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CHAPTER 1
Introduction

This report analyses laboratory testing data performed with a bucket foundation model
subjected to axial loading. The examinations were conducted at the Geotechnical lab-
oratory of Aalborg University. The report aims at showing and discussing the results
of the static and cyclic axial loading tests on the bucket foundation model. Finally, a
cyclic loading interaction diagram is given that can be applied for a full-scale bucket
foundation design. For the basis, this report uses two previously published reports that
contain test data and a detailed description of the test procedure:

• Vaitkunaite, E.: “Bucket Foundations under Axial Loading –Test Data Series
13.02.XX, 13.03.XX and 14.02.XX”. DCE Technical Report, No. 199, Depart-
ment of Civil Engineering, Aalborg University. 2015. Aalborg, Denmark.

• Vaitkunaite, E.: “Test Procedure for Axially Loaded BucketFoundations in Sand
(Large Yellow Box)”. DCE Technical Memorandum, No. 51, Department of
Civil Engineering, Aalborg University. 2015. Aalborg, Denmark.

1.1 Aim of the report

In a shallow offshore multi-pod foundation combination, the horizontal wind and wave
loads are transferred to the axial loads and sliding. Figure1.1 shows an example of
such load transfer in the wave energy converter Wavestar. The loading conditions are
also usual for offshore wind turbine foundations standing on a jacket structure.

Suction bucket foundations are shallow skirted geotechnical structures. For bucket
foundations in sand, the axial tensile loading component can be critical and setting
the dimensions. Senders (2009) described the failure figures for bucket foundations in
sand (Figure 1.2). Constant or static tensile loading on a bucket foundations in sand
results in the drained response and lowest capacity. In the offshore conditions, cyclic
wind and wave loads can create long-term tensile mean loads.Such situation should
be avoided based on the experiences of earlier researches (e.g. Byrne and Houlsby
2006, Kellyet al.2006a).

If the loading rate is rapid enough, the pore water does not have enough time to drain
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2 Introduction

resulting in an undrained foundation behaviour. A foundation experiences high inten-
sity loading conditions in a storm, where the structure is subjected to large cyclic wind
and wave loads. The undrained tensile capacity is significantly larger than the drained
capacity because of the suction pore pressure contributionto the resistance. How-
ever, such loading conditions can lead to large displacements and tilting of the overall
structure (Kellyet al., 2006b). Furthermore, constant cyclic tensile loading with mean
tensile load and tensile cyclic amplitude can lead to irreversible upward displacements.

Model testing is an important tool that provides valuable understanding of the real

Wind

Wave

Figure 1.1 Loads on the wave energy converter Wavestar in a storm: horizontal wind and wave loads and
the axial and horizontal components on a shallow foundation.
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Figure 1.2 Bucket foundation tensile resistance in cohesionless soil: (left) drained response; (right)
undrained response. After Senders (2009).

foundation behaviour under various loading conditions. Tothe knowledge of the au-
thors, until present, no publicly available testing campaign had been performed on
bucket foundations subjected to one-way tensile cyclic loading. Thus, the aim of this
report is to show the axial behaviour in different effectivestress levels and to set the
cyclic loading interaction diagram that can be used for bucket foundation design. To
fulfil the aim, a new testing facility was employed for bucketfoundation testing under

2



Aim of the report 3

axial loading. In this test set-up, an overburden pressure increased the effective stress
in the soil. Consequently, the skirt friction of a bucket foundation in different soil
depths could be analysed.

The selected cyclic loading program focussed on the axial loading conditions during
a normal serviceability situation of an offshore structure. In such case, the foundation
is subjected to long-term cyclic loading of small intensitycompared to the storm case.
Drained conditions are present. Therefore, the target of the testing program was the
accumulated cyclic displacement and the cyclic degradation effect on the tensile ca-
pacity. The second set of tests started with slow monotonic pull-out tests that provided
reference capacities. The testing program continued with the low-rate cyclic loading
tests corresponding to the drained response. Finally, a post-cyclic monotonic tensile
load was applied which was directly comparable to the virginloading resistance.
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CHAPTER 2
Test Set-Up

This chapter presents the principle of the overburden pressure application and provides
a short overview of the test set-up facilities. The step-by-step testing procedure can be
found in Vaitkunaite (2015b).

