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Summary in English

Renewable or sustainable energy resources gain global interest and are accompanied
with less global warming. The cost of energy produced by offshore wind turbines
(OWTs) is high compared to conventional sources (coal, oil, etc.). Also it is more
expensive than land-based wind turbines (WTs) but since there is limited space on land
(where people do not like to have the turbines due to noise andvisual impact), OWTs
are gaining ground. But the cost of energy (CoE) has to come down to strengthen the
competitiveness with fossil fuels.

In order to reduce the CoE, the optimized total weight of turbine and its founda-
tion is demanded which is resulting in a slender system and much more sensitive than
non-optimized system to dynamic excitations even at low frequencies. This flexible
structure is often exposed to dynamic loads such as wind, waves and, in some regions,
earthquakes. OWT foundations undergo translation and rotation due to these applied
loads, and the surrounding soil undergoes deformation. Thestudy of the foundation
subjected to transient load is important in the context of foundation design especially
to work out the stiffness and effective damping due to the surrounding soil. To avert
damage of offshore foundation, and obtain a better design, it becomes necessary to
identify and quantify the soil-structure interaction and damping effects. The damping
level of offshore wind turbines is very important for the fatigue damage accumulated
over the lifetime of the structure. Hence, accurate prediction of the damping level is
necessary.

The amplitude of the dynamic response of the wind turbine is dependent on the
overall damping. Hence, in order to predict accurately the wind turbine lifetime, it
is vital to assign the correct damping. The total damping in offshore wind turbines
consist of aerodynamic, structural and soil damping. Soil damping comprises radia-
tion and material dissipation. By introducing soil as a porous material, the damping
of the seepage can be investigated. The seepage of pore watercaused by the defor-
mation of the seabed leads to viscous forces that eventuallylead to damping. In order
to obtain more precise damping of the seepage, it is important to understand the dy-
namic interaction between the foundation and the soil. It isimportant to understand
the interaction between the foundations and the dynamic behavior of soil, and soil
should be modeled more precisely for that purpose. Generally soil can be considered
to be a porous medium consisting of solid phase (soil skeleton) and fluid phase (water
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and gas). Determination of the dynamic response of fluid-saturated porous media is an
important and not yet fully solved problem in many practicalengineering applications.

Unfortunately, accurate and realistic natural frequencies of OWTs as well as soil
stiffness and damping cannot be quantified by current methods. The purpose of the
current research is to obtain a better understanding of the stiffness and damping of
saturated soil, propose an improved methodology for analysis of soil-foundation in-
teraction that accounts for rate-dependent behaviour of saturated soil. Typically, in
the design of piles, the soil-structure interaction is incorporated by a so-called Winkler
model with springs along the foundation. The increase in stiffness due to high-rate de-
formation of the saturated soil is not accounted for, and damping is only described in
terms of modal damping within each mode. Thus, material damping, viscous damping
from seepage and radiation damping are not accounted for explicitly.

Since the stiffness of foundation and subsoil strongly affects the modal parame-
ters, the stiffness of saturated soil due to pore water flow generated by cyclic motion
of monopiles is investigated using the concept of a Kelvin model which combines
springs and dashpots. In this regard, the coupled equationsfor porous media are em-
ployed in order to account for soil deformation as well as pore pressure. The effects
of drained versus undrained behaviour of the soil and the impact of this behaviour
on the stiffness and damping related to soil-structure interaction at different load fre-
quencies are illustrated. Based on the poroelastic and Kelvin models, more realistic
dynamic properties are presented by considering the effectof load frequency for the
lateral loading of monopiles subjected to cyclic loads.
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Resumé på dansk

Vedvarende og bæredygtige energiressourcer har global interesse og medfører min-
dre global opvarmning. Udgifterne til energi der produceres af offshore-vindmøller
(OWTs) er høje i forhold til konventionelle energikilder (kul, olie, etc.). Det er
ligeledes dyrere end landbaserede vindmøller (WTs), men da der er begrænset plads
på land (hvor folk ikke kan lide at have møllerne på grund af støj og visuel effekt),
indvinder OWTs terræn. Men udgifterne til energi (CoE) skal mindskes for at kunne
styrke konkurrenceevnen i forhold til de fossile brændstoffer.

Med hensyn til reducering af CoE kræves den samlede vægt af møllen og dens
fundament optimeret, hvilket medfører et spinklere mere smalt system som er meget
mere følsomt end et ikke-optimeret system overfor dynamiske excitationer selv ved
lave frekvenser. Denne fleksible struktur er ofte udsat for dynamiske belastninger
såsom vind, bølger og i nogle regioner, jordskælv. OWT-fundamenter undergår trans-
lation og rotation på grund af disse påførte belastninger, og den omgivende jord un-
dergår deformation. Studiet af de fundament der udsættes for forbigående belast-
ning er vigtig i forbindelse med fundamentdesign specielt med hensygn til bestem-
mendes af stivhed og effektiv dæmpning forårsaget af den omgivende jord. For at
undgå beskadigelse af offshore-fundamentet og for at opnå et bedre design er det nød-
vendigt at identificere og kvantificere jordstrukturens interaktion og dæmpningsef-
fekter. Dæmpningsniveauet for havvindmøller er meget vigtigt for udmallelsesskader,
der akkumuleres over strukturens levetid. Derfor er det nødvendigt at have en nøjagtig
forudsigelse af dæmpningsniveauet.

Amplituden af den dynamisk respons af vindmøllen er afhængig af den sam-
lede dæmpning. For at forudsige vindmøllens levetid præcist, er det derfor vigtigt
at tildele den korrekte dæmpning. Den samlede dæmpning af havvindmøller består
aerodynamisk og strukturel dæmning samt dæmpning i jorden.Sidstnævnte omfatter
udstråling og materialedæmpning. Ved at betragte jorden som et porøst materiale kan
man undersøge dæmpning pga. sivende porevand. Strømning afporevand forårsaget
af deformation af havbunden fører til viskose kræfter, der isidste ende fører til dæmp-
ning. For at opnå mere præcis dæmpning af udsivning er det vigtigt at forstå den
dynamiske interaktion mellem fundamentet og jorden. Det ervigtigt at forstå sam-
spillet mellem fundamenterne og jordens dynamiske opførsel, og jord skal modelleres
mere præcist til dette formål. Generelt kan jord anses for atvære et porøst medium
bestående af en fast fase (jordskelettet) og en væskefase (vand og gas). Bestemmelse
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af den dynamiske respons af mættede porøse medier er et vigtig og endnu ikke fuldt
løst problem i mange praktiske ingeniørmæssige anvendelser.

Desværre kan præcise og realistiske egenfrekvenser af OWTs samt jordstivhed
og dæmpning ikke kvantificeres ved de nuværende metoder. Formålet med den ak-
tuelle forskning er at opnå en bedre forståelse for stivhed og dæmpning af mættet
jord og at foreslå en forbedret metode til analyse af jord-fundament interaktionen, der
gælder for mættet jords rateafhængige adfærd. Typisk i modelleringen af pæle er jord-
struktur interaktionen inkorporeret ved en såkaldt Winkler-model med fjedre langs
pælen. Stigningen i stivhed på grund af høj hastighed deformation af den mættede
jord er ikke redegjort for, og dæmpning er kun beskrevet i form af modal-dæmpning
inden for hver tilstand. Således redegøres der ikke eksplicit for materialedæmpning,
viskos dæmpning fra sivende vand og udstråling.

Da stivheden af fundamentet og undergrunden påvirker modale parametre kraftigt,
undersøges stivheden af mættet jord, der er forårsaget af porevandsstrømning gener-
eret af cyklisk bevægelse af monopæle, ved hjælp Kelvin-model konceptet, der kom-
binerer fjedre og svingningsdæmpere. I denne henseende anvendes de koblede ligninger
for porøse medier med henblik på redegørelse for jordens deformation samt poretryk.
Virkningerne af jordens drænede versus udrænede opførsel og virkningen af denne ad-
færd på stivhed og dæmpning forbundet med jord-struktur interaktionen ved forskel-
lige belastningsfrekvenser er illustreret. Baseret på poroelasticitet og Kelvin-modeller
præsenteres mere realistiske dynamiske egenskaber ved at betragte effekten af be-
lastningsfrekvensen for sidebelastning af monopæle der udsættes for cykliske belast-
ninger.
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CHAPTER 1
Introduction

Wind energy is a type of renewable energy that pumps billions of dollars intothe
economy. Zero greenhouse gas emissions, low conventional pollutants, affordability,
wide availability and wide distribution are characteristics of wind energy as a clean
and in-demand energy source (Fthenakis and Kim 2009). Given recent demands
for renewable energy, more attention has been paid to wind turbine options. As
wind energy pushes to reduce the cost of energy, manufacturers have increasingly
sought to increase the size of turbines as well as develop wind farms. Inthis chapter,
a discussion of the different types of wind turbines, their support foundations and
applied dynamic lateral load is given with emphasis on the dynamic behaviour of
the wind turbine and support structures. The discussion is concluded witha brief
overview of the present research. A guide to the remainder of the thesisis provided
at the end of the chapter.

1.1 Wind Turbines
The modern era of wind turbine began
in 1979 by Danish constructors such as:
Kuriant, Vestas, Nordtank and Bonus.
These early in-land (onshore) wind tur-
bines generally had small capacities (10
kW to 30 kW) by today’s standards, but
pioneered the development of the modern
wind power industry that we see today.
Wind turbines can generally be catego-
rized by whether they are horizontal axis
or vertical axis wind turbines (HAWT
and VAWT)(Fig. 1.1). The rotational axis
of VAWT and HAWT are perpendicular
and parallel with the ground respectively.
VAWT capable of operating during min-
imal wind speed and have ability to pro-

HAWT VAWT

Figure 1.1: (a) Horizontal and (b) vertical axis wind
turbines (Yahia Baghzouz 2012)

duce well in tumultuous wind conditions by wind coming from all 360 degrees and
they are applicable in small wind projects and because of public ordinances it cannot
be placed high enough to benefit from steady wind and also theyare not as effective
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2 Introduction

as HAWT. However HAWT do not produce in turbulent winds well andare gener-
ally heavier than VAWT, but they are much more applicable in the big wind industry
application because they are able to produce more electricity from a given amount
of wind and it is possible to produce as much as possible at alltimes. Currently
small, Intermediate, medium and large-sized wind turbineshave generation capacities
of less than 100 kW, 250kW, 3MW and more than 3MW, receptively. Today’s utility-
scale horizontal-axis wind turbine generally has three blades, stall- or pitch-regulated,
sweeps a diameter of about 80 to 100 meters, typically start generating electricity at a
wind speed of 3 to 5 m/s and generally cut-out at a wind speed ofaround 25 m/s, has
a capacity from 0.5 MW to 3 MW and is part of a wind farm of between 15 and as
many as 150 turbines that are connected to the grid (IRENA 2012).

1.1.1 Fundamental elements of a wind turbine

A wind turbine is commonly consist of a rotor (hub and blades), power train, nacelle,
generator, tower and support foundation.
The blade should be enough stiff and light
to have efficient aerodynamic effects and
also in order to avoid any resonance, the
blade frequency should not be coincide
with the frequency at which the blades
pass the tower. The shape and material
of blade have important roles to capture
best possible energy form the wind. A
wind turbine with three blades presents
efficient aerodynamic effects. Air-foil
shapes with a tapered and twisted geome-
try and composite material are commonly
utilized to fabricate desired blades. The
steel nacelle structure is a housing for the
power train components such as turbine

Generator
Pitch

Hub

Blade

Nacelle

Tower

Figure 1.2: Fundamental elements of a wind turbine.
After Vestas Wind Systems A/S (2011).

(and generator) shafts (low (and high)-speed shafts), a gearbox, a yaw drive, brakes,
control components and as well as lubrication, and cooling functions. The nacelle
located at the top of the tower where the generator is placed and connected to the
hub. The nacelle and consequently the rotor shaft aligned with the wind direction by
a yaw drive. The nacelle is mounted on a cylindrical and tapered tubular shell tower,
the tubular shape permits access from inside the tower to thenacelle and also some
devices such as a ladder, powered lift for maintenance, cables for carrying power and
control signals are often placed in the tower (Fig. 1.2).

However, the high growth in the installed capacity of offshore wind turbines
(wind turbine structure in water), mainly anchored by the ambitious energy and cli-
mate change objectives for 2020 by the European Union Committee (2008), causes
many challenges within civil engineering and science, and the sector has still not made
a definitive breakthrough.
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Support Structures fix the wind turbine into
the ground. In order to guarantee the stabil-
ity of the wind turbines, based on the type of
wind turbine namely onshore and offshore,
different effects and considerations should
be taken into account. Based on the size
of wind turbine, the dynamic load spreading
and the geotechnical site conditions, plate
foundations and/or combination of plate and
pile foundations are considered to fix on-
shore wind turbines. Plate foundation is one
of the most commonly used foundation, de-

Figure 1.3: Octagonal onshore wind turbine
base. (Hamacher 2012)

fines as a large reinforced concrete plate under the earth which forms the footing of
the onshore wind turbine. For soft subsoil, the foundation plates are fixed with (in-
clined and/or vertical) piles into the earth. The foundation for one of the very large
turbine with 8 MW and 222 m height which has been installed at østerild wind turbine
test field in Denmark is shown in Fig. 1.3. For offshore wind turbine foundations,
the other factors like the water depth and the hydrodynamic conditions are important
as well. The foundation and/or substructure is defined as as the entire structure to
transfer the wind turbine loads to the soil or ground. Not only the dynamic wind load
and the geotechnical site conditions are important but alsoice loads, sea water loads
like: the wave, current and also pore pressure load in saturated soil should be con-
sidered for offshore wind turbine foundations. With the anchorage of offshore wind
turbines on the seabed, different substructure types such as: grounded and floating
designs are considered. The most famous floating designs are: tension leg platform,
barge and spar floaters. The grounded designs can be classified into monopod and
multipod structures. Different types of grounded offshorewind turbine foundations
will be explained in more detail later in this chapter.

1.1.2 Small and large wind turbines

Small wind energy systems can be used in
connection with grid-connected systems, or
in stand-alone applications that are not con-
nected to the utility grid. A grid-connected
wind turbine can reduce your consumption of
utility-supplied electricity for lighting, appli-
ances, and electric heat. If the turbine can-
not deliver the amount of energy you need,
the utility makes up the difference. When
the wind system produces more electricity
than the household requires, the excess can
be sold to the utility. With the interconnec-
tions available today, switching takes place
automatically. Small onshore wind turbine

Figure 1.4: Proven 6Kw wind turbine at Brill
school. (RET 2015)
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4 Introduction

are typically less than 50 kW in size, but can be as large as 500kW and are designed
to provide electricity for isolated locations, small regions and companies. In all of
these applications, the turbine(s) are providing energy for the end user to offset the
use of grid power. Small turbines are typically installed asa single unit or in small
numbers. The interest is in finding small wind turbines that produce the most energy
at low wind levels. Fig. 1.4 shows a proven WT6000 wind turbineinstalled at Brill’s
school in 2004 (Renewable Energy Toolkit 2015). The three-bladed turbine has 5.6 m
diameter and 9 m height.

More or less the harnessed energy by a wind turbine is approximately commen-
surate with the swept area by the blades. By increasing the rotor diameter twice, the
swept area and consequently the output power is increased bya factor of four. Fig.
1.5 presents the growth in the size of wind blades and turbines (EWEA 2013). In order
to extract more energy from the wind, beside improving the size of the wind turbine,
some control mechanisms such as yaw and pitch could be supportive. A yaw and
pitch are rotational mechanisms to adjust and put the wind turbine rotor and blades to
exploit more energy and get efficient rotational speed.

Figure 1.5 Growth in the size of wind turbines since 1985. After EWEA (2013).

A large contribution from wind energy to European power generation is techni-
cally and economically feasible. In 2011, installed wind power produced 6.3% of the
EU’s demand for electricity. EWEA’s analysis predicted to produce roughly 14% of
the EU’s demand in 2020 (EWEA 2013). Large wind turbines have rated capacities
ranging from 650 kW to 3 MW (and/or 4 MW) and are designed for using in electricity
generating power plants. As wind turbines get larger, worries have emerged that the
turbine noise would move down in frequency and that the low-frequency noise would
cause annoyance for the neighbours (Møller and Pedersen 2011). The average level
of noise from wind turbine can be the same level of noise as a family car travelling
at 100 Km/h. Large turbines are typically deployed in eitheronshore and/or offshore
wind farms and are intended to provide wholesale bulk electricity and connect to the
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electric power transmission network.

1.2 Advantages of Offshore Wind Turbine

As Fig. 1.5 shows the growth in the size of
turbines, this trend is not confined to off-
shore, the size of wind turbines installed on-
shore has also continued to grow. Larger tur-
bines provide greater efficiency and economy
of scale, but they are also more complex to
build, transport and deploy. Based on lower
cost for transporting, installing and servicing
of the wind turbines, majority of them are
erected on land so far. Onshore wind energy
is one of the most cost-effective and mature
of all the renewable technologies. Whilst off-
shore wind has high costs, immature tech-
nologies and development constraints. At
present, one of the most expensive energy
technology is offshore wind turbine energy.

Figure 1.6: Offshore wind farm at Anholt.
(Dong Energy 2015)

Based on a result of the technical difficulties of offshore turbine construction and con-
nection to the National Grid. Offshore wind farms energy is 90% and 50% more
expensive than fossil fuel generators and nuclear energies. Wind farms on land are al-
most as monetarily cheap as fossil fuels. But, if environmental damage was included,
the price of coal would be three times greater than onshore wind energy, according to
Friends of the Earth. Over time, offshore wind energy costs should come down, just
as onshore has (Boythorpe Wind Energy 2015). The advantage of shifting offshore
brings not only higher average mean wind speeds, but also theability to build very
large turbines with large rotor diameters. Offshore wind farms can harness more fre-
quent and powerful winds than are available to land-based installations. Consequently,
the tower heights, rotor diameters and rated powers of offshore wind turbines have in-
creased during recent years in order to capture the more energetic winds that occur at
higher elevations and to produce more energy per turbine installation. At this writing,
however, the majority of wind turbines is located onshore due to lower installation
cost. Nevertheless, the population density and existing buildings limit suitable wind
turbine locations on land in many regions of the world. This justifies the development
of offshore wind energy and indicates the potential of rapidgrowth of the market over
the next decade. Thirteen offshore wind farms have been constructed in Denmark.
Fig. 1.6 shows the biggest wind farm, which has capacity of 400MW is located at
Anholt.
Whilst onshore wind has developed into a mature technology, the availability of desir-
able sites is diminishing and new locations are becoming harder to develop. Offshore
locations offer greater scope in this respect, as well as higher load factors out at sea
and the scale effects from building very large wind farms. Offshore wind is steadier
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and stronger than on land, and offshore farms have less visual impact, but construction
and maintenance costs are considerably higher (Fthenakis and Kim 2009; Gipe 1993).
Offshore wind turbine design is a burgeoning area of engineering and young tech-
nology. Offshore wind turbine foundations are subjected totime-varying loads from
waves, wind and ice, and during operation blade passage across the tower as well as
imbalances in the rotor cause cyclic loading. These loads may cause premature failure
in the ultimate limit state or the fatigue limit state if resonance occurs or damping is
low. Therefore, the certain dynamic response of offshore wind turbine which depends
on the soil–structure interaction can play an important role in design step. The aver-
age wind turbine size is currently between 2 MW and 3 MW. Whereas, the average
turbine capacity is around 4 MW positioned within a average distance of 29 km from
shore and located at positions with average water depths less than 16 m. However,
the cost of energy for offshore turbines is higher than that for onshore turbines due
to large costs in operation and maintenance. In addition, offshore foundations may
account for up to 35% of the installed cost (Byrne and Houlsby2003). Evidently, the
biggest challenge in the offshore wind industry is how to reduce the cost of energy.
By increasing lifetime span and reducing the maintenance programs and operational
costs, the energy cost is going to reduce. Moreover, enhancing the understanding of
the dynamic behaviour of wind turbine and the interactive behaviour between the sub-
structure and ground is necessary to have more accurate design of the wind turbine and
consequently reducing the overall wind turbine cost. The model can simulate the soil
correctly and brings more interrelation effects between the dynamically active wind
turbine and support structure therefore being efficient in terms of computational-time
is desired.
The research work presented in this dissertation aims to improve the dynamic inter-
action between the foundation and the soil and illustrates the dynamic response of
offshore wind turbines at different load frequencies basedon mathematical and nu-
merical approaches. Special focus on soil stiffness and effective damping because of
pore water flow generated by cyclic motion of monopile is addressed. The outcomes
of this research may directly or indirectly increase (or decrease) the economic fea-
sibility of future offshore wind farms by presenting more accurate soil stiffness and
damping which is related to the interrelation effects between the substructure and the
subsoil.

1.3 Offshore Wind Turbine Foundations

The main criteria of selecting the most appropriate offshore wind turbine founda-
tions are: the water depth, the hydrodynamic conditions, the geotechnical site con-
ditions and the wind turbine size. The shallow, transitional water depths are lim-
ited to 30 m and 50 m respectively. The water depths greater than 50 m is called
the ’deep water’ environment. In shallow waters, the wave heights are limited by
the water depth and there is no particular dynamic effect from waves, wind, ice or
combinations thereof. Current commercial grounded offshore foundations are eco-
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nomically limited to maximum transitional depths (maximumwater depths of 50 m).
Floating structures are especially competitive in terms ofthe levelized cost of energy
with grounded foundations in more than 50 m water depth. According to the wa-
ter depth, the offshore structure can be levelled by two different strategies: moored
floating and grounded (and/or fixed) struc-
tures. Current moored floating offshore wind
turbine technology is not used on a commer-
cial scale. Several prototypes for offshore
wind floating foundations can be listed as:
tension leg platform, barge and spar floaters
which are combination of swaying, buoying
and floating concepts. Based on the num-
ber of interface between the substructure and
seabed, monopod and multipod foundations
are defined for grounded structures. The fol-
lowing subsections give introduction to some
of the most important and popular grounded
offshore wind turbine foundations.

Gravity base Monopile Bucket

Figure 1.7: Typical monopod substructure con-
cepts for offshore wind turbines.

1.3.1 Monopods

Monopod substructures are defined as having a single interface to the seabed such as:
gravity base, monopile and suction caisson monopod foundations (Fig. 1.7). The men-
tioned monopod substructures are well suited for shallow water depth and sites with
water depth ranging from 0 to 25 metres according to the DNV (DNV 2011).

Heavy weight foundationsare massive area
foundations employed steel or reinforced con-
crete caissons which are sunk at the loca-
tion of the plant with the help of ballast. A
small skirt around gravity base foundation
could make a desired restriction for scouring
and also increases the contact area and con-
sequently increases the base shear resistance.
Comprehensive preparation works are neces-
sary on the seabed in order to make proper
contact for heavy weight foundations such
as: removing soft top layers and levelling the
seabed. The foundation masses increase dis-
proportionally with bigger water depths and
they are applicable for shallow water depths
up to 30 m. The Danish offshore wind farm

Figure 1.8: Heavy weight foundations for the
Horns Nysted II offshore wind farm. (Bilfinger
Construction 2015)

projects Middelgrunden (2001), Nysted (2003),Thornton Bank I (2009) and Nysted II
(2010), for instance, employed gravity base foundations. Here, the Nysted II is the
largest installed offshore wind farm with gravity based foundations with 207 MW ca-

7 June 2015



8 Introduction

pacity at positions with average water depths less than 12 m.As it is shown in Fig. 1.8
for Nysted II wind farm, gravity base foundations are used rather than piles due to ice
conditions.
Monopile foundations consist of a central
large diameter steel pipe which is rammed
into the seabed by use of a hydraulic or vi-
bratory hammer which has proved to be the
most economical solution. Monopile foun-
dations benefits lie in their simple design,
relatively easily installation, favourable fab-
rication conditions with a considerable au-
tomation potential, no big preparation works
on the seabed and short installation times
(Scharff and Siems 2013a). The area of em-
ployment is restricted to a relative low wa-
ter depth of up to 25 m and with pile diame-
ters of around 4–6 m. However, Scharff and
Siems (Scharff and Siems 2013a; Scharff and
Siems 2013b) have explored the use of very

Figure 1.9: Monopile foundation for the Horns
Reef II offshore wind farm. (Bilfinger Construc-
tion 2015)

large monopile foundations in water depth of up to 40 m with diameter up to 10 m
and have given two detailed discussions of design examples.Reducing scour around
monopiles is desired issue which is related to wave loads andpile diameter. It should
be noted that wave loads change intensely with the pile diameter. Another difficultly
of monopiles is injecting grout in cold conditions to attacha transition piece on top of
the monopile which the transition part is bolted to the wind turbine tower. A transi-
tion piece is located between the tower and monopile. Examples of the three largest
offshore wind farms by actual energy production since commissioning are Horns Reef
I (2002), Nysted 1 (2003) and Horns Reef II (2009). Fig. 1.9 shows one of the
monopiles used for the Horns Reef II offshore wind farm.
Suction caisson monopod foundationsor
bucket foundations consist of a cylindrical,
open steel towards the bottom which is drawn
into the ground with the negative pressure
generated inside the foundation presses after
placing on the sea bed. These novel bucket
foundations are combining the key benefits
of gravity based foundations, a monopile and
suction anchor technology (Byrne 2000; Ib-
senet al. 2003; Houlsbyet al. 2005). The
material at the bottom of the inside of the
cylinder supports the foundation and fixes it
to the sea bed. Bucket foundations can have a
silent installation process and relatively cost-
efficient because of avoiding any cranes, pile
driving and jack-ups and also they can easily

Figure 1.10: Monopod bucket used as founda-
tion for the Mobile Met Mast at Horns Reef II off-
shore wind farm. (Universal-Foundation 2015)
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be deconstructed. However, the buckling phenomenon duringinstallation can be con-
siderable issue because of the thin shell structure compared to the diameter of the buck
(Madsenet al. 2013). Prerequisite for bucket foundations are unobstructed conditions
of the ground. Bucket foundation can be employed in water depths up to around 40
m. Aalborg University has done a lot of researchs and projects on bucket foundations
and recently two bucket foundations have been installed at the Forewind Dogger Bank
project in the UK 2013. Moreover, the foundation was used to support the met mast
for Horns Rev 2 in 2009 Denmark and a Vestas V90 turbine in Frederikshavn in 2004
Denmark (Fig. 1.10).

1.3.2 Multipod

Multipod foundations refer to the substructure with more than one interface to the
seabed and this makes them suitable for deep water depths where there are large bend-
ing loads. In the following, only tripods, tripiles and jackets with piled anchoring are
presented. According to DNV (DNV 2011) the water depth for the from 25-40 m and
for tripod and jacket (or lattice) support structures is 20-50 m. However these type
of foundation can be utilized in shallow depth but they are not suitable at water depth
less than 6-7 m especially for tripods and tripiles cases.

Tripods foundations have a central foundation pipe to absorb the offshore wind
turbine which is welded and connected to a three-legged foundation structure made
out of steel as shown in Fig. 1.11. Three
pipes, which are bucked up among them-
selves and also with the central pipe and
diagonal braces, branch off or sleeves can
be vertical or aslant respect to the cen-
tral pipe. The central column is divided
into a triangular frame of steel transition
pieces. On each end of the tripod, hulls
are fixed to pile with concrete or grout-
ing for the adoption of the foundation
poles rammed and/or penetrated into the
seabed. According to current technology,
tripods are suitable for water depths of
20 to 80 m and can be employed with
relatively flat seabed in particular. In
large water depths, tripods foundations
are more stable than monoplie founda-
tions however there might be more risk
for fatigue damage in comparison with

Figure 1.11: Tripod foundations for the ha Ventus
offshore wind farm. (Offshore Wind Technology
2015)

jacket foundation. They are less suitable for locations with a stony ground. The six
wind turbines in the offshore testing field Alpha Ventus wereinstalled upon tripod
foundations.
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Tripiles foundations made of three individ-
ual steel pipes on which a tripod cross brac-
ing is attached on the water surface and wind
turbine is then erected on the tripod cross
bracing. The individual pipes could be an-
chored in a ram depth of up to 30 m. In con-
trast to monopiles, the individual pipes could
have a lower diameter and can be adjusted
to the location with regard to wall thickness
and length of the individual pipes and then
can be rammed more easily. It can be appli-
cable for water depths between 25 and 50 m.
As indicated in Fig. 1.12, the tripiles offshore
foundations were used for the BARD off-
shore 1 wind farm in the North Sea 2013 and
also with the nearshore test case in Hooksiel

Figure 1.12: Tripiles foundations for the off-
shore wind farm BARD Offshore 1 in the North
Sea. (Bard 2015)

2008.
Jacket foundationsare a three or more legged
chequered steel construction, see Fig. 1.13.
The slender tubular feet take up the jacket
poles which are rammed into the seabed. The
bracing system between the legs gives the
stiffness to the structure, because it actually
acts as a buckling resistor of the steel tubular
piles inside the legs. The forces are trans-
ferred to the seabed by axial forces in the
members. The advantages of the jacket foun-
dation are: a light and efficient construction
(axial forces) and saves material compared to
the monopile or tripod foundations in case
of deeper waters and also the large base of
the jacket offers a large resistance to over-
turning moments. There are some disadvan-
tages such as: every node of the trusses needs

Figure 1.13: Jacket foundations for the Or-
monde offshore wind farm. (Peireet al. 2008b)

to be designed and require many man-hours of welding, resulting in high design
costs. Moreover, transportation of the jacket requires a lot more space compared to a
monopile and also the maintenance cost is high. Several offshore wind farms make
use of the jacket foundation concept, among these the Alpha Ventus (2010), Ormonde
(2011), Thorton Bank II (2013) and Nordsee Ost (2013) offshore wind farms.

1.4 Offshore Piles under Cyclic Lateral Loading

The overall loads on a offshore wind turbine can be classifiedinto five categories:
a) gravitation and/or inertial loads such as: gravity,breaking, aviation and seismic
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activity, b) areodynamic load, c) hydrodynamic loads (waveand current), d) ac-
tuation loads like: torque control, yaw and pitch actuator and mechanical braking
load, e) other loads such as: wake and im-
pact loads and also tsunami. The mentioned
dynamic loads can be in stochastic and/or
harmonic forms, cf. Fig. 1.14. Accord-
ing to ICE (IEC 61400-3 2009), these loads
are affected and connected with environmen-
tal conditions like: a) wind conditions (nor-
mal and extreme wind conditions), b) marine
conditions such as: marine growth, waves
(normal and extreme wave conditions), water
and sea level, c) seabed movement and scour,
d) other conditions like: air temperature, hu-
midity, solar radiation, rain, hail, snow and
ice, chemically and mechanically active sub-
stance, salinity causing corrosion, lighting,
seismicity causing earthquake, water density
and temperature. The variation of environ-
mental conditions can have high impact and

Wind

Rotor forces

WeightSpray

Waves and CurrentWater depth Erosion

Scouring

Figure 1.14: Environmental impact and struc-
tural loads of an offshore wind turbine (Offshore
Wind 2015)

change the structural dynamic properties, for instance, the damping ratios and natural
frequencies of the wind turbine. Evidently, the internal forces are not equal to external
forces in the presence of the dynamic loads. In DNV (DNV 2011)a limit state design
(LSD) is considered in dimensioning step and it was defined as: A condition beyond
which a structure or structural component will no longer satisfy the design require-
ments. Based on LSD which needs the design for different set up scenario refer to
certain conditions and loads, different limit states categories as: ultimate, fatigue, ac-
cidental and serviceability limit states. The Ultimate limit state (ULS) analysis should
ensure that the maximum admissible load do not make any collapse and failure in the
turbine, foundation and subsoil. Maximum load carrying resistance can be mentioned
as: yield and buckling, loss of bearing/overturning, failure of critical components.
Fatigue limit state (FLS) is correlated with the metal and welded joints fatigue and
failure due to the effect of cyclic loading where materials performance, in high-cycle
fatigue situations, is commonly characterized by an S-N curve (or Wöhler curve). The
S-N curve presents the magnitude of a cyclic stress (S) against the logarithmic scale
of cycles to failure (N). In this writing, focus is on soil modelling and soil-pile interac-
tion, hence the fatigue analysis will not be touch. However,the metal fatigue analysis
highly effected by interaction between soil and pile. the effect of cyclic loading can be
originated from: repeated wind and wave loading, repeated gravity loading on blade.
Accidental limit state (ALS) corresponds to accidental structural damage caused by
accidental loads and conditions and also it concerns resistance of damaged structures.
Finally, the permanent deformation such as displacement and rotation of structure
(such as tilt of turbine due to differential settlement) should not exceed the maximum
allowable value in serviceability limit state (SLS). Detailed description about loads on
wind turbines is out of the scope of the current thesis. However, a short introduction
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to periodic and non-periodic loads on wind turbine blade maybe relevant for the un-
derstanding the dynamic response of wind turbine. This section provides an overview
of the most relevant environmental parameters affecting the dynamic behaviour of
offshore wind turbines.

1.4.1 Non-periodic loading

Importance of dynamics loads such as
non-periodic loads in design is to increase
(or decrease) of maximum load which can af-
fect ULS conditions. A non-periodic load is
a function whose value is not repeated at con-
stant intervals (Fig. 1.15). The non-periodic
load can be random such as: turbulence and
random waves. As an instance, wind turbu-
lence causes non-periodic, stochastic loads
on the rotor (Zaaijer, M. 2008). The non-
periodic can be classified into transient load
(such as step function: start/stop condition,
turbine failures, storm front) and short events
(such as impulsive load: extreme gust and
waves). The starting point for the entire load
spectrum of a wind turbine are the loads act-

Non-periodic random loading
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Figure 1.15: Non-periodic stochastic loading
(Zaaijer 2008)

ing on the rotor. Turbulence is the natural variation of the wind speed about the mean
wind speed in a 10-minute period and characterised by the standard deviation. An
appropriate distribution model based on the application should be selected to fit data
for the standard deviation properly. A log-normal, Weibull, Frechet and normal distri-
bution can be used to provide a good fit to data for the standarddeviation. The normal
and extreme turbulence models are used to represent turbulent wind speed in terms
of a characteristic standard deviation of wind speed. The turbulent wind speed with
specific standard deviation is combined with the normal windprofile model to repre-
sent the extreme turbulence model. The distribution of energy of the wind turbulence
between different frequencies is presented by the spectraldensity of the wind speed
process. The spectral density of the wind speed process is animportant parameter and
represents how the energy of the wind turbulence is distributed between different fre-
quencies. The spectral density of the wind speed process including wake effects from
any upstream wind turbines is ultimately of interest. The Kaimal spectrum and other
model spectra are applied to represent the upstream wind field. However, a rotational
sampling turbulence due to the rotation of the rotor blades should be added to the
turbulence of the upstream wind field. The coherence of the wind and the turbulence
spectrum of the wind are of significant importance for determination of tower loads
such as the bending moment in the tower. The offshore wind turbine is a dynamic sys-
tem influenced by the hydrodynamic loading of waves and current. Here, we briefly
glimpse the wind, wave and current loads.
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Wind load generates the aerodynamic blade
loads and also aerodynamic drag forces on
tower and nacelle directly. The incoming
wind generally decomposed into mean value
wind speed and a stochastic turbulence on
that. Airfoils shaped blades lead to the lift
and drag forces as a result of created pres-
sure and suction on the different sides of the
blade surface which make the faster air flow
on one side and slower on the other. In an
airfoil, one surface of the blade is somewhat
rounded, while the other is relatively flat.
The two primary aerodynamic blade forces
are called lift, which acts perpendicular to
the direction of wind flow; and drag, which
acts parallel to the direction of wind flow
(Fig. 1.16). The projection of lift and drag

Figure 1.16: The two primary aerodynamic
blade forces. (Julia Layton 2015)

forces on the desired axes results in the rotation of the rotor and bending in blades.

Wave and current loads originally come
from wind while the effect of travelled waves
should be considered in wave load and also
tidal and storm surge effects need to be
considered in calculating current load (Fig. 1.17).
Different waves theories like: linear Airy,
non-linear Stokes and the stream function
wave theories are used to ascertain the wave
and particle kinematics and then , as an in-
stance, the Morison equation and/or wave
diffraction analysis are utilized to calculate
wave-induced loads on an offshore support
by considering the size, shape and type of
structure. Morison’s equation can be applied
for slender structure while the wave diffrac-
tion analysis shall be performed for large vol-
ume structure to catch the correct wave kine-
matics which disturbed by the presence of the

Figure 1.17: Wave and current load on offshore
wind turbine (offshorewind 2015).

structure. In particular, wave radiation forces should be included for floating struc-
tures. The wave theory shall be selected with due consideration of the water depth and
of the range of validity of the theory. Viscous and potentialflow effects have highly
influence on the wave-induced loads.

Tidal effects and storm surge effects shall be considered inevaluation of the cur-
rent velocities. Higher water levels tend to increase hydrostatic loads and also the
sea current is considered to vary as a function of depth, consequently, the current
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loads on the structure will be increased. The loading from sea currents generated by
wind and tides is rather smaller than the wave loads. Note that the summation of the
wave-induced water particle velocity and the current velocities present the total wa-
ter particle velocities. Wave-current interaction is not aresearch issue in the offshore
wind, but should be considered in the design. The occurrenceof tidal current simul-
taneously with sea waves has a significant influence on the fatigue life of the platform
(Peters and Boonstra 1988). Wave-current interaction changes the shape of the wave
spectrum and the energy content in the wave frequency range of 0.2 - 0.35Hz. This is
in the range of natural frequency of fixed offshore wind turbine structures (Peeringa
2014). .

