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Abstract

The topic of this thesis is speech enhancement with a focus on models of voiced
speech. Speech is divided into two subcategories dependent on the character-
istics of the signal. One part is the voiced speech, the other is the unvoiced.
In this thesis, we primarily focus on the voiced speech parts and utilise the
structure of the signal in relation to speech enhancement.

The basis for the models is the harmonic model which is a very often used
model for voiced speech because it describes periodic signals perfectly. First,
we consider the problem of non-stationarity in the speech signal. The speech
signal changes its characteristics continuously over time whereas most speech
analysis and enhancement methods assume stationarity within 20-30 ms. We
propose to change the model to allow the fundamental frequency to vary lin-
early over time by introducing a chirp rate in the model. Filters are derived
based on this model and it is shown that they perform better than filters based
on the traditional harmonic model. In the filter design, estimates of the funda-
mental frequency and chirp rate are needed. Therefore, an iterative nonlinear
least squares method to estimate the parameters jointly is suggested. The es-
timator reaches the Cramér-Rao bound, and the iterative approach makes the
method faster than searching the original two dimensional space for the optimal
combination of fundamental frequency and chirp rate. To counteract the effect
of non-stationarity further, we suggest that the segment length should not be
fixed but depend on the signal at the given moment. Thereby, short segments
can be used when the signal characteristics vary fast, and long segments can
be used when the characteristics are more stationary. We propose to choose
the segment length according to the maximum a posteriori criteria and show
that the segmentation based on the chirp model gives longer segments than for
the harmonic model. This suggests that the chirp model fits the voiced speech
signal better. Other deviations from the perfect harmonic model can occur. As
it is well known from stiff-stringed musical instruments, the frequencies of the
harmonics in speech may also deviate from the perfect harmonic relationship.
We propose to take these deviations into account by extending the harmonic
model to the inharmonic model where small perturbations at each harmonic
can occur. Three different methods to estimate the inharmonicities are com-
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pared, and it is shown that including the estimate in the filter design leads to
better performance than a filter based on the traditional harmonic model.

We also propose to take a subspace perspective to speech enhancement by
performing a joint diagonalisation of desired signal and noise. The eigenvectors
generated from this operation is used to make a filter that estimates the noise,
and the desired signal is estimated by subtracting the noise estimate from the
observed signal. The filter is very flexible in the way that it can trade noise
reduction and signal distortion based on how many eigenvectors are used in
the filter design. The number of eigenvectors used in the filter in voiced speech
periods can also be chosen based on the harmonic model since the number of
harmonics in the speech signal is closely related to the best choice of number
of eigenvectors.

The papers in this thesis show that it can be beneficial to extend the tradi-
tional harmonic model to include non-stationarity and inharmonicity of speech.
The derived filters perform better than filters based on the harmonic model in
terms of signal-to-noise ratio and signal distortion. The voiced speech models
can also be used to make a noise covariance matrix estimate which can be used
in other algorithms as, e.g., the proposed joint diagonalisation based method.



Resumé

Emnet for denne afhandling er støjreduktion i talesignaler med et fokus på
modeller af stemt tale. Tale er delt i to underkategorier afhængigt af karakter-
istika af signalet. Den ene del er stemt tale, den anden er ustemt tale. I denne
afhandling fokuserer vi primært på den stemte tale og udnytter strukturen af
signalet i relation til støjreduktion.

Udgangspunktet for modellerne er den harmoniske model, som er en ofte
brugt model for stemt tale. Vi adresserer problemet med ikke-stationær tale, da
karakteristika for talesignalet ændrer sig kontinuært over tid. De fleste metoder
til støjreduktion og analyse af talesignaler antager at signalet er stationært i
analysevinduer på 20-30 ms, hvilket ikke er tilfældet. Vi foreslår at ændre den
harmoniske model så den tillader fundamentalfrekvensen at ændre sig lineært
indenfor et analysevindue. Dette gøres ved at introducere en chirpparameter
i modellen, og vi udleder filtre baseret på denne model. I filterdesignet er der
brug for at estimere både fundamentalfrekvensen og chirpparameteren. Der-
for foreslår vi endvidere en iterativ metode baseret på en nonlineær mindste
kvadraters metode til at estimere disse to samtidig. Den iterative tilgang gør
metoden hurtigere end at gennemsøge et todimensionelt rum for den optimale
kombination af fundamentalfrekvens og chirpparameter. For at kunne tage
hensyn til at signalet ikke er stationært i endnu højere grad, foreslår vi at
gøre længden af analysevinduet tidsvarierende og afhængigt af signalets karak-
teristik, og vi udleder en metode til optimal segmentering af signalet baseret
på maximum a posteriori princippet. Vi viser at chirpmodellen giver længere
segmenter end den traditionelle harmoniske model, hvilket antyder at chirp-
modellen passer bedre til talesignalet end den traditionelle harmoniske model.
Andre afvigelser fra den harmoniske model kan også forekomme. Som det er
velkendt fra strengeinstrumenter, kan frekvenserne af de harmoniske også afvige
fra den perfekte harmoniske relation og vi foreslår derfor at tage disse afvigelser
i betragtning og udvider den harmoniske model til den inharmoniske model,
hvor små afvigelser kan forekomme ved hver harmonisk frekvens. Tre forskel-
lige metoder til at estimere inharmoniciteterne præsenteres og sammenlignes,
og resultater viser at det giver bedre resultater, når inharmoniciteterne tages
med i betragtning.
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Vi foreslår også at tage et subspace perspektiv til støjreduktion ved at
lave en fælles diagonalisering af det ønskede signal og støjen, hvor egenvek-
torerne fra dette bruges til at generere et filter. Filteret estimerer støjen, og
det ønskede signal er fundet ved at trække dette estimat fra det observerede
signal. Filteret er meget feksibelt og graden af støjreduktion i forhold til signal-
forvrængning kan let ændres ved at ændre antallet af egenvektorer inkluderet
i filterdesignet. Antallet af egenvektorer i filterdesignet i perioder af stemt tale
kan også bestemmes ud fra den harmoniske model, da antallet af harmoniske i
signalet er nært relateret til det bedste antal af egenvektorer brugt i filteret.

Artiklerne i denne afhandling viser at det kan være fordelagtigt at udvide
den traditionelle harmoniske model til at kunne beskrive ikke-stationær tale
og inharmoniciteter. De udledte filtre virker bedre end filtre baseret på den
traditionelle harmoniske model når de sammenlignes på signal-støj-forhold og
signalforvrængning. Modellerne for stemt tale kan også blive brugt til at es-
timere støjkovariansmatricen som kan blive brugt i andre algoritmer som for
eksempel den foreslåede fælles diagonaliseringsmetode.
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Introduction

This thesis is concerned with the enhancement of speech, here seen as the
problem of removing noise from noise contaminated speech signals. Two dif-
ferent approaches to speech enhancement can be taken. One which is based
on information about the desired signal and one which is based on the noise
contaminating the signal. The first six contributions in this thesis are con-
cerned with speech enhancement based on signal models. In order to make the
best models possible, it is important to know something about the structure
of the speech signal which is closely coupled to how the speech is produced.
Therefore, this introduction will start out by explaining a bit about the speech
production system in Section 1. Based on knowledge of the speech production
system, models of voiced speech can be generated and used for speech enhance-
ment. Some models of relevance for this thesis are presented in Section 2. After
leaving the speaker, the speech is often corrupted by unwanted noise from the
environment as, e.g., car noise or other speakers. In order to process the speech
and make an effort to remove the noise, the signal has to be recorded. This can
be done either with a single microphone or an array of several microphones.
The signal models including the noise are presented in Section 3 in the single
and multichannel case. Speech enhancement algorithms can now be applied
to the recorded speech signal. A vast amount of research exists in the field of
speech enhancement. In Section 4, an introduction to the different groups of
speech enhancement methods is given. All methods, both the ones relying on
information about the desired signal and those depending on the noise, need
some extra information than what is directly given from the observed signal.
Section 5 is concerned with the estimation of noise statistics and signal param-
eters. The last section, Section 6, gives an overview of the papers constituting
the main body of this thesis and the main findings of each contribution.

1 Speech production

The production of speech is a result of pressing air from the lungs up through
the trachea, larynx, pharynx and mouth or nose cavities [13]. The structures
from larynx and up are in common called the vocal tract. Speech can either
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Fig. 1: A piece of unvoiced speech and its spectrum.

be generated by vibration of the two vocal folds, situated in the larynx, or by
passage of air through structures in the mouth. These two speech types have
very different characteristics and are, therefore, split into two groups. The
speech generated by vibration of the vocal folds are called voiced speech whereas
the other type is called unvoiced speech. During normal breathing and in the
production of unvoiced speech, the vocal folds are relaxed and air can pass freely
between them. The unvoiced speech sounds are mostly produced in the mouth
cavity, e.g., by the passage of air through the teeth and lips or by a sudden
opening of the lips [113]. These sounds often have a low amplitude, have a short
duration of maybe 10 ms and have a close similarity to random noise [32]. An
example of a piece of unvoiced speech and its spectrum is shown in Figure
1. In order to produce voiced speech sounds, the vocal folds are contracted,
obstructing the air flow between the lower and upper respiratory tract. This
produces an overpressure in the lungs which in the end causes the vocal folds
to open and let out the air. Thereby, the pressure in the lungs decreases
and the vocal folds close again due to the Bernoulli effect [13]. Hereafter, the
cycle repeats which makes the vocal folds vibrate and generate a quasiperiodic
signal [32]. A periodic signal, x(t), is one in which the signal repeats itself with
regular intervals of length T [106], i.e.,

x(t) = x(t+ T ), ∀ t. (1)

In a quasiperiodic signal, the period changes slowly over time. Therefore, when
looking at a short time interval, the signal is approximately periodic

x(t) ≈ x(t+ T ), t1 < t < t2. (2)

The quasiperiodicity of the voiced speech can be noticed in Figure 2 where a
piece of voiced speech and its spectrum is shown. In the figure a little more
than three periods are seen. The three periods look very similar, but it is
still easy to see that the signal is changing from one period to the next. The
period of the vibration, T , or the fundamental frequency, f0 = 1/T , depends

4
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Fig. 2: A piece of voiced speech and its spectrum.

on the elasticity, tension and mass of the vocal folds [13]. Long and thick vocal
folds will have longer periods of vibration than thin and short vocal folds.
Therefore, men often have a lower fundamental frequency than women. The
average fundamental frequency of men is around 125 Hz whereas women have
an average fundamental frequency around 200 Hz [143]. However, it is possible
to modify the length of the vocal folds within a speaker. A lengthening of the
vocal folds increases the tension of the folds, and, thereby, the fundamental
frequency also increases. The fundamental frequency is, therefore, not static
but changes over time leading the generated signal to be quasiperiodic instead
of periodic. The signal generated by the vocal folds contain more frequencies
than the fundamental. It also contains frequencies given by a multiple integer
times the fundamental, i.e., 2f0, 3f0 and so forth and falls, therefore, in the
category of harmonic signals. The voiced speech segments are longer than the
unvoiced with durations up to 100 ms [32].

The signal generated by the vocal folds are modified up through the vo-
cal tract. The vocal tract can be considered a tube open in one end and will
resonate accordingly. Further, the pharynx, nasal and mouth cavities are res-
onators [13]. These resonators shape the signal coming from the vocal folds
and make it sound like different voiced sounds as, e.g., the vowels e and i.
This can be seen as filtering the source signal from the vocal folds with a filter
given by the characteristics of the vocal tract. The filter will to some extent be
speaker dependent, but to a higher extent it will be dependent on which sound
the speaker is producing. The signal generated by the vocal folds is of interest
in order to build the models of the desired signal we consider later. It tells
something about the frequency content of the speech signal whereas the effect
of the vocal tract can be modelled by changing the amplitudes and phases of
the signal.

Linear prediction (LP) [7, 30, 146] can be used for separating the source
signal and the vocal tract filter. The model is made up having the source signal
as input to a vocal tract filter followed by a filter representing the lip radiation
which gives rise to a low pass filtering of the signal. The source signal is either
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random noise if the resulting speech signal is unvoiced, or a quasiperiodic pulse
train followed by a glottal filter if the resulting signal is voiced [30, 63, 131].
Using linear prediction, a combined filter of the vocal tract and lip radiation is
found by minimising the mean squared error between the estimated signal and
the speech signal. The error obtained from this is the source signal. This causes
some problems in the case of the qausiperiodic source since the least squares
minimisation gives the solution with an error resembling white noise as much as
possible [52]. To counteract this problem it has been suggested [33, 51, 52, 100]
to set up a sparse linear prediction problem instead. This ensures that the
residual is more sparse than with the traditional approach and, thereby, will
resemble a voiced speech excitation more. The sparsity is obtained by changing
the 2-norm to the 1-norm which is used as an approximation to the 0-norm.
Linear prediction is often used for speech coding [63, 115], but it is very sensitive
to noise [125] and it sounds synthetical [63]. Another way to get an insight into
the source signal is to use electroglottography (EGG) which gives information
about the vocal fold contact area (VFCA) [123]. The EGG signal is sometimes
included in speech databases as, e.g., the Keele database [112] and since it
reflects the VFCA it can also be used to estimate the fundamental frequency
of the voiced speech signal.

2 Signal models

Since the primary constituent of the speech signal is voiced [32, 65], we focus
on models for this type of speech. As was seen in Figure 2, the voiced speech is
approximately periodic, repeating itself after a short time interval. Further, the
spectrum shows a very characteristic pattern with content at a few frequencies
that are spaced equally on the frequency axis. Due to this, voiced speech is
often modelled using a harmonic model [3, 22, 71, 82, 83, 139]. The harmonic
model is not only important in relation to voiced speech signals since it can
also be used to describe a variety of other signals as, e.g., sounds from musical
instruments such as guitars, pianos and violins [4, 119], sounds from other
animals as birds and whales [2, 135], electrocardiograms (ECGs) [101] and
astronomical data [116].

Harmonic model

The harmonic model describes the sampled voiced speech by a sum of sinu-
soids with their frequencies related and given by multiple integer times the
fundamental frequency, f0, [71]

s(n) =

L∑
l=1

Al cos(lω0n+ φl), (3)
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2. Signal models

where n = 0, 1, 2, ..., N is the discrete time index, L is the number of harmonics
or the model order, Al is the amplitude of the l’th harmonic, ω0 = 2πf0/fs is
the normalised fundamental frequency in radians per sample with fs being the
sample frequency and φl is the initial phase of the l’th harmonic. Using Eulers
formula this can be rewritten as

s(n) =

L∑
l=1

αle
jlω0n + α∗l e

−jlω0n, (4)

where j is the imaginary unit, αl = Al

2 e
jφl and (·)∗ denotes the complex con-

jugate. To lower the computational complexity and ease the notation, the
signal can be converted into its complex counterpart by use of the Hilbert
transform [22, 60, 93]

s(n) =

L∑
l=1

αle
jlω0n, (5)

where αl = Ale
jφl . Speech enhancement is often performed on real signals

whereas the parameter estimation is performed using the complex model. How-
ever, speech enhancement can also be performed using the complex model since
the real signal can easily be obtained from its complex counterpart [22].

The harmonic model is used for voiced speech signals under the assumption
of stationarity within the analysis frame. The analysis frame is often chosen to
be in the proximity of 30 ms [32]. Even though a short analysis frame is chosen
it is well known that the signal is not stationary [32, 37] but has a fundamental
frequency that varies continuously over time. This non-stationarity can be
taken into account by using the harmonic chirp model instead of the traditional
harmonic model.

Chirp model

In a chirp, the signal is not stationary but changes characteristics over time in
a specific manner. In the harmonic chirp model, the instantaneous frequency
varies linearly with time instead of being constant within the analysis frame.
Therefore, the instantaneous frequency of the l’th harmonic, ωl(n), is given by

ωl(n) = l(ω0 + kn), (6)

where k is the fundamental chirp rate. The instantaneous phase, ϕl(n), is given
by the integral of the instantaneous frequency, i.e.,

ϕl(n) = l

(
ω0n+

1

2
kn2

)
+ φl, (7)
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and, thereby, the harmonic chirp model becomes

s(n) =

L∑
l=1

αle
jl(ω0n+ 1

2kn
2). (8)

Here, the chirp model is given in the complex framework but the models for
real signals can easily be extended to include the chirp signal as well. The chirp
model has earlier been considered in an alternative to the standard fast Fourier
transform (FFT) for the analysis of speech signals in [79, 152]. It is shown that
more sharp peaks are obtained in the positions of the harmonics compared
to using the normal FFT where the spectrum is more blurred. Chirp signals
have also been considered in the area of automatic speech recognition [144, 145]
where more robust features are obtained when the model is extended to include
chirp signals.

With a signal model matching the desired signal better, it is worth con-
sidering if longer frames than the normal ones of approximately 30 ms can be
used to analyse and process the signal. The small frame sizes are set under
the assumption of stationarity to ensure that this assumption at least to a rea-
sonable degree is satisfied. If another model that takes the non-stationarity of
speech into account is used, the frame size can be revised to fit the assumptions
of the new model which in the case of the linear chirp model will be that the
fundamental frequency changes linearly within one frame. The advantage of
longer frames will be a higher resolution during frequency analysis of signals
due to the time-bandwidth product [133], as well as more accurate estimates of
the parameters of the model as seen in Papers C and D and in [72, 73] where
the best obtainable accuracy of the estimators are seen to decrease with the
frame length.

The characteristics of the signal changes all the time and some times faster
than others. This means that the assumptions of stationarity or a linearly
changing fundamental frequency are better fulfilled in some frames than in
others. Therefore, a fixed frame length might not be an optimal choice. Instead
a varying window size might be beneficial. In periods where the fundamental
frequency changes with a fixed rate for a long period, a long window might as
well be used, whereas at points where the characteristics of the fundamental
frequency changes fast, a short window might be better, maybe even a shorter
window than the original fixed window size. In [114, 115], varying segment
lengths based on linear prediction and quantisation error is suggested.

Inharmonic model

Looking at the spectrum of a speech signal, the harmonics are not situated
at exact multiples of the fundamental [110], leading to the introduction of an
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3. Noisy environments

inharmonic signal model [22, 46]:

s(n) =

L∑
l=1

αle
j(lω0+∆l)n, (9)

where ∆l is a small deviation away from the harmonic frequency. However, due
to the time-bandwidth product [133], it is difficult to know the exact reason
for this inharmonicity. Using very short segments for the analysis gives a poor
frequency resolution whereas the signal gets less stationary when the analysis
frame is extended. Spectra of chirp signals can show peak splitting and other
alterations of the harmonic structure when analysed using a standard FFT
and it is, therefore, difficult to distinguish between the two phenomena in the
analysis. No matter the reason, taking the inharmonicity into account can lead
to better results, e.g., in amplitude estimation [109].

Inharmonicity is also known from musical instruments. Here the inhar-
monicity is more well studied and is an accepted phenomenon taken into ac-
count in piano tuning [119]. The well accepted inharmonicity in musical in-
struments makes it easy to believe that a similar phenomenon is present in
voiced speech even though no absolute evidence has been given yet. The in-
harmonicity in musical instruments follows a more restricted model than the
one suggested for voiced speech:

s(n) =

L∑
l=1

αle
jlω0

√
1+Bl2n (10)

where B � 1 is an instrument dependent stiffness parameter [22]. The model
is also used for fundamental frequency estimation in musical signals [38, 56].

3 Noisy environments

Unfortunately, most often the desired signal, s(n), is corrupted by noise from
the environment. Therefore, we do not have access to the clean signal. Nor-
mal hearing listeners have an implicit speech enhancement system in the au-
ditory system which make them able to extract the speech signal in vary-
ing noise conditions from street noise to picking out a single speaker out of
a large company [15, 28, 58, 120]. However, for hearing impaired listeners,
this property is to some extent destroyed leading to the cocktail party prob-
lem [7, 20]. This means that they need the desired signal to have a higher
level relative to the noise in order to understand what is being said than do
listeners with normal hearing [58], and they can, therefore, benefit from pre-
processing of the signal in order to enhance the desired signal. Further, speech
enhancement is important when a recording of the noisy speech is used for
other purposes such as in communication systems where noise decreases the
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coding efficiency [80, 96, 125, 142], or in automatic speech recognition where
the word error rate (WER) is increased when the signal is noisy [68, 89, 140].

The environmental noises have different characteristics dependent on their
origin. Noise from machinery, including, e.g., cars, has a high content of low
frequencies whereas the noise coming from other speakers at a party has a
very similar frequency content to the signal which is sought isolated from the
mixture. This of course makes the problem of separating one speaker from
others a more difficult problem than enhancing speech contaminated by car
noise. In a lot of speech enhancement and parameter estimation methods,
the noise is assumed to be white and Gaussian. The assumption of the noise
being Gaussian distributed is the most conservative assumption one can make
and it will lead to the worst-case Cramér-Rao bound [134]. The white noise
assumption means that the noise is assumed evenly distributed in the entire
frequency range which is rarely the case for real life noise types. Sometimes
the methods work well even though the noise does not fulfil the assumptions.
Otherwise, it is possible to prewhiten the signal [61, 62] to make the noise more
white, but this demands knowledge of the noise statistics, and the operation can
have an influence on the desired signal too. Environmental noises are assumed
independent of the desired signal, and signal and noise have an additive relation.
The signal and noise can also have a convolutive relation. This is the case in
rooms where the sound is reflected from the walls. The reflections are used
by normal listeners to identify the room and where the sound is coming from
and are often included as part of the desired signal as in [77]. However, the
reflections can be a problem for hearing impaired listeners and multichannel
speech enhancement methods and are, therefore, sometimes treated as noise.
The problem is well studied [45, 84, 129, 130], but this thesis is focusing on the
additive noise types, and convolutive noise will not be considered further.

3.1 Observed signal

The speech signal can be recorded by a single microphone leading to the ob-
served signal:

x(n) = s(n) + v(n), (11)

where v(n) is the additive noise. With the harmonic signal model this leads to:

x(n) =

L∑
l=1

αle
jlω0n + v(n). (12)

The speech processing is often done on a vector of N consecutive samples, here
defined for discrete time indices going forward in time from n to n+N − 1:

x(n) = [x(n) x(n+ 1) x(n+N − 1)] (13)
= s(n) + v(n), (14)
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3. Noisy environments

where s(n) and v(n) are defined in a similar way to x(n). The desired signal
vector starting at n = 0 can be written as a combination of a matrix of Fourier
vectors with frequencies corresponding to the harmonic frequencies

Z =
[
z(ω0) z(2ω0) . . . z(Lω0)

]
, (15)

z(lω0) =
[
1 ejlω0 . . . ejlω0(N−1)

]T
, (16)

and a vector containing the complex amplitudes a = [α1 α2 . . . αL]T . How-
ever, to shift the start position of the vector to an arbitrary n, the matrix D(n)

is included:

D(n) =

e
jω0n 0

. . .
0 ejLω0n

 , (17)

and the final model becomes

x(n) = ZD(n)a + v(n). (18)

The model can easily be changed to another set of time indices by multiplying
the signal model with a simple delay, or it can be extended to the harmonic
chirp model as we suggest in the Papers A, B and C or the inharmonic model
as suggested in Paper D by changing the exponent of the exponential function.

Alternatively, the speech signal can be sampled with several microphones.
An example of this can be seen in Figure 3 where a uniform linear array (ULA)
is used. In the multichannel scenario the signal recorded by sensor ns at time
instant nt is given by:

xns
(nt) = sns

(nt) + vns
(nt). (19)

Using the uniform linear array, assuming the harmonic model and no attenua-
tion due to the distance to the source, the recorded signal is given by [73]:

xns
(nt) =

L∑
l=1

αle
jlω0nte−jlωsns + vns

(nt), (20)

where ωs = ω0fsc
−1d sin θ is the spatial fundamental frequency, with c the

speech of sound, d the distance between the microphones and θ ∈ [−90◦; 90◦]

the direction of arrival measured relative to a line perpendicular to the ULA.
The relation between ω0 and ωs is dependent on the array structure, and the
model can be adapted to other array structures by exploiting the relation of
the microphones for the array under consideration. For processing in the mul-
tichannel case, a vector model similar to the one in (18) is defined as can be
seen in [73] and is used in Paper E. The model can of course also be changed
to cover the chirp model or the inharmonic model.
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Fig. 3: Sketch of a multichannel setup with a uniform linear array.

4 Speech enhancement

The objective of speech enhancement is to recover the desired signal from the
noisy observation in the best possible way. This means that the noise should
be reduced while the distortion of the desired signal is kept at a minimum.
There are two different viewpoints one can take to speech enhancement. One
is the noise driven approach, the other is the signal driven approach. In the
noise driven approach, the enhancement process is based on estimation of noise
statistics whereas in the signal driven approach, the speech signal is assumed to
follow a given model as, e.g., the harmonic model where the parameters of the
model has to be estimated from the noisy speech signal. Speech enhancement
can both take place in the time domain or some transformed domain. The
choice of domain depends on the approach. The signal driven approaches often
take place directly in the time domain whereas the noise driven approaches
often take place in a transformed domain. The subspace methods transform
the signal into a signal dependent domain as the Karhunen-Loéve domain when
the eigenvalue decomposition (EVD) is used [41, 98]. A very common signal
independent domain to use is the frequency domain because it is computational
effective [8]. A real valued signal will be represented by complex coefficients
in the frequency domain and is often separated into an amplitude and a phase
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4. Speech enhancement

term:

X(ω) = |X(ω)|eφx(ω) (21)
= S(ω) + V (ω) (22)

= |S(ω)|eφs(ω) + |V (ω)|eφv(ω), (23)

where X(ω) is the Fourier transform of x(n), |X(ω)| is the amplitude, and
φx(ω) is the phase, and similar for S(ω) and V (ω). It is common to focus
on enhancement of the amplitude and combine it with the noisy phase, but
recently the focus on phase enhancement has increased as will be discussed in
Section 4.3.

In the following some different speech enhancement methods are presented.

4.1 Noise driven approach

According to [91] speech enhancement methods can be divided into three groups:

• Spectral subtraction methods

• Subspace methods

• Statistical-model-based methods

The methods covered by these three groups all belong to the noise driven speech
enhancement methods.

Spectral subtraction methods

The first attempt to spectral subtraction was done in 1975 [151]. The action is
done on a pseudo-cepstrum by setting elements close to the origin to zero. In
1979, Boll proposed a spectral subtraction algorithm in the Fourier transform
domain [12] which has been the basis of further attempts to perform spectral
subtraction. The principle behind spectral subtraction is very simple and is
based on the assumption that the desired signal and noise are additive. There-
fore, the original spectrum can be obtained by subtracting the noise spectrum
from that of the observed signal [91]:

Ŝ(ω) =
(
|X(ω)| − |V̂ (ω)|

)
ejφx(ω), (24)

where S(ω), X(ω) and V (ω) are the Fourier transformed counterparts of s(n),
x(n) and v(n), (̂·) denotes estimates, and φx(ω) is the phase of X(ω). The
spectrum of the noise is not known and has to be estimated. An incorrect
estimate can, e.g., lead to negative absolute values which of course does not
reflect the spectrum of the desired signal and has to be corrected for. This can
be done by setting negative values to zero [91], but this leads to very abrupt
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changes in the spectrum which gives rise to unpleasant artefacts when listening
to the enhanced signal. To lower the impact of this, it is suggested in [12]
to replace the negative value with the minimum estimated value from adjacent
frames, and in [11] to use the noise estimate multiplied by a factor much smaller
than one. Both will give a smoother spectrum and lower the artefacts in the
signal. Besides from magnitude errors, the algorithm suffers from cross-term
errors and phase errors, where the magnitude errors are dominating at good
noise conditions shifting towards the other two error types when the noise
conditions worsen [42]. The flaws in the algorithm make it suffer from musical
noise [11, 57] and much research has been put into the reduction of this kind
of noise [11, 57, 90, 92, 94].

Subspace methods

The subspace methods build on the assumption that the covariance matrix of
the desired signal is rank deficient which is approximately the case for voiced
speech. The covariance matrix of the noise is, on the other hand, assumed to
be full rank. Algorithms have been based on both the singular value decompo-
sition (SVD) [16, 126] and the eigenvalue decomposition (EVD) [41, 127]. The
difference between the two methods is that the SVD is used on a Hankel matrix
composed of signal values whereas the EVD is used on the covariance matrix
of the signal, and the two methods are shown to give the same end result [61].
The EVD of the M ×M covariance matrix of the real observed signal is given
by:

Rx = UΛxU
T = U(Λs + Λv)U

T , (25)

where the last equality holds under the assumption of uncorrelated desired
signal and noise. The matrix U is orthonormal and contains the eigenvectors,
Λx, Λs and Λv are diagonal matrices containing the non-negative eigenvalues
in descending order corresponding to the covariance matrices of observed signal,
desired signal and noise, and Rx is the covariance matrix of the observed signal:

Rx = E(x(n)xH(n)) (26)
= Rs + Rv. (27)

where the last equality again holds under the assumption of uncorrelated de-
sired signal and noise, E(·) denotes mathematical expectation and Rs and Rv

are the covariance matrices of desired signal and noise, respectively, defined in
a similar way to Rx in (26). When the covariance matrix of the desired signal is
rank deficient with a rank of P < M , the last P + 1, ...,M eigenvalues are zero.
On the other hand, for both the EVD and SVD based subspace methods, the
noise is assumed white Gaussian, and all the eigenvalues will, therefore, be the
same and equal to the variance of the noise. This leads to a subspace spanned

14



4. Speech enhancement

by the first P eigenvectors containing desired signal plus noise, and a subspace
spanned by the last M − P eigenvectors containing only noise. Theoretically,
the desired signal could be reconstructed by subtracting the noise variance from
all eigenvalues and projecting the observed signal unto this space, however, the
noise is never perfectly white and this approach is, therefore, not widely used.
Alternatively, the desired signal can be estimated from projecting the observed
signal on the subspace spanned by the first P eigenvectors, avoiding contribu-
tions from the subspace only containing the noise. It is a difficult task to find
the correct rank P , but the choice of P is important. If the rank is chosen too
small, a part of the desired signal is removed by the operation whereas if the
rank is chosen too big, an unnecessary amount of noise is included. Therefore,
the choice of P is a tradeoff between noise reduction and signal distortion. For
voiced speech, the rank is closely related to the model order, and the rank can
often be chosen relatively low. Unvoiced speech is much more distributed over
the entire space, and a higher rank has to be chosen in order not to distort the
desired signal too much. Some different strategies for choosing the rank of the
desired signal plus noise subspace can be found in [3, 17, 31, 118].

The white noise assumption makes it necessary to prewhiten the observed
signal in most practical situations. This can be done by use of the Cholesky
factorisation of the noise covariance matrix [61] or, alternatively, the joint di-
agonalisation of signal and noise can be used [61, 66]:

VTRsV = Λ, (28)

VTRvV = IM , (29)

where V and Λ are the eigenvectors and eigenvalues, respectively, of the matrix
R = R−1

v Rs, and IM is an M ×M identity matrix. In [35], the Wiener filter
has been derived in the framework of joint diagonalisation and the method
is extended to the multichannel case. Optimal filters can also be generated
based on the eigenvectors from the joint diagonalisation as we do in Paper G.
Recently, a multichannel decomposition method based on frequency domain
data has also been proposed in [10].

Statistical-model-based methods

The methods herein are based on a statistical model of desired signal and noise.
In [97], a maximum likelihood (ML) estimator of the spectral amplitudes of the
speech signal is derived based on the assumption of Gaussian models for both
speech and noise. It is argued that the perception of speech is phase insen-
sitive, and, therefore, only the amplitude is included in the estimation. The
derived method is reported to work well for speech in noise, but the effect of
noise suppression is not satisfactory when speech is not present. The model
is extended with a probability of speech presence leading to a greater amount
of noise suppression when speech is not present. Based on the same statistical
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assumptions, a minimum mean squared error (MMSE) spectral amplitude es-
timator is derived in [39]. It is shown that the MMSE estimate of the phase
is given by the noisy phase, and based on this the phase of the observed sig-
nal is used unaltered. The same authors later modify the method to minimise
the mean squared error of the log-spectral amplitudes instead [40]. This is
motivated by the way sound is perceived by the human auditory system.

