 0.

Table 1ll. Optimization results for maximizing thefactor for the square plate with different initial angles

and no buckling load constraint. The first column defines tiigal angles, where\. corresponds to the

initial angles given by the buckling load maximization, $égure8. The second and third columns are the

first, Ac, and second)., buckling loads, respectively. The fourth column is thetob-factor, and the fifth

column is theb).-product. The second to fifth columns are the same througtieuplate example. All

results are obtained using move-limits of 10%. Choosinge+onits of 1% and 5% yield results close to
the ones presented in this table.

Initial angle Ae [-] A2 [-] b[-] bAe [-]

0° 0.3632 0.8666 0.06910 0.02510
-45° [ 45° 0.4807 0.7299 0.07645 0.03675
90° 0.3154 0.4930 0.05913 0.01865

Frommax . 0.5759 0.6277 0.07902 0.04551

observed that a global maxima in one of the functions canfbeeakith a local minima in the other
which explains the obtained results. This example dematestithe complicated response surface
for the optimization

The largest objective function values for the unconstoptimizations were obtained with fiber
angles from Figur® and move-limits of 10%. The results are given in Table0° is the optimum
fiber angle with respect to post-buckling stiffness if a &nfijper angle is selected, and together
with the buckling load maximized design, Max, provide the baseline designs. Maand Max
b, are the unconstrained optimized designs for the optintinairoblems given by Equations9)-
(54) and EquationsH5)-(59), respectively. The buckling loads are decreased by 30%d &#el for
the two cases compared to the buckling optimized structespectively. Furthermore, the effect
of the post-buckling optimization can be assessed by cangp#ne Koiterb-factor and the..-
factor to the O case. The optimization results in an increase inttfector by 55% and 40% and
the b -factor by 133% and 155% for the two optimizations, respetyi The difference between
the two optimization formulations is also evident from tlistimization. The Koitem-factor is
naturally larger for the first optimization formulation, efeas thé ) .-factor is larger for the second
optimization formulation. This is an important result ashibws that the two design spaces are not
the same, and thus the choice of post-buckling optimizdtionulation affects the final result, even
though the two formulations are closely related.

Figure9 is used to explain the general tendencies observed in thiebpokling optimized
designs. The bottom and top row of patches have an orientatige to 0. In the pre-buckling state
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Table IV. Optimization results for the square plate withbutkling load constraints and initial angles given

by Figure8. 0° represents the plate with all fiber angles aligned®aiMiax A is the buckling load maximized

plate, optimization problem given by Equatio$)-(68), Maxb is the plate with maximized Koitérfactor,

optimization problem given by Equation$9)-(54), and lastly Max ). represents the plate with maximized
Koiter bA.-factor, optimization problem given by Equatiorih)-(59).

Case e[l X1 B[] bAc []

0° 0.3846 0.9651 0.05109 0.01965
Max A.  0.8241 0.8249 0.03861 0.03182
Max b 0.5759 0.6277 0.07902 0.04551
MaxbX. 0.7025 0.7032 0.07135 0.05012
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Figure 9. Optimum fiber angles for the M&case Figure 10. Modified fiber angles for the M&xcase
for the square plate. The settings used to obtain thitn Figure9. These fiber angles gives a marginal
result are 10% move-limits and the initial angles increase in thé-factor of 0.3%.

from Figure8.

these patches transfer the load to the supported edge aridgstiffness against the end-shortening
of the plate. Furthermore, & @riented element provides post-buckling stability, ag@vents the
end shortening of the plate caused by the applied load armbttebuckling displacement fieléilJ.
Close to, and at the loaded edge, the patches are orient&®d at 9 = 0 [mm] andF45° aty =
+1/2 with a smooth transition in between. This is used to redistd the applied load towards the
edges i.e., theUpatches. The remaining 9@atches prevents the post-buckling contraction of the
plate, and thus increase the post-buckling stability ofpfa¢e. The remaining patches are oriented
at approximately-45°. These patches primarily provide resistance against mgkf the plate.

A symmetric layup about the x-axis is expected since theeplabundary conditions, and
discretization are symmetric. Yet the optimized fiber asglee not completely symmetric. The
unsymmetry arises from the two columns of patches closestige 3. The-0° patches located
between y = 0 [mm] and y = 300 [mm] are assumed to be suboptesahese patches transfer
the reaction force into the center of the plate. To demotestret it is the case, the corresponding
patches with a negative y coordinate are mirrored to the tirhal patches, see Figuié®. This
results in a marginal increase in thiactor of 0.3%, and an increase in the critical bucklingllof
4%. Since the optimization only considers théactor the optimized design after 200 iterations is
close to the results from a post-processed symmetric deSilgnmarginal increase in tlefactor
suggests that the design space is relatively flat, and thaawadd additional constraints without a
large reduction in the post-buckling performance.
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Figure 11. Optimum fiber angles for the Max.