2.1 Testing rig and foundation model

Figures 2.1 and 2.2 show the testing rig and the bucket foundation model used in the
testing campaign. The test set-up consisted of a large container of 2.5 m in diameter
and 1.5 m height. The container was filled with 0.3 m of coarse gravel (drainage layer)
and 1.2 m of Aalborg University sand No. 1. A rigid structure of four columns and
beams was built to support the loading equipment which consisted of two hydraulic
cylinders: installation and loading (actuator). Two displacement transducers and two
load measuring cells (measuring range 250 kN) were fixed to the hydraulic cylinders.

Bucket foundation model was made of steel. It had a diameterD of 1 m, skirt length
d of 0.5 m and skirt thicknesst of 3 mm. The skirt was allowed to corrode naturally
providing a realistic soil-structure interface. Three inner and three outer narrow pipes
were fixed to the bucket foundation model. The pipes were filled with water before
the installation of the foundation model to the sand. The pore pressure transducers
PP were fixed on the lid and connected to the narrow pipes (Figure2.2). They served
for pore pressure measurements at different depths.

2.2 Soil properties

Aalborg University sand No.1 was used for the testing. Two reports by Hedegaard
and Borup (1993) and Ibsen and Boedker (1994) contain sand classification data and
triaxial testing data correspondingly. The sand properties are as follows:

• min void ratioemin 0.549,

• max void ratioemax 0.858,

— 5 —



6 Test Set-Up

Figure 2.1 A test set-up for the axial bucket foundation testing with anapplied overburden pressure.

(a) (b)

Figure 2.2 (a) Bucket foundation model used in the testing campaign. (b) Positions of the points for the
pore pressure measurements and labels of the pore pressure transducersPP . Distances in mm.

• specific grain densityds 2.64 g/cm3,

• uniformity coefficientU 1.78.

Ibsenet al. (2009) determined Aalborg University sand No.1 parametersfor Mohr-
Coulomb material. They showed that the parameters are dependent on confining pres-
sureσ3 and density indexDR. Results were expressed in the fitted diagrams as given
in Figure 2.3. As seen, sand properties change strongly in the first 0-100 kPas con-
fining pressure. This visualizes the typical issues relatedto small-scale testing in low
effective stresses, such as a very high friction angle and dilation. Soil-structure inter-
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Test preparation 7

face properties depend on the normal stress, relative surface roughness, soil particle
shape and density. To inspect the frictional response at different soil depths, the nor-
mal stress on the bucket foundation model had to be increased. Thus, the overburden
pressure was applied changing the stress conditions and providing more test results.

Figure 2.3 Aalborg sand No. 1 parameters dependence on the confining stress. (Ibsenet al., 2009)

2.3 Test preparation

This section gives an overview of the preparation for the tests. The step-by-step testing
procedure can be found in Vaitkunaite (2015b).

2.3.1 Sand preparation

Before each test, water was allowed to flow to the sand box withan upward gradient
which loosened and redistributed the sand particles. The sand was compacted with a
rod vibrator to the averageDR=81% (standard deviation 6%) and the effective unit
weightγ′=9.4 kN/m3. Sand density ratio was found from a laboratory cone penetra-
tion test (CPT) specially developed at Aalborg University.Larsen (2008) described the
equipment and methodology behind the laboratory CPT. Ibsenet al. (2009) provided
the empirical equation for the estimation ofDR based on cone penetration measure-
ments. The procedure was repeated before every installation.

2.3.2 Installation

After the sand preparation, the narrow pipes on the bucket model were filled with
water as mentioned in section 2.1. The bucket model was placed above the sand
surface. Displacement and load transducers were zeroed andthe installation started.
The installation hydraulic cylinder pushed the model to thesand with a velocity of
0.2 mm/s. The two valves on the model were kept open during theinstallation. The
installation ended with about 70 kN loadFP that consisted of 50 kN required for the
installation and a small compressive pre-load of 20 kN. Due to sand dilation around
the circumference of the model, the skirt was installed to approximately 490 mm depth

7



8 Test Set-Up

dinst. The installation was followed by connection of the transducers and mounting
of the actuator.

