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Post-buckling optimization of composite structures usingKoiter’s
method

Søren R. Henrichsen1∗, Paul M. Weaver2, Esben Lindgaard1, and Erik Lund1

1Department of Mechanical and Manufacturing Engineering, Aalborg University (AAU), Fibigerstræde 16, 9220
Aalborg East, Denmark

2Advanced Composites Centre for Innovation and Science, Department of Aerospace Engineering, University of
Bristol, University Walk, Bristol, BS8 1TR, United Kingdom

SUMMARY

Thin-walled structures, when compressed, are prone to buckling. To fully utilize the capabilities of such
structures, the post-buckling response should be considered and optimized in the design process. This
work presents a novel method for gradient based design optimization of the post-buckling performance
of structures. The post-buckling analysis is based on Koiter’s asymptotic method. To perform gradient
based optimization, the design sensitivities of the Koiterfactors are derived and new design optimization
formulations based on the Koiter factors are presented. Theproposed optimization formulations are
demonstrated on a composite square plate and a curved panel where the post-buckling stability is optimized.

KEY WORDS: Asymptotic post-buckling; Composite structures; Composite optimization; Continuous
fiber angle optimization; Koiter’s method; Post-buckling optimization

1. INTRODUCTION

Thin-walled structures are often designed such that buckling does not occur during service. To
ensure a structure does not buckle, the specified buckling load is often much greater than the design
load. If a structure can be allowed to buckle during operation, thus operating in the post-buckling
regime, it enables the possibility to design lighter and more efficient structures. To enable such an
approach, the engineer must optimize the post-buckling response of the structure. Fiber reinforced
polymers are ideally suited for such design tasks, as these materials allow a high degree of tailoring
of the considered structure, and thus applied here for the post-buckling design optimization of
structures.

When optimizing structures, robustness of the resulting structure is of major importance, as
the imperfection sensitivity can increase during the optimization process [1]. One method is
to collect these into an equivalent geometric imperfectionand use that to evaluate the knock-
down in performance. Refs. [2, 3] demonstrate robust design optimization by combining ”worst”
shape imperfection optimization and laminate optimization, thereby efficiently decreasing the
imperfection sensitivity of laminated composite structures. A different approach is to handle all
imperfections simultaneously by modeling the uncertainties using statistics, therefore quantifying
the imperfections arising from material, geometry, load etc., and perform robust buckling
optimization based on the uncertainties, see e.g., [4] for a review of different approaches. Many
textbooks describe the coupling between imperfections, buckling load factor, and post-buckling
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stability, see e.g., [5]. Focusing on simple i.e., distinct buckling load factors,the sensitivity
towards imperfections relates to the stability of the post-buckling response. Generally speaking,
a stable post-buckled structure is less sensitive towards imperfections than an unstable post-buckled
structure. Because of these considerations, the post-buckling stability can be utilized to design robust
structures.

Post-buckling analysis of plates and shells has been subject to much research. Driven by the
aerospace industry, large research projects have been concerned with the post-buckling response
of stringer stiffened composite plate and shell structures. Refs. [6, 7, 8] present overviews and
recommendations for analysis and design of stringer stiffened panels. These kinds of structures are
used in the design of aerospace structures. Post-buckling analysis is computationally expensive, as
it involves non-linearities. Often a path following algorithm like the arc-length method is used to
trace the equilibrium curve [9, 10]. One powerful method to reduce the computational time is to
apply asymptotic methods. In asymptotic methods the non-linear problem is substituted by a series
of simpler problems, which are fast and easy to solve [11]. Furthermore, asymptotic methods extract
the essential properties of the considered problem [11]. For bifurcation buckling, these properties
relate to the type of buckling i.e., symmetric/asymmetric and the stability of the post-buckling
response. In asymptotic methods the response is assumed to develop in a self-similar manner, and
it cannot capture effects not included in the asymptotic expansion. Regardless, asymptotic methods
have demonstrated applicability for post-buckling analysis of structures.

The early work in asymptotic post-buckling analysis was conducted by Koiter, who developed
the so-called Koiter’s method [12]. The method was developed to explain the large discrepancies
between experiments and theoretical calculations observed in buckling of shell structures i.e., as a
tool to evaluate the imperfection sensitivity of structures based on an approximation of the initial
post-buckling response. Much research has been based on this method, and ref. [13] provides a
comprehensive review of asymptotic post-buckling analysis. The analytical methods developed in
[12] have been extended to multiple buckling modes and non-linear pre-buckling response, see
e.g., [14, 15]. The demand for analyzing general structures led to the useof the Finite Element
Method, and [16, 17, 18] have demonstrated Koiter’s method using frame and shell elements. Koiter
analysis with a geometrically non-linear pre-buckling response within a finite element framework
has been demonstrated with co-rotational shell elements in[19], and shell elements based on a
Total Lagrangian form in [20]. Recently, ref. [21] demonstrated Koiter analysis combined with the
Differential Quadrature Method.

Koiter’s method is only valid for a small post-buckling range. To extend the validity of the
asymptotic approximation refs. [22, 23] developed the so-called Asymptotic Numerical Method
(ANM). In ANM the Taylor like expansion from a Koiter analysis is post-processed by Padé
approximants, thereby increasing the precision of the asymptotic approximation.

Design optimization using asymptotic methods is a relatively unexplored area. Analytical models
combined with asymptotic expansions were implemented in the PANDA2 computer code and used
to design minimum weight stiffened panels [24]. Ref. [25] applied Koiter’s method to minimize the
axial end shortening strain at a fixed load level for variableangle tow plates by optimizing first the
lamination parameters and secondly search for a laminate with similar properties. Optimization of
the post-buckling path tangent angle for constant and variable angle composite cylindrical shells
is performed in [26] using genetic algorithms, where the potential of enhancing the post-buckling
stability of structures is demonstrated. In this work we present a novel and generic method for
post-buckling design optimization of laminated compositestructures. The optimization is based on
Koiter’s method, which is used to extract the essential properties of the post-buckling response.
Based on the information, we optimize the post-buckling stability of structures.

Continuous Fiber Angle Optimization (CFAO) is used for optimizing the post-buckling stability
of the considered structures, so the fiber angles are used as design variables in this work. CFAO
is known to result in non-convex design spaces with several local minima. Regardless, this
parametrization is used as the laminate parametrization isnot the focus of this work, and the
equations are derived in a general sense, thus they can be used with different parametrizations like
thickness variables, lamination parameters, Discrete Material Optimization etc.
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The remainder of the paper is organized as follows: Section2 presents different approaches for
defining a post-buckling criteria and the approach selectedin this work. In Section3 the equations
needed to conduct the asymptotic post-buckling analysis are presented. Section4 presents the design
sensitivity analysis for the asymptotic post-buckling response. The considered objective functions
are presented in Section5. Section6 and Section7 demonstrate the formulations through two
examples which are a square plate and a curved panel. Lastly the findings are summed in Section8.

2. POST-BUCKLING STABILITY CRITERIA

When considering the post-buckling response of standard structural elements such as beams, plates
and shells, loaded in compression, two different displacement fields are of primary interest; the
load-end shortening and the load-out-of-plane responses.A post-buckled design is not necessarily
optimum for both responses, as demonstrated in [27, 28] for infinitely long, simply supported plates
with symmetric and unsymmetric laminate layup and herein for finite dimension plates and panels
without imposing constraints on the laminate layup. Consequently, it is important to determine
which of the post-buckling responses is dominating the failure of the structure.

Defining post-buckling criteria based on the required inplane properties; compliance, end-
shortening, end-strain etc., can be used if the failure of the structure is governed by in-plane
properties. This has been demonstrated in e.g., [25] for buckling of plates. When optimizing the end
shortening properties, the structure is allowed to buckle and the buckled shape is allowed to develop,
but the effect of buckling on the inplane properties is minimized. Only the inplane response at the
end load is considered, thus these objectives do not consider how the buckles develop. Consequently,
a structure which does not possess any significant pre-buckling response can be designed. This is
demonstrated in [29], where the effect of applying a compliance criterion for beams which exhibit
snap-through behavior is shown. Here, the pre-buckling behavior of the structure is severely affected
and a structure which exhibits snap-through buckling at a low load level is obtained.

The second approach is to minimize the out-of-plane effectsin the post-buckling response. If
e.g., a stringer stiffened panel is considered, skin-buckling does not cause gross failure of the panel.
However, the buckled skin can induce a mode I crack opening between the skin and stringer and
hence trigger skin-stiffener separation. This failure mechanism has been observed for a wind turbine
blade, where failure of the blade was caused by skin bucklingand subsequent delamination between
the skin and main spar [30]. When minimizing the out-of-plane effects in the post-buckling response
the development of the post-buckled shape is associated with as large an increase in load as possible.

The second approach followed in this work defines the post-buckling stability as the resistance
towards development of buckles i.e., the more stable the structure the larger the load to cause a
given out-of-plane deflection is required. The post-buckling response is obtained using Koiter’s
asymptotic analysis. Here the post-buckling stability is determined by the Koiter factors, in the
remainder also called the Koitera- andb-factors or simply thea- andb-factors. These factors give
the change in the load factor in the post-buckling regime. The Koiter factors are global factors for
the structure and not related to the response of a single degree of freedom. Defining a global factor
ensures that the overall performance of the structure is optimized, and that change in the buckling
mode shape can be accounted for during the optimization.