case for the square plate. The settings used to obtain

this result are 10% move-limits and the initial angles
from Figure8.
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Figure 12.Z-component of a typical buckling
mode shape for the post-buckling optimized plate.
Compared to the buckling load optimized plate
the buckle is shifted away from the loaded edge,
furthermore, the buckle has a more oval shape
caused by the boundary conditions. The buckling
mode shape shown here is for the Magase from
TablelV. As the critical buckling load is increased
towards the maximum attainable, the buckling
mode shape approaches that of the buckling load
maximized structure, i.e., a single round buckle in
the center of the plate.

The optimized design for the Ma®). case is given in Figurgél. The same general tendencies for
the fiber angles are observed when comparing to the Mzase. The fiber angles resemble those
from Figure9 with more patches oriented &t5° in order to provide additional resistance against
buckling.

The buckling mode shape for the Maxcase is given in Figur&2. Compared to the initial
structure i.e., all fiber aligned at 0the buckling mode shape is shifted towards edge 3. The buckl
is located in the area dominated by°Qfatches. This is as expected since the [9&ches prevents
the development of the buckle in the post-buckling regimieis Tesult is obtained without any
constraints on the fiber angles. If a symmetric responsejisned, constraints enforcing symmetry
can be added.

6.4. Constraint on the critical buckling load factor

The critical buckling load factor is reduced when perforgypost-buckling optimization. To ensure
a minimum buckling load factor minimum value constraints ba applied. The buckling load factor
for the Maxb case is 70% of the maximum attainable, and thus constraisaf 75%, 85%, and
90% of the maximum attainable critical buckling load facoe chosen to demonstrate the effect of
constraining the critical buckling load factor when maxing thebs-factor. The constraint on the
critical buckling load factor is only demonstrated with thgtimization of theb-factor as theh .-
factor explicitly contains the critical buckling load factin the objective function. The results for
the optimizations are given in Tablé The consequences of the constraint on the critical bugklin
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Table V. Optimization results for the square plate with ¢aist on the critical buckling load. The

constraints are formulated based on the maximum buckliag,land the subscript aftérdefines the

percentage used in the constraint. The initial angles arengdy FigureB and move-limits of 10%. The

critical buckling load constraint for the 85% case is thareabbtained when maximizing thea.-factor, see
TablelV. All results are maximization of thiefactor.

Case A1 [ e [F] X[l b[] bAc [-]

Maxb7s 0.6180 0.6265 0.6291 0.07674 0.04808
Maxbgs 0.7025 0.7025 0.7043 0.06991 0.04911
Maxbgo 0.7417 0.7417 0.7424 0.06241 0.04629
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Figure 13. Optimum fiber angles for the Maxs Figure 14. Optimum fiber angles for the Mays

case i.e., with a constraint on the critical buckling case where a constraint on the critical buckling load

load factor of 0.6180 for the plate. The settings usedactor of 0.7025 is applied. The settings used to

to obtain this result are 10% move-limits and the obtain this result are 10% move-limits and the initial
initial angles from Figure. angles from Figuré.

load factor are an increase My and a decrease in tliefactor. This is as expected since the design
space is smaller, and the previous optimum is infeasible thi¢ imposed buckling load constraint.
The Koiterb-factor is decreased by 4%, 12%, and 21% for the three camistraespectively. Note
that theb\.-factor for the case with a constraint of 85% attains a valbiEkvis close but lower than
when maximizing thé\.-factor. This is an effect of the different optimizationfiounlations, where
the constraint on the buckling load factor forces the altlsuckling factor always to be feasible.
This is not the case when optimizing the,.-factor, where the buckling load factor can attain any
value during the optimization process to reach a differgatinlum. Regardless, the difference in
the post-buckling stability is only 2% between the two opzations.

The optimum fiber angles for the different optimizationsgiven in Figuresl3-15. Compared to
the optimum fiber angles it is seen that the fiber angles fokMéeb;s case in Figurd 3 are similar
to those from the unconstrained optimizations. For the tages with a buckling load constraint of
85% and 90% the center region of the plate is dominated bysfiakigned at approximately 90
Furthermore, the first column at edge 3 consists of fiber angldch are close to symmetric to
those of the last column at edge 1. The right hand side of thelpasembles the fiber angles from
the Maxb case, see Figui as the fiber angles are aligned in a circular path from theddpe
bottom.
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Figure 15. Optimum fiber angles for the M&y case, with a constraint on the critical buckling load factor
of 0.7417. The settings used to obtain this result are 10%eriimits and the initial angles from Figufe

6.5. Constraint on the second buckling load factor

Closely distributed eigenvalues are encountered when ukklihg load factor for the optimum
design is sufficiently close to the maximum attainable bingkload factor. This is not accounted
for in the analysis and design sensitivity analysis, asnberaction between the multiple buckling
loads is not accounted for. To avoid this, a constraint orséo®nd buckling load factor is imposed,
and chosen to be equal to the maximum attainable criticatlimgcload factor when optimizing
the buckling load of the structure. This constraint ensuih@$ multiple buckling loads are not
encountered during the optimization. This constraint mesuit in suboptimal designs compared
to optimizing the multiple buckling loads. Regardlesssthpproach is used, as previously, when
multiple eigenvalues can occur during the optimizatior, sg., {10].