1.4.2 Periodic loading

A periodic load is a function whose value is repeated at constant time intervals. Some
non-harmonic periodic loading in wind turbine structure can be listed as: shear wind,
yaw misalignment, tower shadow and rotational sampling of turbulence. In this re-
gards, harmonic loading can be recorded as: gravity loads onblades, mass imbalance
rotor, aerodynamic imbalance and small regular waves. Importance of periodic dy-
namics in design is to increase or decrease of number of load cycles and their ampli-
tudes (affects FLS/Life time). Most of the periodic motionswe encounter are circular
or semi-circular. The frequency of a periodic excitation should not be equal to natural
frequency of system in order to eschew resonance. Evidently, number of blades has a
high influence on the vibration behaviour of the wind turbinestructure regarding to the
internal stresses, structural deformation, resulting ultimate and FLS. The cyclic loads
for a three-bladed rotor are much smaller than those produced by the two-bladed rotor
since the combined cyclic loads close to the hub somewhat arebalanced and symmet-
ric. However the installation can be easy for one-bladed rotor by assembling that on
ground but the rotor must move more rapidly to capture same amount of wind and
this higher speed means more noise, visual and wildlife impacts and also gearbox ra-
tio would be reduced. Moreover, the added weight of counterbalance negates some
benefits of lighter design and one-bladed wind turbine captures 10% less energy than
two blade design. For two-bladed wind turbine the advantages and disadvantages are
nearly the same as the one-blade wind turbine. In addition, two-bladed wind turbines
need teetering hub and/or shock absorbers because of gyroscopic imbalances and the
captured energy is 5% less than three blade designs. For a three-bladed wind turbine,
the blades rigidly connect to the ductile cast steel hub and the cantilevered boundary
conditions are implied to transfer the dynamic loads of the blades to the shaft. Studies
have shown that a three bladed wind turbine is more efficient from an aerodynamic
point of view. Basically, the individual blade must be stiffand light enough as well as
that the frequency of the blade modes does not coincide with the frequency at which
the blades pass the tower to avoid fatigue damage of the blades.
Dynamic amplification factor (DAF) is defined for harmonic excitation equal to dy-
namic amplitude divided by static deformation. In this regard, to reduce the fatigue
damage accumulation during the lifetime of the wind turbinestructure, the dynamic
amplification should be avoided. In turn, the lowest eigenmode of the wind turbine
does not coalesce with excitations from the operation frequency of a three-bladed
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turbine and waves to elude the resonance. Typically, sea waves have frequencies of
0.20 - 0.25 Hz. This is close to the rotor frequency 1P associated with the cyclic
loading generated by mass imbalances in the blades. Furthermore, each time a blade
passes the tower, the shadowing effect causes a load on the structure. For a three-
bladed wind turbine, this leads to excitation at the blade passing frequency 3P as
well as multiples thereof, e.g. at a frequency
of 6P. Three classical design approaches as
shown in Fig. 1.18, have been defined based
on the the natural frequencyf1 which should
not coincide with the excitation frequencies
of the dominant forces are listed as: “soft-
soft” design, where the natural frequencyf1
is less than 1P as well as the frequencies re-
lated to the dominant wave action and it is a
very soft structure. “soft-stiff” design, where

Figure 1.18: Classification for wind turbines
(Scharff and Siems 2013).

the natural frequencyf1 lies between the frequencies 1P and 3P. “stiff-stiff” design,
where the natural frequencyf1 is higher than the blade passing frequency 3P and it
is a very stiff structure. Today, a “soft-stiff” design windturbine is chosen because it
needs less amount of steel in comparison with “stiff-stiff”design. On the other hand,
designing the wind turbine based on “soft-soft” approach requires a control system
to obtain an exclusion window of the rotor rate. Because of high wave loading, the
“soft-soft” design may be critical. For larger wind turbines, the first natural frequency
and rotation frequency decrease due to longer height and length of hub and blades.
Then, there is relatively high risk to fall the hydrodynamicfrequency range into 1P.

A “soft-stiff” design requires a very stiff
foundation and has major implications for
the structural design characteristics of the
wind turbine. It is also sensitive to the lev-
els of damping in the design and requires
soil characteristics within a particular range,
limiting potential sites for offshore wind tur-
bine installation and introducing an implicit
reliance on static soil properties to achieve
resonance avoidance. In addition, the “soft-
stiff” design philosophy does not explicitly

Figure 1.19: Example of Campbell diagram
(Rohrmannet al. 2010).

treat higher structural modes of the wind turbine’s components. A Campbell diagrams
is a classical way of representing the dynamics of rotary machinery and utilized to
figure out sources of resonance for the “soft-stiff” design.As shown in Fig. 1.19,
the lowest natural bending frequenciesf1 of the complete system are adjusted so that
they remain above the excitation frequency due to rotor imbalance (1P) and below the
excitation frequency due to the blade passing frequency (3P) for the entire operating
range of the turbine. Resonance coincidence is representedby the natural frequency
f1 crossing a resonance lines (1P and 3P).

Energy dissipation in offshore applications and implementing the proper levels of
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damping in the design is an important issue to study the dynamic behaviour of offshore
structure. Energy in the offshore foundation and subsoil dissipate through geome-
try and material damping which are affected by the soil–structure interaction model.
Geometrical damping or radiation of waves
away from the foundation presents the atten-
uation of wave over large area or volume by
spreading the energy through the P-, S- and
Rayleigh waves propagating. The geometric
damping depends on the (1) geometry of the
foundation-soil contact area, (2) properties of
the structure, and (3) properties of the under-
lying soil deposits. Material damping defines
as a conversion from mechanical energy into
thermic energy (heat) which is also called lo-
cal damping. Soil material damping incorpo-

Figure 1.20: Hysteresis material behaviour
(Gordan and Adnan, 2014).

rates the effects of energy dissipation in the soil due to hysteretic or inelastic action
on the soil. Material damping is only present in the medium frequency range. The
material damping can nearly explained by Mohr Coulomb friction between particles,
viscus friction between particles and fluid, molecular collisions or irreversible inter-
crystal heat flux. As indicated in Fig. 1.20 material hysteresis represents by the area
of the hysteresis loop as measuring of energy dissipation during one cycle and it de-
pends on the magnitude of the cyclic loads acting on the wind turbine structure. As
mentioned, the soil–structure interaction model is an interesting challenge that could
represent the soil stiffness and damping in saturated soil properly when subjected to
dynamic load. The soil model includes combined springs and dashpots, which could
be a suitable and more accurate approach to represent interrelation effects between the
wind turbine foundation and subsoil to account for soil deformation as well as pore
pressure.

1.5 Motivation for Research

As discussed in the previous sections, the costs of large offshore wind turbine are kept
as low as possible, and the overall weight of the turbine and foundation is minimized,
resulting in a flexible and dynamically active structural system–even at low frequen-
cies. According to this argument, the dynamic amplificationof the response from
wave- and wind-induced loads become much more important. The highly variable
and cyclic loads on the rotor, tower and foundation, caused by wind and wave loads as
well as low-frequent excitations from the rotor blades, alldemand special fatigue de-
sign considerations and create even greater demand for fuller appreciation of how the
wind turbine ages structurally over its service life. In this regard, the seepage damping
in the subsoil producing from the vibrations on the soil–foundation interface and the
dynamic soil behaviour are crucial to consider.

This study aims to evaluate the extension of soil–structureinteraction that affects
the dynamic structural response of offshore wind turbines which highly depends on
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soil stiffness and seepage damping. With this in mind, an appropriate model is needed
based on considering the effect of dynamic behaviour of soil–structure interaction.
Instead of using a linear/non–linear dry soil model withoutphysical knowledge re-
garding the dynamic behaviour of offshore monopile wind turbines, saturated soil is
modelled based on the coupled equations for porous media to account for soil defor-
mation and pore pressure.

Dynamic analysis of the saturated soil requires an appropriate soil model to re-
flect the reality to a high degree. However, although a rapid increase in computation
power has been observed over the last decades, which continues today, advanced fi-
nite element models of wind turbine and substructure combined with the governing
equations of motion may not seem feasible to determine the flow around the blades,
tower and foundation. Considering that focus is drawn on thesoil–structure interac-
tion, special attention is given on modelling techniques ofaccounting for the dynamic
behavior of soil-foundation interaction. The characterisation of poroelastic media and
cyclic loading is thoroughly covered in the literature.

1.5.1 Overview of the Thesis

Following the introduction, the structure of the thesis is given below.

� Chapter 2 presents a review of certain soil models proposed in the literature
for analysis of soil–structure interaction as well as soil damping and substruc-
ture models, mechanics of porous and non–porous media. Thischapter further
details the implementation of numerical method of porous media and related
post–processing error estimation in finite element analysis for the two–phase
problem of offshore wind turbine foundations. The review iscategorised into
different topics within numerical work highlighting the most relevant techniques
that during past years have been developed.

� Chapter 3 describes the scope of the thesis. A short summary of the literature
review is given which forms the basis for a clear definition ofthe models used
here.

� Chapter 4 contains a summary of the included international conference and jour-
nal papers.

� Chapter 5 concludes the thesis with a summary and discussion of the methods
and analyses presented in the thesis. The main results achieved in the project are
presented and directions for future work are given.

� Appendix A contains the enclosed conference paper: "Numerical calculation of
damping for monopile foundations under cyclic load during steady-state vibra-
tion".

� Appendix B contains the enclosed journal paper: "Assessment of dynamic sub-
structuring of a wind turbine foundation applicable for aeroelastic simulations".
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18 Introduction

� Appendix C contains the enclosed journal paper: "Recovery–Based error esti-
mation in the dynamic analysis of offshore wind turbine monopile foundations".

� Appendix D contains the enclosed journal paper: "p− y− ẏ curves for dynamic
analysis of offshore wind turbine monopile foundations".

� Appendix E contains the enclosed journal paper: "Influence of pore pressure on
dynamic response of offshore wind turbine using poroelastic model".

Mehdi Bayat 18



CHAPTER 2
State of the Art

Offshore wind turbine energy is a burgeoning area of multidisciplinary engineer-
ing that is growing rapidly. The annual market for wind energy is estimated to grow
toe17 billion with roughly 50% of contributions offshore by 2020 and it is expected
toe20 billion with 60% of investments offshore by 2030. Given recent requests for
sustainable energy forms such as renewable energy, offshore windturbines have in-
creasingly been considered, with the majority of research conducted in Europe espe-
cially in the North Sea. More than two thirds of total EU wind capacity is currently
installed in the three pioneering countries Germany, Spain and Denmark. Denmark
provides more than 20% and Spain more than 10% of its electricity demands by
wind energy. Offshore wind turbines are subjected to dynamic loads, which makes
complicated interactions such as aero- and hydro-dynamics responsebetween dif-
ferent parts of superstructure and substructure. This chapter conducts a survey of
current research, findings and knowledge of the dynamic responseof offshore wind
turbines. The review is classified into different categories, covering different soil–
structure interaction methods regarding soil damping, substructure media models
such as porous and non-porous media, and numerical simulation and related stress
recovery-error estimation in finite element method.

2.1 Overview of the State-of-the-Art
Numerous topics in geotechnical engineer-
ing require the use of pragmatic and real-
istic models for the supporting soil and the
soil–structure interface. This media and its
interaction require improvement and devel-
opment that can sometimes modify stress
and deformation fields in the entire structural
system significantly. The imposed stresses
and deformations on the ground by struc-
ture with its loading make deformations and
movements in the soil, thereby transmitting
back additional forces and deformation to the
structure. This process continues until full
equilibrium of the whole soil–structure sys-

1

2

Figure 2.1: Prospective interested subjects in
the state-of-the-art.
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20 State of the Art

tem is satisfied, or fails in the case of excessive loading anddeformations of the
system. The dynamic analysis of offshore foundation requires better understanding
of soil behaviour and implementing more realistic soil model to capture more accu-
rate soil stiffness and damping. The chapter aims to presentan overview of certain
models mentioned in the literature investigate the soil–structure interaction and their
application in offshore wind turbine industry. The chapterreviews the work related
to the dynamic analysis of offshore wind turbine foundation, i.e. numerical methods
of evaluating the dynamic soil stiffness and damping as wellas numerical approaches
of including the frequency dependent natural frequencies of wind turbine structures
induced by periodic loadings. In general, this chapter addresses the following topics
(Fig. 2.1):

1 Soil model: A review of the state-of-the-art is presented. The models may be
used to evaluate soil stiffness and damping as well as natural frequency of off-
shore wind turbines. The importance of soil models such as viscoelastic is high-
lighted and presented. The dynamic behaviour of soil is investigated.

2 Computational analysis: A review of the remarkable numerical and mathemat-
ical methods to investigate dynamic behaviour of offshore wind turbine founda-
tion is given. The stress post–processing error estimationregarding to the finite
element method is given to provide a better stress field.

2.2 Damping in Offshore Wind Turbines

Dynamic analysis of wind turbine is a challenging and intriguing topic in engineer-
ing. Their dynamic response is governed by applied loads, design of wind turbine
structure components,i.e. blades, tower and foundation. In general, the dampings in
offshore wind turbines can be categorize into four separatesources,i.e.aero-dynamic,
structural, water and soil damping. Evidently, the dampingis important in reducing
load and therefore extending fatigue lifetime. Thus, the thesis emphasis calculating
seepage damping and presenting its effects on dynamic response of offshore wind tur-
bine. By considering more realistic soil damping, the natural frequencies, damping
ratios, and mode shapes of the wind turbine can be calculatedmore precisely. The
aim of this section is to present an overview of different models that facilitate soil
damping in offshore wind turbine. A further description of different types of damping
in offshore wind turbine is also given.

2.2.1 Dissipation of energy in soil

The overall weight of wind turbine is minimized to reduce theoverall costs. At
present, nearly all large modern wind turbines are characterized by a flexible struc-
ture, which makes them more sensitive to dynamic excitationeven at low frequencies.
Soil damping is important in fatigue damage. Additional research on the soil damping
affects is needed for their inclusion as an explicit design factor for offshore wind tur-
bines. In this regard, soil damping can be grouped into two classes based on methods
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of dissipating energy, geometrical and material damping.

Geometrical dissipation of energy

In early twenty century, the theoretical work regarding to dissipation of elastic wave
energy in elastic bodies presented by Lamb in 1904. Lamb investigated the propa-
gation of tremors over the surface of an elastic solid. Geometrical (radiation) type
of damping which is the dispersion of energy by propagating the elastic wave from
the source in case of moving vertically cylindrical disk (oscillators) on an elastic
half-space was developed by Reißner (1936). One year later Reißner (1937) inves-
tigated purely torsional oscillations at the semi-infiniteelastic body and showed no
surface waves (Rayleigh waves) were developed. The comparison of the energy dis-
tribution for compressional, shear and surface waves imposed on the free surface of a
semi-infinite solid subjected to a vibrating circular disk were analytically determined
and presented by Miller and Pursey (1955). Dissipating energy through spreading
Rayleigh, P- and S-waves over a large area or volume is calledgeometrical damping.
Rayleigh waves propagate on the surface, whereas the P- and S-waves spread over the
volume (Andersen 2006).

Radiation damping in circular foundation placing on an elastic half-space inves-
tigated by Lysmer and Richart, Jr. (1966), Hall, Jr. (1967) ,Shah (1968), Luco and
Westmann (1971) and Veletsos and Wei (1971). Radiation Damping known as out-
going stress waves from pile-soil interface to infinity thatmake the loss of energy
in the soil-pile system. Bergeret al. (1977) proposed and investigated energy losing
through travelling one-dimensional (1D) P- and SH-waves inthe direction of shaking
and perpendicular to the pile when the pile cross section moved horizontally. Plane
strain conditions were considered by Novaket al. (1978) and proposed a more rig-
orous model to analyse the pile subjected uniform harmonic vibrations in an infinite
medium for an isotropic, homogeneous, and linearly elasticsoil. Gazetas and Dobry
(1984a, 1984b) investigated the propagation of compression-extension and SH-waves
in four sections around pile partitioned the quarter planesalong and perpendicular to
the direction of pile (shaking place). Moreover, parallel setting of dashpots with the
nonlinear spring employed by Matlocket al. (1978), Nogamiet al. (1992) , Badoni
and Makris (1996) and El Naggar and Novak (1995, 1996) to calculate wave prop-
agation and radiation damping. Meanwhile, in case of end-bearing and groups of
vertical floating piles the dispersion relationship due to the interaction between the
solid and fluid phases to investigate the waves propagation presented by Boer and Liu
(1994). As an alternative, Badoni and Makris (1996), El Naggar and Bentley (2000)
and Allotey and El Naggar (2008) employed parallel setting of nonlinear dampers and
springs to model radiation damping.
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Radiation damping can be offered by a vis-
cous dashpot that reduced at large pile de-
flections and radiation damping does not ap-
pear for frequencies less than the natural fre-
quency of the system. Gazetas (1984) re-
ported the dynamic behaviour of end-bearing
piles subjected to vertical harmonic shear
waves by considering both inertia and kine-
matic interaction, followed by Fanet al.(1991)
who studied the kinematic response of piles
groups under the same loading. Meanwhile,
Gazetas and Makris (1991) presented the
dynamic steady-state axial response of pile
groups, accounting for the interaction be-
tween two individual piles. Makris and
Gazetas (1992) proposed a procedure to esti-

Plastic
Elastic

Radiation Damper

Drag

Closure

Plastic
Plastic

Radiation Damper

Model I:

Model II:

Figure 2.2: One-dimensional soil models;
Model I: by Wanget al. (1998) and Model II: by
Boulangeret al. (1999).

mate the dynamic interaction between two vertical piles by introducing the wave field
radiating from an oscillating pile and its effect on anotherpile, through a single dy-
namic Winkler model, with frequency dependent springs and dashpots. The Winkler
model represents the supporting soil by a set of independent(non)linear elastic springs
perching on a rigid base, will be explained in more details later in this chapter. Later
on, Kavvadas and Gazetas (1993) highlighted the kinematic interaction between the
soil and a pile during seismic excitation consisting of aforementioned wave loading by
performing parametric study. Makris (1994) presented an analytical solution for pile
subjected to the passage of Rayleigh waves by implementing frequency-dependent
springs and dashpots, applicable to near field earthquake response. Makris and Badoni
(1995) extended their earlier work to analyse pile groups subject to obliquely inci-
dent shear and Rayleigh waves and present the wave field radiating and the effect of
this field on an adjacent pile, with spring and dashpot coefficients evaluated from the
techniques described in Makris and Gazetas (1992). Beresnev and Wen (1996) in-
vestigated nonlinear effects in soil dynamic,i.e. considering an increase in damping
and shear-wave velocity reduction as excitation strength increases. These effects are
usually ignored in seismological models of ground-motion prediction. A comprehen-
sive survey performed to describe how the presence of elastic nonlinearity affects soil
amplification based on existing geotechnical models and then examined evidence of
nonlinear soil response. Radiation Damping was reported byWanget al. (1998) to
model soil-pile interaction as shown in Fig 2.2). In their model a non-linear spring
represented plastic behaviour of soil in series with Kelvin-Voigt (KV) element to pro-
vide radiation damping for the far field wave propagation. Boulangeret al. (1999)
added a gap element to the Wang’set al. (1998) model, a non-linear closure spring
in parallel with a non-linear drag spring was included in that gap element as it can be
seen in Model II in Fig 2.2)).
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Baars (2000) used the concept of damping
based on dry particle friction to calculate
wave propagation and energy dissipation in
soil dynamics and the spring-slider model (as
shown in Fig. 2.3) was proposed. A KV ma-
terial model reflects that the dissipated en-

τ

τ

k1 N k2 N k3 N

ki

N

Figure 2.3: suggested spring slider model
(Baars, 2000).

ergy though propagated wave becomes proportional to the frequency of the loading.
Whereas, the proposed spring-slider model indicates a damping ratio becomes con-
stant for small deformations for both sand and clay, and independent of frequency or
shear strain amplitude.τ is shear stress,k1, k2...ki are spring stiffness and N is con-
stant for sliders that are shown in Fig. 2.3. Kimet al. (2000) studied the two dimen-
sional water wave propagation in porous seabed by using boundary element method
(BEM) based on integral equation while the numerical results were validated with the
analytical solution. Klar and Frydman (2002) combined an explicit two-dimensional
(2D) numerical computer code with three-dimensional (3D) model to present the dy-
namic response of a lateral loaded pile. In 2D model, plane strain boundary value
problems and viscoelastic material models regarding to radiation damping were con-
sidered for each horizontal soil layer and then in the secondmodel the disregarded
shear forces in 2D model which were developed between the horizontal layers were
considered in order to couple the behaviour of the horizontal layers.

Non-linear time domain site response
analysis is widely used in evaluating local
soil effects on propagated ground motion.
This approach has generally provided good
estimations of field behavior at longer peri-
ods but has shortcomings at relatively shorter
periods. Viscous damping is commonly em-
ployed in the equation of motion to capture
damping at very small strains and employs
an approximation of Rayleigh damping us-
ing the first natural mode only (Hashash and
Park 2002). A new formulation for the vis-

Figure 2.4: Multi-degree-of freedom lumped
parameter model representation of horizontally
layered soil deposit shaken at the base by
a vertically propagating horizontal shear wave
(Hashash and Park, 2002).

cous damping using the full Rayleigh damping was presented by Hashash and Park
(2002) and it was solved numerically at each time step using the Newmark. Their
proposed formulation allowed the use of frequency dependent viscous damping. They
discretized the geologic column into individual layers using a multi-degree-of freedom
lumped parameter model shown in Fig. 2.4.

The comparison between dynamic responses of saturated soilfrom Biot’s and
Yamamoto’s models has been performed by Lin (2004). The damping of elastic
waves in coarse and fine sand with loading frequency have beencomputed and the
representation of viscous and Coulomb friction in both models have also been esti-
mated. Soares and Mansur (2006) modeled time-domain wave propagation in fluid-
soil-structure interaction by using iterative procedure in BEM based on different kind
of Green functions in order to present linear and non-linearbehaviour of elastoplastic
regions. Srisupattarawanitet al. (2006) applied BEM and a computation method to
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compute nonlinear finite amplitude waves in a liquid body of finite depth, in order to
be coupled with an elastic structure. The capability for such a coupled simulation to
facilitate the fatigue design of offshore wind turbines is important. In the time domain
analysis allowing full soil-pile structure interaction, only equivalent viscous damping
can be used instead of soil damping ratio. Chang and Nghiem (2010) evaluated the
equivalent viscous damping by matching the transfer functions, soil damping ratio and
soil damping value in frequency domains.

Chaiet al. (2011) employed the thin layer stiffness method to present the effec-
tive phase velocity of the surface waves and analyse the effects of the body waves
based on the calculated phase velocity. Carbonariet al. (2011) employed the do-
main decomposition technique for including radiation damping. In the first step the
frequency domain analysis was performed and then time domain finite element pro-
gram was invoked to evaluate the superstructure response. The presented radiation
damping formula by Gazetas and Dobry (1984a, 1984b), has been utilized by many
reseachersi.e.Mylonakiset al. (1997), Liyanapathirana and Poulos (2010) and Dezzi
et al. (2010), and it was estimated and evaluated by Shadlou and Bhattacharya (2014)
for 3D soil–pile dynamic interactions. And also, new formulations were proposed for
one- and two-layer soils while plane strain conditions was not considered. Kampitsis
et al. (2013) utilized linear dashpot to capture radiation damping in far field zone. A
hybrid nonlinear spring configuration was employed to capture the near-field plastifi-
cation of the soil and it was connected in series to an elasticspring-damper model to
represent the far-field visco-elastic character of the soil.

Material dissipation of energy

Material damping represents the transformation of mechanical energy into thermic
energy. This converting process is irreversible and somewhat relevant to friction and
collisions between particles as well as interaction between viscose fluid and particles.
It is worth to mention that when two elastic bodies are in contact and are surrounded
by a viscous fluid, a force applied in a direction normal to thearea of contact will
tend to squeeze the flow away from this area. Because of fluid viscosity, the fluid
will not move away instantaneously. This type of damping canhave important role
especially when there is larger deformation of the soil which results to change the first
eigenfrequency of the tower mode.
As shown Fig. 2.5, Nogami and Koganai
(1988) proposed a Hybrid Dynamic Winkler
Model (HDWM) and calculated the flexu-
ral response of linear single piles in time-
domain by considering plane strain condi-
tions. This model was developed to present
the gap and slippage at the soil-pile con-
tact by Nogamiet al. (1988). Furthermore,
This model was then extended by Nogamiet
al. (1992) to analyse the inelastic and nonlin-

Figure 2.5: Hybrid Dynamic Winkler Model
based on Nogami model for Lateral Pile Re-
sponse (Nogami and Koganai, 1988).
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ear dynamic of soil-pile interaction, by dividing the soil medium in two regions. The
near and far field regions were presented to show gap element and nonlinear spring
in the vicinity of pile shaft and linear elastic behaviour for far field region. In the
applied model, the mass of an annular cylindrical region around the pile was included
as a soil mass. Based on the same approach, the nonlinear dashpots for the inner field
was proposed and implemented to present material damping close to the pile by El
Naggar and Novak (1995, 1996) and Mostafa and El Naggar (2002). The concept of
near- and far-field by utilizing a nonlinear (linear) springand a dashpot in parallel for
near-field (far-feild) to account for nonlinear soil stiffness and hysteretic damping in
near-field and to allow the propagation of waves to infinity tomodel radiation damping
for far-field was implemented by El Naggar and Bentley (2000).

Bardet (1995) applied two phase theory to investigate the damping regarding to
the soil-water interaction analytically during steady-state vibration. He studied the in-
fluence of water diffusion of a 1D column made of nearly saturated soil. It was shown
that the soil-water damping within fully-saturated sand isnot negligible compared to
structural hysteretic damping. The energy dissipation inherent to material behaviour
is called material damping and also the relevant dissipatedenergy due to soil nonlinear
behaviour is known as hysteretic damping. Basically, by allowing the unloading path
to be different from the loading path because of nonlinear soil behaviour when a soil is
subjected to cyclic symmetric loads a hysteresis cycle is produced in the stress-strain
diagram and hysteretic damping equals to the enclosed area Brown et al. (Brown,
D. A. and O’Neil, M. W. and Hoit, M. and McVay, M. and El Naggar,M. H. and
Chakraborty, S. 2001). Material damping was modelled as a viscous dashpot and uti-
lized by Kenny (1954), Achenbach and Sun (1965) in Kelvin model which represents
by parallel setting of independent viscous dashpots and thesprings. Just to mention a
few, the viscous dashpot model in order to show the material damping was employed
by other researchers as: Veletsos and Verbic (1973), Weissmann (1973), Luco (1974),
Wong and Luco (1985), Sun (2001) and Sun (2002).
Gerolymos and Gazetas (2006) investigated hysteretic loopby considering three foun-
dation soil types such as: very hard, intermediate stiffness and very soft foundation
soil to analyse hysteretic damping for a nonlinear-elasticfoundation soil. They have
shown that large energy dissipation appeared in the soft soil and this hysteretic loop
became smaller for hard foundation soil.
Alexander (2010) presented an analytical ex-
pressions for the nonlinear resonant frequency
of a floating pile by considering the influ-
ence of a nonlinear spring and damping with
superstructure mass as shown in Fig. 2.6.
A strain-dependent nonlinear damping func-
tion, near and far-fields concept were em-
ployed. Rovithiset al. Rovithis:2011 pre-
sented analytical expression for dynamic re-
sponse of inhomogeneous soil under a seis-

Figure 2.6: Soil model including nonlinear
dashpo (Alexander, 2010).

mic load and highlighted the effect of hysteretic damping ratio by considering com-
plex shear modulus while hysteretic damping took constant value through depth. De-
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hghanpoor and Ghazavi (2012) applied segment by segment method to determine the
stiffness and damping parameters of laterally loaded tapered piles subjected to har-
monic vibrations analytically. The soil considered as someelastic horizontal layers
that they were homogeneous, isotropic, and linearly visco-elastic. The soil-pile inter-
action in this method was modelled within each segment and applied via the segment
nodes to the analysis of the adjacent segment.

Anoyatiset al.(2013) presented the dynamic response of a pile subjected toa har-
monic horizontal displacement which was embedded in a homogeneous linear elastic
soil and frequency-independent material damping was expressed through a complex-
valued shear modulus. Zania (2014) calculated the eigenfrequency and damping ratio
of an monopile offshore wind turbine by using a semi-analytical solution based on
derived equations by Novak and Nogami (1977) . Hovind and Kaynia (2014) applied
three steps method based on superposition to calculate the hysteretic damping for
nonlinear soil response by employing nonlinear spring to introduce material damp-
ing during the loading cycles. Carswellet al. (2015) presented the significance of
foundation damping on monopile supported offshore wind turbine by implementing
hysteretic damping in a linear elastic 2D finite element model when the model sub-
jected to extreme storm loading. They presented an approachto convert hysteretic
energy loss into viscous and rotational dashpots.

2.3 Soil–Structure Interaction

Winkler (1867) formulated the continuous
soil reaction based on mechanical spring in
order to represent the soil–structure interac-
tion. The stiffness of soil-pile system are fig-
ured out and modelled by utilizing a set of
independent (non) linear elastic springs rest-
ing on a rigid base. The lateral resistance
of the pile due to the supporting soil was
handled by spring stiffness and calledp–y
curves, wherep and y are representing the
lateral resistance per unit length in the hor-
izontal direction and the corresponding dis-
placement of the pile, respectively. Thep–y
method rely on the American Petroleum In-
dustry (API) has been employed by the off-
shore oil and gas industry for designing off-

P

p–y spring

t–z spring

Fixed spring node

Slave spring node

Q–z spring

Pile head length

Ground surface

Embedded length

Figure 2.7: Visual representation ofp–y,t–z
andQ–z methods (OpenSees 2015)

shore piled foundations in the early 1970s (Matlock (1970)). Subsequently, Thep–y
curves method based on supporting data from Matlock (1970),Cox et al. (1974),
Reese and Welch (1975), Murchison and O’Neil (1984), Dunnavant and O’Neill
(1989) has been extracted and improved for use in offshore wind turbine design stan-
dards by API (2000), GL (2005), DNV (2011), and IEC (2009). ElNaggar and Bent-
ley (2000) employed thep–y curves method, by equating the two series spring con-
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stants for the far and near- fields, the far-field stiffness was known and obtained from
a plane strain model. In this way, the nonlinear stiffness ofthe near field was obtained.
In similar fashion, vertical resistance due to skin friction along the pile can be treated
with t–z curve and the end bearing resistance at the tip of the pile canbe represented
by Q–z curves as shown in Fig. 2.7 (Mostafa and El Naggar 2004).
Due to the absence of soil continuum effects
and neglecting soil damping as well as the
fact that deformations are not directly linked
to the number of load cycles in API (2000)
methodology, the pile amplitudes close to
resonance frequency may not be estimated
properly. Accordingly, a mechanism which
has included spring-dashpot elements may be
used to describe the dissipation effects in the
soil. As shown in Fig. 2.8, different com-
bination of the viscous damper with spring
can be expressed by the Maxwell and KV
models where the viscous damper and spring
connected in series and parallel (Kim 2008).

(a)

(b)

Figure 2.8: Soil model (a) Maxwell (b) Kelvin-
Voigt (Kim 2008).

Generalzied KV and Maxwell models are also implemented. Just to mention a few,
a KV or Winkler-Voigt model along the foundation has been implemented by many
researchers such as (Kenny 1954; Achenbach and Sun 1965; Novak 1974; Sun 2001;
Sun 2002; Hirai 2012).

In Winkler model, a plane strain condition is invoked which conducts to represent the
soil by a set of independent horizontal layers. This constrain imply that the wave is
going to propagate in two dimensional space and the layers work independently. This
uncoupled layers concept has been used by many researchers (Baranov 1967; Novak
and Beredugo 1972; Novak 1974; Novak 1977; Novak and Howell 1978; Novaket al.
1978; Novak and El-Sharnouby 1983), just to mention a few. Some improvement
such as varying soil properties through depth has been considered by Novak and El-
Sharnouby (1983) and Hirai (2012). To overcome the plane strain restriction, some
coupled mechanism between two adjacent
layers were considered by Nogami and Lam
(1987), Nogami and Leung (1990), Nogami
et al. (1992), Nogami (1996). In conjunction
with pile foundation model, a beam element
supported by (non)linear Winkler foundation
(BNWF) model is used by many researchers
like: Matlocket al.(1978), Matlock Foomat-
lock:1978b, Nogamiet al. (1992), Badoni
and Makris (1996), El Naggar and Novak
(1995, 1996), Wanget al. (1998), Boulanger
et al.(1999), El Naggaret al.(2005), Geroly-
mos Gazetas (2006), Haradaet al. (2008),
Brødbœket al. (2009), Hirai (2012). As in-

Figure 2.9: Multi-Winkler model of three di-
mensional soil foundation system (Haradaet
al. 2008).
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dicated in Fig. 2.9, Haradaet al.(2008) presented a multi-Winkler model for nonlinear
dynamic and earthquake response of foundations. The nonlinear soil reactions to foun-
dation motions were modelled by using the springs per unit area of interface between
soil and foundation with three components corresponding tonormal traction and two
shear traction on soil-foundation interface.

A set of independent dashpots (viscous dampers) connected in parallel with the in-
dependent (non)linear springs is called Winkler-Voigt. They can be used for soil
modelling to capture the soil energy dissipation. The Winkler and Winkler-Voigt
models are arranged and combined in order to illustrate better soil representation in
near and far fields. The Winkler-Voigt model by considering near and far fields con-
cept have been utilized by Matlocket al. (1978), Nogamiet al. (1992), Badoni and
Makris (1996), El Naggar and Novak (1995, 1996), Wanget al. (1998), Boulanger
et al. (1999) and Memarpouret al. (2012). Nogamiet al. (1988) developed hybrid
near/far field soil-pile interaction models for dynamic loading, as shown in Fig. 2.10.
They formulated numerical solutions for single pile and pile group axial and lateral re-
sponse in the time and frequency domains, incorporating nonlinear soil-pile response,
degradation, gapping, slip, radiation damping and loadingrate effects. A series con-
nection of gap, plastic and elastic elements which are pointed the area very close to
pile, near and far-fields based on the BNWF has been used by Wanget al. (1998) and
Boulangeret al. (1999).

PileInterface element

Support movement

Winkler soil model

Near-field elementFar-field element

Figure 2.10 Nogami’s beam on Winkler foundation soil–pile interaction model. (Nogamiet al.1988).
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Beside considering the effect of soil
stiffness and damping, the contribution of
soil inertia can also be important. In the lit-
erature we can find some models which at-
tempt to include the soil mass by consider-
ing lump-mass. Just to mention a few, El
Naggar and Novak (1993, 1995), Pachecoet
al. (2008), Kouroussis and Verlinden (2015)
have considered the effect of soil mass. Some
other improvement such as considering non-
linear and frequency-dependent characteris-
tics of the supported soil have been consid-
ered like Makris (1994), Hashash and Park
(2002) and Kampitsiset al. (2013). Hashash
and Park (2002) presented a new formula-
tion for the viscous damping using the full
Rayleigh damping. Their proposed formu-

Figure 2.11: Soil-pile-structure model (Kampit-
siset al.2013).

lation allowed the use of frequency-dependent viscous damping. El Naggaret
al. (2005) considered the elasto-plastic spring connected in parallel with a dashpot
in the Winkler-Voit model. Badoni and Makris (1996), El Naggar and Bentley (2000),
Mostafa:2002, Mostafa and El Naggar (2002), Halabian and ElNaggar (2002) as
well as Allotey and El Naggar (2008) cosidered nonlinear spring and damper in the
Winkler-Voigt model. Halabian and El Naggar (2002) modelled the soil stiffness as
functions of soil shear wave velocity to account for the soil–structure interaction effi-
ciently. Kampitsiset al.(2013) considered a hybrid model consists of a nonlinearp–y
spring connected in series to the KV element as shown in Fig. 2.11. The nonlinear
spring represents the plastic soil behaviour in the near-field and viscoelastic charac-
teristic of the soil presented by the KV model.

Another category of soil–structure interaction problems is called lumped-parameter
models. In this family, soil characteristics are frequency-independent and real num-
ber but not necessarily positive parameters, and these combination of masses, dash-
pots and springs are calculated based on minimizing the total square errors between
the dynamic stiffness and obtained results from applied methods such as: closed-
form solutions, FEM, BEM and on-site measurement results. Simple and high-order
lumped-parameter models were considered by many researchers such as: Wolf and
Somaini (1986), Nogami and Konagai (1986), Wolf (1994), Franciscoet al. (1990),
Jeanet al. (1990), Wolf (1991a, 1991b), Wolf (1997), Wu and Chen (2001), Wu and
Lee (2002) and Wu and Lee (2004), just to mention a few. As shown in Fig. 2.12
in lumped-parameter models, an additional degree of freedom is considered for a
mass and it is not directly attached to the foundation node but rather is connected
to it through a dashpot. Nogami and Konagai (1986) connecteda mass at the end
of three KV models which was in a series form to represent the subgrade reaction of
soil surrounding single piles as shown in Fig. 2.12. The dynamic stiffness and damp-
ing of soil-foundation systems are represented by impedance functions. In simple
or semi-empirical lumped-parameter models, the coefficients of the masses, dashpots
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(a) (b)

(c) (d)

Figure 2.12 Lumped parameter models proposed by: (a) Meek and Veletsos (1974); Wolf and Somaini
(1986); (b) Nogami and Konagai (1986, 1988), (c) Franciscoet al. (1990) and (d) Jeanet al. (1990)

and springs are usually determined by minimizing the errorsfrom the target (exact)
impedance functions. It depends on how significantly an optimal fit can be obtained
by using curve-fitting techniques of the impedance functions, which is obtained from
lumped-parameter models with the corresponding target impedance functions. This
model is reported by Meek and Veletsos (1974), Wolf and Somaini (1986), Nogami
and Konagai (1986, 1988), Franciscoet al. (1990), Jeanet al. (1990), Wu and Chen
(2001), Taherzadefet al. (2009) and Saitoh (2011). The impedance parameters like
dynamic-stiffness coefficients in high-order or systematic lumped-parameter models
are approximated as a ratio of two polynominals, which is then formulated as a partial-
fraction and/or parallel-fraction expansions whose each term is represented by a dis-
crete model comprising parallel-form and/or series-form lumped-parameter models.
In systematic lumped-parameter models would be needed to approximate the rigorous
impedance functions by using specific functions such as the ratio of two polynominals.
Wolf (1991a, 1991b) employed partial-fraction expansionsand parallel-form lumped-
parameter models. Later, Wu and Lee (2002) utilized series-form lumped-parameter
models for approximating the flexibility functions insteadof using dynamic-stiffness.
And also, Wu and Lee (2004) and Zhao and Du (2008) alternatively used a continued-
fraction expansion for different lumped-parameter models. Moreover, other transfor-
mation procedures based on a modal expansion and conventional complex modal anal-
ysis were proposed to construct an exact (closed-form) solution for lumped-parameter
models from the original systems by Saitoh (2011, 2012).