3. ASYMPTOTIC POST-BUCKLING ANALYSIS

The equations needed in order to conduct the asymptotic post-buckling analysis are conveniently
derived using the Budiansky-Hutchinson notation. If the reader is not familiar with the Budiansky-
Hutchinson notation, we refer to e.g., [14, 31]. The strain is defined using a set ofl operators relating
the displacements to the strains, providing a compact notation throughout the derivation, and noting
that the symbols have different properties depending on theapplied theory, e.g., beam, plate, or shell
theory. In this work we focus on the continuum version. The non-linear strain relation represented
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in the Budiansky-Hutchinson notation is given by

ǫ = l1 (u) +
1

2
l2 (u) (1)

Hereǫ are the strains,u is the displacement field,l1 contains the linear part of the strains, andl2 the
non-linear part of the strains. In index notation, Equation(1) is equivalent to

ǫij =
1

2
(ui,j + uj,i)

︸ ︷︷ ︸

l1(u)

+
1

2
(uk,iuk,j)
︸ ︷︷ ︸

l2(u)

When clarification is necessary, we switch to index notation, and the tensors have the same definition
as the corresponding Budiansky-Hutchinson quantity. During the derivation a bilinear operatorl11
is needed, and it is given by

l2 (u+ v) = l2 (u) + 2l11 (u,v) + l2 (v)

l11 (u,v) =
1

2
(uk,ivk,j + uk,jvk,i)

(2)

Hereu andv represent two different displacement fields. Thel11 operator is used when varying the
total potential energy

δǫ = l1 (δu) + l11 (u, δu) (3)

3.1. Theory

To perform the asymptotic analysis we assume that a criticalbifurcation point has been determined,
and that the displacements and the load factor can be expanded into the post-buckling regime using
a Taylor-like representation

λ =λc + aλcξ + bλcξ
2 + cλcξ

3 + . . . (4)

u =0
u(λ) + 1

uξ + c
u = 0

u(λ) + 1
uξ + 2

uξ2 + 3
uξ3 + . . . (5)

ǫ =0
ǫ(λ) + 1

ǫξ + 2
ǫξ2 + 3

ǫξ3 + . . . (6)

σ =0
σ(λ) + 1

σξ + 2
σξ2 + 3

σξ3 + . . . (7)

Hereλ is the post-buckling load factor normalized with respect tothe applied load,λc is the critical
buckling load factor,a, b, andc are the first three Koiter factors which are non-dimensional, 0

u is
the pre-buckling displacement field,1

u through3
u are the post-buckling displacement fields, andξ

is the perturbation variable.0...3ǫ and0...3
σ are the expanded strains and stresses with0 being the

pre-buckling quantities. The expansions forλ, u, ǫ, andσ are assumed to be valid asymptotically
as ξ → 0. From Equation (4) some important properties of the post-buckling load factor can be
determined. The initial post-buckling load factor is dominated by theaλc part, since|ξn| ≪ |ξ| for
n ≥ 2. If aλc is non-zero then the initial post-buckling response is unstable, sinceξ can assume
both positive and negative values. On the other hand, ifaλc ≪ |ξ| for small |ξ| then the initial post-
buckling response is dominated by thebλc factor, and the stability of the system is governed by the
sign of theb-factor. A graphical interpretation is that thea-factor is the slope of the post-buckling
path and theb-factor is the curvature of the path in aξ − λ plot. The post-buckling displacement
field is represented by the1u displacement field and a correction displacement field,c

u, which is
orthogonal to1u. c

u is represented by the post-buckling displacement fields2
u, 3

u, . . . which are
orthogonal to1u, but not necessarily mutually orthogonal. The expanded strains are obtained by
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differentiating the expanded displacements as

ǫij =
1

2

(
0ui,j(λ) +

0uj,i(λ) +
0uk,i(λ)

0uk,j(λ)
)
+

1

2

(
1ui,j +

1uj,i +
1uk,i

1uk,jξ
)
ξ

+
1

2

(
2ui,j +

2uj,i +
2uk,i

2uk,jξ
2
)
ξ2 +

1

2

(
3ui,j +

3uj,i +
3uk,i

3uk,jξ
3
)
ξ3

+
1

2

(
0uk,i(λ)

1uk,j +
0uk,j(λ)

1uk,i

)
ξ +

1

2

(
0uk,i(λ)

2uk,j +
0uk,j(λ)

2uk,i

)
ξ2

+
1

2

(
0uk,i(λ)

3uk,j +
0uk,j(λ)

3uk,i +
1uk,i

2uk,j +
1uk,j

2uk,i

)
ξ3 + . . . (8)

=
1

2

(
0ui,j(λ) +

0uj,i(λ) +
0uk,i(λ)

0uk,j(λ)
)

+
1

2

(
1ui,j +

1uj,i +
0uk,i(λ)

1uk,j +
0uk,j(λ)

1uk,i

)
ξ

+
1

2

(
2ui,j +

2uj,i +
1uk,i

1uk,j +
0uk,i(λ)

2uk,j +
0uk,j(λ)

2uk,i

)
ξ2

+
1

2

(
3ui,j +

3uj,i +
0uk,i(λ)

3uk,j +
0uk,j(λ)

3uk,i +
1uk,i

2uk,j +
1uk,j

2uk,i

)
ξ3 + . . . (9)

and is equivalent to

ǫ =l1
(
0
u(λ)

)
+

1

2
l2
(
0
u(λ)

)
+
(
l1
(
1
u
)
+ l11

(
0
u(λ), 1u

))
ξ +

(

l1
(
2
u
)
+

1

2
l2
(
1
u
)
)

ξ2

+ l11
(
0
u(λ), 2u

)
ξ2 +

(
l1
(
3
u
)
+ l11

(
0
u(λ), 3u

)
+ l11

(
1
u, 2u

))
ξ3 + . . . (10)

By assuming linear pre-buckling0u(λ) ≡ λ0
u and 0

ǫ(λ) ≡ λ0
ǫ. Linear pre-buckling implies

that l2
(
0
u
)
= 0 because the operator contains the non-linear part of the strain. Additionally,

l11
(
0
u,v

)
= 0 for any displacement fieldv, because the pre-buckling strains are small, and any

product with these strains is much smaller than the remaining terms. From this, we can reduce
Equation (10) to

ǫ = λ l1
(
0
u
)

︸ ︷︷ ︸

0
ǫ

+ l1
(
1
u
)

︸ ︷︷ ︸

1
ǫ

ξ +

(

l1
(
2
u
)
+

1

2
l2
(
1
u
)
)

︸ ︷︷ ︸

2
ǫ

ξ2 +
(
l1
(
3
u
)
+ l11

(
1
u, 2u

))

︸ ︷︷ ︸

3
ǫ

ξ3 + . . . (11)

The strains are coupled to the stresses by a linear constitutive operator,H, given by Equation (12).

σ = H (ǫ) (12)

From this the stresses have the same form as the strains in Equation (11).
The principle of virtual displacements is used to derive theequations needed for the asymptotic

analysis. In tensor form the variational form of the total elastic potential is given by [31]

δΠ(ui) =

∫

V

σijδǫij dV −

∫

V

λBiδui dV −

∫

S

λF iδui dS −

nk

∑

k=1

λR
k

i δu
k
i

=

∫

V

σijδǫij dV −

∫

Ω

λT iδui dΩ = 0 (13)

HereBi, F i, andRi are the load distributions for body, surface, and discrete loads, respectively,
and they are collected inT i, whereΩ defines definite integration. Using the Budiansky-Hutchinson
notation the variation of the total potential energy is given by

δΠ(u) = σ · δǫ− λT · δu = 0 (14)

By comparing Equation (13) and Equation (14), the · operator is defined as multiplication and
definite integration. Equation (14) is valid in both a pre- and post-buckling configuration. To
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determine the Koitera- andb-factors, equations (4), (5), and (11) are inserted into Equation (14),
and the terms are collected in powers ofξ as

λc
0
σ · l1 (δu)− λcT · δu+

[
λc

0
σ · l11

(
1
u, δu

)
+ 1

σ · l1 (δu) + aλc

(
0
σ · l1 (δu)− T · δu

)]
ξ

+
[
λc

0
σ · l11

(
2
u, δu

)
+
(
aλc

0
σ + 1

σ
)
· l11

(
1
u, δu

)
+ 2

σ · l1 (δu) + bλc

(
0
σ · l1 (δu)− T · δu

)]
ξ2

+
[
λc

0
σ · l11

(
3
u, δu

)
+ 3

σ · l1 (δu) +
(
aλc

0
σ + 1

σ1

)
· l11

(
2
u, δu

)]
ξ3

+
[(
bλc

0
σ + 2

σ
)
· l11

(
1
u, δu

)
+ cλc

(
0
σ · l1 (δu)− T · δu

)]
ξ3 + · · · = 0 (15)

This equation is valid for any value ofξ, hence each coefficient must be zero. This defines four
problems providing all the data needed to perform the post-buckling analysis.

The zeroth order problem is the pre-buckling equilibrium equations, and is

0
σ · l1 (δu)− T · δu = 0 (16)

This term is present in all the higher order equations, see Equation (15), and can be removed from
the system of equations. Reducing the first order problem by the zeroth order problem, the first
post-buckling problem becomes

1
σ · l1 (δu) + λc

0
σ · l11

(
1
u, δu

)
= 0 (17)

This is a linear eigenvalue buckling problem, and1
u is the corresponding buckling mode shape. The

second order problem is used to obtain both the second post-buckling displacement field,2u, and
the Koitera-factor. The derivation of the2u displacement field and the Koitera-factor is reported
several places in literature, e.g., [13, 14, 16, 20, 31], hence only the end results are restated here as

2
σ · l1 (δu) + λc

0
σ · l11

(
2
u, δu

)
= −1

σ · l11
(
1
u, δu

)
(18)

This problem is equivalent to Equation (17) with a pseudo load vector, however it is singular. The
a-factor can be determined by

aλc = −
3

2

1
σ · l2

(
1
u
)

0σ · l2 (1u)
(19)

As previously mentioneda is zero for symmetric buckling, and if it is non-zero the buckling is
asymmetric. The last step is to determine theb-factor. Theb factor can be determined from the third
order problem.

bλc = −
2
σ · l2

(
1
u
)
+ 21σ1 · l11

(
1
u, 2u

)

0σ · l2 (1u)
(20)

Based on this the equations for conducting asymptotic post-buckling analysis assuming linear pre-
buckling displacements have been derived.