2.3.3 Application of the overburden pressure

A latex membrane was laid on the surface of the sand containerand the bucket lid.
A water pumping system was available by the sand container. Suction was applied in
four points on the membrane. A filter layer prevented sand grains from being sucked
into the pumping system. Suction application on the membrane evenly pressed the
whole surface simulating an overburden pressurepm. In the atmospheric pressure
conditions, the pump unit could apply up to -100 kPa suction.In the testing cam-
paign, a pressure of up to -70 kPa was aimed. In a successful test, the established level
of pressure was kept constant, with only +/-2 kPa variations. The overburden pres-
sure allowed analysing axial behaviour of the bucket foundation model in different
soil depths. The following scheme in Figure 2.4 visualizes the idea of the overburden
pressure application.

This method of the overburden pressure application required a very tight system

Figure 2.4 Vertical stress distribution on a bucket foundation.

and de-aired water to saturate the sand. At least 1.5 m3 of de-aired water would have
been necessary to saturate the sand which was unavailable atthe time of testing. Al-
though many attempts and special care were taken for the tightening of the system,
air was present in the sand. Thus, the suction through the membrane resulted in a re-
duced amount of water in the sand volume that left the sand only moist. Furthermore,
the sand structure has changed - the pores became larger - dueto the suction method
as shown in Figure 2.5. There could be two reasons for this: water cavitation or ex-
pansion due to negative pressure in the air/vapour. Despitethis, the testing program
continued because it was still possible to apply a constant overburden pressure and to
investigate the friction response in the different soil depths. For the result analysis,
soil unit weight was measured after several tests with the membrane and was found to
beγ=17 kN/m3.

After a constant membrane pressure was established, the loading could start. Dur-
ing tests with the overburden pressure, load, displacementand membrane pressure
were measured. During tests without the overburden pressure, pore pressures were

8
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measured too.

Figure 2.5 Sand after suction application.

9



10 Test Set-Up

10



CHAPTER 3
Testing program

In this report, the upward displacement, tensile load and negative pore pressure are
drawn on the negative axis and marked with a negative sign.

Monotonic pull-out tests were performed with a constant velocity v of 0.002 m/s.
The bucket model was pulled approximately 60 mm which was sufficient to capture
the peak loadFT and the corresponding displacementwT .

Cyclic loading tests were performed with 0.05 or 0.1 Hz frequencyf . A testing pro-
gram consisted of 20,000-40,000 harmonic cyclesN that were followed by a post-
cyclic monotonic tensile load. The post-cyclic load was applied with a displacement
rate of 0.002 mm/s until the peak loadFPc and the corresponding displacementwPc

were measured, as shown in Figure 3.1. If the accumulated cyclic displacementwcyc

reached 60 mm upward displacement, the loading sequence wasstopped.

Vaitkunaite (2015a) documented the tests performed in the large yellow sand box.
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Figure 3.1 Cyclic loading with post-cyclic monotonic pull-out (test C0A0.7m0.3.2).

Tables 3.1 and 3.2 provide an overview of the performed tests. The load cell and dis-
placement transducers were zeroed before the beginning of the loading step; thus, the
tables provide only the loading response (model self-weight is zero).
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12 Testing program

Cyclic loading is described using two parameters:ξA andξm (eqs.3.1 and 3.2). Pa-
rameterξA is the ratio of cyclic loading amplitudeFcyc and the reference tensile load
FTR. The second parameter defines the ratio of the mean cyclic loadFmean andFTR.
The parameter is negative for mean tensile load, and positive for mean compressive
load. In the case of perfect two-way loading,ξm is 0.

ξA = −
Fcyc

FTR

, (3.1)

ξm = −
Fmean

FTR

. (3.2)

Each test has an ID. For example, a monotonic loading test ID is M20.1, where M
stands for monotonic, 20 for the membrane pressure aimed of 20 kPa and .1 marks the
test number. A cyclic load loading test ID is, e.g. C70A0.24m-0.23, where C stands
for cyclic, 70 for the aimed membrane pressure of 70 kPa, A0.24 marks the cyclic
loading amplitude in the testξA=0.24 and m-0.23 marks the mean cyclic load in the
testξm=-0.23.

Table 3.1 Summary of the monotonic loading tests.