Finally, it should be noted that due to the unbounded nature of a soil medium,
the computational size regarding to large model can be very large. For this reason,
it is important to present some simple mathematical models which reduce the com-
putational cost as well as increase the accuracy of results.In order to pass outgoing
wave motions through the boundary without being reflected form soil layer and model
boundaries, artificial or transmitting boundary conditions are considered. The related
boundaries regarding to bounded domain problems in FEM simulation must be mod-
elled such that, the energy crosses them without reflection and special conditions must
be specified at the boundaries. Generally, these can be classified into local or global
boundary conditions, where the local degree of freedom in neighbouring to bound-
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aries or all degree of freedom are involved. The importance of global transmitting
boundaries or absorbing boundaries has been reported in thepast and consequently
a number of methods have been developed and proposed for constructing absorb-
ing boundaries by Lysmer and Kuhlemeyer (1969), Clayton andEnguist (1977) and
Reynolds (1978). Later, many different methods have been reported in the literature
to present and model absorbing boundary conditions in FEM such as Bambergeret
al. (1988), Kimet al. (1996), Krenket al. (1999), Semblat and Broist (2000), Kellezi
(2000) and Krenk and Kirkegaard (2001). Morover, another methods such as applying
damping solvent stepwise extraction methods based on complex frequencies for time
domain analysis and semi-infinite elements have been proposed and used to provide a
more efficient and accurate way to calculate the interactionforces of the unbounded
soil within the framework of finite elements by , Liet al.(2008), Kausel (2010), Xun-
qianget al. (2013) and Dassault Systèmes Simulia Corp (2012).

2.4 Mechanics of Porous and Non–porous Media

The soil behaviour is typically represented by continuum mechanics based on mate-
rial behaviour of continuum media by employing stress-strain relationships. Saturated
soil is often idealized as a two-phase medium comprising deformable soil skeleton
and pore fluid, which may be sufficient for quasi-static properties, but which may not
be enough to capture the dynamic properties for high frequency loads. Liquefaction
in earthquakes is such a case where the modelling of soil as a solid skeleton fails: The
structural changes go beyond more nonlinearities in the small deformation approxi-
mation of conventional solids. Particulate models (e.g. grain by grain in the discrete
element models) are still not in a stage where they can be usedto model larger vol-
umes, but at least for the surroundings of piles, they are likely to give more realistic
behaviour for the damping than continuum solid models. The intricate dependence of
soil stiffness on density, stress and direction of stretching is often neglected. However,
on length scales, much greater than inter-particle distances, continuum mechanics the-
ories point out good accuracy. Also fundamental physical laws can be employed easily
to derive the governing equations and describe the materialbehaviour.

2.4.1 Continuum Mechanics for Porous Media

Biot (1941a) presented his theory to cal-
culate consolidation settlement of a soil un-
der a rectangular load distribution. Biot
(1941b) applied his theory based on con-
tinuum mechanics regarding to three-dimensional
based on the number of physical constants,
which were necessary to determine the prop-
erties of the soil. The physical constants de-
fined the physical proportions of an isotropic

Figure 2.13: Schematic representation of the
region of contact between grains with vis-
couse fluid and the corresponding spring-dashpot
model (Biot 1962b).

soil in the equilibrium conditions. Later, Biot (1955) implemented direct method and
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extended his previous derivation to the general case of anisotropy. And then, theories
of the propagation of stress waves in a porous elastic solid containing a compressible
viscous fluid for low and high frequency ranges developed by Biot (1956a, 1956b),
where the material described by four non-dimensional parameters and a characteristic
frequency. Biot’s papers on wave propagation proposed the idea of representing the
pores by small cylinders. The cylinder diameter became the key parameter needed to
quantify permeability (Biot 1956a). Biot used the cylinderdiameter to extend his the-
ory to include turbulent flow beyond a defined transition frequency (Biot 1956b). Biot
(1962b) investigated the visco-elasticity, anisotropy and solid dissipation in porous
media by applying acoustic propagation theory. The Maxwellelement which repre-
sents the dashpot and spring in series was implemented with Biot (1962a) in order
to include the fluid-solid interaction. In these cases, the properties of the fluid and
solid phase are not considered separately. Biot (1962b, 1962a) considered the model
as shown in Fig. 2.13. to represent the contact between two elastic grains and a fluid.

Fukuo (1969) derived the dynamic theory for the deformationof a granular solid satu-
rated with a liquid, assuming that the liquid filling up the pore space was a Newtonian
viscous fluid and the skeleton constituted by solid particles was a linear visco-elastic
solid. The theory consists of three fundamental equations which are the equations
of motion of liquid and skeleton and the equation of continuity between the particles
and liquid. Prevost (1982) analysed the response of saturated porous medium viewed
as a two-phase system by the use of finite element method (FEM). Bardet (1992)
proposed a viscoelastic model for a saturated poroelastic materials that obeyed the
two-phases formulation of Biot and solved them analytically. Furthermore, Bardet
and Sayed (1993) presented exact and approximate expressions for the velocity and
attenuation of the low frequency compressional waves within nearly saturated poroe-
lastic media based on the Biot’s two-phase theory. The results were validated with the
three-phase theory of Vardoulakis and Beskos (1986). Two phase theory of Biot was
applied to investigate the damping regarding to the soil-water interaction analytically
during steady-state vibration by Bardet (1995). Many otherresearchers have used
the concept of porous media and continuum mechanics to investigate the behaviour
of saturate soil such as: Kimet al. (2000), Soares and Mansur (2006) and Srisupat-
tarawanitet al. (2006). Kimet al. (2000) studied the 2D wave propagation in porous
seabed by using BEM based on integral equation while the numerical results were
validated with an analytical solution. Based on Stoll’s reports (1985) for saturated
soil and the theoretical formulation of Biot (1962b), the Kelvin-Voigt-Maxwell-Biot
(KVMB) model was formulated by Michaels (2006). This model behaves very much
like the KV model, but splits the mass into two parts, and is a re-arrangement of the
elements in series (similar to a Maxwell body) as shown in Fig. 2.13. When relating
this KVMB model to a saturated soil, porosity can be used to define the mass ratio
(frame to pore fluid). The dashpot is an expression of the permeability which con-
trols the relative motion between frame and pore fluid. Furthermore, Michaels (2008)
implement a model to capture equivalent viscosity by using viscosity as the specific
soil property. Wanget al. (2008) developed an analytical solution to investigate the
torsional vibration of an end bearing pile embedded in a homogeneous poroelastic
medium and subjected to a time-harmonic torsional loading.The poroelastic medium
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was modelled by using Biot’s two-phase linear theory and thepile was modeled by
one-dimensional elastic beam theory. Zhouet al. (2009) presented a semi-analytical
method to solve the dynamic response of a pair of parallel elliptic tunnels embedded
in an infinite poroelastic medium which was described by Biot’s poroelastic theory.
Badia et al. (2009) applied FEM to simulate the interaction between a fluid and a
poroelastic structure due to the fact that both subproblemsare indefinite. They de-
signed residual-based stabilization techniques for the Biot system, motivated by the
variational multiscale approach. Loet al. (2010) presented a theoretical analysis for
the dynamic response of a semi-infinite fluid-bearing porousmedium to external har-
monic loading based on the decoupled poroelasticity equations of Biot. Qiu (2010)
presented a theoretical investigation on Biot flow induced damping for a saturated soil
column/layer under shear wave excitations.

Based on continuum mechanics, three coupled and dynamic formulations are
presented based on the soil and pore fluid (water) displacements and the pore water
pressure. They are theu−P−U, u−Pandu−U, whereu, P, andU are the soil skeleton
displacement, pore water pressure and displacement, respectively. Zienkiewicz (1982)
developed the FEM discretization to present the behaviour of various classes of soil
and rock, or concrete as a two-phase medium composed of a solid skeleton and an
interstitial fluid. Zienkiewicz and Shiomi (1984) modified the equations of motion in
an innovative way, presenting a continuum model for the soilskeleton and pore fluid
media that is calledu − P − U. Prevost (1985) incorporated a semi-discrete finite
element (FE) procedure with an implicit-explicit time integration algorithm to analyse
wave propagation in fluid-saturated porous media, which wasmodelled in theu − P
format. In theu − P formulation, if the fluid phase is considered incompressible,
then the Ladyzenskaja-Babuska-Brezzi (LBB) condition needs to be satisfied (Brezzi
(1974), Ye (1998), Zienkiewiczet al. (1999) and Bathe (2001)). In this case, the ele-
ment type for the displacement and pore pressure fields requires special consideration,
to prevent volumetric locking (Zienkiewiczet al. (1999) and Zienkiewicz and Taylor
(2000)). The restrictions imposed by the LBB condition exclude the use of elements
with equal order interpolation for pressures and displacements. Considering this re-
striction for monolithic algorithm, a simple model for numerical analyses is theu−P
formulation that neglects the relative acceleration of thefluid with respect to the solid
skeleton. This model is especially useful for low-frequency analysis. The contribu-
tion of the solid acceleration is neglected in the fluid mass balance. This omission
was investigated by Chan (1988), who found the omitted contribution to be insignif-
icant. Zienkiewiczet al. (1990) studied the transient and static response of saturated
soil, which they modelled soil as a two-phase material basedon theu − P formu-
lation for porous media. Pastoret al. (1990) used a generalized plasticity approach
to describe the behaviour of soil in theu − P formulation under transient loading.
Okaet al. (1994) applied FEM and finite difference method (FDM) to investigate nu-
merically the governing equations of soil skeleton and porewater obtained through
application of the two-phase mixture theory by using au − P formulation. Elgamal
et al. (2002, 2003) implemented theu − P model for a two-phase (solid-fluid) prob-
lem with multi-surface plasticity, using a finite element method (FEM) to highlight
the effect of excitation frequency. Jeremiet al. (2008) modeled a coupled porous
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solid-fluid base onu−P−U dynamic field equations while water accelerations to be
taken into account and applied standard FEM. Later, Cheng and Jeremic (2009) used
a fully coupled, inelasticu − P − U formulation to simulate the dynamic behaviour
of piles in liquefiable soils subjected to seismic loading. Niemunis and Cudny (2008)
presented two FE-solutions of the coupled analysis of soliddeformation and pore fluid
behaviour. They were presented:u−P andu−P−U. Khiavi et al.(2009) presented
the equations of motion of the soil mixture which was coupledwith the global mass
balance equations. The weighted residual standard Galerkin method with 8-noded el-
ements was used for developing finite element code foru−P−U model. The analysis
was carried out in time domain considering earthquake excitation and Newmark time
integration scheme. Researchers have attempted to solve these coupled equations by
various numerical methods. For example, Lu and Jeng (2010) investigated the porous
soil which governed by theu−P formulation, using the BEM. Samimi and Pak (2012)
solved theu − P formulation by applying the Element-Free Galerkin method.

The difficulty of LBB condition can be solved by implementingappropriate sta-
bilization techniques such as fractional step algorithm which was developed for soil
mechanics by Pastoret al. (1999). Later, the generalized fractional step method pro-
posed by Pastoret al. (2000), was modified by Liet al. (2003). Recently, Soareset
al. (2014) described an edge-based smoothed meshfree technique by presenting an
independent spatial discretization for each phase of the model.

2.4.2 Mechanics of Non–continuum for Porous Media

Soil’s behaviours have been simulated by continuum soil model which is not able
to model soil properly and it cannot suffice for soils howeverit can provide useful
arguments. Continuum soil models need a set of complex constitutive relationships,
which are mathematical formula that relate the stress tensor to the strain tensor, depen-
dent on independent variables and constants, which sometimes have no clear physical
meaning. The continuum approach lacks some of the required characteristics, since it
does not provide information about grains and contact orientations. Continuum soil
model mechanics is not the case with dissipative systems like rearranging soils (Gude-
hus 2011). This has led to the method composed of distinct particles that interact with
their neighbours through contact mechanisms which is called discrete element method
(DEM).

Regardless of the nature of the soil, which is discrete in nature, they interact only
at the contact points. The assumptions in DEM have striking attempt to reproduce
the soil’s behaviour verisimilitude in a way that cannot be achieved by continuum ap-
proaches. DEM was originally developed by Cundall (1971, 1974) and proposed by
Strack and Cundall (1978) for a dry environment initially. It was extended to account
for the effects of pore fluid by M. Hakuno and Y. Tarumi (1988) for the first time which
assumed fluid behaves as a perfectly elastic material by apportioning elastic proper-
ties to fluid phase (Hakuno and Tarumi 1988; Hakuno 1995). Nakaseet al. (1999)
used the same method to calculate the pore pressure by FDM. Sithram and Dinesh
(2003) implemented the 3D DEM to analyse sphere particles. Furthermore, Dineshet
al. (2004) implemented the results from cyclic triaxial test toresults from Sithram and
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Dinesh (2003) to estimate the shear modulus and damping ratio. Jiang and Yu (2006)
analysed the non-coaxiality of granular materials by introducing different contact laws
to present effective stress and bonding effect in natural soils. The literature review for
DEM has presented by Zhanping You (2007), Donzeet al. (2008) and Bobet (2010).
Kumari and Sitharam (2010) investigated the effect of particle shape on the behaviour
of soils by particle flow code (PFC3D). Soroush and Ferdowsi (2011) employed the
variation of hysteretic micromechanical parameters by. Andrade et al. (2012) and em-
ployed the DEM and captured particle morphology by using Non-Uniform Rational
Basis-Splines. Ng and Matuttis (2012) developed a FEM to Matuttis Hans-Georg’s
Group two dimensional in order to have Newtonian fluid between the polygon parti-
cles. Ng and Matuttis (2013a) extended their work to simulate free surfaces. Ng and
Matuttis (2013b) improved two dimensional program by adding shadow effect in or-
der to avoid any flogging liquid between particles. Baohuiet al. (2014) analysed sea
ice dynamics by using DEM.

2.5 Numerical Analysis of Porous Media

In this section the different numerical methods, formulations and simulation codes re-
garding to the soil as a two-phase problem and foundation behaviours are reviewed.
The simulation procedure can be done in time and/or frequency domains based on
type of loadings. For harmonic loadings the frequency analysis can be useful in terms
of computation time. Beside analytical approaches to solvethe mathematical formula-
tion which results in a highly coupled and non-linear system, requiring specific numer-
ical techniques are highlighted. Several numerical methods have been proposed and
implemented for porous media such as: FEM, Meshless, Isogeometric, BEM, DEM
and FDM. On the other hand, some of mentioned method have beendeveloped and
grown up well which make appropriate simulation codes and user friendly software.

2.5.1 Numerical methods for Porous Media

Among all the available numerical techniques, few are widely accepted in engineering
practice due to computationally expenses and the conceptual complexity. It can be a
convenient method to discretise a wind turbine structure and surrounding supported
soil into a number of elements with appropriate boundary conditions to describe the
dynamic behaviour of foundation and soil. Finite element procedure is one of the most
stable and concrete approach to solve the equations of motion. FEM as a straightfor-
ward and approachable manner has been used by Lysmeret al.(1974) to analyse soil–
structure systems by discretising the foundation and the structure. Wong and Luco
(1978) presented dynamic response of rectangular foundations to obliquely incident
seismic waves, and also for dynamic analysis employed by Achmuset al. (2009), Li
et al. (2011), Ibsenet al. (2012), Sørensen and Ibsen (2013) and Zhanget al. (2013),
just to mention a few.

Brown and Shie (1991) utilized 3D FEM to model a laterally loaded pile in clay
soil. Astley (2000) reviewed the application of infinite elements for wave problems
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and illustrated the wave propagation toward infinity as the shape functions of the dis-
placements. Nikolaouet al. (2001) employed 3D FEM with BNWF model to study
Kinematic pile bending during earthquakes in layered soil.Andersen and Nielsen
(2003) applied FEM and presented a solution in the frequencydomain of an elastic
half-space to a moving force on its surface. The latter modelhas been coupled with an
FE scheme for the analysis of the shielding efficiency of trenches and barriers along a
railway track by Andersen and Nielsen (2007). The time domain response of a jacket
offshore tower while the soil resistance to the pile movement was modelled usingp–y
andt–z curves to account for soil nonlinearity and energy dissipation, was presented
by Mostafa and El Naggar (2004) by employing FEM. Abbaset al. (2008) employed
3D FEM and investigated the effect of cross sectional shape on the response of a
laterally loaded pile and obtained that the square pile has higher bending resistance
to the lateral load compared to the circular pile. Khiaviet al. (2009) employed the
weighted residual standard Galerkin method with 8-node elements to solve the equa-
tions of motion of the soil mixture which was coupled with theglobal mass balance
equations while the Newmark time integration scheme was employed. Begum and
Muthukkumaran (2008) investigated a lateral loaded long flexible pile by consider-
ing plane strain conditions and elastic-plastic Mohr Coulomb model by the use of 2D
FEM for located pile on a sloping ground in cohesionless soil. Maioranoet al. (2009)
utilized a quasi 3D FEM to perform dynamic analyses in the time domain and eval-
uate kinematic bending moments developing during earthquakes for single pile and
pile groups. Deziet al. (2010) used 3D FEM and BNWF to evaluate the bending
moments induced by the transient motion for single piles. Georgiadis and Georgiadis
(2010) improvedp–y curve method by taking into account the inclination of the slope
and adhesion of the pile slope interface by using 3D FEM for piles in sloping ground
under undrained lateral loading condition. Thavarajet al. (2010) employed quasi 3D
FEM to present the dynamic nonlinear effective stress analysis of pile foundation un-
der earthquake excitation. The time domain results for soilfoundation structure inter-
action by considering the dependency of the foundation on the excitation frequency
were presented by Cazzani and Ruge (2012) by using FEM. Laoraet al. (2013) in-
vestigated Kinematic effects at the head of a flexible pile and elucidated the role of a
number of key phenomena controlling the amplitude of kinematic bending moments
at the pile head by using 3D elastodynamic FEM. Shahiret al.(2014) employed FEM
to simulate the behaviour of the two-phase porous medium of saturated sandy soil
under earthquakea by considering fully coupledu − P formulation. Hovind and Kay-
nia (2014) presented the three-step method based on the principle of superposition for
nonlinear analyses of offshore wind turbine skirted foundation while two steps have
been done by FEM. Cuéllaret al. (2014) investigated the cyclic soil behaviour in the
frame of the theory of plasticity by adopting appropriate finite element formulations.
Bisoi and Haldar (2014) studied the dynamic behaviour of offshore wind turbine by
using BNWF and FEM in time domain to investigate the effect of different parameters,
such as rotor and wave frequencies and geometry of monopile (thickness and diame-
ter). Masteet al. (2014) carried out the analysis of group of piles in time domain by
using FEM and developed soil–structure interaction model and it was validated with
obtained FEM results by Sawant and Shukla (2012). Ghandil and Behnamfar (2015)
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implemented FEM by considering modified equivalent linear method to analyse the
dynamic behaviour of the near-field of foundation by including inelastic soil–structure
interaction. Carswellet al.(2015) used FEM by employing several software packages
to highlight the significance of foundation damping on monopile wind turbine foun-
dations subjected to extreme storm loading.

In order to model the unbounded soil more precise and satisfythe radiation con-
dition automatically; the BEM is a powerful tool and the boundaries of the unbounded
soil are discretized (Beeret al.(2008)). However, the BEM has its limitation regarding
to solve the complicated practical engineering problems owing to its reliance on the
fundamental solution for many cases (Dominguez 1993; Manolis and Beskos 1988).
Alternatively, the hybrid techniques are more precise where the unbounded soil is
modelled by BEM and bounded structures with an adjacent irregular soil simulated by
FEM.

Dominguez (1978) employed BEM to compute the dynamic stiffness of embed-
ded rectangular foundations to travelling waves in the frequency domain. Karabalis
and Beskos (1985) investigated the dynamic behaviour of flexural foundation plate
subjected to external forces and obliquely incident seismic waves in time domain by
using BEM-FEM. Gaitanaros and Karabalis (1988) presented the dynamic response
of 3D flexible foundations of arbitrary shape subjected to obliquely incident seismic
waves and external forces by implementing BEM-FEM, while both relaxed and com-
pletely bonded boundary conditions were considered. Kaynia and Kausel (1991) pre-
sented dynamic response analysis of piles and pile groups ina layered soil media
by the use of BEM. Zhanget al. (1995) utilized 3D BEM-FEM while the coupling
between 3D boundary and infinite boundary elements was developed to simulate the
infinite and irregular canyons. The results for the seismic analysis of arch dam-canyon
interaction presented in the time domain. Beskos (1997) performed a comprehensive
review of applied 3D time/frequency domain FEM-BEM methodsto solve elasto-
dynamic problems. The multiple reflection of different kinds of waves in finite and
semi-infinite domains may lead to instability problems. Yuet al.(1998) presented time
weighting algorithm to improve the stability of the time response for the dynamic anal-
ysis. Ahmad and Banerjee (1988) presented the direct boundary element formulation
to analysis 3D solids by using a time-stepping scheme to solve the boundary initial
value problem. Rizos and Wang (2002) employed coupled BEM-FEM methodology
to perform dynamic analysis regarding to 3D wave propagation and soil–structure in-
teraction in time domain. Yazdchiet al.(1999) performed transient dynamic and seis-
mic forces analysis of an elastic structure embedded in a homogeneous by considering
non-zero initial conditions, while the BEM and FEM were coupled through equilib-
rium and compatibility conditions at the soil–structure interface. BEM and FEM were
employed to model the semi-infinite far and near fields, receptively. And also, a two
and three- dimensional combined FEM-BEM have been carried out for two railway
tunnel structures by Andersen and Jones (2006). Then the steps in the FEM-BEM
were discussed, and the problems in describing material dissipation in the moving
frame of reference were investigated by Andersenet al. (2007). A BEM-FEM cou-
pling model and a beam according to the Bernoulli hypothesis, for the time harmonic
dynamic analysis of piles and pile groups embedded in an elastic half-space was em-
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ployed by Padronet al. (2007). Later, Padronet al. (2008) improved their work by
implementing a 3D BEM-FEM to study the dynamic behaviour of piled foundations
in presence of a rigid bedrock. And also, Padronet al. (2010) extended their work to
highlight the influence of inclined piles on deep foundations. Genes (2012) presented
harmonic and transient dynamic response of large scale 2D structures by proposing
an algorithm for parallel use of BEM-FEM and scaled boundaryFEM. Romeroet
al. (2013) presented the dynamic analysis of soil-foundation interaction by consider-
ing nonlinear soil–structure contact in time domain by using BEM-FEM. Galvin and
Romero (2014) developed 3D BEM-FEM analysis in time domain in MATLAB.
Basically, the mesh indicates the connectivity between thecorresponding neighbour-
ing nodes. The meshing process is one of the most cumbersome step in the entire
numerical analysis as mentioned by Owen (1998). Instead of using a mesh, a set of
geometrically unconnected nodes can be used for the global domain discretization, re-
sulting in the meshless or meshfree methods. In addition to bypass in mesh creation,
using overlapping domains in meshfree methods, which givesmore support nodes for
each point, allowing a richer approximation and avoiding any artificial discontinu-
ity in the field. More details about meshless regarding to reviewing different types
of meshless, advantage of using meshless and comparison between them have been
presented by Li and Liu (2007), Daniel and Orden (2007) and Trobecaet al. (2007),
respectively. Belytschkoet al.(1995) proposed the element-free Galerkin method and
coupled it with FEM for both elastostatic and elastodynamicproblems, including a
problem with crack growth. Karimet al. (2002) analysed the saturated porous elastic
soil layer under cyclic loading by using a two dimensional mesh free Galerkin method
with incorporated periodic conditions. A meshless method was an effective alterna-
tive, because it is difficult for FEM to analyse the problems associated with the moving
boundary. Lei-na and Xi-ping (2009) applied the element free Galerkin method to sim-
ulate the response of the seabed under wave actions, especially for the critical cases
with incompressible pore water and impervious soil skeleton. Augarde and Heaney
(2009) reviewed and presented the application of meshless method in geotechnical
problems specially when it is involved with nonlinear material and geometric. Soares
(2013) formulated an edge-based smoothed weak meshless formulation by Delaunay
triangulation to perform an iterative dynamic analysis of linear and nonlinear fully sat-
urated porous media. FDM is the oldest method and it is based upon the application
of a local Taylor expansion to approximate the differentialequations. The FDM uses
a topologically square network of lines to construct the discretization of the partial
differential equations. On the side of FDM, it is conceptually simpler and easier to
implement than FEM. Finite elements has the benefit of being very flexible, for ex-
ample the grids may be very non-uniform and the domains may have arbitrary shapes.
Stevens and Krauthammer (1998) used FDM-FEM to analyse buried structures sub-
jected to earthquakes while FDM was used to analyse wave propagation in continuous
media with nonlinear constitutive properties and large strain deformations and FEM
used for structure analysis. Ng and Zhang (2001) investigated the performance of the
sleeved and unsleeved piles constructed on a cut slope using3D FDM. Andersenet
al. (2012) used FDM to analyse a nonlinear stochasticp–y curve for calculation of the
monopile response. Nowamoozet al. (2015) employed FDM to present the heat dis-
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tribution throughout the unsaturated soil while its thermal diffusivity varies with time
and depth. Indraratnaet al. (2015) utilized DEM-FDM to study the deformation of a
single stone column installed in soft ground. Isogeometricmethods is very close to
FEM and computer aided design. That is why, it can addresses avery accurate descrip-
tion of complex geometries. The term iso- is used to indicatethat the same functions,
that are used to describe the geometry and unknown variables. Zhanget al.(2009) for-
mulated a coupling material point method to predict the dynamic response of saturated
soil and the contact/impact behavior between saturated porous media and solid bodies.
Irzal et al. (2013) implemented an isogeometric analysis to predict thebehaviour of a
deformable fluid-saturated porous medium, using non-uniform rational B-splines.

Besides all numerical methods, there are also several analytical solutions for
these type of problems. Boer and Liu (1994) presented an analytical solution based
on the geometrically and physically linear theory to investigate the wave propagation
in an incompressible liquid saturated porous medium when governed by a set of lin-
ear coupled partial differential equations. Peng and Yu (2011) obtained an analytical
solution of the torsional impedance saturated soil by usingtransfer matrix method.
The effects of important parameters such as frequency and the rigidity ratio of dif-
ferent soil layers at the top of the pile were analyzed. Wanget al. (2008) developed
an analytical solution to investigate the torsional vibration of an end bearing pile em-
bedded in a homogeneous poroelastic medium and subjected toa harmonic torsional
loading by using the separation of variables technique. Belotserkovets and Prevost
(2011) developed a full-analytical method and an exact unique solution of the cou-
pled thermo/hydro/mechanical response of a fluid saturatedporous sphere subject to
a pressure stress pulse on the outer boundary. The method of solution was based
on the Laplace transformation method. Li and Zhang (2010) presented an analytical
solution in frequency domain by means of a variable separating method and then a
semi-analytical solution was obtained using a numerical convolution method. Chaiet
al. (2011) employed the thin layer stiffness method, the matrixstiffness of the thin
layer for PSV and analytical expressions for the effective phase velocity of the sur-
face waves to illustrate the effects of the body waves on the observed phase velocity
through the phase analysis of the vibrations of both the surface waves and the body
waves. The plane wave assumption was applied to account for higher modes. The
multichannel analysis of surface waves was used to obtain the dispersion images of
the modes by Strobbia and Foti (2006) and Bodetet al. (2009), for more details see
the references therein.

2.5.2 Simulation codes regarding to Porous Media

At the present time, there are several codes and software to model wind turbine and
soil, which describe some of soil properties to a sufficient degree and wind turbine
problems with different degree of detail. Some commercial software such ANSYS
and ABAQUS originated for structures and then they have beenextended to include
different models of soil to simulate onshore and offshore wind turbine foundations.
And also, some other software which are more specific to modelbuildings, wind
turbines and supported soil can be listed as Plaxis, FLAC, SHAKE-91, OpenSees,

39 June 2015



40 State of the Art

OpenSeesPL, FLEX5, FAST, HAWC2 and ROSAP, just to mention a few. Differ-
ent methods to simulate the dynamic response of offshore wind turbines subjected to
combined wind and wave loads in an integrated and/or superimposed manner have
been proposed. In order to reduce costs of offshore wind energy, accurate modelling
of the dynamic response of offshore wind turbines and supported soil are necessary
to improve their design. Therefore, simulation codes need to take a system approach
for predicting aerodynamic, hydrodynamic loads and also soil damping much more
precisely. Below, a short review of researches that have used simulation codes such as
ANSYS and ABAQUS are given.

Rovithiset al.(2009) performed parametric analyses of coupled soil-pile-structure
systems subjected to seismic loading by using 3D finite element model in ANSYS.
Laoraet al. (2012) investigated the behaviour of a kinematically stressed pile in lay-
ered soil by using ANSYS, while both pile and soil are idealized as linearly viscoelas-
tic materials. Hemmatet al. (2012) simulated the stress-sinkage behavior of a silty
clay loam soil by using ANSYS, while the soil was modelled as a2D axisymmet-
ric structure. Xunqianget al. (2013) employed ANSYS to present nonlinear seismic
analysis of large 3D structures while the soil was bounded with artificial dampers.
Wanget al. (2013) utilized ANSYS to do frequency domain analysis of soil pile in-
teraction when it was founded on viscous-elastic soil layerand hysteretic damping
has been considered for both the soil and the structures. Vasilev et al. (2015) im-
plemented BEM-FEM through ANSYS to study seismic response of a soil–structure
system when BEM was used to model infinite far-field media.

Johnsonet al. (2001) presented a surface interaction model between pile and
soil in ABAQUS. Memarpouret al. (2012) investigated the lateral behaviour of off-
shore pile foundations under cyclic lateral loads by using BNWF and ABAQUS. Su
and Li (2013) investigated the response of a single pile subjected to lateral loadings
using ABAQUS. Kampitsiset al. (2013) used an advanced beam model for the soil-
pile-structure kinematic and inertial interaction by using SHAKE91 (Shake 1991) to
analyse the seismic site response without the presence of the structure. The obtained
excitation motions was employed in OpenSees (opensees 2005) to analyse the soil-
pile-structure system. The calculations of the site response and the soil-pile-structure
interaction were performed in a fully coupled manner with ABAQUS (ABAQUS
2009). Bhowmiket al. (2013) investigated the nonlinear behavior of single hollow
pile in layered soil subjected to varying levels of horizontal dynamic load by the use
of ABAQUS while the Mohr-Coulomb plasticity model was employed to simulate the
soil. Guet al. (2014) investigated the behaviour of pile group under eccentric lateral
loading by using ABAQUS. Mendozaet al. (2015) presented the behaviour of groups
of helical screw piles while the hypoplasticity constitutive model was considered for
soil by employing ABAQUS. Wanget al.(2015) employed different pile and soil con-
tact interface models to calculate conductor lateral displacement and vertical bearing
capacity using ABAQUS by writing corresponding computer programs of constitutive
model of interface model.

Several coupled pore pressure/displacement elements (i.e.CPE4P, CPE6MP, CAX8RP
and CINAX5R) have been implemented in ABAQUS. Static and quasi-static soil anal-
ysis such as consolidation can be done systematically. But fully dynamic soil analysis
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is not possible for lack of inertia effect. For example a steady-state, coupled pore fluid
diffusion/stress analysis needs to be performed in severalincrements and steps with
appropriate time step to allow ABAQUS to resolve the high degree of nonlinearity in
the problem. The full effect of inertia does not considered in dynamic soil analysis,
it is fitted for the cases with low frequency loadings. However, ABAQUS provides a
library of pipe-soil interaction elements to present the ground behaviour and soil-pipe
interaction. But, these elements have only displacement degrees of freedom at their
nodes. Therefore, after performing preliminary analysis in ABAQUS in order to have
full dynamic soil analysis in frequency domain the in-houseFE code is developed.
More information of the developed codes and techniques can be found in the included
Papers 4, 5 and 6.

2.6 Post-processing in Finite Element Method

To improve the efficiency of numerical approaches, it is important to calculate and
reduce the errors. For as long as physical events have been computationally simulated,
the numerical error of such calculations has been a major concern. Discretization
error is inherited in these simulations, arising from the discretization process of the
continuum domain. As a result, not all of the information characterized by the partial
differential or integral equations can be obtained. Especially for the dynamic analysis
of complex problems with many degrees of freedom, adaptive refinement procedures
in regions where there are large gradients in the changes between the nodal variables
need to be used. This requirement is because of the limitations of the speed and
memory of available computers. The error can be in conjunction with the adaptive
refinement procedure to obtain the desired accuracy for design purposes with less
computational effort.

To check the accuracy of numerical solutions based on the classical energy norm,
error estimation methods are used. These methods can be categorized into two classes:
residuals-based and recovery-based. In residual-based methods, the residuals of a dif-
ferential equation and its boundary conditions are considered as error criteria. In the
residuals-based method, the residual of the differential equation or some function of
the residual is used as a measure of the error (Babuska (1975), Babuska and Rhein-
boldt (1978) and Babuska and Rheinboldt (1979)). The recovery-based approach uses
the error in gradient of the solution as the error estimator and comparing to the resid-
ual based error estimation, it is easy to implement in FE simulation. In recovery-based
method by comparison between obtained results from FEM and the recovered solu-
tion, which is obtained by using recovery techniques in a postprocessing procedure,
the error can be estimated. It is well known that the calculated FE stresses at the
Gauss points based on nodal displacement do not have continuity between elements.
Zienkiewicz and Zhu (1987) as pioneer in the recovery technique and error estimation
used nodal averaging to modify the finite element solution. Later, the most famous
ZZ (Z2) superconvergent patch recovery technique (SPR) wasproposed and imple-
mented by Zienkiewicz and Zhu ((1992a), (1992b), (1992c)).The ZZ error estimator
(Zienkiewicz and Zhu, (1987), (1992a), (1992b)) is a recovery-based method that is
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used in conjunction with the SPR, weighted super-convergence path recovery (WSPR)
and L2-projection. The theory of super-convergence is thatto have more accurate re-
sults in Gauss points to recover the results at nodal points and the rate of convergence
has a maximum value. The numerical results in Babuskaet al. (994a, 994b, 1997)
showed that a recovery technique with a standard SPR. A comprehensive survey of
the error estimation in FEM has been presented by Babuskaet al. (1986). Chung
and Belytschko (1998) presented local and global error estimates for the element-free
Galerkin method. El-Hamalawi and Bolton (2002) presented and developed the con-
solidation super-convergent patch recovery with equilibrium and boundaries method
for using in plane-strain coupled-consolidation axisymmetric geotechnical problems.
The original SPR method is based on a least-squares fit of derivatives at the optimal
sampling points. The technique states that if the gradientsat some points are super-
convergent, then any gradient field resulting from a polynomial fit to these values will
be super-convergent (i.e.Babuskaet al.(1996) ; Barlow(1976); Levine (1985); Mack-
innon and Carey (1989); Prathap (1996), Oh and Batra (1999);Lin and Zhang (2004)).
Ullah and Augarde (2013) implemented Meshless and SPR method to present an ef-
ficient computational modelling of problems including bothmaterial and geometric
nonlinearities.

SPR method has been extended and improved by many researchers, for example
Mukherjee and Krishnamoorthy (1998), Wiberget al. (1995) and Guet al. (2004)
proposed a weighted patch recovery scheme (WSPR). And also, incorporating the
equilibrium and boundary condition with patch recovery waspresented by Blacker
and Belytschko (1994), Parket al. (1999), Zienkiewiczet al. (1999), Boroomand
et al. (2004); Rodenaset al. (2006), Khoeiet al. (2008)). The main objective of
the recovery process is to overcome this difficulty and make asmoothed continuous
stress field between elements. In the standard SPR technique, all sampling points have
similar properties in the patch, which may yield to significant errors, particularly at the
edges of a crack (Khoeiet al. (2008)). For elements located on high-gradient regions
with insufficient sampling points, the points of the nearestpatch must be used, with
the definition of a weight function for the SPR procedure. Tang and Sato (2004, 2005,
2013) studied error estimation and adaptive mesh refinementon seismic liquefaction,
seeking to improve the numerical results for large deformation in a soil-pile interaction
problem. Estimation the global error has been used extensively in mesh-based and
meshless methods based on residual-based (Afsharet al. (2012)) and recovery-based
(Bordas and Duflot (2007)) techniques. Nazemet al. (2012) used an h-adaptive FEM
to tackle the penetration and indentation problems of geomechanics in the presence of
inertial forces. They compared three alternative error estimation techniques, based on
the energy norm, the Green-Lagrange strain, and the plasticdissipation.

Mehdi Bayat 42



CHAPTER 3
Scope of the Thesis

As reviewed and mentioned in Chapter 2, scientists and researchers have de-
veloped and implemented several mathematical methods and numerical approaches
either by their own developed codes or commercial software packagesto analyse dy-
namic behaviour of offshore foundations and consider the soil–structure interaction
and soil damping. To the best of the author’s knowledge, accurate andrealistic nat-
ural frequencies of OWTs as well as soil stiffness and damping cannot be quantified
by current methods. The current research aims to obtain a better understanding of
the stiffness and damping of saturated soil, propose an improved methodology for
analysis of soil-foundation interaction that accounts for rate-dependent behaviour of
saturated soil. This chapter clarifies the overall objectives and specific aim of the
present dissertation based on the literature review and mentioned discussions from
Chapter 2. The main idea and focus of the research project as well as itsinnovation
and contribution to the offshore wind industry are highlighted.