Four different cases are shown with this constraint i.eitdf@-factor optimization without a
constraint on the critical load factor, May, with a critical buckling load constraint of 85% and
90% of the maximum attainable, May; » and Maxbyg 2, and abA.-factor optimization, Maxz A..
The results for the four cases are given in TablleAs expected, a reduction in the post-buckling
factors compared to the unconstrained cases is realizéide aesign space is reduced. Comparing
the results in Tabl®&| to the results in Tablé/ and Tablev the consequence of thg constraint
is quantified. A decrease of 1% of thdactor and 8% in\. is observed when comparing Max
to the unconstrained Maxcase. The fiber angles for the mawptimizations, with and without a
constraint oMy, are shown in Figur® and 16, respectively. The constraint on primarily alters
the fiber angles at edge 2 and 4 where more patches are aligbfedl@en the constraint is imposed.
This explains the low decrease in théactor when imposing the constraint. The 85% case exhibits
a decrease of 2% in thefactor compared to the constrained case. The decrease bdlator for
the 90% case is 1% compared to the constrained case. Laséigiuation of 4% in thé\.-factor
is seen for the MaX, ). case. Based on the results in TakllésVI, constraining the higher order
buckling loads does not give a significant reduction in thetybuckling response of the structure.

The optimum fiber angles are given in Figufes19. Comparing the fiber angles to the plates
without constraints on,, Figure9, Figurel4, Figurel5, and Figurell, the fiber angles are similar.
This result is as expected since the difference in the pastimg properties is small. The major
differences are in the center region where some oftth® patches have switched sign in order to
resemble those from the buckling load maximization in FigurComparing Figurd 9to Figurell
it is seen that the last three columns of patches are simalarden the two, but the remainder of the
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Table VI. Optimization results for the square plate with stoaint on the second buckling load of 0.8241

defined by the subscript. The subscript numbers after Maxgives the percent-wise constraint on the

critical buckling load factor compared to the maximum aidle, see Table for the constraint values. The

initial angles are given by Figui@and move-limits of 10% except for Maand Maxbgs where move-limits
of 1% provided the best results.

Case X[l X2[1  b[] bAc [-]

Max b 0.5324 0.8241 0.07826 0.04166
Max bgs,2  0.7025 0.8241 0.06817 .04789
Max bgo,2 0.7417 0.8241 0.06151 0.04562
Maxb2A. 0.7164 0.8241 0.06721 0.04815
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Figure 16. Optimum fiber angles for the May  Figure 17. Optimum fiber angles for the Max; -
case with a constraint ok, = 0.8241. The settings case with a constraint on the critical buckling load
used to obtain this result are 1% move-limits and thefactor of 0.7025 and\, = 0.8241 for the single
initial angles from Figures. layer square plate. The settings used to obtain this
result are 1% move-limits and the initial angles from
Figures8.

structure resembles Figuid where the Koiteb-factor is maximized and the critical buckling load
is constrained to the buckling load for Max..

6.6. Convergence of the optimizations

In general, three different iteration histories are obsdifor the plate. The three iteration histories
are given in Figure&0-Figure22. Nearly all optimizations use 200 iterations, and the ojt#tion

is terminated due to the convergence limit. This is a conseca of the tight convergence
criterion where the normalized change in the design vasglohust be below 0.00001, which
forces the optimization to continue even though only minlearges in the design is observed.
The optimization reaches a value close to the optinhuemdb ) .-factor within 30 iterations for all
cases.