This group also contains theWiener filter which minimises the mean squared
error between the desired signal and the estimated desired signal. In the time
domain the error is given by [19]

es(n) = s(n)− ŝ(n) = s(n)− hHwx (30)

where hw = [h0 h1 . . . hM−1] is the Wiener filter of length M . The Wiener
filter is then

hw = arg min
h
‖es(n)‖22 (31)

= R−1
x RsiM , (32)

where iM is the first column of an M ×M identity matrix. The Wiener filter
often introduces quite a lot of distortion. Recently, other filters have been
proposed which are derived based on certain performance measures as, e.g.,
signal distortion [9]. This gives a new family of filters with more control over the
amount of noise reduction and signal distortion. One of these filters minimise
the amount of noise passing through the filter subject to the constraint that
the signal distortion should stay below a given limit. This will generate a
more flexible filter where it is possible to trade off noise reduction and signal
distortion. The filter has a very similar appearance to the original Wiener
filter [6]

hλ =

(
Rs +

1

λ
Rv

)−1

RsiM . (33)

Here λ > 0 is a tuning parameter. When λ → ∞, hλ → iM , which gives
ŝ = x(n) and the observed signal is passed unaltered through the filter, when
λ = 1, the filter reduces to the Wiener filter, and when λ→ 0 a large amount
of signal distortion is introduced.

The Wiener filter is also often used in the frequency domain. Here, the
filtered frequency coefficients are given by [86]

Ŝ(ω) =
|S(ω)|2

|V (ω)|2 + |S(ω)|2
X(ω). (34)

The Wiener filter has also been extended to the multichannel case.
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4.2 Signal driven approach

Based on the harmonic model, a set of filters for speech enhancement is de-
rived. The principle is to pass the signal at the harmonic frequencies while
suppressing the content at other frequencies. The first attempts to do this
was done using the comb filter [43, 87, 102] which has peaks at the harmonic
frequencies and valleys in between. The comb filter is a bit rigid and cannot
adapt to different noise types. Therefore, other filters have been constructed
based on the principle of the Capon beamformer [18] which passes the signal
coming from one direction and suppresses other directions as much as possible.
This filter has a single constraint at the angle of the desired signal whereas
in [44] the algorithm is expanded to include several constraints. This could be
to pass the signal from one direction while completely blocking the signal com-
ing from another direction. This can be adapted to harmonic speech signals by
setting up constraints at each of the harmonics, forcing the filter to pass them
all undistorted while attenuating the signal at other frequencies. This can be
expressed by the optimisation problem [22]:

min
h

hHRxh s.t. hHZ = 1T , (35)

where h = [h(0)h(1) . . . h(M − 1)]H is the filter response of length M , and
1 = [1 . . . 1]T . The filter fulfilling this is the linearly constraint minimum
variance (LCMV) filter given by:

hLCMV = R−1
x Z(ZHR−1

x Z)−11. (36)

The estimated signal is given by:

ŝ = hHx. (37)

Dependent on whether Z is generated according to the traditional harmonic
model, the harmonic chirp model, or the inharmonic model, the filter will be
optimised for the respective signals. In the multichannel case, the filter has a
similar structure, but here both Rx and Z have to be defined slightly different
than in the single channel case [73] as can be seen in Paper E.

When the speech signal fulfils the harmonic model completely, it is shown
that using the covariance matrix of the observed signal, Rx, in (35) is the same
as using the noise covariance matrix, Rv, [71]. However, when this is not the
case, using the noise covariance matrix will lead to better results. Using the
covariance matrix of the observed signal will make the algorithm minimise the
overall output from the filter, including parts of the desired signal, whereas
using the noise covariance matrix will only lead to a minimisation of the noise
output from the filter. Another related filter can be derived where the noise
covariance matrix is estimated as an intrinsic part of the filter design. This is
the amplitude and phase estimation filter (APES) [23, 69, 70, 133]. The APES
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filter is derived by minimising the mean squared error between the filtered
signal and the signal model:

J =
1

N −M + 1

N−M∑
n=0

|hHx(n)− aHw(n)|2, (38)

where w(n) = [ejω01n . . . ejω0Ln]. The error is minimised under the same
constraint as the LCMV filter, hHZ = 1, leading to the filter:

hAPES = Q−1Z(ZHQ−1Z)−11, (39)

where Q is a noise covariance matrix estimate given by:

Q = Rx −GHW−1G, (40)

G =
1

N −M + 1

N−M∑
n=0

w(n)xH(n), (41)

W =
1

N −M + 1

N−M∑
n=0

w(n)wH(n). (42)

The APES filter performs better than the LCMV due to this intrinsic noise
covariance matrix estimate. However, as shown in Paper B, the APES noise
covariance matrix estimate can also be beneficial to use in other filters which
are not based on the signal driven approach.

4.3 Phase enhancement

In many of the enhancement methods performed in the frequency domain, only
the amplitude spectrum is changed whereas the phase is left unaltered. This is
the case in, e.g., the spectral subtraction methods, the ML estimator presented
in [97] and the MMSE estimator in [39]. In [97], it is argued that the percep-
tion of speech is phase insensitive whereas in [39], the MMSE phase estimate is
used, which happens to be the noisy phase. The use of the noisy phase is also
motivated by [149] where it is shown through listening experiments that the
phase is unimportant in relation to the perceived signal-to-noise ratio (SNR).
However, in [105] the phase is shown to be important in the reconstruction
of signals. The spectral amplitude and phase are used separately paired with
a dummy phase or amplitude term, or crossed with the amplitude and phase
from another signal. In the first case, the signal reconstructed from the phase,
resembles the original signal more than the one reconstructed from the ampli-
tude, and in the second case, the reconstructed signal has closest similarities
with the signal delivering the phase term to the reconstructed signal. Listening
tests in [107] consolidates the importance of the phase in speech enhancement.
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4. Speech enhancement

Another motivation for modifying the phase is given in [136] where the incon-
sistency of phase is discussed. Only modifying the spectral amplitude, gives
inconsistent spectra, meaning that the spectrum of the reconstructed signal
is not the same as the original spectrum. In [59], an iterative algorithm is
presented where the phase is modified to make the spectrum consistent, and
in [85], an algorithm for a consistent Wiener filter is presented. In [81, 82], a
method to estimate the phases independently is proposed. It is shown that the
phase in voiced speech periods can be evolved using the harmonic model leading
to better PESQ scores [67] for the reconstructed signals. The phase estimate
can also be used to give better estimates of the spectral amplitude [47, 49]. An
overview of phase enhancement and the recent advances in the topic is given
in [50].

4.4 Performance measures

The performance of the speech enhancement methods is often measured relative
to the ratio of signal to noise in the observed signal given by the input signal-
to-noise ratio (SNR) [5]:

iSNR =
σ2
s

σ2
v

, (43)

where σ2
s and σ2

v are the variance of the desired signal and noise, respectively,
before speech enhancement.

One way to evaluate the speech enhancement method is by use of the output
SNR which should be greater then the input SNR for the speech enhancement
method to be successful [5]

oSNR =
σ2
s,nr

σ2
v,nr

, (44)

where σ2
s,nr and σ2

v,nr are the variances of the desired signal and noise after noise
reduction. For the time domain filtering methods where the desired signal is
given as the output from the filter, the output SNR can be expressed as [5]

oSNR =
E(hHssHh)

E(hHvvHh)
=

hHE(ssH)h

hHE(vvH)h
=

hHRsh

hHRvh
. (45)

However, increasing the SNR is not the only quality a speech enhancement
method should have. If the signal is distorted in the effort to increase the
SNR, the quality of the signal might not be improved even though the SNR is.
Therefore, the signal distortion is also an important measure in the analysis of
a proposed method. The distortion can be measured in different ways as, e.g.,
the signal reduction factor [5]:

ξsr =
σ2
s

σ2
s,nr

=
σ2
s

hHRsh
, (46)
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or the signal distortion index [5]:

νsd =
E
(
(ŝ(n)− s(n))2

)
E (s2(n))

. (47)

If a filter is distortionless, it passes the desired signal through the filter without
any modification. In such a case the signal reduction factor would be one and
the signal distortion index would be zero.

It is also possible to measure the amount of noise reduction obtained by a
filter using the noise reduction factor [5]:

ξnr =
σ2
v

σ2
v,nr

=
σ2
v

hHRvh
. (48)

There is a close relation between the ratio of input SNR to output SNR and
signal reduction to noise reduction [5]:

oSNR
iSNR

=
ξnr

ξsr
. (49)

Similar measures are derived in the frequency domain and for subspace based
filtering in [7, 8, 10].

The perception of speech by human listeners is also important since there is
not always a close relation between SNR, signal distortion and how the speech
is perceived by listeners. For this, listening experiments can be performed.
The listening tests have to be performed in a controlled environment like an
acoustically damped booth made for the purpose so that no outside noise will
interfere with the tests. The tests can be set up in different ways, but could,
e.g., contain two different versions of the same sentence where the test subject
has to choose the preferred one. This can be repeated for different test sen-
tences to make sure that the trend is the same independent on what is being
said. Further, for the experiment to be representable, a lot of test subjects
need to perform the test which makes listening tests cumbersome to perform.
This has motivated researchers to make objective performance measures that
try to mimic how the speech would be rated by a human listener. Two of
these methods are the perceptual evaluation of quality (PESQ) [121] score and
short-time objective intelligibility (STOI) [138]. Both measures are performed
based on the data in the frequency domain but the PESQ score includes more
steps than STOI. STOI is a measure of the linear correlation between the clean
speech and the processed speech. In PESQ the clean speech and processed
speech are time aligned in each time frame. After this an auditory transform is
performed on the data which is a psychoacoustic model mapping the signal into
its perceived loudness. The difference in loudness between clean and processed
speech is found and two different disturbances are obtained, one with, dASYM ,
and one without, dSYM , an asymmetry factor. The two disturbances are com-
bined into one performance measure as PESQ = 4.5−0.1dSYM−0.0309dASYM .
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5. Noise statistics and parameter estimation

This mix of the two parameters is, however, optimised for speech transmitted
over telephone networks and it was proposed in [67] to change the weighting to
optimise the measure for speech enhancement algorithms.

5 Noise statistics and parameter estimation

For the noise driven speech enhancement approaches, information about the
noise statistics are necessary to perform the speech enhancement. For time do-
main processing this would be a covariance matrix estimate and for frequency
domain processing, the power spectral density (PSD) of the noise is estimated.
Using a signal driven approach on the other hand, no information about the
noise is needed, but dependent on the signal model some different signal pa-
rameters have to be estimated. For the harmonic model this is, e.g., the funda-
mental frequency and model order. Further, an estimate of the observed signal
statistics is needed, either to use directly as in the spectral subtraction in (24),
or as a means to estimate the statistics of the desired signal as is needed in,
e.g., the Wiener filter in (32) and (34). If the desired signal and noise are not
correlated, the statistics of the signals are additive:

Rx = Rs + Rv ⇔ (50)
Rs = Rx −Rv, (51)

and

|X(ω)| = |S(ω)|+ |V (ω)| ⇔ (52)
|S(ω)| = |X(ω)| − |V (ω)|. (53)

In the time domain, it is common to estimate the covariance matrix of the
observed signal by use of the sample covariance matrix estimate [22]:

Rx =
1

N −M + 1

N−M∑
n=0

x(n)xH(n), (54)

where M < N/2 + 1 to ensure a full rank matrix which is important if it
has to be inverted. This will produce an M × M matrix representing the
covariance of M consecutive samples. However, the estimate is based on N >

2(M − 1) samples. This is no problem for stationary signals, but as speech is
non-stationary this estimate can cause problems, especially in periods where the
signal is fast varying, and it becomes an even bigger issue in the multichannel
case. An alternative to the sample covariance matrix estimate is the covariance
matrix generated by use of the iterative adaptive approach (IAA) [72, 122,
155]. This approach minimises a weighted least squares cost function in the
attempt to estimate the spectral amplitudes of the signal. As an intrinsic part
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of the process, the covariance matrix of the signal is also estimated. The final
estimates are obtained by iterating between estimating the covariance matrix
based on a prior estimate of the amplitudes and estimating the amplitudes
based on the obtained covariance matrix estimate. The IAA approach does
not have the same restrictions on the relationship between M and N to make
the covariance matrix full rank. Therefore, we may chooseM = N which makes
the estimate more suited for fast varying signals. The drawback of the IAA
approach is that it has a high computational complexity and is, therefore, too
slow for some applications. However, work has been done to make the method
more computationally effective by exploiting the structure of the covariance
matrix and rewrite it in a framework where the discrete Fourier transform can
be utilised [53–55].

5.1 Noise estimation

Much work has been invested in estimating the PSD of the noise. This is not
a trivial problem and is still far from being solved. The initial way of solving
this problem was to estimate the PSD in periods without speech found by use
of voice activity detectors [117, 132, 141] and use this estimate in periods of
speech as well. However, this is not optimal in the case of non-stationary noise
since the estimated noise PSD will not be representative for the noise at a
different point in time. This lead to the suggestion of methods to estimate the
noise in presence of speech.

In [94, 95], the power is estimated in each frequency bin separately using
minimum statistics. It is based on the observation that the power in a frequency
bin at frequent points in time drops to the level of the noise. Since the spectrum
fluctuates rapidly over time, it is smoothed and the minimum is found. A
bias compensation is introduced to obtain the average noise level from the
minimum. One of the challenges in this method is to find a good value for the
smoothing parameter and the time window. Insufficient smoothing will give a
high variance of the noise estimate whereas too much smoothing will smooth
out the minima and give a wrong estimation. The window size is a trade-off
between having speech free periods where the level decreases to the noise level
and having the noise characteristics change too much within one time window.
A typical time span is 400 ms to one second [91]. In [34], it was suggested to
modify the method to track the noise continuously instead of within fixed time
frames in order to react better to non-stationary noise.

Another suggested method is to update the noise estimate in a given fre-
quency bin based on an estimate of the SNR [88]. The estimate of the power
in the bin will then be a combination of the estimate prior in time and the
present estimate, weighted according to the SNR. When the SNR is high, the
estimate is primarily given by the former estimate whereas when the SNR is
low, the estimate is primarily given by the present noise estimate. Alterna-
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5. Noise statistics and parameter estimation

tively, the weighting can be done according to the probability of speech being
present [48].

In the multichannel case, it is not enough to estimate the PSD of the noise.
Here, knowledge about the correlation between the noise in the different mi-
crophones is also needed. This makes the multichannel noise estimation much
more difficult than in the single channel case [64].

5.2 Signal parameters

For the harmonic signal model presented earlier, the parameters to be estimated
includes the fundamental frequency, the model order, and often times also the
amplitudes and phases. For the two modified harmonic models also the chirp
rate or the inharmonicities are needed.

The methods for parameter estimation can be divided into three groups [22]:

• Statistical methods

• Subspace methods

• Filtering methods

Statistical methods

As for the enhancement methods, these methods are based on a statistical
model of the signal. A very common method is maximum likelihood (ML)
[14, 21, 22, 36, 111] where a probability density function (PDF) of the ob-
served data given the parameters are set up and maximised with respect to the
wanted parameter(s). It is normal to assume that the data follows a Gaussian
distribution. A further assumption is often that the noise is white Gaussian
in which case the ML estimator of the fundamental frequency turns into the
non-linear least squares (NLS) estimator. This estimator minimises the two
norm between the observed signal and the signal model. It is also possible to
estimate several parameters jointly using these methods as in [73] where the
fundamental frequency and direction of arrival (DOA) are found jointly in a
multi-channel setup. ML methods to jointly estimate fundamental frequency
and chirp rate are presented in [26, 36]. Since the computational load of do-
ing a combined search of two parameters instead of one increases dramatically,
in [36] it is proposed to minimise a two step approximate cost function in-
stead of the original one, that makes it possible to take advantage of the DFT
whereas in [26] it is proposed to estimate the two parameters by iterating be-
tween optimising with respect to first the chirp rate and then the fundamental
frequency until convergence of the original cost function. The fundamental fre-
quency and the structured inharmonicity in pianos would also be possible to
estimate jointly using these methods whereas the unstructured inharmonicities
in human speech would lead to a search space with a too high dimensionality
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for the problem to be reasonable. In [108], a model containing both a chirp
parameter and inharmonicities is presented. The model is approximated with
a Taylor polynomial which makes the estimation easier, but the resulting sig-
nal will deviate from the true model, with the deviation getting bigger for
higher harmonics. Another way to estimate the inharmonicities would be to
estimate the fundamental frequency first since the inharmonicities in speech
are localised around the harmonic frequencies, and afterwards estimate the in-
harmonicities iteratively. However, this might be the best way to solve the
problem since the inharmonicities are not taken into account in the estimation
of the fundamental frequency. For the multi-pitch estimation scenario where
more than one source is present, it is proposed in [1] to exploit block sparsity.
No prior information about the number of sources or the number of harmonics
for each source is assumed which means that a model order estimate for each
source can be obtained with the algorithm at the same time. The method
minimises the two norm as was the case for the NLS method, but introduces
a penalty to ensure that the result is sparse. The block sparsity approach has
been extended to also estimate the fundamental frequency in the presence of
inharmonicities [104] and in linear chirp signals [137].

Another very useful method is the maximum a posteriori (MAP). Whereas
ML is maximising the probability of the data given the parameters, MAP max-
imises the probability of the parameters given the data. The MAP approach
can be used for fundamental frequency and model order estimation, but can
also be used to choose between different models such as the harmonic model,
the harmonic chirp model and a noise-only model. Thereby, it can be used
as a voiced/unvoiced detector. The MAP estimator is part of the Bayesian
framework where also other parameter estimators are derived [29, 56, 103].

Subspace methods

The most well-known subspace parameter estimation methods are the multiple
signal classification (MUSIC) method and estimation of signal parameters by
rotational invariance technique (ESPRIT). Both methods can be used to esti-
mate fundamental frequency and model order [22]. The methods build on the
EVD and are both first derived for sensor arrays and DOA estimation but can
easily be adapted to parameter estimation of harmonic signals [24, 25]. The
MUSIC method [128] is based on the fact that the signal and noise subspaces
are orthogonal. The Z matrix in the signal model can also be shown to be or-
thogonal to the noise subspace given the correct model order and fundamental
frequency, and these parameters can, therefore, be found as those who maximise
the orthogonality between Z and the noise subspace. In [150], a polynomial
rooting method based on MUSIC is suggested for combined estimation of direc-
tion of arrival and range in order to avoid a two dimensional grid search. The
first parameter is found by solving for the roots on a polynomial whereas the
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second parameter are found by a grid search. The rooting in MUSIC is used in
connection with fundamental frequency estimation in [74], and could possibly
be extended to the two parameter case as an alternative to the ML iterative
method described in Section 5.2 to decrease computational complexity. The
ESPRIT method [124] takes advantage of the shift invariance of the matrix
Z. Two submatrices of the signal subspace matrix are generated, one being a
shifted version of the other. The difference between these two matrices, one
multiplied with a shifting matrix, is minimised in order to find the desired pa-
rameter estimate. MUSIC and ESPRIT have also been extended to joint DOA
and pitch estimation in the multichannel case [153, 154]. Another possibility
is to use weighted least squares fitting used for direction of arrival estimation
in [147, 148]. Here, the difference between a weighted version of the eigenvec-
tors and the steering vector multiplied with a matrix, that is solved for during
the derivation, is minimised. As with the subspace enhancement methods, one
of the drawbacks of the methods is that the noise has to be white.

Filtering methods

The filtering methods are based on the signal driven filters introduced in Sec-
tion 4.2. The filter is constructed to minimise the output power of the filter.
After the generation of the filter, the parameters are found as the candidates
maximising the output power since at the correct fundamental frequency a set
of harmonics will pass through the filter and increase the output power [27, 75].
As with the enhancement, the first filter introduced in this group was the comb
filter [99, 102]. The LCMV and APES filters described in the enhancement sec-
tion can also be used for finding signal parameters. The LCMV filter gives a
better spectral resolution than the APES filter [70]. The APES filter has a
worse spectral resolution and the fundamental frequency estimate is biased.
However, better estimates of the amplitudes and phases are obtained with the
APES filter compared to the LCMV filter. Therefore, the CAPES method
is proposed in [70] where a fundamental frequency estimate is first obtained
using the LCMV filter, and then, based on this estimate, the amplitudes and
phases of the sinusoids at the harmonic frequencies are found using APES. The
filtering methods have also been extended to the multichannel case [76].

5.3 Cramér-Rao bound

The best possible estimation accuracy of unbiased estimators is set by the
Cramér-Rao bound (CRB). This gives a measure of the average minimum
variance of the estimates obtainable by any estimator. Therefore, when the
estimates of an estimator on average hit the CRB, it is not possible for the
estimator to perform any better. The CRB is dependent on the SNR and the
segment length. For high SNR and long segment lengths, it is possible to obtain
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better estimates than at low SNR and short segment lengths.
The Cramér-Rao bound sets a lower limit to the variance of an unbiased

estimator as [78]:

var(θ̂g) ≥ [I−1(θ)]gg, (55)

where θg is the g’th parameter of the parameter vector θ of length G, [·]gg is
the matrix element of row g and column g and I(θ) is the Fisher information
matrix (FIM):

I(θ) = −E
(
∂2 ln p(x|θ)

∂θg∂θh

)
, (56)

where p(x|θ) is the probability density function of the vector x given the param-
eters in the vector θ. The CRB is given under the assumption of the regularity
condition

E
(
∂ ln p(x|θ)

∂θ

)
= 0 ∀ θ. (57)

For a harmonic signal, the parameter vector is given as

θ = [ω0 A1 φ1 . . . AL φL]. (58)

If it is assumed that the covariance matrix does not depend on the parameters
and the noise is white Gaussian, the FIM can be written as:

I(θ) =
2

σ2
v

Re

(
∂s(n,θ)H

∂θ

∂s(n,θ)

∂θT

)
, (59)

where Re(·) denotes the real part of the argument. This can be rewritten as:

I(θ) =
2

σ2
v

Re
(
DH(θ)D(θ)

)
, (60)

where

D(θ) = [d(ω0) d(A1) d(φ1) . . . d(AL) d(φL)], (61)

d(θ) =
∂s(n,θ)

∂θ
. (62)

Differentiating the signal vector s(n,θ) =
∑L
l=1Ale

jφlejlω0n with respect to
the parameters gives

[d(ω0)]n =

L∑
l=1

jlnAle
jφlejlω0n (63)

[d(Al)]n = ejφlejlω0n (64)

[d(φl)]n = jAle
jφlejlω0n. (65)
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The CRB can then easily be found by use of (61) and (55). This will give the
exact bound, but finding the asymptotic bound can also be beneficial which
gives an overview of the dependency of the bound on the different parameters
and the segment length. Asymptotic bounds for the harmonic model can be
found in [22]. The bounds for the harmonic chirp model and the inharmonic
model can easily be found in a similar way by replacing the signal vector and
making differentiations with respect to all parameters in the given model.

6 Contributions

The topic of this thesis is speech enhancement with a focus on voiced speech
models. We have primarily exploited ways to use or extend the harmonic model
in order to take deviations from the model into account. The deviations over
frequency are modelled by the inharmonic model introduced in Paper D. The
deviations over time come from the assumption of stationarity within the anal-
ysis frame. This problem we try to address by extending the harmonic model
to a harmonic chirp model in Papers A, B and C, where we in Paper A and B
explore the model in relation to speech enhancement and in Paper A look at pa-
rameter estimation and changing segment lengths. Paper E uses the traditional
harmonic model but in combination with the IAA covariance matrix estimate
where much shorter segments are necessary for the estimation and the station-
arity assumption, therefore, has to be fulfilled in much shorter time frames. In
Paper F, we exploit the harmonic model to make an estimate of the phase in
the STFT domain and in Paper G, we make speech enhancement based on joint
diagonalisation of desired signal and noise. The necessary statistics for desired
signal and noise may be obtained by methods proposed in the preceding papers.

Paper A The first paper in this thesis is introducing the harmonic chirp
model in relation to speech enhancement. The LCMV and APES filters are
derived based on the harmonic chirp model and compared to the traditional
harmonic model on synthetic signals and speech signals. It is shown that in-
cluding the chirp parameter in the signal model gives better output SNR and
PESQ score and less signal distortion.

Paper B This paper is exploring the harmonic chirp model further in re-
lation to speech enhancement. The derivations of the LCMV and APES filters
are done more in depth and further experimental analysis of the filters are per-
formed in order to investigate their performance as a function of the input SNR,
the segment length and the filter length. It is shown that including the chirp
rate in the model gives a better output SNR and less distortion. As mentioned,
the APES filter gives a noise covariance matrix estimate as a part of the filter
design. The performance of the filter with this covariance matrix estimate is
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compared to the performance when a noise covariance matrix estimate based
on the PSD is used. These two covariance matrices are also compared in a
Winer filtering setup, and it is shown that the APES noise covariance matrix
estimate also performs well in combination with the Wiener filter.

Paper C In this paper, we focus on the estimation of the fundamental
frequency and chirp rate of the harmonic chirp model. We propose to use the
maximum likelihood (ML) estimator because it reaches the CRB. In the paper
we assume that the noise is white and Gaussian and, thereby, the ML esti-
mator turns into the nonlinear least squares (NLS) estimator. Based on this
estimator a two dimensional grid search is needed in order to find the mini-
mum of the cost function. This is a computational heavy task, so we suggest
to make an iterative search instead, initialised at the harmonic fundamental
frequency and a chirp rate of zero. Further, since the change in fundamental
frequency is not constant, we suggest to vary the segment lengths dependent
on the characteristics of the signal. The MAP estimator is used to choose the
best segment length at each instant, and the combination of segment lengths
is found by backtracking. The results show that the harmonic chirp model
gives rise to longer segments than the traditional harmonic model. Both NLS
and MAP estimators are derived under the assumption of white Gaussian noise
and, therefore, we also suggest two filters to prewhiten the signal.

Paper D In this paper, we investigate the deviations from the harmonic
model over frequency by extending the harmonic model to take inharmonici-
ties into account. The inharmonicity at each harmonic is estimated using NLS,
the Capon (LCMV) filter and the APES filter, and the performance of the
three estimation methods is compared to the CRB. The estimated perturba-
tions are used to generate an APES filter which is compared to an APES filter
based on the traditional harmonic assumption. The NLS and Capon filter gives
good estimates of the inharmonicities and using the obtained estimates for en-
hancement in an APES filter increases the output SNR and lowers the signal
distortion relative to the harmonic model.

Paper E The focus of this paper is multichannel speech enhancement us-
ing IAA covariance matrix estimates. In order to make the sample covariance
matrix estimate full rank there is a restriction on the relation between the seg-
ment length and the size of the covariance matrix. Often there will also be
a restriction on the number of microphones used which means that the time
segments have to be very long. This can be a problem, especially if the funda-
mental frequency is fast varying. We suggest to make an estimate of the noise
covariance matrix by subtracting the contribution at the harmonic frequencies
from the IAA covariance matrix estimate of the observed signal and compare
the result to the APES filter. For an equal number of samples, enhancement
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based on the IAA estimate outperforms the APES estimate.

Paper F In this paper, we move from the time domain to the frequency
domain and suggest a least squares method to estimate the initial phases at the
harmonic frequencies. We base the estimate on the method described in [81]
where the phase evolution over time is estimated based on the harmonic model.
To avoid an offset between the clean phase and the estimated phase, we sug-
gest to estimate the initial phases by minimising the squared error between the
noisy phase and the phase estimated in [81]. The error on the phase, and the
mean squared error and PESQ score after reconstructing the signal using the
clean amplitude all show better performance than the method in [81].

Paper G This paper looks at speech enhancement based on joint diag-
onalisation. The covariance matrices of desired signal and noise are jointly
diagonalised and an estimate of the noise is obtained which is subtracted from
the observed signal to give an estimate of the desired signal. The first filter
is derived under the assumption of a rank deficient desired signal covariance
matrix. The filter is generated to estimate the noise based on the eigenvectors
corresponding to the least significant eigenvalues. For a rank deficient desired
signal covariance matrix we get noise reduction without any signal distortion,
but if some signal distortion is allowed, the filter works for other desired signals
as well. The amount of noise reduction to signal distortion can be changed by
choosing the number of eigenvectors included in the filter. It is shown that the
gain in SNR and signal distortion are dependent on the number of eigenvectors
used in the filter but independent of the input SNR.

The main part of the papers in this thesis are concerned with voiced speech
signals that do not fulfil the traditional harmonic model. The problem is hand-
led in different ways, either by modifying the model to make it fit the signal
better or by changing the segment length to accommodate the underlying sta-
tionarity assumption of the harmonic model. In cases of an extended model,
methods to estimate the extra parameters are proposed. The papers show that
making the harmonic model more flexible or changing the segment length give
better speech enhancement results in terms of output SNR and signal distor-
tion.

Changing the model makes it fit better to the desired signal and, thereby,
it gives rise to the reported increase in performance. It should however be
investigated further how large the coupling between the non-stationarity and
the inharmonicity is. Analysing non-stationary signals under the assumption of
stationarity can give rise to similar spectral phenomena as inharmonicities, and
a combined study of inharmonicities and non-stationarity would, therefore, be
interesting. Further, the proposed iterative estimator of fundamental frequency
and chirp rate shows that it is possible to expand the harmonic model to the
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harmonic chirp model without having to make a computational demanding two
dimensional grid search for the parameters and still reach the CRB. This makes
it more appealing to include an extra parameter in the model. Expanding the
model to take non-stationarities into account raises the question of how non-
stationary the signal is. This of course changes over time so a fixed segment
length is not necessarily the best choice. The proposed segmentation method
gives an alternative to fixed segment lengths which makes the model fit better
within each segment and takes advantage of long segments, and the benefits it
gives, whenever possible.

The speech enhancement methods based on the harmonic model have the
drawback that they only work in periods of voiced speech. The voiced speech
periods cover the largest part of the speech signal, but it would still be beneficial
to have models covering the entire signal. It is very difficult to find a speech
model covering both voiced and unvoiced speech since they are so different in
the structure. Instead, more research in the combination of models for voiced
and unvoiced speech models would be very relevant in the future.

Alternatively, speech enhancement can be performed as we did with the
filters based on joint diagonalisation. These exploit that the covariance matrix
of voiced speech has a rank corresponding to the number of harmonics, which
is lower than the rank of the noise covariance matrix. One great advantage of
these filters is that it is possible to trade off noise reduction and signal distortion
without having to derive completely new filters. In the future, the performance
of the filters can be increased by looking into the choice of eigenvectors included
in the filter and make this choice signal dependent and changing from frame
to frame. In periods of voiced speech, the optimal number of eigenvectors is
closely coupled to the model order, and the performance of the filter might be
increased by including an estimation of this parameter. We also showed that
even though a signal driven approach is not taken in the design of the filter,
it can still be beneficial to estimate the noise covariance matrix based on the
signal statistics in voiced speech periods.
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1. Introduction

Abstract

In this paper, the issue of single channel speech enhancement of non-stationary
voiced speech is addressed. The non-stationarity of speech is well known, but
state of the art speech enhancement methods assume stationarity within frames
of 20–30 ms. We derive optimal distortionless filters that take the non-stationa-
rity nature of voiced speech into account via linear constraints. This is facili-
tated by imposing a harmonic chirp model on the speech signal. As an implicit
part of the filter design, the noise statistics are also estimated based on the
observed signal and parameters of the harmonic chirp model. Simulations on
real speech show that the chirp based filters perform better than their harmonic
counterparts. Further, it is seen that the gain of using the chirp model increases
when the estimated chirp parameter is big corresponding to periods in the signal
where the instantaneous fundamental frequency changes fast.
Index Terms: speech enhancement, single-channel, non-stationary signals,
harmonic chirp model.