3.1 Main Findings of the State-of-the-Art

The design process of offshore wind turbines begins with site selection, in which ex-
ternal conditions such as aerodynamic and hydrodynamic loads are assessed as well
as geotechnical conditions. Commonly, by selecting the size of wind turbine, an ini-
tial design of the wind turbine tower is presented and, consequently, evaluating initial
loads on the foundation is given to select and design foundation initially. Afterward,
by considering different load cases and assessing geohazards for certain foundations,
an iterative design process between tower and foundation isimplemented to find the
optimum design. During this procedure, performing geotechnical and structural anal-
yses are considered until a satisfactory design is found. The design procedure for
monopile foundation based on the fixed ratio of pile diameterto thickness until to
get the desired natural frequency is sketched in Fig. 3.1 presented by Segeren and
Diepeveen (2014). In the iteration procedure, monopile geometry is modified and
varied until the desired natural frequency is obtained. As discussed in the previous
chapter, the methods and procedures to model the foundationand supported soil have
a substantial in reducing computational times as well as having an appropriate design
and cost-effective foundation. Commonly, beam theories such as Bernoulli-Euler or
Timoshenko are implemented in 2D (and/or 3D) FE codes to model piled founda-
tions. Moreover, the damping in offshore wind turbines is significant in the fatigue
perspective.
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Figure 3.1 Design of offshore monopile wind turbine foundations (Segeren and Diepeveen 2014).

Offshore wind turbines are subjected to highly dynamic loads. Therefore, mod-
elling of the wind turbine foundation is important to capture all dynamic effects prop-
erly; i.e. dynamic soil stiffness and damping in the presence of pore pressure should
reflect reality as close as possible. Moreover, damping in offshore wind turbines is
an important parameter in fatigue analysis. Evidently, damping has a great effect
on the magnitude of the wind turbine response, and has a considerable influence on
the natural frequency of wind turbine system. As shown in Fig. 3.1, to perform de-
sign evaluations and determine target natural frequency, the dynamic effects regarding
foundation and supported soil must be calculated and captured properly within the
numerical approach. Therefore, modelling soil–structureinteraction properli is essen-
tial, as is obtaining accurate and realistic dynamic soil stiffness and damping, which
results in fatigue damage. Fatigue damage increases with decreased damping. Soil
damping by Rayleigh damping is commonly presented as a linear combination of the
mass and stiffness. The design regulations recommend the use of p–y andt–z curve
methods to include the soil–structure interaction for offshore wind turbines. Thep–y

Mehdi Bayat 44



Aim and Objectives 45

curve method was developed for small-diameter (D = 0.32 m, D from 0.5 to 3 m),
long, flexible and slender piles with length-to-diameter ratios (L/D) generally larger
than 12 in the oil and gas industry. Rigid monopiles with L/D <12 and diameters from
3.5 to 7 m are typically used for offshore wind turbines.

Offshore wind turbine structures are sensitive to rotations and dynamic changes
in the pile-soil system. The effect of load rate is not concerned in thep–y curve
method. Furthermore, this effect does not account dynamic soil stiffness because
inertia effects and it does not assign a well-defined representation of the soil damping.
To incorporate the effect of load frequency and pore pressure, the coupled equations
are needed to illuminate the behaviour of different states in the soil.

Equivalent system comprising equivalent masses and springs at pile-cap level can
be constructed by using Winkler model approach. However, current Winkler models
do not consider the effect of pore pressure and load frequency. To overcome this prob-
lem, an improved methodology to analyse soil–foundation interaction that accounts
for rate-dependent behaviour of saturated soil will be proposed. The increase in stiff-
ness because of high-rate deformation of the saturated soilis not accounted for, and
damping is only described in terms of modal damping within each mode. Thus, mate-
rial damping, viscous damping from seepage and radiation damping are not accounted
for explicitly. Given that the stiffness of foundation and subsoil strongly affects the
modal parameters, the stiffness of saturated soil because of pore water flow generated
by cyclic motion of monopiles is investigated using the concept of a Kelvin model that
combines springs and dashpots. In this regard, the coupled equations for porous media
are employed to account for soil deformation as well as pore pressure. The effects of
drained versus undrained behaviour of the soil and the impact of this behaviour on the
stiffness and damping related to soil–structure interaction at different load frequencies
are illustrated.

3.2 Aim and Objectives

For the past decade, the number of installed offshore wind turbine have greatly in-
creased, as has the size of the turbines. The more efficient design with higher capacity
wind turbines consist of larger rotor diameters and higher hubs affected by model-
ing the dynamic of the pile-soil interaction. As the size of offshore wind turbines
increase, the structure should undergo larger fatigue loads. The level of damping,
including structural and soil damping as well as aerodynamic damping, is vital to im-
prove current design practices to be cost-effective and provide a safe and economical
design.

The objective of this thesis is to more closely examine the dynamic behaviour
of saturate soil that support structures for offshore wind turbines and improve the
knowledge of the soil damping. Representing the soil–structure interaction properly,
can directly affect (a) the natural frequency of wind turbine system (b) the dynamic
soil stiffness and damping (c) the life time of wind turbine (d) and finally, the cost of
wind turbine. The main objectives of the study are listed as follows:

� To evaluate the effect of loss factor and other soil properties on the dynamic soil
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stiffness and the phase angle of the dynamic stiffness for different load frequen-
cies. The results for hollow and solid cylinders are presented by employing math-
ematical approach based on Somigliana’s identity, Betti’sreciprocal theorem and
Green’s function.

� To demonstrate damping and stiffness of saturated soil within the seabed when
the monopile is subjected to a cyclic motion and consideringthe effect of the
generated pore water flow. FEM in ABAQUS and Kelvin-Winkler model are
employed for two dimensional analyses. Input files format for ABAQUS are
coding; by utilizing Python and MATLAB, the desired resultsare presented.

� To extractp–y–ẏ curves for offshore monopiles subjected to cyclic loads, a two-
dimensional finite-element program is developed for analysis of a segment of an
offshore monopile foundation placed in different depths. The response to cyclic
loading is analysed by employing coupled equations based ontheu-p formula-
tion, i.e.accounting for soil deformation as well as pore pressure.

� To illustrate the effect of pore pressure by implementing a poroelastic model
to present more realistic dynamic properties and compare them with results ob-
tained byp–y curve method, finite-element programs are developed to analyse
an offshore monopile foundation placed in different depths

� To investigate the dynamic behaviour of soil around monopile foundation sub-
jected to cyclic loads and present stress recovery techniques based Zienkeiwicz-
Zhu (ZZ) error estimator namely, super-convergent patch recovery (SPR), weighted
super-convergent patch recovery (WSPR), and L2-projectiontechniques.

From the soil dynamic and geotechnical perspective, this study primarily aims to cal-
culate seepage damping, to present the effect of pore water pressure, and to investigate
the effect of material damping on soil stiffness and naturalfrequency of offshore wind
turbine system. The novelty of this PhD research can be highlighted by (a) calculat-
ing soil damping during cyclic loading based on numerical approach by employing
Kelvin-Winkler model (b) parametric study to investigate the soil–structure interac-
tion and its influence on the dynamic response of the soil and the natural frequency of
wind turbine (c) elucidate the effect of load frequency on soil stiffness and damping
and natural frequency of offshore wind turbine supported bymonopiles.
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CHAPTER 4
Summary of Included Papers

The present research project is based on six scientific peer-reviewed papers, in-
cluding four journal papers and two conference papers that can be found in the en-
closed appendices. The papers fulfill the listed objectives of the PhD project by
employing mathematical and mostly numerical approaches to elucidate the ground-
water behavior and the impact of such behaviour on the stiffness and damping related
to soil-structure interaction at different load frequencies. In the following chapter,
the main results and employed methodologies in the articles are demonstrated.

4.1 Overview of Publications

This dissertation focuses on the behaviour of the saturatedsoil surrounding to offshore
monopile wind turbines based on mathematical modelling andnumerical methods, cf.

Mathematical
method

ABAQUS
Developed

FE code

Paper 1
a

Paper 2 Paper 3 Paper 4 Paper 5 Paper 6
b c d e f

a) Comparision between dynamic responses of hollow and solid piles for offshore wind turbine foundations

b) Numerical calculation of damping for monopile foundations under cyclic load during steady-state vibration

c) Assesment of the dynamic behaviour of saturated soil subjected to cyclic loading from offshore monopile
wind turbine foundations

d) curves for dynamic analysis of offshore wind turbine monopile foundations

e) Influence of pore pressure on dynamic response of offshore wind turbine using poroelastic model

f) Recovery-Based error estimation in the dynamic analysis of offshore wind turbine monopile foundations

p− y − ẏ

Figure 4.1 Overview of research topics and scientific papers.
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Fig. 4.1. FEM in ABAQUS and developed FEM code are used to evaluate more realis-
tic dynamic properties for offshore wind turbine foundations by considering the effect
of load frequency for lateral loading of monopiles subjected to cyclic loads. First, the
effect of soil damping and other soil properties on the dynamic behaviour of offshore
monopile wind turbine foundations are illustrated. Secondly, FEM in ABAQUS is
employed to calculate the soil damping and then in-house FE code is developed to
illustrate the effects of drained versus undrained behaviour of the soil and the effect
of this behaviour on the stiffness and damping related to soil-structure interaction at
different load frequencies. Finally, different stress recovery techniques based on the
Zienkeiwicz-Zhu (ZZ) error estimator are employed to recover the stresses at nodal
points in the FEM.

4.1.1 Paper 1

Published inSeventh international conference on case histories in geotechnical engi-
neering, May 2013, Chicago, Pages 94–108.

Paper 1: “Comparison between dynamic responses of hollow and solidpiles for off-
shore wind turbine foundations” presents the effects of basic factors such as geometry,
damping, Young’s modulus, and Poisson’s ratio on dynamic behavior of soil. The pile
is modeled as smooth long hollow and solid cylinders and the dynamic excitation is ap-
plied vertically. The exact solutions and elastic responses are obtained in viscoelastic
media and frequency domain. The vertical loads are applied on the surface along the
entire interface by considering rough and full contact between the soil and structure.
Long tabular and solid piles are investigated via integral method along with Betti’s
reciprocal theorem, Somigliana’s identity and Green’s function. Modes of resonance
and anti-resonance are identified and presented.

Main Results

The following main findings fromPaper 1can be stated as follows:
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ν = 0.495, E = 9411 (KPa), η = 0.1. Solid
ν = 0.25,   E = 9411 (KPa), η = 0.1. Solid
ν = 0.495, E = 9411 (KPa), η = 0.1. Hollow
ν = 0.25,   E = 9411 (KPa), η = 0.1. Hollow

ν = 0.495, E = 9411 (KPa),   η = 0.1. Hollow
ν = 0.495, E = 13596 (KPa), η = 0.1. Solid
ν = 0.495, E = 9411 (KPa),   η = 0.1. Hollow
ν = 0.495, E = 13596 (KPa), η = 0.1. Solid

Figure 4.2 Paper 1— Comparison between normalized dynamic stiffness per unit length of an infinite
hollow and solid cylinders due to dynamic vertical loadings.
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� The dynamic soil stiffness and phase angle in a hollow or solid cylinder are in-
dependent of the soil’s material propertiesi.e. Young’s modulus and Poisson’s
ratio, whereas it is dependent on the load frequency and lossfactor. The dynamic
soil stiffness increases with the increase of the load frequency until reaching a
peak point then decreases to a local minimum for certain value of frequency.
This procedure is repeated periodically for hollow and solid cylinders as shown
in Fig. 4.2.

� The phase angle fluctuates around lineπ/2 and the amount of fluctuating around
this line decreases with the increase of load frequency for hollow cylinder and by
increasing the loss factor it converges to lineπ/2, whereas the phase angle does
not converge to certain value in solid cylinder.

The results reveal that the presented approach gains the physical understanding
for offshore foundation in the geo-mechanics field.

The results reveal that the presented approach gains the physical understanding for
offshore foundation in the geo-mechanics field.

4.1.2 Paper 2

Published inThe fifth international conferences on structural engineering, mechanics
and computation, Cape town, South Africa, pp. 1–11.

Paper 2: “Numerical calculation of damping for monopile foundations under cyclic
load during steady-state vibration ” demonstrates dynamicresponses of an isotropic
saturated elastic soil medium due to pore water flow generated by the cyclic motion
of a monopile. The concept of a Kelvin-Voigt model is employed and combined with
a 2D FE model of the pile in ABAQUS to calculate seepage damping and dynamic
stiffness of saturated soil within the seabed. The two-dimensional analysis of each
individual soil layer is performed in ABAQUS by coding inputfiles, utilizing Python
scripting in ABAQUS and MATLAB. To calculate desired results, the Python pro-
gram is employed so that it can be called from MATLAB, then theprogram executes
ABAQUS, MATLAB is used for post processing. The pore pressure and displace-
ment at the exterior boundary is considered zero. Symmetry of the solution is applied
across the center line of the model, whereas for the semi-circle carve, the sinusoidal
periodic displacement in horizontal direction is applied as shown in Fig. 4.3(a). A
sinusoidal forced displacement is applied and the simulation is conducted within 12
second. The seepage damping is calculated based on the phaseshift between the
applied forced displacement and mean value of the reaction force at the semi-circle
boundary. A parametric study is performed to illustrate theeffects of model size, soil
properties (i.e. Young’s modulus, grain bulk modulus, void ratio, and permeability),
load frequency, and amplitude on the soil stiffness and damping.

Main Results

The following main findings fromPaper 2can be stated:
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� The effect of permeability is highlighted and by increasingthe permeability the
damping increases. In addition, for specific values of permeability, the maximum
damping occurs. However, for further increasing permeability, the damping de-
creases as shown in Fig. 4.3(b). Stiffness decreases with increasing permeability.

� The variation of soil stiffness and damping due to periodic loading for different
values of the void ratio, Young’s modulus and load’s amplitude and frequency
are illustrated.

4.1.3 Paper 3

Published inComputers and Geotechnics, Volume 61, May 2014, Pages 116–126,
DOI: 10.1016/j.compgeo.2014.05.008.

Paper 3: “Assessment of the dynamic behaviour of saturated soil subjected to cyclic
loading from offshore monopile wind turbine foundations” is one of two papers em-
ploying ABAQUS to investigate the soil damping of saturatedsoil owing to pore water
flow generated by cyclic motion of monopiles. This study highlight the effect of pore
water pressure, and addresses calculating natural frequency of offshore wind turbine
via three methods. (a) Full-scale measurement by free vibration tests, (b) using a beam
on a nonlinear Winkler foundation model with soil-pile interaction recommended by
the design regulations, and (c) recalculating the frequency by using improved soil stiff-
ness, the influence of pore water flow is considered by using the concept of a Kelvin
model that combines spring and dashpot.

Main Results

The main findings fromPaper 3are as follows:

� A beam on a nonlinear Winkler foundation model based on the incorporatedp−y
curves recommended by the design regulations consequentlyunderestimates the

Figure 4.3 Paper 2— (a) Geometry, discretization and boundary conditions for the soil model (b) Variation
of seepage damping versus variation of the permeability.
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eigenfrequency related to the lowest eigenmode of offshorewind turbine struc-
ture installed on monopile foundations compared to full-scale measurements.
This discrepancy is reduced by considering the influence of pore water pressure
for cohesionless soils as shown in Fig. 4.4.

� For low and high values of soil permeability, indicating fully undrained and
drained soil behaviour, respectively, soil stiffness is independent of the frequency
of the forced displacement.

4.1.4 Paper 4

Submitted toSoil Dynamics and Earthquake Engineering, In review.

Paper 4: “p − y − ẏ curves for dynamic analysis of offshore wind turbine monopile
foundations” presents an improvedp−y curve method by considering the influence of
excitation frequency. Coupled equations based on theu−P formulation are employed
and 2D FE code is developed to analyse a segment of an offshoremonopile foundation
placed in different depths. The effects of drained and undrained behaviour of the soil
and the effect of this behaviour on the stiffness and dampingrelated to soil-structure
interaction at different soil depths and load frequencies are illustrated. A parametric
study is performed to extractp−y−ẏ curves for lateral loading of monopiles subjected
to cyclic loads.

Main Results

The most important conclusions fromPaper 4are stated below:

� The soil stiffness reduction onsets in transient region from silt to sandy soil; it
occurs in sandy soil for all values of load frequencies as shown in Fig. 4.5.
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� The maximum equivalent damping almost occurs in transient region, primarily
in the sandy soil regime, and the maximum damping moves toward the coarse
(sandy) soil by increasing the load frequency as shown in Fig. 4.5.

4.1.5 Paper 5

Submitted toSoil Dynamics and Earthquake Engineering, In review.

“Influence of pore pressure on dynamic response of offshore wind turbine using poroe-
lastic model” illustrates the effect of pore pressure by implementing a poroelastic
model to present more realistic dynamic properties and compare them with results
from p − y curve method. Two different finite element programs are developed and
combined analyse an offshore monopile foundation as shown in Fig. 4.6. The re-
sponse to cyclic loading is analysed by employing a Winkler foundation model based
on nonlinearp− y curve method. Moreover, a two phase system consisting of a solid
skeleton and fluid phase, based onu − P, is implemented to perform free vibration
tests to evaluate the eigenfrequencies. Furthermore, a simple model of an offshore
wind turbine is constructed with equivalent masses, dashpots and springs providing
the foundation response at the pile-cap level via Winkler and Kelvin model.

Main Results

The most relevant conclusions fromPaper 5are listed below:

� In comparison between loose, medium dense, and dense sandy soil, the damping
ratio becomes smaller for medium dense and dense sandy soil.Furthermore, the
natural frequencies for dense sandy soil are greater than those of the other soil
types.
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Figure 4.5 Paper 4— Variation of soil stiffness and damping versus normalized load frequency.
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4.1.6 Paper 6

Submitted toOcean Engineering, In review.

Paper 6: “Recovery-Based Error Estimation in the Dynamic Analysisof Offshore
Wind Turbine Monopile Foundations ” presents the response in terms of pore wa-
ter pressure, stress and strain distribution in an elastic porous medium at regions
around the monopile foundation. Different stress recoverytechniques based on the
Zienkeiwicz-Zhu error estimator namely, super-convergent patch recovery, weighted
super-convergent patch recovery, and L2-projection techniques are also investigated
to recover the stresses at nodal points in the finite element method. The convergence
of the dynamic problem is also studied. The results are verified with findings in the
literature.

Main Results

The most important findings fromPaper 6are listed below:

� The convergence rate is 0.5 for all presented recovery procedures applied for
solving the coupled dynamic equations for the 2D monopile model.

� For a given simulation time, the difference between the minimum and maximum
shear stress values is constant. The maximum (or minimum) shear stress occurs
at the center line of the model and varies harmonically with the corresponding
behaviour of the load as shown in Fig. 4.7. The direction of the shear stress at
the center line is independent of the direction of movement;it always takes both
positive and negative values.

Figure 4.6 Paper 5— Kelvin model consisting of a spring and a dashpot in each depth.
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Figure 4.7 Paper 6— Kelvin model consisting of a spring and a dashpot in each depth.

Mehdi Bayat 54



CHAPTER 5
Conclusions and Future

Directions

The dynamic soil behavior and the effect of the soil–structure interactionon the
behaviour of monopiles foundations of offshore wind turbines have been studied.
The numerical analyses incorporated with poroelastic media is employed toimprove
the understanding of groundwater behavior and elucidate the dynamic behaviour of
monopile foundations subjected to cyclic loadings. The present chapter summarizes
the main findings of the results and proposes some suggestions for further work.

5.1 Overall Conclusions

At present, offshore wind turbines have grown much larger then onshore wind turbines
to capture economies of scale. Offshore wind turbines generate more electricity than
those on land because the wind at sea is typically stronger and more constant than that
onshore. Therefore, using the computational model to compute the damping effect,
dynamic response for different kinds of loading such as wind, water and earthquake
are necessary to improve the model in order to reduce the overall costs as well as the
uncertainty. The fatigue life of offshore wind turbines strongly depends on the dy-
namic behaviour of the structures including the underlyingsoil. To avert damage of
offshore foundation and better design, identifying and quantifying the soil–structure
interaction and damping effect, is is necessary. For offshore wind turbines, dynamic
loading and fatigue are much greater problems than they are on land. Wave-induced
oscillations introduce unwanted accelerations on the entire of the structure. For a deep
water foundation installation, the major part of the structure is under water, and the
water provides not only support to the structure but also considerable damping for the
wave induced vibrations. Thus, understanding how the soil behaves as regards damp-
ing is critical. Fatigue problems are an important issue foroffshore wind turbines
in comparison with inshore wind turbines, given unsteady forces from earthquake
and different direction of water and wind waves. Besides theaerodynamic damping
in wind turbine structure, effective damping from saturatesoil is essential in prop-
erly presenting the dynamic responses of structure. Saturated soil can be idealized as
two-phase media comprising deformable soil skeleton and pore fluid. The dynamic
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response of the saturated soil is especially important to understand the deformations
and pore water pressures generated by dynamic loads.

Damping of wind turbine structures comprises gyroscopic, structural, aerody-
namic and additional damping. The additional damping for offshore support structures
is higher than that for onshore support structures. Two components such as material
(internal) damping and radiation (geometrical) damping represent the soil damping.
Material damping is inherent within the material and is occurs because of viscous
and hysteretic effects, whereas the radiation damping is because of loss of energy af-
fected by radial propagation of elastic waves from the immediate vicinity of the source
of vibration. Soil as viscoelastic model can be representedwith the combination of
spring and dashpot by considering elastic continuum theory. In this regard, numerical
methods can be implemented to investigate the dynamic behavior of the soil (seepage
damping, dynamic soil stiffness), foundation and interaction between soil and foun-
dation.

Generally, the soil–structure interaction is incorporated by a so-called Winkler
model with static springs along the foundation and soil damping applied as modal
damping. Flexible and complex loaded offshore wind turbines are coupled with sup-
ported soil, and the related dynamic responses become highly dependent on the foun-
dation. Therefore, to propose improved design guidlines for overall cost reduction, we
must present a better understanding of the damping from saturated soil via particulate
simulation, and deeper understanding of the damping effects in offshore wind turbine
foundations. The main conclusions of the project are summarized below.

� The absolute value of normalized dynamic stiffness and phase angle for an infi-
nite hollow and solid cylinder because of dynamic vertical load are independent
of soil material properties such as Young’s modulus and Poisson’s ratio. How-
ever, these factors are dependent on loss factor. In comparison between the ab-
solute value of the dynamic stiffness for solid and hollow cylinders, the stiffness
indicates greater values for solid cylinder when the same value of soil properties
and large values of normalized frequency are considered.

� For two-dimensional analysis of each individual soil layersubjected to cyclic
load, the permeability of the seabed strongly influences thedamping of wind-
turbine-tower vibrations. Furthermore, the pore water flowgenerated by the
cyclic motion is important in determining soil stiffness and damping.

� Low and high values of the soil permeability (in a two-dimensional analysis)
indicate fully undrained and drained soil behaviour, respectively. Soil stiffness
is independent of the frequency of the forced displacement.In the transient state
between fully undrained and drained soil behaviour, the frequency of the forced
displacement greatly influences stiffness. For increasingforced displacement
frequency [0.01; 0.4] Hz, pore pressure in both the fluid and solid phase will
increase, resulting in a stiffness increase.

� p − y − ẏ curves have been extracted and the effect of load frequency has been
highlighted. We conclude that soil stiffness and damping for the transient re-
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gion, which is located between loose and dense soil, are highly affected by load
frequency.

� Even at frequencies related to the first and second modes of anoffshore monopile
wind turbine, soil stiffness, damping and natural frequencies of wind turbine are
frequency dependent especially when placed in sandy soil. Contrary to the results
of the equivalent soil stiffness at pile cap the equivalent dashpots and masses at
pile cap are highly dependent on soil type.

� The convergence rate for two–dimensional saturated poroussoils is 0.5 for SPR,
WSPR and L2 projection post processing recovery methods in FEM.

This PhD thesis has calculated the seepage damping and proposed ap−y− ẏ curve to
promote improved understanding of soil–structure interaction. The study has shown
the importance of load frequency, the interrelation effects between the foundation and
subsoil that change system stiffness and damping as well as natural frequency of sys-
tem because of the frequency-dependent dynamic stiffness of the soil–foundation sys-
tem.

5.2 Recommendations for Further Research

Some suggestions for further work are listed as follows:

� Developing a three dimensional numerical model for offshore wind turbine foun-
dations subjected to cyclic loadings by using different soil layers and appropriate
material model along the depth of foundation to calculate dynamic soil stiffness
and damping.

� Finding the dynamic response of wind turbines installed on different types of off-
shore foundations as well as different soil conditions, then presenting the effect
of load parameters such as load amplitude and frequency on soil damping and
stiffness.

� Implementing absorbing boundary conditions to reduce the model size and there-
fore decrease the time simulation for different soil layers

� Developing meshless, isogeometric and discrete element methods to calculate
soil response in different type soil layers and foundationsas well as different
dynamic loads such as cyclic, impact and earthquake.

� In the present research, a Kelvin model has been employed to interpret each soil
depth. Further studies can focus on a combination of Kelvin model and mass in
series form, plus Kelvin model and mass once again to evaluate each parameter
and compare the results for further investigation.

� Analyzing vibration (installation) of different offshorefoundations such as bucket
(monopod), monopile and tripod are points of interests for further study.
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ABSTRACT

The offshore wind energy industry is turning out ever larger numbers of offshore wind turbines every year. One way to achieve a cost-
effective design is to have a better understanding of the dynamic response of offshore structures. That is why it is getting more and 
more important to understand the dynamic behavior of soil and interaction between soil and piles. To avert damage to offshore 
foundation, it becomes necessary to identify and quantify the soil-structure interaction and the related damping effects on the system.
In this study, a single pile is investigated by means of  boundary integral equations. The pile is modeled as a solid or hollow cylinder 
and the dynamic excitation is applied vertically. The surface along the entire interface is considered rough and with full contact 
between the soil and the structure. Somigliana’s identity, Betti’s reciprocal theorem and Green’s function are employed to derive the 
dynamic stiffness of pile, assuming that the soil is a linear viscoelastic medium. The dynamic stiffness is compared for solid and 
hollow cylinders by considering different values of material properties including the material damping. Modes of resonance and anti-
resonance are identified and presented. It is observed that the absolute value of normalized dynamic stiffness is independent of 
Young’s modulus and Poisson’s ratio, whereas it is dependent on the soil’s damping.

INTRODUCTION

There are more than 7,000 offshore structures around the 
world. Structures to support wind turbines come in various 
shapes and sizes; the most common are Monopile, Jacket, 
Tripod, Gravity base and Floating structures (see Fig. 1). 
Based on dimensions of pile it can be solid and hollow 
cylinder. The tendency of large-size offshore wind turbines 
have increased during the last 10 years. As wind turbines get 
larger and are located in deeper water, jacket structures are 
expected to become more attractive. Generally, a fixed 
platform is described as consisting of two main components; 
the substructure and the superstructure. Superstructure or 
‘topsides’ is supported on a deck, which is mounted on the 
jacket structure. Substructure is either a tubular or solid 
cylinder. 

Support structures for offshore wind turbines are highly 
dynamic, having to cope with combined wind and 
hydrodynamic loading and complex dynamic behavior from 
the wind turbine. The offshore jacket platform is a complex 
and nonlinear system, which can be excited with harmful 
vibration by the external loads. It is vital to capture the 
integrated effect of the total loads. However, the total loading 

can be significantly less than the sum of the constituent loads. 
This is because the loads are not coincident, and because of 
the existence of different kinds of damping such as 
aerodynamic and soil damping which damps the motions due 
to the different loads. The dynamic stiffness indicates the 
stability and resonance behavior. In fact, the overall weight of 
the modern wind turbines is minimized, which makes it more 
flexible and corollary more secretive to low frequency 
dynamic. Another side, wave propagation in elastic and 
viscoelastic medium are considerable issues especially when 
there is an earthquake. In modern offshore wind turbines, 
instabilities or stability occur due to the coupled damping of 
the upper side of the wind turbine and the lower part of that as 
the foundation. Most of the failure phenomena are caused by 
fatigue while the first natural frequency plays an important 
role. In this aspect, stiffness has a predominant role to evaluate 
the first natural frequency. The first estimation for stiffness of 
foundation comes through the analysis of soil-structure 
interaction. Applying inaccurate algorithms in the soil-
structure media may also occur when two different numerical 
methods are coupled, e.g. the boundary element method 
(BEM) and the finite element method (FEM); this problem 
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may become even more serious when coupled algorithms and 
different physical media are considered simultaneously in the 
same analysis as it was mentioned by Jr and Mansur [2006].
Soil-structure interaction (SSI) can be analyzed based on two 
methods namely substructure and direct methods which are 
highlighted by Wolf [1985]. Maheshwari and Khatri [2011]
analyzed a SSI for a combined footing and supporting column 
on soft soil by using an iterative Gauss Elimination technique 
while the footing was modeled as a beam having finite 
flexural rigidity. Srisupattarawanit et al. [2006] applied BEM 
and a computation method to compute nonlinear random finite 
depth waves in order to be coupled with an elastic structure. 
Guenfoud et al. [2009] employed Green’s function to solve the 
integrals resulting from Lamb's problem in order to study the 
interaction between soil and structures subjected to a seismic 
load. Padron et al. [2009] studied the SSI between nearby pile 
supported structures in a viscoelastic half-space by using 
BEM-FEM in the frequency domain. Genes [2012] applied a 
parallelized coupled model based on BEM-FEM to analyze 
the SSI for arbitrarily shaped, large-scale SSI problems and 
validation was shown. Comprehensive reviews in applying 
different methods pertain to SSI have been done by 
Mpahmoudpour et al. [2011]. 

Fig. 1. Different types of offshore wind foundation.

Zienkiewicz [1982] developed the FEM discretization to 
present the behavior of various classes of soil and rock. He 
presented a concrete as two-phase medium composed of a 
solid skeleton and an interstitial fluid. Karim et al. [2002] 
analyzed the saturated porous elastic soil layer under cyclic 
loading by using a two-dimensional mesh free Galerkin 
method by having periodic conditions. A meshless method 
was an effective alternative, because it is difficult for FEM to 
analyze the problems associated with the moving boundary. 
The time domain response of a jacket offshore tower while the 
soil resistance to the pile movement was modeled using p–y
and t–z curves to account the soil nonlinearity and energy 
dissipation, was presented by Mostafa and Naggar [2004] by 
employing a FE package in order to do parameters study. 
Andersen and Nielsen [2003] applied FEM with transmitting 
boundary element and presented a solution in the frequency 
domain of an elastic half-space to a moving force on its 
surface. And also, a two- and three-dimensional combined 

FEM and BEM have been carried out for two railway tunnel 
structures in order to investigate what reliable information can 
be gained from a two-dimensional model to aid a tunnel 
design process or an environmental vibration prediction based 
on ‘correcting’ measured data from another tunnel in similar 
ground in research by Andersen and Jones [2003]. Then the 
steps in the FEM and BEM formulations were discussed, and 
the problems in describing material dissipation in the moving 
reference frame investigated by Andersen et al. [2007]. Badia 
et al. [2009] applied FEM to simulate the interaction between 
a fluid and a poroelastic structure due to the fact that both 
subproblems are indefinite. Andersen et al. [2012] used 
numerical method to analyze a nonlinear stochastic p–y curve 
for calculating the monopile response. The time-domain 
results for soil-foundation-structure interaction by considering 
the dependence of the foundation on the frequency of 
excitation were presented by Cazzania and Ruge [2012] by 
using FEM. Also, due to the unbounded nature of a soil 
medium, the computational size of these methods is very 
large. For this reason, it is important to establish some simple 
mathematical models which reduce the computational cost of 
analysis as well as increase the accuracy of results.

There are several analytical solutions for this type of problem. 
Peng and Yu [2011] obtained the analytical solutions of the 
torsional impedance saturated soil by using transfer matrix 
method. The effects of important parameters such as 
frequency and the rigidity ratio of different soil layers at the 
top of the pile were analyzed. Belotserkovets and Prevost
[2011] developed a full-analytical method and an exact unique 
solution of the coupled thermo/hydro/mechanical response of 
a fluid saturated porous sphere subject to a pressure stress 
pulse on the outer boundary. The method of solution was 
based on the Laplace transformation method. Prakash and Puri 
[2006] presented methods for determining the dynamic 
response of machine foundations subjected to harmonic load. 
The soil stiffness was considered frequency independent for
design of machine foundations. Li and Zhang [2010]
presented an analytical solution in frequency domain by 
means of a variable separating method and then a semi-
analytical solution was obtained using an numerical 
convolution method. Chai et al. [2011] employed the thin 
layer stiffness method, the matrix stiffness of the thin layer for 
P–SV and analytical expressions for the effective phase 
velocity of the surface waves to illustrate the effects of the 
body waves on the observed phase velocity through the phase 
analysis of the vibrations of both the surface waves and the 
body waves.

It may be noted that existing literature on offshore monopile 
foundations as cited above have been solved experimentally or 
theoretically based on numerical and analytical methods. To 
the best of our knowledge, no work has been reported till date 
that analyzes offshore foundation as long hollow and solid 
cylinders by using appropriate mathematical approach and 
employing the Green’s function and integral method. This 
study attempts to concentrate on this investigation. In this 
paper, offshore foundations in an elastic and viscoelastic 
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media are investigated by modeling that as long tabular and 
solid piles. The integral method along with the Betti’s
reciprocal theorem, Somigliana’s identity and Green’s
function are employed. The vertical loads are applied on the 
surface along the entire interface by considering rough and full 
contact between the soil and structure. The effect of material 
properties such as Young's modulus and Poisson's ratio on 
dynamic stiffness and phase angle are illustrated. This work 
aims to investigate the effect of some basic factors such as 
geometry, damping and frequency on stiffness, phase velocity 
in a pile. The exact solutions are obtained in elastic and 
frequency domain. Modes of resonance and anti-resonance are
identified and presented.

GENERAL DEFINITION OF MODEL 

Consider a thin axisymmetric circular cylinder with small wall 
thickness and radius R, as shown in Fig. 2. This cylinder is 
subject to harmonically varying forced displacement with the 
cyclic frequency and applied in the x3 direction, along the 
center axis of the cylinder. In this case, pure antiplane shear 
wave propagation (SH-waves) occur which means that there is 
no displacement in the x1 or x2 directions.  Axial symmetry in 
geometry and loading is assumed and cylindrical coordinates 
are considered.

Fig. 2.Cross section of tubular offshore wind turbine 
foundation.

THEORETICAL FORMULATION AND EQUILIBRIUM 
EQUATIONS 

Somigliana’s identity is based on the dynamic reciprocity 
theorem and the fundamental solution which is used for wave 
propagation in elastic media. The three-dimensional 
frequency-domain version of Somigliana’s identity reads: ( ) ( , ) + ( , ; ) ( , )  ( ) = ( , ; ) ( , )  ( ) +( , ; ) ( , )  ( )                                           (1)
where( , ; ) =  ( , ; , 0)                            (2a)

( , ; ) =  ( , ; , 0)                           (2b) ( )  is a coefficient dependent a the position ( ). In 
particular, for any interior point within the domain , the 
constant takes the value  ( ) = 1.  Actually, the value of  ( )  simply corresponds to the part of the point that is 
included in the domain . Hence,  ( ) = 0 at an exterior 
point, and  ( ) = 1/2 for a point on a smooth part of the 
boundary . A detailed derivation for a smooth part of a 
surface can be found in the work by Dominguez [1993].

And also, by assuming the surface and body quantities in the 
physical state vary harmonically with at the circular frequency , then:( , ) = ( , ) , ( , ) =  ( , ) ,( , ) =  ( , )                                                        (3)

where ( , ) are the components of the displacement field, ( , ) is the surface traction and ( , ) is the load per unit 
mass in coordinate direction . Vector is the position in 
space and is the time. Furthermore, based on Caushy’s law 
the relation between surface traction and the Caushy stress( ) tensor  is: ( , ) =  ( , ) ( ). ( , ; ) and ( , ; ) are the Green’s functions for the 
displacements and the surface traction in the frequency 
domain or, in other words, they are the Fourier transforms of ( , ; , 0) and ( , ; , 0), respectively. It can be 
mentioned here that the Green’s function for a vector field is a 
second-order tensor with the components  ( , ; , ) which 
provide the response at the point and time in coordinate 
direction due to a unit magnitude concentrated force acting at 
the point and time in coordinate direction l. Hence, 
whereas the displacement field ( , ) is a vector field with 
the components ( , ), the corresponding Green’s function 
is a tensor field ( , ; , ) with the doubly indexed 
components ( , ; , ).

FREQUENCY- DOMAIN EQUATION OF MOTION FOR 
SH-WAVES

The antiplane shear assumption induces the displacement 
components and which are identically equal to zero and 
partially derivatives with respect to vanish, only the 
displacement component u3 in the direction out of the ( , )
plane exists and it is constant in along the direction. In the 
case of elastodynamics, this corresponds to the propagation of 
SH-waves in the ( , ) plane. When antiplane shear is 
considered, only the third component of the displacement field 
is different from zero. This holds for both the physical field 
and the Green’s function. Hence, Somigliana's identity 
simplifies to a scalar integral equation as: ( ) ( , ) + ( , ; ) ( , )  ( ) =( , ; ) ( , )  ( ) +
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( , ; ) ( , )  ( )                                           (4)

SOLUTION FOR A HOLLOW CYLINDER 

By considering smooth interfaces, Somigliana’s identity (4) 
for the two domains and o(as shown in Fig. 2) reduces 
to:

( ) ( , ) + ( , ; ) ( ) ( , )  ( ) =( , ; ) ( )( , )  ( )                                          (5)( ) ( , ) + ( , ; ) ( ) ( , )  ( ) =( , ; ) ( )( , )  ( )                                           (6)

where ( ) ( , ) and ( ) ( , ) are the displacements in the 
-direction along the boundaries and , respectively, 

whereas ( )( , ) and ( )( , ) are the corresponding 
surface tractions.