Since all solutions start with the buckling load optimizeidin, multiple eigenvalues are present
in the initial iteration. It is observed that. and )\, are separated in the initial iteration for all
optimizations. The remaining part of the optimization bigtdepends on the applied constraints.
The iteration history for the Mak case is shown in Figur20. This iteration history shows that.
and)\, remain separated throughout the evolution of solutiong. diops in theé-factor and kinks
for A\ in the initial 10 iterations are caused by the 10% move lingitsthese are not present when
tighter move limits are selected. After iteration 20 almusthange in the values is observed which
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Figure 18. Optimum fiber angles for the Méax, o Figure 19. Optimum fiber angles for the Max\.
case with a constraint on the critical buckling load case.\; is constrained to 0.8241 for the plate. The
factor of 0.7417 and, = 0.8241 for the plate. The settings used to obtain this result are 10% move-
settings used to obtain this result are 10% move- limits and the initial angles from Figui@

limits and the initial angles from Figui&

supports the conclusion that a tight convergence critda@elected. Figurgl gives an iteration
history where multiple eigenvalues occur during the opation, here exemplified with the Max
bA. case. The overall tendencies are the same as FiglLercept for the drops in thefactor. These
drops are caused by the multiple eigenvalues, where theotmestt eigenvalues switch position, and
the lowerb-factor for the second eigenvalue enters the objectivetiomcThis consideration further
demonstrates the need for constraining the second eigerteshvoid this switching. To test whether
the optimized post-buckling response from the second g kbad leads to a different optimum,
optimizations where the second buckling load is the lowasttbeen performed. The MaxMax
b\, and Maxb with a constraint on the original. have been performed. The optimizations converge
to the results with\. as the lowest. The last iteration history, Figde is the Maxbg » case which
displays a case where the second buckling load factor igre@mad. This iteration history resembles
that from the Maxb case with the difference being that the second buckling faatbr does not
decrease in the initial iteration. For the cases with a caimgton A, convergence is observed prior
to the iteration limit.

6.7. Comparison of post-buckling response

In this section we compare the post-buckling response oesainthe cases shown in the previous
sections. Two plots are used to compare the post-bucklsapreses, first the change in load factor,
A, as a function of the expansion parameferand the load-end shortening responses. Jhe\
plots are given in Figur@3. This figure displays the interaction between the criticaiking load
factor and the post-buckling stability, as the curves ferlickling load maximized structure and
the post-buckling optimized structures cross in the poskling regime. The proposed methods
successfully provide structures which are more stableerpthst-buckling region compared to the
0° case and the buckling load maximized structure, Magxbecause of the larger post-buckling
curvature. Furthermore, optimized designs with similatical load factor display similar post-
buckling behavior regardless of the chosen buckling foatioth. The importance of a constraint
on the buckling load when maximizing tiefactor can be seen in the figure, since a low buckling
load causes the perturbation to be far into the post-bugkégime before it crosses a curve with a
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Figure 20. Optimization history for the Maxcase Figure 21. Optimization history for the Mak\.
in TablelV. The normalization factors used are the case in TabléV . The normalization factors used are
initial values, i.e., the results from the Max. the initial values, i.e., the results from the Max
case in TabléV. The initial decrease in the post- case in TabléV. The initial decrease in the post-
buckling factors is a consequence of the multiplebuckling factors is a consequence of the multiple
eigenvalues. eigenvalues. The drops at the later iterations are
caused by the second eigenvalue.
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Figure 22. Optimization history for the Max o case in Table/I. The initial b andbA. values are used
to normalize the corresponding curves. The critical bungklioad factor is used to normalize and \,.
Convergence of the optimization is observed after 58 fmat

larger buckling load. Since the\.-factor is used when determining the post-buckling loaddfiac
the unconstrainebl\. case displays the largest load factor in the far post-bogKleld.

The load-end shortening curves for the cases are shown urezd. The curves are obtained
by inserting the displacement fields, critical bucklingdpand Koiterb-factor into Equation&).
This plot reveals the drop in the inplane stiffness in the{bogkling regime. The Ocase displays
the highest resistance towards end shortening both at apdgost-buckling configuration, this is
as expected, as all the fibers are aligned in the loadingtdired-or the optimized structures the
pre-buckling stiffness decreases because the fiber anglebanged from Oand thus the stiffness
towards the load decreases. The relative decrease iressffpetween the pre- and post-buckling
response is lower for the post-buckling optimized strueduzompared to the’@nd buckling load
optimized structures. For example, the stiffness drop tierMaxb case is small, and at an end
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Figure 23. Post-buckling response for selectedrigure 24.Load-end shortening response for
cases, see Tablés-V| for legend meanings. Note selected cases, see Tabléd-VI for legend
that neither the interaction between the differentmeanings. The asterisk on each line gives the
buckling modes are taken into account nor possibléuckling point. The stiffness decreases in the
mode switching in the post-buckling configuration. post-buckling region for all optimizations.

shortening of 0.1 (4 the buckling end shortening) the difference in load factorthe buckled
configuration and an extrapolation of the pre-buckling oese is approximately 20%.