1 Introduction

Speech enhancement is important in many systems such as mobile phones,
hearing aids and teleconferencing systems where the desired signal is corrupted
by noise. Speech enhancement can be approached in different ways, common
ones being spectral subtraction [1, 2] performed in the frequency domain or
Wiener filtering performed in the frequency or time domain [2, 3]. These, and
most other speech enhancement methods, assume that the signal is stationary
within an analysis window, for speech this window is often assumed to be 20–30
ms.

Often, a noise driven approach is taken to speech enhancement where the
power spectral density is estimated after transformation to the frequency do-
main. This can be done in speech free periods using a voice activity detector
(VAD) [4] and extrapolating to periods with speech. In [5], this is expanded to
also include new calculations in short speech pauses and brief breaks in between
words, and in [6] the VAD is substituted with a speech probability, but, still,
the noise estimation relies primarily on speech pauses. Therefore, the noise has
to be stationary for longer periods than 20–30 ms in order for these methods
to work properly. Alternatively, a signal driven approach can be taken where a
model for the desired signal is assumed. An often used model is the harmonic
model. Here, the signals, speech and noise, are assumed stationary within the
window of 20–30 ms. However, this assumption is not fulfilled [7] since the
speech signal is non-stationary and varies continuously over time.

Speech enhancement of non-stationary speech is not well covered in the lit-
erature, but the issue of non-stationary speech is introduced in related fields.
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In [8, 9] a fan-chirp transform is suggested as an alternative to the traditional
Fourier transform to analyse harmonic signals. The frequency is here allowed to
vary linearly over time, leading to more sharp peaks in the spectrum when ap-
plied to a speech signal. Also in the field of speech recognition, non-stationary
speech is taken into consideration by using gammachirp filters instead of tra-
ditional gammatone filters [10, 11], making the methods more robust to noise.
In parameter estimation, a harmonic model extended to take non-stationarity
into account has been considered in [12, 13]. In [12], the basis is a very flexible
model including both a chirp parameter to take changes over time into account
and a detuning parameter which can account for individual variations away
from the harmonic frequencies. The model is then approximated with a Taylor
polynomial which leads to bigger and bigger deviations from the original model
as the harmonic number increases, as is also mentioned in the paper. In [13], a
harmonic chirp model is used to describe the voiced speech signal. This model
has a harmonic structure, but the instantaneous fundamental frequency is al-
lowed to change linearly within each segment, making the model capable of
coping with non-stationary speech. The focus in these papers is, however, not
on speech enhancement.

In this paper, we investigate the harmonic chirp model used in [13] in
relation to speech enhancement. The model is compared to the traditional
harmonic model [14], a common model used to describe voiced speech (see,
e.g., [15–17]) which is the major component of speech signals. Voiced/unvoiced
detectors [18] make it possible to discriminate voiced and unvoiced parts and
only use the model on the relevant parts. The unvoiced parts can then be
filtered by, e.g., a Wiener filter. The harmonic model assumes that the desired
signal is composed of a set of sinusoids having frequencies given by an integer
multiple of a fundamental frequency. In the traditional harmonic model, the
fundamental frequency is assumed constant in segments of 20–30 ms, whereas
the harmonic chirp model allows the fundamental frequency to vary linearly
within each segment by introducing a chirp parameter in the model. In the har-
monic framework, signals are often filtered by use of the Linearly Constrained
Minimum Variance (LCMV) filter or the Amplitude and Phase EStimation
(APES) based filter [14, 17, 19]. The principle in these filters is to pass the
desired signal undistorted while the noise is reduced as much as possible. We
derive the LCMV and APES based filters using the harmonic chirp model and
compare their performance on synthetic and real speech signals to similar filters
based on the traditional harmonic model. As a part of the derivation of the
APES based filter, a noise covariance matrix estimate is obtained which takes
the non-stationarity of speech into account.

In Section 2, the harmonic chirp model is introduced, in Section 3, the
LCMV and APES based filters are derived according to the harmonic chirp
model, and, in Section 5, their performance is compared to similar filters based
on the harmonic model. The paper is concluded in Section 6.
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2 Harmonic Chirp Model

Often it is assumed that the desired signal is stationary within blocks of 20-
30 ms. In such a framework a normally used model for voiced speech is the
harmonic signal model. However, the assumption of stationarity does not hold
since the frequencies of the harmonics are changing continuously over time.
Therefore, we here suggest to use a model which does not assume stationarity
but instead assumes that the harmonic frequencies change linearly within one
of these short segments. This can be done by using a linear chirp model and
the instantaneous frequency of the l’th harmonic, ωl, can then be expressed as:

ωl(n) = l(ω0 + kn), (A.1)

for time indices n = 0, · · · , N − 1 where ω0 is the normalised fundamental
frequency and k is the fundamental chirp rate. The instantaneous phase, θl, of
the harmonic components of the speech signal is given by the integral of the
instantaneous frequency:

θl(n) = l

(
ω0n+

1

2
kn2

)
+ φl (A.2)

where φl is the initial phase of the l’th harmonic. Thereby, the harmonic chirp
model can be expressed by:

s(n) =

L∑
l=1

αle
jl(ω0n+k/2n2), (A.3)

where L is the number of harmonics, and the initial phase is included in the
amplitude term to give the complex amplitude of the l’th harmonic, αl =

Ale
jφl , with Al > 0 being the real amplitude. We choose to work in the

complex domain since this leads to simpler expressions. A real signal can be
transformed to a complex signal by use of the Hilbert transform, and back
again by only considering the real part of the complex signal.

We are looking at the case where the desired signal, s(n), is corrupted by
noise, v(n), to give the observed signal, x(n),

x(n) = s(n) + v(n). (A.4)

The signal and noise are assumed uncorrelated and, therefore, we have that
the variance of the observed signal is the sum of the variances of desired signal
and noise, σ2

x = σ2
s + σ2

v .
The enhancement problem considered in this paper is then to get a good

estimate of the desired signal, ŝ(n), based on filtering of the observed signal

ŝ(n) = hHx(n) = hHs(n) + hHv(n), (A.5)
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where h = [h(0)h(1) · · · h(M − 1)]H is the filter with length M , x(n) =

[x(n) x(n+1) · · · x(n+M−1)]T , v(n) and s(n) are defined in a similar way to
x(n) and {·}T ({·}H) denotes the (Hermitian) transpose. Again, under the as-
sumption of uncorrelated signals, we have that σ2

ŝ = σ2
x,nr = σ2

s,nr+σ2
v,nr, where

σ2
x,nr = hHRxh is the variance of the observed signal after noise reduction, and

similar for σ2
s,nr and σ2

v,nr.

3 Filters

One filter that can be used for extracting harmonic signals is the LCMV filter
[14] which is minimising the output power of the filter while passing the desired
signal according to the signal model undistorted. This filter can be modified to
fit harmonic chirp signals instead and is then the solution to the optimisation
problem:

min
h

hHRxh, s.t. hHZ = 1T , (A.6)

where 1 = [1 · · · 1]T , Rx is the covariance matrix of the observed signal defined
as:

Rx = E{x(n)xH(n)}, (A.7)

with E{·} denoting statistical expectation, and Z is constructed from a set of
modified Fourier vectors:

Z = [z(ω0, k) z(2ω0, 2k) · · · z(Lω0, Lk)], (A.8)

with

z(lω0, lk) =


1

ejl(ω0+k/2)

...
ejl(ω0(M−1)+k/2(M−1)2)

 . (A.9)

The solution to the minimisation problem is:

h = R−1
x Z(ZHR−1

x Z)−11. (A.10)

The harmonic LCMV filter is a special case of this filter for k = 0, and in this
case the problem reduces to the one in [14].

In practice the covariance matrix is not known but has to be estimated.
This is often done by use of the sample covariance estimate

R̂x =
1

N −M + 1

N−M∑
n=0

x(n)xH(n). (A.11)
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However, in this estimate it is assumed that the signal is stationary over the set
of N samples. This is not the case when non-stationary speech is considered.
Therefore, we also suggest a modification of the APES based filter [17]. As a
part of the design of this filter, an estimate of the noise covariance matrix is
generated. This is done by subtracting the part coming from the desired signal
from the covariance matrix of the observed signal. By modifying this filter it
will be possible to obtain a noise covariance matrix which is independent of the
part of the desired signal aligning with the chirp signal model.

The APES based filter is the solution to the mean squared error (MSE)
between the filtered signal and the signal model:

MSE =
1

N −M + 1

N−M∑
n=0

|hHx(n)− aHw(n)|2, (A.12)

where a = [α1 α2 · · · αL]H and

w(n) =


ej(ω0n+k/2n2)

ej2(ω0n+k/2n2)

...
ejL(ω0n+k/2n2)

 . (A.13)

The solution to this minimisation, under the same constraint as in (A.6), is
given by:

h = Q−1Z(ZHQ−1Z)−11 (A.14)

with

Q = R̂x −GHW−1G, (A.15)

G =
1

N −M + 1

N−M∑
n=0

w(n)xH(n), (A.16)

and

W =
1

N −M + 1

N−M∑
n=0

w(n)wH(n). (A.17)

The LCMV filter in (A.10) and the APES based filter in (A.14) look very
similar. The difference between the two filters is that the LCMV filter uses the
covariance matrix of the observed signal, Rx, whereas the covariance matrix
used in the APES based filter, Q, can be seen as an estimate of the noise
covariance matrix.
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4 Simulations

The two new harmonic chirp filters are compared to the harmonic LCMV [14]
and APES based [17] filters. These filters are special cases of the harmonic
chirp filters and are obtained by setting k = 0. The performance is measured
by means of the output signal-to-noise ratio (oSNR),

oSNR(h) =
σ2
s,nr

σ2
v,nr

=
hHRsh

hHRvh
, (A.18)

where Rs and Rv are the covariance matrices of desired signal and noise, and
the signal reduction factor,

ξsr(h) =
σ2
s

σ2
s,nr

=
σ2
s

hHRsh
. (A.19)

The output SNR should be as high as possible whereas the signal reduction
factor should be as close to one as possible to avoid signal distortion.

The filters were first tested on synthetic harmonic chirp signals made ac-
cording to (A.3) through Monte Carlo simulations (MCS) [20]. The signals
were generated with L = 10, Al = 1∀ l, random phases, fundamental frequency
and fundamental chirp rate in the intervals: φl ∈ [0, 2π], f0 ∈ [150, 250] Hz,
k ∈ [0, 200] Hz2. The signals were added white Gaussian noise with a variance
calculated to fit the desired input SNR,

iSNR =
σ2
s

σ2
v

. (A.20)

The signal and segment length were set to N = 200 and the filter length M =

50. The output SNR and signal reduction factor of the filter were calculated
for each realisation of the chirp signal and averaged over 500 MCSs.

In Figs. B.1a and B.1b the output SNR and signal reduction factor are
shown as a function of the input SNR. Five filters are compared in the figures.
LCMVopt is a chirp LCMV filter with the covariance matrix estimated directly
from the noise signal, and, therefore, it sets an upper limit for the performance
of the filters but cannot be used in practice where there is no access to the
clean noise signal. The other two LCMV filters are the chirp LCMV (LCMVc)
and the harmonic LCMV (LCMVh) and likewise with the two APES based
filters, APESc and APESh. The two APES based filters perform better than
the corresponding LCMV filters, and the two chirp based filters perform better
than their harmonic counterparts. At low SNRs all filters perform almost
equally, but when the input SNR is increased, the output SNR of the optimal
LCMV filter and the chirp APES based filter increases almost linearly whereas
the output SNR of the other three filters falls off. The signal reduction factor
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Fig. A.1: Output SNR as a function of the input SNR for a synthetic chirp signal.
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Fig. A.2: Signal reduction factor, ξsr(h), as a function of the input SNR for a synthetic
chirp signal.

for the optimal LCMV and the chirp APES based filter is very close to one for
all input SNRs whereas it increases with input SNR for the other filters.

The filters are next evaluated on a speech signal. The signal is a female
speaker uttering the sentence "Why were you away a year, Roy?" sampled
at fs = 8000 Hz. To evaluate the potential of the methods, and since the
focus is here on enhancement and not parameter estimation, the fundamental
frequency, fundamental chirp rate and number of harmonics are estimated on
the clean speech signal using nonlinear least squares (NLS) estimators [13, 14].
Again the noise is white Gaussian and added to give the desired input SNR.

The output SNR over time is shown in Fig. A.3 for an input SNR of 10
dB. Except for very few points in time, the chirp APES based filter is seen to
set an upper limit to the performance of the four filters. The same tendency
as for the synthetic signal is seen, with the APES based filters giving a higher
output SNR than the LCMV filters and the chirp versions performing better
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Fig. A.3: Output SNR over time for a speech signal with input SNR = 10 dB.

than the harmonic ones. The difference in output SNR for the two APES based
filters, oSNR∆ = oSNR(APESc)− oSNR(APESh) is compared to the absolute
value of the fundamental chirp rate in Fig. A.4. Here, it is again seen that,
except for a few places with small negative differences, the difference is positive,
meaning that the chirp APES based filter gives a higher output SNR than the
harmonic APES based filter. In the figure it is also seen that the gain obtained
by using the chirp APES based filter instead of the harmonic APES based filter
is closely related to the estimated chirp parameter. When the absolute value
of the chirp parameter is big, a gain in the oSNR is obtained whereas the gain
is close to zero when the chirp parameter is close to zero. This makes sense if
the harmonic chirp model describes the speech signal better than the harmonic
model. If the fundamental frequency de- or increases a lot in one segment
of the signal, the chirp parameter will have a large absolute value, and the
difference between the harmonic and harmonic chirp model will be large, and,
thereby, there will be an advantage in using the harmonic chirp model. If the
fundamental frequency is almost constant in a segment, the chirp parameter
will be close to zero and the chirp harmonic model reduces to the harmonic
model, leading to similar output SNRs for the two models.

In Figs. A.5-A.7 the output SNR, signal distortion and Perceptual Evalua-
tion of Speech Quality (PESQ) score [21] are shown as a function of the input
SNR. The results are averaged over 50 Monte Carlo simulations. Here it is seen
that the speech signal follows the same tendencies as the synthetic signal. The
output SNRs of the filters are very similar to the output SNRs in the synthetic
case, however, the signal distortion is increased for all filters, but the chirp
APES based filter still has the lowest distortion. Also in terms of PESQ score
the same conclusions can be drawn. The chirp filters perform better than their
harmonic counterparts.
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Fig. A.4: Difference in output SNR between APESc and APESh from Fig. A.3, oSNR∆,
and the estimated chirp parameter, |k|.
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Fig. A.5: Output SNR as a function of the input SNR for a speech signal.

5 Conclusions

In this paper, the non-stationarity of speech is taken into account to increase
the performance of enhancement filters. The voiced speech was described with
a harmonic chirp model and two filters based on the Linearly Constrained Min-
imum Variance (LCMV) filter and Amplitude and Phase EStimation (APES)
based filter were presented and compared to their harmonic counterparts. It
was shown that the chirp based filters perform better in terms of output SNR,
signal distortion and PESQ score. As part of the derivation of the chirp APES
based filter, a noise covariance matrix estimate is generated which can be used
in other filters as, e.g., the Wiener filter.
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1. Introduction

Abstract

In this paper, single channel speech enhancement in the time domain is con-
sidered. We address the problem of handling non-stationary speech by describ-
ing the voiced speech parts by a harmonic linear chirp model instead of using
the traditional harmonic model. This means that the speech signal is not as-
sumed stationary, instead the fundamental frequency can vary linearly within
each frame. The linearly constrained minimum variance (LCMV) filter and
the amplitude and phase estimation (APES) filter are derived in this frame-
work and compared to the harmonic versions of the same filters. It is shown
through simulations on synthetic and speech signals, that the chirp versions of
the filters perform better than their harmonic counterparts in terms of output
signal-to-noise ratio (SNR) and signal reduction factor. For synthetic signals,
the output SNR for the harmonic chirp APES based filter is increased 3 dB
compared to the harmonic APES based filter at an input SNR of 10 dB, and at
the same time the signal reduction factor is decreased. For speech signals, the
increase is 1.5 dB along with a decrease in the signal reduction factor of 0.7.
As an implicit part of the APES filter, a noise covariance matrix estimate is
obtained. We suggest using this estimate in combination with other filters such
as the Wiener filter. The performance of the Wiener filter and LCMV filter are
compared using the APES noise covariance matrix estimate and a power spec-
tral density (PSD) based noise covariance matrix estimate. It is shown that the
APES covariance matrix works well in combination with the Wiener filter, and
the PSD based covariance matrix works well in combination with the LCMV
filter.
Index Terms: Speech enhancement, chirp model, harmonic signal model,
non-stationary speech.

1 Introduction

Speech enhancement has many applications as in, e.g., mobile phones and hear-
ing aids. Often, the speech enhancement is carried out in a transformed do-
main, a common one being the frequency domain. Here, the methods based on
computational auditory scene analysis (CASA) [1], spectral subtraction [2] and
Wiener filtering [3] are well known methods. The CASA methods are based on
feature extraction of the speech signal whereas spectral subtraction and Wiener
filtering require an estimate of the power spectral density (PSD) of the noise.
This can be estimated in different ways [4–6], but common to these methods is
that they primarily rely on periods without speech to update the noise statis-
tics. In periods of speech, the PSD is mostly given by the previous estimate of
the PSD. This update pattern makes the PSD estimates very vulnerable to non-
stationary noise. Furthermore, in order to make enhancement in the frequency
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domain, the data needs to be transformed by use of the Fourier transform. This
transform assumes that the signals are stationary within the analysis window
which for speech signals is often between 20 ms and 30 ms. It is, however, well
known that this assumption of stationary speech does not hold [7, 8], as, e.g.,
the fundamental frequency and formants vary continuously over time in peri-
ods of voiced speech, making the speech signal non-stationary. In [9, 10], it is
suggested replacing the standard Fourier transform with a fan-chirp transform
in the analysis of non-stationary harmonic signals. The voiced speech parts of a
speech signal are often described by a harmonic model, and since voiced speech
is the main constituent of speech, it makes good sense to use this transform
on speech signals. The voiced speech can also easily be separated from the
unvoiced speech by use of voiced/unvoiced detectors [11, 12]. The assumption
behind the fan-chirp transform is that the harmonic frequencies of the signal
vary linearly over time, and it is shown that spectra obtained using the fan-
chirp transform have much more distinct peaks at the positions of the harmonic
frequencies. Alternatively, the enhancement can be done directly in the time
domain where, e.g., the Wiener filter has also been defined [13]. Most time do-
main filters also depend on noise statistics in the form of a covariance matrix.
These are often obtained by averaging over a small frame of the observed sig-
nal, and, therefore, the signal in these frames is also assumed stationary. Also,
a common way to filter speech in the time domain is by describing the voiced
speech parts by a harmonic model [14–16]. The signal based on this model is
composed of a set of sinusoids where the frequency of each sinusoid is given by
an integer multiple of a fundamental frequency. The fundamental frequency
in this model is constant within a frame, and so the voiced speech is assumed
stationary. In [15], it is proposed making a noise estimate by subtracting an
estimate of the desired signal based on the harmonic model, and, from this,
make a noise covariance matrix estimate. In doing so, the observed signal only
needs to be stationary within the frame of 20 to 30 ms when the noise statistics
are estimated and not from one speech free period to the next, as was mostly
the case for the PSD. The non-stationarity of speech is considered in [17–19]
in relation to modelling and parameter estimation. In these papers, a modified
version of the harmonic model is used where a chirp parameter is introduced
to allow the frequency of the harmonics to change linearly within each frame.
In [17], the first model introduced to describe the speech signal is very flexible,
but it is approximated with a Taylor expansion that leads to bigger and bigger
deviations from the original model when the harmonic number increases, as
mentioned in the paper. In [18, 19], a harmonic chirp model is used to describe
the voiced speech, and the parameters of the model are estimated based on
maximum likelihood estimation, but using different ways to avoid making a
two dimensional search for the fundamental frequency and chirp rate.

We investigate the harmonic chirp model further in relation to speech en-
hancement. The linearly constrained minimum variance (LCMV) and the am-
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plitude and phase estimation (APES) filters have previously been derived under
the harmonic framework [16, 20, 21]. One objective of this work is to increase
the performance of these filters by deriving them according to the harmonic
chirp model. Both LCMV and APES filter have the goal of minimising the out-
put noise power from the filter under the constraint that the desired signal is
passed undistorted, or equivalently, when the constraint is fulfilled, to maximise
the output signal-to-noise ratio (SNR). Therefore, we evaluate the performance
of the filters by use of the output SNR and the signal reduction factor which
measures the distortion of the desired signal introduced by the filters. An-
other objective is to investigate the noise covariance matrix that is obtained
implicitly when the APES based filter is made in relation to other filters as,
e.g., the Wiener filter. The noise covariance matrix estimate is made under the
assumption of non-stationary speech when the harmonic chirp model is used.
It is generated from the covariance matrix of the observed signal by subtract-
ing the part that conforms to the harmonic chirp model. We propose using
this estimate in combination with other filters as well and compare the perfor-
mance of the Wiener filter using the APES noise covariance matrix to the chirp
APES based filter. Alternatively, we suggest making a noise covariance matrix
estimate based on the earlier mentioned state of the art PSD estimates [5, 6]
since more work has been put into noise PSD estimates than estimation of time
domain noise statistics. The PSD is related through the Fourier transform to
the autocorrelation and, thereby, to the covariance matrix as well.

In Section 2, the harmonic chirp model is introduced. In Section 3, the
LCMV and APES based filters for harmonic chirp signals are derived. The
Wiener filter and a family of trade-off filters are then introduced. In Section 4,
the estimation of covariance matrices are discussed and suggestions on how to
do it is given. In Section 5, the performance of the LCMV and APES filters are
considered through derivations of the used performance measures. In Section
6, experimental results on synthetic and real speech signals are shown and
discussed, and the presented work is concluded in Section 6.

2 Framework

We are here considering the problem of recovering a desired signal, s(n), from
an observed signal, x(n), with the desired signal buried in additive noise, i.e.,

x(n) = s(n) + v(n), (B.1)

for discrete time indices n = 0, ..., N − 1. The desired signal and noise are
assumed to be zero mean signals and mutually uncorrelated. Further, we
assume that the desired signal is quasi periodic which is a reasonable as-
sumption for voiced speech. Often, voiced speech is described by a harmonic
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model [16, 22, 23], but here we are using a harmonic chirp model which makes
the model capable of handling non-stationary speech.

The signal is built up by a set of harmonically related sinusoids as in the
normal harmonic model where the sinusoid with the lowest frequency is the
fundamental and the other sinusoids have frequencies given by an integer mul-
tiple of the fundamental. In the harmonic model, the speech signal is assumed
stationary in short segments which is rarely the case. Instead the fundamental
frequency is varying slowly over time which can be modelled by using a har-
monic linear chirp model. In a linear chirp signal the instantaneous frequency
of the l’th harmonic, ωl(n), is not stationary but varies linearly with time [24],

ωl(n) = l(ω0 + kn), (B.2)

where ω0 = f0/fs2π, with fs the sampling frequency, is the normalised fun-
damental frequency and k is the fundamental chirp rate. The instantaneous
phase, θl(n), of the sinusoids are given by the integral of the instantaneous
frequency as

θl(n) = l

(
ω0n+

1

2
kn2

)
+ φl, (B.3)

and, thereby, this leads to the harmonic chirp model for a voiced speech signal,
s(n):

s(n) =

L∑
l=1

Al cos (θl(n)) (B.4)

=

L∑
l=1

Al cos

(
l

(
ω0n+

k

2
n2

)
+ φl

)
. (B.5)

where L is the number of harmonics, Al > 0 is the amplitude and φl is the
initial phase of the l’th harmonic, respectively. A special case of the harmonic
chirp model for k = 0 is then the traditional harmonic model:

s(n) =

L∑
l=1

Al cos (lω0n+ φl) (B.6)

In the speech enhancement process later, it is instructive to make the rela-
tionship between the time dependent part of the instantaneous phase, l(ω0n+

k/2n2), and the initial phase, φl multiplicative instead of additive. This either
leads to the real signal model [14]:

s(n) =

L∑
l=1

a cos

(
l

(
ω0n+

k

2
n2

))
+b sin

(
l

(
ω0n+

k

2
n2

))
, (B.7)
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where a = Al sin(φl) and b = Al cos(φl), or, by using Eulers formula, to the
complex signal model:

s(n) =

L∑
l=1

αle
jl(ω0n+k/2n2) + α∗l e

−jl(ω0n+k/2n2)

=

L∑
l=1

αlz
l(n) + α∗l z

−l(n), (B.8)

where

z(n) = ej(ω0n+k/2n2) (B.9)

and αl = Al

2 e
jφ. Since (B.7) and (B.8) are two ways of describing the same

signal, it is possible to design optimal filters based on both, but the complex
model in (B.8) gives a more intuitive and simple notation, and, therefore, we
will use this model in the following instead of the real model in (B.7) [14].

Defining a subvector of samples

s(n) = [s(n) s(n− 1) . . . s(n−M + 1)]T (B.10)

where M ≤ N and (·)T denotes the transpose, the signal model can be written
as

s(n) = ZD(n)a, (B.11)

where Z is a matrix with Vandermonde structure constructed from a set of L
modified Fourier vectors matching the harmonics of the signal,

Z = [z(1) z(−1) z(2) z(−2) . . . z(L) z(−L)], (B.12)

with

z(l) =


1

ejl(ω0+k/2)

...
ejl(ω0(M−1)+k/2(M−1)2)

 =


z(0)l

z(1)l

...
z(M − 1)l

 . (B.13)

The Z matrix is made with reference to n = 0, and, therefore, the diagonal
matrix D(n) is included to take care of the delay from n = 0 to the actual start
of the subvector, s(n), i. e.,

D(n) =



z(n)1

z(n)−1 0
. . .

0 z(n)L

z(n)−L


. (B.14)
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The vector a contains the complex amplitudes of the harmonics, a = [α1 α
∗
1 α2 α

∗
2 . . . αL α

∗
L]T ,

where {·}∗ denotes the complex conjugate.
The observed signal vector, x(n), is then given by

x(n) = s(n) + v(n), (B.15)

where x(n) and v(n) are defined in a similar way to s(n) in (B.10). Due to
the assumption of zero mean uncorrelated signals, the variance of the observed
signal is given by the sum of the variances of the desired signal and noise, σ2

x =

σ2
s + σ2

v , where the variance of a signal g(n) is defined by σ2
g = E{g2(n)} with

E{·} denoting statistical expectation. The level of the desired signal relative to
the noise in the observed signal is described by the input signal-to-noise ratio
(SNR):

iSNR =
σ2
s

σ2
v

. (B.16)

The objective is then to recover the desired signal in the best possible way
from the observed signal. This can be done by filtering x(n) with a filter
h = [h(0) h(1) . . . h(M − 1)]T , where M ≤ N is the filter length and {·}T
denotes the transpose. However, because both the observed signal and the filter
are real, multiplying the observed signal with the Hermitian transposed, {·}H ,
filter gives the same result as multiplying with the transposed filter. Due to the
choice of a complex representation of the real signal, the Hermitian notation
is used throughout the paper since this gives more intuitive interpretations of
some intermediate variables such as covariance matrices. That is,

ŝ(n) = hHx(n) = hHs(n) + hHv(n), (B.17)

gives an estimate, ŝ(n), of the desired signal, s(n). The variance of the estimate
is then σ2

ŝ = σ2
x,nr = σ2

s,nr + σ2
v,nr, where σ2

x,nr is the variance of the observed
signal after noise reduction, i.e.,

σ2
x,nr = E{(hHx(n))2} = hHRxh, (B.18)

with Rx being the covariance matrix of the observed signal defined as:

Rx = E{x(n)xH(n)}. (B.19)

Similar definitions of the variance after noise reduction and the covariance
matrix hold for the desired signal and the noise signal. Further, using the signal
model in (C.7), the covariance matrix of the desired signal can be expressed as

Rs = E{s(n)sH(n)} (B.20)

= E
{

(ZD(n)a) (ZD(n)a)
H
}

(B.21)

= ZPZH , (B.22)
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where

P = E{D(n)aaHD(n)H} = E{aaH}. (B.23)

Here, P is the covariance matrix of the amplitudes. If the phases are inde-
pendent and uniformly distributed, it reduces to a diagonal matrix with the
powers of the harmonics on the diagonal.

If s(n) and v(n) are uncorrelated, Rx is given by the sum of the covariance
matrix of the desired signal, Rs, and the covariance matrix of the noise, Rv,

Rx = Rs + Rv. (B.24)

Like the input SNR, the output SNR is the ratio of the desired signal to noise
but now after noise reduction

oSNR(h) =
σ2
s,nr

σ2
v,nr

(B.25)

=
hHRsh

hHRvh
. (B.26)

It is desirable to have as high an output SNR as possible, but if the filter distorts
the desired signal along with removing the noise, it might be more beneficial to
make a compromise between noise reduction and signal distortion. The signal
distortion can be described by the signal reduction factor which is the ratio
between the variance of the desired signal before and after noise reduction:

ξsr(h) =
σ2
s

σ2
s,nr

(B.27)

=
σ2
s

hHRsh
. (B.28)

A distortionless filter will give a signal reduction factor of one, even though
a filter can introduce distortion in sub-bands and still have a signal signal
reduction factor of one.

3 Filters

3.1 Traditional filters

A set of different filters can be defined by looking at the error, e(n), between
the desired signal, s(n), and the estimate of the desired signal, ŝ(n),

e(n) = s(n)− ŝ(n) = s(n)− hHx(n)

= s(n)− hHs(n)− hHv(n). (B.29)
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From this, the minimum mean squared error (MSE) criterion can be defined

J(h) = E{e(n)2} = E{(s(n)− hHx(n))2} (B.30)

= E
{ (
s(n)− hHs(n)− hHv(n)

)2 }
(B.31)

Minimisation of J(h) leads to the classical Wiener filter [13]:

hw = R−1
x RsiM , (B.32)

where iM is the first column of the M ×M identity matrix. Using (B.24), the
Wiener filter can be rewritten as

hw = R−1
x (Rx −Rv)iM , (B.33)

which is often convenient when the covariance matrices are to be estimated.
More flexible filters can be obtained if the error signal, e(n), is seen as

composed of two parts, one expressing the signal distortion, es(n), the other
the amount of residual noise, ev(n),

es(n) = s(n)− hHs(n), (B.34)

ev(n) = hHv(n), (B.35)

with the corresponding MSEs being

Js(h) = E{es(n)2} = E{(s(n)− hHs(n))2} (B.36)

Jv(h) = E{ev(n)2} = E{(hHv(n))2}. (B.37)

These error measures make it possible to, e.g., minimise the noise power out-
put of the filter while constraining the amount of signal distortion the filter
introduces [25], i.e.,

min
h
Jv(h) s.t. Js(h) = βσ2

s , (B.38)

where β is a tuning parameter. Solving for the filter by use of the Lagrange
multiplier λ gives:

hλ =

(
Rs +

1

λ
Rv

)−1

RsiM , (B.39)

where λ > 0 satisfies Js(h) = βσ2
s . When λ → ∞, h → iM which gives

β → 0 and ŝ(n) = x(n). When λ = 1 the filter reduces to the Wiener filter
and λ → 0 ⇒ β → 1 which means that the difference in variance between the
desired signal and the estimated signal is equal to the variance of the desired
signal and so a large amount of signal distortion is introduced.
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3.2 Parametric filters

The filter in (B.39) has no control over the distortion of the single harmonics
in a voiced speech signal. This is, however, possible by minimisation of Jv(h)

under the constraint that the desired signal is passed undistorted, i.e.,

min
h
Jv(h) s.t. s(n)− hHs(n) = 0. (B.40)

Expressing the signal using the harmonic chirp model in (C.7), the restriction
can be rewritten as

s(n)− hHs(n) = 0⇔ (B.41)

iHMZD(n)a− hHZD(n)a = 0⇔ (B.42)

1H = hHZ, (B.43)

where 1 = [1 . . . 1]T , and using the relation in (B.18), (B.40) can be rewritten
as

min
h

hHRvh s.t. hHZ = 1T , (B.44)

where the filter should be longer than the number of constraints, i.e., M >

2L to ensure a nontrivial solution. If the signal is passed through the filter
undistorted, the variance of the signal before and after filtering is the same,
and the output SNR reduces to

oSNR(h) =
σ2
s

hHRvh
. (B.45)

Minimising hHRvh under the constraint of an undistorted signal will, therefore,
lead to a filter that maximises the output SNR under the same constraint.