Green’s function 

The fundamental solution for the antiplane displacements is
(Domínguez [1993]):( , ; ) = (i ), = | |, i = 1 (7)

where, is the shear modulus, represents the modified 
Bessel function of the second kind and order m and is the 
wavenumber. The relation between wavenumber and phase 
speed is: =
where is dependent on the material properties, and it is 
defined as:   : = (1 + i )   :       = (9)

where is the loss factor and is the material density. For a 
homogeneous isotropic linear elastic material, the generalized 
Hooke’s law forming the relation between stresses, ( , ),
and strains, ( , ), simplifies to( , ) =  ( , ) + 2  ( , )                               (10)

where  and  are the Lame constants, is Kronecker delta 
and ( , ) = ( , ) is the dilation. Substituting the 
fundamental displacements ( , ; ) from Eq. 7 into 
Hooke’s law (Eq. 10) and applying Caushy’s stress law the 
fundamental surface shear stresses is obtained:

( , ; ) = (i ), =                  (11)

defines the partial derivative of the distance between the 
source and observation points, and , in the direction of the 
outward normal:

= ( , ) ( ) = cos( )             ( , ) ( ) = cos( )                   

(12a)

where( , ) = | |                                                                     
(12b)

Here is the angle between the distance vector = and 
the normal vector n.

Continuity conditions
The continuity conditions for the displacements across the 
interface for the forced displacement with constant amplitude

and in phase along the cylindrical interface, ,
provides the result:

( ) ( , ) = ( ) ( , ) = ( ),                      (13a)( )( , ) = ( )( ) ,                                             (13b)( )( , ) = ( )( ) ,                                             (13c)

Substituting the continuity conditions (Eq. (13)) into Eqs. 5
and 6, by having the constant amplitude for the forced 
displacement yield a set of linear integral equations:( ) + ( , ; )  ( )  =( )( ) ( , ; )  ( )                                              (14)( ) ( , ; )  ( )  =( )( ) ( , ; )  ( )                                              (15)

Analysis
According to the frequency-domain equation of motion for 
each domain, inside and outside of the hollow cylinder, the 
dynamic stiffness can be obtained. Eliminating ( , ; )
from equations 14 and 15, the constant amplitude can be 
written in terms of the traction on the interface, as follows:( ) = 2  ( ) ( , ; )  ( )                               (16)

where the mean traction on either side of the interface (  ( ))
is: ( ) =  ( ( )( ) + ( )( ))                                         (17)

The general dynamic stiffness (  ( )) per unit surface of the 
interface related to displacement along the cylinder axis for 
arbitrary geometry of the infinite cylinder becomes:

 ( ) = 2  ( ) ( ) = , =  ( ) ( ) = ( , ; )  ( )  
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                                                                                              (18) 
where is the length of the interface , measured in the (x1,
x2) plane. In the presented case, an offshore foundation is 
considered as an infinite circular cylinder with the radius R 
that is with = 2 . In order to compute , the cylindrical 
polar coordinates ( , , ) are introduced (see Fig. 2) such 
that:= cos( ) , = sin( ) , =                                  (19)
In these coordinates, the boundary is defined by = , 0< 2 , < <  .
In particular, when an observation point  with the plane 
coordinates ( , = ( 1,0) is considered (see Fig. 2), the 
distance between the source and observation point becomes:= = 2                                                         (20)

Making use of the fact that = 2 , Eq. 16 may then be 
evaluated as:= (i ) = (2i ) =( ) (i )                                                            (21)

Here, is the Bessel function of the first kind and order 0. It 
is noted that (i ) for . Hence, ( ) 00. Furthermore, ( )has a number of zeros for = 0
and > 0. At the corresponding frequencies, ( )
becomes singular.

SOLUTION FOR A SOLID CYLINDER 

Based on Somigliana’s identity for smooth surface of the rigid 
cylinder as mentioned above, one domain would be considered 
for the solid cylinder. By representing the equation of motion 
for one domain:

( ) ( , ) + ( , ; ) ( ) ( , )  ( ) =( , ; ) ( )( , )  ( )                                         (22)

Considering a constant amplitude for the forced displacement 
and in phase along the cylindrical interface provides the result 
as: ( ) ( , ; )  ( )  =( )( ) ( , ; )  ( )                                              (23)

The general dynamic stiffness  ( ) per unit length along 
the cylinder of the infinite cylinder becomes:

 ( ) = 2  ( ) ( ) = , =  ( ) ( ) =( , ; )  ( )  ( , ; )  ( )                                                                (24)

by substituting the relation for fundamental surface shear 
stress, the dynamic stiffness can be written as:

 ( ) = = , =  ( ) ( ) = ( ) ( )                 

                                                                                              (25)               
Then

= (2i )12 +  i cos ( ) (2i )
NUMERICAL RESULTS 

For numerical illustration of the elastic solutions of this study, 
a thin long hollow and solid cylinders with mean radius R =
3.0(m) is considered. The material properties are considered as
(Liingaard and Andersen [2007]):

Table 1.  Material Properties 

Density ( ) Young’s
Modulus  ( ) Loss factor 

1861
9411× 10 Between:

0.01~0.113596× 10
Results and Discussion for Hollow cylinder  

In the following, results are presented in non-dimensional 
frequency  =  and the normalized dynamic stiffness( ) , where = 4 (1 + i ) . Different values of material 
properties such as Young’s modulus, loss factor and Poisson’s 
ratio are considered.

Fig. 3. Normalized dynamic stiffness per unit length of an 
infinite cylinder due to dynamic vertical load in the axial 
direction for different values of the loss factor, when  =9411 × 10  and = 0.495.

Fig. 3 illustrates the normalized dynamic stiffness based on 
the small deformation theory due to different frequencies of 
the axial force. The value of stiffness increases with the 
increase of the load frequency until reaching a peak point then 
decreases to a local minimum for certain value of frequency 
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and again increases with the increase of the load frequency to 
next peak point. This procedure is repeated periodically with 
the frequency. The local peak point for dynamic stiffness 
decreases with increasing loss factor, whilst the local 
minimum point of the stiffness increases with decreasing the 
loss factor. It can be noticed that the turning point at which the 
concave curve changes into a convex curve is the same for all 
different loss factors.

Fig. 4. Normalized dynamic stiffness per unit length of an 
infinite hollow cylinder due to dynamic vertical load in the 
axial direction for different values of the Young's modulus = 9411 × 10  , = 13596 × 10   when loss factor = 0.1 and = 0.495.

Fig. 4 shows the effect of Young’s modulus on variation of the 
dynamic stiffness versus load frequency. The normalized 
dynamic stiffness has the same value as the soil with lower 
Young’s modulus for all values of load frequency. 

Fig. 5. Normalized dynamic stiffness per unit length of an 
infinite hollow cylinder due to dynamic vertical load in the 
axial direction for different values of the Poisson’s ratio = 0.25, = 0.495 when loss factor = 0.1 and =9411 × 10 /
The variation of the dynamic stiffness with load frequency is 
shown in Fig. 5 for different value of Poisson's ratio. It is 
observed that the normalized dynamic stiffness is independent 
from some material properties of soil such as Poisson’s ratio 
and Young’s modulus.

Fig. 6. Phase angle of an infinite hollow cylinder due to 
dynamic vertical load in the axial direction for different values 
of the loss factor when the Young's modulus = 9411 ×10  and = 0.495.

Fig. 6 compares the phase angle for different values of loss 
factor versus non-dimensional load frequency. As it is seen, 
the phase angle oscillating around line  and the amount of 
fluctuating around this line decreases with the increase of load 
frequency. It can be noted that the absolute value of phase 
angle respect to central line (line  ) decreases with the 
increase of loss factor. 

Fig. 7. Phase angle of an infinite hollow cylinder due to 
dynamic vertical load in the axial direction for different values 
of the Young’s modulus = 9411 × 10 / and =13596 × 10 /  when loss factor = 0.1 and = 0.495.

Fig. 8. Phase angle of an infinite hollow cylinder due to 
dynamic vertical load in the axial direction for different values 
of the Poisson’s ratio = 0.25  = 0.495  =9411 × 10 / and the loss factor = 0.1. 
Figs. 7 and 8 concern the comparison of phase angle for 
dynamic stiffness versus non-dimensional load frequency for 
different values of Young’s modulus and Poisson’s ratio, 
respectively. In contrast with the results for different values of
loss factor, other material properties such as Young’s modulus 
and Poisson’s ratio do not have any effect on phase angle like 
the results reported in Dominguez [1993], Liingaard, and
Andersen [2007].
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Fig. 9. Normalized dynamic stiffness versus different values of 
load’s frequencies by having different values of loss 
factor = 0.0 and = 0.1 when = 0.495 and = 9411 ×10  .

Fig. 10. Scaled mode shape resonance due load with non-
dimensional frequency = 5.53 when loss factor = 0.1
and = 9411 × 10  .

To present the mode of resonance and anti-resonance, the load 
frequencies related to minimum and maximum value of the 
dynamic stiffness are needed. In order to calculate the related 
frequency, the maximum non-dimensional frequencies for = 0.1 is shown in Fig. 9, which is related to section A. For 
anti-resonance, the frequency related to minimum stiffness in 
section B as shown in Fig. 9 is needed. Fig. 10 presents the 
schematic wave mode inside the hollow cylinder versus
( = 2 , from Eq. 20). The value of non-dimensional 
frequency is taken from section A in Fig. 9, here = 5.53 is 
considered. Actually, by selecting each value of to 
correspond with peak point (such as: = 2.42, (or =5.53 ), (or = 8.67), (or = 11.83), the resonance mode 
can be seen. The continuous line in Fig. 10 represents the 
wave motion from the left hand side of cylinder to right hand 
side, and the dash line represents the wave motion from right 
to left hand side of the hollow cylinder. As seen, the wave 
motion on left hand side and right hand side have the same 
sign, both of them are positive which means resonance 
phenomena. The anti-resonance mode can be seen by selecting 
the minimum frequencies from section B.  

Results and Discussion for Solid cylinder  
Figs. 11 and 12 show the effect of loss factor on the dynamic 
stiffness and the phase angle of the dynamic stiffness versus 
non-dimensional frequency.

Fig. 11. Non-dimensional dynamic stiffness per unit length of 
an infinite cylinder due to dynamic vertical load in the axial 
direction for different values of the loss factor, when E = 
9411× 10  and = 0.495.

Fig. 12. Phase angle of an infinite solid cylinder due to 
dynamic vertical load in the axial direction for different values 
of the loss factor when the Young’s modulus = 9411 ×10  and = 0.495.

As it can be seen form Fig. 11, the rate of increasing the 
normalized stiffness for smaller value of the loss factor is 
higher than those for soil with greater value of the loss factor. 
Moreover, it is seen that by increasing the loss factor the 
number of local maximum decrease. Fig. 12 shows that at any 
local maximum of the phase angle, the peaks decrease by 
increasing the loss factor and the reverse manner happen at 
local minimum.

Comparison between Hollow and Solid cylinders  
In the following figures, results for hollow and solid cylinders
versus non-dimensional frequency in presentence of different 
loss factor, Young’s modulus and Poisson’s ratio are 
presented.  

Fig. 13. Comparison between normalized dynamic stiffness 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

a0 = (  R)/cS

|(S
33

(
))/

Z|

Section B

x = 5.53
y = 178.7

Section A

x = 8.67
y = 205.1

 = 0.0
x = 11.83
y = 233.6

 = 0.1x = 2.42
y = 154

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

M
od

e 
of

 re
so

na
nc

e

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

a0 = (  R) /Cs

|S
s3

3(
) /

 Z
|

 = 0.01

 = 0.05

 = 0.1

0 5 10 15 20 25 30 35

-3

-2

-1

0

1

2

3

a0 = (  R) /Cs

Ph
as

e 
an

gl
e,

 a
rg

(S
s3

3)(
ra

d)

 = 0.01
 = 0.05
 = 0.1

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

110

|(S
33

(
))

   
an

d 
  (

S s3
3(

) )
 / 

Z|

a0 = (  R) /Cs

 = 0.05, Solid
 = 0.05, Hollow
 = 0.01, Hollow



Paper No. 2.23           8

per unit length of an infinite hollow and solid cylinder due to 
dynamic vertical load for different values of the loss factor
versus non-dimensional frequency 

Fig. 14. Comparison between phase angle of an infinite 
hollow and solid cylinder due to dynamic vertical load for 
different values of the loss factor versus non-dimensional 
frequency

Fig. 15. Comparison between normalized dynamic stiffness 
per unit length of an infinite hollow and solid cylinder due to 
dynamic vertical load for different values of the Young’s
modulus 

Fig. 16. Comparison between normalized dynamic stiffness 
per unit length of an infinite hollow and solid cylinder due to 
dynamic vertical load for different values of the Poisson’s 
ratio 

As it is seen from Fig. 13, the numbers of peaks for hollow 
and solid cylinders are the same. In some peaks, when the 
frequency is small the stiffness in solid cylinder is greater or 
smaller than those in hollow cylinder. However for bigger
values of frequency ( > 9) the stiffness in solid cylinder is 
greater than hollow cylinder when = 0.05. Fig. 14 shows 
the phase angle in hollow cylinder tends to oscillate around 
line  and converges to this line, whilst the behavior of phase 
angle in solid cylinder in completely different, it is moving 
periodically without any convergence. It can be seen from 
Figs. 15 and 16 the stiffness in solid cylinder is greater than 
those in hollow cylinder by considering the loss factor equal to 
0.1.

CONCLUSIONS 

Offshore wind turbine foundations are modeled as smooth 
long hollow and solid cylinders while it is subjected to 
dynamic vertical excitation. The mathematical approach like 
boundary integral method is employed to find the exact 
dynamic stiffness of offshore foundation, phase angle, 
resonance and anti-resonance mode. The offshore foundation 
is considered in a viscoelastic media and elastic responses are 
presented by using the Betti’s reciprocal theorem, 
Somigliana’s identity and Green’s function. The behavior of 
the soil with damping and without damping is explored. The 
effects of material properties such as Young’s modulus and 
Poisson’s ratio on dynamic behavior of soil are investigated. 
The results for the soil with loss factor are validated and 
compared. Some general observations of this study can be 
summarized as:

The dynamic stiffness increases with the increase of the 
load frequency until reaching a peak point then decreases 
to a local minimum for certain value of frequency and 
again increases with the increase of the load frequency to 
next peak point for hollow and solid cylinder. This 
procedure is repeated periodically. The result is similar to 
hollow cylinder which reported in Liingaard and 
Andersen [2007].
The local peak point of the dynamic stiffness decreases 
with increasing loss factor in solid and hollow cylinder.
The turning point which the concave curve changes into 
convex curve happens in the same pint for all different 
loss factors in hollow cylinder while this turning point is 
not the same for solid cylinders for certain frequency.
The Dynamic stiffness and phase angle in a hollow or 
solid cylinder is independent of the soil’s material 
properties such as Young’s modulus and Poisson’s ratio
whilst it is dependent on loss factor. 
The phase angle fluctuates around line  and the amount 
of fluctuating around this line decreases with the increase 
of load frequency for hollow cylinder and also by 
increasing the loss factor it converges to line  , whilst 
the phase angle does not converge to certain value in solid 
cylinder.

It is observed that a mathematical approach that pertains to the 
vertical vibration analysis of foundation provides good 
understanding about the behavior of soil beside the wave 
propagation and different modes of the wave. The results 
reveal that the presented approach gains the physical 
understanding for offshore foundation in the geo-mechanics 
field.
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1 INTRODUCTION

The recent developments of offshore industries such 
as offshore wind turbine foundations and also struc-
tures for oil and gas extraction lead to a growing 
demand for realistic predictions of the behavior of
offshore structures. As the use of offshore founda-
tions increases, new methodologies need to be de-
veloped to characterize and analyze offshore struc-
tural components due to dynamic loads.

Dynamic behavior of offshore structures is one of 
the most important parts in the design of such struc-
tures. The dynamic response varies significantly in 
time and is affected by inertial, damping and kine-
matic effects as well as the stiffness of the structure 
and the underlying soil. Large shear strains (greater
than 10 %), pile–soil interaction, dynamic load 
rates and nonlinear material behavior lead to nonlin-
earity in the dynamic response (Ahangar et al. 
2011). Dynamic analysis is carried out theoretically 
by numerical methods, analytical or semi-analytical 
methods.

In the case of analytical methods, Nogami &
Konagai (1987) implemented nonlinear conditions in 
the time domain for dynamic response of pile foun-
dations subjected to harmonic and transient load.
Kazama & Nogami (1991) described the dynamic 

behavior of saturated two-phase layered media. They 
found that the permeability and loading rate (loading 
frequency) are critical factors to control the dynamic 
behavior of saturated soil. Bea (1992) described the 
effects of cyclic loadings on the axial capacity of
piles driven in cohesive soils and supporting off-
shore platforms. An advanced analytical procedure 
was developed to estimate pile penetration and to 
evaluate the pile performance when a platform is 
subjected to intense cyclic loading. Bea (1992)
found that loading rates, the ratio of steady to cyclic 
load amplitudes, the sequencing and numbers of cy-
cles of loading, and the relative pile–soil stiffness 
are all important parameters that determine the pile 
performance. Chang et al. (2000) analyzed the time-
dependent damping model by employing integration 
technique, an alternative time-dependent damping
model was proposed by Chang & Yeh (1999) in 
modeling the pile response from direct wave equa-
tion analyses. Lanzo et al. (2003) presented frequen-
cy and time domain analyses by using  computer 
codes PROSHAKE, DESRAMOD and QUAD4M.
They have considered viscous damping which is 
generally assumed to be of the Rayleigh type, i.e. 
stiffness- and mass proportional, or in a simplified 
form, only stiffness-proportional. They have shown 
the dependency of damping from frequency. On the 
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other hand, the numerical methods can be useful and 
implement easily.

Rajashree & Sitharam (2001) applied a FEM in 
order to present the nonlinear soil behavior by a hy-
perbolic relation for static load conditions and a
modified hyperbolic relation which includes both 
degradation and gap for cyclic loads. They used an 
incremental-iterative procedure where the pile was 
idealized as beam elements and the soil as elasto-
plastic spring elements. Klar and Frydman (2002) 
presented 3-D models and Winkler models based on 
the commercial 2-D finite difference code FLAC 
under static, seismic, and lateral dynamic loading.
Karim et al. (2002) analyzed a saturated porous elas-
tic soil layer under cyclic loading by using a 2-D
mesh free Galerkin method by having periodic con-
ditions. Liang et al. (2007) applied a 3-D FEM and 
presented the parametric study of laterally loaded
drilled shafts in clay. A hyperbolic p-y criterion was 
developed for cohesive intermediate geometrical. 
Harada et al. (2008) employed a multi-Winkler 
model based on soil traction for nonlinear soil–
foundation interaction during cyclic loading. The in-
tegration of the traction over the foundation area was
efficiently treated numerically by employing the fi-
ber element method. Al-Wakel et al. (2011) imple-
mented a model of frequency-dependent damping by 
using 3-D FEM while a rectangular footing on satu-
rated soil was subjected to cyclic and harmonic
force. The coupled dynamic equations with an u-p
formulation based on the dynamic consolidation 
theory were used to simulate the soil skeleton. The 
Beam on Nonlinear Winkler Foundation can be 
modeled in ABAQUS while the interaction nonline-
arity can be accounted for. Trochanis (1991) pre-
sented the response of laterally loaded piles by using 
ABAQUS and compared the results with 3-D FEM. 
Boulanger et al (1999) employed ABAQUS to pre-
sent the dynamic results of piles and validated the 
results with centrifuge experimental tests. Commer-
cial software such as ABAQUS can be versatile, 
economical and friendly user software for various 
complicated conditions in a simple manner.

It may be noted that the existing literature on off-
shore monopile foundations as cited above presents
experimental and theoretical solutions based on nu-
merical or analytical approaches. To the best of our 
knowledge, no work has been reported till date that 
presents a comprehensive parametric study of off-
shore foundations by using FEM with presence of 
the pore pressure that is developed due to dynamic 
load. The influence of different parameters such as 
pore pressure, load amplitudes and frequencies, the 
bulk modulus of the grains, the permeability of the 
seabed and void ratio of the seabed, and Young’s 

modulus of the matrix material are investigated. The 
FEM and a Kelvin-Voigt model are employed for 
analysis of a 2-D saturated soil model.

2 MODEL DESCRIPTION

Consider an axisymmetric solid circular cylinder 
with radius R, as shown in Figure 1. The arc-
boundary which represents the common border be-
tween the solid cylinder and the saturated soil is sub-
ject to harmonically varying forced displacement 
with the cyclic frequency and applied in the hori-
zontal (x) direction. The two-dimensional analysis of 
each individual soil layer is performed.

2.1 Soil modeling
The soil is considered as an isotropic and elastic ma-
terial. For saturated soil, the permeability, specific 
weight and void ratio, porous bulk moduli (which 
encompass the bulk modulus of grains and the bulk 
modulus of fluid) are defined. The mesh consists of 
4-noded quadrilateral elements with linear interpola-
tion of the displacement and pore pressure (CPE4P).

Figure 1: Two-dimensional finite-element model of an offshore 
wind turbine foundation and the surrounding soil.

2.2 Theoretical approach 
The numerical calculation for dynamic analysis of 
offshore monopile foundations based on a one di-
mensional Kelvin-Voigt model by using FEM is pre-
sented. The dynamic analysis has been implemented 
within the framework of ABAQUS. Different model 
size for symmetry pile are applied. A numerical so-
lution for the reaction force on the pile is given.

Figure 2: Kelvin-Voigt model.



In the Kelvin-Voigt model as shown in Figure 2, the 
equation of motion can be written as:+ = . (1)

Here , and are the damping, stiffness and reac-
tion force, respectively, while and are the dis-
placement and the velocity. By applying sinusoidal 
force-displacement, the reaction force could be in 
sinusoidal form with phase angle respect to applied 
displacement, however the amplitude of force and 
applied displacement are different.  By calculating 
the phase angle from numerical results in ABAQUS
(Dassault Systèmes Simulia Corp. 2012) and using 
the flowchart as shown in Figure 3, the damping and 
stiffness can be calculated.

Figure 3: Flowchart of computer program.

2.3 Boundary conditions
The pore pressure and displacement at the exterior 
boundary should be zero. Symmetry of the solution 
should apply across the center line of the model,
while for the semi-circle carve, the sinusoidal peri-
odic displacement in horizontal direction is applied 
as shown in Figure 4.

Figure 4: Boundary conditions for the soil block.

3 NUMERICAL RESULTS 

For numerical illustration of the elastic solutions of 
this study, a solid cylinder with radius R = 3.0 m is 
considered. The material properties listed in Table 1
are considered. A soil block with a circular cavity
subjected to sinusoidal periodic displacement is ana-
lyzed, using different geometry and soil properties in 
order to illustrate the effects of changes.

Table 1.  Material properties of soil.
Young’s modulus  ( / 2) 1 × 10
Poisson’s ratio 0.25
Void ratio 0.50
Bulk modulus of grain ( / 2) 3.6 × 10
Bulk modulus of fluid ( / 2) 2 × 10
3.1 Results for different geometries 

Figure 5 (top and middle) illustrates the damping 
and stiffness due to sinusoidal periodic load for dif-
ferent geometry of the soil block around the pile. It 
can be seen from Figure 5 that for each dimension of 
the model, the stiffness and damping have their max-
imum value for the smaller size of the model. It is 
seen that for large sizes of the model, the variations
of the mentioned properties become small. As ex-
pected, the effect of the exterior boundary condition 
for large sizes of the model became smaller than 
those for a small model.

Figure 5: Variation of stiffness and damping versus model di-
mensions, and variation of scaled reaction force and displace-
ment versus time.
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The graphs in Figure 5 (top and middle) are calcu-
lated based on reaching steady state conditions. The 
simulation is carried for 12 s as shown in Figure 5
(bottom) and then by calculating the phase angle be-
tween two graphs the damping is determined. It is 
worth to mention that the stiffness and damping are 
calculated after two periods in order to have the 
steady state results. It can be concluded that a bigger 
model can make better results by avoiding the effect 
of outer boundary conditions. Thus, in the rest of the
analyses the larger model of this study is considered.

3.2 Results for different void ratio
Figure 6 illustrates the variation of stiffness and 
damping due to periodic loading for different values 
of the void ratio. It is seen that the values of stiffness 
and damping decrease by increasing the void ratio. It 
is noted that the variation of damping versus void ra-
tio is greater than the variation of the stiffness.   

Figure 6: Variation of stiffness and damping versus variation of 
the void ratio.

3.3 Results for different permeability 
The variation of stiffness and damping due to peri-
odic load for saturated soil for different values of 
permeability are presented in Figure 7 (top and mid-
dle). As it can be seen the by increasing the permea-
bility the damping increases, and for specific values 
of the permeability the maximum damping occurs,
whereas for further increasing permeability the 
damping decreases. The stiffness decreases with in-
creasing the permeability. A decrease of almost 30% 
can be identified. The following values of the per-
meability have initially been examined in the study:
0.5, 0.4, 0.2, 0.1, 0.07, 0.05, 0.03, 0.01, 0.005, 0.001, 
0.0005, 0.0001, 0.00005, and 0.00001 (m/s). The 
behavior of damping makes awareness to investigate 

the variation of damping using smaller increments in 
the permeability. The following values have been 
applied in Figure 7 (bottom): 0.01, 0.02, 0.03,… , 
0.27, 0.028, 0.29, 0.30 (m/s). The graph suggests 
that the maximum damping for the soil material 
properties and pile geometry occurs for a permeabil-
ity of 0.15.

Figure 7: Variation of stiffness and damping versus variation of 
the permeability.

3.4 Results for different load frequencies

Figure 8 shows the variation of stiffness in the soil 
due to harmonic forced displacement with different 
values of the excitation frequency. It is evident that 
the dynamic soil stiffness increases with increasing 
load frequency in the entire range of frequencies.

Figure 8: Variation of stiffness versus variation of the load fre-
quency.
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3.5 Results for different load amplitudes  
Figure 9 illustrates the variation of stiffness and 
damping due to time-harmonic excitation with dif-
ferent values of load amplitudes. As it can be seen,
the behavior of stiffness and damping are similar: by 
increasing load amplitudes, the stiffness and damp-
ing related to the soil increase up to the specific val-
ue of amplitude = 0.6 m. Hereafter they are going to 
decrease. It can be mentioned that the variations of 
the stiffness are very small, whilst the variations of 
damping are slightly greater with respect to the load 
amplitude variation.

Figure 9: Variation of stiffness and damping versus variation of 
the load amplitude.

3.6 Results for different grain bulk moduli
The variation of stiffness and damping due to har-
monic loading for soil with different grain bulk 
moduli are presented in Figure 10. As expected the 
values of stiffness and damping increase with an in-
crease of the grain bulk modulus. The relative varia-
tions of stiffness and damping are almost the same,
and only small variations are observed.

Figure 10: Variation of stiffness and damping versus different 
grain bulk modulus.

3.7 Results for different Young’s moduli
It is evident from Figures 11(a) and 11(b) that the 
variation of stiffness and damping is almost linear 
versus the variation of Young’s modulus.

Figure 11: Variation of stiffness and damping versus different 
Young’s moduli.

As expected, by increasing the Young’s modulus 
the stiffness and damping in soil increase. It is worth 
to mention that the variation of stiffness is higher 
than the variation of damping versus the variation of 
Young’s modulus. For the mentioned model, the rel-
ative variation of the stiffness is about 1.5 times 
higher than the relative variation of the damping. 
This implies that the stiffness is more sensitive than 
the damping with respect to variations of Young’s 
modulus.

4 CONCLUSIONS

The dynamic response of isotropic elastic saturated 
soil is presented by using a finite-element model.
The effects of model size, soil properties (such as 
Young’s modulus, bulk modulus of grain, void ratio, 
and permeability), load frequency and amplitude on 
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the dynamic stiffness and soil damping are investi-
gated.

Numerical results are presented by using the fi-
nite-element method by coding the input file and us-
ing Python scripting in ABAQUS and MATLAB. A
sinusoidal forced displacement is applied and the 
simulation is carried out within 12 second.    

Some general observations of this study can be 
summarized as follows:

Dynamic stiffness and damping decrease with 
increase of void ratio and the variation of 
damping versus void ratio is greater than vari-
ation of stiffness versus void ratio.

Damping increases to certain value for specif-
ic value of permeability and then decreases by 
increasing the permeability, whilst stiffness 
decreases by increasing permeability.  

Dynamic stiffness is more sensitive than 
damping with respect to variation of Young’s 
modulus.

Results of the frequency-dependent damping and 
dynamic stiffness are similar and in the same line to 
the results reported in Chang et al. (2000) and Ka-
zama & Nogami (1991), respectively.
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a b s t r a c t

The fatigue life of offshore wind turbines strongly depends on the dynamic behaviour of the structures
including the underlying soil. To diminish dynamic amplification and avoid resonance, the eigenfrequen-
cy related to the lowest eigenmode of the wind turbine should not coalesce with excitation frequencies
related to strong wind, wave and ice loading. Typically, lateral response of monopile foundations is ana-
lysed using a beam on a nonlinear Winkler foundation model with soil–pile interaction recommended by
the design regulations. However, as it will be shown in this paper, the guideline approaches consequently
underestimate the eigenfrequency compared to full-scale measurements. This discrepancy leads the
authors to investigate the influence of pore water pressure by utilising a numerical approach and con-
sider the soil medium as a two-phase system consisting of a solid skeleton and a single pore fluid. In
the paper, free vibration tests are analysed to evaluate the eigenfrequencies of offshore monopile wind
turbine foundations. Since the stiffness of foundation and subsoil strongly affects the modal parameters,
the stiffness of saturated soil due to pore water flow generated by cyclic motion of monopiles is investi-
gated using the concept of a Kelvin model. It is found that the permeability of the subsoil has strong influ-
ence on the stiffness of the wind turbine that may to some extent explain deviations between
experimental and computational eigenfrequencies.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For offshore wind turbines, the monopile foundation concept, in
which a pile made of welded steel is driven open-ended into the
soil, is often applied. For a variety of subsoil conditions, this type
of foundation has proven to be cost-effective at shallow water.
As an example, the Thanet and Bligh Bank wind farm consist of
3.0 MW turbines installed on monopile foundations in water
depths between 15 and 30 m. As future offshore wind turbines
with rated power values of 5–6 MW installed on monopile founda-
tions are expected to be installed at greater water depths, the
dynamic system response becomes highly sensitive to excitations
with low frequency content.

Besides the static bearing capacity of wind turbines, the fatigue
limit state is of paramount importance to investigate. To reduce
the fatigue damage accumulation during the lifetime of wind tur-
bine structures, amplification of the response must be avoided. In
this regard, sufficient system stiffness is required to ensure that

the eigenfrequency f1 related to the lowest eigenmode U(1) of
the wind turbine structure does not coalesce with excitations from
the operation frequency of a three-blade turbine and waves. Fig. 1
illustrates the realistic spectra representing aerodynamic and
hydrodynamic excitation for the North Sea and the excitation
ranges 1P and 3P associated with the mass imbalances in the
blades and shadowing effect from the wind each time a blade
passes the tower, respectively. The forcing frequency 1P is the fre-
quency of the rotor revolution and the 3P frequency is the fre-
quency of blades passing the tower on a three-bladed turbine.
The mass imbalance can be due to differences in the blade weight
during installation or cracking in a blade where moisture finds its
way. Three possible designs can be chosen for a wind turbine [2]: a
very stiff structure with the eigenfrequency f1 above 3P (‘‘stiff–
stiff’’), the eigenfrequency f1 in the range between 1P and 3P
(‘‘soft-stiff’’) or a very soft structure with the eigenfrequency f1
below 1P (‘‘soft–soft’’). A ‘‘soft-stiff’’ wind turbine structure is often
chosen in current practice because a huge amount of steel is
required for a ‘‘stiff–stiff’’ structure. As the trend is to create larger
turbines, rotor blades become longer, generator masses greater and
hub heights higher. Thus, the rotation frequency and the first nat-
ural frequency will decrease. It may then seem impossible to

http://dx.doi.org/10.1016/j.compgeo.2014.05.008
0266-352X/� 2014 Elsevier Ltd. All rights reserved.
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design wind turbine structures as ‘‘soft–soft’’ structures, since the
risk of the hydrodynamic frequency range falls into 1P is relatively
high. Finally, it should be noted that ice breaking [3,4] can induce
serve vibrations of offshore wind turbines with excitation frequen-
cies close to the structural eigenfrequencies of offshore wind tur-
bines. Evidently, this effect should only be considered relevant
for wind turbines installed in cold regions.

The eigenfrequency f1 depends on the stiffness of the founda-
tion and tower as well as on the stiffness of the interaction
between soil and foundation. In general, the stiffness of the soil–
structure interaction is complicated to determine, since cyclic
loading might lead to possible softening/hardening of the soil. Kau-
sel [5] made an extensive review of some of the leading develop-
ments for solving soil–structure interaction problems. In this
regard, finite element models are high-precision methods in simu-
lation of soil–pile interaction problems. Klar and Frydman [6] pre-
sented 3-D models and Winkler models based on the commercial
two-dimensional finite difference code FLAC under static, seismic,
and lateral dynamic loading. In addition, Yegian and Wright [7],
Randolph [8], Trochanis et al. [9] and Achmus et al. [10] used the
finite element method (FEM) for analysing the dynamic response
of pile-supported structures. Al-Wakel et al. [11] implemented a
frequency-dependent damping model by using a 3-D FE model,
where the saturated soil was subjected to cyclic and harmonic
forces. Medina et al. [12] analysed the effect of the soil–structure
interaction on the dynamic behaviour of piles. Impedances and
kinematic interaction factors of the pile configurations were
calculated using a coupled boundary-element/finite-element
methodology.

However, since the FEM comes at the cost of great computation
times, a beam on nonlinear Winkler foundation (BNWF) model,
originally formulated by Winkler [13], is usually employed for
design of monopile foundations due to its versatility and efficiency.
The pile is modelled as a beam on a nonlinear foundation in which
the interaction between pile and soil is modelled as a series of
uncoupled springs. The spring stiffness is governed by the so-called
p–y curves, where p and y are the resulting force per unit length in
the horizontal direction and the corresponding displacement,
respectively. Following this approach, Matlock et al. [14], Makris
and Gazetas [15] and Nogami et al. [16] analysed the soil–pile
interaction for different soil conditions. El Naggar and Novak
[17,18] studied the lateral response of monopiles to transient
dynamic loading. Based on inner and far field models accounting
for the soil nonlinearity and wave propagation away from the pile,
reasonable agreement between the developed model and field

tests was obtained. Further, El Naggar and Bentley [19] formulated
p–y curves for dynamic soil–pile interaction and Kong et al. [20]
presented a simplified method including the effect of separation
between the pile and the soil. The last-mentioned has further been
studied by Memarpour et al. [21], who developed a BNWF model
that accounted for gap formations between pile and soil. Experi-
mental investigations of the interaction between foundation and
subsoil have been reported by Bhattacharya and Adhikari [22]
and Lombardi et al. [23]. Based on a series of 1-g laboratory tests
of a scaled wind turbine on a monopile foundation for different soil
conditions, the eigenfrequency related to the lowest eigenmode
was evaluated and successfully compared with BNWF models.
Sørensen and Ibsen [24] and Damgaard et al. [25] used BNWFmod-
els to demonstrate the correlation between scour depths and
eigenfrequencies of offshore wind turbines, whereas Barakat
et al. [26], Low et al. [27], Fenton and Griffiths [28] and Andersen
et al. [29] applied BNWF models for reliability-based soil–pile
interaction. A further development of BNWF models for nonlinear
dynamic soil–pile interaction was conducted by Allotey and El
Naggar [30].

Several formulations of p–y curves exist for sand and clay. Orig-
inally, the formulations were developed as a consequence of the oil
and gas industry’s expansion of offshore platforms, where the soil–
pile interaction became crucial to analyse. Design regulations such
as API [31] and DNV [32] have adopted the p–y curve formulation
for sand proposed by Murchison and O’Neil [33] based on the field
tests presented by Cox et al. [34]. For soft and stiff clay, the p–y
curve formulations recommended by the design regulations are
based on the work performed by Matlock [35], Reese and Welch
[36] and Dunnavant and O’Neill [37]. Overall, the p–y curve formu-
lations are based on a number of field tests on fully instrumented
flexible piles with significantly smaller slenderness ratio compared
to offshore wind turbine foundations. Several assumptions of the
derivations of the formulations can be questioned. In the authors’
opinion, the most important ones are listed below:

� The soil is not treated as a continuum but as a series of discrete,
uncoupled resistances. As a consequence, there is no rigorous
description of 3-D failure and deformation mechanisms in the
soil surrounding the pile.

� Using the BNWF model, the pile bending stiffness is employed
when solving the governing equation. However, the spring stiff-
ness representing the soil stiffness is independent on the pile
properties, which is questionable.

� The p–y curve formulations were originally developed and ver-
ified for flexible piles with diameters up to 2 m. However, for
offshore wind turbines, monopiles with diameters of 4–6 m
exist. Hence, a pile which behaves rigidly will have a negative
deflection at the pile toe. This deflection causes shearing stres-
ses at the pile toe, which increase the total lateral resistance. In
addition, rotations at the pile toe will provide a moment on the
pile caused by vertical stresses acting on the pile toe, see Fig. 2.
These effects are neglected in the p–y curve formulations.

� The p–y curve formulations are based on full-scale tests on piles
installed in rather homogenous soil. However, piles are often
installed in a stratum.

� The initial stiffness of the p–y curves is independent of the pile
diameter. Sørensen et al. [38] provided an expression for the
initial stiffness of sand that depended on the depth below soil
surface, the pile diameter and Young’s modulus of elasticity of
the soil. Validated against laboratory tests, it was found that
the initial stiffness of the p–y curves highly depends on the pile
diameter.

As it will be shown in this paper, a BNWF model based on the
incorporated p–y curves recommended by the design regulations
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Fig. 1. Excitation range for a modern offshore three-bladed wind turbine structure
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consequently underestimate the eigenfrequency f1 related to the
lowest eigenmode U(1) of offshore wind turbine structures
installed on monopile foundations compared to full-scale measure-
ments. The discrepancy might be caused by the above-mentioned
assumptions and limitations of the current p–y curve formulations.
However, it should be noted that cyclic loading is only in a very
simple manner incorporated in the current p–y curve formulations,
and the effects of pore fluid pressure build-up in the soil stratum
are disregarded, i.e. the soil material is described as a single-phase
system. Therefore, in order to ameliorate the current results based
on the p–y curve method, the soil is treated as a fully saturated
porous material, or matrix, where the fluid phase interacts with
the stresses carried by the solid phase, i.e. the effective stresses.
Despite of an offshore wind turbine structure is characterised with
low eigenfrequencies, the cyclic behaviour of the structure pro-
vides pore pressure build-up in the soil in the relatively low fre-
quency range. Hence, depending on the permeability of the bulk
material constituted by the grain skeleton and the pore fluid, the
soil material may be partially (un)drained. As it will be shown in
this paper, the pore fluid pressure build-up in different soil strata
has a significant effect on the soil stiffness—even for cohesionless
soils. This in turn provides a dependency between the soil perme-
ability, the soil stiffness and the eigenfrequency of the wind tur-
bine structure.