6.8. Comparison to geometrically non-linear analysis

To demonstrate the validity of the post-buckling analysid aptimization, the results are compared
to geometrically non-linear (GNL) finite element analys&ése GNL analyses are performed
using the approaches from 1] and branching to the secondary equilibrium curve is pentx
by assigning a small imperfection in the plate. For nearycases good correlation between the
analyses is observed. Figutg and Figure26 display the post-buckling responses for the Max
and Maxb cases. For the Mak\. case the out-of-plane displacement is accurately caphyride
Koiter analysis. The kink at a load factor of approximateB5L[kN] arises from mode switching in
the non-linear analysis. In the M&xcase, Figur&6, mode switching occurs at a load factor of 0.6
[kN]. This is not captured by the Koiter analysis, which isdant in the end shortening response
of the plate, where the softening caused by mode switchimptigpresent in the Koiter analysis.
Mode switching is not included into the perturbation, anastbannot be captured by the asymptotic
analysis, see Equatiod)( When mode switching occurs in the analysis, it is impdrtarevaluate
whether the load is above the design load. If mode switchouyis within the operational area, a
multi mode Koiter analysis should be applie].

Comparing the responses in Figi@®and Figure26to the response for the @ase in Figur&the
importance of selecting the correct post-buckling critésirealized. As demonstrated in Figre
the @ case provides the best stiffness against the end shortdnitiihe out-of-plane displacements
are larger for the Ocase compared to the Maand Maxb\. cases. Also a simple minimization
of the maximum out-of-plane displacement may not directlyrkwon the buckling phenomena
causing the large displacement, as the buckling problewtigirectly included into the optimization
problem.

7. CURVED PANEL

The second example is the curved panel given in FigureAll edges are restrained from

displacement in the x-direction. The load is applied as pldcement in z at one of the curved
edges and the other is restrained in the z-direction. Allesdgye free to rotate. The two center
nodes on the curved edges are constrained in the y-dirdcticneate a definite system matrix. The
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Figure 25. Comparison between the MaX.  Figure 26. Comparison between the Masase and
case and geometrically non-linear analysis, GNL.geometrically non-linear analysis, GNL. Displace-
Displacement refers to either the end shorteningment refers to either the end shortening, Max
Max b X and GNL x, or 1/100 of the normal and GNL x, or 1/100 of the normal deflection for
deflection for the center node in the buckle, Maxthe center node in the buckle, Max and GNL z.
bXc z and GNL z. The kink at a load factor of 1.55 At a load factor of 0.6 [kN] branch switching occur.
[kN] is caused by mode switching. This explains the deviation of inplane displacements
between the Koiter and GNL analyses.

R, u, coupled

Figure 27. Load and supports for the panel. Coupled defirsstth nodes along the edge are forced to have
the same z-displacement. The loRds applied as a displacement along the edge. 4h&z°-coordinate
system defines the element coordinate system.

dimensions of the panel are given in Tablé, and the material properties are the same as for the
plate, see Tabld. 400 quadratic shell elements provide a converged diget@in for the Koiter
analysis, and they are grouped into one patch. The panebt®n§8 layers of equal thickness, and
the orientations of each layer are used as design variables.

The curved panel displays an example which exhibits asymentaickling. From this we aim
to show how to design structures which exhibits asymmeirig () buckling. Additionally, this
example demonstrates the applicability of the proposedhodstand the limitations of the Koiter
analysis.
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Table VII. Dimensions and load for the curved panel.

Parameter Unit

Side length] [mm] 100
Width, w [mm] 100
Radius,r [mm] 1000
Thicknessy [mm] 1
Load,R [kN] 1.0

“« /)

R [KN]

Koiter x
Koiter z
—— GNL x
GNL z

0 1 1 1 1 1 T ]
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Displacement [mm]

Figure 28. Comparison between the Magase and geometrically non-linear analysis, GNL, for theed
panel. Displacement refers to either the end shorteningteiKk@a and GNL z, or -1/100 of the normal
deflection for the center node, Koiter x and GNL Xx.

7.1. Analysis of the panel

To demonstrate the behavior of the panel all fiber angles hmsen to be @ The post-
buckling responses are given in Fig@&for the Koiter analysis and GNL finite element analysis,
respectively. The pre-buckling response from the GNL fialtanent analysis is linear. Buckling is
predicted at 572 [kN]. This buckling load is distinct sinte tsecond buckling load is 1270 [kN].
The post-buckling response from Koiter analysis is asymmeith an inwards buckle resulting in
a decrease in the load. The stability is recovered at a l0&621kN]. The asymmetry in the post-
buckling response arises from the curvature of the panelebpment of the buckle in the positive
x-direction is affine with a stretching of the membrane angtine behavior is similar to a flat plate
which exhibits a stable post-buckling response. The samselpakling behavior is observed for
the GNL finite element analysis, and the Koiter analysisaxity captures the snap-through and the
following post-buckling response.