Loading Installation
pm Test ID d/D FT wT v FP dinst
[kPa] [kN] [mm] [mm/s] [kN] [mm]
0 M0.1 0.5 -5.7 -6.3 0.001 49.6 483
0 M0.2 0.5 -6.3 -5.8 0.001 50.6 474
0 M0.3 0.5 -5.3 -4.6 0.002 49.5 473
0 M0.5 0.5 -5.9 -5.5 0.002 73.0 491
19 M20.1 0.5 -19.0 -24.3 0.001 45.3 486
21 M20.2 0.5 -15.3 -11.4 0.001 46.1 495
20 M20.3 0.5 -23.3 -7.5 0.002 57.3 487
41 M40.1 0.5 -28.2 -5.0 0.001 68.3 487
40 M40.2 0.5 -26.9 -5.2 0.002 72.8 487
73 M70.1 0.5 -96.3 -72.2 0.002 74.0 490

12



13

Table 3.2 Summary of the cyclic loading tests.

Cyclic loading Post-cyclic load
pm Test ID Fmean Fcyc wcyc N FPc wPc

[kPa] [kN] [kN] [mm] [Hz] [kN] [mm]
0 C0A0.2m-0.4 -2.11 1.02 -0.88 39,592 -5.34 -3.83
0 C0A0.3m-0.4.1 -2.05 1.93 -1.35 38,227 -5.95 -7.60
0 C0A0.3m-0.4.2 -2.05 1.93 -6.23 39,753 -4.74 -0.53
0 C0A0.7m-0.4.1 -2.05 3.85 -63.76 8,100 - -
0 C0A0.7m-0.4.2 -2.05 3.85 -65.80 1,285 - -
0 C0A0.7m0.3.1 1.80 3.85 0.15 28,263 - -
0 C0A0.7m0.3.2 1.80 3.85 0 39,980 -4.85 -1.30
0* C0A0.4m0.3 1.91 2.30 0.04 19,629 -5.03 -3.43
0 C0A0.3m-0.1 -0.30 1.66 -0.64 39,729 (-3.49) -8.66
0 C0A0.2m0.0 0 1.00 -0.29 40,020 -4.86 -4.84
43* C40A0.4m0.4 11.76 11.38 0.72 19,900 -31.33 -12.35
41 C40A0.7m-0.5 -13.03 18.37 -67.55 67 - -
41 C40A0.3m-0.7 20.12 9.33 -63.81 202 - -
71* C70A0.3m0.0.1 2.01 29.38 0.74 19,970 - -
70 C70A0.3m0.0.2 1.92 29.30 1.25 40,867 -93.26 -28.29
73 C70A0.2m-0.2 -22.39 23.08 0.10 31,619 -93.90 -26.53
71 C70A0.3m-0.5 -51.67 24.49 -75.01 19,081 - -
71 C70A0.5m-0.5 -50.61 45.78 -81.90 5 - -
*Tests withf=0.05 Hz, other tests are withf=0.01 Hz
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CHAPTER 4
Results

This chapter provides the results of the monotonic and cyclic loading tests. It includes
the main results of the load, displacement and stiffness responses. Finally, the chapter
presentes a cyclic loading interaction diagram applicableto bucket foundation design
in dense sand.

4.1 Monotonic tensile loading tests

Monotonic tensile loading tests were performed at the overburden pressure levels of 0,
20, 40 and 70 kPa. The average membrane pressure levelpm varied +/-2 kPa as seen
in Table 3.1. The four tests with overburden pressure of 0 kPashowed very similar
response. Three tests were formed with 20 kPa overburden pressure and showed a
bit scattered peak tensile load results. M40 tests were aborted after a displacement
of only -8 mm both times due to cracks in the membrane and a sudden pressure loss.
However, the peak load was captured and recorded. Only one monotonic tensile load-
ing with 70 kPa was successful. Other attempts failed due to the loss of pressure or
other technical issues. As seen in Figure 4.1, in most of the casesFT was reached at
the upward displacement of up to -10 mm (0.01D) except two tests, M20.1 and M70.1
(correspondingly, 0.02D and 0.07D).

The development of peak tensile resistance compared to the corresponding displace-
ment was visualized by the corresponding peak stiffnesskpeak. It is used as a sort of
normalization for comparison of the resistance development in different tests. Figure
4.2 showskpeak values at different surcharge levels. As the tests with the overburden
pressure had different soil unit weights (see sections 2.3.1 and 2.3.3), the surcharge
was estimated at the middle of the skirt depthd/2. This quantified better the tests with
different overburden pressures. Sevenkpeak values atpm of 0, 20 and 70 kPa lied
around 1 MN/m while the other three tests showed higher stiffness.