The aim of this paper is to explain the dynamic behaviour of sat-
urated soil subjected to steady-state vibrations. A thorough
numerical investigation based on BNWF models and experimental
tests have been carried out in order to evaluate the eigenfrequen-
cies related to the lowest eigenmode of 54 offshore wind turbines.
Furthermore, the concept of a Kelvin model is employed and com-
bined with a two-dimensional FE model of the foundation and sub-
soil in order to illustrate the dependency between soil stiffness and
permeability. This in turn makes it possible to analyse the dynamic
response of a linear pore-elastic medium, which is used to explain
the observed differences between the experimental and the
numerical values of the eigenfrequencies of the wind turbine struc-
tures. It should be mentioned that the two-dimensional FE model
is incorporated to get better results for two-dimensional p–y
curves; however the volumetric dynamic flow is ignored.

Following the introduction, Section 2 contains the experimental
modal analysis of the investigated offshore wind turbine struc-
tures. In addition, the section presents the computational eigenfre-
quencies based on the Winkler model and compares the results
with the experimental tests. A FE model of a monopile placed in
saturated soil is developed in Section 3. Finally, in Section 4 the
paper is concluded.

2. Eigenfrequencies of offshore wind turbine structures

The eigenfrequency f1 related to the lowest eigenmode U(1) of
an offshore wind turbine and its substructure has a high impact
on the dynamic behaviour of the system. A detailed knowledge
of the expected frequencies of the excitation forces and of the
eigenfrequencies of the wind turbine is crucial. In the following,
a thorough data processing of 510 free vibration tests on 54 off-
shore wind turbine structures is presented. The estimated experi-
mental eigenfrequencies f1,i related to the lowest eigenmode U(1)

are supported by a BNWF model approach with p–y curve formu-
lations recommended by API [31] and DNV [32]. Based on a piezo-
cone penetration test for each wind turbine location, the section
documents to what extent the recommended BNWF model
approach is able to predict the measured eigenfrequencies f1,i
related to the lowest eigenmode U(1).

2.1. Wind turbines and site conditions

The wind turbine structures are part of a wind park with a total
of 100 Vestas V90–3.0 MW wind turbines located in the North Sea.
The turbines are arranged with approximately 500 m between
each other and divided into seven rows. The mean water level
(MWL), i.e. the average height of the water surface, varies between
20 m and 30 m as indicated in Fig. 3.

2.2. Soil conditions

At each wind turbine location, a full-scale piezocone penetra-
tion test has been conducted in order to determine the soil proper-
ties. By use of the classification method proposed by Robertson
[39], the soil unit weight c is determined for each soil layer. The
internal peak angle of friction u0 is found according to the proce-
dure proposed by Bolton [40] with the relative density ID deter-
mined by the expression given by Jamiolkowski et al. [41]. The
undrained cohesion cu is estimated using the total cone resistance
qc as suggested by Robertson et al. [42]. Because no boring profiles
have been available, an empirical cone factor Nk equal to 15 has
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Fig. 2. Forces and stresses acting on the pile toe of a plugged monopile in case of
rigid behaviour.
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118 M. Damgaard et al. / Computers and Geotechnics 61 (2014) 116–126



been used to determine the undrained cohesion cu. The soil condi-
tions at the wind park consist of different layers that include cohe-
sive and cohesionless soil. As an example, the stratification and
properties are summarised in Table 1 for wind turbine location
D9. The soil strengths are determined with a 50% quantile.

2.3. Pile and tower conditions

The foundation concept for all the investigated wind turbines is
the well-proven monopile concept. The concept consists of a tubu-
lar steel pile section with a grouted transition piece. The diameter
of the monopile is varying between 4.11 m and 4.9 m and the piles
are driven between 21 m and 31 m into the soil. A nominal 80 mm
grout annulus between the pile and the transition piece is utilised
with an 8.6 m long overlap zone between the outside of the pile
and the inside of the transition piece. For location D9, the outer pile
diameter OD is 4.5 m, the pile length L is 51.2 m and the pile wall
thickness t varies from 60 mm to 75 mm. The pile toe is located
49.7 m below the mean sea level leading to an embedded depth
of 24.2 m. The tower is a tubular steel tower which consists of
two sections that are bolted together through internal flange-bolt
connections. The geometry of the pile, transition piece and tower
for location D9 is shown in Fig. 4. The hub height is 54 m above
MWL, where a rotor mass and nacelle mass of 42,653 kg and
70,000 kg, respectively, are placed. An oscillation damper is built
into the top of the tower just beneath the nacelle. It consists of a
pendulum partly immersed in high viscous oil and able to oscillate
in the two horizontal directions. The mass of the damper is
6000 kg.

2.4. Free vibration tests

In the period September 2010 to February 2012, a total of 510
free vibration tests have been performed on 54 offshore wind tur-
bines. By use of two accelerometers placed in the nacelle, the tower
acceleration in the fore–aft direction y and the side–side direction
x has been measured. Fig. 5 shows the raw output time domain sig-
nal for a free vibration test on turbine D9. The acceleration in the
fore–aft direction ay and the blade pitch angle hb are shown as
functions of time t. A sampling frequency fs of 10 Hz and an 8th
order Butterworth low pass filter with a cut-off frequency Fc = 4f1
has been used to establish a sufficiently high signal-to-noise ratio.

For each free vibration test, the damped eigenfrequency f1,d
related to the lowest eigenmode U(1) is determined by making
least-squares fitting to the crossing times of the resultant acceler-
ation decay ar. The undamped eigenfrequency f1 is then deter-
mined by the following relation:

f1 ¼ f1;dffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f21

q ; ð1Þ

where f1 is the damping ratio related to the lowest eigenmodeU(1)

found by fitting a linear function to the natural logarithm of the
identified peaks and valleys of the resultant acceleration decay ar.
To reduce the aerodynamic effects from the rotor blades when they

pitch out of the wind, the eigenfrequencies of the wind turbine are
only derived from pitch angles hb higher than 80�.

2.5. Winkler model approach

The concept of a Winkler foundation model is adopted to esti-
mate the undamped eigenfrequency f1 related to lowest eigen-
mode U(1) of the investigated offshore wind turbines. The soil
resistance is modelled as uncoupled linear springs with stiffness
E�py acting on an elastic beam as shown in Fig. 6. According to
Timoshenko [43], two coupled equations can be formulated to
describe beam deflections:

GpAv
d
dz

dy
dz

� w

� �
� E�

pyy ¼ 0; ð2Þ

EpIp;x
d4y

dz4
� N

d2y

dz2
þ E�

pyy ¼ 0; ð3Þ

where Gp, Av, Ep and Ip,x are the shear modulus, effective shear area,
Young’s modulus and second moment of area of the structure,
respectively. Further, w is the cross-sectional rotation of the struc-
ture, whereas y and N are the structural deflection and axial force,
respectively. The structure is clamped in the vertical direction at
the pile toe, i.e. no load transfer is taken into account in the vertical
direction and N = 0.

The computational model relies on a FE approach, where the
wind turbine structure is discretized into a number of 2D beam
elements. For each degree of freedom (DOF), the beam element
with the length L is exposed to a forced unit displacement or rota-
tion, cf. Fig. 7. Hence, assuming that plane sections normal to the
beam axis remain plane and normal to the beam axis during the
deformation, the shape functions of a cubic spline Ui are given by

U ¼

U1

U2

U3

U4

2
6664

3
7775 ¼

2n3 � 3n2 þ 1
ðn3 � 2n2 þ nÞL
�2n3 þ 3n2

ðn3 � n2ÞL

2
6664

3
7775; n ¼ z

L
: ð4Þ

Based on the strong formulation according to Eq. (3) with the
axial deformation omitted, the weak formulation is obtained by
multiplying Eq. (3) with an arbitrary function v(z) and integrating
over the element length L, i.e.,Z L

0
vðzÞ d2

dz2
EpIp;x

d2y

dz4

 !
dzþ

Z L

0
vðzÞE�

pyydz ¼ 0: ð5Þ

Using the FE approximation y(z) =Ua and v(z) = cTUT, where ai
is the nodal displacement/rotation and ci is a constant, Eq. (5)
may advantageously be rewritten in the form:

cT
Z L

0

d2UT

dz2
EpIp;x

d2U

dz4
dzaþ cT

Z L

0
UTE�

pyUdza

¼ cTake;p þ cTake;py ¼ 0; ð6Þ
where ke,p and ke,py are the element stiffness matrices of the wind
turbine structure and subsoil, respectively. Whereas ke,p can be
found analytically in the form [44],

ke;p ¼ EIp;x
L3

12 6L �12 6L
6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

2
6664

3
7775; ð7Þ

numerical integration is used to derive ke,py. Hence, rather than
modelling the soil as a number of discrete springs connected to
the element nodes, a consistent approach is used, where the soil
is modelled as a continuous spring over each element. For each

Table 1
Soil stratification and characteristic soil properties based on 50% quantile for wind
turbine location D9.

Depth (m) uk
0
(�) cuk (kPa)

Loose sand �5.3 33.2 –
Very stiff clay �6.7 – 319.3
Very stiff clay �12.5 – 247.1
Very hard clay �39.0 – 1036.4
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integration point along the element of the pile, E�py is evaluated and
Simpson integration is used to determine ke,py. Keep in mind that
this procedure is in contrast to calculations previously presented
in the literature, where the soil is modelled as discrete springs act-
ing in the finite element nodes, meaning that an accurate descrip-
tion requires a lot of elements. This is avoided by modelling the
soil springs as being continuous over the elements.

The stiffness E�py depends on the soil properties. In this study, E�py
is chosen as the initial slope of the p–y curves. Based on the find-
ings from O’Neill and Murchison [45], API [31] and DNV [32] rec-
ommend the following expression for the initial stiffness E�py for
piles located in sand:

E�
py ¼

dp
dy

����
y¼0

¼ d
dy

Apu tanh
kz
Apu

y
� �����

y¼0
¼Apu

kz
Apu

cosh2 kz
Apu

y
� �

��������
y¼0

¼ kz: ð8Þ

Here, pu is the ultimate soil resistance, k is the initial modulus of
subgrade reaction and z is the depth below the soil surface. A is a
dimensionless factor depending on whether static or cyclic loading
conditions are present. For static loading A ¼ 3:0� 0:8 z

D

� �
P 0:9,

whereas for cyclic loading A = 0.9. However, as it can be observed
from Eq. (8), the dimensionless factor A is cancelled out. For clayey
soils, DNV [32] recommends to linearise the nonlinear p–y curves
from the discretisation point given by the relative displacement
y/yc = 0.1 with ordinate value p/pu = 0.23, where yc = 2.5e50D. D is
the pile diameter and e50 is the strain corresponding to a stress
of 50% of the ultimate stress in a laboratory stress–strain curve.
Pu for clayey soil is given by

Fig. 4. Geometry of the offshore wind turbine structure at location D9 decomposed into: (a) monopile foundation, (b) transition piece, (c) tower. All dimensions are in
millimetres. As an example, OD4740X45 corresponds to a section with outer diameter OD = 4740 mm and thickness t = 45 mm.
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Pu ¼ max 3þ c0

cu
zþ J

D
z

� �
cuD;9cuD

� �
; ð9Þ

where c is the submerged unit weight, cu is the undrained shear
strength and J is an empirical dimensionless parameter.

Using a similar approach, the structural element mass matrix
me,p reads [44]

me;p ¼
Z L

0
UTUqpApdz ¼

qpApL
420

156 22L 54 �13L
22L 4L2 13L �3L2

54 13L 156 �22L
�13L �3L2 �22L 4L2

2
6664

3
7775;
ð10Þ

where qp, and Ap are the mass density and the section area of the
structure, respectively. The mass of the nacelle and rotor is added
as a concentrated mass in the top node. Likewise, masses of the
flanges and internal equipment are added as concentrated masses.
The monopile is assumed to be flooded, i.e. the mass of the water
within the monopile is added as dead weight. Water around the
monopile is applied as added mass according to DNV [32]. Hence,
for each element below MWL, the added mass is determined in
terms of the hydrodynamic inertia coefficient Cm, the outer area
of the pile per unit length Ap, the pile length Lp and the water
density qw, i.e. m = (Cm � 1)Ap Lpqw. Cm = 1.2 has been used in the
current study. To account for the increased mass and stiffness in
the presence of the grout annulus between the pile and the transi-
tion piece, an equivalent steel wall thickness is used.

Assembling the global system stiffness and mass matrices and
applying the nodal boundary conditions, the following eigenvalue
problem is solved:

Mp€uþ Kp þ K s
� �

u ¼ 0; ð11Þ
where Mp is the global structural stiffness matrix and Kp and Ks are
the global stiffness matrices of the wind turbine and subsoil, respec-
tively. U(t) is the generalised displacement and rotational vector. In
order to find the undamped eigenfrequency fk for the kth eigen-
mode U(k), a harmonic function is applied as a solution to Eq. (11)

uðtÞ ¼ Re UðkÞeixkt
� �

; ð12Þ
where it is used that the kth angular eigenfrequency xk of the
harmonic motion u(t) is given by xk = 2pfk. Inserting Eq. (12) into
Eq. (11) makes it possible to find the kth undamped eigenfrequency
fk and corresponding eigenmode U(k) by solving the frequency
condition:

det Kp þ Ks
� ��x2

kMp
� � ¼ 0: ð13Þ
The number of beam elements is based on a convergence test

indicating that 140 elements and thereby system matrices with
the dimension 282 � 282 are sufficient in order to evaluating the
undamped eigenfrequency f1 related to lowest eigenmode U(1).

2.6. Comparison of experimental and computational eigenfrequencies

For the experimental investigations, a minimum of five tests for
each turbine is required to sustain a decent reliability level. Fig. 8
shows the comparison of the measured and computational eigen-
frequencies f1,i. As indicated, an apparent trend is observed, where
all the measured eigenfrequencies are higher than the correspond-
ing calculated values, i.e. the minimum, mean and maximum val-
ues of the measured undamped eigenfrequencies for each turbine
are 2–13% higher as shown in Fig. 8a–c, respectively.

Keep in mind that soil properties are of a random nature char-
acterised by a high degree of uncertainty related to the calibration
of the soil characteristics. Nevertheless, a systematic tendency of
underestimating the eigenfrequencies is observed that may not
only be caused by the stochastic soil properties. Further, it should
be noted that in case of fixed boundary conditions at the seabed,
i.e. no inclusion of soil–structure interaction, the computational
eigenfrequencies are all significantly higher than the correspond-
ing measured values, cf. Fig. 9.

According to Sørensen and Ibsen [24] and Damgaard et al. [25],
the measured eigenfrequencies are sensitive to sediment transpor-
tation at seabed, where scour effects are able to change the eigen-
frequency f1 related to the lowest eigenmode U(1) up to 8% due to
compaction of the backfill material. The environmental effects
have not been considered in the computational model. Neverthe-
less, the distinct tendency of underestimating the eigenfrequency
f1 may indicate that the soil stiffness is estimated too low. It is
believed that the cyclic motion of the monopile generates a pore
pressure for saturated soil. Since the bulk modulus of water is sig-
nificantly higher than the bulk modulus of the matrix material, the
soil stiffness will increase in this range. The postulate encourages
the authors to investigate and illustrate the variation of the soil
stiffness versus the soil permeability.

3. Computational model of saturated soil

In order to elucidate the difference between the measured and
calculated eigenfrequencies, a two-dimensional poroelastic FE
model subjected to a harmonic forced displacement is considered.
Based on the FE approach and utilising a Kelvin model, the soil
stiffness is determined.
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3.1. Model description

A two-dimensional axisymmetric solid circular cylinder with
radius R, as shown in Fig. 11, is surrounded by saturated soil. The
arc-boundary, which represents the common border between the
solid pile and the saturated soil, is subjected to a harmonic sinusoi-
dal forced displacement in the horizontal x-direction with the cyc-
lic frequency x in the time domain.

The soil is considered as an isotropic and poroelastic material.
For the saturated soil, the Young’s modulus Es, the permeability
ks, the Poisson’s ratio ms, the specific weight c, the void ratio es
and the porous bulk moduli Ks and Kf (which encompass the bulk
modulus of grains and the bulk modulus of fluid) are defined in
order to incorporate the pore water pressure in the poroelastic
medium. Themesh consists of 4-noded quadrilateral elements with
linear interpolation of the displacement and pore pressure. The por-
ous medium is modelled in ABAQUS [46] by attaching the FE mesh
to the solid phase. Liquid can flow through thismesh. Here, it can be
mentioned that while the pore pressure p is presents in the fluid
and solid phase, the effective stresses r0

ij are carried solely by the
solid skeleton. Given that the solid phase only constitutes the frac-
tion (1 � n) of the entire matrix (n is the porosity), the total stress in
the solid phase rsij actually is: rsij ¼ r0

ij=ð1� nÞ þ pdij. Here dij is the
Kronecker delta and the pore pressure is considered positive
in compression. By using the flowchart in Fig. 10, the desired
properties can be calculated.

The inp format file and CPE4P element are employed to get the
requested outputs from ABAQUS such as displacement and pore
pressure. To reduce time consuming and avoid any mistakes it
is better to do much of the simulation process automatically. In
this regard and calculating desired results the Python program is
employed so that it can be called from MATLAB and then executes
ABAQUS. The post processing can be done with any other software.
Here, the MATLAB is employed to call Python, which is why it is
used for post processing.

The pore pressure and displacements are considered zero at the
exterior boundary and the sinusoidal periodic displacement in the
horizontal direction is applied for the semi-circle boundary. An
illustration of the numerical model is shown in Fig. 11.
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To illustrate the elastic solutions of this study, a solid cylinder
with radius R = 3.0 m is considered. The material properties listed
in Table 2 are used.

It should be noted that the values of Young’s modulus Es, Pois-
son’s ratio ms and void ratio es correspond to dense, well graded
sand. The bulk modulus of grain Ks is valid for all quartz sands
and about the same for other minerals.

3.2. Theoretical approach

For different values of soil permeability k covering different
types of soil and excitation frequencies of the harmonic forced dis-
placement fdisp, the aim is to evaluate to what extent the influence
of pore water provides additional soil stiffness. Based on the FE
model described in the previous section, the phase shift between
the forced displacement and mean value of the reaction force at
the semi-circle boundary can be determined in the time domain.
Hence, the spring and dashpot constants of a Kelvin model can
be determined for each soil permeability ks and excitation fre-
quency of the harmonic forced displacement fdisp, cf. Fig. 12.
According to Newton’s second law, the equation of motion for
the Kelvin model reads:

g _xþ Dx ¼ F: ð14Þ
Here, g, D and F are the damping, stiffness and reaction force,

respectively, while x and _x represent the displacement and the
velocity, respectively. For a periodic sinusoidal load, the external
force F(t) can be written as,

FðtÞ ¼ ImfF0eixtg ¼ F0 sinðxtÞ; ð15Þ
where x is the circular frequency of the load. If it is assumed that
the force amplitude F0 is real, the solution for the displacement
x(t) is now also written as,

xðtÞ ¼ ImfXeixtg ¼ x sinðxtÞ ð16Þ
where X is real number. Substitution of Eqs. (15) and (16) into the
differential equation, Eq. (14), provides:

gxX cosðxtÞ þ D sinðxtÞð ÞX ¼ F0 sinðxtÞ ð17Þ
The left hand side of Eq. (17) can be written as:

gxX cosðxtÞ þ DX sinðxtÞ ¼ XD
gx
D

z}|{tan u

cosðxtÞ þ sinðxtÞ

0
BB@

1
CCA

¼ gxx
cosðuÞ

zfflfflfflffl}|fflfflfflffl{FR0

sinðxt þuÞ

¼ FR0 sinðxt þuÞ ¼ FR ð18Þ
The reaction force FR at the semi-circle boundary is in a sinusoi-

dal form with the phase angle u. As an example, the reaction force
FR and forced displacement x(t) are shown in Fig. 13 for one simu-
lation. As earlier mentioned, by calculating the phase angle u
between the reaction force FR and the forced-displacement x(t)
and having the amplitude of the reaction force FR0, the stiffness
D and the damping g can be determined from Eq. (18) for each
time step. It is worth to mention that the stiffness is calculated
after the first period in order to have the steady state results.

3.3. System stiffness for different values of soil permeability

Fig. 14 illustrates the trend of the non-dimensional stiffness D
due to sinusoidal periodic loading for different geometries of the
soil box around the pile. As expected, the behaviour of the two
models is generally the same. This is especially the case for
undrained conditions, where no dissipation effects are present.
For increasing permeability ks, higher deviation is obtained. In
the following, a soil box dimension of 1000 m � 1000 m is used.

The variation of the non-dimensional stiffness D for different
values of soil permeability ks and frequencies of the forced dis-
placement fdisp is presented in a semi-logarithmic plot in Fig. 15.
The values of the excitation frequencies fdisp represent typical load
frequencies acting on offshore wind turbines. Several interesting
observations can be made:

� For low and high values of the soil permeability ks, indicating
fully undrained and drained soil behaviour, respectively, the
stiffness D is independent of the frequency of the forced dis-
placement fdisp.

� In the transient state between fully undrained and drained soil
behaviour, the frequency of the forced displacement fdisp has a
high influence on the stiffness D. For increasing forced displace-
ment frequency fdisp e [0.01; 0.4] Hz, the pore pressure p in both
the fluid and solid phase will increase resulting in a stiffness
increase.

� Steady state conditions are reached for permeabilities ks > 1
m/s, i.e. the static soil stiffness is represented for high values
of ks independent of the frequency of the forced displacement
fdisp.

It might be argued that the higher stiffness in the clayey soils is
already considered in the derivation of the p–y curves, because of
undrained conditions. Probably, the interesting part of Fig. 15 can
be related to quartz sands where the usual approach is not accu-
rate. According to Section 2, the soil conditions for the investigated

Fig. 11. Two-dimensional finite-element model of an offshore wind turbine
foundation and the surrounding soil.

Table 2
Material properties of the investigated saturated soil.

Young’s modulus Es (Pa) 1.9272 � 108

Poisson’s ratio ms (–) 0.28
Void ratio es (–) 0.50
Bulk modulus of grain Ks (Pa) 3.6 � 1010

Bulk modulus of fluid Kf (Pa) 2 � 109

F

Fig. 12. Kelvin model consisting of a spring and a dashpot.
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offshore wind turbine structures vary from clayey soils to sandy
soils. As indicated in Fig. 15, the stiffness D for cohesionless soils
is able to increase with approximately 23% when the frequency
of the forced displacement increases from fdisp = 0.01 Hz to
fdisp = 0.40 Hz. In addition, for sandy soils ks > 1e � 2 m/s that gov-
ern the top layer of the investigated wind turbine locations, the
permeability ks has a high influence on the stiffness D that
increases with approximately 50%. Since the eigenfrequency
related to the lowest eigenmode f1 for the investigated turbines
is around 0.35 Hz, the cyclic behaviour of the foundations related
to this mode provides a significant increase in the soil stiffness
due to the fact that the pore pressure build-up only dissipates
slowly. The effects are not accounted for in the p–y curve formula-
tions recommend by the design regulations, which therefore may
explain some parts of the observed deviations between calculated
and measured eigenfrequencies.

It should be noticed from Fig. 15 that the rate of reduction of the
normalised stiffness D versus increasing permeability ks is the
same for different values of excitation frequencies. Fig. 16 shows
the normalised maximum pore pressure p versus permeability ks
for an excitation frequency fdisp = 0.01 Hz. As indicated, the change
in the curvature of the variation between pore pressure p and per-
meability ks corresponds very well to the change of the slope of
variation between normalised stiffness D and permeability ks
according to Fig. 15. Hence, this substantiates the conclusion that
the dramatically increase in the stiffness D for a sandy seabed is
due to nearly undrained soil behaviour.

Recalculation of the undamped eigenfrequency f1 related to the
lowest eigenmode U(1) with a stiffness increase as suggested in
Fig. 15 has been performed. In this regard, the initial stiffness E�py
of the implemented p–y curves for sand in the computational

Reaction force

Displacement

0 2 4 6 8

-1.5

-0.5

-1.0

0.0

0.5

1.0

0.5

Time t [t]

Sc
al

le
d 

re
ac

tio
n 

fo
rc

e/
di

sp
la

ce
m

en
t [

-]

-2.0
10 12

Fig. 13. Variation of scaled reaction force and displacement versus time.

1000 m x 1000 m

500 m x 500 m

1e-8 1e-6 1e-2 1e21e-4 1e0

0.65

[-
]

N
or

m
al

is
ed

 s
tif

fn
es

s

0.70

0.75

0.80

0.85

0.90

0.95

1.0

Clay Silt Sand Gravel

Permeability     [m/s]k s

Fig. 14. Normalised stiffness D as a function of the permeability ks for different
dimensions of the soil box around the pile.

1e-8 1e-6 1e-2 1e21e-4 1e0
0.65

[-
]

N
om

al
is

ed
 s

tif
fn

es
s

f
disp

= 0.01 Hz

f
disp

= 0.20 Hz

f
disp

= 0.30 Hz

f
disp

= 0.40 Hz

0.70

0.75

0.80

0.85

0.90

0.95

1.0
f

disp
= 0.10 Hz

Clay Silt Sand Gravel

Permeability [m/s]ks

Fig. 15. Normalised stiffness D as a function of the permeability ks for different
excitation frequencies of the forced displacement fdisp.

Clay Silt Sand Gravel

1e-8 1e-6 1e-2 1e21e-4 1e0
-0.2

N
om

al
is

ed
 p

or
e 

w
at

er
 p

re
ss

ur
e

[-
]

p

0.2

0.6

0

0.4

0.8

1.0
fdisp = 0.01 Hz

Permeability [m/s]ks

Fig. 16. Normalised pore water p as a function of the permeability ks for an
excitation frequency of the forced displacement fdisp = 0.01 Hz.

A5 C4 D9 F5
0.32

0.33

0.35

0.36

0.37

0.38

0.39

0.40

0.34

Turbine [-]

Recalculation
Measured

Calculated

[H
z]

E
ig

en
re

qu
en

cy
f 1

Fig. 17. Comparison of measured, calculated and recalculated undamped eigenfre-
quencies f1,i related to the lowest eigenmode U(1) for selected turbines.

124 M. Damgaard et al. / Computers and Geotechnics 61 (2014) 116–126



model is increased with 20%. As indicated in Fig. 17, the recalcula-
tion of the eigenfrequency f1 shows a better agreement between
calculated and measured frequencies. A substantial improvement
of the eigenfrequency f1 related to the lowest eigenmode U(1) of
approximately 29%, 27%, 22% and 29% is obtained for the four
investigated wind turbines A5, C4, D9 and F5, respectively.
Nevertheless, even though the soil stiffness is increased due to
pore pressure generation during cyclic motion, deviations between
recalculated and measured eigenfrequencies are still observed. The
assumptions and limitations of the p–y curve formulations
suggested by the design regulations as described in Section 1
may cause this tendency.

By considering a wide range of offshore wind turbines, further
work can be carried out to generate more data to understand the
dynamic behaviour of offshore structures with different kind of
nonlinearity in material, soil–pile interaction and thermomechan-
ical loading. Future work also is needed to consider the volumetric
dynamic flow, especially in the case of a bucket foundation.

4. Conclusions

In this paper, the dynamic properties of offshore wind turbines
are investigated. A through data processing on free vibration tests
is performed in order to evaluate the eigenfrequency related to the
lowest eigenmode. Utilising a Winkler model approach with p–y
curve formulations recommended by the design regulations, the
computational eigenfrequencies are compared with the experi-
mental results. To strengthen the comparison, a two-dimensional
finite element model of a pile placed in saturated soil is considered.
For different frequencies of a forced displacement, the stiffness
based on a Kelvin model is determined. Three interesting conclu-
sions can be drawn:

� Based on 510 free vibration tests, it is found that the eigenfre-
quencies related to the lowest eigenmode of 54 offshore wind
turbines are significantly higher than the ones obtained by a
Winkler model. Deviations between 2% and 13% are obtained.

� The effect of pore pressure build-up seems to increase the soil
stiffness significantly. Since the linear soil springs used for the
Winkler model approach are based on few static and cyclic
experimental tests of piles with a slenderness ratio of L/
D < 34.4, the effects of the dynamic behaviour of saturated soil
are neglected in the derivation. This in turn may to some extent
explain the observed deviations between experimental and
computational eigenfrequencies of the investigated offshore
wind turbines.

� Based on a Winkler model, an increase of the soil stiffness in
sandy soils due to pore pressure generation provides a signifi-
cant improvement of the recalculated eigenfrequency.
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 - - curves for dynamic analysis of offshore wind turbine monopile 
foundations

M. Bayat*, L. V. Andersen, L.B. Ibsen
Department of Civil Eng., Aalborg University, 9000 Aalborg, Denmark

Abstract

The well-known - curve method provides soil-structure interaction that is independent of the 

load rate. In this paper an improved - curve method is proposed by considering the influence of 

the excitation frequency. For this purpose, a two-dimensional finite-element program is developed 

for analysis of a segment of an offshore monopile foundation placed in different depths. The 

intended use of the model is analyses of offshore wind turbines in operation where small-magnitude 

cyclic response is observed in addition to the quasi-static response from the mean wind force. The 

response to small-magnitude cyclic loading is analysed by employing coupled equations based on 

the - formulation, i.e. accounting for soil deformation as well as pore pressure. Thus, the paper 

has focus on the effects of drained versus undrained behaviour of the soil and the impact of this 

behaviour on the stiffness and damping related to soil-structure interaction at different load 

frequencies. In order to enable a parameter study with variation of the soil properties, the 

constitutive model is purposely kept simple. Hence, a linear poroelastic material model with few

material parameters is utilized. Based on the two-dimensional model, linear - -  curves are 

extracted for the lateral loading of monopiles subjected to cyclic loads. The developed code is 

verified with findings in the literature.

Keywords: Soil dynamics; Kelvin model; Cyclic load; Offshore foundation.
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1. Introduction

A monopile consists of a tubular support structure that extends into the seabed; it is used for 

installations at water depths of up to 25-35 m [1]. Offshore wind turbine foundations are subjected 

to time-varying loads from waves, wind and ice, and during operation blade passage across the 

tower as well as imbalances in the rotor cause cyclic loading. In the literature, there are several 

approaches to decrease the computational costs and complexity of load analysis on offshore wind 

turbines [103-106] to satisfy design criteria and avoid failure. The dynamic loads may cause 

premature failure in the ultimate limit state or the fatigue limit state if resonance occurs or damping 

is low. The presented methods and computational models are not proved to actually provide reliable 

results for optimized design. Time-varying load such as cyclic load can cause ultimate and/or 

serviceability limit failures of offshore foundations. For example, ultimate limit failure of a scaled 

model wind turbine supported by a monopile in Kaolin clay has been observed by Lombardi et al. 

[107] by performing a series of laboratory tests. In order to have better appraisal of soil-structure 

interaction, the coupled flow and deformation associated with the motion of fluid and solid grain 

particles should be considered. Cyclic loading is an important aspect of offshore design because the 

environmental loading during extreme storm conditions generally dominates compared with the 

permanent loading [2]. Accurate predictions of dynamic response are a major design problem.

Traditionally, the - curve method, which is based on modelling the pile as a beam on a series of 

uncoupled linear/nonlinear springs representing the interaction between soil and pile, is employed 

for analysis of pile deflections [3]. The soil-pile interaction is represented by the so-called -

curves, where p is the resultant force per unit length of the pile and is the corresponding 

displacement in the horizontal direction. Some theoretical works have been done to demonstrate the 

soil-pile interaction for different soil conditions subjected to different types of loading by [4-12].

Further, to validate and compare with theoretical results related to the - curve method, some 
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experimental investigations have been accomplished by [13-16]. Bouzid et al. [108] carried out 

cyclic triaxial tests followed by monotonic tests and used this to obtain the - curves. Some other 

design guidelines such as American Petroleum Institute (API) [17] and Det Norske Veritas (DNV)

[18]/Risø [19] derived and present the formulations of - curves for sand and clay. The - curve 

method was developed for small-diameter ( = 0.32 m, from 0.5 to 3 m), long, flexible and 

slender piles with length-to-diameter ratios ( / ) generally bigger than 12 in the oil and gas 

industry. Rigid monopiles with / < 12 and diameters from 3.5 to 7 m are typically used for 

offshore wind turbines. Offshore wind turbine structures are sensitive to rotations and dynamic 

changes in the pile-soil system. The effect of load rate is not concerned in the - curve method. In

order to incorporate the effect of load frequency and pore pressure, the coupled equations are 

needed to illuminate the behaviour of different states in the soil. The other contentions for applying

the - curve method for wind turbine monopile foundations are not presented for brevity. A

literature review regarding to the - curve method has been performed by the same authors in their 

earlier study [20] and the most commonly used models for the - curves for liquefied soils were 

reviewed Dash et al. [109]. The Interested reader may refer to [20-22, 108, 109] and the references 

therein. 

The frequency of cyclic load can impact on the stiffness and damping related to soil-structure 

interaction. LeBlanc et al. [23] studied the response of stiff piles in drained sandy soil subjected to 

cyclic lateral loading to develop a model for predicting pile rotations in response to repeated cyclic 

loading. It was established that the pile stiffness increased with the number of cycles, independent 

of relative density. In this research the effect of load frequency will be considered to introduce, - -

curves. The existing - curve method does not account for two phase material and excess pore 

pressure in the soil stratum during cyclic loading. In this study a combination of springs and dashpots

are employed to interpret the poroelastic response and drive equivalent viscoelastic model. For 
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simplicity, the linear poroelastic model is employed. Consequently, a linear viscoelastic model in 

the reduced formulation can be represented. Serviceability requirements for offshore wind turbines 

allow rotations of 0.5° at the mudline, and soil behaviour is controlled by elasticity rather than

plasticity. Essentially, small settlement and rotation of offshore foundations are controlled by 

viscous linear elastic behaviour [24]. The current design approach based on the - curve method

disregards the effects of pore fluid pressure build-up in the soil stratum during cyclic loading.

Therefore, the current design approach based on the - curve method might not be appropriate for 

monopile foundations. Current design practices need to be improved to be cost-effective and 

provide a safe and economical design.

Based on presented guidelines by API and DNV regarding to use the Winkler approach in 

design of monopiles, a set of unconnected springs at each depth is employed to model the soil and 

these springs are attached along the pile which is modeled as a beam. In this study the same 

approach is considered to reflect the effect of pore water pressure. By considering the plane strain 

condition an accurate results may not be obtained, but the presented results for the soil stiffness can 

be compared with those from the Winkler approach with no pore water. The seepage damping is 

another important output of this study. So, the purpose of the current research is to obtain a better 

understanding of the soil stiffness and damping due to saturated soil subjected to a cyclic loading-

not to improve the - curve method. The stiffness of saturated soil due to pore water flow 

generated by cyclic motion of monopiles is investigated using the concept of a Kelvin model which 

combines springs and dashpots. In this manner, the results indicate the relative changes in soil 

stiffness due to the presence of pore water.

In order to have the effect of pore pressure and soil deformation, two-phase coupled equations

are needed. Three famous coupled and dynamic formulations, based on the soil and pore fluid 

(water) displacements and the pore water pressure (PWP), are the , , and 
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equations, where , , and are the soil skeleton displacement, PWP, and pore water 

displacement, respectively [25] [26] used a fully coupled, inelastic 

formulation to simulate the dynamic behaviour of piles in liquefiable soils subjected to seismic 

loading. In the formulation, if the fluid phase is considered incompressible, then the 

Ladyzenskaja-Babuska-Brezzi (LBB) condition needs to be satisfied [27-29]. In this case, the 

element type for the displacement and pore pressure fields requires special consideration to prevent 

volumetric locking [30-31]. Considering this restriction, a simple model for numerical analyses is 

the formulation that neglects the relative acceleration of the fluid with respect to the solid 

skeleton. This model is especially useful for low-frequency analysis. Zienkiewicz et al. [31] studied 

the transient and static response of saturated soil which they modeled as a two-phase material based 

on the formulation for porous media. Pastor et al. [32] used a generalized plasticity approach 

to describe the behaviour of soil in the formulation under transient loading. Oka et al. [33]

applied the FEM and finite difference method (FDM) to investigate numerically the governing 

equations of soil skeleton and pore water, obtained through application of the formulation.

Karim et al. [34] analysed a saturated porous elastic soil layer under cyclic loading by using a 2-D

mesh free Galerkin method and the formulation by having periodic conditions. Tsai [35]

examined the viscosity effect on consolidation of poroelastic soil due to groundwater table variation 

by using the formulation. A viscoelastic consolidation numerical model was developed. 

Elgamal et al. [36-37] implemented the model for a two-phase (solid-fluid) problem with 

multi-surface plasticity, using a finite element method (FEM) to highlight the effect of excitation 

frequency. Researchers have attempted to solve these coupled equations by various numerical 

methods [38-40]. Here, however, a two dimensional linear model will be employed to analyze a 

monopile segment at a given depth.



6

The proposed model and observation should be considered as an attempt at reconciling the 

traditional - curve method and applying cyclic load. In particular, the model is shown to possess 

reasonable results in presenting soil stiffness and damping curves over a frequency range relevant 

for offshore wind turbine. This study deals with a two-dimensional model of an offshore monopile 

foundation, surrounded by an elastic saturated soil and subjected to cyclic load. The plane strain 

condition is invoked and small deformation of the soil is assumed. The FEM and the 

equations are employed to explore the effects of load frequency on the restoring and dissipative 

forces. Based on this, contributions to the force from displacement and velocity of the pile are 

determined. 