7.2. Optimization of the panel

During the optimization, the panel displayed a low senisjtitowards the settings of the optimizer.
Move limits of 1% are used for all examples, and the same aggewee criterion as for the plate has

o S A2 . : ,
been applied, i.e, ﬁ < 0.00001. The optimum design for thiefactor without any
S (60— 6,
=1 ? =1

constraints on the critical buckling load factor @factor is to have all layers oriented &t.0rhe
0° case represents one of the two baseline designs. The seaselthie design is the buckling load
maximized panel.

The results from the optimization are given in Tabllé . During the maximization of the critical
buckling load factor no multiple eigenvalues are observée.first and second buckling load factors
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Table VIII. Results for the optimization of the curved pan€lase defines the optimization problem

considered. Drepresents the baseline design wheretfactor is maximized. Max;. are the rounded fiber

angles from the optimum buckling load design. The subseffigtr || defines the buckling load constraint

whereas a superscript is thdactor constraint. The superscript after Méaxlefines the constraint on the

a-factor. The second column contains the critical buckliwad factors. The third and fourth columns are the
Koiter a andb-factors. The last columns are the orientations for eaclingiye laminate.

a b Layup
1072[] 1072[] 1

Case A [ ) 3 a 5 6 7 8
0° (Maxb) 571.6 3.146  1.434 00 00 00 00 00 00 00 00

Max A. 785.0 3.431 0244 -463 -47.0 460 57.8 929 022 449 -426
Max A7 7841 3369 0243 -450 -450 450 60.0 900 90.0 450 -45.0
Min |a 509.0 1.701  0.843 15 00 -15 -60 375 466 506 -51.8

Min |aleso  650.0 1.881 0.681 -148 16.8 69 -198 -37.3 -459 486 -52.4
Min |a|zo0  700.0 2.054 0.547 -25.1 242 108 -22.6 -384 -46.9 495 0-53.
Min |a|7s0  750.0 2.635 0.298 -40.0 -350 399 321 436 -528 519 -534

Min |al* 559.3 1.822 1.0 -0.7 0.7 1.8 28 119 446 498 524
Min |a|*!  562.3 1.955 11 -11 -0.5 0.1 0.5 03 259 456 499
Min |a|'?  572.2 2.176 1.2 -1.2 -0.9 -0.5 -0.1 0.3 06 345 46.1
Min |a|*®  581.5 2.535 13 -0.9 -0.8 -0.6 -0.4 -0.1 0.6 43 388

Max b*™ 5957 1.75 0.953 06 -02 -11 -26 119 445 495 -515
Max b'8°  598.0 1.85 1.041 -03 -06 -09 -14 -25 271 458 -494

Max b2 599.5 2.0 1.126 00 -02 -04 -07 -10 -28 419 -488
Max b2! 598.7 2.1 1.163 -02 -03 -05 -08 -13 -26 325 -46.3
Max b%2 596.9 2.2 1.196 -01 -03 -06 -09 -14 -30 254 -452
Max b%° 581.2 2.5 1.291 0.9 08 06 0.3 00 -06 -61 -41.3

are separated by 24% in the optimized design. As expecteda#jority of the layers are aligned at
approximatelyt-45°. Two layers are aligned at 90Rounding the fiber angles as shown in the table
provides a negligible decrease in the buckling load of 0.1%thus the slightly off-angled design
provides a better design compared to the rounded designp&meah to the ©design the buckling
load is increased by 37% whereas thactor is decreased by 83% and théactor is increased by
8%. Consequently, the buckling load is increased but thelpaskling performance is decreased.

7.3. Optimization of the asymmetric response

The panel exhibits asymmetric buckling, and thus the irpiiest-buckling response is unstable. The
asymmetry is caused by the non-zerfactor, and in order to obtain a more symmetric response
the a-factor should be as close to zero as possible. The optiloizatoblem solved is described
by Equations§0)-(64), and we will demonstrate the effect of constraining bo#wtifactor and the
critical buckling load, all results are presented in Tablg .

Minimizing the absolutez-factor without constraints on thiefactor nor the critical buckling
load factor is performed to demonstrate the capabilitieerwiminimizing the asymmetry in the
post-buckling response, Mia| in TableVIll . Figure29 displays the normal component of the pre-
buckling displacement fieldU. The normal displacements eliminate the initial curvatof¢he
panel by utilizing the bending-extension couplings in thaminate. This can be seen in the layup,
which consists of plies aligned at approximatetyfor the first four layers and at approximately
+45° for the remaining layers. The pre-buckling displacemeraiiseih the panel, and thus pushes
the buckling response towards the symmetric buckling oftgféde. The buckling load is increased
by 5% compared to the°Ocase, and thé-factor is decreased by 41%. However, théactor is
decreased by 46% and thus a more symmetric response isaxhtain