As expected, different levels of unit skirt frictionfs were developed in the mono-
tonic loading tests. The skirt friction corresponds to the measured tensile load divided
by the sum of the inner and outer areas of the skirt in contact to the soil. According
to the testing data, a quadratic fitting resembled best the measured tensile capacities
at the different surcharge levels (Figure 4.3) which is worth taking a little closer look
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Figure 4.1 Monotonic tensile load vs. displacement for tests with 0, 20,40 and 70 kPa overburden pres-
sure.
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Figure 4.2 Peak stiffness at different overburden pressure levels.

into. Unit skirt friction fs can be estimated using a well known equation 4.1 that
depends on the effective vertical stressσ′

v, lateral earth pressure coefficientK and
interface friction angleδ as follows:

fs = σ′

vKtanδ, (4.1)

Obviously, σ′

v increases linearly with depth for a uniform soil layer. Byrne and
Houlsby (2002) usedKtanδ=0.5 for back-calculations of different scale model tests
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Cyclic loading tests 17

and showed that it is a well applicable value for bucket foundations. Knowing this,
the data in Figure 4.3 should have had a linear fit. Gaydadzhiew et al. (2015) investi-
gated Aalborg University sand No. 1 properties in the same sand container as used in
this testing program. They used a Marchetti dilatometer (DMT) for the examination
of horizontal stress andK values. The lateral pressure coefficients were rather scat-
tered between approximately 0.4 and 4.5 for vertical effective stress between 3 and
9 kPa. The mean value ofK was approximately 1.6. However, the testing program
was limited to rather few attempts. Boulon and Foray (1986) showed thatK value
decreases to a constant value together with the increasing confining pressure as seen
in Figure 4.4. Thus, an attempt was taken to back-calculate the lateral earth pressure
value using equation 4.1 and assuming thatδ is constant and equal to 29◦, see Figure
4.5. The back-calculatedK value has a similar tendency of changing depending on
the stress conditions as seen in Figure 4.4. At the surchargeof 6 kPa, lateral earth
pressure coefficient lies approximately at about 1.8 which is close to 1.6 estimated by
Gaydadzhiewet al. (2015).
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Figure 4.3 Peak tensile load developed at different surcharge levels.

4.2 Cyclic loading tests

Cyclic loading conditions were modelled taking into consideration the monotonic load
results. For each of the overburden pressure levels, the reference monotonic tensile
resistanceFTR was estimated as the average of the peak tensile resistancesFT . The
intention was to test different levels of mean cyclic load and amplitudes and to find the
most critical load case. All of the cyclic tests were exposedto peak tensile loads, but
the mean loads were various: small compressive, zero (perfect two-way loading) or
tensile load. Most of the tests proved to be in a "stable zone". This means that during
the whole cyclic loading sequence of 20,000-40,000 cycles,the vertical displacement
was close to zero (|wcyc|<0.01D). Figure 4.6 shows some typical examples of this
behaviour.
However, as seen in Table 3.2, five cyclic loading tests were aborted during the cyclic
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Dense sand
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Figure 4.4 Lateral earth pressure vs. confining pressure. Reproduced from the figure presented by Boulon
and Foray (1986)
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Figure 4.5 Back-calculated lateral earth pressure vs. confining pressure.

loading because the upward cyclic developed rapidly and reached the limit of about
65 mm. Figure 4.7 shows four of those tests. In all cases, critical tensile loading was
applied, where the peak loads reached or even succeeded the reference tensile loads
FTR. It was noticed that even under so critical loads, the tests without the overburden
pressure and with saturated sand could hold longer than the tests withpm>0. The
reason for this was the development of pore suction that could help the bucket model
resist the critical loading. For example, Figure 4.8 shows full cyclic loading data for
test C0A0.7m-0.4.2. The inner pore pressure transducers (PP4-PP6) measured a small
negative suction that at the last part of the cyclic loading reached -8 kPa suction un-
der the bucket model lid. This suction divided by the inner area of the lid provides
a resistance suction force of 10 kN which is larger than the peak tensile load applied
of -5.9 kN. Even though the loading frequency was low (0.1 Hz), it was sufficient to
create partial drainage conditions and generate negative pore suction in the tests with
the critical loading.