The solution to (B.44) is the linearly constrained minimum variance (LCMV)
filter and is given by [20]:

hLCMV = R−1
v Z(ZHR−1

v Z)−11. (B.46)

The filter reduces to the LCMV filter for harmonic signals when k = 0. The
covariance matrix of the noise signal is not known and has to be estimated.
This is not trivial, but in an optimal situation where the signal model fits
perfect, the noise covariance matrix can be replaced by the covariance matrix
of the observed signal, Rx, [15], which is easier to estimate, i.e.,

hLCMV = R−1
x Z(ZHR−1

x Z)−11. (B.47)

Another more empirical approach taking its starting point in the MSE is the
amplitude and phase estimation (APES) filter [16]. Here, the harmonic chirp
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model is also assumed and the expectation is approximated by an average over
time, leading to the estimated MSE:

Ja(h) =
1

N −M + 1

N−M∑
n=0

|s(n)− hHx(n)|2, (B.48)

=
1

N −M + 1

N−M∑
n=0

|aHw(n)− hHx(n)|2, (B.49)

where

w(n) = D(n)HZH iM = D(n)H1. (B.50)

Writing out the terms in the quadratic expression and solving for the ampli-
tudes [16] gives â = W−1Gh, and, thereby,

Ja(h) = hHRxh− hHGHW−1Gh (B.51)

= hH(Rx −GHW−1G)h, (B.52)

= hHQh (B.53)

with

G =
1

N −M + 1

N−M∑
n=0

w(n)xH(n), (B.54)

W =
1

N −M + 1

N−M∑
n=0

w(n)wH(n). (B.55)

and

Q = Rx −GHW−1G. (B.56)

As with the LCMV filter, the MSE is minimised with a constraint that the
desired signal should be passed undistorted, leading to a similar filter [16]:

hAPES = Q−1Z(ZHQ−1Z)−11. (B.57)

4 Covariance matrix estimates

The covariance matrices used in the derived filters are not known but have
to be estimated. The covariance matrix of the observed signal can, e.g., be
estimated by use of the sample covariance matrix estimate [20]:

R̂x =
1

N −M + 1

N−M∑
n=0

x(n)xH(n). (B.58)
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In order to make the estimate nonsingular, it is required that 2M+1 ≤ N . For
this to give a good estimate, the signal should be nearly stationary not only
in the set of the filtered M samples, but for all N samples. Otherwise, the
N samples are not a good representation of the signal within the M samples,
and the sample covariance matrix will not be a good estimate of the observed
signal covariance matrix. In such a case, the filters in (B.46) and (B.47) are
not identical, and it is, therefore, necessary to find an estimate of the noise
covariance matrix.

Exchanging x(n) in (B.54) with ZD(n)a + v(n), it can be shown that the
term GHW−1G in (B.56) reduces to ZPZH for large sample sizes. This means
that GHW−1G can be seen as an estimate of the covariance matrix of the
desired signal, and, therefore, Q is an estimate of the noise covariance matrix.
The APES filter is, therefore, an estimate of the optimal LCMV filter. These
covariance matrix estimates are an implicit feature of the APES minimisation.

The APES based noise covariance matrix estimate is obtained using a signal
driven approach. Alternatively, we suggest taking a noise driven approach and
estimate the noise covariance matrix based on noise PSDs. This can be ad-
vantageous since several methods exist for estimating the noise power spectral
density in the frequency domain, e.g., based on minimum statistics [5] or min-
imum mean square error (MMSE) [6]. The power spectral density of a signal
g(n), Sg(ω), is related to the autocorrelation, Rg(τ), and, thereby, also to the
covariance matrix of a signal through the Fourier transform [26]

Rg(τ) =

∫ ∞
−∞

Sg(ω)ejωτdω, (B.59)

where τ denotes a time lag. The autocorrelation is also defined as

Rg(τ) = E{g(n)g(n− τ)}. (B.60)

In order to get a good approximation to the expectation by taking the mean over
the samples and to make the covariance matrix full rank, the same restriction
on M relative to N applies here, 2M + 1 ≤ N .

The noise covariance matrix is then estimated as:

Rv(p, q) =

{
Rv(q − p) for q ≥ p
Rv(N + q − p) for q < p

(B.61)

for p and q ∈ [1,M ].

5 Performance of parametric filters

The theoretical performance of the LCMV filter in (B.46) can be found by
inserting the expression for the filter in (B.26) and (B.28). Moreover, the
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expression for the covariance matrix of the desired signal introduced in (B.22)
is used. The output power of the desired signal and noise can be expressed as:

hHRsh =

1T (ZHR−1
v Z)ZHR−1

v ZPZHR−1
v Z(ZHR−1

v Z)−11

= 1TP1 = σ2
s (B.62)

and

hHRvh =

1T (ZHR−1
v Z)ZHR−1

v RvR
−1
v Z(ZHR−1

v Z)−11

= 1T (ZHR−1
v Z)−11. (B.63)

The output SNR and signal reduction factor then becomes:

oSNR(h) =
σ2
s

1T (ZHR−1
v Z)−11

, (B.64)

and

ξsr(h) = 1. (B.65)

These expressions for output SNR and signal reduction are made under the
assumption that the noise statistics and the parameters of the signal are known,
and that the model fits the desired signal perfectly. Looking at the expression
for the output power of the desired signal from the filter in (B.62), it is seen
that a distortionless response is dependent on the model of the signal. In order
to let the signal pass undistorted through the filter, the model has to fit the
signal, and a good estimation of the parameters is needed. The amount of
distortion is independent of the noise covariance matrix. The output power of
the noise from the filter is, on the other hand, not dependent on the parameters
of the model, it is only dependent on a good noise covariance matrix estimate.
Using the harmonic chirp model instead of the traditional harmonic model,
should for all parametric filters decrease the amount of signal reduction since
the model fits the signal better. For the APES filter, a better signal model will
also lead to a better noise covariance matrix estimate, and, thereby, influencing
both the power output of the desired signal and the noise.

6 Experiments

The simulations are separated in three parts. In the first part, the filters based
on the harmonic chirp model are tested on synthetic signals. This is done to
verify that the derived filters work in an expected manner and to compare
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their performance to filters based on the traditional harmonic model under
controlled conditions. After that, we turn to simulations on real speech signals
to confirm that the harmonic chirp model describes voiced speech better than
the traditional harmonic model, and that the harmonic chirp filters perform
better than their harmonic counterparts. In the end, the LCMV and APES
filters are compared to the Wiener filter where covariance matrix estimates
based on the APES principle and PSD are used in both filters.

6.1 Synthetic signal

Setup

The LCMV and APES filters based on the harmonic chirp model were tested
on a synthetic chirp signal made according to (C.4) with the same length as the
segment length, N . The signal was generated with L = 10, Al = 1∀ l, random
phase, fundamental frequency, and fundamental chirp rate, in the intervals
φl ∈ [0, 2π], f0 ∈ [150, 250] Hz, k ∈ [0, 200] Hz2. The signal is sampled at 8
kHz and added to white Gaussian noise with a variance calculated to fit the
desired input SNR.

The filters are evaluated as a function of the input SNR, the segment length,
N , and the filter length, M . When the parameters are not varied they are set
to: iSNR = 10 dB, N = 230 and M = 50. In the simulations varying M ,
one covariance matrix is made according to the longest filter length, and the
covariance matrix for the shorter filters are taken as submatrices of this. This is
done to make the conditions as similar as possible for all filter lengths, with the
same segment length N and the same number of elements in the sum in (B.58).
The fundamental frequency and fundamental chirp rate are assumed known
when designing the filters for the synthetic signals. The results are averaged
over 1000 Monte Carlo simulations (MCS). The filters are compared by means
of the output SNR in (B.26) and the signal reduction factor in (B.28).

Compared filters

The performance of the chirp based filters is compared to equivalent filters
based on the harmonic model. A set of six filters are compared in the simula-
tions:

• LCMVopt: chirp LCMV filter made according to (B.46) with Rv esti-
mated from the clean noise signal. This filter will have the best possible
performance a harmonic chirp LCMV filter can have, but can not be
made in practice since there is no access to the clean noise signal.

• LCMVh: harmonic LCMV filter made according to (B.47) with k = 0.

• LCMVc: chirp LCMV filter made according to (B.47).
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• APESh: harmonic APES filter made according to (B.57) with k = 0.

• APESc: chirp APES filter made according to (B.57).

• APEShc: APES filter made as a combination of the chirp and normal
harmonic model with Z based on the chirp model whereas the estimation
of Q is based on the normal harmonic model. This filter is included to
separate the contribution from the modified Z vector and the modified
Q matrix.

Evaluation

The output SNR and signal reduction factor as a function of the input SNR
are shown in Fig. B.1. At an input SNR of -10 dB all filters perform equally
well, but as the input SNR is increased the difference in performance between
the filters is increased. As expected, the LCMVopt sets an upper bound for the
performance with a similar gain in SNR at all considered levels of input SNR
and no distortion of the desired signal. The harmonic chirp APES based filter,
APESc, has similar performance to the optimal LCMV filter. The difference
between the two filters, APESh and APEShc, is only minor. They deviate from
the LCMVopt around 0 dB input SNR and at an input SNR of 10 dB the gain in
SNR is around 3 dB less than for the optimal LCMV filter. They also introduce
some distorion of the desired signal, with APESh distorting the desired signal
slightly more than APEShc. These two filters have the same noise covariance
matrix estimate but different versions of the Z matrix, as is also the case for
the two LCMV filters, LCMVh and LCMVc, based on the covariance matrix of
the observed signal. LCMVh and LCMVc have the worst performance of the
compared filters, but show the same tendencies as APESh and APEShc. The
difference between the two filters is mainly a smaller signal distortion for the
chirp based filter, but here also with a slight difference in the output SNRs of
the two filters. This shows, at least for relatively short filter lengths ofM = 50,
that the major change in performance comes from changing the covariance ma-
trix, from the covariance matrix of the observed signal to the harmonic APES
covariance matrix and further again to the harmonic chirp APES covariance
matrix. Changing Z has a minor role but still has an influence, primarily with
respect to the distortion of the desired signal.

The same relationships between the filters can be seen in Fig. B.2 where the
segment length, N , is varied. The LCMVopt has the best performance, LCMVc

almost as good, LCMVh and LCMVc have the worst performances and APESh

and APEShc have performances in between. The filters being most influenced
by the change in segment length are APESh and APEShc. They have a drop
in output SNR of around 6 dB when the segment length is increased from 150
to 400 whereas the LCMV filters and the chirp APES based filter only give
rise to a decrease in output SNR of 1 to 2 dB. Looking at the signal reduction
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factor, again the chirp APES based filter and the optimal LCMV filter have
more or less no distortion of the desired signal whereas the other filters distort
the signal more and more when N is increased.

The filter length, M , is varied in Fig. B.3. Also here, the difference between
the filters increases with increasing filter length. Again, the optimal LCMV
filter and the harmonic chirp APES based filter perform best whereas the other
filters have a lower output SNR and more signal distortion. However, here the
output SNR for APESc starts to deviate from LCMVopt for filter lengths above
approximately 60.

As an example of the filtering, a signal with a length of 500 samples is
generated. The fundamental frequency is set to f0 = 200 Hz, the chirp rate
to k = 200Hz2, the initial phases are again random and the sampling rate
is fs = 8 kHz. The covariance matrices are based on N = 230 samples and
the filter length is M = 50. The fundamental frequency and chirp rate are
also here assumed known. The signal is added to white Gaussian noise to give
an input SNR of 10 dB. The used filters are the APESh giving the estimated
signal ŝh and APESc giving the signal ŝc since these two filters showed the
best performance in the previous experiments. The estimates are compared to
the clean signal and the noisy signal in Fig. B.4. It is seen in the figure that
the chirp filter gives a better estimate of the clean signal than the traditional
harmonic filter, and the estimate is also closer to the clean signal than the noisy
one is.

6.2 Speech signals

Setup

The speech signals used are the 30 sentences included in the NOIZEUS database
[27]. Three male and three female speakers produced the 30 Harvard sentences
contained in the database. The signals are sampled at 8 kHz and corrupted
with noise from the AURORA database [28]. In the first part of this evaluation
of speech signals, where the chirp model is compared to the harmonic model,
the parameters of the speech signals are estimated from the clean signals. This
is done to be able to compare the results for speech signals with the simulations
on synthetic data where the parameters were assumed known. In the second
part, where the LCMV and Wiener filters are compared, results based on pa-
rameters estimated from the noisy signals are shown. The model order and a
preliminary fundamental frequency are estimated for every 50 samples using
a nonlinear least squares (NLS) estimator [20] with the lower and upper limit
for the fundamental frequency given by 80 Hz and 400 Hz, respectively. This
is followed by a smoothing [29] and joint estimation of the fundamental fre-
quency and chirp parameter for each sample using the iterative NLS estimator
described in [18]. The filter length is increased to M = 70. This is done be-
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cause the real speech signals in many frames have more harmonics than the 10
used to create the synthetic signals, and, therefore, a filter with more degrees
of freedom is preferred. A good compromise between filter length and segment
length for the LCMV and APES filters would according to [30] be N = 4M ,
but this would lead to quite long segments with the given filter length and, as
a compromise, the segment length is again set to N = 230. The voiced periods
are picked out using a generalised likelihood ratio test [31, 32]. Alternatively,
the MAP criteria [20] or other voiced/unvoiced detectors can be used [11, 12].
In some cases where unvoiced speech is mistakenly assigned as voiced, the fil-
ters become numerically unstable, and these samples are, therefore, excluded
from the evaluation. If the filter is not unstable, the unvoiced speech assigned
as voiced is processed as if it was voiced speech. This is expected to give a
slight decrease in the performance since it is not possible to obtain noise re-
duction without signal distortion when using the harmonic model in periods
of unvoiced speech. In the first part, where the LCMV filters are compared,
white Gaussian noise is used and the output SNR and signal reduction factor
are calculated using (B.26) and (B.28) to facilitate the comparison with the
results for the synthetic signal. When the LCMV and APES filters are com-
pared to the Wiener filter, babble noise is used, where the noisy signals are
taken from the NOIZEUS speech corpus. The noise levels in the NOIZEUS
speech corpus range from 0 dB to 15 dB. The babble noise is chosen because it
is one of the most difficult noise types to remove. Results are shown both when
the parameters are estimated from the clean signal and when the parameters
are estimated from the noisy signals. The filters are compared in terms of the
output SNR in (B.25) and the signal reduction factor in (B.27) after the voiced
speech parts have been concatenated.

Compared filters

In the first part of the simulations with real speech, the same filters used for the
synthetic signals are compared. In the second part, the LCMV and APES based
filters are compared to the Wiener filter. This is done for two different choices
of covariance matrices, the first one using the APES derivation, the other using
(B.61) based on the MMSE criterion [6] for finding the PSD. Filters based on
the PSD using MMSE and minimum statistics perform almost equally well,
and, therefore, only one type of these filters is shown. Further, flexible Wiener
filters with two different values of λ are included in the comparisons, leading
to six filters:

• APESc: chirp APES filter made according to (B.57).

• LCMV [6]: chirp LCMV filter made according to (B.46) with Rv esti-
mated from (B.61) using MMSE.
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• Wc: Wiener filter made according to (B.32) with Rs estimated using the
APES principle as GTW−1G.

• W [6]: Wiener filter made according to (B.33) with Rv estimated from
(B.61) using MMSE.

• Wλ=0.2: Trade-off Wiener filter made according to (B.39) with λ = 0.2

and Rs estimated using the APES principle as GTW−1G.

• Wλ=5: Trade-off Wiener filter made according to (B.39) with λ = 5 and
Rs estimated using the APES principle as GTW−1G.

Evaluation

In Fig. B.5, the output SNR and signal reduction factor are shown as a function
of the input SNR. The output SNR and signal reduction factor are calculated
using (B.26) and (B.28) as was also the case for the synthetic signals. It is
seen that the tendencies are the same as for the synthetic signal. APESc does
not follow the optimal LCMV filter as closely as it did for the synthetic signal,
but this is not surprising since the synthetic signals were made according to the
harmonic chirp model, and the parameters were assumed known. For the speech
signals, the parameters are estimated, and the model does not fit perfectly
since the fundamental frequency will not be completely linear in any considered
piece within a speech signal. Even though the performance of the APESc filter
deviates more from the optimal LCMV filter than it did considering synthetic
signals, it still has a better performance than the other considered filters. This
means that the harmonic chirp model is better at describing the voiced parts
of a speech signal and increased performance can be obtained by replacing the
traditional harmonic filters with chirp filters.

As an example, the speech signal ’Why were you away a year, Roy?’ uttered
by a female speaker is filtered. The signal has the advantage that it only
contains voiced speech, and the entire signal can, therefore, be filtered by the
proposed methods. The signal is sampled at 8 kHz, the segment length is 230,
the filter length is 70, and the parameters are estimated in the same way as the
previous speech signals. The noise is white Gaussian and the input SNR is 10
dB. The spectrograms of the filtered speech signal using APESh and APESc

are shown in Fig. B.6 together with the output SNR over time. It is seen that
the output SNR of the chirp filter is larger or equal to the output SNR of the
harmonic filter. The difference is most pronounced in the first 0.25 seconds and
between 1 and 1.25 seconds where the fundamental frequency is changing the
most. Here, it is also seen in the spectrograms that the harmonics look slightly
cleaner when the chirp filter is used. The Perceptual Evaluation of Speech
Quality (PESQ) score [33] for the speech filtered with the harmonic filter is
2.21 whereas the chirp filter gives a PESQ score of 2.32 and the noisy signal

75



Paper B.

gives a PESQ score of 1.57. The speech signals related to this comparison and
the comparison in Fig. B.10 can be found at http://www.create.aau.dk/smn.

The increased performance of the harmonic chirp filters relative to the har-
monic filters should of course be viewed in light of an increased computational
complexity since the joint estimation of the fundamental frequency and chirp
rate is based on a search in a two-dimensional space. However, [18] describes
how to find the parameters iteratively which will decrease the complexity rel-
ative to a two-dimensional grid search, and the initial fundamental frequency
estimate used in the algorithm is only estimated for every 50 samples in this
work which seems to be sufficient for giving good estimates.

Now we turn to alternative combinations of filters and covariance matrices.
Here, the output SNR and signal reduction factor are calculated according
to (B.25) and (B.27). This ensures that no filter is favoured in the way the
performance is calculated since the covariance matrices based on the sample
covariance principle and the PSD are made in two fundamentally different
ways. In Fig. B.7a it is seen that five of the six filters work very similar. The
Wiener filter in combination with the PSD noise covariance matrix perform
significantly worse than the rest when it comes to output SNR. However, the
PSD covariance matrix works quite well in combination with the LCMV filter.
This filter is one of the better filters at higher input SNRs with respect to
output SNR, and it has a low level of distortion at all input SNRs as is seen in
Fig. B.7b. This can probably be explained by looking at the filters in (B.32)
and (B.46). The Wiener filter is dependent on two covariance matrices, and
the relative levels of these two matrices are, therefore, important for the look
of the filter. The LCMV based filters are only dependent on one covariance
matrix, and in some way the denominator of the LCMV can be seen as a
normalisation which makes the filter independent of the absolute size of the
covariance matrix used. The trade-off Wiener filter with λ = 0.2 gives a higher
output SNR than the Wiener filter but at the same time it also gives rise to a
higher signal distortion. The flexible Wiener filter with λ = 5.0 works in the
opposite way. It gives a lower output SNR, but also a lower degree of signal
distortion. In Fig. B.8, the parameters are estimated from the noisy signals
whereas the voiced/unvoiced detection is based on the clean signal. The output
SNR for the signal dependent filters is decreased a few dBs at low input SNRs
whereas it is very similar at high input SNRs. This makes sense since the
estimation of parameters is more difficult at low SNRs than at high SNRs.
The Wiener filter dependent on the PSD has the same performance in the two
situations. In Fig. B.9, also the voiced/unvoiced detection is made based on
the noisy signal. The overall performance of all filters is slightly decreased
compared to making the detection based on the clean signal, but the tendency
between the filters is very similar. This suggests that more unvoiced periods
are assigned as voiced speech where the voiced signal model will not apply, and
thus the performance will decrease slightly.
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7. Conclusion

As an example, the speech signal ’Why were you away a year, Roy?’ is
again filtered, now in the presence of babble noise at an input SNR of 10 dB.
The filters used for this comparison are the APESc, LCMV [6], Wc and W [6]
and the spectrograms of the resulting signals are shown in Fig. B.10 along with
spectrograms of the clean and the noisy signal. From this figure, it seems like
the Wiener filter in combination with the APES covariance matrix removes
the most noise between the harmonics whereas the APES filter and the LCMV
filter remove the noise slightly less, both between the harmonics and outside the
range of the speech signal. The Wiener filter in combination with the PSD noise
covariance matrix seems to perform no noise reduction and the harmonics are
even more difficult to distinguish than in the noisy signal. These observations
are in line with the curves of output SNR when looking at an input SNR of
10 dB where the W [6] performs worse than the noisy signal, the APESc and
LCMV [6] perform almost equally well and the Wc performs the best. The
PESQ scores for the four filtered signals are, APESc: 2.09, LCMV [6]: 2.25,
Wc: 2.18 and W [6]: 1.54. It is interesting to see that the LCMV [6] gives rise
to the highest PESQ score since this was not clear from the spectrograms, but
this filter gives a lower signal reduction factor than the APESc and Wc filters,
and, therefore, it makes good sense. The noisy signal has a PESQ score of 2.06.
Comparing to the signals in white Gaussian noise in Fig. B.6, the PESQ score
of the filtered signals decreased whereas the PESQ score of the noisy signal
increased. This difference is mainly due to the different noise types while the
fact that the parameters in Fig. B.6 were estimated from the clean signal only
contributes slightly. Since babble noise is noise made up from several speakers
speaking at the same time, it is distributed in the same frequency range as the
speech signal. This makes it more difficult to estimate the relevant parameters
and also more difficult to filter out the noise afterwards. However, prewhitening
of the noisy signal can help mediate this problem [34] with the noise statistics
found using one of the methods in [35].

7 Conclusion

In this paper, the non-stationarity of voiced speech is taken into account in
speech enhancement. This is done by describing the speech by a harmonic
chirp model instead of the traditional harmonic model. The chirp used is a lin-
ear chirp which allows the fundamental frequency to vary linearly within each
segment, and, therefore, the speech signal is not assumed stationary within a
segment. Versions of the linearly constraint minimum variance (LCMV) filter
and amplitude and phase estimation (APES) filter are derived in the frame-
work of harmonic chirp signals. As an implicit part of the APES filter, a noise
covariance matrix estimate is derived. This makes the APES filter an esti-
mate of the optimal LCMV filter which maximises the output SNR under the
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constraint that the desired signal is passed undistorted. APES gives a noise
covariance matrix estimate which only assumes the noise signal to be stationary
in frames of 20-30 ms as opposed to methods based on power spectral densi-
ties (PSDs) which primarily update the noise statistics in periods of unvoiced
speech. It is shown through simulations on synthetic and speech signals that
the chirp filters give rise to a higher output SNR and a lower signal distortion
than their harmonic counterparts, and, therefore, the chirp model describes
voiced speech better than the traditional harmonic model. We suggest also
using the APES noise covariance matrix estimate in other filters as, e.g., the
Wiener filter, and we compare it to a noise covariance matrix estimate based
on the PSD. The APES noise covariance matrix estimate is shown to work
well in combination with the Wiener and trade-off Wiener filters, whereas the
PSD based noise covariance matrix estimate works well in combination with
the LCMV filter. All chirp based Wiener and LCMV filters outperform the
Wiener filter in combination with the PSD noise covariance matrix estimate.

References

[1] D. Wang and G. J. Brown, Computational Auditory Scene Analysis: Prin-
ciples, algorithms, and applications. Wiley-IEEE Press, 2006.

[2] S. Boll, “Suppression of acoustic noise in speech using spectral subtrac-
tion,” IEEE Trans. Acoust., Speech, Signal Process., vol. 27, no. 2, pp.
113–120, Apr. 1979.

[3] J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth compres-
sion of noisy speech,” Proc. IEEE, vol. 67, no. 12, pp. 1586–1604, Dec.
1979.

[4] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice activity
detection,” IEEE Signal Process. Lett., vol. 6, no. 1, Jan. 1999.

[5] R. Martin, “Noise power spectral density estimation based on optimal
smoothing and minimum statistics,” IEEE Trans. Speech Audio Process.,
vol. 9, no. 5, pp. 504–512, Jul. 2001.

[6] T. Gerkmann and R. C. Hendriks, “Unbiased MMSE-based noise power es-
timation with low complexity and low tracking delay,” IEEE Trans. Audio,
Speech, Language Process., vol. 20, no. 4, pp. 1383–1393, 2012.

[7] F. R. Drepper, “A two-level drive-response model of non-stationary speech
signals,” Nonlinear Analyses and Algorithms for Speech Processing, vol. 1,
pp. 125–138, Apr. 2005.

78



References

[8] L. Deng and D. O’Shaughnessy, Speech processing: a dynamic and
optimization-oriented approach. CRC Press, 2003.

[9] M. Képesi and L. Weruaga, “Adaptive chirp-based time–frequency analysis
of speech signals,” Speech Communication, vol. 48, no. 5, pp. 474–492,
2006.

[10] L. Weruaga and M. Képesi, “The fan-chirp transform for non-stationary
harmonic signals,” Signal Processing, vol. 87, no. 6, pp. 1504–1522, 2007.

[11] K. I. Molla, K. Hirose, N. Minematsu, and K. Hasan, “Voiced/unvoiced
detection of speech signals using empirical mode decomposition model,”
in Int. Conf. Information and Communication Technology, Mar. 2007, pp.
311–314.

[12] Y. Qi and B. R. Hunt, “Voiced-unvoiced-silence classifications of speech
using hybrid features and a network classifier,” IEEE Trans. Speech Audio
Process., vol. 1, no. 2, pp. 250–255, 1993.

[13] J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise
reduction Wiener filter,” IEEE Trans. Audio, Speech, Language Process.,
vol. 14, no. 4, pp. 1218–1234, 2006.

[14] A. Jakobsson, T. Ekman, and P. Stoica, “Capon and APES spectrum
estimation for real-valued signals,” Eighth IEEE Digital Signal Processing
Workshop, 1998.

[15] J. R. Jensen, J. Benesty, M. G. Christensen, and S. H. Jensen, “Enhance-
ment of single-channel periodic signals in the time-domain,” IEEE Trans.
Audio, Speech, Language Process., vol. 20, no. 7, pp. 1948–1963, Sep. 2012.

[16] M. G. Christensen and A. Jakobsson, “Optimal filter designs for separating
and enhancing periodic signals,” IEEE Trans. Signal Process., vol. 58,
no. 12, pp. 5969–5983, Dec. 2010.

[17] Y. Pantazis, O. Rosec, and Y. Stylianou, “Chirp rate estimation of speech
based on a time-varying quasi-harmonic model,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Apr. 2009, pp. 3985–3988.

[18] M. G. Christensen and J. R. Jensen, “Pitch estimation for non-stationary
speech,” in Rec. Asilomar Conf. Signals, Systems, and Computers, Nov.
2014, pp. 1400–1404.

[19] Y. Doweck, A. Amar, and I. Cohen, “Joint model order selection and
parameter estimation of chirps with harmonic components,” IEEE Trans.
Signal Process., vol. 63, no. 7, pp. 1765–1778, Apr. 2015.

79



References

[20] M. G. Christensen and A. Jakobsson, “Multi-pitch estimation,” Synthesis
Lectures on Speech and Audio Processing, vol. 5, no. 1, pp. 1–160, 2009.

[21] P. Stoica and R. Moses, Spectral Analysis of Signals. Pearson Education,
Inc., 2005.

[22] D. Ealey, H. Kelleher, and D. Pearce, “Harmonic tunnelling: tracking
non-stationary noises during speech,” in Proc. Eurospeech, Sep. 2001, pp.
437–440.

[23] M. Krawczyk and T. Gerkmann, “STFT phase reconstruction in voiced
speech for an improved single-channel speech enhancement,” IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 22, no. 12, pp. 1931–1940,
2014.

[24] S. M. Nørholm, J. R. Jensen, and M. G. Christensen, “Enhancement of
non-stationary speech using harmonic chirp filters,” in Proc. Interspeech,
Sep. 2015, accepted for publication.

[25] J. Benesty, J. Chen, Y. Huang, and I. Cohen, Noise Reduction in Speech
Processing. Springer-Verlag, 2009.

[26] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms and Applications. Prentice Hall, Inc., 1996.

[27] Y. Hu and P. C. Loizou, “Subjective comparison and evaluation of speech
enhancement algorithms,” Speech Communication, vol. 49, no. 7–8, pp.
588 – 601, 2007.

[28] D. Pearce and H. G. Hirsch, “The AURORA experimental framework for
the performance evaluation of speech recognition systems under noisy con-
ditions,” in Proc. Int. Conf. Spoken Language Process., Oct 2000.

[29] H. Ney, “A dynamic programming algorithm for nonlinear smoothing,”
Signal Processing, vol. 5, no. 2, pp. 163–173, 1983.

[30] P. Stoica, H. Li, and J. Li, “Amplitude estimation of sinusoidal signals:
survey, new results, and an application,” IEEE Trans. Signal Process.,
vol. 48, no. 2, pp. 338–352, Feb. 2000.

[31] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection The-
ory. Prentice Hall, Inc., 1998.

[32] E. Fisher, J. Tabrikian, and S. Dubnov, “Generalized likelihood ratio test
for voiced-unvoiced decision in noisy speech using the harmonic model,”
IEEE Trans. Audio, Speech, Language Process., vol. 14, no. 2, pp. 502–510,
2006.

80



References

[33] Y. Hu and P. Loizou, “Evaluation of objective quality measures for speech
enhancement,” IEEE Trans. Audio, Speech, Language Process., vol. 16,
no. 1, pp. 229–238, 2008.

[34] P. C. Hansen and S. H. Jensen, “Subspace-based noise reduction for speech
signals via diagonal and triangular matrix decompositions: Survey and
analysis,” EURASIP J. on Advances in Signal Processing, vol. 2007, no. 1,
p. 24, Jun. 2007.

[35] P. Loizou, Speech Enhancement: Theory and Practice. CRC Press, 2007.