3.2. Asymptotic post-buckling analysis in Finite Element form

To determine the governing equations needed in Finite Element Analysis, the Budiansky-
Hutchinson operators are translated. Only Equations (16)-(20) are needed to perform the analysis.
In the remainder of the paperkU refer to the global nodal displacement vectors for displacement
field k. Equation (16) is the linear static problem, and in Finite Element form is

K0
0U = R (21)

HereK0 is the linear stiffness matrix,0U is the pre-buckling displacement vector, andR is the
reference load vector. Equation (22) is the linear buckling problem given in Finite Element formas

(
K0 + λjK

0
σ

)
Φj = 0, j = 1, 2, . . . (22)

HereK0
σ is the global stress stiffness matrix where the superscriptrefer to the stress field used to

calculate the stress stiffness matrix,Φj is the eigenvector corresponding to buckling load factor
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λj . The eigenvalues are assumed to be ordered withλ1 = λc < λ2 ≤ λ3 . . . ≤ λn and we define
1U ≡ Φ1. The first post-buckling problem Equation (18) is in Finite Element form given as

(
K0 + λcK

0
σ

)
2U = Q (23)

The left hand side of Equation (23) is similar to Equation (22), hence is singular. The right hand
side vectorQ is the pseudo load vector given by Equation (24), and it is used to determine the
post-buckling displacements2U,

Q = −

(

K1
σ +

1

2
K0L

)

1U (24)

HereK1
σ is calculated in the same manner asK0

σ with the difference being that the1σ-stress field
is used instead of the0σ-stress field.K0L is an unsymmetric stiffness matrix which couples the
non-linearl2 operator to the linearl1 operator, and is

K0L = K0L

(
1U
)
=

ne

∑

e=1

∫

Ve

BT
0 EBL

(
1Ue

)
dV (25)

Here superscripte refers to an element quantity and the summation over all elements involves
assembly to global level,B0 is the linear strain displacement matrix,E is the constitutive matrix,
BL

(
1Ue

)
is the nonlinear strain-displacement matrix constructed using the buckling mode shape,

Ve is the volume of the element, andne is the number of finite elements. The singularity from
Equation (23) is removed by imposing the orthogonality condition:L = K0

1U using a perturbed
Lagrangian method.

[
K0 + λcK

0
σ L

LT −ε

]{
2U

µ

}

=

{
Q

0

}

(26)

Hereε is the penalty factor. Through numerical studies, different choices of penalty factor did not
show any effect on the analysis results, thusε = 1 in this work.µ is the Lagrange multiplier. The
orthogonality condition does not alter the skyline of the original matrix, hence the sparseness of the
system matrix is unaltered. The displacement field is neededto calculate the Koitera- andb-factors.
Thea-factor is given by

aλc = −
3

2

ne

∑

e=1

∫

Ve
σ

T
1 BL

(
1Ue

)
dV 1Ue

∫

Ve
σ

T
0 BL (1Ue) dV 1Ue

= −
3

2

1U
T
K0L

1U

0U
T
K0L

1U
= −

3NA
(
1U
)

2D (0U, 1U)
(27)

NA is the numerator for theaλc-factor, andD is the denominator for all Koiter factors. Finally, the
b-factor is given by

bλc = −

ne

∑

e=1

∫

Ve
σ

T
2 BL

(
1Ue

)
dV 1Ue + 2

∫

Ve
σ

T
1 BL

(
1Ue

)
dV 2Ue

∫

Ve
σ

T
0 BL (1Ue) dV 1Ue

= −
2U

T
K0L

1U+ 1
2
1U

T
KLL

1U+ 21U
T
K0L

2U

D
= −

NB
(
1U, 2U

)

D (0U, 1U)
(28)

HereNB is the numerator for thebλc-factor andKLL is a symmetric stiffness matrix relating the
l2-operator to thel2-operator, and it is given by

KLL = KLL

(
1U
)
=

ne

∑

e=1

∫

Ve

(
BL

(
1Ue

))T
EBL

(
1Ue

)
dV (29)

The Koiter factors and sensitivities hereof are efficientlycalculated by a summation of element
contributions, hence the globalK0L andKLL matrices should not be used, and they are only shown
here for completeness.
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4. DESIGN SENSITIVITY ANALYSIS FOR ASYMPTOTIC POST-BUCKLING

The objective of this work is to maximize the post-buckling stability of laminated composite
structures by gradient-based optimization techniques. Toperform design optimization of the post-
buckling response, the design sensitivities of the Koiter factors,a andb, and the critical buckling
load factorλc are needed. The direct differentiation method is used to derive the design sensitivities.

4.1. Sensitivity analysis of the pre-buckling displacement field

The linear pre-buckling displacements are used to calculate both Koiter factors and the critical
buckling load factor, hence the sensitivities of the pre-buckling displacement field,0U, with
respect to a set of generalized design variablesxi are needed. The sensitivities are determined by
differentiation of Equation (21). Assuming design independent loads the sensitivities of the load
vector are zero.

K0
d0U

dxi

= −
dK0

dxi

0U+
dR

dxi
︸︷︷︸

≡0

(30)

The already factored stiffness matrixK0 can be reused for the calculation of the pre-buckling
displacement sensitivities, thereby enhancing computational efficiency.

4.2. Sensitivity analysis of (simple) buckling load factors

The sensitivities of the pre-buckling displacement field are employed in the calculation of the
design sensitivities of the buckling load factors. In this work only simple i.e., distinct buckling
load factors are considered. The buckling load factor sensitivities are calculated by differentiating
Equation (22), pre-multiplying byΦj , rearranging the equations, and assuming that the eigenvectors
areK0

σ-orthonormalized.
dλj

dxi

= ΦT
j

(
dK0

dxi

+ λj

dK0
σ

dxi

)

Φj (31)

Please note that
dK0

σ

dxi

is a function of the displacements, hence is dependent on allelements.

Equation (31) is solved using semi-analytic design sensitivity analysis, this approach also facilitates
easy implementation of different design variables [32]. It is important to note that the stress stiffness
matrix is a function of both the design variables and the pre-buckling displacement field, hence
K0

σ = K0
σ

(
xi,

0U (xi)
)
. The sensitivities ofK0 andK0

σ are calculated using central differences at
the element level [32, 33].

dKe
0

dxi

=
Ke

0 (xi +∆xi)−Ke
0 (xi −∆xi)

2∆xi

(32)

dK0,e
σ

dxi

=
K0,e

σ

(
xi +∆xi,

0Ue +∆0Ue
)
−K0,e

σ

(
xi −∆xi,

0Ue −∆0Ue
)

2∆xi

(33)

The change in element displacements∆0Ue is approximated using a first order Taylor expansion

∆0Ue ≈
d0Ue

dxi

∆xi

The first order Taylor expansion is also used when the changesin the displacement fields∆1U and
∆2U are calculated.

4.3. Sensitivity analysis of (simple) eigenvectors

The sensitivities of a simple eigenvectorΦj cannot be determined by differentiation of Equation (22)
because the system matrix is singular with a rank deficiency of 1. Instead Nelson’s method [34] is
applied to calculate the sensitivities. The principle in Nelson’s method is to rescale the eigenvector
and remove the singularity. The sensitivities of the original eigenvector are determined based on the
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sensitivity of the scaled eigenvector. The scaled eigenvectorWj is determined by

Wj =
1

q
Φj (34)

Hereq is chosen such that

max
l

∣
∣W l

j

∣
∣ = Wm

j = 1, l = 1, . . . , nDoF

The entry with the maximum absolute value for eigenvectorj is referred to asm and the component
Wm

j . nDoF is the number of degrees of freedom in the model. Recall from Section4.2 thatΦj is
K0

σ-orthonormalized, and by differentiation

ΦT
j

(
−K0

σ

) dΦj

dxi

= −
1

2
ΦT

j

d
(
−K0

σ

)

dxi

Φj (35)

To eliminate
dΦj

dxi

from Equation (35) Equation (34) is differentiated.

dΦj

dxi

=
dq

dxi

Wj + q
dWj

dxi

(36)

It is important to note that
dq

dxi

6= 0 in the general case since a change inK0
σ affects theK0

σ-

orthonormalization, hence the scaling required betweenΦj andWj . To calculate
dq

dxi

Equation (36)

is substituted into Equation (35), and
dΦj

dxi

is eliminated.

dq

dxi

= −q2ΦT
j

(
−K0

σ

) dWj

dxi

−
q

2
ΦT

j

d
(
−K0

σ

)

dxi

Φj (37)

The unknown quantities are the rescaled eigenvector sensitivities
dWj

dxi

. To obtain these,Wj is

substituted into Equation (22), and the resulting expression is differentiated to become

(
K0 + λcK

0
σ

) dWj

dxi

= −Ru1 (38)

where the right hand side vectorRu1 is given as

Ru1 =

(
dK0

dxi

+ λc

dKσ

dxi

+
dλc

dxi

Kσ

)

Wj

This system is still singular. In order to remove the singularity the normalization condition ofWj

is differentiated
dWm

j

dxi

= 0 (39)

This result is substituted into Equation (38) by changing the appropriate entries inK0, K0
σ, and

Ru1, i.e.,

K0(m, k) = K0
σ(m, k) = K0(k,m) = K0

σ(k,m) = 0,
K0(m,m) = 1, Ru1(m) = 0,

k = 1, . . . , nDoF , k 6= m

The new system matrix and pseudo load-vector are calledK0,r andRr
u1, respectively. This system

of equations is not singular, and can be solved directly

K0,r dWj

dxi

= −Rr
u1 (40)

When the sensitivities ofWj are obtained using Equation (40) these are substituted into

Equation (37) and Equation (36). From this the eigenvector sensitivities
dΦj

dxi

are obtained. For

j = 1 the sensitivities of the1U displacement field are obtained.
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4.4. Sensitivity analysis of the post-buckling displacement field

The sensitivities of the post-buckling displacement field
d2U

dxi

are used when determining the

sensitivities of the Koiterb-factor. The post-buckling displacement field sensitivities are obtained
in a similar manner as the pre-buckling displacement field sensitivities. Assuming that the buckling
load and buckling mode shape sensitivities are known, the sensitivities of the2U displacement field
are obtained by differentiation of the extended system of equations, Equation (26)

[
K0 + λcK

0
σ L

LT −ε

]







d2U

dxi
dµ

dxi







= −







(
dK0

dxi

+
dλc

dxi

K0
σ + λc

dK0
σ

dxi

)

2U−
dQ

dxi

dLT

dxi

2U







(41)

The derivative
dQ

dxi

is non-zero, and it is given as

dQ

dxi

= −

(
dK1

σ

dxi

+
1

2

dK0L

dxi

)

1U−

(

K1
σ +

1

2
K0L

)
d1U

dxi

Furthermore the sensitivities of theL vector are given as

dL

dxi

=
dK0

dxi

1U+K0
d1U

dxi

The extended system of equations in Equation (41) is not singular, and the post-buckling sensitivities
are obtained by back-substitution.