Following this introduction, Section 2 presents different sources of damping in offshore wind 

turbines and Section 3 contains the governing coupled equations of the saturated soil. In 

Section 4, the numerical solution is validated by comparison to the other solutions. Further the 

model and methodology are described. The stiffness and damping of saturated soil that accounts for 

rate-dependent behaviour and a - - curve method accounting for the load frequency is proposed

in Section 5. Some concluding remarks are presented in Section 6.

2. Damping mechanisms

Total damping in offshore wind turbine system is included damping in turbine, tower, 

foundation and soil. It consists of structural damping, aerodynamic damping (related mainly to the 

blades) and also shadow damping (tower effect), damping due to water (hydrodynamic damping) 

and soil damping [41]. While most parts of damping are determined with a high reliability level, 

this is not the case for soil damping due to complex material behaviour of the soil [42]. There are 

different types of damping in soil: radiation (or geometric) damping due to the propagation of 

elastic waves into a larger area or volume; material (or internal) damping which is due to a local 
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conversion from mechanical energy into heat, induced by friction, viscous and hydrodynamic 

effects [43-44].

Hajiabadi and Lotfi [45] implemented FEM to analyze the damping for visco-elastic media. 

Xunqiang et al. [46] studied a 3-D damping by FEM in visco-elastic soil. Liang et al. [47] applied a 

3-D FEM and presented a parametric study of laterally loaded drilled shafts in clay. A hyperbolic p-

y criterion was developed for cohesive intermediate soil. Harada et al. [48] employed a multi-

Winkler model based on soil traction for nonlinear soil–foundation interaction during cyclic 

loading. Viscous damping is commonly employed to capture damping at small strains and low load 

frequency which is using the first natural mode only [49] and the proposed formulation allowed the 

use of frequency dependent viscous damping using the full Rayleigh damping. This energy 

dissipation can be measured by the area of the hysteric loop for nonlinear or plastic material 

behaviour; it is called hysteretic damping and it is frequency independent [50]. Auersch [51]

presented the stiffness and damping for pile foundations regarding to buildings in the elastic half-

space by using the boundary element method (BEM). Carbonari et al. [52] presented soil–pile 

interaction and radiation damping by using FEM in the frequency domain. Al-Wakel et al. [53]

implemented a frequency-dependent damping model by using a 3-D FE model and the unbounded 

domain was replaced by an absorbing layer of finite thickness with properties that appreciably 

reduced the wave reflection into bounded domain. The equations for a foundation on 

saturated soil were used to simulate the soil skeleton and pore fluid responses. Medina et al. [54]

estimated the damping for the pile by coupled BEM-FEM while dynamic and kinematic interaction 

effects were considered. Zania [55] performed a parametric study to determine the eigenfrequency 

and damping analytically. However, influence of pore water pressure on the soil stiffness and 

damping during dynamic loading of a monopile has, to the authors’ awareness, not been the subject 

of systematic analysis so far.  
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3. Governing equations for saturated soil

The total momentum balance for the porous medium is:

, + b = u + w (1)

where is the total stress tensor and = . Here is the effective stress tensor, = 1 , where and are the total bulk moduli of the solid matrix and solid particles 

receptively, is pore pressure and is Kronecker’s delta: = 1 when = , and = 0 when 

. The density of the mixture is = 1 +  where ,  and  are the porosity and 

the densities of the solid phase and fluid, respectively. Finally, u  and  w are the acceleration of the 

solid skeleton and pseudo-acceleration of the fluid phase relative to the skeleton. Comma subscript 

and dot superscripts denote derivatives with respect to spatial coordinates and time, respectively.

The tensile component of stress and compressive component of pressure are assumed to be positive.

The equation for the total coupled system can be written as

, + b = u + (2)

where k = , and k is the hydraulic conductivity, which has the unit of velocity. Further, b is 

the body force per unit mass. The final equation is supplied by the mass conservation of the fluid 

flow:w , + + = 0 (3)

where = = is the total compression modulus. and are the solid and fluid bulk 

moduli, respectively [25].



9

3.1. Governing equation ( formulation)

The relative acceleration of the fluid with respect to the solid skeleton can be ignored for lower 

frequencies. Then Eq. (1) is rewritten as:

, + b = u (4)

Substituting w  from Eq. (2) into Eq. (3) by taking the derivate of Eq. (2) once with respect to 

direction i, and ignoring the relative acceleration of the fluid with respect to the solid skeleton, it is 

obtained that: k , + b u , + + = 0 (5)

3.2. Boundary conditions

For a model which combines solid and fluid phases, the boundary conditions are defined based 

on traction, displacement, fluid flow and pore pressure as ( =  ); ( =  ):n =  t on =  u = u on =   n w = n k , + b = w = q on =  = on =  (6)

3.3. Numerical solutions of governing equations

By ignoring the acceleration term in Eq. (5), the FE system of equations for the 

formulation can be written as [25]:M 00 0 u + 0 0Q S u + K Q0 H u = ff (7)

and
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00 0  + 0 0 + 0  =  
(8)

where: f =  (f ) + (f ) ; : f =  (f ) + (f )
andf = (f ) =  t , = (f ) = b 

f = (f ) =  w , = ( ) =  , 
M =     ,  : Q =   , 

 S =   , H =  , , (9)

In these equations, the solid displacement u and pore water pressure P have been approximated 

by using the shape functions and nodal values:u = N (10)= N (11)

Similar approximations are applied to u   and [25]. The FE formulation has been implemented in 

an in-house code programmed in MATLAB.

4. Verification and computational model

4.1. Verification of the developed code

In order to verify the developed code, the problem of one-dimensional consolidation under time-

dependent loading is analyzed. Olson [56] presented the exact solution for the time-dependent 

loading defined in Fig. 1 and with the material properties listed in Table 1. The same were used by 

Samimi and Pak [100]. The numerical results obtained from Eqs. (15) and (16) can be verified by 

comparing variation of pore pressure over depth with the exact solution is reported by [56].
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Table 1 near here

It should be noticed that the soil properties in Table 1 are only going to be implemented in the 

verification study for the one-dimensional consolidation problem.

4.1.1 Discretization in time domain

For time integration of the governing equation (8), the generalized Newmark technique is 

employed with Newton-Raphson iteration. Accordingly, the variables and their temporal derivatives 

in the time interval [ , ] are given as: = ( ) ( ) = ( )= +  + ( ) = +  + ( )( ) = ( ) + ( )
and

(12)

= + ( ) (( )) = + ( )( ) = ( ) + ( ) (13)  

where = 1 ( ) , = 1 ( ) , = 1 (2 ) 1 , = (1 ), = , = 1 1 , = 1 ( ) , 0.5, 0.25(0.5 + ) (14)

Here is the time step length and  is the iteration number counting locally in each time step [25

and 57]. Further,  and are the Newmark time integration constants. By considering the 

governing equation in and implementing the variable at in terms of the variable at , as 

mentioned in Eqs. (12) and (13), the governing equation becomes:+ + ( )( ) =  (15)  

where the equivalent forces are:= ( ) + ( ) ( )
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= +  + ( )   +
( ) ( ) ( ) (16)

As it can be seen from the right hand side of Eqs. (15) and (16), the variables at time are in 

terms of iteration ( 1).

4.1.2 Comparing the results

In the one-dimensional consolidation problem (as shown in Fig. 1), a fully saturated soil layer 

with the height of (H =) 10 m is subjected to a step loading of 1 kPa on the top surface as 

considered by Samimi and Pak [100]. As shown in Fig. 1, this load is applied during a time period 

of 1 day and remains constant thereafter. Since the soil layer rests on a rigid impervious base and 

this is a one-dimensional problem, the boundary conditions are as follows: all boundaries are 

considered impermeable, except the upper surface which is considered free draining. In addition, 

the base is fixed against all displacements, while no movement along horizontal directions is

allowed for the side boundaries, the same as considered by Samimi and Pak [100]. The excess pore 

pressure under consolidation in terms of the vertical position is expressed as (for further 

information, see [58]):

 : = (1 e ) sin( ) = (e ( ) e ) sin( ) (17)

where  =   ,  =  ,  = , = ( )( )( ) , = (2 + 1) , is drainage distance.

The excess pore pressure versus depth is very comparable to those of Samimi and Pak [100] as 

shown in Fig. 2. The diagram, in particular the axis definition, has been chosen such that a direct 

comparison with Fig. 4 in [100] is possible. As expected, the excess pore pressure at the top free 

surface of the model equals to zero at all times. Further, it is seen that with the increase of the load 

on the top surface of the model, the excess pore pressure at the bottom of the model gets the same 
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value as step loading for each time simulation when  . For example, if t = 0.1day then the 

excess pore pressure at the bottom is 0.1 kPa and equals to the step loading at t = 0.1day, and the 

same explanation can be mentioned for other time simulation when  . It is compatible with 

the concept of consolidation; by surcharging the load at the ground surface (the top surface of the 

model) the immediate increase of the pore water pressure will be equal to the increase of the total 

stress.

Fig. 1 near here 

Fig. 2 near here 

It can be added that the same geometry of the model as shown in Fig. 1 and a similar procedure for 

applying the step loading are presented by Xie and Wang [101] who made observations similar to 

those as shown in Fig. 2.

As it is described in [58], the coefficient of volume compressibility ( ), the coefficient of 

permeability and the total stress on the element have high effect on the generated excess pore 

pressure. Based on the values presented in [100] for one-dimensional consolidation, the numerical 

results are found to be in good agreement with the exact solution as presented by Olson [56].    

4.2. Computational model of saturated soil 

In order to expound curves based on the Kelvin model, a two-dimensional poroelastic 

FE model subjected to a harmonic forced displacement is employed to determine the damping and 

the soil stiffness in the saturated soil. In this study, the plain strain conditions are considered. The 

analysis is conducted using the material properties given in Table 2 with the reference case 

highlighted in bold format. 

Table 2 near here
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By considering the domain for variation of soil properties given in Table 2, it should be pointed out 

that some of the values do not represent realistic types of soil. Thus, some values for the soil 

porosity and Poisson’s ratio are fictitious and do not have any physical meaning or/and real 

application, but are only included to provide to provide extreme cases.

4.2.1. Model description  

A tubular monopile offshore foundation (Fig. 3), surrounded by an elastic saturated soil with 

radius is considered. Harmonic sinusoidal forced displacement acting in the horizontal direction 

( -direction) is applied to the common border between the saturated soil and solid pile. Small 

deformation of the soil is assumed and as indicated by Fig. 3 symmetry is considered with respect 

to the horizontal axis and the center line of the monopile. 

Fig. 3 near here 

The soil around solid pile is modelled as a poroelastic material with isotropic material properties 

as mentioned in Table 2. In order to reveal the effect of load frequency, eight different load 

frequencies are considered (as shown in Table 3) when the forced displacement is:  ( ) = sin 2 . = Real( . ), = 1 (18)

Table 3 near here

All our numerical results will be in normalized form and for each material property in Table 2

we will run eight simulations based on the different load frequencies as mentioned in Table 3,

which means a total 1440 simulations. 

In order to have stable results and avoiding any LBB conditions, the elements used for coupled

analysis consist of 6-noded quadratic and 3-noded linear elements or 9-noded biquadratic and 4-

noded bilinear elements for displacement and pore pressure fields, respectively, as shown in Fig. 4 

[26].
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Fig. 4 near here 

The chosen mesh consists of 9-noded biquadratic and 4-noded bilinear elements for 

displacement and pore pressure fields, respectively. Fine meshes are generated close to the pile 

while coarse meshes are used far from the pile as shown in Fig 5a. The pore pressure, lateral flow

and displacements are considered zero at the exterior boundary and the sinusoidal periodic 

displacement in the horizontal direction is applied for the semi-circle boundary at the soil-pile 

interface. An illustration of the boundary conditions is shown in Fig. 5b.

Fig. 5a near here 

Fig. 5b near here 

4.2.2 Theoretical approach

In order to investigate the influence of pore water pressure on soil behaviour, especially the 

stiffness and damping in different depths, different values of soil permeability, Young’s modulus 

and porosity are considered (see Tables 3 and 5) when different excitation frequencies of the 

harmonic forced displacement are employed. Based on the FE formulation in Sections 2 and 3, the 

viscous damping which is linearly proportional to velocity can be observed by employing the 

Kelvin model (as shown in Figure 6).

Fig. 6 near here 

Dynamic analysis for nonlinear system and material model is time consuming and costly. 

Therefore, linear analysis is valuable to estimate the behaviour of soil. If the load is considered

sinusoidal with circular frequency ( ), the force can be found as:F(t) = F sin( ) (19)

For a system with spring and dashpot the equation of motion can be represented as:
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F(t) = ( ) + ( ) , =  (20)

where F ,  ,  , and   are force, stiffness, damping, displacement and velocity respectively.

Substituting the applied load into the equation of motion, the displacement can be obtained as 

follows:= ( ) sin( ) (21)

where   is the phase lag or phase delay in the spring-damper system and can be found as

=  tan =  tan (22)

The physical interpretation of phase shift is illustrated in Figure 7.

Fig. 7 near here 

It can be mentioned that by applying the periodic sinusoidal load the displacement is also 

sinusoidal, but with phase shift, once the steady state has been reached (normally after the first 

period in the conducted FE analysis).

5. Numerical analysis

For numerical illustration of the elastic solutions of this study, a soil box with dimensions 80 m × 80 m is considered with the pile radius, , equal to 2 m. Poisson’s ratio, porosity, shear 

modulus and permeability are varied one at a time in accordance with Table 2. Based on the 

geometry of the model, and for the reference case defined in Table 2, the static stiffness of the 

model is = 8.7634 × 10   , and for all values of Poisson’s ratio listed in Table 2, the 

dimensionless static stiffnesses ( ( ) = ) are presented in Table 4 as:

Table 4 near here
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The analysis is conducted using Kelvin model to find the dynamic soil stiffness and damping.

Complex stiffness of model can be represented as:

 = +  , = 1, =
The real and imaginary parts of the complex stiffness are normalized by the static stiffness:Normalized stiffness =      =

Normalized equivalent damping =       =  
5.1. Stiffness and damping analysis

5.1.1 Results for different Poisson’s ratios

Figs. 8 and 9 illustrate the normalized soil stiffness and equivalent damping for different values 

of the load frequencies and Poisson’s ratio. Poisson’s ratio takes thirty values between 0.1 and 0.45.

It is noted that Young’s modulus is constant. Hence, the shear modulus decrease with the increase 

of Poisson’s ratio.

Fig. 8 near here 

In Fig. 8, the effect of Poisson’s ratio on the soil stiffness is shown by fixing the value of the 

load frequency. It is seen that the stiff soil, with greater value of stiffness and small value of the 

Poisson’s ratio, converts into the soft soil with the increase of the Poisson’s ratio. By considering 

the constant Poisson’s ratio and changing load frequency, it can be observed that the undrained

condition occurs for high load frequency in comparison with the case by having low load frequency. 

It is seen that the effect of load frequency on stiffness decreases with the increase of Poisson’s ratio.   

Fig. 9 shows the variation of the equivalent soil damping versus Poisson’s ratio in the presence 

of different load frequencies. It is seen that the normalized equivalent damping decreases with the 

increase of Poisson’s ratio for all load frequencies. It is observed that the rate of decreasing 
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equivalent damping versus Poisson’s ration is increased especially for the large values of the load 

frequency and Poisson’s ratio. 

Fig. 9 near here 

Results of Figs. 8 and 9 can be summarized to conclude that the soil stiffness and equivalent 

damping decrease with the increase of the Poisson’s ratio, the stiff soil converts into the soft soil.

5.1.2 Results for different porosities

The variation of normalized soil stiffness and equivalent damping with porosity for different 

values of the load frequencies are shown in Figures 10 and 11. The porosity takes twenty values

between 0.0 and 0.45.

Fig. 10 near here

Fig. 10 illustrates the trend of the non-dimensional stiffness due to the harmonic sinusoidal forced 

displacement where different values of the porosity are considered. The soil stiffness for dense soil,

with small value of porosity, decreases with the increase of porosity for high value of load 

frequency. But, the normalized stiffness slightly increases for low value of load frequency when the 

porosity is increased. This phenomenon can be explained by the presence of interactive effects 

between drained and undrained conditions for dynamic behaviour of soil. It can be noticed that the 

variation of normalized soil stiffness versus the load frequency is greater than the variation of soil 

stiffness versus porosity. It can be concluded the load frequency has high impact on dynamic 

behaviour of the porous medium. 

Fig. 11 near here

The variation of equivalent damping with porosity for different values of load frequency is

shown in Fig 11. The graphs in Fig. 11 suggest that the maximum equivalent damping occurs for 

dense sand (with small value of porosity) and it is not changing linearly with frequency. It is 

observed that the variation of the equivalent damping with porosity is much more noticeable for the 
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high value of the load frequency (for example, frequency = 0.2 Hz) in comparison with the 

variation of equivalent damping with porosity when the low load frequency is considered. 

By comparing results from Figs. 8 and 10, it can be highlighted that the variation of Poisson’s 

ratio is more important than the variation of the porosity in terms of their effect on the variation of 

the dynamic soil stiffness. When Young’s modulus is kept constant but Poisson’s ratio is at the 

same time increased, this leads to a decrease of the shear modulus and, as a results of this, a 

decrease of the stiffness related to soil-pile interaction. Regarding the small variation in stiffness 

caused by variation of the porosity, it should be remember that only one property of the soil is 

changed at a time. Thus, all results in Fig. 11 are based on the same values of Young’s modulus, 

Poisson’s ration, permeability and etc.    

5.1.3 Results for different Young’s moduli   

Figs. 12 and 13 show the variation of non-dimensional soil stiffness and equivalent damping 

with Young’s modulus by having different values for load frequencies. Young’s modulus takes 

thirty values between 25 and 2500 MPa.

Fig. 12 near here

Fig. 13 near here 

Semi-logarithmic plots in Figs. 12 and 13 show that variation of normalized soil stiffness and 

equivalent damping respectively for different values of load frequencies. It can be seen that the 

variation of soil stiffness is highly dependent on the load frequency especially for soft soil with low 

value of shear modulus. The soil equivalent damping increases with the increase of Young’s 

modulus to its maximum value and then decreases. 

5.1.4 Results for different permeability 
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Figs. 14 and 15, respectively show the variations of non-dimensional soil stiffness and 

equivalent damping with hydraulic conductivity for different values of load frequencies. The soil 

hydraulic conductivity takes values between 10 and 1 m s .

Fig. 14 near here 

Semi-logarithmic plots in Fig. 14 show variation of normalized stiffness for different values of 

soil hydraulic conductivity and load frequency. It is noticed that for low and high values of the 

hydraulic conductivity, undrained and drained conditions the soil occur is independent of load 

frequency. It is seen that the rate of soil stiffness reduction in the transient state between fully 

undrained and drained soil almost is the same. Based on the value of the soil hydraulic conductivity, 

it can be observed that sandy soil presents the stiffness reduction with the increase of soil hydraulic 

conductivity. This result is compatible to the one reported in Fig. 15 in [20].

Fig. 15 near here 

Figs. 15 show the variation of equivalent damping versus the soil hydraulic conductivity for 

different values of load frequencies. For drained and undrained soil behaviour the equivalent 

damping takes zero value and the maximum value of equivalent damping occurs in between. The 

graphs of Fig. 15 suggest almost the same maximum equivalent damping for different values of 

load frequencies and hydraulic conductivities.

5.1.5 Results for different permeability 

The normalized soil reaction based on the Kelvin model can be calculated as:soil reaction force =  . = +   , = 1 (35)

For a certain angular frequency the normalized reaction force corresponds to +  with 

the amplitude equals + (  ) . Fig. 16 shows the variations of non-dimensional soil 

reaction and load displacement and velocity for a certain value of load frequency (0.4 Hz). The 
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horizontal displacement takes the values: 0.00, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.09, and 0.1  while the other soil properties are taken from the reference case in Table 2.

Fig. 16 near here 

As expected, the soil reaction for the high amount of the horizontal displacement is greater than 

those for small horizontal displacement due to higher spring reaction which is proportional to 

horizontal displacement. In order to make a clear distinguish between the reaction forces from 

spring and dashpot, the related reaction force due to damping is shown with negative slope. The 

relative slope of reaction forces regarding to spring and damper is 8.3171 (= 0.128/0.01539). The 

effect of different horizontal velocity can be realized from the fact that for large values of the 

velocity and displacement, the soil reaction increases with the increase of horizontal velocity

linearly. This linear relation between the normalized reaction force and load amplitude validates our 

simulation as well. 

5.2. Presenting curves

In the following, results are presented with generalized stiffness and equivalent damping based 

on results from the previous section in order to be applicable for different soil properties and model 

geometries. Based on results for different hydraulic conductivities, the soil behaviour is going to 

change from undrained to drained state by increasing the hydraulic conductivity, and damping takes 

the maximum value in the transition phase between the drained and undrained cases. Therefore, the 

undrained properties might be illuminated somewhat by considering two material properties namely 

the shear modulus and Poisson’s ratio. For a tubular circular pile segment of unit length, the soil 

stiffness is independent of the pile diameter, i.e. it is only a function of shear modulus and Poisson’s 

ratio: =  ( )
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The static stiffness ( ) is normalized with respect to the shear modulus, and the variation of 

normalized static stiffness ( ( )) versus Poisson’s ratio ( ) is shown in Fig 17.

Fig. 17 near here 

Fig. 8 shows the variation of dynamic stiffness normalized with respect to the static stiffness versus 

Poisson’s ratio, while Fig. 17 shows the variation of static stiffness normalized with respect to the 

shear modulus versus Poisson’s ratio. It can be mentioned that the results presented in Figs. 17 and 

8 support each other. As it is seen in Fig. 8, when the load frequency equals to zero the dynamic 

stiffness gets the same value as the static stiffness. The straight line in Fig. 8 with the constant value 

1.0 represents this behaviour. Fig. 17 shows that a perfectly incompressible soil by having a

Poisson's ratio of 0.5 has the highest normalized static stiffness. 

and also the stiffness in the undrained state can be written as:

= =  ( ), =  ( )  ,    = = +  
Normalized global stiffness and damping and frequency are defined as:Normalized global soil spring stiffness: =

Normalized global equivalent soil damping: =
Normalized frequency: = 2 .  +  , = ( )( )( )

Figs. 18 and 19 show the maximum and minimum values of the non-dimensional global soil 

stiffness and equivalent soil damping values for different values of the non-dimensional 

frequencies. The Poisson’s ratio, porosity and shear modulus are varying between [0.2 and 0.35], 

[0.1 and 0.4)] and [25 and 200] MPa, respectively. In order to present the variation of the 

normalized global soil stiffness and damping versus normalized frequency, several numerical 

analyses have been performed. As it is indicated in Fig. 18 the maximum normalized global 
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stiffness has been obtained for soil properties with shear modulus = 200 GPa, Poisson’s ratio = 0.35 

and porosity = 0.4 whilst the border for minimum normalized global stiffness occurs for another 

soil type with shear modulus = 25 GPa, Poisson’s ratio = 0.2 and porosity = 0.1. For the mentioned 

interval for soil properties, the results for other combination of soil properties are between these 

minimum and maximum borders. The similar procedure has been carry out to present the border for 

maximum and minimum soil damping, as shown in Fig. 19.

Fig. 18 near here

Fig. 19 near here

The minimum and maximum values of that the normalized global soil stiffness and equivalent soil 

damping are varying between these two curves as shown in Figs. 18 and 19. The border for 

maximum soil stiffness and damping in Figs. 18 and 19 are obtained based on minimum and 

maximum values of soil properties such shear modulus, Poisson’s ratio and porosity, respectively. 

And also, The border regarding to minimum soil stiffness and damping in Figs. 18 and 19 are 

obtained based on maximum and minimum values of soil properties such shear modulus, Poisson’s 

ratio and porosity, respectively.

6. Conclusions

This research concerns the variation of soil stiffness and damping of offshore monopile wind 

turbine foundations subjected to lateral dynamic loads by using a two-phase model for the soil. The

study explores the curves to illustrate the dependency of the soil reactions on the load 

frequency. The coupled dynamic equations for an offshore monopile foundation as a rigid disc 

moving horizontally in an elastic saturated soil, using the formulation under cyclic load and 

assuming plane strain, are developed. This preludes the effect of load frequency which can result 
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from pore pressure generation during cyclic motion. For different frequencies of forced 

displacement, the conclusions can be drawn as:

The soil stiffness is independent of load rate when the hydraulic conductivity takes small or

large values. 

The reduction of soil stiffness onsets in the transient region from silt to sandy soil and it 

occurs in sandy soil for all values of load frequencies (Fig. 14) that are relevant to offshore 

wind turbine monopile foundations. The maximum equivalent damping occurs in the 

transition region, mostly in the sandy soil regime, and the maximum damping moves toward 

the coarse soil region by increasing the load frequency (Fig. 15).

Based on a Kelvin model rather than a Winkler model, the soil spring stiffness and 

equivalent soil damping diagrams are presented. These can be applied in - - models for 

offshore monopile foundations.
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 - - curves for dynamic analysis of offshore wind turbine monopile 
foundations

M. Bayat*, L. V. Andersen, L.B. Ibsen
Department of Civil Eng., Aalborg University, 9000 Aalborg, Denmark

Table 1:

E =Young’s modulus (kPa) v = Poisson’s ratio Hydraulic conductivity (m/s)

E = 104 v = 0.2 5 × 10 7

* Corresponding author. Tel.: +45 9940 8575; Fax: +45 3 9940 8552. E-mail: meb@civil.aau.dk



31

Table 2:
Hydraulic conductivity (m/s ) 100 logarithmically spaced points between 10 and 10

Reference value 10
Shear modulus (Pa) 30 logarithmically spaced points between 25 × 10 and 25 × 10

Reference value 25 × 10
Porosity 20 linearly spaced points between decades 0 and 0.45

Reference value 0.25
Poisson’s ratio 30 linearly spaced points between decades 0.1 and 0.45

Reference value 0.3
Solid phase bulk modulus (GPa) 36
Fluid phase bulk modulus (GPa) 2

Solid phase density (kg m ) 2650
Fluid density (kg m ) 1000
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Table 3:
Load frequency, .(Hz) 0.0 0.001 0.01 0.05 0.1 0.2 0.3 0.4

Forced displacement amplitude, (m) 0.1
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Table 4:
Poisson’s ratio, 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45( ) 2.8161 2.9584 3.0518 3.1672 3.3134 3.5054 3.7697 4.1599 4.8037
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- - curves for dynamic analysis of offshore wind turbine monopile 
foundations

M. Bayat*, L. V. Andersen, L.B. Ibsen
Department of Civil Eng., Aalborg University, 9000 Aalborg, Denmark

Fig. 1

* Corresponding author. Tel.: +45 9940 8575; Fax: +45 3 9940 8552. E-mail: meb@civil.aau.dk
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Fig. 2
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Fig. 3:
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Fig. 4
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Fig. 5a

Fig. 5b
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Fig. 6
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Fig. 7
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Fig. 8
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Fig. 9
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Fig. 10
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Fig. 11
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Fig. 12
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Fig. 13
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Fig. 14
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Fig. 15
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Fig. 16
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Fig. 17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
3

4

5

6

7

8

9

Poisson's ratio

N
or

m
al

iz
ed

 s
ta

tic
 s

tif
fn

es
s



51

Fig. 18

1e-12 1e-10 1e-8 1e-6 1e-4 1e-2 1e0 1e2 1e4 1e6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized frequency, a

N
or

m
al

iz
ed

 G
lo

ba
l S

tif
fn

es
s

Interval between the maximum and minimum of Normalized Global Stiffness

Shear modulus = 25 GPa
Poisson's ratio = 0.2 
Porosity = 0.1

Shear modulus = 200 GPa
Poisson's ratio = 0.35 
Porosity = 0.40 



52

Fig. 19
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Influence of pore water in the seabed on dynamic response of offshore 
wind turbines on monopiles   

 
M. Bayata,*, L. V. Andersena, L. B. Ibsena, J. Clausena 

aDepartment of Civil Engineering, Aalborg University, Sofiendalsvej 11, 9200 Aalborg SV, Denmark  

Abstract 

The well-known  curve method provides soil-structure interaction that does not account 

for the pore pressure effect for dynamic analysis of offshore wind turbines (OWTs). However, in 

order to avoid conservatism, the dynamic structural response must be analyzed using reliable 

estimations. The turbine is introduced using a simplified model with the purpose of assessing the 

modal damping due to pore water flow around the monopile. In this paper the effect of pore 

pressure is illustrated by implementing a poroelastic model to present more realistic dynamic 

properties and compare them with results obtained by the  curve method. For this purpose, 

two different finite-element programs are developed and combined for analyzing an offshore 

monopile foundation placed in different depths. The response to cyclic loading is analyzed by 

employing a Winkler foundation model based on nonlinear  curve method. Moreover, a two-

phase system consisting of a solid skeleton and pore fluid, based on , is implemented to 

perform free vibration tests to evaluate the eigenfrequencies. Here,  is grain displacement and  is 

pore water pressure. Since the stiffness of foundation and subsoil strongly affects the modal 

parameters of the combined structure and soil, the stiffness of saturated soil, accounting for pore 

pressure generated by cyclic motion of monopiles is investigated using the concept of a Kelvin 

model. A simple model of an OWT foundation is constructed with equivalent masses, dashpots and 

springs providing the foundation response at the pile-cap level by using Winkler and Kelvin 
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models. The calculated soil stiffness from the Winkler and Kelvin models are compared in 

presentence of soil damping for Kelvin model.  

Keywords: Offshore wind turbine, Soil dynamics; Cyclic load; Winkler model, Kelvin model; 

Poroelasticity   

1. Introduction 

Several foundation concepts such as monopile, suction caisson, jacket, tripod and gravity 

foundations have been developed for offshore wind turbines (OWTs). The monopile foundation is 

analyzed in this paper, since it is the far most used foundation concept for OWTs. A monopile 

foundation consists of a tubular support structure that extends into the seabed. Offshore wind 

turbine foundations (OWTFs) are subjected to time-varying loads from waves, wind and ice, and 

during operation blade passage across the tower as well as imbalances in the rotor cause cyclic 

loading. It is vital to capture the integrated effect of the total loads. However, the total loading can 

be significantly less than the sum of the constituent loads. This is because the loads are not 

coincident, and because of the existence of different kinds of damping such as aerodynamic and soil 

damping which damp the motions due to the loads. The overall weight of the modern wind turbines 

is minimized, which makes it more flexible and corollary more sensitive to dynamic excitations at 

low frequencies. Based on Det Norske Veritas (DNV) [1]/Risø [2] as a design guideline, the 

deformation of a monopile can be calculated by using the Winkler approach; hence, the soil is 

modeled as non-linear springs attached along the pile, and the pile is modeled as beam elements. In 

the lateral direction, the non-linear springs represent the relationship between the lateral deflection 

distance , and the mobilized resistance from the surrounding soil  [3]. This method has not been 

demonstrated to provide reliable results for OWTFs subjected to dynamic and cyclic loads. In order 
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to have better assessment of soil-structure interaction, the coupled flow and deformation associated 

with the motion of fluid and solid grain particles should be considered. For slender piles, the  

curve method has been implemented to account for soil-pile interaction [4-12] and theoretical 

results are compared by experimental investigation [13-16]. Some other design guidelines such as 

American Petroleum Institute (API) [3] and DNV [1]/Risø [2] derived and presented the 

formulations of  curves for sand and clay. Application of the  curve method for OWTFs 

has many short comings which refer to [17-19]. Firstly, monopiles are not slender. They have 

length-to-diameter ratio of 5-7 and usually exhibit “toe kick”, whereas slender piles have no 

movement at the toe (bottom). Secondly, as further addressed in this paper, the effect of pore 

pressure is not comprised in the  curve method. In order to include the effect of pore pressure, 

coupled equations for the soil and pore fluid are needed.  

In this context, the estimation of a liable first natural frequency of the combined foundation and 

turbine structure is presented. To avoid dynamic amplification of the response, the first natural 

frequency of the wind turbine structure, including its foundation, must lie within a narrow range. 

Unfortunately, accurate and realistic natural frequencies cannot be quantified by a  curve 

method. Several studies have presented dynamic response and calculated natural frequencies of 

OWTs based on single-phase soil model and the  curve method. Traditionally, simplified soil 

stiffness functions (  curves) are developed for small-diameter piles, not accounting for 

dynamics and representing the soil stiffness incorrectly for monopiles. The damping is also not very 

well predicted in this traditional approach. The inaccuracy in prediction of soil stiffness and 

damping implies significant safety margins in design. Therefore, additional modelling and research 

into this field is required. In this research the effect of pore pressure and damping will be considered 

to estimate the first three natural frequencies. The existing  curve method does not account for 
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pore pressure build-up in the soil. In this study a combination of springs and dashpots are employed 

to interpret the visco-elastic response of pile-soil interaction.  

In order to have the effect of pore pressure and soil deformation, two-phase coupled equations 

are needed. Three general coupled and dynamic formulations, based on the soil and pore fluid 

(water) displacements and the pore water pressure, are the , , and   equations, 

where , , and  are the soil skeleton displacement, pore water pressure (PWP), and pore water 

displacement, respectively [20]. Cheng and Jeremić [21] used a fully coupled, inelastic   

formulation to simulate the dynamic behavior of piles in liquefiable soils subjected to seismic 

loading. In the  formulation, if the fluid phase is considered incompressible, then the 

Ladyzenskaja-Babuska-Brezzi (LBB) condition needs to be satisfied [22-24]. In this case, the 

element type for the displacement and pore pressure fields requires special consideration, to prevent 

volumetric locking [25-27]. Considering this restriction, a simple model for numerical analyses is 

the  formulation that neglects the relative acceleration of the fluid with respect to the solid 

skeleton. This model is especially useful for low-frequency analysis. Zienkiewicz et al. [27] studied 

the transient and static response of saturated soil, which they modeled as a two-phase material based 

on the  formulation for porous media. Pastor et al. [28] used a generalized plasticity approach 

to describe the behavior of soil in the  formulation under transient loading. Elgamal et al. [29-

30] implemented the  model for a two-phase (solid-fluid) problem with multi-surface 

plasticity, using a finite element method (FEM) to highlight the effect of excitation frequency. 

Researchers have attempted to solve these coupled equations by various numerical methods [31-

33]. Here, however, a two dimensional linear model will be employed to analyze a monopile 

segment at a given depth. 

The characteristics of OWTFs are not fully understood. The proposed model and observation 

should be considered as an attempt at reconciling the traditional  curve method and applying 
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cyclic load. In particular, the model is shown to possess reasonable results in presenting soil 

stiffness and damping curves over an applicable frequency range. This study deals with a selected 

wind turbine structure to estimate the first eigenfrequency for seabed conditions, by use of a 

Winkler foundation model.  

Furthermore, the concept of a Kelvin model is employed and combined with a two-dimensional 

FE model of the foundation, surrounded by an elastic saturated soil and subjected to cyclic load in 

order to illustrate the dependency between soil stiffness and permeability. This in turn makes it 

possible to analyze the dynamic response of a linear pore-elastic medium by implementing a two 

phase model in incorporation of  equations. It should be mentioned that the two-dimensional 

FE model assume plane strain and plane flow; thus the volumetric dynamic flow is ignored. Further, 

small deformation of the soil is assumed. The FEM in the  equations is employed to explore 

the effects of pore pressure and calculate the seepage damping.   

The outline of the paper is as follows: Section 2 presents the modeling concept and the methods 

of analysis are presented in Section 3. This includes natural frequency analysis, extraction of 

equivalent masses, dashpots and springs at pile cap as well as cross modal damping ratios. The 

model discretization is presented in Section 4. A monopile foundation is analyzed based on Winkler 

and Kelvin models which take into account the effect of pore pressure in Section 5. Some 

concluding remarks are presented in Section 6. 

2. Modeling Concept  

In this study, the FEM is employed to investigate a laterally loaded monopile by assuming that 

the pile and tower act as a Bernoulli–Euler beam.  
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2.1. Soil-pile interaction model and equilibrium equations 

2.1.1. Winkler model 

DNV-J101 [1] proposes the Winkler approach to describe the soil-pile interaction based on 

attaching non-linear springs along the pile. The pile is modeled as beam elements, see Figure 1. 

Figure 1 near here 
 

The governing differential equation for the considered pile and tower as a Bernoulli–Euler beam 

for static and dynamic cases are given by: 

Static, nonlinear:                                                                     (1a) 

Dynamic, linear:                                                                     (1b) 

where  ,  and  are Young’s modulus, second moment of area and mass of the structure 

(Tower/pile), respectively. Further,  is the structural deflection.  and  are the secant and 

initial stiffness (modulus) of the  curve.   

The  curves for friction soils according to DNV-J101 [1] can be calculated based on 

mentioned items in Figure 2. where  is the theoretical ultimate lateral soil capacity,  is the lateral 

deflection,  is the depth measured below the soil surface (mudline). In API and DNV  is 

determined based on the internal angle of friction or relative density of the sand.  is a factor to 

account for static or cyclic loading (Reese et al. [34]).  

Figure 2 near here 

In order to do a modal analysis of offshore wind turbines, linear analysis needs to be performed. 

Therefore, the soil stiffness used in the calculation needs to be linearized. It is assumed that the steel 

is in linear range, hence the stiffness of that can be described with Young’s modulus. And also, it is 

common to estimate the initial spring stiffness  by linearizing the nonlinear  curves 

suggested by DNV [1,2]. Theoretically, the linearizing can be done by use of either the initial soil 
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stiffness from the nonlinear uncoupled soil springs or from the secant and tangent soil stiffness 

when the turbine is producing power at the nominally rated output level. However, studies 

regarding cyclic loading of piles made by Klinkvort [35] and Roesen and Thomassen [36] indicate 

that the unloading-reloading path almost follows the initial stiffness  of the virgin curve. 

Despite decreasing secant stiffness during cyclic loading, it seems sensible for a modal analysis of 

offshore wind turbines to determine the spring stiffness from the initial stiffness of the nonlinear 

 curve formulation. The linearization of the curves can be seen in Figure 3. 