18
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Figure 4.6 Accumulated displacement vs. cycle number for three tests.

Eight cyclic loading tests ended up with a post-cyclic monotonic pull-outFPc. Fig-
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Figure 4.7 Accumulated displacement vs. cycle number for four tests wherethe displacement was devel-
oped in less than 20,000 cycles.

ures 4.9, 4.10 and 4.11 show the results from tests with different overburden pressures.
Virgin monotonic peak loadFT is marked at the corresponding displacementwT . FPc

values were up to 15% lower thanFT in the tests with 0 kPa overburden pressure (Fig-
ure 4.9). Very few successful tests with the post-cyclic loading were performed in tests
with the overburden pressure of 40 and 70 kPa. Out from those few, it seems that no
obvious cyclic degradation was present after the long-termcyclic loading.
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Figure 4.8 Full data for the cyclic loading test C0A0.7m-0.4.2.

Table 4.1 shows stiffness results for cyclic loading tests.The following ratios of

20



Cyclic loading tests 21

−40−35−30−25−20−15−10−50

−7

−6

−5

−4

−3

−2

−1

0

Displacement [mm]

Lo
ad

 [k
N

] 

    Monotonic load,  F
T

C0A0.3m−0.4.1
C0A0.2m−0.4

C0A0.4m0.3

C0A0.7m0.3  

C0A0.3m−0.4.2
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Figure 4.10 Post-cyclic tensile loading for two tests vs. vertical displacement for tests with 40 kPa over-
burden pressure. Triangle marks the peak monotonic tensile load.

load and displacement were considered: cyclic unloading stiffnesskUN where the
trough value was subtracted from the peak value of a cycle, cyclic loading stiffnessk
where the peak value was subtracted from the trough value of acycle and peak stiff-
nesskPc for the post-cyclic monotonic loading part. Three tests developed very small
cyclic displacement and had very scattered and extremely high stiffness values, they
are marked with a star in Table 4.1. Overall, cyclic stiffness was always significantly
higher than the virgin loading stiffnesskpeak (see section 4.1). By its magnitude,
cyclic unloading stiffness was very similar to the loading stiffness except three tests
wherekUN was higher thank. The post-cyclic peak stiffnesskPc was generally higher
thankpeak with the mean value of 2.1 MN/m.
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Figure 4.11 Post-cyclic tensile loading for two tests vs. vertical displacement. Triangle marks the peak
monotonic tensile load.

Finally, based on the testing data, a cyclic loading interaction diagram was prepared.

Table 4.1 Stiffness results for cyclic loading tests.

pm, Test ID kUN , σ, k, σ, kPc,
[kPa] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m]
0 C0A0.2m-0.4 - - - - 1.4
0 C0A0.3m-0.4.1 - - - - 2.6
0 C0A0.3m-0.4.2* 1781 929.1 1705 892 0.7
0 C0A0.7m-0.4.2 21.34 8.68 19.08 7.938 -
0 C0A0.7m0.3.2 228.9 42.0 228.8 42.4 3.7
0 C0A0.4m0.3* 3190 717.9 3150 677.1 1.5
0 C0A0.2m0.0* 5469 2011 5704 2451 -
43 C40A0.4m0.4 17.1 0.5 17.1 0.5 2.7
41 C40A0.7m-0.5 8.8 3.7 7.3 2.9 -
41 C40A0.3m-0.7 183.6 157.2 39.4 5.4 -
71 C70A0.3m0.0.1 39.7 0.3 39.7 0.3 -
70 C70A0.3m0.0.2 41.2 0.4 41.2 0.4 -
73 C70A0.2m-0.2 39.2 0.5 39.2 0.5 -
71 C70A0.3m-0.5 34.8 1.0 34.8 1.0 -
71 C70A0.5m-0.5 13.0 5.5 5.5 0.9 -
*Rough estimate