81



References

−10 −5 0 5 10

0

10

iSNR [dB]

oS
N
R

(h
)
[d
B
]

LCMVopt LCMVh LCMVc
APESh APESc APEShc

(a) Output SNR

−10 −5 0 5 10

1

1.2

1.4

iSNR [dB]

ξ s
r(

h
)

LCMVopt LCMVh LCMVc
APESh APESc APEShc

(b) Signal reduction factor

Fig. B.1: Performance as a function of the input SNR for synthetic chirp signals.
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Fig. B.2: Performance as a function of the number of samples N for synthetic chirp signals.
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Fig. B.3: Performance as a function of the filter length M for synthetic chirp signals.
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Fig. B.4: Reconstructed signal using APESh and APESc filters compared to the clean and
noisy signals. The noise is white Gaussian and the input SNR is 10 dB.
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1. Introduction

Abstract

In speech processing, the speech is often considered stationary within segments
of 20–30 ms even though it is well known not to be true. In this paper, we
take the non-stationarity of voiced speech into account by using a linear chirp
model to describe the speech signal. We propose a maximum likelihood estima-
tor of the fundamental frequency and chirp rate of this model, and show that
it reaches the Cramer-Rao bound. Since the speech varies over time, a fixed
segment length is not optimal, and we propose to make a segmentation of the
signal based on the maximum a posteriori (MAP) criterion. Using this seg-
mentation method, the segments are on average seen to be longer for the chirp
model compared to the traditional harmonic model. For the signal under test,
the average segment length is 24.4 ms and 17.1 ms for the chirp model and
traditional harmonic model, respectively. This suggests a better fit of the chirp
model than the harmonic model to the speech signal. The methods are based on
an assumption of white Gaussian noise, and, therefore, two prewhitening filters
are also proposed.
Index Terms: Harmonic chirp model, parameter estimation, segmentation,
prewhitening.

1 Introduction

Parameter estimation of harmonic signals is relevant in fields such as speech
processing and communication. In speech models, the speech signal is often
split up into two parts, a voiced part and an unvoiced part. The voiced part of
the speech signal is produced by the vibration of the vocal cords, and, therefore,
has a structure with a fundamental frequency and a set of overtones given by
integer multiples of the fundamental. Due to this, the voiced speech is often
modelled by the harmonic model [1–4]. To estimate the parameters of the this
model, it is normal to split the signal into segments of 20–30 ms [5] and perform
parameter estimation of each segment separately. In most models, including
the traditional harmonic model, the signal is assumed to be stationary within
each frame, even though it is well known that this assumption of stationarity
does not hold [5, 6]. To take the non-stationarity of speech into account, the
harmonic model can be extended to a harmonic chirp model which has also been
suggested in [7–9]. Here, the harmonic structure is still the foundation of the
model, but the fundamental frequency is allowed to change linearly within each
segment. This introduces an extra parameter to estimate, but it also introduces
some benefits based on the fact that the model fits the speech signal better.
Using the harmonic chirp model instead of the traditional harmonic model can,
therefore, lead to better speech enhancement [10], but with a better fit of the
model it is also possible to work with longer segments. Longer segments lead
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to better performance of the estimators, and, thereby, a smaller error on the
estimated parameters can be obtained. However, the optimal segment length
is very dependent on the features of the signal which are varying over time in
the case of speech signals. At some time instances, the parameters are almost
constant, and, in such periods, long segments can be used whereas at other
points in time, the parameters will change fast and shorter segments should be
used. Instead of using a fixed segment length it is, therefore, better to have
a varying segment length dependent on the signal characteristics at the given
point in time. In [11, 12], the signal is modelled based on linear prediction (LP),
and the segment length is chosen according to a trade off between bit rate and
distortion. The principle can, however, be used in connection with other criteria
for choosing the segment length dependent on what is most relevant in the given
situation. The noise characteristics also have an impact on the performance
of parameter estimators and optimal segmentation. Most methods make an
assumption of white Gaussian noise which is rarely experienced in real life
scenarios. One way to address this problem is to preprocess the signal in a way
that makes the noise resemble white Gaussian noise as is, e.g., done by use of
the Cholesky factorisation [13].

In this paper, we propose to estimate the fundamental frequency and fun-
damental chirp rate by maximising the likelihood. Since this maximisation
leads to a search in a two dimensional space, we suggest an iterative procedure
where first a one dimensional optimisation of the chirp parameter is performed
followed by a one dimensional optimisation of the fundamental frequency based
on the newly found estimate of the chirp rate. The estimation process is ended
by convergence of the two dimensional cost function. The parameter estimator
is a continuation of [14]. The iterative procedure presents some benefits over
the method suggested in [9] where an approximate cost function is introduced
in order to decrease the computational load. This approximate cost function is
evaluated over a two dimensional grid whereas in this paper, the original cost
function is evaluated iteratively which makes the procedure suggested in this
paper faster. Based on the estimated parameters, we further suggest to make
an optimal segmentation based on the principle suggested in [11, 12] by adopt-
ing it to the harmonic chirp model by using the maximum a posteriori (MAP)
criterion for choosing the segment length. Both the maximum likelihood esti-
mator of the fundamental frequency and chirp rate and the MAP criterion are
based on an assumption of white Gaussian noise. Therefore, we further suggest
two different methods to prewhiten the signal based on noise power spectral
density (PSD) estimation [15–18], generating a filter to counteract the spectral
shape of the noise. The filter is either based directly on the estimated spectrum
of the noise or linear prediction (LP) of the noise.

The paper is organised as follows. In Section 2, the harmonic chirp model is
introduced. In Section 3, the maximum likelihood estimator of the fundamental
frequency and fundamental chirp rate is derived. In Section 4, the general MAP
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criterion is introduced for the harmonic chirp model along with the MAP model
selection criterion between the traditional harmonic model, the harmonic chirp
model and the noise only model. This is followed by the segmentation principle
based on the MAP criterion in Section 5. In Section 6, the two prewhitening
methods are described. In Section 7, the proposed methods are tested through
simulations on synthetic chirp signals and speech, and the paper is concluded
in Section 6.

2 Harmonic chirp model

The harmonic chirp model is an extension of the traditional harmonic model.
Therefore, the harmonics still have the same relationship, but the fundamental
frequency changes linearly within a segment, and, thereby, the frequency of the
l’th harmonic, ωl(n), varies with the time index n = n0, ..., n0 +N − 1 and can
be expressed as

ωl(n) = l(ω0 + kn), (C.1)

where ω0 = f0/fs2π, with fs the sampling frequency, is the normalised fun-
damental frequency and k is the normalised fundamental chirp rate. The in-
stantaneous phase, ϕl(n), of the sinusoids are given by the integral of the
instantaneous frequency as

ϕl(n) = l

(
ω0n+

1

2
kn2

)
+ φl, (C.2)

where φl ∈ [0, 2π] is the initial phase of the l’th harmonic. This leads to the
complex harmonic chirp model (HCM) for a voiced speech signal, s(n):

s(n) =

L∑
l=1

Ale
jϕl(n) (C.3)

=

L∑
l=1

αle
jl(ω0n+k/2n2), (C.4)

where L is the number of harmonics and αl = Ale
jφl , Al > 0 is the complex

amplitude of the l’th harmonic. For speech signals the model order has to be
estimated which can be done, e.g., by use of the MAP criterion introduced in
Section 4 (see also [19]). The complex signal model is used instead of the real
because it can ease both notation and computation. A real signal can easily be
converted to a complex signal by use of the Hilbert transform [20] and without
loss of information be downsampled by a factor of two.
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A special case of the harmonic chirp model for k = 0 is then the traditional
harmonic model (HM):

s(n) =

L∑
l=1

αle
jlω0n. (C.5)

Defining a vector of samples

s = [s(n0) s(n0 + 1) . . . s(n0 +N − 1)]T , (C.6)

where (·)T denotes the transpose. Note that the dependency on the index n0

is left out for ease of notation. The signal model is then written as

s = Za, (C.7)

where Z is a matrix constructed from a set of L modified Fourier vectors match-
ing the harmonics of the signal,

Z = [z(ω0, k) z(2ω0, 2k) . . . z(Lω0, Lk)], (C.8)

with

z(lω0, lk) =


ejl(ω0n0+k/2n2

0)

ej2l(ω0(n0+1)+k/2(n0+1)2)

...
ejl(ω0(n0+N−1)+k/2(n0+N−1)2)

 . (C.9)

The vector a contains the complex amplitudes of the harmonics, a = [α1 α2 . . . αL]T .
Often, the signal, we want to make parameter estimation on, is buried in

noise, v(n), to give the observed signal, x(n),

x(n) = s(n) + v(n), (C.10)

which can also be put into a vector of observed samples

x = s + v, (C.11)

where x and v are defined similarly to s in (C.6). For real signals as speech, the
signal model will not fit the desired signal perfectly, and v will, therefore, also
cover the part of the speech signal that does not align with the given model as,
e.g., unvoiced speech during mixed excitations.

3 Estimation of frequency and chirp rate

The fundamental frequency and chirp rate are estimated by maximising the
likelihood. The maximum likelihood estimates are the parameters of the model
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that describe the observed signal the best, i.e., the parameters that maximises
the probability of the observed data, x, given the parameters:

θ̂ = arg max
θ
L(θ|x) = arg max

θ
p(x|θ), (C.12)

where θ is a vector containing the parameters of the model. Under the as-
sumption of circularly symmetric Gaussian noise, the likelihood function can
be written as [19]:

p(x|θ) =
1

πN det(Rv)
e−(x−s)HR−1

v (x−s) (C.13)

=
1

πN det(Rv)
e−vHR−1

v v, (C.14)

where det{·} denotes the determinant of the argument, (·)H the Hermitian
transpose and Rv = E[vvH ] the noise covariance matrix, with E(·) the math-
ematical expectation. Often the log likelihood is maximised instead of the
likelihood

lnL(θ|x) = −N lnπ − ln det(Rv)− vHR−1
v v. (C.15)

In the case of white noise, the noise covariance matrix reduces to a diagonal
matrix, Rv = σ2

vIN , where σ2
v is the variance of the noise signal and IN is an

N ×N identity matrix. Thereby, the log likelihood can be reduced to

lnL(θ|x) = −N lnπ −N lnσ2
v −

1

σ2
v

||v||22. (C.16)

The noise and its variance can be found using the signal model in (C.7)

v = x− s = x− Za⇒ (C.17)
||v||22 = ||x− Za||22, (C.18)

σ2
v =

1

N
||x− Za||22, (C.19)

which turns the log likelihood into

lnL(θ|x) = −N lnπ −N ln
1

N
||x− Za||22 −N. (C.20)

In the estimation of the fundamental frequency and chirp rate, it is only nec-
essary to consider terms dependent on these two parameters, and the log like-
lihood function can be reduced to the nonlinear least squares (NLS) estimator
that minimises the error between the observed signal and the signal model:

{â, ω̂0, k̂} = arg min
a,ω0,k

||x− s||22 (C.21)

= arg min
a,ω0,k

||x− Za||22. (C.22)
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Here, we are interested in the joint estimation of the fundamental frequency
and chirp rate, and, therefore, the amplitudes are substituted with their least
squares estimate [21],

â = (ZHZ)−1ZHx, (C.23)

to give the estimator:

{ω̂0, k̂} = arg min
ω0,k
||x− Z(ZHZ)−1ZHx||22 (C.24)

= arg min
ω0,k

(
xH(IN − Z(ZHZ)−1ZH)x

)
(C.25)

= arg min
ω0,k

(
xHΠ⊥ (ω0, k) x

)
, (C.26)

where Π is an orthogonal projection matrix

Π (ω0, k) = Z(ZHZ)−1ZH (C.27)

and Π⊥ its orthogonal complement

Π⊥ (ω0, k) = IN −Π (ω0, k) . (C.28)

This optimisation includes a two dimensional optimization over ω0 and k. To
solve the problem in a computational efficient manner, we propose to do it
by iterating between two one dimensional searches [14]. First, the chirp rate
in step i, ki, is estimated using the fundamental frequency estimate from the
previous iteration, ω(i−1)

0 , i = 1, 2, ...

k(i) = arg min
k

(
xHΠ⊥(ω

(i−1)
0 , k)x

)
. (C.29)

This estimate of the chirp rate is used to find a new estimate of the fundamental
frequency

ω
(i)
0 = arg min

ω0

(
xHΠ⊥(ω0, k

(i))x
)
. (C.30)

The estimates of ω0 and k are found by iterating between (C.29) and (C.30) un-
til convergence of the cost function in (E.11), but could alternatively be ended
by the convergence of the estimated parameters. The fundamental frequency
and chirp rate minimising the cost function in (E.11) are found by searching
among candidates in a grid centred at the value of the parameter from the pre-
vious iteration, i− 1. The grid search is followed by a Dichotomous search [22]
to get a refined estimate of the minimum. It is expected that the fundamen-
tal frequency estimate is close to the estimate found under the assumption of
stationarity within the analysis frame. Therefore, a fundamental frequency es-
timate found under the traditional harmonic assumption, e.g., by using one of
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Table C.1: Estimation of fundamental frequency and chirp rate.

for each sample

initialisation
ω

(0)
0 = ω0,h

k(0) = 0

∆k = 2αk/(K − 1)

∆ω = 2αω/(K − 1)

repeat
K = {k(i−1) − αk,∆k, ...., ki−1 + αk}
Ω = {ω(i−1)

0 − αω,∆ω, ...., ωi−1
0 + αω}

k(i) = arg mink∈K

(
xHΠ⊥(ω

(i−1)
0 , k)x

)
ω

(i)
0 = arg minω0∈Ω

(
xHΠ⊥(ω0, k

(i))x
)

until (convergence)

the methods in [19], will be a good choice as initialisation of the iterations, i.e.,
ω

(0)
0 = ω0,h. The chirp rate is expected to be small and the first grid search

is, therefore, centred around zero, i.e., k(0) = 0. The estimation process is
summarised in Table C.1.

The best obtainable performance of an unbiased estimator is given by the
Cramer-Rao bound (CRB). The CRB sets a lower limit to the variance of the
parameter estimate

var(θ̂g) ≥ [I(θ)
−1

]gg, (C.31)

where θg is the g’th parameter of the parameter vector θ of length G, [·]gg
denotes the matrix element of row g and column g, and I(θ) is the Fisher
information matrix (FIM) [23] of size G×G:

[I(θ)]gh = −E
{
∂2 ln(p(x|θ))

∂θg∂θh

}
. (C.32)

Under the assumptions of white Gaussian noise and a noise covariance matrix
independent of the parameters, the FIM reduces to:

I(θ) =
2

σ2
v

Re
{
∂sH

∂θ

∂s

∂θT

}
(C.33)

=
2

σ2
v

Re
{
DH(θ)D(θ)

}
(C.34)

with

D(θ) = [d(ω0) d(k) d(A1) d(φ1) . . . d(AL) d(φL)], (C.35)

d(y) =
∂s

∂y
. (C.36)
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For the signal model at hand, the elements of the d vectors are:

[d(ω0)]n =

L∑
l=1

jlnAle
jl(ω0n+k/2n2)+jφl , (C.37)

[d(k)]n =

L∑
l=1

1

2
jln2Ale

jl(ω0n+k/2n2)+jφl , (C.38)

[d(Al)]n = ejl(ω0n+k/2n2)+jφl , (C.39)

[d(φl)]n = jAle
jl(ω0n+k/2n2)+jφl . (C.40)

The CRB depends on the choice of n0. The best estimates can be obtained if
the segment is centred around n = 0 [24], and, thereby, n0 should be chosen as
n0 = −(N − 1)/2 for N odd and n0 = −N/2 for N even.

4 MAP criteria and model selection

Model selection and segmentation can be done with a maximum a posteriori
(MAP) model selection criterion. The principle behind the MAP criterion is
to choose the model, M, that maximises the posterior probability given the
observed data, x:

M̂ = arg max
M

p(M|x). (C.41)

Using Bayes’ theorem [25] this can be rewritten as:

M̂ = arg max
M

p(x|M)p(M)

p(x)
. (C.42)

Choosing the same prior probability, p(M), for every model to avoid favouring
any model beforehand, and noting that the probability of a given data vector,
p(x), is constant once it has been observed, the MAP estimate can be reduced
to:

M̂ = arg max
M

p(x|M), (C.43)

which is the likelihood of the observed data given the model. The likelihood
is also dependent on other parameters like the fundamental frequency and the
model order. As opposed to the maximum likelihood approach, in the Bayesian
framework these have to be integrated out to give the marginal density of the
data given the model [19]:

p(x|M) =

∫
Θ

p(x|θ,M)p(θ|M)dθ, (C.44)
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An approximation to this integral can be found assuming high amounts of
data and a likelihood that is highly peaked around the maximum likelihood
estimates of θ [7, 19, 26]

p(x|M) = πG/2 det(Ĥ)−1/2p(x|θ̂,M)p(θ̂|M), (C.45)

where Ĥ is the Hessian of the log-likelihood function evaluated at θ̂:

Ĥ = −∂
2 ln p(x|θ,M)

∂θ∂θT

∣∣∣∣
θ=θ̂

. (C.46)

Now an expression for the MAP estimator can be found by taking the negative
logarithm of (C.45). The term πG/2 can be assumed constant for large N
and is neglected, and a weak prior on p(θ|M) has been used [7] to obtain the
expression [19]:

M̂ = arg min
M
− lnL(θ̂|x) +

1

2
ln det(Ĥ). (C.47)

This corresponds to minimising a cost function, where the first part is the
likelihood from (C.16), and the second part is a model dependent penalty term.

The penalty term is found by noting that the Hessian is related to the
Fisher information matrix in (C.32). Evaluating the Fisher information matrix
at θ = θ̂ gives the expected value of the Hessian, and, therefore, the elements
in the Hessian can be found by using (C.35)-(C.40). To ease complexity, an
asymptotic expression for the Hessian can be found by looking at the elements
of the matrix. The diagonal elements of the Hessian for the harmonic chirp
model is given by:

Ĥω0ω0 =

L∑
l=1

1

12
(N3 −N)l2Â2

l , (C.48)

Ĥkk =

L∑
l=1

1

960
(3N5 − 10N3 + 7N)l2Â2

l , (C.49)

ĤAlAl
= N, (C.50)

Ĥφlφl
= NÂ2

l , (C.51)

for N odd and n0 = −(N − 1)/2. From this, it is seen that when the Hessian
is evaluated at θ = θ̂, the model order and amplitudes can be considered con-
stant, and the Hessian is then only dependent on N . To make this dependency
negligible, a diagonal normalisation matrix, K, is introduced [19, 27]

K =

N−3/2 0

N−5/2

0 N−1/2 I2L

 , (C.52)
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and, thereby,

Ĥ = K−1KĤKK−1. (C.53)

The definition of the elements in K as N−x/2 instead of N−x, x = 1, 3, 5,
and multiplication with K from both sides is done to ensure that also the off-
diagonal elements of Ĥ are compensated for in the right way. The determinant
of the Hessian is then given by:

det(Ĥ) = det(K−2) det(KĤK), (C.54)

where the main dependency onN is now moved to the term K−2 whereas KĤK

is assumed small and constant for large N . Taking the natural logarithm of
the determinant gives:

ln det(Ĥ) = ln det(K−2) + ln det(KĤK) (C.55)
= 3 lnN + 5 lnN + 2L lnN +O(1). (C.56)

An expression for the cost associated with the harmonic chirp model can
now be found by combining the log likelihood for the harmonic chirp model in
(C.20) with the penalty term in (C.56) where the term O(1) is ignored:

Jc = N lnπ +N ln
1

N
||x− Za||22 +N

+
3

2
lnN +

5

2
lnN + L lnN. (C.57)

For the traditional harmonic model, the Hessian will not contain a term related
to the chirp rate, k, and the penalty for the MAP estimator will, therefore, also
be short of this term:

Jh = N lnπ +N ln
1

N
||x− Z0a||22 +N

+
3

2
lnN + L lnN, (C.58)

where Z0 equals Z for k = 0. The MAP expressions for the harmonic chirp
model and the traditional harmonic model can be used to choose between the
two models by choosing the one with the smallest cost. Due to Occam’s ra-
zor [28], the simplest model is always preferred if the models describe the signal
equally well. This is assured by the extra penalty that naturally appears in the
MAP expression for the chirp model. The error between the chirp model and
the observed signal has to decrease enough relative to the traditional harmonic
model to outweigh this penalty term before the chirp model is favoured over
the traditional harmonic model. Besides from choosing between the two differ-
ent harmonic models, the MAP estimator can also be used for voiced/unvoiced
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J11J1 =

m = 1

J12J1 =

J11 J22J2 = +

m = 2

J13J1 =

J11 J23J2 = +

J12 J33J3 = +

J11 J22 J33J4 = + +

m = 3

Fig. C.1: Principle of segmentation. M = 3. Modified from [11].

detection by determining whether a harmonic signal is present or not by com-
paring the two models with a zero order model,

J0 = N lnπ +N lnσ2
x +N, (C.59)

where σ2
x is the variance of the observed signal. The voiced/unvoiced detection

can also be done by use of the generalised likelihood ratio test (GLRT) [29, 30].
In this method, the ratio of the likelihood of the presence of voiced speech
found based on the harmonic model to the likelihood of a noise-only signal
is calculated and compared to a threshold. The method has a constant false
alarm ratio (CFAR) and the threshold is, therefore, set to assure a given false
alarm ratio independent of the signal-to-noise ratio (SNR). Other methods as,
e.g, described in [31, 32] can also be used.

5 Segmentation

The characteristics of the observed signal is varying over time, sometimes faster
than others, which means that a fixed segment length is not optimal. Using
the MAP criteria, the cost associated with different segment lengths can be
compared and the most optimal chosen as the one minimising (C.57). The
segmentation is based on the principle in [11, 12] which is sketched in Fig. C.1.
In the figure, Jxy is the cost of a segment starting at block x and ending at
block y, with both block x and y included in the segment.

A minimal segment length, Nmin, is chosen, generating a block of Nmin

samples and dividing the signal into M blocks. Since this will give 2M−1 ways
of segmenting the signal, a maximum number of blocks in one segment, Kmax,
is also set since very long segments are highly unlikely, and setting a maximum
will bound the computational complexity. The maximum number of samples in
one segment is, therefore, KmaxNmin. Using a dynamic programming algorithm
the optimal number of blocks in a segment, kopt, is found for all blocks, m =

1, ...,M , starting at m = 1 moving continuously to m = M . For each block,
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Table C.2: Segmentation.

while m×Nmin ≤ length(signal)
K = min([m,Kmax])

for k = 1 : K

blocks of signal to use is m− k + 1, ....,m

find analytic signal and downsample
estimate ω0 and k using Table C.1
estimate a and Z from (C.23), (C.8) and (C.9)
calculate J(m−k+1)m from (C.57)

J(k) =

{
J(m−k+1)m + J1(m−k) if m− k > 0,

J(m−k+1)m otherwise.
end for
kopt(m) = arg min J(k)

m = m+ 1

end while

backtrack
m = M

while m > 0

number of blocks in segment is kopt(m)

m = m− kopt(m)

end while

the cost of all new block combinations is calculated whereas old combinations
are reused from earlier blocks. Relating to Fig. C.1, the red segments are
calculated whereas the blue segments are reused from earlier. To decrease the
number of calculations further, only a block combination minimising the cost
is used in a later step, which in Fig. C.1 means that only one of J3 and J4 is
considered for m = 3, corresponding to the block combination that minimised
the cost at m = 2. When the end of the signal is reached, backtracking is
used to find the optimal segmentation of the signal, starting at the last block,
and jumping through the signal to the beginning. This is done by starting at
m = M and setting the number of blocks in the last segment of the signal
to kopt(M). Thereby, the next segment ends at block m = M − kopt(M)

and includes kopt(M − kopt(M)) blocks. This is continued until m = 0. The
segmentation is summarised in Table C.2.

6 Prewhitening

The maximum likelihood estimates of the fundamental frequency and chirp
rate and the MAP model selection and segmentation criteria were found under
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coloured
noise, v(n)

white
noise, ṽ(n)A(z) =

1
H(z)

Fig. C.2: Prewhitening of noise by passing it through the filter A(z).

the assumption of white Gaussian noise. However, in real life scenarios the
noise is not always white. A prewhitening step is, therefore, required. The
observed signal can be prewhitened by passing it through a filter that changes
the noise from coloured to white. This is illustrated in Fig. C.2. In the figure
H(z) is a filter having a frequency response similar to the spectrum of the
noise. The coloured noise can be seen as white noise filtered by a filter with
coefficients given by H(z). Therefore, to obtain a flat frequency spectrum of
the noise, the action is reversed by dividing by H(z), here denoted by A(z). Of
course the desired signal will also be altered by the passage through the filter.
This can have an influence on the results dependent on how much the signal
is changed, and what the prewhitened signal is used for. At the very best, the
linear transformation of the signal will not affect the CRB of the parameter
estimation.

To obtain H(z), information about the noise spectrum is needed. Different
methods exist to estimate the power spectral density (PSD) of the noise given
a mixture of desired signal and noise [15–18]. The PSD can be used directly to
generate a simple finite impulse response (FIR) filter based on the frequency
coefficients of the PSD. Alternatively, also based on the PSD, linear prediction
(LP) can be used to find the characteristic parts of the noise spectrum and
filter the observed signal based on this. In linear prediction the present sample
is estimated based on P prior samples:

v̂(n) = −
P∑
p=1

apv(n− p), (C.60)

which leads to a filter of the form:

A(z) = 1 +

P∑
p=1

apz
−p. (C.61)

After filtering, the signal is normalised to have the same standard deviation
before and after the filtering. To ensure that the desired signal has a smooth
evolution over time after filtering, i.e., no drastic changes in amplitude or phase,
it is important that the PSD is smooth. This is ensured by most recent PSD
methods where the value in one time frame is a weighted combination of the
preceding time frame and an estimate from the current time frame.
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7 Simulations

In the following, the different proposed methods are tested through simulations
on synthetic signals and speech. The synthetic signals are made according to
(C.7). Unless otherwise stated in the specific subsections, the signals were
generated with L = 10, Al = 1 ∀ l, random phase, fundamental frequency,
and fundamental chirp rate, in the intervals φl ∈ [0, 2π], f0 ∈ [100, 300] Hz,
k ∈ [−500, 500] Hz2 and the sampling frequency, fs, was set to 8000 Hz.

The speech signal used for most of the simulations was a recording with a
female uttering the sentence "Why were you away a year, Roy?" sampled with
a frequency of 8000 Hz. This signal is chosen because it primarily contains
voiced speech. Besides from this, the fundamental frequency estimation is also
tested on speech from the NOIZEUS database [33].

In most experiments, the signals were added noise with a variance calculated
to fit the desired input SNR defined as

iSNR =
σ2
s

σ2
v

, (C.62)

where σ2
s is the variance of the desired signal. The noise signals used are white

Gaussian noise, and different types of noise from the AURORA database [34].
For each segment of noisy speech, the discrete-time analytic signal [20] and

the parameter estimation is performed on this complex, downsampled version
of the signal.

7.1 Prewhitening

The prewhitening using the FIR filter and LP is tested on "Why were you away
a year, Roy?" and compared to prewhitening using Cholesky factorisation [35].
The signal is added noise at input SNRs of 0 and 10 dB, and the prewhitening
filters are generated based on the noisy signal. The PSD is found using an
implementation of [16] given in [15]. The spectrum of babble noise at an input
SNR of 10 dB before and after prewhitening is shown in Fig. C.3. Here, it
seems that the whitest noise signal is obtained with the Cholesky factorisation,
followed by LP, and the FIR filter seems to make a minor change to the original
noise.

The prewhitening methods are compared by means of the spectral flatness,
F , which is the ratio of the geometric mean to the arithmetic mean of the
power spectrum, S(k), [36]:

F =

(∏K−1
k=0 S(k)

)1/K

1
K

∑K−1
k=0 S(k)

. (C.63)
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Fig. C.3: Spectrograms of babble noise before (a) and after prewhitening with (b) LPC
filter, (c) FIR filter and (d) Cholesky factorisation. The four spectrograms are plotted with
the same limits in dB.

The spectral flatness gives a number between zero and one, where perfect white
noise has a value of one. The spectral flatness for four different noise types
at 0 and 10 dB is shown in Fig. C.4 where also the spectral flatness of the
original noise and a white noise signal generated with MATLABs randn are
shown for comparison. The spectral flatness is very similar at 0 and 10 dB
for all noise types using a given prewhitening method. The results confirm the
tendencies seen in Fig. C.3. The Cholesky factorisation leads to the highest
spectral flatness for all noise types followed by linear prediction in the case
of babble, car and street noise whereas the FIR filter is better than linear
prediction for exhibition noise. There is, however, big differences between the
different noise types in how big the advantage is of using one prewhitening
method over another. The Cholesky factorisation is clearly best in terms of
whitening the noise, but as is seen in Fig. C.5, it is also the method that has
the largest influence on the desired signal. Here, it seems that the LP filtering
preserves the desired signal best, the FIR filter is almost just as good in that
respect whereas the Cholesky factorisation clearly changes the appearance of
the desired signal. Using the Cholesky factorisation for prewhitening, the signal
model has to be redefined including the Cholesky matrix in the model as was
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Fig. C.4: Spectral flatness, F , at 0 and 10 dB input SNR for original noise, prewhitened
noise using FIR, LPC and Cholesky factorisation. The spectral flatness for white noise is
added for comparison.

done in [37]. Thus it cannot be applied directly with the proposed model, and
has been excluded from the following simulations. The FIR and LP filters only
change the amplitude and phase, and, thereby, they only change the complex
amplitude vector a.

7.2 Fundamental frequency and chirp rate

The proposed estimator of fundamental frequency and chirp rate is first eval-
uated on synthetic chirp signals. Two experiments were made. In the first,
the segment length, N , was varied from 49 to 199 samples with a fixed input
SNR of 10 dB, in the second, the input SNR was varied from -10 to 10 dB
with a fixed segment length of 199 samples. For each generated signal, noise
was added, and an initial fundamental frequency estimate was found using a
harmonic NLS estimator [19] with lower and upper limits of the search interval
of 80 and 320 Hz. Hereafter, the fundamental frequency and chirp rate were
estimated, and the squared error was found. This was repeated 2000 times and
the mean was taken to give the mean squared error (MSE). In Figs. C.6 and
C.7 the MSE as a function of N and the input SNR is shown and compared
to the CRB and estimates obtained using a harmonic NLS estimator [19]. The
chirp estimates reach the CRB around a segment length of 110 and at an input
SNR of around -5 dB under the given settings. The harmonic estimates are
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Fig. C.5: Spectrograms of speech signal before (a) and after prewhitening with (b) LPC
filter, (c) FIR filter and (d) Cholesky factorisation. The four spectrograms are plotted with
the same limits in dB.

close to reaching the bound too but as the CRB decreases for higher segment
lengths and input SNRs, the error on the harmonic estimates do not decrease
with the same rate resulting in a gap between the CRB and the estimates.

The estimator was used to estimate the fundamental frequency and chirp
rate of "Why were you away a year, Roy?" with the spectrum shown in Fig.
C.5a. Here, the parameters are estimated directly from the clean signal in
segments with a length of 198 samples (24.8 ms). To confirm that a good
initialisation is made, an example of a two dimensional cost function for a
segment of the speech signal is shown in Fig. C.8. The initialisation as a
combination of the harmonic fundamental frequency estimate and a chirp rate
of zero is marked by a yellow cross whereas the final estimate of fundamental
frequency and chirp rate is marked by a red cross. As seen, the function is
locally convex around the initial and true fundamental frequency and chirp
rate. Now, the parameters are estimated in steps of 5 samples. The resulting
estimates are shown in Fig. C.9. The chirp rate can be interpreted as the
tangent to the fundamental frequency curve in a given point. This means that
the chirp rate should be negative when the fundamental frequency is decreasing,
positive when it is increasing, and zero at a local maximum or minimum. To
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Fig. C.6: Mean squared error (MSE) of the fundamental frequency and chirp rate as a
function of N .

illustrate this, some maxima and minima of the fundamental frequency are
marked by red stars in the figure and the chirp rates at the same points in time
are marked as well. The difference in fundamental frequency estimate between
the traditional harmonic model and harmonic chirp model is calculated for 30
sentences from the NOIZEUS database [33] in segments with a length of 240
samples (30 ms). Only voiced speech segments are used for this, located by
use of the GLRT [29, 30]. The distribution of occurrences as a function of
the difference in fundamental frequency estimate is shown in Fig. C.10(a). In
most cases, the fundamental frequency estimate is changed due to the use of
the chirp model. The signal is reconstructed using (C.7), and the difference
in SNR between using the chirp model and the harmonic model is depicted
in Fig. C.10(b). This histogram is clearly skewed towards positive differences,
indicating that the signal generated based on the chirp model in general bears
a stronger resemblance to the desired signal than the signal generated using
the traditional harmonic model. However, in some cases, it is better to use the
harmonic model which could, e.g., be due to erroneous estimates of fundamental
frequency and chirp rate.