4.5. Sensitivity analysis of Koiter a-factor

The sensitivity of Equation (27) yields the change in asymmetry of the post-buckling response, and
are determined by

d(aλc)

dxi

= −
3

2

dNA

dxi

D −NA dD

dxi

D2
(42)

The sensitivities ofNA andD are given in Equation (43) and (44), respectively, as

dNA

dxi

=

(

1U
T dK0L

dxi

+
d1U

T

dxi

(
K0L +KT

0L

)

)

1U (43)

The sensitivities ofK0L are obtained by central differences in the same manner as Equation (33).
The sensitivities ofD are determined in the same manner asNA

dD

dxi

= 0U
T dK0L

dxi

1U+
d0U

T

dxi

K0L
1U+ 0U

T
K0L

d1U

dxi

(44)

The sensitivities of thea-factor are obtained by expanding the left hand side of Equation (42) and

isolating
da

dxi

da

dxi

=

d(aλc)

dxi

− a
dλc

dxi

λc

(45)

The sensitivities are efficiently calculated by a summationon the element level.
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4.6. Sensitivity analysis of Koiter b-factor

The sensitivities of the Koiterb-factor are calculated in the same manner as thea-factor, see
Equation (42) and (45), and they are

d(bλc)

dxi

= −

dNB

dxi

D −NB dD

dxi

D2
(46)

db

dxi

=

d(bλc)

dxi

− b
dλc

dxi

λc

(47)

The sensitivities ofNB are the only unknown quantities, and are

dNB

dxi

=

(

2U
T

(
dK0L

dxi

+ 2
dKT

0L

dxi

)

+
1

2
1U

T dKLL

dxi

)

1U+
d2U

T

dxi

(
K0L + 2KT

0L

)
1U

+
(
2U

T (
K0L + 2KT

0L

)
+ 1U

T
KLL

) d1U

dxi

(48)

dKLL

dxi

is calculated in the same manner as
dK0L

dxi

. All the derived expressions have been validated

using finite difference approximations.

5. ASYMPTOTIC POST-BUCKLING OBJECTIVE FUNCTIONS

The Koiter factors are used to optimize the initial post-buckling response of all structures
considered.

When the bifurcation is symmetrica = 0 and the initial post-buckling response is governed by
the Koiterb-factor. To maximize the post-buckling stability we consider maximization of the Koiter
b-factor. This formulation is

Objective: max
xi

b (49)

Subject to: x ≤ xi ≤ x ∀i (50)

|a| ≤ a (51)

λc ≥ λ1 (52)

λj ≥ λ2 j = 2, 3, . . . (53)
(
K0 + λjK

0
σ

)
Φj = 0 (54)

This formulation only considers the post-buckling curvature factor i.e., the Koiterb-factor, in the
objective as this factor defines the post-buckling stability. Equation (50) prescribes the bounds
on the design variables, which in the case of CFAO should be selected such that these are not
reached in the optimization process. We have chosen the bounds to be the initial angle±180.9◦.
These bounds are only used when calculating the move limits in the optimization. If asymmetric
buckling is encountered a constraint on the maximuma-factor can be applied, see Equation (51).
In Equation (52) a constraint on the critical buckling load factor can be applied to ensure that
the structure does not buckle at a low load, the lowest acceptable buckling load factorλ1 can be
determined as a fraction of the optimum buckling load factorfrom a buckling load maximization
procedure. To avoid that the critical buckling load factor is multiple, Equation (53) is used. In the
equation,λ2 is the minimum acceptable value of the buckling load factorslarger than the critical
one. The buckling problem in Equation (54) is not included directly into the optimization, but is
solved explicitly prior to the solution of the optimizationproblem, hence a nested approach is used
in this work.
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An alternative approach is to maximize thebλc product, as the product is present in the expansion
of the load factor. This formulation is

Objective: max
xi

bλc (55)

Subject to: x ≤ xi ≤ x ∀i (56)

|a| ≤ a (57)

λj ≥ λ2 j = 2, 3, . . . (58)
(
K0 + λjK

0
σ

)
Φj = 0 (59)

In this formulation, the critical buckling load factor,λc, is implicitly maximized in the objective
function, see Equation (55), hence a constraint on the critical buckling load factor isnot applied. The
remainder of the constraints are the same as the constraintsin Equations (50)-(54). The difference
between the two formulations is whether the critical buckling load factor is considered in the
objective or not, and thus whether only the post-buckling curvature factor or a trade-off between
the curvature factor and the critical buckling load factor should be considered.

When an asymmetric post-buckling response is present the Koiter a-factor is non-zero.
Consequently the initial post-buckling response is unstable. In order to minimize the asymmetry
the a-factor should be as close to zero as possible. Here, we minimize the absolute value of the
a-factor given by Equations (60)-(64).

Objective: min
xi

|a| (60)

Subject to: x ≤ xi ≤ x ∀i (61)

b ≥ b (62)

λc ≥ λ1 (63)
(
K0 + λjK

0
σ

)
Φj = 0 (64)

The absolute value of thea-factor is considered in Equation (60). This is done because a negative
a-factor still provides an asymmetric response, since the perturbation factorξ in Equation (4) can
be assigned with the opposite sign. This objective functionis non-differentiable at|a| = 0, but the
chance of reaching zero is negligibly small, and compared tousing e.g.,a2 as objective,|a| yields
a better scaling of the optimization problem when|a| < 1, and thus should show better precision.
Minimizing the absolutea-factor can affect the post-buckling curvature, and thus Equation (62) can
be applied to constrain the Koiterb-factor, thereby securing a minimum post-buckling curvature.

Lastly, we also consider maximization of the critical buckling load factor. This optimization
is used to gain a benchmark on the performance of the considered structures. The optimization
problem is formulated using a bound formulation to ensure continuous derivatives [35, 36]

Objective: max
xi,β

β (65)

Subject to: β − λj ≤ 0 ∀j (66)

x ≤ xi ≤ x ∀i (67)
(
K0 + λjK

0
σ

)
Φj = 0 (68)

In Equation (65) and (66) β is the bound variable. Applications of the optimization formulations are
demonstrated in the following sections.

6. SIMPLY SUPPORTED SQUARE PLATE

The first example is the square plate shown in Figure1 with dimensions and load given in TableI.
The plate is simply supported along all four edges. The load is applied as a displacement along edge
1 to ensure that the edge remains straight under loading. Thethree remaining edges are forced
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=
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4 uz = uy = 0

Figure 1. Load and supports for square plate. Coupled definesa side where the edge is forced straight but
free to expand and contract. The loadR is applied as a displacement along the edge. The encircled numbers

refer to the edge number.

Table I. Dimensions and load for the square plate.

Parameter Unit

Side length,l [m] 1.0
Thickness,t [m] 0.002
Load,R [kN] 1.0

Table II. Material properties for the glass fiber
reinforced polymer used in the plate.

Parameter Unit

Ex [GPa] 30.6
Ey [GPa] 8.7
Gxy ,Gxz [GPa] 3.24
Gyz [GPa] 2.9
νxy [-] 0.29

straight by restraining the normal displacement on edges 3 and 4, and by coupling the normal
displacement along edge 2, such thatuy is free to expand and contract, but the displacements remain
the same, see Figure1. As a consequence, the plate is free to expand and contract inthe y-direction.
The material used for the plate is a glass fiber reinforced polymer with material properties given
in TableII . The plate is modeled using 400 9-noded shell elements basedon a first order shear
deformation theory. This mesh provides a converged solution with respect to displacements, stresses,
and Koiter factors. The mesh is also sufficient to represent the more complicated stress fields from
the optimized structures. No special measures were taken toavoid locking of the isoparametric shell
finite elements used. This problem is circumvented by havinga sufficiently fine mesh which has
been verified by mesh refinement studies. The elements are grouped into 10× 10 patches i.e., four
elements per patch. Within a patch, the elements are forced to have the same fiber orientation. No
restrictions on the fiber angles between the patches are enforced.

The fiber anglesθ are used as design variables for the optimizations, and the convergence criterion

is chosen to be

√
√
√
√

∑ne

i=1 ∆θ2i
∑ne

i=1

(
θi − θi

)2 < 0.00001 or the optimization is stopped after a maximum

of 200 design iteration steps. The method of moving asymptotes (MMA) from [37] is chosen as
optimizer. All numerical results are generated using the in-house finite element based analysis and
design optimization code MUST (the MUltidisciplinary Synthesis Tool) [38].

6.1. Analysis of the plate

To validate the code, and obtain further insight into the problem, a series of analyses are carried out
prior to conducting the post-buckling optimization.
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Figure 2. Normalized load-end shortening response
for the analytical model given in Eqs. (69) and the
implementation of Koiter’s method using the Finite
Element Method. All fiber angles are equal to 0◦ in

the comparison.
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angles equal to 0◦. Displacement refers to either the
end shortening, Koiter x and GNL x, or 1/100 of the
normal deflection for the center node, Koiter z and
GNL z. The load has been normalized with respect

to the critical buckling load factor.

Analytical results exist for the load-end shortening of thesquare plate for orthotropic materials.
Ref. [21] generalizes the results from [39] by removing the constraint on the post-buckling mode
shape, and obtained Equation (69) for the load-end shortening response of the structure

Rλc =
π2t3

12l2xl
3
ym

2(αν2
yx)

(
Exα

2l4xn
4 + Exαl

4
ym

4 +
{
2Exανyx + 4Gxy

[
α− ν2yx

]}
l2xl

2
ym

2n2
)

Rbλc =
Exπ

2t(αl4xn4+l4ym
4)

16l2xl
3
ym

2 , u0

R
= − lx

tExly
, u2 = − lx

8

{
mπ
lx

}2

(69)
wherelx and ly are the plate side lengths in the x and y directions, respectively. m andn are the
number of half waves in the plate,α is the ratio betweenEy andEx, andνyx is the minor Poisson’s
ratio. In Figure2 a comparison between the analytic results and the numericalmethod is shown.
Good correlation between the models is observed.

Figure3 compares the Koiter analysis to a geometrically non-linear(GNL) analysis. This study
gives an estimate of the range of validity for the Koiter analysis. It is immediately observed that the
out-of-plane displacement is better approximated than theend shortening. This result is as expected,
because the in-plane displacements in the small deflection plate theory are given by the derivative
of the out-of-plane displacements plus the in-plane displacements from the load. Because of that,
the error in out-of-plane displacements in the Koiter analysis accumulates in the end shortening
curve. Additionally, the Koiter analysis does not capture the softening behavior of the GNL analysis
in the post-buckling region. This limitation is caused by the small number of terms included in
the expansion, and the precision increases when additionalterms are included, as demonstrated in
e.g., [22]. Even though only the two first expansion parameters are included in the analysis, the
error in displacements for the Koiter analysis is within 5% of the non-linear solution at a load
factor of approximately 6.5λc and 2.2λc for the out-of-plane and end shortening displacements,
respectively. The buckling mode shape is shown in Figure4 and the x-component of the post-
buckling mode shape in Figure5. The post-buckling displacement field is a bi-axial contraction
with the y-component identical to a rotation of 90◦ of the x-component.