The critical buckling load factor is 31% lower for the optimized panel than for the buckling
load maximized panel. Hence a constraintQrcan be applied to increase the buckling load. The
effect of this constraint is demonstrated in the followifigree constraints on the critical buckling
load factor are used, and the constraint is assigned a valug-e {650,700, 750}. The optimum
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Figure 29. X-component of tH&U displacement field for the Mifu| case. The load is applied on the right
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Figure 30. Dependence of the constraint onthe  Figure 31. Dependence of theonstraint on the:-
andb-factors for the curved panel. factor and the critical buckling load for the curved
panel.

fiber angles from the buckling load optimization are usechisl angles to ensure a feasible design
in the first iteration. The results are given in Tabldl . Figure30 presents the andb-factors for the
optimized designs as a function of the critical bucklingda@mnstraint. As expected, thefactor
increases and thiefactor decreases as the critical buckling load increaseartls the maximum
attainable. This is a consequence of the design being pushedds the buckling load optimized
design in order to comply with the constraint on the buckliogd, and thus the andb-factors
approaches those from the buckling load optimized case.

Theb-factor is reduced by 41% for tHe| optimized case compared to the €ase. Constraining
theb-factor allows the curvature of the load factor to attain @aie minimum value. The minimum
bound on the-factor is in this case 0f0.01,0.011,0.012,0.013} to demonstrate the effect on the
optimuma-factor. The optimizations are initialized with all desigariables aligned at°Owhich
provides a feasible design in the initial iteration. Theimpim designs are given in Tabléll andin
Figure31. Thea-factor increases as the constraint onitHactor approaches that for thé @esign.
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Figure 32. Dependence of tlieconstraint on thé-factor for the curved panel.

This is as expected since more layers must be aligned cld¥eitoorder to satisfy the constraint.
The buckling load factor remains almost constant for thiedéht constraint values. Due to the fact
that the buckling loads for theandb-factor optimizations are close.

7.4. Optimization of the b-factor

Even though the initial post-buckling response is unstatg¢imization of the-factor can still be
important. Maximizing theb-factor ensure the structure is as stable as possible wheeith?-
term becomes dominant in the load factor expansion, seetiBgud). Only a-factor constrained
optimization is shown as the optimum design for the uncairstid case has been described, and the
effect of constraining the critical load factor behavesrathe previous example. Constraint values
ofa = {0.0175,0.0185,0.02,0.021, 0.022, 0.025} are chosen. The results for the different selections
of the constraint values are given in Tablgl with the initial angles being the ones for the Min)
case. As expected, when imposing constraints to have a momastric post-buckling response the
value for the)-factor decreases. The correlation betweeratbenstraint and the-factors is given in
Figure32. As the constraint ofi is increased i.e., more asymmetry is allowed tf@ctor increases
in a logarithmic manner. The critical buckling load factenrains almost constant throughout the
optimization as the buckling loads for the M&xand Min |a| cases are similar. As the constraint
on thea-factor increases the fiber angles approachewttich is expected since the design space
becomes larger. The layer orientations approacfrdn the first layer to the eighth layer as the
constraint is increased. Because of the geometry, the layytens give the largest contribution to the
membrane-bending coupling which minimizes thfactor.

From these studies, we observe that the Kaitéactor behaves in a similar manner asHactor
when constraints are applied to the optimization.

7.5. Comparison of post-buckling response

The post-buckling responses predicted by Koiter analysighie 0 (Max b), Min |a|, and MaxA\.
cases are given in FiguB3 and Figure34 for the center node and end shortening, respectively.
Furthermore, the geometrically non-linear responsestferMin |a| and Max ). cases are also
presented in the figures. Focus is initially given to the gstgtic responses, and afterwards the
geometrically non-linear responses.

The asymptotic responses display the expected behavithdalifferent optimizations. The Max
M. case has the highest buckling load factor, but loses tHaest# in the post-buckling regime. The
load factor drops to a value of 690 [kN] before stability igaimed. Note that for the asymptotic



POST-BUCKLING OPTIM. OF COMP. STRUCTURES USING KOITER'S MBEOD 31

1200 1200

1000 1000

800

R [KN]

400 400

[ —0
Min [a| . 200+ —— Min |a|
Max A Max A

GNL Min [a] GNL Min |a|
GNL Max /\c /’ GNL Max A

oLt ‘ ‘ ‘ ‘ s s s ‘ : ‘ 0 s ‘ ;
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2 0 0.05 0.1 0.15

—z [mm] End shortening [mm]

Figure 33. Negative out-of-plane displacement forFigure 34.Load-end shortening response for the
the center node.“Q Min |a|, and Max\. refer to  panel. G, Min |a|, and Max \. refer to Koiter
Koiter analysis. GNL Mina| and GNL Max)\. are  analysis. GNL Min|a| and GNL Max ). are the
the geometrically non-linear analyses with the layupgeometrically non-linear analyses with the layup
from Min |a| and Max)., respectively. Recall that from Min |a| and Max)., respectively. Recall that
the GNL analysis and Koiter analysis for thedase  the GNL analysis and Koiter analysis for thedase
are coincident, and thus the GNL case is not giverare coincident, and thus the GNL case is not given
in the figure. in the figure.