Figure 4.12 shows the results of cyclic loading that led to maximum -50 mm (0.05D)
upward displacementwcyc. The normalized cyclic amplitudeξA and mean loadξm
were used as the main input to the diagram. The diagram was divided into two zones:
stable and unstable. The stable zone contains most of the performed tests, because
the displacement developed was close to zero. The response was completely drained
in these tests. In the stable zone, a bucket foundation wouldresist the tensile loading
without an excessive upward displacement. As seen, a small mean tensile load of up
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to ξm=-0.5 can be allowed for the design. All the tests in the unstable zone resulted in
a gradual pull-out of the bucket model. In this case, the foundation would need extra
ballast or to be increased in size.
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Figure 4.12 Interaction diagram for the cyclic loading tests with overburden pressure: 0 kPa (empty
marks), 40 kPa (blue) and 70 kPa (green). The red line marks the limit for the drained tensile capacity.
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CHAPTER 5
Conclusion and

Recommendations

Conservative assumptions often govern bucket foundation design in sand. Sev-
eral earlier researchers also recommended that no tensile loading should be allowed
for a safe design. But there are no publicly available studies that have focussed on the
cyclic behaviour of a bucket foundation subjected to one-way tensile loading. Con-
sequently, this study took a closer look into the cyclic tensile loading on a bucket
foundation model. The drained cyclic response was examinedsimulating the long-
term cyclic loading conditions for an offshore structure under the normal serviceabil-
ity performance. Cyclic degradation was tested applying post-cyclic pull-out loads on
the bucket foundation model. The physical model analysis led to the following obser-
vations:

• Unit skin friction increased with the increasing overburden pressure. Interest-
ingly, the measured increase was non-linear which could be explained by a change-
able lateral earth pressure coefficient.

• In terms of stiffness, cyclic loading stiffness was much higher than the virgin
monotonic loading stiffness. Post-cyclic monotonic loading stiffness was ap-
proximately twice larger than the virgin monotonic loadingstiffness. However,
cyclic unloading and loading stiffnesses were very similar.

• In most of the performed cyclic loading tests, the sand couldfreely drain and no
pore pressure was built up. It was found that mean tensile loads can be allowed
for long-term loading forξm up to -0.5. For the long-term loading analysis, the
tensile drained capacity should never be exceeded, becauseit would lead to pull-
out.

• After long-term cyclic loading, cyclic degradation of up to15 % was noticed
in tests with 0 kPa overburden pressure. Only a few tests with40 and 70 kPa
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26 Conclusion and Recommendations

overburden pressure succeeded, and they showed no cyclic degradation. But
more tests are needed to confirm a tendency.

Interface properties were analysed based on the testing data. Variation of the prop-
erties, such as different skirt roughness and other types ofsand, would provide more
information that could be used for a more detailed interfaceparameter analysis. More-
over, better knowledge about the lateral earth pressure would be very useful and clar-
ifying the soil conditions. Dilatometer seems to be a suitable tool for the horizontal
stress analysis.

The interaction diagram is valid only for a bucket foundation with d/D=0.5. Dif-
ferent shapes of foundation model should be tested to provide more data. Rather few
tests were successful when testing the post-cyclic monotonic loading with the applied
overburden pressure. More tests would provide a better overview of the results and
reduce the scatter in the data.
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CHAPTER 6
List of Symbols

Greek Symbols
γ Total soil unit weight

γ′ Effective soil unit weight

δ Soil-structure interface friction angle

ξA Ratio of cyclic loading amplitude and static resistance

ξm Ratio of mean cyclic load and static resistance

σ3 Confining pressure

σv Vertical stress

σ′

v Effective vertical stress

ϕs Secant friction angle

Ψ Dilation angle

Latin Symbols

D Bucket model diameter

DR Relative soil density

E50 Secant Young’s modulus

F Load

Fcyc Cyclic load amplitude

Fmean Mean cyclic load

FP Preload during installation

FPc Peak post-cyclic tensile load
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28 List of Symbols

FT Peak tensile load

FTR Reference tensile load (average ofFT )

K Lateral earth pressure coefficient

N Cycle number

PP Pore pressure transducer

U Uniformity coefficient

d Skirt length

dinst Installed skirt length

ds Specific grain density

emax Maximum void ratio

emin Minimum void ratio

fs Unit skin friction

f Loading frequency

k Cyclic loading stiffness

kPc Post-cyclic monotonic loading stiffness

kpeak Monotonic loading stiffness

kUN Cyclic unloading stiffness

pm Membrane pressure

pt Tank pressure

v Tensile load velocity (Pull-out rate)

t Skirt thickness

wcyc Displacement during cyclic load

wT Displacement at peak tensile load

wPc Displacement at peak post-cyclic tensile load
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