The estimation is repeated after addition of noise to give an input SNR of 0
and 10 dB, but this time the parameters are only estimated once per segment of
198 samples. The estimation is done both for white Gaussian noise, babble noise
and after prewhitening of the signal with babble noise using the FIR and LP
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Fig. C.7: Mean squared error for the fundamental frequency and chirp rate as a function of
the input SNR.

Table C.3: Sum of absolute error between noisy estimate and clean estimate of fundamental
frequency in Hz at input SNRs of 0 and 10 dB.

white noise babble FIR LP
0 dB 585 2653 2483 1201
10 dB 167 408 714 787

filter. The sum of the absolute error between noisy and clean estimates is given
in Table C.3 at 0 and 10 dB. Here, only the time interval shown in Figs. C.9 is
considered since the beginning and end of the signal contain no speech, and it,
therefore, does not make much sense to talk about a fundamental frequency.
The white noise gives the best estimate at both 0 and 10 dB. At 0 dB, the LP
prewhitened signal gives a lower error than the FIR filtered and clean babble
noise whereas at 10 dB, the babble noise gives the lowest error followed by the
FIR and LP filtered noise. This suggests that for the proposed ML estimator,
the dominance of the desired signal at 10 dB decreases the importance of the
noise shape relative to the effects of prewhitening on the signal. However, at 0
dB the noise is more dominant, and the importance of prewhitening increases.
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Fig. C.8: Example of a cost function for a speech signal as a function of fundamental
frequency and chirp rate

7.3 Model selection

The model selection was first tested on synthetic signals in an input SNR of 10
dB white Gaussian noise. In this part, the possible models included in the test
is the traditional harmonic model and the harmonic chirp model. The model
selection was tested for different chirp rates and different segment lengths. For
each combination of chirp rate and segment length, 2000 signals were generated,
the selected model was noted for each signal and the percent of the chirp model
chosen is shown in Fig. C.11. Even though all generated signals, except for the
ones with a chirp rate of zero, are chirp signals, the chirp model is not chosen
in all cases. As mentioned in Section 4, this is due to the extra penalty term
introduced for the chirp model compared to the harmonic model. The longer
the signal is, the more prone it is to be denoted as a chirp signal since the error
term ||x − Za||22 will increase with signal length when the model does not fit,
making the cost of the harmonic model greater than that for the chirp model
despite the extra penalty for the chirp model.

Model selection was also performed on the speech signal "Why were you
away a year, Roy?" in white Gaussian noise at different segment lengths. Here,
the noise model is also included. The percentage of each model chosen is found
as the number of segments in the signal labelled with a given model out of
the total number of segments in the signal. The result is shown in Fig. C.12.
The percentage of noise model chosen is fairly independent on the segment
length since the noise model is primarily chosen in the beginning and end of
the signal where there is no speech present. For short segment lengths, the
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Fig. C.9: Fundamental frequency and chirp rate estimation.

harmonic model is preferred over the chirp model, but as the segment length
is increased, the preferred model is the chirp model.

7.4 Segmentation

The segmentation is tested on the signal "Why were you away a year, Roy?".
The signal is added white Gaussian noise to give an input SNR of 10 dB. The
signal is segmented according to the harmonic chirp model and the traditional
harmonic model where in both cases Nmin = 40 and Kmax = 10 which means
that the minimum length of a segment is 40 samples (5 ms) and the maxi-
mum length of a segment is 400 samples (50 ms). A representative example
of the chosen segment length as a function of time is shown in Fig. C.13. For
comparison, the fundamental frequency estimate is plotted as well. In gen-
eral, the chirp model gives rise to longer segment lengths than the traditional
harmonic model. For this example the average segment length is 195 samples
(24.4 ms) using the chirp model whereas it is 137 samples (17.1 ms) using the
traditional harmonic model. A typical choice of fixed segment length is 20–30
ms [5] which would on average be a good choice when using the harmonic chirp
model whereas shorter segments would be better if the traditional harmonic
model is used. The longer segments for the chirp model of course also means
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Fig. C.10: Difference in fundamental frequency estimate and reconstruction SNR between
the traditional harmonic model and the harmonic chirp model.
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Fig. C.11: Model selection for synthetic signals as a function of the chirp rate for different
segment lengths from 49 to 199.

that the total number of segments for the chirp model is lower than for the
harmonic model. The chirp model is dividing the signal into 105 segments
and with the harmonic model the number of segments is 150. Three areas in
Fig. C.13 are marked with circles as examples of the longer segments obtained
with the chirp model. In the light blue circle, the fundamental frequency is
decreasing quite fast, but the change is constant over time, and, therefore, a
long segment is obtained using the chirp model whereas shorter segments rep-
resent this piece when the harmonic model is used. In the purple circle, the
piece of speech is divided into four segments with the chirp model. Two seg-
ments of maximum length where the fundamental frequency is almost constant
and two shorter but still fairly long segments where the fundamental frequency
is increasing and decreasing, respectively. For the harmonic model, there are
two long segments where the fundamental frequency is close to constant, but
the rest of the piece is divided into shorter segments. In the brown circle, the
piece is divided into two segments using the chirp model. One piece when the
fundamental frequency is decreasing and one when it is increasing. The har-
monic model covers the area in the middle where the fundamental frequency
is fairly constant with two somewhat long segments, but to cover the full area,
shorter segments are added on both sides of the segments in the middle. The
longer segments chosen for the chirp model compared to the harmonic model
also suggests that the chirp model describes the signal in a better way than the
traditional harmonic model since it to some extent takes the non-stationarity
of the speech into account whereas the traditional harmonic model assumes the
signal stationary within the segments.

The segmentation is also tested for the signal in babble noise and prewhitened
babble noise also at an input SNR of 10 dB. The average segment lengths in
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Table C.4: Average segment length, N̄ , for chirp and harmonic signal for different noise
types at 10 dB.

chirp harmonic
babble 69 62
FIR 73 65
LP 119 91

the different cases are shown for the two models in Table C.4. In all cases, the
signal is divided into longest segments when the chirp model is used. With
respect to the different noise scenarios, the tendency is the same for the two
models. The segments are shortest when the signal in babble noise is consid-
ered, hereafter comes the prewhitened signal using FIR filtering and the longest
segments are obtained with the LP filtered signal.

8 Conclusion

Traditionally, non-stationarity, fixed segment lengths and noise assumptions
have limited the performance of pitch estimators. In this paper, we take these
factors into account. We described the voiced part of a speech signal by a
harmonic chirp model that allows the fundamental frequency to vary linearly
within each segment. We proposed an iterative maximum likelihood estima-
tor of the fundamental frequency and chirp rate based on this model. The
estimator reaches the Cramer-Rao bound and shows expected correspondence
between the estimate of the fundamental frequency and fundamental chirp rate
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Fig. C.13: Segment length as a function of time for (a) the harmonic chirp model and (b)
the traditional harmonic model. The average segment length, N̄ , is marked by the red line.
The total number of segments is 105 for the chirp model and 150 for the harmonic model.

of speech. Based on the maximum a posteriori (MAP) model selection crite-
rion, the chirp model was shown to be preferred over the traditional harmonic
model for long segments, suggesting that the chirp model is better at describ-
ing the non-stationary behaviour of voiced speech. Since the extent of the
non-stationarity of speech changes over time, a fixed segment length is not op-
timal. Therefore, we also proposed to vary the segment length based on the
MAP criterion. Longer segments were obtained when the chirp model was used
compared to the traditional harmonic model, again suggesting a better fit of
the model to the speech. The maximum likelihood and MAP estimators are
based on an assumption of white Gaussian noise. However, in real life the noise
is rarely white. Therefore, we also suggested two filters to prewhiten the noise,
a simple FIR filter and one based on linear prediction (LP). They both have
a minor influence on the speech signal, but the LP filter is a more effective
prewhitener than the FIR filter.

119



References

References

[1] D. Ealey, H. Kelleher, and D. Pearce, “Harmonic tunnelling: tracking
non-stationary noises during speech,” in Proc. Eurospeech, Sep. 2001, pp.
437–440.

[2] J. R. Jensen, J. Benesty, M. G. Christensen, and S. H. Jensen, “Enhance-
ment of single-channel periodic signals in the time-domain,” IEEE Trans.
Audio, Speech, Language Process., vol. 20, no. 7, pp. 1948–1963, Sep. 2012.

[3] T. Nilsson, S. I. Adalbjornsson, N. R. Butt, and A. Jakobsson, “Multi-pitch
estimation of inharmonic signals,” in Proc. European Signal Processing
Conf., 2013, pp. 1–5.

[4] M. Krawczyk and T. Gerkmann, “STFT phase reconstruction in voiced
speech for an improved single-channel speech enhancement,” IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 22, no. 12, pp. 1931–1940,
2014.

[5] L. Deng and D. O’Shaughnessy, Speech processing: a dynamic and
optimization-oriented approach. CRC Press, 2003.

[6] F. R. Drepper, “A two-level drive-response model of non-stationary speech
signals,” Nonlinear Analyses and Algorithms for Speech Processing, vol. 1,
pp. 125–138, Apr. 2005.

[7] P. M. Djuric, “A model selection rule for sinusoids in white gaussian noise,”
IEEE Trans. Signal Process., vol. 44, no. 7, pp. 1744–1751, 1996.

[8] Y. Pantazis, O. Rosec, and Y. Stylianou, “Chirp rate estimation of speech
based on a time-varying quasi-harmonic model,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Apr. 2009, pp. 3985–3988.

[9] Y. Doweck, A. Amar, and I. Cohen, “Joint model order selection and
parameter estimation of chirps with harmonic components,” IEEE Trans.
Signal Process., vol. 63, no. 7, pp. 1765–1778, Apr. 2015.

[10] S. M. Nørholm, J. R. Jensen, and M. G. Christensen, “Enhancement of
non-stationary speech using harmonic chirp filters,” in Proc. Interspeech,
Sep. 2015, accepted for publication.

[11] P. Prandoni, M. M. Goodwin, and M. Vetterli, “Optimal time segmentation
for signal modeling and compression,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Apr. 1997, pp. 2029–2032.

[12] P. Prandoni and M. Vetterli, “R/D optimal linear prediction,” IEEE Trans.
Speech Audio Process., vol. 8, no. 6, pp. 646–655, 2000.

120



References

[13] P. C. Hansen and S. H. Jensen, “Subspace-based noise reduction for speech
signals via diagonal and triangular matrix decompositions: Survey and
analysis,” EURASIP J. on Advances in Signal Processing, vol. 2007, no. 1,
p. 24, Jun. 2007.

[14] M. G. Christensen and J. R. Jensen, “Pitch estimation for non-stationary
speech,” in Rec. Asilomar Conf. Signals, Systems, and Computers, Nov.
2014, pp. 1400–1404.

[15] P. Loizou, Speech Enhancement: Theory and Practice. CRC Press, 2007.

[16] K. V. Sørensen and S. V. Andersen, “Speech enhancement with natural
sounding residual noise based on connected time-frequency speech presence
regions,” EURASIP J. on Advances in Signal Processing, vol. 2005, no. 18,
pp. 2954–2964, 2005.

[17] T. Gerkmann and R. C. Hendriks, “Unbiased MMSE-based noise power es-
timation with low complexity and low tracking delay,” IEEE Trans. Audio,
Speech, Language Process., vol. 20, no. 4, pp. 1383–1393, 2012.

[18] R. Martin, “Noise power spectral density estimation based on optimal
smoothing and minimum statistics,” IEEE Trans. Speech Audio Process.,
vol. 9, no. 5, pp. 504–512, Jul. 2001.

[19] M. G. Christensen and A. Jakobsson, “Multi-pitch estimation,” Synthesis
Lectures on Speech and Audio Processing, vol. 5, no. 1, pp. 1–160, 2009.

[20] S. L. Marple, Jr., “Computing the discrete-time ’analytic’ signal via FFT,”
IEEE Trans. Signal Process., vol. 47, no. 9, pp. 2600–2603, Sep. 1999.

[21] J. R. Jensen, M. G. Christensen, and S. H. Jensen, “Nonlinear least squares
methods for joint DOA and pitch estimation,” IEEE Trans. Audio, Speech,
Language Process., vol. 21, no. 5, pp. 923–933, 2013.

[22] A. Antoniou and W. S. Lu, Practical Optimization - Algorithms and En-
gineering Applications. Springer Science+Business Media, 2007.

[23] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation The-
ory. Prentice Hall, Inc., 1993.

[24] P. M. Djuric and S. M. Kay, “Parameter estimation of chirp signals,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 38, no. 12, pp. 2118–2126,
1990.

[25] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006,
vol. 1.

121



References

[26] P. M. Djuric, “Asymptotic MAP criteria for model selection,” IEEE Trans.
Signal Process., vol. 46, no. 10, pp. 2726–2735, 1998.

[27] P. Stoica and Y. Selen, “Model-order selection: a review of information
criterion rules,” IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36–47,
2004.

[28] D. J. MacKay, Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[29] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection The-
ory. Prentice Hall, Inc., 1998.

[30] E. Fisher, J. Tabrikian, and S. Dubnov, “Generalized likelihood ratio test
for voiced-unvoiced decision in noisy speech using the harmonic model,”
IEEE Trans. Audio, Speech, Language Process., vol. 14, no. 2, pp. 502–510,
2006.

[31] K. I. Molla, K. Hirose, N. Minematsu, and K. Hasan, “Voiced/unvoiced
detection of speech signals using empirical mode decomposition model,”
in Int. Conf. Information and Communication Technology, Mar. 2007, pp.
311–314.

[32] Y. Qi and B. R. Hunt, “Voiced-unvoiced-silence classifications of speech
using hybrid features and a network classifier,” IEEE Trans. Speech Audio
Process., vol. 1, no. 2, pp. 250–255, 1993.

[33] Y. Hu and P. C. Loizou, “Subjective comparison and evaluation of speech
enhancement algorithms,” Speech Communication, vol. 49, no. 7–8, pp.
588 – 601, 2007.

[34] D. Pearce and H. G. Hirsch, “The AURORA experimental framework for
the performance evaluation of speech recognition systems under noisy con-
ditions,” in Proc. Int. Conf. Spoken Language Process., Oct 2000.

[35] P. C. Hansen and S. H. Jensen, “Prewhitening for rank-deficient noise
in subspace methods for noise reduction,” IEEE Trans. Signal Process.,
vol. 53, no. 10, pp. 3718–3726, 2005.

[36] N. S. Jayant and P. Noll, Digital coding of wafeforms. Prentice-Hall, 1984.

[37] J. Tabrikian, S. Dubnov, and Y. Dickalov, “Maximum a-posteriori proba-
bility pitch tracking in noisy environments using harmonic model,” IEEE
Trans. Speech Audio Process., vol. 12, no. 1, pp. 76–87, 2004.

122



Paper D

On the Influence of Inharmonicities in Model-Based
Speech Enhancement

Sidsel Marie Nørholm, Jesper Rindom Jensen and Mads Græsbøll
Christensen

The paper has been published in the
Proc. European Signal Processing Conference, 2013.



c© 2013 EURASIP
The layout has been revised.



1. Introduction

Abstract

In relation to speech enhancement, we study the influence of modifying the
harmonic signal model for voiced speech to include small perturbations in the
frequencies of the harmonics. A perturbed signal model is incorporated in the
nonlinear least squares method, the Capon filter and the amplitude and phase
estimation filter. Results show that it is possible to increase the performance,
in terms of the signal reduction factor and the output signal-to-noise ratio, at
the cost of increased complexity in the estimation of the model parameters. It is
found that the perturbed signal model performs better than the harmonic signal
model at input signal-to-noise ratios above approximately −10 dB, and that they
are equally good below.
Index Terms: Single-channel speech enhancement, perturbed signal models,
inharmonicity, parameter estimation.

1 Introduction

In systems such as mobile phones, teleconferencing systems and hearing aids,
noise interferes with the speech signal which has a detrimental effect on the
quality of the resulting signal. Speech enhancement is therefore an important
component in such systems. Speech enhancement can be performed using dif-
ferent approaches. A common one is filtering based on the noise statistics, e.g.,
using the Wiener filter. This method is very vulnerable to nonstationary noise
because the problem of estimating noise statistics in the presence of speech is
non-trivial [1, 2]. Another approach is to optimise filtering by assuming a model
of the speech signal, as for example the harmonic signal model used in [2–6].
However, some problems arise when the harmonic signal model is used. The
first is that only the voiced part of the speech signal can be modelled by a
harmonic signal model. A second is due to the voiced speech being quasista-
tionary, which means that the fundamental frequency changes over time. To
minimise the effect of this, the processing is done on small segments, where
the signal can be assumed periodic. A third problem is that voiced speech is
not perfectly harmonic [7]. There are small perturbations in the frequencies
of the harmonics and therefore they do not coincide completely with the har-
monics of the assumed model. This causes unwanted distortion in the resulting
speech signal when using a signal driven approach. The phenomenon of in-
harmonicity is well known from musical instruments, where the perturbations
of the harmonics are very well defined and have to be taken into account, for
example in the tuning of pianos [8]. Inharmonic models are also used in [6, 9]
for fundamental frequency estimation in musical signals, but the research of
the influence of inharmonicities in speech is very sparse. The inharmonicity
in voiced speech is not as predictable as in musical instruments and a less re-
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strictive model is therefore used in speech, (see e.g. [5, 7]). Inharmonicities are
taken into account in the estimation of the amplitudes of the harmonics in [10],
but the influence of using a perturbed signal model on the filter performance
in speech enhancement has not been studied.

The purpose of this paper is, therefore, to investigate whether using a per-
turbed signal model will have an effect on filter performance, in terms of the
signal reduction factor and the output signal-to-noise ratio (oSNR). The per-
turbations in synthetic signals and a set of voiced speech signals are estimated
by incorporating the perturbed signal model in a nonlinear least squares (NLS)
method [11] and the Capon and amplitude and phase estimation (APES) fil-
ters [12]. The estimated perturbations are then used in filtering of the signals
with the APES filter [13] in order to find the gain in signal reduction factor
and oSNR when compared to filtering based on the harmonic signal model.

In Section 2, the used signal model is presented along with the applied
methods for estimation of the perturbations and filtering. In Section 3, the
choices for the setup of experiments are explained followed by the results in
Section 5, and Section 6 concludes the work.

2 Methods

2.1 Signal model

A commonly used model of N samples of voiced speech or musical instrument
recordings is given by a sum of complex sinusoids, s(n), corrupted by noise,
e(n), as

x(n) =

L∑
l=1

ale
jψln + e(n) = s(n) + e(n), (D.1)

where L is the model order. The l’th complex sinusoid has frequency ψl and
complex amplitude al = Ale

jφ with Al > 0 and φl being the real amplitude
and phase, respectively. The noise term, e(n), is assumed to be zero mean and
complex. Measurements of speech are real valued but can be converted to the
complex representation by use of the Hilbert transform and be downsampled
by a factor of two if N is sufficiently large [5].

Defining a subvector of samples x(n) = [x(n) x(n− 1) . . . x(n−M + 1) ]T ,
where M ≤ N and (·)T denotes the transpose, the signal model can be written
as

x(n) = Z

e
−jψ1n 0

. . .
0 e−jψLn

a + e(n), (D.2)
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where L < M and Z ∈ CM×L is a matrix with Vandermonde structure given
by

Z =
[
z(ψ1) z(ψ2) . . . z(ψL)

]
, (D.3)

z(ψl) =
[
1 e−jψl . . . e−jψl(M−1)

]T
, (D.4)

a = [a1 . . . aL]T is a vector containing the complex amplitudes of the signal
and e(n) is defined like x(n), but containing the noise terms e(n).

Often, voiced speech is characterised using a harmonic signal model ob-
tained by setting ψl = ω0l. The harmonics are then exact multiples of the
fundamental frequency, ω0. In many musical instruments, the frequencies
of the harmonics deviate slightly in a very predictable manner, leading to
ψl = ω0l

√
1 +Bl2, where B � 1 is an instrument dependent stiffness param-

eter [5]. In speech, perturbations of the harmonics are also present, however,
they are not as predictable as in music, leading to a less restrictive model for
speech with [5].

ψl = ω0l + ∆l. (D.5)

Here, the perturbations, ∆l, are assumed to be small and evenly distributed in
the interval Pl = [−δl,+δl], where δl is a small and positive number. Further,
it is assumed that ψl < ψk ∀ l < k.

The considered problem can either be solved by estimating ψl and from this
find estimates of ω0 and ∆l [14], or the fundamental frequency can be estimated
first and thereafter ∆l. The second approach is taken in this paper and the
fundamental frequency is therefore assumed known. Further, the model order
is assumed to be known as well. Both the fundamental frequency and the model
order can be found, e.g., using one of the methods in [13].

2.2 Nonlinear least squares method

The maximum a posteriori estimatior, which is asymptotically optimal, will,
under the assumption of white Gaussian noise and a uniform distribution of
∆l in Pl, reduce to the NLS method [5]. NLS minimises the error between the
recorded data and the signal model from (D.2) with M = N [5]

{∆̂l} = arg min
a,{∆l∈Pl}

‖x(n)− Za‖22, (D.6)

with ‖ · ‖2 denoting the `2-norm. Minimisation of (D.6) with respect to a

followed by insertion of the result in (D.6) will lead to the concentratred NLS
estimator of the perturbations given by [5]

{∆̂l} = arg max
{∆l∈Pl}

xHZ(ZHZ)−1ZHx, (D.7)
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where (·)H denotes the Hermitian transpose.
When the noise is colored or when several speakers are present, the NLS

estimator might not be the optimal choice and therefore it is instructive to look
at other estimation methods as well.

2.3 Capon filter

The Capon filter is designed to minimise the output of the filter while having
unit gain at the harmonic frequencies. This minimisation problem can be
expressed as [5]

min
h

hHRxh s.t. hHZ = 1, (D.8)

where h = [h(0)h(1) . . . h(M − 1)]H is the filter response, 1 = [1 . . . 1]T and
Rx is the covariance matrix of x defined as

Rx = E{x(n)xH(n)}, (D.9)

with E{·} denoting statistical expectation. When s(n) and e(n) are uncorre-
lated, the covariance matrix of x is given by the sum of the covariance matrices
of the signal, Rs, and the noise, Re, i.e., Rx = Rs + Re. However, none of
these are known and Rx has to be estimated as, e.g.,

R̂x =
1

N −M + 1

N−M∑
n=0

x(n)xH(n). (D.10)

The filter that minimises (D.8) is given by [5]

h = R−1
x Z(ZHR−1

x Z)−11. (D.11)

By maximising the output power of this filter, the perturbations can be esti-
mated as

{∆̂l} = arg max
{∆l∈Pl}

1H(ZHR−1
x Z)−11, (D.12)

2.4 Amplitude and phase estimation filter

The APES filter uses the same principle as the Capon filter. The only dif-
ference is that another covariance matrix is used in (D.8) which is estimated
by subtracting from Rx the covariance corresponding to the part of x that
resembles the signal model [13]

R̂e = R̂x −GHW−1G, (D.13)
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with

G =
1

N −M + 1

N−M∑
n=0

w(n)xH(n), (D.14)

W =
1

N −M + 1

N−M∑
n=0

w(n)wH(n), (D.15)

where w(n) = [ ejψ1n . . . ejψLn ]T .
The optimisation problem for the APES filter is then given by (D.8) with

Rx replaced by R̂e and the solutions for the optimal filter and the perturbations
are given by (D.11) and (D.12) also with Rx replaced by R̂e.

2.5 Numerical optimisation

The estimation of the perturbations by means of (D.7) or (D.12) is a multi-
dimensional, nonlinear and nontrivial problem. Direct estimation is therefore
not feasible [11] and approximate solutions have been found as explained in
what follows.

The perturbations are found one at a time by a grid search in the intervals
Pl. An approximate position of the maximum is found at first, followed by a
Fibonacci search [15] to give an increased resolution. If the cost functions in
(D.7) and (D.12) for a given harmonic have no peak inside Pl, the perturbation
is set to zero.

The NLS algorithm needs information about the perturbations of all har-
monics in order to find the minimum distance between x(n) and the signal
model Za in (D.6). In the first approach, denoted NLS-I, the perturbations are
initialised with zeros and continuously updated with the estimated values of
the perturbations. In the second approach, denoted NLS-II, the perturbations
are initialised with the correct values of the perturbations and only the value
of the perturbation under investigation is changed. With this second approach,
the estimation of the perturbations is not influenced by errors in the frequencies
of the other harmonics. Estimates based on NLS-II are therefore expected to
reach the Cramér-Rao bound (CRB) and can in that case be used to bound the
performance of other methods. It will of course only be possible to use NLS-II
on synthetic signals where the perturbations are known. Using the Capon and
APES filters for estimation, it is found that the best results are obtained using
a single order filter fitted to the harmonic under investigation, compared to
using a filter of order L. Therefore, first order filters have been used.

3 Experimental setup

The different ways to estimate ∆l were evaluated through Monte Carlo simula-
tions (MCS). A signal of the form (D.1) with {ψl} given by (D.5) was generated
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and the performance of the different methods was evaluated by means of the
mean squared error (MSE), 1

LK

∑L
l=1

∑K
k=1(∆l,k−∆̂l,k)2, where K is the num-

ber of MCS. The MSE was evaluated as a function of the input signal-to-noise
ratio (iSNR) and the number of samples, N , and compared to the CRB for
unconstrained frequency estimation [11].

The signal was generated with L = 5, Al = 1 ∀ l, random phase, fundamen-
tal frequency and perturbations in the intervals φl ∈ [0, 2π], f0 ∈ [150, 250] Hz,
∆l ∈ [−15, 15] Hz, and δl was chosen to be 30 Hz. The Fibonacci search was
performed with 14 iterations. The noise was white Gaussian with a standard
deviation calculated from the desired iSNR. When N was varied, the iSNR was
set to 10 dB, whereas when the iSNR was varied, N was fixed at 200. In the
Capon and APES filters, the filter length was set to bN/4c, with b·c denoting
the floor operator. According to [4], this should be a good choice of filter length
for both filter types. The number of MCS was K = 500. The importance of
including perturbations in the filter design was tested by making APES fil-
ters with the estimated perturbations included and comparing them to a filter
based on the harmonic assumption, ∆l = 0∀ l. The APES filter was chosen
since it was found to perform better than the Capon filter, when filtering based
on already estimated frequency components is considered, which is consistent
with frequency and amplitude estimation results in [12]. The performance of
the filters with a perturbed and a harmonic signal model was evaluated by
calculation of the signal reduction factor, ξsr(h), and the oSNR(h) given by [2]

ξsr(h) =
σ2
s

σ2
s,nr

=
σ2
s

hHRsh
, (D.16)

oSNR(h) =
σ2
s,nr

σ2
e,nr

=
hHRsh

hHReh
, (D.17)

where σs and σs,nr are the variances of the signal before and after filtering
and σe,nr is the variance of the noise after filtering. Without signal distortion,
the variance of the desired signal before and after filtering is the same, and,
therefore, ξsr(h) should preferably be one. However, even though ξsr(h) = 1,
the signal can still be distorted in subbands [2]. Further, better performance
after filtering requires oSNR(h) > iSNR.

In order to test the perturbed signal model on voiced speech, recordings
from the Keele database [16] were used. Four different speakers were used, two
men and two women. The speech signal was downsampled to have a sample
frequency of 8 kHz and divided into four non-overlapping segments, one for
each speaker. Voiced sections and uncertain voiced sections with periodicity in
the laryngograph were treated as voiced speech and extracted from the speech
signal. Hereafter, voiced speech segments with a length shorter than 3N were
discarded. In total, the performance measures were calculated for 49013 sam-
ples of voiced speech and averaged. Random white noise was added to give
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the desired iSNR and the performance was evaluated for the harmonic signal
model and for perturbations estimated with NLS-I and Capon. Since the lowest
fundamental frequency in the speech signal was 57 Hz, δl was set to 25 Hz.

4 Experimental results

The MSEs of the estimated perturbations were averaged over all harmonics
and are shown in Fig. D.1 as a function of N and the iSNR. NLS-II reaches
the CRB for all N , whereas NLS-I and Capon follow the same course from 100
samples and up with a small but constant gap to the CRB. The APES filter
does not perform well for estimation of the perturbations, as was also found
in [12] in the case of fundamental frequency estimation. No method reaches the
CRB at low iSNRs, but above 0 dB the tendency is the same as when N was
varied. It should be kept in mind, that when no peak was found in the search
interval, the perturbation was set to zero, which is seen to have an influence
on the result at low iSNRs as well as for the APES filter at N = 50.

The performance measures according to the perturbations found in Fig.
D.1 are shown in Fig. D.2 along with the performance of a filter based on the
harmonic signal model, i.e., ∆l = 0 ∀ l. NLS-I, NLS-II and Capon perform
equally well and better than both APES and the harmonic signal model when
the sample length is larger than 50 and the iSNR is larger than −10 dB. The
similarity between the performance using NLS-I, NLS-II and Capon means that
it is not crucial to use an estimation method for the perturbations that reaches
the CRB. The signal distortion is clearly decreased when taking perturbations
into account. When the perturbations are estimated with NLS-I, NLS-II and
Capon, ξsr(h) is very close to 0 dB independently of N and iSNR, whereas it is
increasing as a function of both N and iSNR when a harmonic signal model is
used. The oSNR(h) is also increased using the perturbed signal model. When
using NLS-I instead of the harmonic signal model, the gains in oSNR(h) are
3.1 dB and 10.5 dB at iSNRs of 0 dB and 10 dB, respectively. The performance
on real speech is shown in Fig. D.3 as a function of the iSNR. The tendency
here is the same as in the case of synthetic signals, and the perturbed signal
model leads to improvements in both ξsr(h) and oSNR(h). The speech signal
is more distorted than the synthetic signal in Fig. D.2, but, nevertheless, when
using NLS-I, ξsr(h) is lowered by 2.1 dB and 3.4 dB compared to the harmonic
signal model at 0 dB and 10 dB, respectively. The gain in oSNR(h) is 2.2 dB
and 3.8 dB at the same iSNRs.

5 Conclusion

The influence of using the perturbed signal model as a basis for filtering of
voiced speech signals was investigated and evaluated by means of the signal
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reduction factor and output signal-to-noise ratio. It was found that the perfor-
mance was increased for input signal-to-noise ratios above approximately −10

dB when compared to the harmonic signal model. The perturbed and the har-
monic signal models perform equally well for input signal-to-noise ratios below
−10 dB. The perturbed signal model definitely has a potential of increasing
the quality of the filtered speech signal, but with the perturbations found by
grid searches, it comes with the cost of increased complexity in the estimation
process.
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Fig. D.1: Mean squared error (MSE) of the estimated perturbations as a function of (a) N
and (b) iSNR.
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1. Introduction

Abstract

A method for estimating the noise covariance matrix in a multichannel setup is
proposed. The method is based on the iterative adaptive approach (IAA), which
only needs short segments of data to estimate the covariance matrix. Therefore,
the method can be used for fast varying signals. The method is based on an
assumption of the desired signal being harmonic, which is used for estimating
the noise covariance matrix from the covariance matrix of the observed signal.
The noise covariance estimate is used in the linearly constrained minimum
variance (LCMV) filter and compared to an amplitude and phase estimation
(APES) based filter. For a fixed number of samples, the performance in terms
of signal-to-noise ratio can be increased by using the IAA method, whereas if
the filter size is fixed and the number of samples in the APES based filter is
increased, the APES based filter performs better.
Index Terms: Speech enhancement, iterative adaptive approach, multichan-
nel, covariance estimates, harmonic signal model.