200+

responses, the load factors for theahd Min |a| cases are 33.8% and 8.4% higher at the out-of-
plane displacement where the Max case regains stability, 1.6 [mm], respectively. The Niih
case displays almost no decrease in the load when buckliogr,atwus shows that the proposed
method successfully minimizes the asymmetry in the bugkiesponse, and that the decrease in
load can be minimized by optimizing thefactor. The O case reveals that optimizing the Koiter
b-factor still makes sense even though the initial post-bagkesponse is unstable, as the structure
regains the stability at a lower displacement, and that the6plane displacements efficiently are
minimized.

When considering the geometrically non-linear resporeegll from Figure28 that the Koiter
analysis produced an accurate approximation of the geamakyrnon-linear response for the
0° case. For the Mina| and Max . cases only the initial part of the pre-buckling response for
the out-of-plane displacements in Figi&is accurately captured by the Koiter analysis. The
end shortening also deviates for the two analyses in thépekling response. The reason for the
divergence between the two analyses is that the membrardirgecoupling acts as an imperfection
for the bifurcation buckling when out-of-plane displacensaarise which cannot be captured by the
linear buckling analysis. Both geometrically non-lineaalyses reveal that the panel remains stable
throughout the analysis, and thus the snap-through pestlit the Koiter analysis is not present in
the geometrically non-linear response. Regardless, ttimized structures reveal some of the same
properties in the non-linear cases: the Ntihcase possesses more stiffness as the non-linearities
becomes more significant, whereas increasing the loadrfércion 650 to 700 for the buckling
load optimized case provides an increase in the out-ofeptisplacements of 400%. In conclusion,
Koiter analysis and design optimization successfully én#ie possibility of optimizing the post-
buckling response of the panel even though pre-bucklindimeerities are present. If the linear
buckling analysis does not provide a good estimate of thélimgcload and mode shape, it is
important to switch to non-linear buckling analysis. Ferthore, we observe that even though the
analysis is not completely accurate the design sensis/gtill provide the information needed to
optimize the post-buckling response.
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8. CONCLUSION

This work presents a novel method for post-buckling desigtingzation of laminated composite
structures. The proposed method is based on Koiter’s agfimptethod for post-buckling analysis.
The design sensitivities of the Koiter factors are deriveddemonstrate the use of Koiter’'s method
for optimum design two different objective functions basedtheb-factor and one based on the
a-factor are shown and compared. The objective functionsuaegl to limit development of the
post-buckling shape or to minimize the asymmetry in the sboskling response. Minimization
of the development of the post-buckling shape is importaamshape close to the initial unbuckled
shape is required, while the structure is operated in alpadtling configuration. This approach also
minimizes the risk of failure of laminates due to high sti@wvels in a post-buckling configuration.
Minimization of the asymmetry is important to minimize thecdease in load factor for the initial
post-buckling response.

For validation purposes, our approach is compared to doalyand geometrical non-linear
(GNL) analysis. From this, post-buckling optimization &riged out on a square plate and a curved
panel to demonstrate the capabilities of the proposed rdstfide two examples where the fiber
angles for a fixed thickness are optimized demonstrates dbsilplity of optimizing the post-
buckling response for both a symmetric and asymmetric pifibifurcation. These examples show
the effect of constraining either the critical load factqr, and the Koiter: andb-factors. The effect
of the constraints can be explained by considering maxitioizaf theb-factor while constraining
the critical load factor. If no constraint on the load faci®mpresent, thé-factor is maximized.
Increasing the load factor constraint towards that of thgimam buckling load causes a decrease
of theb-factor until that of the buckling load maximized case isctezd. The same effect is observed
when applying the different combinations of objectives aodstraints with respect tg., a, andb.

The importance of applying the correct post-buckling ojtation criterion is also revealed in
this work. Considering the out-of-plane displacements and shortening for plates and curved
panels we show that the optimum laminate configurations foimizing the two displacements are
different. This result is important as it requires the eegirto determine which of the two responses
is critical for the structure before conducting any postiding optimization.

The presented design sensitivity analysis is derived inreige sense, hence can be applied
to other parametrizations including layer thicknessescigite Material Optimization, lamination
parameters etc.
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