To generate a qualitative overview of the response of the plate, surface plots of the critical
buckling load factorλc and the Koiterb-factor are shown. These plots are generated using two
patches, i.e., one for the elements with a negative y-coordinate,θ1, and one design variable for the
elements with a positive y-coordinate,θ2. A Koiter analysis is conducted for all angles between
±90◦ with an interval of 5◦. The surfaces are shown in Figures6 and7 for λc andb, respectively.
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Figure 4. Z-component of the buckling mode shape,
1
U, for the plate with all fiber angles aligned at 0◦.
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Figure 5. X-component of the post-buckling mode
shape,2U, for the plate with all fibers aligned
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Figure 6. Surface plot of the critical buckling load factor,λc, as a function of the fiber anglesθ1 andθ2.
Two weak global maxima are present i.e.,θ1 = −θ2 = ±45

◦, furthermore two local maxima are located at
θ1 = θ2 = ±45

◦. Nine minima are present with the global minima being any combination between 0◦ and
±90◦. Local minima are present atθ1 = θ2 = 0

◦, θ1 = θ2 = ±90
◦, andθ1 = −θ2 = ±90

◦. Left isometric
view, right top view.

It can be realized from the figures that the optimizations arenon-convex with several local maxima,
and that the global optimum is multiple in the case of two design variables. Furthermore, having two
design variables then the maxima for one function corresponds to minima for the other function.
Note that a global maximum in one function is not necessarilyaffine with a global minimum in the
other function. A lower buckling load for the optimized structure is to be expected when optimizing
the post-buckling stability compared to maximizing the buckling load.
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6.2. Buckling load optimization

The single layered clamped square plate is chosen as the firstexample to demonstrate the capabilities
of the proposed method. This example is simple, yet it demonstrates the differences between the
different formulations.

Initially buckling load maximization is carried out. From this the upper bound on the buckling
load is obtained, in order to have a baseline for comparing the results from the Koiter optimization.
Furthermore, the maximum buckling load is used to formulatethe constraints in Equations (52),
(53), and (58). The optimum move-limit strategy and initial fiber angles for the buckling load
maximization were determined by testing the 12 combinations of initial move limits (1%, 5%,
and 10%) and initial fiber angles (0◦, -45◦, 45◦, and 90◦). The optimum combination of move-
limit and initial angle was found to be 5% move-limits and an initial angle of 0◦ with an optimum
buckling load factorλc = 0.8241 [-]. The optimum fiber angles are shown in Figure8. The layup is
symmetric around both the x- and y-axis even though no symmetry constraints have been applied in
the optimization. The fiber angles are aligned close to either 0◦, ±45◦, or 90◦ with a±45◦ majority.
The 0◦ patches are located along edge 2 and 4, and the 90◦ patches around the y-axis. The remainder
of the structure consists of±45◦ patches which is in good agreement with the general theory for
buckling of orthotropic plates stating that the optimum fiber angle for a single patch plate with the
given boundary conditions is 45◦. The two lowest buckling loads are located within 0.1%, and thus
care must be taken to avoid multiple buckling loads during the post-buckling optimization.

6.3. Post-buckling optimization

Both post-buckling formulations with and without bucklingload constraints are demonstrated for
the plate. For both optimizations it is generally observed that using the optimum fiber angles from
the buckling load maximization provides a good initial start guess for the post-buckling optimization
compared to using initial fiber angles aligned at 0◦,±45◦, or 90◦. Initially the post-buckling stability
is optimized without considering constraints on the buckling load factors.

Optimizing the post-buckling stability results in a decreased buckling load for most structures
compared to the maximum attainable value as demonstrated inFigure6 and7. Furthermore, since
the optimization problem is non-convex, different initialangles result in different optima. This is
demonstrated in TableIII where a maximization of the Koiterb-factor is conducted. Differences
in both the critical buckling load factor and theb-factor are present. For this specific set of initial
angles, a larger critical buckling load factor also result in an increasedb-factor. This is not a general
tendency, but rather a consequence of the choice of initial angle. In Figure6 and Figure7 it is
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Figure 8. Optimum fiber angles for buckling load maximization of the single layer square plate. The settings
used to obtain this result are 5% move-limits and an initial angle of 0◦.

Table III. Optimization results for maximizing theb-factor for the square plate with different initial angles
and no buckling load constraint. The first column defines the initial angles, whereλc corresponds to the
initial angles given by the buckling load maximization, seeFigure8. The second and third columns are the
first,λc, and second,λ2, buckling loads, respectively. The fourth column is the Koiter b-factor, and the fifth
column is thebλc-product. The second to fifth columns are the same throughoutthe plate example. All
results are obtained using move-limits of 10%. Choosing move-limits of 1% and 5% yield results close to

the ones presented in this table.

Initial angle λc [-] λ2 [-] b [-] bλc [-]

0◦ 0.3632 0.8666 0.06910 0.02510
-45◦ / 45◦ 0.4807 0.7299 0.07645 0.03675
90◦ 0.3154 0.4930 0.05913 0.01865
Frommaxλc 0.5759 0.6277 0.07902 0.04551

observed that a global maxima in one of the functions can be affine with a local minima in the other
which explains the obtained results. This example demonstrates the complicated response surface
for the optimization.

The largest objective function values for the unconstrained optimizations were obtained with fiber
angles from Figure8 and move-limits of 10%. The results are given in TableIV. 0◦ is the optimum
fiber angle with respect to post-buckling stiffness if a single fiber angle is selected, and together
with the buckling load maximized design, Maxλc, provide the baseline designs. Maxb and Max
bλc are the unconstrained optimized designs for the optimization problems given by Equations (49)-
(54) and Equations (55)-(59), respectively. The buckling loads are decreased by 30% and15% for
the two cases compared to the buckling optimized structure,respectively. Furthermore, the effect
of the post-buckling optimization can be assessed by comparing the Koiterb-factor and thebλc-
factor to the 0◦ case. The optimization results in an increase in theb-factor by 55% and 40% and
thebλc-factor by 133% and 155% for the two optimizations, respectively. The difference between
the two optimization formulations is also evident from thisoptimization. The Koiterb-factor is
naturally larger for the first optimization formulation, whereas thebλc-factor is larger for the second
optimization formulation. This is an important result as itshows that the two design spaces are not
the same, and thus the choice of post-buckling optimizationformulation affects the final result, even
though the two formulations are closely related.

Figure9 is used to explain the general tendencies observed in the post-buckling optimized
designs. The bottom and top row of patches have an orientation close to 0◦. In the pre-buckling state
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Table IV. Optimization results for the square plate withoutbuckling load constraints and initial angles given
by Figure8. 0◦ represents the plate with all fiber angles aligned at 0◦. Maxλc is the buckling load maximized
plate, optimization problem given by Equations (65)-(68), Max b is the plate with maximized Koiterb-factor,
optimization problem given by Equations (49)-(54), and lastly Maxbλc represents the plate with maximized

Koiter bλc-factor, optimization problem given by Equations (55)-(59).

Case λc [-] λ2 [-] b [-] bλc [-]

0◦ 0.3846 0.9651 0.05109 0.01965
Max λc 0.8241 0.8249 0.03861 0.03182
Max b 0.5759 0.6277 0.07902 0.04551
Max bλc 0.7025 0.7032 0.07135 0.05012
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4

Figure 9. Optimum fiber angles for the Maxb case
for the square plate. The settings used to obtain this
result are 10% move-limits and the initial angles

from Figure8.
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Figure 10. Modified fiber angles for the Maxb case
in Figure9. These fiber angles gives a marginal

increase in theb-factor of 0.3%.

these patches transfer the load to the supported edge and provide stiffness against the end-shortening
of the plate. Furthermore, a 0◦ oriented element provides post-buckling stability, as it prevents the
end shortening of the plate caused by the applied load and thepost-buckling displacement field,2U.
Close to, and at the loaded edge, the patches are oriented at 90◦ at y = 0 [mm] and∓45◦ at y =
±l/2 with a smooth transition in between. This is used to redistribute the applied load towards the
edges i.e., the 0◦ patches. The remaining 90◦ patches prevents the post-buckling contraction of the
plate, and thus increase the post-buckling stability of theplate. The remaining patches are oriented
at approximately±45◦. These patches primarily provide resistance against buckling of the plate.

A symmetric layup about the x-axis is expected since the plate, boundary conditions, and
discretization are symmetric. Yet the optimized fiber angles are not completely symmetric. The
unsymmetry arises from the two columns of patches closest toedge 3. The∼0◦ patches located
between y = 0 [mm] and y = 300 [mm] are assumed to be suboptimal,as these patches transfer
the reaction force into the center of the plate. To demonstrate that it is the case, the corresponding
patches with a negative y coordinate are mirrored to the suboptimal patches, see Figure10. This
results in a marginal increase in theb-factor of 0.3%, and an increase in the critical buckling load of
4%. Since the optimization only considers theb-factor the optimized design after 200 iterations is
close to the results from a post-processed symmetric design. The marginal increase in theb-factor
suggests that the design space is relatively flat, and that wecan add additional constraints without a
large reduction in the post-buckling performance.
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Figure 11. Optimum fiber angles for the Maxbλc
case for the square plate. The settings used to obtain
this result are 10% move-limits and the initial angles

from Figure8.
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Figure 12. Z-component of a typical buckling
mode shape for the post-buckling optimized plate.
Compared to the buckling load optimized plate
the buckle is shifted away from the loaded edge,
furthermore, the buckle has a more oval shape
caused by the boundary conditions. The buckling
mode shape shown here is for the Maxb case from
TableIV. As the critical buckling load is increased
towards the maximum attainable, the buckling
mode shape approaches that of the buckling load
maximized structure, i.e., a single round buckle in

the center of the plate.

The optimized design for the Maxbλc case is given in Figure11. The same general tendencies for
the fiber angles are observed when comparing to the Maxb case. The fiber angles resemble those
from Figure9 with more patches oriented at±45◦ in order to provide additional resistance against
buckling.