1 Introduction

In many applications such as teleconferencing, surveillance systems and hear-
ing aids, it is desirable to extract one signal from an observation of the desired
signal buried in noise. This can be done in several ways, in general separated
in three groups: the spectral-subtractive methods, the statistical-model-based
methods and the subspace methods [1]. In this work, we focus on the filtering
methods, which are in the group of statistical-model-based methods. A filter
will, preferably, pass the desired signal undistorted, whereas the noise is re-
duced. In the design of the filter, an estimate of the noise statistics is often
needed. Therefore, this is a widely studied problem in the single-channel case,
and several methods for estimating the noise statistics exist [2–6]. In the multi-
channel case the problem is more difficult due to the cross-correlation between
microphones. Some methods are proposed in [7–11]: in [7–10], the cross corre-
lation elements are only updated in periods of unvoiced speech, which can be
problematic in the case of non-stationary noise, whereas, in [11], the elements
are updated continuously under the assumption that the position of the source
is known. However, this is done by steering a null in the direction of the source
which means that the filtering has to be done in two steps; a spatial filtering
followed by a temporal. Another approach, used in the present work, is to
take advantage of the nature of the desired signal. This signal is often voiced
speech or musical instruments which is quasi-periodic, and, therefore, the focus
in this paper is signals that can be modelled using the harmonic signal model.
For speech signals, voiced/unvoiced detectors [12] make it possible to use the
approach only on the voiced segments, which are the primary components of a
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speech signal. Knowing the parameters of the harmonic model, the noise statis-
tics can be estimated by subtracting the desired signal contribution from the
statistics of the observed signal. This approach is also taken in the amplitude
and phase estimation (APES) filter [13–15]. However, since the APES filter is
based on the sample covariance matrix, the number of samples has to be large,
a problem which is even more pronounced in the multichannel setup. This can
cause problems if the signal is fast varying and, therefore, not stationary over
the interval used for estimating the sample covariance matrix.

In the present paper, the multichannel noise covariance matrix is estimated
by the iterative adaptive approach (IAA) [16, 17], and the need for a high num-
ber of samples is, therefore, not present.The IAA covariance matrix estimate
is modified according to the harmonic signal model to get an estimate of the
noise covariance matrix and compared to an APES based filter for a harmonic
signal.

The rest of the paper is organised as follows: in Section 2, the signal model
is set up in the multichannel case. In Section 3, the used filtering method and
the sample covariance matrix are introduced, elaborating the motivation for
the IAA method. In Section 4, the IAA method for noise covariance matrix
estimation is explained. Section 5 shows results, and Section 6 ends the work
with a discussion.

2 Signal model

Considering an array of Ns microphones, the observed signal measured by the
ns’th microphone, for time index nt = 0, ..., Nt − 1 and microphone ns =

0, ..., Ns− 1 is: xns
(nt) = sns

(nt) + vns
(nt), where sns

(nt) is the desired signal
and vns

(nt) is the noise. If the desired signal is harmonic, it can be written as
a sum of complex sinusoids:

sns
(nt) =

L∑
l=1

αle
jlωtnte−jlωsns , (E.1)

where L is the number of harmonics in the signal, αl is the complex amplitude
of the l’th harmonic, ωt is the temporal and ωs is the spatial frequency. If the
signal is real it can easily be transformed to its complex counterpart by use of
the Hilbert transform [18]. In this paper, we assume anechoic far field condi-
tions and sampling by a uniform linear array (ULA) with an equal spacing, d,
between the microphones. Thereby, the relation between the temporal and spa-
tial frequency is ωs = ωtfsc

−1d sin θ, for the temporal sampling frequency fs,
the speed of sound in air c, and the direction of arrival (DOA) θ ∈ [−90◦; 90◦].

The processing of the observed signal is done on a subset ofMt observations
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in time and Ms observations in space defined by the matrix:

Xns
(nt) =

 xns
(nt) . . . xns

(nt −M ′t)
...

. . .
...

xns+M ′s
(nt) . . . xns+M ′s

(nt −M ′t)

 , (E.2)

withM ′t = Mt−1 andM ′s = Ms−1. The matrix is then put into vector format
using the column-wise stacking operator vec{·}, i.e., xns(nt) = vec{Xns(nt)}.

3 Filtering

To obtain an estimate of the desired signal, s̃(nt), from measurements of the
noisy observation, xns

(nt) is filtered by the filter hωt,s
, optimised for a harmonic

signal with temporal fundamental frequency ωt and spatial frequency ωs. The
spatio-temporal linearly constrained minimum variance (LCMV) filter is a good
choice for filtering of periodic signals since the filter gain can be chosen to be
one at the harmonic frequencies at the DOA of the observed signal whereas the
overall output power of the filter is minimised. The filter is the solution to the
minimisation problem [19]

min
h

hHωt,s
Rhωt,s

s.t. hHωt,s
alωt,s

= 1 (E.3)

for l = 1, ...., L.

Here, {·}H denotes complex conjugate transpose, R is the covariance matrix
of xns(nt), i.e., R = E{xns(nt)x

H
ns

(nt)}, and

alωt,s
= alωt

⊗ alωs
, (E.4)

aω =
[
1 e−jω . . . e−jωM

′]T
, (E.5)

with ⊗ denoting the Kronecker product and {·}T the transpose. The solution
is given by:

hωt,s = R−1Aωt,s(AH
ωt,s

R−1Aωt,s)−11, (E.6)

where 1 is an L × 1 vector containing ones and Aωt,s
is the spatio-temporal

steering matrix

Aωt,s =
[
aωt,s . . . aLωt,s

]
. (E.7)

The covariance matrix is an unknown quantity and is most often replaced by
the sample covariance matrix

R̂ =

Nt−Mt∑
p=0

Ns−Ms∑
q=0

xq(nt − p)xHq (nt − p)
(Nt −M ′t)(Ns −M ′s)

. (E.8)
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If the covariance matrix in (E.3) is replaced by the noise covariance matrix, only
the noise power output, and not the overall output power, will be minimised.
This will, most often, give better filtering results since perturbations in DOA
and fundamental frequency estimates cause a mismatch between the DOA and
fundamental frequency of the signal and those used for constraining the LCMV
filter, leading to badly regularised filters and signal cancellation. The noise
covariance matrix can, for example, be estimated by an amplitude and phase
estimation (APES) based approach, as in [20], where a spatio-temporal form
of the APES filter [14] is derived. A harmonic signal model is assumed for the
desired signal and the part of the sample covariance matrix resembling this
signal is then subtracted to give an estimate of the noise covariance matrix.
One drawback of both the sample covariance estimate and the APES based
covariance estimate is that, in order to make the covariance matrix full rank,
the following relation between Nt, Ns, Mt and Ms has to be fulfilled: (Nt −
Mt + 1)(Ns −Ms + 1) ≥ MtMs. Normally, there will be a restriction on the
number of microphones available, and Ns will, therefore, be fairly small. In
order to get a good spatial resolution it is then desirable to choose Ms close
or equal to Ns, thereby forcing Nt to be very large compared to Mt. This
can be problematic if the signal is not stationary for longer periods of time.
Therefore, an alternative method for estimation of the covariance matrix is
proposed, where, preferably, Mt = Nt and Ms = Ns.

4 IAA covariance matrix estimates

The iterative adaptive approach (IAA) is a method for estimating the spectral
amplitudes, αΩg,k

, in the observed signal for temporal and spatial frequency
bins:

ΩG =
[
0 2π

1

G
. . . 2π

G− 1

G

]
, (E.9)

ΩK =
[
0 2π

1

K
. . . 2π

K − 1

K

]
, (E.10)

where G and K are the temporal and spatial frequency grid sizes. Element
g and k in (E.9) and (E.10) are denoted as Ωg and Ωk, respectively, and a
combination of frequencies Ωg and Ωk is denoted by Ωg,k. The amplitudes are
estimated by minimisation of a weighted least squares (WLS) cost function
[17, 20]

JWLS =
[
xns(nt)− αΩg,k

aΩg,k

]H
Q−1

Ωg,k

[
xns

(nt)− αΩg,k
aΩg,k

]
, (E.11)
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Table E.1: IAA for spatio-temporal covariance matrix estimation.

initialisation

α̃Ωg,k
=

aHΩg,k
xns(nt)

aHΩg,k
aΩg,k

,

g = 0, ...., G− 1, k = 0, ....,K − 1.

repeat

R̃ =
G−1∑
g=0

K−1∑
k=0

|α̃Ωg,k
|2aΩg,k

aHΩg,k
,

α̃Ωg,k
=

aHΩg,k
R̃−1xns

(nt)

aHΩg,k
R̃−1aΩg,k

,

g = 0, ...., G− 1, k = 0, ....,K − 1.

until (convergence)

where aΩg,k
is given by (E.4) and (E.5) for l = 1, and QΩg,k

is the noise
covariance matrix

QΩg,k
= R− |αΩg,k

|2aΩg,k
aHΩg,k

. (E.12)

The covariance matrix, R, is not known, but is estimated as

R̃ =

G−1∑
g=0

K−1∑
k=0

|αΩg,k
|2aΩg,k

aHΩg,k
. (E.13)

The solution to the minimisation of (E.11) is [17, 20]

α̃Ωg,k
=

aHΩg,k
R−1xns

(nt)

aHΩg,k
R−1aΩg,k

. (E.14)

Since the estimate of the spectral amplitudes depends on the estimate of the co-
variance matrix and vice versa, they are estimated by iterating between (E.13)
and (E.14). Typically, 10 to 15 iterations are sufficient for convergence [21].
The process is summarised in Table E.1. With the IAA covariance matrix as a
starting point, we find the noise covariance matrix as

Qωt,s
= R−

L∑
l=1

|αlωt,s
|2alωt,s

aHlωt,s
. (E.15)

Since the covariance matrix is estimated with a limited number of samples, the
desired signal will leak into neighbouring frequency components. Therefore, we
estimate the noise covariance matrix by also subtracting the neighbouring grid
points to those corresponding to the harmonic frequencies:

Q̃ωt,s = R̃−
L∑
l=1

gl+δ∑
y=gl−δ

kl+δ∑
z=kl−δ

|α̃Ωy,z |2aΩy,zaHΩy,z
,

143



Paper E.

where gl and kl are the grid indices corresponding to the l’th harmonic and 2δ

is the number of subtracted neighbouring frequency grid points.

5 Results

The IAA noise covariance estimates are tested by use of a synthetic harmonic
signal with ωt = 0.5027 (corresponding to 200 Hz), fs = 2500 Hz, L = 5,
θ = 10◦ and αl = 1 ∀ l. The speed of sound is set to c = 343.2 m/s and
d = c/fs. The individual microphone signals are artificially delayed according
to d and θ. Noise is added to give a desired average input signal-to-noise
ratio (SNR). The noise is white Gaussian noise passed through a 10’th order
auto-regressive filter made using a harmonic signal with seven harmonics and
a fundamental frequency of 137 Hz. For the IAA estimate Nt = Mt = 20,
Ns = Ms = 10. To decrease computational complexity, the grid is modified
to make a uniform grid containing the harmonic frequencies, and, thereby, the
number of grid points can be decreased, here, G = 400 and K = 71, and the
number of iterations is 10. Alternatively, if the harmonics are not placed on
the grid, the relaxation in [22] can be utilised. When the covariance matrices
of consecutive samples are estimated, the first estimate is initialised as in Table
E.1, the rest are initialised with the former estimate of the covariance matrix,
and only one iteration is made [21]. The number of subtracted neighbouring
frequency grid points is set to eight since this was observed to give the highest
SNR.

The performance after filtering is measured by means of the output SNR,
oSNR(h) =

σ2
s,nr
σ2
v,nr

, with σ2
s,nr and σ2

v,nr being the variances of signal and noise
after noise reduction. The variances are computed over 50 consecutive samples
and the resulting output SNR is averaged over 100 runs.

The IAA noise covariance estimate, Q̃ωt,s
(IAAQ̃ωt,ωs

) is compared to the

IAA covariance estimate R̃ (IAAR̃), the IAA noise covariance estimate based
on the clean noise signal (IAAQ) and to the APES based estimate with two
different configurations. In the first (APES1), the number of samples is the
same as for the IAA filter whereas the filter length is shorter, Nt = 20,Mt = 10,
Ns = 10 andMs = 5. In the second (APES2), the filter length is the same as in
the IAA, but longer data segments are used, Nt = 224, Mt = 20, Ns = 10 and
Ms = 10. The methods are compared by using the covariance matrix estimates
in the LCMV filter. Examples of filter responses are shown in Fig. G.2 for
an average input SNR of 10 dB. Comparing (a) to (b), it is seen that taking
account for the desired signal in the generation of the filter gives a much more
well conditioned filter. Comparing to (c), (a) has more attenuation at other
DOAs and frequencies than the ones of the desired signal, whereas it is difficult
to say whether the filter in (a) or (d) will have the best performance.

The output SNR are shown as a function of the input SNR in Fig. E.2.
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Fig. E.1: Filter responses for (a) IAA based on noise covariance matrix estimate Q̃ωt,s

(b) IAA based on covariance matrix estimate, R̃ (c) APES based estimate with Nt = 20,
Mt = 10, Ns = 10, and Ms = 5 (d) APES based estimate with Nt = 224, Mt = 20, Ns = 10,
and Ms = 10. Harmonics of desired signal are marked by green crosses. The average input
SNR is 10 dB.

For input SNRs from 0 to 10 dB, a gain in SNR of approximately 8 dB can
be obtained compared to APES1. At higher input SNRs, the gain decreases.
If more samples are available, APES2 outperforms IAA, but then the noise
covariance matrix has been estimated on the basis of 4480 samples of the signal
compared to only 200 with the IAA method.

The IAA method is tested on a piece of a speech signal sampled at 8 kHz.
The fundamental frequency is estimated from the desired signal with an ap-
proximate nonlinear least squares estimator [23], and the model order is set to
18. Due to the high model order, here Nt = Mt = 50. The DOA, Ns, Ms, c
and d are the same as before. Based on the fundamental frequency estimate,
we design the grid at each time instance such that the harmonics lie on the
grid, which means that the grid size varies slightly over time, with approximate
values of G = 400 and K = 100. The ten microphone recordings are made us-
ing the room impulse response generator [24] under anechoic conditions with a
distance of 5 m between source and microphone array. Babble noise from the
AURORA database [25] is added to the microphone signals to give an average
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Fig. E.2: Output SNR as a function of the input SNR.

input SNR of 10 dB.
A short segment of the noisy, desired and estimated signal using, respec-

tively, the proposed IAA noise covariance matrix estimate, Q̃ωt,s
, and the IAA

covariance matrix estimate, R̃, are plotted in Fig. E.3. It is seen in the fig-
ure that IAAQ̃ωt,s

gives a good estimate of the desired signal and follows the
desired signal more closely than the IAAR̃ estimate.

6 Discussion

In the present paper, we suggest a method for estimation of the noise covariance
matrix based on the iterative adaptive approach (IAA). The method only needs
a single snapshot of data to estimate the covariance matrix. This makes it
advantageous when fast varying signals are considered. In speech enhancement,
IAA has formerly been used for fundamental frequency estimation [20] and joint
direction of arrival (DOA) and fundamental frequency estimation [22], both
assumed known in the present paper. Here, the covariance matrix estimate
from the IAA is modified, under the assumption of a harmonic desired signal,
to give an estimate of the noise covariance matrix. This estimate is then used
in the linearly constrained minimum variance (LCMV) filter and compared to
a spatio-temporal APES based filter proposed in [15]. The proposed method
shows better performance in terms of signal-to-noise ratio (SNR) when the
number of samples is limited, whereas the APES based filter has a better
performance when the number of samples is not an issue. Compared to [11],
where the filtering has to be done in two steps, the work presented here does
the spatial and temporal filtering jointly.
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1. Introduction

Abstract

In this paper, we consider single-channel speech enhancement in the short time
Fourier transform (STFT) domain. We suggest to improve an STFT phase
estimate by estimating the initial phases. The method is based on the harmonic
model and a model for the phase evolution over time. The initial phases are
estimated by setting up a least squares problem between the noisy phase and the
model for phase evolution. Simulations on synthetic and speech signals show a
decreased error on the phase when an estimate of the initial phase is included
compared to using the noisy phase as an initialisation. The error on the phase
is decreased at input SNRs from -10 to 10 dB. Reconstructing the signal using
the clean amplitude, the mean squared error is decreased and the PESQ score
is increased.
Index Terms: speech enhancement, single-channel, STFT domain, phase es-
timation, signal reconstruction.

1 Introduction

Single-channel speech enhancement is important in many systems such as mo-
bile phones and hearing aids where it is desirable to estimate a speech signal
from a mixture of the signal buried in noise. Some enhancement methods work
directly in the time domain [1, 2] whereas other methods work by transforming
the signal into another domain. This could for example be the subspace meth-
ods where, e.g., the eigenvalue decomposition of a signal matrix is computed [3].
Another domain, that we will focus on in this paper because it is computational
effective [4], is the short time Fourier transform (STFT) domain. Here, some
well-known methods are spectral subtraction [5] and the Short-Time Spectral
Amplitude Estimator [6]. Common for these methods, and most other methods
in this domain, is that they enhance the STFT amplitude, whereas the phase
is left unaltered. This is motivated by [7, 8] who conclude that modifying the
noisy STFT phase only gives a minor gain compared to modifying the noisy
STFT amplitude. However, later work by [9] shows that the importance of
the phase depends on the settings and that it can be beneficial to estimate the
STFT phase. Recently, in [10, 11], improved STFT amplitude estimates are
obtained by using STFT phase estimates in the process.

Different approaches have been taken to modify the noisy STFT phase.
In [12, 13], the change of STFT phase is based on the fact that not all STFT
representations are consistent. Given a spectrum of a speech signal, an inverse
STFT followed by an STFT leads back to the same spectrum, but if changes
are made to the amplitude or phase of the spectrum, this is not necessarily
the case for the altered spectrum, and it is, therefore, not consistent [14]. The
quality of the resulting signal can be improved by minimising this inconsis-
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tency. In [12, 13] this is done by modifying the STFT phase to make a better
match to the STFT amplitude estimate. The error on the phase is, therefore,
not guaranteed to decrease because the phase is only modified to match the
enhanced STFT amplitude. In [15], the STFT phase change in voiced speech
periods is estimated based on the harmonic model and knowledge about the
fundamental frequency. The phase in unvoiced periods is left unaltered, but
since the major constituent of speech is voiced, changing the phase in these
periods can still make a difference in terms of speech enhancement. Since only
the phase change is estimated in [15], an initial phase estimate is needed as an
anchor. In [15], the noisy phase is used as the initial STFT phase at the har-
monic frequencies which gives a constant offset at each harmonic between the
clean speech phase and the estimated phase and changes the relation between
harmonics. This results in a significant error on the enhanced STFT phase, and
the waveform of the resulting signal will be changed. In terms of perception,
this is not a major problem if only a single harmonic is present, but in the case
of more harmonics, as is the case in speech signals, it can have an influence on
how the sound is perceived [16, 17].

To minimise the error on the phase, we propose a method to estimate the
initial STFT phases in voiced speech periods. The method is based on the
harmonic model and the model for phase evolution over time presented in [15].
The initial phases are estimated by setting up a least squares (LS) problem
between the noisy phase and the signal model.

The paper is organised as follows: in Section 2 the harmonic signal model
and the STFT are shortly introduced, in Section 3 the method from [15] is
introduced, in Section 4 the proposed method is explained, results are presented
in Section 5, and Section 6 concludes the work.

2 Signal Model

We here use the harmonic signal model which is a good approximation to voiced
speech. With this model the signal is composed of a set of harmonics with
sinusoids having frequencies given by multiples of a fundamental frequency.
For discrete time indices, m = 0, ...,M − 1, the signal can be represented as:

s(m) =
H∑
h=1

2Ah cos(ω0hm+ ϕh), (F.1)

where H is the number of harmonics, Ah the amplitude of the h’th harmonic,
ω0 = 2πf0/fs the normalised fundamental angular frequency, with f0 being
the fundamental frequency and fs the sampling frequency, and ϕh is the initial
phase of the h’th harmonic. The desired signal is estimated from a mixture,
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x(m), of the desired signal, s(m), and additive noise, v(m),

x(m) = s(m) + v(m). (F.2)

The processing is done in the short-time Fourier transform (STFT) domain.
The transformation to this domain is done by splitting the noisy signal into seg-
ments of length N , overlapping by N −L samples, applying a window function
w(n) and computing the Discrete Fourier Transform (DFT), i.e.,

X(k, l) =

N−1∑
n=0

x(lL+ n)w(n)e−jωkn (F.3)

= |X(k, l)|ejφX(k,l), (F.4)
= S(k, l) + V (k, l), (F.5)

= |S(k, l)|ejφS(k,l) + |V (k, l)|ejφV (k,l), (F.6)

with k being the frequency index, l the segment index and ωk = 2πk/N the
normalised angular frequency of frequency band k. It can be seen in (F.4) that
the signal in the STFT domain can be split into an amplitude part |X(k, l)|
and a phase part ejφX(k,l). In many existing approaches only the amplitude
is modified whereas the phase is not estimated, and the noisy phase is used
directly, i.e., Ŝ(k, l) = ̂|S(k, l)|ejφX(k,l), where {̂·} denotes an estimated quan-
tity. In this paper we will focus on estimating the clean phase φS(k, l) from
the noisy phase φX(k, l).

3 Phase Reconstruction

In [15], the change in instantaneous phase in frequency bins containing the har-
monic frequencies is estimated as a piecewise linear function when the harmonic
frequency ωk,lh = hωk,l0 is known, i.e.,

∆φS(k, l) = φS(k, l)− φS(k, l − 1)

= ωk,lh L. (F.7)

The last equality holds under the assumption that the fundamental frequency
in segments l − 1 and l are the same. Reformulation of (F.7) gives the instan-
taneous phase in segment l from the phase in segment l − 1

φ̂S(k, l) = φ̂S(k, l − 1) + ωk,lh L. (F.8)

To get the instantaneous phase in segment l, it is therefore necessary to have
information about the instantaneous phase in segment l − 1. In the very be-
ginning of a piece of voiced speech, the algorithm has to be initialised with a
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Fig. F.1: Reconstruction of the STFT phase based on KG [15] where the noisy phase is used
as initialisation leading to a constant offset between the clean phase and the reconstructed
phase.

phase for the first segment, i.e., information about the initial phases, ϕh, is
needed. In [15], the noisy phase is used as an initialisation. This is illustrated
in Fig. F.1 where the baseband transformed phase (see [15]) in a frequency
band containing a single harmonic of a frequency modulated signal is shown.
It is seen that even though the phase evolution over time is correctly estimated
with the method in [15] (KG [15]), using the noisy phase as an initialisation
will give a constant offset between the clean phase and the estimated phase
due to a wrong initial phase, φh. If only a single sinusoid is present, the initial
phase is not that important in terms of perception, but if several harmonics are
present, the relationship between the initial phases of the different harmonics
has an influence on the shape of the waveform of the resulting signal and can
also have an influence on how the sound is perceived [16, 17]. Therefore, we
estimate the initial phases in the next section.

4 Estimation of Initial Phases

The estimation of the initial phases is set up as a least squares (LS) problem
between the instantaneous phases estimated using (F.8) with an initialisation
of ϕh = 0 and the noisy phase for each harmonic separately

ϕ̂h = arg min
ϕh

l0+P−1∑
l=l0

(φX(k, l)− φ̂S(k, l)− ϕh)2, (F.9)

where P is the number of segments used for the estimation. The solution is
found by differentiating the expression and equating with zero, i.e.,

ϕ̂h =
1

P

l0+P−1∑
l=l0

φX(k, l)− φ̂S(k, l). (F.10)
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Due to the properties of the phase seen in (F.4), every b2π, b ∈ Z, multiple
of the phase gives rise to the same phase contribution to the resulting signal.
This has to be taken into account in the estimation of the initial phase and,
therefore, every phase difference in (F.10) is mapped to the interval [−π, π],
and the final estimate of the initial phase of harmonic h is given by:

ϕ̂h =
1

P

l0+P−1∑
l=l0

∠(ejφX(k,l)−jφ̂S(k,l)), (F.11)

where ∠(·) denotes the angle of the argument. To keep the right relation
between frequency bins, all bins dominated by the given harmonic (see [15])
are also shifted according to the given estimate.

The method is implemented in two different ways. One where an entire
piece of voiced speech is used for the estimation of the initial phase (denoted
LS1 in the results section) and one where the initial phase of a given harmonic
is reestimated each time the harmonic jumps to a new frequency bin (denoted
LS2 in the results section). The first method has the advantage of more data
used in the estimation and, therefore, if the model is perfectly correct, it should
give a better estimate. However, it is vulnerable to errors in the model, e.g.,
a slightly wrong fundamental frequency estimation would lead to a model that
over time deviates more and more from the clean signal and, thereby, gives
larger errors in the estimation of the initial phase with more time segments
used. The second method should do a better job in the case of a erroneous
fundamental frequency estimate. However, in the transformation to the STFT
domain the signal is overlapped which means that the noise in neighbouring
time frames is not uncorrelated and, therefore, an estimation based on only a
few frames would give an unreliable estimate.

The estimate of the initial phases introduces a latency in the system ac-
cording to P . LS1 introduces a delay of one voiced speech period. The latency
introduced by LS2 will depend on when the harmonics jump from one frequency
bin to another and will, therefore, be smaller or equal to the latency introduced
by LS1.

5 Results

The least squares estimates of the initial phases are first tested by means of a
synthetic signal. After testing the concept on synthetic data, we turn to real
speech signals. The synthetic signal used is a frequency modulated harmonic
signal, i.e.,

s(m) =

H∑
h=1

Ah cos(ω0hm+
ω∆

ωm
h cos(ωmm) + ϕh).
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Here, ω∆ = 2πf∆/fs is the maximum deviation of the first harmonic away from
ω0 in one direction and ωm = 2πfm/fs is the normalised angular modulation
frequency. The signal is chosen because of its harmonic structure which is
the basis of the proposed method and, further, it is a more interesting case
than a pure harmonic signal since the fundamental frequency is modulated
and, therefore, the harmonics will jump between different frequency bins when
it is transformed to the STFT domain. Due to the multiplication by h in
the modulation, the maximum deviation away from the harmonic frequency is
increasing for higher harmonics, and they will, therefore, also have a higher
tendency to jump between frequency bins. This will also be the case for speech
signals. In the simulations H = 10, fs = 8000, M = 20000, and f0, f∆, fm
and ϕh are chosen randomly in intervals as f0 ∈ [100, 200] Hz, f∆ ∈ [0, 10] Hz,
fm ∈ [0, 10] Hz and ϕh ∈ [−π, π]. The frequency modulated signal is degraded
by white Gaussian noise at signal-to-noise ratios (SNRs) from -10 dB to 10 dB
in steps of 2.5 dB. The signal is transformed to the STFT domain in segments
of 256 samples (corresponding to 32 ms) with an overlap of 87.5% and the
window applied is a square root Hann window. In the evolution of the phase in
the frequency domain, the true fundamental frequency is assumed to be known.
The results are averaged over 1000 Monte Carlo simulations (MCS) [18]. The
methods are evaluated both in the frequency and in the time domain. In the
frequency domain, the phase ambiguities are again taken into account by using
the circular phase error [6]:

ε(k, l) = 1− cos(φSk,l − φ̂Sk,l), (F.12)

which is in the range [0,2]. In the time domain they are evaluated by means of
the mean squared error (MSE) between the clean signal, s(m), and the recon-
structed signal, ŝ(m), MSE = (s(m)− ŝ(m))2. The two methods are compared
to the method in [15] where the noisy phase is used as an initialisation, here
denoted by KG [15], and the noisy phase denoted by Noisy. In Fig. F.2, the
phase error averaged over all frequency bins and time is shown. It is seen
that at all input SNRs considered here there is an advantage in estimating
the instantaneous phase compared to using the noisy phase. Also, a smaller
error can be obtained by estimating the initial phase. Both LS estimates give
smaller errors than KG [15] up to approximately 0 dB input SNR, above 0 dB,
LS2 gives a smaller error than KG [15] whereas LS1 gives the same error as
KG [15]. The signal is thereafter reconstructed using an inverse STFT. Before
doing that, the STFT phase term has to be multiplied with the STFT ampli-
tude. For calculation of the mean squared error, we have used the clean speech
amplitude, and the result is shown in Fig. F.3. Now, KG [15] gives the highest
error at all input SNRs, LS2 gives the lowest error whereas LS1 and the noisy
phase give errors in between. The lower error of LS2 compared to LS1 shows
that it is reasonable to take the jumps between frequency bins into account in
the estimation process.
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Fig. F.2: Phase error, ε, as a function of the input SNR averaged over all frequency bins
and time for a synthetic signal. Averaged over 1000 MCS.
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Fig. F.3: Mean squared error of reconstructed signal as a function of the input SNR for a
synthetic signal. Combination of phase and clean amplitude. Average over 1000 MCS.

The methods are also evaluated using five male and five female speech
signals from the TIMIT database degraded by white Gaussian noise. The
signals are downsampled to 8 kHz and the fundamental frequency is estimated
from the clean speech signal using a nonlinear least squares estimator [19]. In
the estimation, a search interval around (±10 Hz) the pitch obtained from the
corresponding laryngograph signal [17] is used. The voiced periods are also
chosen using the laryngograph track as the periods where the fundamental
frequency is larger than zero. It is found that best results are obtained if
only the lowest harmonics are modified so here the initial phases for the three
first harmonics are estimated and changed. As in [15], the noisy phase is used
directly in periods of unvoiced speech. The phase error is shown in Fig. F.4,
this time averaged over 50 MCS for each speaker, voiced speech periods and
all frequency bins. The error on the phase using LS1 or LS2 is considerably
decreased compared to KG [15], and LS2 again performs slightly better than
LS1. Here, however, the error on the noisy phase is very similar to the error of
LS1 and LS2, being slightly higher below 5 dB input SNR and slightly lower
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Fig. F.4: Phase error, ε, as a function of the input SNR averaged over all frequency bins and
voiced speech periods for 5 male and 5 female speakers from the TIMIT database. Average
over 50 MCS for each speaker.
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Fig. F.5: Mean squared error of reconstructed voiced speech parts as a function of the input
SNR for 5 male and 5 female speakers from the TIMIT database. Combination of phase and
clean amplitude. Average over 50 MCS for each speaker.

above 5 dB input SNR. Looking at the mean squared error of the reconstructed
voiced speech parts in Fig. F.5, it is seen that the error is again decreased
when estimating the initial phase with LS1 or LS2 compared to using the
noisy initial phase in KG [15], and again it is also more beneficial to use LS2
than LS1. Here, on the other hand, using the noisy phase at all times gives
a slightly lower error on the reconstructed signal than LS2. The Perceptual
Evaluation of Speech Quality (PESQ) score [20] of the reconstructed speech
signals is also found. We have used two different choices of amplitudes in the
reconstruction. These are the clean amplitude and the noisy amplitude. Using
the clean amplitude, LS1 and LS2 performs best over the most of the range
of input SNRs as seen in Fig. F.6a whereas Fig. F.6b shows that using the
noisy amplitude, KG [15] gives the best PESQ score over the entire range.
It would be more intuitive if a smaller error on the phase always would lead
to a better reconstructed signal. The reason for this might be due to the
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Fig. F.6: PESQ score of reconstructed signal as a function of the input SNR for 5 male and
5 female speakers from the TIMIT database. Combination of phase and (a) clean amplitude
and (b) noisy amplitude. Average over 50 MCS for each speaker.

inconsistency discussed in [14] and suggest that more work should be put into
making consistent STFT representations based on both an amplitude and a
phase estimate. However, better phase estimates on its own can still be used
in, e.g., [10, 11] to give better reconstructed signals.