The buckling mode shape for the Maxb case is given in Figure12. Compared to the initial
structure i.e., all fiber aligned at 0◦, the buckling mode shape is shifted towards edge 3. The buckle
is located in the area dominated by 90◦ patches. This is as expected since the 90◦ patches prevents
the development of the buckle in the post-buckling regime. This result is obtained without any
constraints on the fiber angles. If a symmetric response is required, constraints enforcing symmetry
can be added.

6.4. Constraint on the critical buckling load factor

The critical buckling load factor is reduced when performing post-buckling optimization. To ensure
a minimum buckling load factor minimum value constraints can be applied. The buckling load factor
for the Maxb case is 70% of the maximum attainable, and thus constraint values of 75%, 85%, and
90% of the maximum attainable critical buckling load factorare chosen to demonstrate the effect of
constraining the critical buckling load factor when maximizing theb-factor. The constraint on the
critical buckling load factor is only demonstrated with theoptimization of theb-factor as thebλc-
factor explicitly contains the critical buckling load factor in the objective function. The results for
the optimizations are given in TableV. The consequences of the constraint on the critical buckling
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Table V. Optimization results for the square plate with constraint on the critical buckling load. The
constraints are formulated based on the maximum buckling load, and the subscript afterb defines the
percentage used in the constraint. The initial angles are given by Figure8 and move-limits of 10%. The
critical buckling load constraint for the 85% case is the value obtained when maximizing thebλc-factor, see

TableIV. All results are maximization of theb-factor.

Case λ1 [-] λc [-] λ2 [-] b [-] bλc [-]

Max b75 0.6180 0.6265 0.6291 0.07674 0.04808
Max b85 0.7025 0.7025 0.7043 0.06991 0.04911
Max b90 0.7417 0.7417 0.7424 0.06241 0.04629
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4

Figure 13. Optimum fiber angles for the Maxb75
case i.e., with a constraint on the critical buckling
load factor of 0.6180 for the plate. The settings used
to obtain this result are 10% move-limits and the

initial angles from Figure8.
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Figure 14. Optimum fiber angles for the Maxb85
case where a constraint on the critical buckling load
factor of 0.7025 is applied. The settings used to
obtain this result are 10% move-limits and the initial

angles from Figure8.

load factor are an increase inλc and a decrease in theb-factor. This is as expected since the design
space is smaller, and the previous optimum is infeasible with the imposed buckling load constraint.
The Koiterb-factor is decreased by 4%, 12%, and 21% for the three constraints, respectively. Note
that thebλc-factor for the case with a constraint of 85% attains a value which is close but lower than
when maximizing thebλc-factor. This is an effect of the different optimization formulations, where
the constraint on the buckling load factor forces the critical buckling factor always to be feasible.
This is not the case when optimizing thebλc-factor, where the buckling load factor can attain any
value during the optimization process to reach a different optimum. Regardless, the difference in
the post-buckling stability is only 2% between the two optimizations.

The optimum fiber angles for the different optimizations aregiven in Figures13-15. Compared to
the optimum fiber angles it is seen that the fiber angles for theMax b75 case in Figure13are similar
to those from the unconstrained optimizations. For the two cases with a buckling load constraint of
85% and 90% the center region of the plate is dominated by fibers aligned at approximately 90◦.
Furthermore, the first column at edge 3 consists of fiber angles which are close to symmetric to
those of the last column at edge 1. The right hand side of the panel resembles the fiber angles from
the Maxb case, see Figure9, as the fiber angles are aligned in a circular path from the topto the
bottom.
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Figure 15. Optimum fiber angles for the Maxb90 case, with a constraint on the critical buckling load factor
of 0.7417. The settings used to obtain this result are 10% move-limits and the initial angles from Figure8.

6.5. Constraint on the second buckling load factor

Closely distributed eigenvalues are encountered when the buckling load factor for the optimum
design is sufficiently close to the maximum attainable buckling load factor. This is not accounted
for in the analysis and design sensitivity analysis, as the interaction between the multiple buckling
loads is not accounted for. To avoid this, a constraint on thesecond buckling load factor is imposed,
and chosen to be equal to the maximum attainable critical buckling load factor when optimizing
the buckling load of the structure. This constraint ensuresthat multiple buckling loads are not
encountered during the optimization. This constraint may result in suboptimal designs compared
to optimizing the multiple buckling loads. Regardless, this approach is used, as previously, when
multiple eigenvalues can occur during the optimization, see e.g., [40].

Four different cases are shown with this constraint i.e., Koiter b-factor optimization without a
constraint on the critical load factor, Maxb2, with a critical buckling load constraint of 85% and
90% of the maximum attainable, Maxb85,2 and Maxb90,2, and abλc-factor optimization, Maxb2λc.
The results for the four cases are given in TableVI. As expected, a reduction in the post-buckling
factors compared to the unconstrained cases is realized, asthe design space is reduced. Comparing
the results in TableVI to the results in TableIV and TableV the consequence of theλ2 constraint
is quantified. A decrease of 1% of theb-factor and 8% inλc is observed when comparing Maxb2
to the unconstrained Maxb case. The fiber angles for the maxb optimizations, with and without a
constraint onλ2, are shown in Figure9 and16, respectively. The constraint onλ2 primarily alters
the fiber angles at edge 2 and 4 where more patches are aligned at 0◦ when the constraint is imposed.
This explains the low decrease in theb-factor when imposing the constraint. The 85% case exhibits
a decrease of 2% in theb-factor compared to the constrained case. The decrease in the b-factor for
the 90% case is 1% compared to the constrained case. Lastly, areduction of 4% in thebλc-factor
is seen for the Maxb2λc case. Based on the results in TablesIV-VI , constraining the higher order
buckling loads does not give a significant reduction in the post-buckling response of the structure.

The optimum fiber angles are given in Figures16-19. Comparing the fiber angles to the plates
without constraints onλ2, Figure9, Figure14, Figure15, and Figure11, the fiber angles are similar.
This result is as expected since the difference in the post-buckling properties is small. The major
differences are in the center region where some of the±45◦ patches have switched sign in order to
resemble those from the buckling load maximization in Figure8. Comparing Figure19to Figure11
it is seen that the last three columns of patches are similar between the two, but the remainder of the
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Table VI. Optimization results for the square plate with constraint on the second buckling load of 0.8241
defined by the subscript2. The subscript numbers after Maxb gives the percent-wise constraint on the
critical buckling load factor compared to the maximum attainable, see TableV for the constraint values. The
initial angles are given by Figure8and move-limits of 10% except for Maxb and Maxb85 where move-limits

of 1% provided the best results.

Case λc [-] λ2 [-] b [-] bλc [-]

Max b2 0.5324 0.8241 0.07826 0.04166
Max b85,2 0.7025 0.8241 0.06817 0.04789
Max b90,2 0.7417 0.8241 0.06151 0.04562
Max b2λc 0.7164 0.8241 0.06721 0.04815
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Figure 16. Optimum fiber angles for the Maxb2
case with a constraint onλ2 = 0.8241. The settings
used to obtain this result are 1% move-limits and the

initial angles from Figure8.
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Figure 17. Optimum fiber angles for the Maxb85,2
case with a constraint on the critical buckling load
factor of 0.7025 andλ2 = 0.8241 for the single
layer square plate. The settings used to obtain this
result are 1% move-limits and the initial angles from

Figure8.

structure resembles Figure14where the Koiterb-factor is maximized and the critical buckling load
is constrained to the buckling load for Maxbλc.

6.6. Convergence of the optimizations

In general, three different iteration histories are observed for the plate. The three iteration histories
are given in Figures20-Figure22. Nearly all optimizations use 200 iterations, and the optimization
is terminated due to the convergence limit. This is a consequence of the tight convergence
criterion where the normalized change in the design variables must be below 0.00001, which
forces the optimization to continue even though only minor changes in the design is observed.
The optimization reaches a value close to the optimumb- andbλc-factor within 30 iterations for all
cases.

Since all solutions start with the buckling load optimized design, multiple eigenvalues are present
in the initial iteration. It is observed thatλc andλ2 are separated in the initial iteration for all
optimizations. The remaining part of the optimization history depends on the applied constraints.
The iteration history for the Maxb case is shown in Figure20. This iteration history shows thatλc

andλ2 remain separated throughout the evolution of solutions. The drops in theb-factor and kinks
for λc in the initial 10 iterations are caused by the 10% move limits, as these are not present when
tighter move limits are selected. After iteration 20 almostno change in the values is observed which
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Figure 18. Optimum fiber angles for the Maxb90,2
case with a constraint on the critical buckling load
factor of 0.7417 andλ2 = 0.8241 for the plate. The
settings used to obtain this result are 10% move-

limits and the initial angles from Figure8.
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Figure 19. Optimum fiber angles for the Maxb2λc
case.λ2 is constrained to 0.8241 for the plate. The
settings used to obtain this result are 10% move-

limits and the initial angles from Figure8.

supports the conclusion that a tight convergence criterionis selected. Figure21 gives an iteration
history where multiple eigenvalues occur during the optimization, here exemplified with the Max
bλc case. The overall tendencies are the same as Figure20except for the drops in theb-factor. These
drops are caused by the multiple eigenvalues, where the two lowest eigenvalues switch position, and
the lowerb-factor for the second eigenvalue enters the objective function. This consideration further
demonstrates the need for constraining the second eigenvalue to avoid this switching. To test whether
the optimized post-buckling response from the second buckling load leads to a different optimum,
optimizations where the second buckling load is the lowest have been performed. The Maxb, Max
bλc, and Maxb with a constraint on the originalλc have been performed. The optimizations converge
to the results withλc as the lowest. The last iteration history, Figure22, is the Maxb90,2 case which
displays a case where the second buckling load factor is constrained. This iteration history resembles
that from the Maxb case with the difference being that the second buckling loadfactor does not
decrease in the initial iteration. For the cases with a constraint onλ2 convergence is observed prior
to the iteration limit.

6.7. Comparison of post-buckling response

In this section we compare the post-buckling response of some of the cases shown in the previous
sections. Two plots are used to compare the post-buckling responses, first the change in load factor,
λ, as a function of the expansion parameter,ξ, and the load-end shortening responses. Theξ − λ
plots are given in Figure23. This figure displays the interaction between the critical buckling load
factor and the post-buckling stability, as the curves for the buckling load maximized structure and
the post-buckling optimized structures cross in the post-buckling regime. The proposed methods
successfully provide structures which are more stable in the post-buckling region compared to the
0◦ case and the buckling load maximized structure, Maxλc, because of the larger post-buckling
curvature. Furthermore, optimized designs with similar critical load factor display similar post-
buckling behavior regardless of the chosen buckling formulation. The importance of a constraint
on the buckling load when maximizing theb-factor can be seen in the figure, since a low buckling
load causes the perturbation to be far into the post-buckling regime before it crosses a curve with a
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Figure 20. Optimization history for the Maxb case
in TableIV. The normalization factors used are the
initial values, i.e., the results from the Maxλc
case in TableIV . The initial decrease in the post-
buckling factors is a consequence of the multiple

eigenvalues.
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Figure 21. Optimization history for the Maxbλc
case in TableIV. The normalization factors used are
the initial values, i.e., the results from the Maxλc
case in TableIV. The initial decrease in the post-
buckling factors is a consequence of the multiple
eigenvalues. The drops at the later iterations are

caused by the second eigenvalue.
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Figure 22. Optimization history for the Maxb90,2 case in TableVI . The initial b andbλc values are used
to normalize the corresponding curves. The critical buckling load factor is used to normalizeλc andλ2.

Convergence of the optimization is observed after 58 iterations.

larger buckling load. Since thebλc-factor is used when determining the post-buckling load factor,
the unconstrainedbλc case displays the largest load factor in the far post-buckling field.

The load-end shortening curves for the cases are shown in Figure24. The curves are obtained
by inserting the displacement fields, critical buckling load, and Koiterb-factor into Equation (5).
This plot reveals the drop in the inplane stiffness in the post-buckling regime. The 0◦ case displays
the highest resistance towards end shortening both at a pre-and post-buckling configuration, this is
as expected, as all the fibers are aligned in the loading direction. For the optimized structures the
pre-buckling stiffness decreases because the fiber angles are changed from 0◦ and thus the stiffness
towards the load decreases. The relative decrease in stiffness between the pre- and post-buckling
response is lower for the post-buckling optimized structures compared to the 0◦ and buckling load
optimized structures. For example, the stiffness drop for the Max b case is small, and at an end
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Figure 23. Post-buckling response for selected
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Figure 24. Load-end shortening response for
selected cases, see TablesIII -VI for legend
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post-buckling region for all optimizations.

shortening of 0.1 (4× the buckling end shortening) the difference in load factor for the buckled
configuration and an extrapolation of the pre-buckling response is approximately 20%.

6.8. Comparison to geometrically non-linear analysis

To demonstrate the validity of the post-buckling analysis and optimization, the results are compared
to geometrically non-linear (GNL) finite element analyses.The GNL analyses are performed
using the approaches from [41] and branching to the secondary equilibrium curve is performed
by assigning a small imperfection in the plate. For nearly all cases good correlation between the
analyses is observed. Figure25 and Figure26 display the post-buckling responses for the Maxbλc

and Maxb cases. For the Maxbλc case the out-of-plane displacement is accurately capturedby the
Koiter analysis. The kink at a load factor of approximately 1.55 [kN] arises from mode switching in
the non-linear analysis. In the Maxb case, Figure26, mode switching occurs at a load factor of 0.6
[kN]. This is not captured by the Koiter analysis, which is evident in the end shortening response
of the plate, where the softening caused by mode switching isnot present in the Koiter analysis.
Mode switching is not included into the perturbation, and thus cannot be captured by the asymptotic
analysis, see Equation (4). When mode switching occurs in the analysis, it is important to evaluate
whether the load is above the design load. If mode switching occurs within the operational area, a
multi mode Koiter analysis should be applied [20].

Comparing the responses in Figure25and Figure26to the response for the 0◦ case in Figure3 the
importance of selecting the correct post-buckling criteria is realized. As demonstrated in Figure24
the 0◦ case provides the best stiffness against the end shortening, but the out-of-plane displacements
are larger for the 0◦ case compared to the Maxb and Maxbλc cases. Also a simple minimization
of the maximum out-of-plane displacement may not directly work on the buckling phenomena
causing the large displacement, as the buckling problem is not directly included into the optimization
problem.

7. CURVED PANEL

The second example is the curved panel given in Figure27. All edges are restrained from
displacement in the x-direction. The load is applied as a displacement in z at one of the curved
edges and the other is restrained in the z-direction. All edges are free to rotate. The two center
nodes on the curved edges are constrained in the y-directionto create a definite system matrix. The
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deflection for the center node in the buckle, Max
bλc z and GNL z. The kink at a load factor of 1.55

[kN] is caused by mode switching.
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Figure 26. Comparison between the Maxb case and
geometrically non-linear analysis, GNL. Displace-
ment refers to either the end shortening, Maxb x
and GNL x, or 1/100 of the normal deflection for
the center node in the buckle, Maxb z and GNL z.
At a load factor of 0.6 [kN] branch switching occur.
This explains the deviation of inplane displacements

between the Koiter and GNL analyses.
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Figure 27. Load and supports for the panel. Coupled defines that the nodes along the edge are forced to have
the same z-displacement. The loadR is applied as a displacement along the edge. Thexeyeze-coordinate

system defines the element coordinate system.

dimensions of the panel are given in TableVII , and the material properties are the same as for the
plate, see TableII . 400 quadratic shell elements provide a converged discretization for the Koiter
analysis, and they are grouped into one patch. The panel consists of 8 layers of equal thickness, and
the orientations of each layer are used as design variables.

The curved panel displays an example which exhibits asymmetric buckling. From this we aim
to show how to design structures which exhibits asymmetric (a 6= 0) buckling. Additionally, this
example demonstrates the applicability of the proposed methods and the limitations of the Koiter
analysis.
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Table VII. Dimensions and load for the curved panel.

Parameter Unit

Side length,l [mm] 100
Width,w [mm] 100
Radius,r [mm] 1000
Thickness,t [mm] 1
Load,R [kN] 1.0
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Figure 28. Comparison between the Maxb case and geometrically non-linear analysis, GNL, for the curved
panel. Displacement refers to either the end shortening, Koiter z and GNL z, or -1/100 of the normal

deflection for the center node, Koiter x and GNL x.

7.1. Analysis of the panel

To demonstrate the behavior of the panel all fiber angles are chosen to be 0◦. The post-
buckling responses are given in Figure28 for the Koiter analysis and GNL finite element analysis,
respectively. The pre-buckling response from the GNL finiteelement analysis is linear. Buckling is
predicted at 572 [kN]. This buckling load is distinct since the second buckling load is 1270 [kN].
The post-buckling response from Koiter analysis is asymmetric with an inwards buckle resulting in
a decrease in the load. The stability is recovered at a load of562 [kN]. The asymmetry in the post-
buckling response arises from the curvature of the panel. Development of the buckle in the positive
x-direction is affine with a stretching of the membrane and thus the behavior is similar to a flat plate
which exhibits a stable post-buckling response. The same post-buckling behavior is observed for
the GNL finite element analysis, and the Koiter analysis correctly captures the snap-through and the
following post-buckling response.

7.2. Optimization of the panel

During the optimization, the panel displayed a low sensitivity towards the settings of the optimizer.
Move limits of 1% are used for all examples, and the same convergence criterion as for the plate has

been applied, i.e.,

√
√
√
√

∑ne

i=1 ∆θ2i
∑ne

i=1

(
θi − θi

)2 < 0.00001. The optimum design for theb-factor without any

constraints on the critical buckling load factor ora-factor is to have all layers oriented at 0◦. The
0◦ case represents one of the two baseline designs. The second baseline design is the buckling load
maximized panel.

The results from the optimization are given in TableVIII . During the maximization of the critical
buckling load factor no multiple eigenvalues are observed.The first and second buckling load factors
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Table VIII. Results for the optimization of the curved panel. Case defines the optimization problem
considered. 0◦ represents the baseline design where theb-factor is maximized. Maxλrc are the rounded fiber
angles from the optimum buckling load design. The subscriptafter |a| defines the buckling load constraint
whereas a superscript is theb-factor constraint. The superscript after Maxb defines the constraint on the
a-factor. The second column contains the critical buckling load factors. The third and fourth columns are the

Koiter a andb-factors. The last columns are the orientations for each plyin the laminate.

Case λc [-] a b Layup
10

−2 [-] 10
−2 [-] 1 2 3 4 5 6 7 8

0◦ (Max b) 571.6 3.146 1.434 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max λc 785.0 3.431 0.244 -46.3 -47.0 46.0 57.8 92.9 92.2 44.9 -42.6
Max λr

c 784.1 3.369 0.243 -45.0 -45.0 45.0 60.0 90.0 90.0 45.0 -45.0
Min |a| 599.0 1.701 0.843 1.5 0.0 -1.5 -6.0 37.5 46.6 50.6 -51.8

Min |a|650 650.0 1.881 0.681 -14.8 16.8 6.9 -19.8 -37.3 -45.9 48.6 -52.4
Min |a|700 700.0 2.054 0.547 -25.1 24.2 10.8 -22.6 -38.4 -46.9 49.5 -53.0
Min |a|750 750.0 2.635 0.298 -40.0 -35.0 39.9 32.1 43.6 -52.8 51.9 -53.4

Min |a|1 559.3 1.822 1.0 -0.7 0.7 1.8 2.8 11.9 44.6 49.8 52.4
Min |a|1.1 562.3 1.955 1.1 -1.1 -0.5 0.1 0.5 0.3 25.9 45.6 49.9
Min |a|1.2 572.2 2.176 1.2 -1.2 -0.9 -0.5 -0.1 0.3 0.6 34.5 46.1
Min |a|1.3 581.5 2.535 1.3 -0.9 -0.8 -0.6 -0.4 -0.1 0.6 4.3 38.8

Max b1.75 595.7 1.75 0.953 0.6 -0.2 -1.1 -2.6 11.9 44.5 49.5 -51.5
Max b1.85 598.0 1.85 1.041 -0.3 -0.6 -0.9 -1.4 -2.5 27.1 45.8 -49.4
Max b2 599.5 2.0 1.126 0.0 -0.2 -0.4 -0.7 -1.0 -2.8 41.9 -48.8
Max b2.1 598.7 2.1 1.163 -0.2 -0.3 -0.5 -0.8 -1.3 -2.6 32.5 -46.3
Max b2.2 596.9 2.2 1.196 -0.1 -0.3 -0.6 -0.9 -1.4 -3.0 25.4 -45.2
Max b2.5 581.2 2.5 1.291 0.9 0.8 0.6 0.3 0.0 -0.6 -6.1 -41.3

are separated by 24% in the optimized design. As expected, the majority of the layers are aligned at
approximately±45◦. Two layers are aligned at 90◦. Rounding the fiber angles as shown in the table
provides a negligible decrease in the buckling load of 0.1% and thus the slightly off-angled design
provides a better design compared to the rounded design. Compared to the 0◦ design the buckling
load is increased by 37% whereas theb-factor is decreased by 83% and thea-factor is increased by
8%. Consequently, the buckling load is increased but the post-buckling performance is decreased.