6 Conclusion

In this paper, we considered speech enhancement in the STFT domain. Most
prior work has been done on enhancing the noisy STFT amplitude, but the
focus of this paper was the STFT phase. We suggest a least squares method to
estimate the initial STFT phases in voiced speech periods. The initial phases
are found by minimising the squared error between the noisy phase and the
model-based phase estimates suggested in [15]. Simulations show that the
error on the phase can be decreased considerably when estimating the initial

161



References

phase as compared to using the noisy phase as the initial phase as proposed
in [15]. The error on the phase is also reduced compared to the noisy phase in
the ideal case with a synthetic signal and also slightly up to an input SNR of
5 dB when speech signals are considered. Reconstruction in combination with
the clean amplitude gives an increase in PESQ score relative to KG [15] and
an increase relative to the noisy phase up to an input SNR of 5 dB.
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1. Introduction

Abstract

In this paper, the important problem of single-channel noise reduction is treated
from a new perspective. The problem is posed as a filtering problem based on
joint diagonalization of the covariance matrices of the desired and noise signals.
More specifically, the eigenvectors from the joint diagonalization corresponding
to the least significant eigenvalues are used to form a filter, that effectively es-
timates the noise when applied to the observed signal. This estimate is then
subtracted from the observed signal to form an estimate of the desired signal,
i.e., the speech signal. In doing this, we consider two cases, where, respectively,
no distortion and distortion is incurred on the desired signal. The former can
be achieved when the covariance matrix of the desired signal is rank deficient,
which is the case, for example, for voiced speech. In the latter case, the co-
variance matrix of the desired signal is full rank, as is the case, for example,
in unvoiced speech. Here, the amount of distortion incurred is controlled via
a simple, integer parameter, and the more distortion allowed, the higher the
output signal-to-noise ratio (SNR). Simulations demonstrate the properties of
the two solutions. In the distortionless case, the proposed filter achieves only a
slightly worse output SNR, compared to the Wiener filter, along with no signal
distortion. Moreover, when distortion is allowed, it is possible to achieve higher
output SNRs compared to the Wiener filter. Alternatively, when a lower output
SNR is accepted, a filter with less signal distortion than the Wiener filter can
be constructed.
Keywords: noise reduction, speech enhancement, single-channel, time domain
filtering, joint diagonalization.

1 Introduction

Speech signals corrupted by additive noise suffer from a lower perceived qual-
ity and lower intelligibility than their clean counterparts and cause listeners
to suffer from fatigue after extended exposure. Moreover, speech processing
systems are frequently designed under the assumption that only a single, clean
speech signal is present at the time. For these reasons, noise reduction plays
an important role in many communication and speech processing systems and
continues to be an active research topic today. Over the years, many different
methods for noise reduction have been introduced, including optimal filtering
methods [1], spectral subtractive methods [2], statistical methods [3–5], and
subspace methods [6, 7]. For an overview of methods for noise reduction, we
refer the interested reader to [1, 8, 9] and to [10] for a recent and complete
overview of applications of subspace methods to noise reduction.

In the past decade or so, most efforts in relation to noise reduction seem
to have been devoted to tracking of noise power spectral densities [11–14] to
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allow for better noise reduction during speech activity, extensions of noise re-
duction methods to multiple channels [15–18], and improved optimal filtering
techniques for noise reduction [1, 8, 19–21]. However, little progress has been
made on subspace methods.

In this paper, we explore the noise reduction problem from a different per-
spective in the context of single-channel noise reduction in the time domain.
This perspective is different from traditional approaches in several respects.
Firstly, it combines the ideas behind subspace methods and optimal filtering
via joint diagonalization of the desired and noise signal covariance matrices.
Since joint diagonalization is used, the method will work for all kinds of noise,
as opposed to, e.g., when an eigenvalue decomposition is used where preprocess-
ing has to be performed when the noise is not white. Secondly, the perspective
is based on obtaining estimates of the noise signal by filtering of the observed
signal and, thereafter, subtracting the estimate of the noise from the observed
signal. This is opposite to a normal filtering approach where the observed signal
is filtered to get the estimated signal straight away. The idea of first estimat-
ing the noise is known from the generalized sidelobe canceller technique in a
multichannel scenario [22]. Thirdly, when the covariance matrix of the desired
signal has a rank that is lower than that of the observed signal, the perspective
leads to filters that can be formed such that no distortion is incurred on the
desired signal, and distortion can be introduced so that more noise reduction is
achieved. The amount of distortion introduced can be controlled via a simple,
integer parameter.

The rest of the paper is organized as follows. In Section 2, the basic signal
model and the joint diagonalization perspective is introduced, and the problem
of interest is stated. We then proceed, in Section 3, to introduce the noise
reduction approach for the case where no distortion is incurred on the desired
signal. This applies in cases where the rank of the observed signal covariance
matrix exceeds that of the desired signal covariance matrix. In Section 4, we
then relax the requirement of no distortion on the desired signal to obtain filters
that can be applied more generally, i.e., when the ranks of the observed and
desired signals are the same. Simulation results demonstrating the properties
of the obtained noise reduction filters are presented in Section 5, whereafter we
conclude on the work in Section 6.

2 Signal Model and Problem Formulation

The speech enhancement (or noise reduction) problem considered in this work is
the one of recovering the desired (speech) signal x(k), k being the discrete-time
index, from the noisy observation (sensor signal) [1, 8, 9]:

y(k) = x(k) + v(k), (G.1)
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where v(k) is the unwanted additive noise which is assumed to be uncorrelated
with x(k). All signals are considered to be real, zero mean, broadband, and
stationary.

The signal model given in (G.1) can be put into a vector form by considering
the L most recent successive time samples of the noisy signal, i.e.,

y(k) = x(k) + v(k), (G.2)

where
y(k) =

[
y(k) y(k − 1) · · · y(k − L+ 1)

]T
(G.3)

is a vector of length L, the superscript T denotes transpose of a vector or a
matrix, and x(k) and v(k) are defined in a similar way to y(k) from (G.3).
Since x(k) and v(k) are uncorrelated by assumption, the covariance matrix (of
size L× L) of the noisy signal can be written as

Ry = E
[
y(k)yT (k)

]
= Rx + Rv, (G.4)

where E[·] denotes mathematical expectation, and Rx = E
[
x(k)xT (k)

]
and

Rv = E
[
v(k)vT (k)

]
are the covariance matrices of x(k) and v(k), respectively.

The noise covariance matrix, Rv, is assumed to be full rank, i.e., equal to L. In
the rest, we assume that the rank of the speech covariance matrix, Rx, is equal
to P ≤ L. Then, the objective of speech enhancement (or noise reduction) is
to estimate the desired signal sample, x(k), from the observation vector, y(k).
This should be done in such a way that the noise is reduced as much as possible
with little or no distortion of the desired signal.

Using the joint diagonalization technique [23], the two symmetric matrices
Rx and Rv can be jointly diagonalized as follows:

BTRxB = Λ, (G.5)

BTRvB = IL, (G.6)

where B is a full-rank square matrix (of size L × L), Λ is a diagonal matrix
whose main elements are real and nonnegative, and IL is the L × L identity
matrix. Furthermore, Λ and B are the eigenvalue and eigenvector matrices,
respectively, of R−1

v Rx, i.e.,

R−1
v RxB = BΛ. (G.7)

Since Rx is semidefinite and its rank is equal to P , the eigenvalues of R−1
v Rx

can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λP > λP+1 = · · · = λL = 0. In other words,
the last L−P eigenvalues of the matrix product R−1

v Rx are exactly zero while
its first P eigenvalues are positive, with λ1 being the maximum eigenvalue.
We denote by b1,b2, . . . ,bL, the corresponding eigenvectors. The noisy signal
covariance matrix can also be diagonalized as

BTRyB = Λ + IL. (G.8)
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We end this section by defining the input and output signal-to-noise ratios
(SNRs):

iSNR =
tr (Rx)

tr (Rv)
=
σ2
x

σ2
v

, (G.9)

where tr(·) denotes the trace of a square matrix, and σ2
x = E

[
x2(k)

]
and

σ2
v = E

[
v2(k)

]
are the variances of x(k) and v(k), respectively, and

oSNRnr(h) =
σ2
x,nr

σ2
v,nr

, (G.10)

where h is a filter applied to the observation signal (see Section 3), and σ2
x,nr

and σ2
v,nr are the variances of x(k) and v(k) after noise reduction.

3 Noise Reduction Filtering without Distortion

In this section, we assume that P < L; as a result, the speech covariance matrix
is rank deficient.

The approach proposed here is based on two successive stages. Firstly, we
apply the filter of length L:

h =
[
h0 h1 · · · hL−1

]T
(G.11)

to the observation signal vector, y(k), to get the filter output:

z(k) = hTy(k) = hTx(k) + hTv(k). (G.12)

From (G.4) and (G.12), we deduce that the output SNR from the filter is

oSNRf (h) =
σ2
x,f

σ2
v,f

=
hTRxh

hTRvh
, (G.13)

which, in this case, is not the same as the output SNR after noise reduction
stated in (G.10). Since the objective is to estimate the noise, we find h that
minimizes oSNRf (h). Due to the relation bTi Rxbi = λi, it is easy to see that
the solution is

hP =

L∑
i=P+1

βibi, (G.14)

where βi, i = P+1, . . . , L, are arbitrary real numbers with at least one of them
different from 0. With the filter having the form of (G.14), oSNRf (hP ) = 0

and z(k) can be seen as an estimate of the noise, v̂(k) = z(k) = hTPy(k).
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delay
line

hT

∑
−

+y(k) = x(k) + v(k)

y(k) z(k) = v̂(k)

x̂(k)

Fig. G.1: Block diagram of the estimation process.

Secondly, we estimate the desired signal, x(k), as

x̂(k) = y(k)− v̂(k) = x(k) + v(k)−
L∑

i=P+1

βib
T
i v(k). (G.15)

An overview of the estimation process is shown in the block diagram in Figure
G.1. Now, we find the βi’s that minimize the power of the residual noise, i.e.,

Jrn = E


[
v(k)−

L∑
i=P+1

βib
T
i v(k)

]2
 = σ2

v − 2

L∑
i=P+1

βii
T
LRvbi +

L∑
i=P+1

β2
i ,

(G.16)

where iL is the first column of the L× L identity matrix. We get

βi = iTLRvbi. (G.17)

Substituting (G.17) into (G.15), the estimator becomes

x̂(k) = x(k) + v(k)−
L∑

i=P+1

iTLRvbib
T
i v(k)

= x(k) + v(k)− iTLRv

(
R−1

v −
P∑
p=1

bpb
T
p

)
v(k)

= x(k) +

P∑
p=1

iTLRvbpb
T
p v(k). (G.18)

The variance of x̂(k) is

σ2
x̂ = σ2

x + σ2
v −

L∑
i=P+1

(
iTLRvbi

)2
= σ2

x +

P∑
p=1

(
iTLRvbp

)2
. (G.19)
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We deduce that the output SNR after noise reduction is

oSNRnr(hP ) =
σ2
x

σ2
v −

∑L
i=P+1

(
iTLRvbi

)2 =
σ2
x∑P

p=1

(
iTLRvbp

)2 ≥ iSNR.

(G.20)

It is clear that the larger L − P is, the larger is the value of the output SNR.
Also, from (G.18), we observe that the desired signal is not distorted so that
the speech distortion index [1] is

υsd(hP ) =
E{[xnr(k)− x(k)]2}

E[x2(k)]
=
E{[hTPx(k)]2}
E[x2(k)]

= 0. (G.21)

The noise reduction factor [1] is

ξnr(hP ) =
σ2
v

σ2
v,nr

=
σ2
v

σ2
v −

∑L
i=P+1

(
iTLRvbi

)2 , (G.22)

and since there is no signal distortion, we also have the relation:

oSNRnr(hP )

iSNR
= ξnr(hP ). (G.23)

From (G.18), we find a class of distortionless estimators:

x̂Q(k) = x(k) +

Q∑
q=1

iTLRvbqb
T
q v(k), (G.24)

where P ≤ Q ≤ L. We have x̂P (k) = x̂(k) and x̂L(k) = y(k). The latter is the
observation signal itself. It is obvious that the output SNR corresponding to
x̂Q(k) is

oSNRnr(hQ) =
σ2
x∑Q

q=1

(
iTLRvbq

)2 ≥ iSNR (G.25)

and

oSNRnr(hP ) ≥ oSNRnr(hP+1) ≥ oSNRnr(hL) = iSNR. (G.26)

4 Noise Reduction Filtering with Distortion

In this section, we assume that the speech covariance matrix is full rank, i.e.,
equal to L. We can still use the method presented in the previous section, but
this time we should expect distortion of the desired signal.
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Again, we apply the filter:

h′ =
[
h′0 h′1 · · · h′L−1

]T
(G.27)

of length L to the observation signal vector. Then, the filter output and output
SNR are, respectively,

z′(k) = h′Tx(k) + h′Tv(k) (G.28)

and

oSNRf (h′) =
h′TRxh′

h′TRvh′
. (G.29)

Now, we choose

h′P ′ =

L∑
i=P ′+1

β′ibi, (G.30)

where β′i, i = P ′ + 1, . . . , L, are arbitrary real numbers. With this choice of
h′, the output SNR becomes

oSNRf (h′P ′) =

∑L
i=P ′+1 β

′2
i λi∑L

i=P ′+1 β
′2
i

. (G.31)

This time, however, the output SNR cannot be equal to 0 but we can make
it as small as we desire. The larger is the value of oSNRf (h′P ′), the more the
speech signal is distorted. If we can tolerate a small amount of distortion, then
we can still consider z′(k) as an estimate of the noise, v̂′(k) = z′(k) = h′TP ′y(k).

In the second stage, we estimate the desired signal as

x̂′(k) = y(k)− v̂′(k) = x(k)−
L∑

i=P ′+1

β′ib
T
i x(k) + v(k)−

L∑
i=P ′+1

β′ib
T
i v(k).

(G.32)

By minimizing the power of the residual noise:

J ′rn = E


[
v(k)−

L∑
i=P ′+1

β′ib
T
i v(k)

]2
 = σ2

v − 2

L∑
i=P ′+1

β′ii
T
LRvbi +

L∑
i=P ′+1

β′2i ,

(G.33)

we find that

β′i = iTLRvbi =
1

λi
iTLRxbi. (G.34)
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Substituting (G.34) into (G.32), we obtain

x̂′(k) = x(k)−
L∑

i=P ′+1

1

λi
iTLRxbib

T
i x(k) + v(k)−

L∑
i=P ′+1

iTLRvbib
T
i v(k).

(G.35)

The variance of x̂′(k) is

σ2
x̂′ = σ2

x −
L∑

i=P ′+1

1

λi

(
iTLRxbi

)2
+ σ2

v −
L∑

i=P ′+1

(
iTLRvbi

)2
. (G.36)

We deduce that the output SNR and speech distortion index are, respectively,

oSNRnr(h
′
P ′) =

σ2
x −

∑L
i=P ′+1

1
λi

(
iTLRxbi

)2
σ2
v −

∑L
i=P ′+1

(
iTLRvbi

)2 (G.37)

and

υsd(h′P ′) =
1

σ2
x

L∑
i=P ′+1

1

λi

(
iTLRxbi

)2
. (G.38)

The smaller P ′ is compared to L, the larger is the distortion. Further, the
speech distortion index is independent of the input SNR, as is the gain in SNR.
This can be observed by multiplying either Rx in (G.5) or Rv in (G.6) by a
constant c, which leads to a corresponding change in the input SNR. Insertion of
the resulting λi’s and bi’s in (G.37) and (G.38) will show that the output SNR
is changed by the factor c and that the speech distortion index is independent
of c.

The output SNR and the speech distortion index are related as follows:

oSNRnr(h
′
P ′)

iSNR
= [1− υsd(h′P )] ξnr(h

′
P ), (G.39)

where

ξnr(h
′
P ′) =

σ2
v

σ2
v −

∑L
i=P ′+1

(
iTLRvbi

)2 (G.40)

is the noise reduction factor.
Interestingly, the exact same estimator is obtained by minimizing the power

of the residual desired signal:

J ′rd = E


[
x(k)−

L∑
i=P ′+1

β′ib
T
i x(k)

]2
 = σ2

x − 2

L∑
i=P ′+1

β′ii
T
LRxbi +

L∑
i=P ′+1

λiβ
′2
i .

(G.41)

174



5. Simulations

Again, minimizing J ′rn or J ′rd leads to the estimator x̂′(k).
Alternatively, another set of estimators can be obtained by minimizing the

mean squared error between x(k) and x̂′(k):

J ′mse = E


[
v(k)−

L∑
i=P ′+1

β′ib
T
i v(k)−

L∑
i=P ′+1

β′ib
T
i x(k)

]2


= σ2
v − 2

L∑
i=P ′+1

β′ii
T
LRvbi +

L∑
i=P ′+1

(1 + λi)β
′2
i , (G.42)

which leads to

β′i =
iTLRvbi
1 + λi

. (G.43)

In the special case where P ′ = 0 the estimator is the well known Wiener filter.

5 Simulations

In this section, the filter design with and without distortion are evaluated
through simulations. Firstly, the distortionless case is considered in order to
verify that the basics of the filter design hold and the filter works as expected.
Secondly, we turn to the filter design with distortion to investigate the influence
of the input SNR and the choice of P ′ on the output SNR and the speech
distortion index.

The distortionless filter design was tested by use of a synthetic harmonic
signal. The use of such a signal makes it possible to control the rank of the
signal covariance matrix, which is a very important feature in the present study.
Further, the harmonic signal model is used to model voiced speech, e.g., in [24].
The harmonic signal model has the form:

x(k) =

M∑
m=1

Am cos(m2πf0/fsk + φm) (G.44)

where M is the model order, Am > 0 and φm ∈ [0, 2π] are the amplitude and
phase of the m’th harmonic, f0 ∈ [0, π/m] is the fundamental frequency and
fs is the sampling frequency. The rank of the signal covariance matrix, Rx, is
then P = 2M . In the simulations M = 5, the amplitudes are decreasing with
the frequency, f , as 1/f , normalised to give A1 = 1, the fundamental frequency
is chosen randomly such that f0 ∈ [150, 250] Hz, the sampling frequency is 8
kHz and the phases are random. The covariance matrices of Rx and Rv are
estimated from segments of 230 samples and are updated along with the filter
for each sample. The number of samples is 1000.
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Fig. G.2: Spectrum of the signal vector, x(k), and the corresponding filter, hP .
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Fig. G.3: Desired signal, x(k), noisy observation, y(k), and estimated signal, x̂(k).

As an example, the spectrum of a synthetic signal is shown in Fig. G.2
along with the frequency response of the corresponding filter. The fundamental
frequency is in this case f0 = 200 Hz and the filter has a length of L = 110.
After subtraction of the filter output from the noisy observation the estimate
of the desired signal, shown in Fig. G.3, results. The desired signal and the
noisy observation are shown as well. Comparing the signals it is easily seen
that the filtering has improved the output SNR in the estimated signal relative
to the noisy observation.

In order to support this, 100 Monte Carlo simulations have been performed
for different lengths of the filter, and the performance are evaluated by the
output SNR and speech distortion index. The output SNR is calculated ac-
cording to (G.10) as the ratio of the variances of the desired signal after noise
reduction, [x(k)−hTPx(k)], and the noise after noise reduction, [v(k)−hTPv(k)],
whereas the speech distortion index is calculated according to (G.21) as the ra-
tio of the variance of the filtered desired signal to the variance of the original
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Fig. G.4: Performance as a function of L for a signal with rank deficient covariance matrix.
(a) Output SNR and (b) speech distortion index as a function of the filterlength, L, for a
real synthetic harmonic signal simulating voiced speech.

desired signal. As is seen in Fig. G.4(a), it is definitely possible to increase the
SNR, but the extent is highly dependent on the length of the filter. For short
filter lengths, the filter has almost no effect and oSNR ≈ iSNR, but as the
filter length is increased, the output SNR is increased as well. Even though the
estimates of the covariance matrices worsen when the filter length is increased,
the longest filter gives rise to the best output SNR. By increasing the filter
length from 20 to 110, a gain in SNR of more than 15 dB can be obtained.
The corresponding speech distortion index, shown in Fig. G.4(b), is zero for
all filter lengths, as was the basis for the filter design. As a reference, results
for the Wiener filter (hw) are shown as well. The Wiener filter is constructed
based on [15] where it is derived based on joint diagonalization. The proposed
method has a slightly lower output SNR, especially at short filter lengths. On
the other hand, the Wiener filter introduces distortion of the desired signal at
all filter lengths, whereas the proposed filter is distortionless.

When the covariance matrix of the desired signal is full rank, speech dis-
tortion is introduced in the reconstructed speech signal. This situation was
evaluated by use of auto regressive (AR) models, since these can be used to
describe unvoiced speech [25]. The models used were of second order and the
coefficients were found based on ten segments of unvoiced speech from the Keele
database [26], resampled to give a sampling frequency of 8 kHz and a length
of 400 samples after resampling. Again, P ′ was set to 10, the signal was added
white Gaussian noise to give an average input SNR of 10 dB and 100 Monte
Carlo simulations were run on each of the ten generated signals in order to
see the influence of the filter length when the signal covariance matrix is full
rank. The results are shown in Fig. G.5. As was the case for voiced speech, it
is possible to gain approximately 15 dB in SNR by increasing the filter length
from 20 to 110. However, this time the speech distortion is also dependent on
the filterlength, and the longer the filter the more signal distortion. In this
case, comparison to the Wiener filter shows just the opposite situation than
with the harmonic model. Now, the gain in SNR is higher for the proposed
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Fig. G.5: Performance as a function of L for a signal with full rank covariance matrix. (a)
Output SNR and (b) speech distortion index as a function of the filter length, L, for a signal
generated by an AR process simulating unvoiced speech.

method for all filter lengths, but the signal is also more distorted.

After having investigated the filter performance for different filter lengths
using synthetic signals, the influence of input SNR and the choice of P ′ is
investigated directly in speech signals. Again, we used signals from the Keele
database with fs = 8 kHz. Excerpts with a length of 20,000 were extracted from
different places in the speech signals from two male and two female speakers.
Noise was added to give the desired average input SNR and filters with a length
L = 110 and varying P ′ were applied. Three different kinds of noise were
used, white Gaussian, babble, and car noise, the last two from the AURORA
database [27]. The output SNR and signal distortion index are depicted as a
function of P ′ in Fig. G.6. Both the output SNR and the speech distortion index
are decreasing with P ′, as was depicted in Section 4. Thereby, the choice of P ′

will be a compromise between a high output SNR and a low speech distortion
index. In Fig. G.7, the proposed filter is compared, at an input SNR of 10 dB, to
the Wiener filter and three filters from [10] (hls,hmv,hmls), which are subspace-
based filters as well. These filters are based on a Hankel representation of the
observed signal, which we, from the segment length of 230 samples, construct
with a size of 151 times 80. Due to restrictions on the chosen rank (according to
P ′), this is only varied from 1 to 71. The performance of the Wiener filter is of
course independent of P ′ and it is, therefore, possible to construct a filter that
either gives a higher output SNR or a lower speech distortion than the Wiener
filter, dependent on the choice of P ′. The filters from [10] are dependent on P ′

as well, but the proposed filter has a broader range of possible combinations
of output SNR and speech distortion. At P ′ = 1, a gain in output SNR of
approximately 5 dB can be obtained while the speech distortion is comparable.
At the other extreme, it is possible to obtain the same output SNR as hls while
the speech distortion index is lowered by approximately 5 dB.

The choice of the value of P ′ is, however, not dependent on the input SNR,
as seen in Fig. G.8, since both the gain in SNR and the speech distortion index

178



5. Simulations

0 20 40 60 80 100
−10

0

10

20

30

P ′

oS
N
R

[d
B
]

(a)

h
′

P ′ , iSNR = −10
h
′

P ′ , iSNR = 0
h
′

P ′ , iSNR = 10

0 20 40 60 80 100

−30

−20

−10

0

P ′

υ
sd

[d
B
]

(b)

h
′

P ′ , iSNR = −10
h
′

P ′ , iSNR = 0
h
′

P ′ , iSNR = 10

Fig. G.6: Performance as a function of P ′. (a) Output SNR and (b) speech distortion index
as a function of P ′ for a speech signal with full rank covariance matrix.
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Fig. G.7: Performance as a function of P ′ compared to other filtering methods. (a) Output
SNR and (b) speech distortion index as a function of P ′ for a speech signal with full rank
covariance matrix compared to the Wiener filter and three filters from [10] at an iSNR of 10
dB.

are constant functions of the input SNR, as was also found theoretically in
Section 4. This means that it is possible to construct a filter according to the
desired combination of gain in SNR and speech distortion, and then this will
apply no matter the input SNR. This is not the case for either the Wiener filter
or the filters from [10] as is seen in Fig. G.9. For these filters, the gain in SNR
is decreasing with input SNR (except for hls which is also constant) as is the
speech distortion index.

As a measure of the subjective evaluation, Perceptual Evaluation of Speech
Quality (PESQ) scores [28] have been calculated for different filter lengths, dif-
ferent values of P ′ and different SNRs. The used speech signal contains 40,000
samples from the beginning of the speech signal from the first female speaker
in the Keele database. The results are shown in Table G.1 and Table G.2. It
is seen that the PESQ scores are increasing with increasing filter length and
SNR, even though the effect of going from a filter length of 90 to 110 seems
smaller than increasing the length from 70 to 90. The PESQ score is rather
low for low values of P ′, peaks for P ′ = 31 or P ′ = 41, depending on the
SNR, and then decreases again for higher values of P ′. This is also heard in
informal listening tests of the resulting speech signal. At low values of P ′, the
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Fig. G.9: Performance as a function of the input SNR compared to other filtering methods.
(a) Output SNR and (b) speech distiortion index as a function of the input SNR for a
speech signal with full rank covariance matrix compared to the Wiener filter and three filters
from [10] at an input SNR of 10dB.

speech signal sounds rather distorted whereas at high levels of P ′, the signal is
noisy, but not very distorted, which also confirms the findings in Fig. G.6. As
reflected in the PESQ score, a signal with a compromise between the two is pre-
ferred if the purpose is listening directly to the output. In such a context, the
performance of the Wiener filter is slightly better than the proposed filter with
PESQ scores approximately 0.3 units larger. However, the purpose of noise
reduction is sometimes as a pre-processor to, e.g., a speech recognition algo-
rithm. Here, the word error rate increases when the SNR decreases [29, 30], but
on the other hand the algorithms are also sensible to distortion of the speech
signal [31, 32]. In such cases it might, therefore, be optimal with another re-
lationship between SNR and speech distortion than the one having the best
perceptual performance. This optimisation is possible with the proposed filter
due to its flexibility.

The effect of choosing different values of P ′ is visualized in Fig. G.10. Figure
G.10(a) shows the spectrogram of a piece of a clean speech signal from the Keele
database and in Fig. G.10(b) babble noise was added to give an average input
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Table G.1: PESQ-scores at different filter lengths and SNRs for P ′ = 31.

SNR [dB]
hP ′ , P

′ = 31

L = 70 L = 90 L = 110

0 2.160 2.353 2.467

5 2.476 2.656 2.737

10 2.808 2.919 2.920

Table G.2: PESQ-scores for different values of P ′ and SNR for a filter length of 110.

SNR [dB] hw
hP ′

P ′ = 1 P ′ = 11 P ′ = 21 P ′ = 31 P ′ = 41 P ′ = 51 P ′ = 61

0 2.799 1.051 2.173 2.421 2.467 2.372 2.256 2.159

5 3.086 1.072 2.236 2.580 2.737 2.708 2.610 2.520

10 3.328 1.067 2.274 2.683 2.920 2.999 2.961 2.876

SNR of 10 dB. Fig. G.10(c) and (d) show the spectrograms of the reconstructed
speech signal with two different choices of P ′. The former is a reconstruction
based on P ′ = 10. Definitely, the noise content is reduced when comparing
to the noisy speech signal in Fig. G.10(b). However, a high degree of signal
distortion has been introduced as well, which can be seen especially in the
voiced speech parts, where the distinction between the harmonics is blurred
compared to both the clean speech signal and the noisy speech signal. In the
latter figure P ′ = 70 and, therefore, both noise reduction and signal distortion
are not as prominent as when P ′ = 10. Here, the harmonics are much more
well preserved, but, as is seen in the background, it comes with the price of less
noise reduction.

A feature of the proposed filter, which is not explored here, is the possibility
of choosing different values of P ′ over time. The optimal value of P ′ depends
on whether the speech is voiced or unvoiced, and how many harmonics there
are in the voiced parts. By adapting the value of P ′ at each time step based on
this information, it should be possible to simultaneously achieve a higher SNR
and a lower distortion.

6 Conclusions

In this paper, we have presented a new perspective on time-domain single-
channel noise reduction based on forming filters from the eigenvectors that
diagonalize both the desired and noise signal covariance matrices. These filters
are chosen so that they provide an estimate of the noise signal when applied
to the observed signal. Then, by subtraction of the noise estimate from the
observed signal, an estimate of the desired signal can be obtained. Two cases
have been considered, namely one where no distortion is allowed on the desired
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Fig. G.10: Spectra of desired signal, noisy signal and two reconstructions with different
choices of P ′. (a) Spectrum of a part of a speech signal from the Keele database. (b) Speech
signal from (a) contaminated with babble noise to give an average input SNR of 10 dB. (c)
Reconstructed speech signal using P ′ = 10. (d) Reconstructed speech signal using P ′ = 70.

signal and one where distortion is allowed. The former case applies to signals
that have a rank that can be assumed to be less than the rank of the observed
signal covariance matrix, which is, for example, the case for voiced speech. The
latter case applies to desired signals that have a full-rank covariance matrix.
In this case, the only way to achieve noise reduction is by also allowing for
distortion on the desired signal. The amount of distortion introduced depends
on a parameter corresponding to the rank of an implicit approximation of the
desired signal covariance matrix. As such, it is relatively easy to control the
trade-off between noise reduction and speech distortion. Experiments on real
and synthetic signals have confirmed these principles and demonstrated how
it is, in fact, possible to achieve higher output signal-to-noise ratio or a lower
signal distortion index with the proposed method than with the classical Wiener
filter. Moreover, the results show that only a small loss in output signal-to-
noise ratio is incurred when no distortion can be accepted, as long as the filter
is not too short. The results also show that when distortion is allowed on the
desired signal, the amount of distortion is independent of the input signal-to-
noise ratio. The presented perspective is promising in that it unifies the ideas
behind subspace methods and optimal filtering, two methodologies that have
traditionally been seen as quite different.
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This thesis deals with speech enhancement, i.e., noise reduction in speech 
signals. This has applications in, e.g., hearing aids and teleconference sys-
tems. We consider a signal-driven approach to speech enhancement where a 
model of the speech is assumed and filters are generated based on this model. 
The basic model used in this thesis is the harmonic model which is a com-
monly used model for describing the voiced part of the speech signal. We 
show that it can be beneficial to extend the model to take inharmonicities or 
the non-stationarity of speech into account. Extending the model introduces 
extra parameters and we suggest methods to estimate these extra parameters 
and derive filters based on the extended models.
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