7.3. Optimization of the asymmetric response

The panel exhibits asymmetric buckling, and thus the initial post-buckling response is unstable. The
asymmetry is caused by the non-zeroa-factor, and in order to obtain a more symmetric response
thea-factor should be as close to zero as possible. The optimization problem solved is described
by Equations (60)-(64), and we will demonstrate the effect of constraining both the b-factor and the
critical buckling load, all results are presented in TableVIII .

Minimizing the absolutea-factor without constraints on theb-factor nor the critical buckling
load factor is performed to demonstrate the capabilities when minimizing the asymmetry in the
post-buckling response, Min|a| in TableVIII . Figure29displays the normal component of the pre-
buckling displacement field0U. The normal displacements eliminate the initial curvatureof the
panel by utilizing the bending-extension couplings in the laminate. This can be seen in the layup,
which consists of plies aligned at approximately 0◦ for the first four layers and at approximately
±45◦ for the remaining layers. The pre-buckling displacements flatten the panel, and thus pushes
the buckling response towards the symmetric buckling of a flat plate. The buckling load is increased
by 5% compared to the 0◦ case, and theb-factor is decreased by 41%. However, thea-factor is
decreased by 46% and thus a more symmetric response is obtained.

The critical buckling load factor is 31% lower for the|a| optimized panel than for the buckling
load maximized panel. Hence a constraint onλc can be applied to increase the buckling load. The
effect of this constraint is demonstrated in the following.Three constraints on the critical buckling
load factor are used, and the constraint is assigned a value of λ1 = {650, 700, 750}. The optimum
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Figure 29. X-component of the0U displacement field for the Min|a| case. The load is applied on the right
edge.
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Figure 30. Dependence of theλ1 constraint on thea
andb-factors for the curved panel.
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Figure 31. Dependence of theb constraint on thea-
factor and the critical buckling load for the curved

panel.

fiber angles from the buckling load optimization are used as initial angles to ensure a feasible design
in the first iteration. The results are given in TableVIII . Figure30presents thea andb-factors for the
optimized designs as a function of the critical buckling load constraint. As expected, thea-factor
increases and theb-factor decreases as the critical buckling load increases towards the maximum
attainable. This is a consequence of the design being pushedtowards the buckling load optimized
design in order to comply with the constraint on the bucklingload, and thus thea and b-factors
approaches those from the buckling load optimized case.

Theb-factor is reduced by 41% for the|a| optimized case compared to the 0◦ case. Constraining
theb-factor allows the curvature of the load factor to attain a certain minimum value. The minimum
bound on theb-factor is in this case of{0.01, 0.011, 0.012, 0.013} to demonstrate the effect on the
optimuma-factor. The optimizations are initialized with all designvariables aligned at 0◦ which
provides a feasible design in the initial iteration. The optimum designs are given in TableVIII and in
Figure31. Thea-factor increases as the constraint on theb-factor approaches that for the 0◦ design.
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Figure 32. Dependence of thea constraint on theb-factor for the curved panel.

This is as expected since more layers must be aligned close to0◦ in order to satisfy the constraint.
The buckling load factor remains almost constant for the different constraint values. Due to the fact
that the buckling loads for thea andb-factor optimizations are close.

7.4. Optimization of the b-factor

Even though the initial post-buckling response is unstable, optimization of theb-factor can still be
important. Maximizing theb-factor ensure the structure is as stable as possible when the bλcξ

2-
term becomes dominant in the load factor expansion, see Equation (4). Only a-factor constrained
optimization is shown as the optimum design for the unconstrained case has been described, and the
effect of constraining the critical load factor behaves as in the previous example. Constraint values
of a = {0.0175, 0.0185, 0.02, 0.021, 0.022, 0.025}are chosen. The results for the different selections
of the constraint values are given in TableVIII with the initial angles being the ones for the Min|a|
case. As expected, when imposing constraints to have a more symmetric post-buckling response the
value for theb-factor decreases. The correlation between thea constraint and theb-factors is given in
Figure32. As the constraint ona is increased i.e., more asymmetry is allowed, theb-factor increases
in a logarithmic manner. The critical buckling load factor remains almost constant throughout the
optimization as the buckling loads for the Maxb and Min |a| cases are similar. As the constraint
on thea-factor increases the fiber angles approaches 0◦ which is expected since the design space
becomes larger. The layer orientations approach 0◦ from the first layer to the eighth layer as the
constraint is increased. Because of the geometry, the outerlayers give the largest contribution to the
membrane-bending coupling which minimizes thea-factor.

From these studies, we observe that the Koitera-factor behaves in a similar manner as theb-factor
when constraints are applied to the optimization.

7.5. Comparison of post-buckling response

The post-buckling responses predicted by Koiter analysis for the 0◦ (Max b), Min |a|, and Maxλc

cases are given in Figure33 and Figure34 for the center node and end shortening, respectively.
Furthermore, the geometrically non-linear responses for the Min |a| and Maxλc cases are also
presented in the figures. Focus is initially given to the asymptotic responses, and afterwards the
geometrically non-linear responses.

The asymptotic responses display the expected behavior forthe different optimizations. The Max
λc case has the highest buckling load factor, but loses the stiffness in the post-buckling regime. The
load factor drops to a value of 690 [kN] before stability is regained. Note that for the asymptotic
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Figure 34. Load-end shortening response for the
panel. 0◦, Min |a|, and Max λc refer to Koiter
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from Min |a| and Maxλc, respectively. Recall that
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responses, the load factors for the 0◦ and Min |a| cases are 33.8% and 8.4% higher at the out-of-
plane displacement where the Maxλc case regains stability, 1.6 [mm], respectively. The Min|a|
case displays almost no decrease in the load when buckling occur, thus shows that the proposed
method successfully minimizes the asymmetry in the buckling response, and that the decrease in
load can be minimized by optimizing thea-factor. The 0◦ case reveals that optimizing the Koiter
b-factor still makes sense even though the initial post-buckling response is unstable, as the structure
regains the stability at a lower displacement, and that the out-of-plane displacements efficiently are
minimized.

When considering the geometrically non-linear response, recall from Figure28 that the Koiter
analysis produced an accurate approximation of the geometrically non-linear response for the
0◦ case. For the Min|a| and Maxλc cases only the initial part of the pre-buckling response for
the out-of-plane displacements in Figure33 is accurately captured by the Koiter analysis. The
end shortening also deviates for the two analyses in the pre-buckling response. The reason for the
divergence between the two analyses is that the membrane-bending coupling acts as an imperfection
for the bifurcation buckling when out-of-plane displacements arise which cannot be captured by the
linear buckling analysis. Both geometrically non-linear analyses reveal that the panel remains stable
throughout the analysis, and thus the snap-through predicted by the Koiter analysis is not present in
the geometrically non-linear response. Regardless, the optimized structures reveal some of the same
properties in the non-linear cases: the Min|a| case possesses more stiffness as the non-linearities
becomes more significant, whereas increasing the load factor from 650 to 700 for the buckling
load optimized case provides an increase in the out-of-plane displacements of 400%. In conclusion,
Koiter analysis and design optimization successfully enable the possibility of optimizing the post-
buckling response of the panel even though pre-buckling nonlinearities are present. If the linear
buckling analysis does not provide a good estimate of the buckling load and mode shape, it is
important to switch to non-linear buckling analysis. Furthermore, we observe that even though the
analysis is not completely accurate the design sensitivities still provide the information needed to
optimize the post-buckling response.
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8. CONCLUSION

This work presents a novel method for post-buckling design optimization of laminated composite
structures. The proposed method is based on Koiter’s asymptotic method for post-buckling analysis.
The design sensitivities of the Koiter factors are derived.To demonstrate the use of Koiter’s method
for optimum design two different objective functions basedon theb-factor and one based on the
a-factor are shown and compared. The objective functions areused to limit development of the
post-buckling shape or to minimize the asymmetry in the post-buckling response. Minimization
of the development of the post-buckling shape is important if a shape close to the initial unbuckled
shape is required, while the structure is operated in a post-buckling configuration. This approach also
minimizes the risk of failure of laminates due to high strainlevels in a post-buckling configuration.
Minimization of the asymmetry is important to minimize the decrease in load factor for the initial
post-buckling response.

For validation purposes, our approach is compared to analytical and geometrical non-linear
(GNL) analysis. From this, post-buckling optimization is carried out on a square plate and a curved
panel to demonstrate the capabilities of the proposed methods. The two examples where the fiber
angles for a fixed thickness are optimized demonstrates the possibility of optimizing the post-
buckling response for both a symmetric and asymmetric pointof bifurcation. These examples show
the effect of constraining either the critical load factor,λc, and the Koitera andb-factors. The effect
of the constraints can be explained by considering maximization of theb-factor while constraining
the critical load factor. If no constraint on the load factoris present, theb-factor is maximized.
Increasing the load factor constraint towards that of the maximum buckling load causes a decrease
of theb-factor until that of the buckling load maximized case is reached. The same effect is observed
when applying the different combinations of objectives andconstraints with respect toλc, a, andb.

The importance of applying the correct post-buckling optimization criterion is also revealed in
this work. Considering the out-of-plane displacements andend shortening for plates and curved
panels we show that the optimum laminate configurations for minimizing the two displacements are
different. This result is important as it requires the engineer to determine which of the two responses
is critical for the structure before conducting any post-buckling optimization.

The presented design sensitivity analysis is derived in a general sense, hence can be applied
to other parametrizations including layer thicknesses, Discrete Material Optimization, lamination
parameters etc.
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