Figure 3 near here  
 

The linearized stiffness for sand layers is equal to the initial slope of the  curve. By 

differentiating the  curve relationship for piles in cohesionless soils according to DNV [1,2], 

the initial stiffness   is given by: 

                                                                     (2) 

when ,  is equal to the initial stiffness, . Hence, the initial stiffness of the 

 curve is assumed independent of the pile geometry. 

2.1.2. Kelvin model 

In order to illuminate the effect of pore pressure on soil behaviour, especially stiffness and 

damping in different depths, the Kelvin model is utilized based on the FE code for  equations. 

A two-dimensional poroelastic FE model subjected to a harmonic forced displacement is 

considered. In the Kelvin model (as shown in Figure 4), a system with a spring and a dashpot is 

considered to calculate the soil stiffness and damping in each integration point. The governing 

linear equation reads:   

Figure 4 near here  
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Dynamic, linear, Kelvin:                           (3) 

The spring stiffness, , is not the one proposed by API. It depends on whether drained or 

undrained or intermediate conditions are presented during the considered cyclic motion and will, 

together with the damping,  be calculated from FE model based on a formulation. 

2.2. Coupled equations based on the  formulation  

The 2D FE code has developed to solve the coupled equations. The total momentum balance for 

the porous medium reads: 

                                                                                            (4) 

where  is the total stress tensor and . Here  is the effective stress tensor, 

 , where  and  are the total bulk modulus of the solid matrix and solid particles 

receptively,  is pore pressure and  is Kronecker’s delta:  when , and  when 

. The density of mixture is where are the porosity and the 

densities of the solid phase and fluid (water), respectively. Finally,  are the acceleration 

of the solid skeleton and pseudo-acceleration of the fluid phase relative to the skeleton. Comma 

subscript and dot superscripts denote derivatives with respect to spatial coordinates and time, 

respectively. The tensile component of stress and compressive component of pressure are assumed 

to be positive. The equation of the total coupled system can be written as 

                                                 (5) 

where  , and  is the hydraulic conductivity, which has the same unit as velocity. Further,  

is the body force per unit mass. The final equation is supplied by the mass conservation of the fluid 

flow: 
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                                                                      (6) 

where  is the total compression modulus.  and  are the solid and fluid bulk 

moduli, respectively[37-39]. 

2.2.1. Governing equation (  formulation) 

The relative acceleration of the fluid with respect to the solid skeleton can be ignored for lower 

frequencies. Then, Eq. (4) is rewritten as: 

                                                                                           (7) 

Substituting for from Eq. (5) into Eq. (6) by taking derivate once, and ignoring the relative 

acceleration of the fluid with respect to the solid skeleton, it is obtained that:  

                                                (8) 

For a model which combines solid and fluid phases, the boundary conditions are defined based 

on traction, displacement, fluid flow and pore pressure as shown in Figure 5. The pore pressure and 

displacements are considered zero at the exterior boundary and forced displacement in the 

horizontal direction is applied for the semi-circle boundary at the soil-pile interface. The soil 

stiffness and damping for a given depth is calculated by implementing FEM. 

Figure 5 near here  

2.2.2. Elements used for coupled analysis 

In order to have stable results for pore pressure and avoiding any LBB conditions, the elements 

used for coupled analysis should consist, for example, of 6-noded quadratic and 3-noded linear 

elements or 9-noded biquadratic and 4-noded bilinear elements for displacement and pore pressure 

fields respectively as shown in Figure 6a [39]. Thus, the interpolation order for  is one lower than 

the interpolation order for .   
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Figure 6a near here  

 
The mesh consists of 9-noded biquadratic and 4-noded bilinear elements for displacement and 

pore pressure fields, respectively. Fine meshes are generated close to the pile while coarse meshes 

are used when it is far from the pile as shown in Figure 6b. 

Figure 6b near here  

2.3. Beam finite element description  

The OWT is modelled as an Euler-Bernoulli beam and discretized into finite segments. The 

Winkler and Kelvin approaches used to represent the soil stiffness. DNV[1] suggests that the pile is 

modeled as beam elements and soil reaction along the monopile is considered as horizontal springs 

which act at the nodes. A beam element with two degrees of freedom (DOF), i.e. the horizontal 

translation and the in-plane rotation at each node, is chosen. Two FE procedures are working 

simultaneously to describe the behaviour of the OWT. A beam theory is considered for the OWT 

and for each integration point a Kelvin model is employed to present the soil damping and stiffness. 

Two steps are implemented to discretize the pile and tower system based on beam theory. At 

first, master nodes are defined and located where there is a change in geometry of the structure 

(tower/pile), at mudline and also at sea level (waterline). In the second step, the master elements are 

divided into a number of two-noded elements with cubic interpolation of the transfer displacement 

and  continuity. In order to consider a proper sub element length Lelem, convergence tests need to 

be done. The convergence tests are considered to examine the deflection of the monopile/OWT and 

also the maximum value of shear force and moment in the system. An example on a convergence 

test is shown in Figure 7.  

Figure 7 near here   
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As it can be seen in Fig. 7, convergence of the maximum shear force is reached for an element 

length of 1 m. It can be mentioned that based on geometry and material properties the maximum 

length of an element cannot be larger than 7 m for the model presented in this study. The number of 

beam elements based on the convergence test is 121 and thereby system matrices with the 

dimensions are sufficient to evaluate the first three undamped eigenfrequencies while  

related to the lowest eigenmode .  

For simplicity, the rotor and nacelle masses are considered as a concentrated mass at the top point 

of the tower. Similarly, masses of the flanges are evaluated as concentrated masses. The monopile is 

assumed to be flooded, i.e. the mass of the water within the monopile is added as dead weight. 

Water around the monopile is applied as added mass according to DNV [1,2]. 

 In this study, by considering admissible element size and applying more integration points for 

each element, the soil can be modelled as a continuous spring over each element by employing the 

Simpson rule. In this method the discrete springs connected to nodes for element with short length, 

which requires a lot of elements, is disregarded.  For each integration point along the element of the 

pile,  is evaluated based on 2-D FE model and Simpson integration is used to determine .   

From the Kelvin model, the soil stiffness is calculated in each depth and these values are used 

instead of the obtained soil stiffness from the Winkler model to present the natural frequency of the 

OWT.    

3. Methods of Analysis 

3.1. Natural frequency analysis 

 Assembling the global system stiffness and mass matrices and applying the boundary conditions, 

the following eigenvalue problem is solved: 

                                                                             (9) 
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where  is the global structural (tower and pile) mass matrix,  and  are the global wind 

turbine structural and subsoil stiffness matrices, respectively.  is the generalized DOF vector 

which contains displacements and rotations at the nodes. In order to find the undamped 

eigenfrequency  for the th eigenmode , a harmonic function is applied as a solution to Eq. 

(9).  

,                                                                       (10) 

Note that  is real and  is the modal coordinate. where it is used that the th angular 

eigenfrequency  of the harmonic motion  is given by . Inserting Eq. (10) into Eq. 

(9) makes it possible to find the th undamped eigenfrequency  and corresponding eigenmode 

 by solving the frequency condition: 

                                                                            

(11) 

it is noted that added mass from the soil is not accounted for. Only the mass inside the tubular pile 

is assumed to move with the pile. 

3.2. Equivalent masses, dashpots and springs at pile cap   

In order to obtain the eigenfrequency of the structure–foundation–soil system, an equivalent 

model has been calibrated to the pile head response. A simple model of a wind turbine has been 

generated. The base of the turbine tower is fixed to the monopile cap. Figure 8 shows a simple 

equivalent mass-dashpot-spring (EMDS) model.  

Figure 8 near here  
 

For a monopile and surrounding soil the equivalent stiffness (  can be derived from the 

inverse of the flexibility at the pile cap. It can be shown as: 

Case 1: Static 
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                                                                                                (12a) 

                                                                                               (12b) 

 is the stiffness of the pile-soil system, including the stiffness of the monopile and soil.  

Case 2: Dynamic (cyclic for soil)  

 ;        ,                            (13a) 

                                                                                               (13b) 

By implementing the general stiffness and using the same procedure, the EMDS can be calculated 

as: 

For Winkler model based on API: 

                                                                         (14a) 

                    ;                                                                                     (14b) 

                    ;                                                                        (14c) 

For Kelvin model based on poroelasticity: 

                                                 (15a) 

;           ,                               (15b) 

;                                            (15c) 

 is calculated based on the calculated damping of soil from the Kelvin model and it takes zero 

value for the Winkler model and the structural damping has not been included. Hence, damping due 

to seepage of pore water can be quantified directly, since it is the only dissipation in the system.  

 equals to the monopile mass. By applying a unit force or moment at the pile cap one at the 

time, the (dynamic) flexibility matrix, can be calculated. Next,  is found as the real part of the 

inverse of the (complex) flexibility matrix at the pile cap. By comparing  and , the mass 

( ) at the pile cap can be calculated as: 
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 ,                                                                          (16) 

The equivalent dashpot at the pile cap (  can be obtained from the imaginary part of the inverse 

of the complex flexibility matrix at the pile cap. It can be mentioned that the soil stiffness calculated 

from the Winkler and Kelvin models takes different values because of the presence of pore pressure 

in the FE model used to derive the Kelvin model. The equivalent mass, damping and stiffness at the 

pile cap obtained by the Winkler and Kelvin models can be represented as: 

Equivalent mass based on Winkler model    =                            (16a) 

Equivalent mass based on Kelvin model        =                          (16b) 

Equivalent stiffness based on Winkler model =                             (16c) 

Equivalent stiffness based on Kelvin model =                               (16d) 

Equivalent dashpot based on Kelvin model   =                               (16e) 

In order to treat frequency-dependent soil stiffness properly, an iteration procedure is implemented 

as explained in the following. By first using the API model presented above, the natural frequency 

of a wind turbine and the equivalent pile-cap system are calculated based on the Winkler model. By 

implementing the obtained frequency and initial soil stiffness from the  curve (API) as an 

initial guess for the Kelvin model, the reaction force at the interface is calculated based on the 

Kelvin model and using the poroelastic soil model to find the soil stiffness and damping for each 

layer. Then, by using the soil stiffness calculated from the Kelvin model, the natural frequency is 

calculated and compared with the natural frequency which was used as the input for the Kelvin 

model. Iteration procedure is performed until the natural frequency based has converged.  
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3.3. Extraction of Modal Damping  

The surrounding soil around the pile is modeled as poroelastic material with isotropic material 

properties. In order to reveal the effect of pore pressure, the harmonic forced displacement is 

considered as:  

    ,                                                (17)  

Damping in the soil consists of hysteretic, seepage and geometrical damping. Hysteretic and 

geometrical damping can have important roles when there is nonlinear material behaviour and large 

load frequency ( ), respectively, but it is disregarded in the presented analysis. Based on 

the FE formulation, the seepage provides viscous damping linearly proportional to the velocity of 

the moving soil. For each pile segment, the spring stiffness and viscous damping constant of an 

equivalent Kelvin model (see Figure 9) can be extracted.  

Figure 9 near here  
 

The reaction force at the interface between the pile and soil can be represented as: 

 ,      ,                                                   (18)  

where  and are displacement and velocity respectively. The real and imaginary part of the 

reaction force is used to obtain the stiffness and damping in the equivalent Kelvin model. The 

constructed damping matrix based on the seepage damping is a non-classical matrix and thus the 

modal damping matrix is not diagonal. The cross modal damping ratios  are calculated as: 

                                       (19) 

 and  (  are the undamped eigenmode and modal mass for mode  (   The iteration 

procedure is implemented to get the desired results for the frequency dependent cross modal 

damping ratio.  
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4. Discretization of model 

4.1. Geometry and material properties of OWT 

 
In this study a Vestas V90-3.0MW OWT with a nacelle height of 61.98 m above the mean sea 

level has been considered. The total length of the tubular pile and the transition piece is equal to 

45.24 m and the outer pile diameter (OD) is 4.3 m. The pile wall thickness varies from 35 mm to 71 

mm as shown in Fig. 5a. The pile cap is located 7.74 m below the mean sea level leading to an 

embedded depth of 29.5 m (see Table 1). The tower is a tubular steel tower which consists of 

twenty-five sections while two adjacent sections are bolted together through internal flange-bolt 

connections. The rotor mass and nacelle mass are 38,400 kg and 70,600 kg, respectively. The 

geometry of the offshore wind turbine monopile foundation is presented in Table 1. 

Table 1 near here 
 

To account for the increased mass and stiffness in the presence of the grout annulus between the 

pile and the transition piece, an equivalent steel wall thickness is used for section 3 of the pile.  

The tower is placed on the transition piece 8 m above the mean sea level. Young’s modulus, 

Poisson’s ratio and mass density for the tower equal to 210 GPa, 0.3 and 7850 , respectively. 

The tower is conical and its wall thickness wall varies from 15 mm to 26 mm as shown in Figure 

10.  

Figure 10 near here 

4.2. Geometry and material properties of surrounding soil  

It is assumed the lateral soil stiffness represented by nonlinear springs based on  curve 

method (see Figure 11). And also, a two-dimensional model based on the Kelvin model represents 

the pile-soil interaction by having a spring and dashpot for each layer (as shown in Fig. 4). 
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Figure 11 near here 
 

Three different soil types namely loose, medium and dense sand are considered. The mudline is 

started at -7.74m and ended at -51.74m. The material properties of loose, medium and dense sand 

are listed in Table 2. 

Table 2 near here 

4.3. Geometry of 2-D poroelastic model in each depth   

The soil damping and stiffness in the saturated soil are determined based on the Kelvin model. 

A two-dimensional poroelastic FE model subjected to a harmonic forced displacement is employed 

in order to obtain the stiffness and damping properties to be applied within the Kelvin model. In this 

study, plane strain is considered and as illustrated in Fig. 4, the properties (stiffness and damping) 

are found per unit length. A tubular monopile offshore foundation (Figure 12) for a given depth, 

surrounded by an elastic saturated soil with radius is considered. The soil box used in the present 

analysis has the horizontal dimensions 1000 m  1000 m and the slices are 1 m thick. The  is 2.15 

m. A harmonic sinusoidal forced displacement in the horizontal direction is applied to the border 

between the saturated soil and the pile. Small deformation of the soil is assumed and symmetry is 

considered with respect to the horizontal direction orthogonal to the forced displacement.   

 
Figure 12 near here  

5. Numerical results 

The following subsections elucidate the Winkler model, the difference between the Winkler and 

Kelvin models and the effect of pore pressure when the Kelvin model is employed. The analysis is 

conducted using three cases, namely loose, medium and dense sandy soil. Cyclic and modal 

analyses are performed to determine the deformation and the first three natural frequencies. The 

effect of pore pressure is highlighted by doing a parametric study.  
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5.1. Results based on the Winkler model 

The results presented in this section contain the pressure on the pile, variation of the shear force 

and moment along the OWT structure, mode shapes and natural frequencies of OWTs where there 

is loose sand, based on the API recommendation for cyclic load.   

Figure 13 near here  
 

The final displacement for whole structure is shown in Fig. 13. The maximum displacement 

occurs at the top of tower. 

The horizontal soil pressure along the pile is seen in Figure 14, left. The pressure is continues 

and takes a change of sign along the pile.  

Figure 14 near here  
 

As it can be seen, the maximum soil pressure occurs close to mudline. 

The variation of moment and shear force in the OWT structure is shown in Figure 15.  

Figure 15 near here  
 

The modal analysis has been done to present the first three natural frequencies and mode shapes as 

shown in Figure 16.  

Figure 16 near here  

5.2. Comparison between Winkler and Kelvin model 

Three different soil types’ namely loose, medium and dense sandy soil have been considered to 

compare the results from the Winkler and Kelvin models. The natural frequencies obtained from the 

modal analysis based on the API Winkler model are considered as an initial guess for the Kelvin 

model.  
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5.2.1. Variation of initial stiffness with the monopile depth 

Based on API recommendation, the initial soil stiffness for each type of soil is varying with 

depth linearly as shown in Figure 17. 

Figure 17 near here  

The calculated initial soil stiffness is used to find the variation of shear modulus in the poroelastic 

FE model in order to have the same soil type for the Winkler and Kelvin models. 

The natural frequencies, cross modal damping ratio, equivalent mass, dashpot and stiffness at pile 

cap are presented for different soil types. 

5.2.2. Loose sand 

The first three natural frequencies are compared in Table 3 for loose sand besides the cross 

modal damping ratio. The calculated natural frequencies based on the Kelvin model are greater than 

those calculated by the Winkler model.  

Table 3 near here 

The difference between natural frequencies obtained by the Kelvin and Winkler models becomes 

greater with the increase of mode number. The cross modal damping ratio can take negative or 

positive value for each mode which indicates the energy can transfer between modes in both 

directions. 

The calculated EMDS extracted from the Winkler and Kelvin models are presented in Table 4.  

Table 4 near here 

The equivalent stiffness at pile cap from both methods (Winkler and Kelvin) has almost the same 

values whereas the equivalent Winkler mass is greater than those from Kelvin model. By 

considering these results for equivalent masses, the corresponding Kelvin frequencies are greater 

than those from Winkler model.      
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5.2.3. Medium dense sand 

Table 5 shows the first three natural frequencies obtained by the Winkler and Kelvin models for 

medium dense sand. The EMDS models are presented in Table 6.   

Table 5 near here  

The same outcomes can be observed when the soil type is changed from loose to medium. In 

comparison between loose and medium dense sand it is seen that the damping ratio becomes 

smaller for medium dense sandy soil. Also the calculated natural frequencies for medium dense 

sandy soil are greater than those for loose sandy soil. As expected these results indicate higher soil 

stiffness for medium dense sandy soil.  

Table 6 near here 

The equivalent stiffness for loose (medium dense) soil calculated by the Winkler are independent of 

mode shape whilst the equivalent mass does not have the same behaviour. The equivalent damping 

for medium dense sandy soil is smaller than that for loose sandy soil, whereas the equivalent mass 

is greater than those for loose sandy soil. 

5.2.4. Dense sand 

The dynamic properties of dense sand such as natural frequencies, EMDS based on the Winkler 

and Kelvin models are presented in Tables 7 and 8.   

Table 7 near here  

Table 8 near here 

In comparison with the other types of soil, the dense soil provides minimum damping and cross 

modal damping ratio which indicates for undrained conditions the damping is going to decrease. 

The calculated natural frequencies are greater than those for the other types of soil. 
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It is noted that the equivalent masses at the pile cap obtained by the Winkler model is greater than 

those obtained by the Kelvin model. The greater soil stiffness results in the smaller mass at the pile 

cap.      

5.3. Effect of hydraulic conductivity  

The variation of normalized soil damping and stiffness versus different values of hydraulic 

conductivity for the first mode of the saturated loose sandy soil are presented in Figs. 18 and 19. 

The soil damping and stiffness are normalized based on static stiffness in each soil layer.   

It is seen in Figure 18 that for an artificial soil when the hydraulic conductivity is increased the 

soil damping increases and then decreases. Further, it can be seen that for undrained and drained 

conditions, the damping is close to zero and for a certain value of the hydraulic conductivity it 

reaches maximum.  

Figure 18 near here  

As illustrated in Fig. 19, the same trend is clear when the equivalent damping components for 

the cap are normalized with the equivalent corresponding stiffness components.  

Figure 19 near here  

Figure 20 near here  

The semi-logarithmic plots in Figure 20 show variations of normalized stiffness for different 

values of soil hydraulic conductivity in different depths. It is noticed that for low and high values of 

hydraulic conductivity, the soil stiffness is approaches asymptotic values corresponding to 

undrained and drained conditions, respectively. The transition between fully undrained and drained 

conditions happens within nearly the same range of hydraulic conductivities for all layers. It can be 

observed that the transition takes place in sandy soil. This result is compatible to the one reported in 

Fig. 15 in [17].   
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6. Conclusions 

The paper investigates the natural vibration characteristics and dynamic response of a 3.0 MW 

offshore wind turbine installed on a monopile foundation. In this regard, the finite element method 

is implemented to determine the soil stiffness and damping. The Winkler and Kelvin approaches are 

employed to evaluate the dynamic soil-pile interaction. In order to predict the soil stiffness and 

damping, a two-phase model is established for the soil in each layer corresponding to an integration 

point in the pile model. The two-dimensional coupled dynamic equations for a circular disc in an 

elastic saturated soil, using the  formulation under cyclic load with plane strain conditions, are 

employed. A further simplification, equivalent masses, dashpots and springs have been calibrated to 

the response of the pile and implemented at the base of the turbine support structure (i.e. at the 

monopile cap). Due to its simplicity, such a model is adequate for analysis of wind turbines by aero-

elastic codes such as FLEX, FAST or HAWC [40-42]. However, it has to be kept in mind that the 

model only accounts for seepage damping in the soil.  

 For different soil types, the interesting conclusions can be drawn as: 

 Contrary to the results of the equivalent soil stiffness at pile cap the equivalent dashpots and 

masses at pile cap are highly dependent on the soil type.     

 The soil stiffness reduction in the transition region from undrained to drained states occurs 

for the hydraulic permeability in the range corresponding to sandy soil. The maximum 

damping occurs in the transition region, mostly in sandy soil.   

 In comparison between loose, medium dense and dense sandy soil it is seen that the 

damping ratio becomes smaller for medium dense and dense sandy soil. Furthermore, as 

expected the natural frequencies for dense sandy soil are greater than those the other soil 

types. 
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Caption of Figures 

Fig. 1: Winkler model approach and definitions of  curves [1].  

Fig. 2: DNV-J101  formulas for sand [1]. 

Fig. 3: Linear stiffness of sandy soil 

Fig. 4: Kelvin model consisting of a spring and a dashpot in each depth 

Fig. 5: Model description with applied load and boundary conditions 

Fig. 6a: Elements used for coupled analysis, displacement (u) and pressure (P) formulation (a) (i) 

quadratic for u; (ii) linear for P; (b) (i) biquadratic for u; (ii) bilinear for P [39] 

Fig. 6b: Model description 

Fig. 7: Convergence test  

Fig. 8: Equivalent mass-dashpot-spring (EMDS) model at pile cap  

Fig. 9: Kelvin model consisting of a spring and a dashpot 
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Fig. 10: Geometry of the wind turbine structure decomposed into: (a) pile; (b) transition piece; (c) 

tower. All dimensions are in millimeters. 

Fig. 11: Numerical representation of the considered offshore wind turbine for a modal analysis 

Fig. 12: Configuration of a monopile foundation for a given depth 

Fig. 13: Displacement of whole wind turbine structure  

Fig. 14: Variation of soil pressure on pile 

Fig. 15: Variation of moment and shear force along the OWT’s structure 

Fig. 16: The first three natural frequencies and mode shapes of OWT structure 

Fig. 17: Variation of initial soil stiffness with depth for different types of soil 

Fig. 18: Variation of normalized damping versus hydraulic conductivity  

Fig. 19: Variation of normalized equivalent damping versus hydraulic conductivity  

Fig. 20: Variation of Normalized stiffness versus Hydraulic conductivity for different depths 

 

Caption of Tables 

Table 1: Geometry and material property of pile 

Table 2: Geometry and material property of surrounded soil 

Table 3: Natural frequencies based on the Winkler and Kelvin models and damping ratio for loose 

sandy soil 

Table 4: The equivalent masses, dashpots and springs at pile cap and corresponding natural 

frequencies based on the Winkler and Kelvin models for loose sandy soil 

Table 5: Natural frequencies based on the Winkler and Kelvin models and damping ratio for 

medium dense sandy soil 

Table 6: The equivalent masses, dashpots and springs at pile cap and corresponding natural 

frequencies based on the Winkler and Kelvin models for medium dense sandy soil 
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Table 7: Natural frequencies based on the Winkler and Kelvin models and damping ration for 

dense sandy soil 

Table 8: The equivalent masses, dashpots and springs at pile cap and corresponding natural 

frequencies based on the Winkler and Kelvin models for dense sandy soil 
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Figure 13 
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Figure 14 
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Figure 15 
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Figure 16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.5 0 0.5 1
-40

-20

0

20

40

60

80
Freq = 0.33736 Hz

-0.5 0 0.5 1
-40

-20

0

20

40

60

80
Freq = 1.9573 Hz

-1 -0.5 0 0.5
-40

-20

0

20

40

60

80
Freq = 4.7996 Hz



17 

 

Figure 17 
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Figure 18 
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Figure 19 
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Table 1 
Geometry of the tubular pile 

 Section 
1 2 3 4 5 6 7 8 

Upper-Boundary  -8 -3.695 -1.95 4.05 4.525 22.95 27.1 33.24 
Lower-Boundary  -3.695 -1.95 4.05 4.525 22.95 27.1 33.24 37.24 

outer pile diameter  4.5 4.54 4.54 4.54 4.3 4.3 4.3 4.3 
Density ( ) 7850 7850 8331.3 9117.9 7850 7850 7850 7850 
Thickness  0.035 0.05 0.1088 0.07089 0.045 0.043 0.035 0.045 
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Table 2 
Soil’s specifications Type of Sand 

Loose Medium Dense 
Friction angle    

Effective unit weight (N/m3) 8160 10200 12750 
Hydraulic Conductivity (m/s) 1  1  1  

Upper-Boundary (m) 7.740 
Lower-Boundary (m) 51.74 
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Table 3 
Loose sand 

Mode API Model Kelvin model 

Frequency (Hz) Frequency (Hz) Cross modal damping ratio  

1 0.3374 0.3405 0.59704 2.7182 -3.7632 

2 1.9573 2.0309 -0.2762 1.3246 1.9928 

3 4.7997 4.9656 0.0866 -0.45507 0.77448 
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Table 4 
Loose sand, (Equivalent Mass, Spring and Dashpot at Pile Cap) 

 

Model 

 

Mode 

 

K11 K12 K22 C11 C12 C22 M11 M12 M22 

   

Kelvin model 

(  based 

per mode) 

1 0.66181 4.7098 54.773 0.04262 0.20594 1.19626 2.7640 5.8050 8.6251 

2 0.68271 4.8124 55.370 0.00539 0.02793 0.16890 3.6314 11.766 53.368 

3 0.68954 4.8504 55.612 0.0013639 0.0074447 0.04737 3.6334 11.785 53.590 

 

Winkler model 

(API) 

1 0.550 4.178 51.685  3.9069 13.545 65.554 

2 0.550 4.178 51.685 3.9070 13.546 65.557 

3 0.550 4.178 51.685 3.9074 13.549 65.575 
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Table 5 
Medium sand 

Mode API Model Kelvin model 

Frequency (Hz) Frequency (Hz) Cross modal damping ratio  

1 0.3479 0.3506 0.5814 2.7261 4.0362 

2 2.1832 2.2458 -0.070395 0.34240 0.54037 

3 5.322 5.4797 0.01749 -0.09131 0.16039 
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Table 6 
Medium dense sand, (Equivalent Mass, Spring and Dashpot at Pile Cap) 

 

Model 

 

Mode 

 

K11 K12 K22 C11 C12 C22 M11 M12 M22 

   

Kelvin model 

(  based 

per mode) 

1 1.3866 7.7608 70.483 0.013804 0.06087 0.31763 2.7737 6.7667 22.443 

2 1.3876 7.7655 70.510 0.000357 0.001588 0.008366 2.8631 7.3342 26.482 

3 1.3876 7.7657 70.511 0.0000605 0.0002691 0.0014191 2.8633 7.335 26.486 

 

Winkler model 

(API) 

1 1.125 6.764 65.848  3.0661 8.405 32.430 

2 1.125 6.764 65.848 3.0661 8.406 32.431 

3 1.125 6.764 65.848 3.0663 8.406 32.435 
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Table 7 
Dense sand 

Mode API Model Kelvin model 

Frequency (Hz) Frequency (Hz) Cross modal damping ratio  

1 0.3518 0.3543 0.8166 -   

2 2.2741 2.3320 0.09057 0.4455  

3 5.5544 5.7102 -0.02327 -   
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Table 8 
Loose sand, (Equivalent Mass, Spring and Dashpot at Pile Cap) 

 

Model 

Mode  

K11 K12 K22 C11 C12 C22 M11 M12 M22 

   

Kelvin model 

(  based 

per mode) 

1 1.8970 9.5693 78.309 0.002948 0.011748 0.055391 2.5757 5.9264 19.183 

2 1.8970 9.5695 78.310 0.0000687 0.000274 0.0012946 2.5788 5.9436 19.295 

3 1.8970 9.5695 78.310 0.00001146 0.00004575 0.0002161 2.5788 5.9439 19.296 

 

Winkler model 

(API) 

1 1.541 8.349 73.217  2.758 6.790 23.518 

2 1.541 8.349 73.217 2.7576 6.790 23.518 

3 1.541 8.349 73.217 2.7577 6.790 23.521 
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a b s t r a c t

Offshore wind turbine foundations are affected by cyclic loads due to oscillatory kinematic loads, such as
those from wind, waves, and earthquakes. Monopiles are often used as a foundation concept for offshore
windmill turbines. In this study, coupled dynamic equations with the u� P formulation for
low-frequency load are considered for an offshore wind turbine monopile foundation, to present the
response in terms of pore water pressure (PWP), stress and strain distribution in an elastic porous med-
ium at regions around the monopile foundation. Different stress recovery techniques based on the
Zienkeiwicz–Zhu (ZZ) error estimator namely, super-convergent patch recovery (SPR), weighted
super-convergent patch recovery (WSPR), and L2-projection techniques are also investigated to recover
the stresses at nodal points in the finite element method. To estimate errors in the time domain when
performing transient simulations, three recovery processes are used with different meshes. The conver-
gence of the dynamic problem is also studied. The results are verified with findings in the literature,
revealing that the time period of effective stresses follows the applied load frequency. In conclusion,
the history of the shear stress can have an important effect on the shear stress distribution, making it
asymmetric in the time domain.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments in offshore industries, such as offshore
wind turbine foundations and structures for oil and gas extraction,
have led to a growing demand for realistic predictions of the
dynamic behavior of offshore structures. Offshore wind farms are
receiving increasing attention in the quest for renewable sources
of energy. As one option for wind turbines, the offshore monopile
foundation plays a key role in offshore wind farm design.
Monopile foundations bear loads from the seabed and waves, as
well as loads that act on the turbine above sea level. Offshore
windmill foundations comprise a major part (15–25%) of the total
cost of the whole wind turbine structure.

Accomplishing a safe and cost-effective design for offshore
monopile foundations requires that dynamic analyses be per-
formed. The dynamic response varies significantly in time and is
affected by different parameters, such as the inertia and damping

of the monopile structure, and the stiffness and damping of the
underlying soil. To achieve the desired results, the soil should be
appropriately modeled. Numerical analysis can be the most
approachable and straightforward method for dynamic analysis
[64,33,1,51,26,13]. Biot [7] offered an important and interesting
soil model, establishing governing equations of porous media
based on a continuum formulation [7,8]. Zienkiewicz and Shiomi
[68] modified the equations of motion in an innovative way, pre-
senting a model for the soil skeleton and pore fluid media that is
useful in the numerical context.

Three coupled and dynamic formulations, based on the soil and
pore fluid (water) displacements and the pore water pressure
(PWP), are the u� P � U;u� P, and u� U equations, where u; P,
and U are the soil skeleton displacement, PWP, and pore water dis-
placement, respectively [67]. Cheng and Jeremić [11] used a fully
coupled, inelastic u� P � U formulation to simulate the dynamic
behavior of piles in liquefiable soils subjected to seismic loading.
In the u� P formulation, if the fluid phase is considered incom-
pressible, then the Ladyzenskaja–Babuska–Brezzi (LBB) condition
needs to be satisfied ([9,62,6,2]). In this case, the element type

http://dx.doi.org/10.1016/j.compgeo.2015.07.012
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for the displacement and pore pressure fields requires special con-
sideration, to prevent volumetric locking [65,67]. The restrictions
imposed by the LBB condition exclude the use of elements with
equal order interpolation for pressures and displacements. This dif-
ficulty can be solved by implementing appropriate stabilization
techniques such as the fractional step algorithm which was devel-
oped for soil mechanics by Pastor et al. [41]. Later, the generalized
fractional step method proposed by Pastor et al. [42], was modified
by Li et al. [34]. Recently, Soares et al. [50] described an edge-based
smoothed meshfree technique by presenting an independent spa-
tial discretization for each phase of the model. Considering this
restriction for monolithic algorithm, a simple model for numerical
analyses is the u� P formulation that neglects the relative acceler-
ation of the fluid with respect to the solid skeleton. This model is
especially useful for low-frequency analysis. The contribution of
the solid acceleration is neglected in the fluid mass balance; this
omission was investigated by Chan [10], who found the omitted
contribution to be insignificant.

Prevost [45] incorporated a semi-discrete finite element (FE)
procedure with an implicit–explicit time integration algorithm to
analyze wave propagation in fluid-saturated porous media, which
was modeled in the u� P format. Zienkiewicz et al. [66] studied
the transient and static response of saturated soil, which they
modeled as a two-phase material based on the u� P formulation
for porous media. Pastor et al. [43] used a generalized plasticity
approach to describe the behavior of soil in the u� P formulation
under transient loading. Elgamal et al. [19,20] implemented the
u� P model for a two-phase (solid–fluid) problem with
multi-surface plasticity, using a finite element method (FEM) to
highlight the effect of excitation frequency.

Researchers have attempted to solve these coupled equations
by various numerical methods. For example, Lu and Jeng [35]
investigated the porous soil which governed by the u� P formula-
tion, using the boundary element method. Maghoulaet al. [37]
applied a boundary integral formulation for dynamic behavior
analysis of unsaturated soils. Khoshghalib and Khalili [30] used a
meshless radial point interpolation to solve the fully coupled
Biot’s equations. Soares [49] formulated an edge-based smoothed
weak meshless formulation by Delaunay triangulation to perform
an iterative dynamic analysis of linear and nonlinear fully satu-
rated porous media. Zhang et al. [63] formulated a coupling mate-
rial point method to predict the dynamic response of saturated soil
and the contact/impact behavior between saturated porous media
and solid bodies. Samimi and Pak [47] solved the u� P formulation
by applying the Element-Free Galerkin method. Irzal et al. [27]
implemented an isogeometric analysis to predict the behavior of
a deformable fluid-saturated porous medium, using non-uniform
rational B-splines.

To improve the efficiency of numerical approaches, it is impor-
tant to calculate and reduce the errors. For as long as physical
events have been computationally simulated, the numerical error
of such calculations has been a major concern. Discretization error
is inherent in these simulations, arising from the discretization
process of the continuum domain. As a result, not all of the infor-
mation characterized by the partial differential or integral equa-
tions can be obtained. Especially for the dynamic analysis of
complex problems with many degrees of freedom, adaptive refine-
ment procedures need to be used. This requirement is because of
the limitations of the speed and memory of available computers.
The mesh size should be refined in regions where there are large
gradients in the changes between the nodal variables. The error
can be in conjunction with the adaptive refinement procedure to
obtain the desired accuracy for design purposes with less compu-
tational effort.

In 1910, Richardson [46] presented the first report of a practical
approach for estimating numerical error, utilizing the finite

difference method. Subsequent researchers used the FEM for this
purpose. The FEM has a well-developed theory for error estima-
tion. To date, many reliable methods for estimating the error in
the global energy norm have been proposed, using either
residuals- or recovery-based methods. Tang and Sato [53,54] and
Tang and Shao [55] studied error estimation and adaptive mesh
refinement on seismic liquefaction, seeking to improve the numer-
ical results for large deformation in a soil–pile interaction problem.
They used a FE and finite difference coupled dynamic method for
liquefaction analysis of saturated soil. The u � P formulation was
used for the governing equations, which described the coupled
problem in terms of soil skeleton displacement and excess pore
water pressure. Nazem et al. [39] used an h-adaptive FEM to tackle
the penetration and indentation problems of geomechanics in the
presence of inertial forces. They compared three alternative error
estimation techniques, based on the energy norm, the Green–
Lagrange strain, and the plastic dissipation.

Earlier studies on offshore monopile foundation have consid-
ered three-dimensional simulation (see e.g. [14,33]), and several
authors have emphasized the importance of using a non-linear
material model [24,52]. However, in this study the ZZ error estima-
tor is applied for a two-dimensional (2D) model with an elastic
constitutive model. These simplifying assumptions make some
shortcomings such as ignoring bending of pile, different drainage
paths and dilatancy out of the plane. But in order to investigate
small displacements and get some desired outputs such as the esti-
mation of the regions with higher numerical error, the 2D model
may be applicable. Also, serviceability requirements for offshore
wind turbines only allow rotations of 0.5� at the mudline. For such
small rotations, soil behavior is controlled by elasticity rather than
plasticity. Essentially, small settlement and rotation of foundations
are controlled by linear elastic soil behavior as it was mentioned by
Achmus et al. [1].

In the dynamic analysis of monopile foundations, complex
changes occur in the displacement, stress, and pore pressure fields
of the u� P coupled equations due to the fluid–soil interaction. The
error must be estimated to identify zones that are affected by insuf-
ficientmesh size. To the best of the authors’ knowledge, no dynamic
analysis of offshore foundations has been performed by considering
different stress recovery techniques-namely, super-convergence
path recovery (SPR), weighted super-convergence path recovery
(WSPR), and L2-projection to implement the Zienkiewicz–Zhu
(ZZ) error estimation. The mentioned post-processing procedures
have not been employed for the coupled u� P equations which
can highlight the distinction of the present study. Moreover, the
convergence rates are compared for the different recovery proce-
dures. Thus, it motivates the authors to perform comprehensive
error estimation for the coupled u� P equations. Indeed, it then
paves the way to implement different adaptive refinement proce-
dures based on the implemented error estimation methods, finally
leading to the lower computational costs for modeling two phase
media such as saturated soil.

This study considers a 2D offshore monopile foundation (Fig. 1),
surrounded by a linear-elastic saturated soil and subjected to cyclic
load. The plane strain condition is invoked by having small defor-
mation of the soil. Symmetry is assumed with respect to the hori-
zontal axis and the center line of the monopile. This work aims to
investigate the effects of stress recovery techniques on the ZZ error
estimation in the time domain, by employing the FEM in the u� P
equations. Displacement and pore water pressure fields are inves-
tigated in the time domain for a saturated soil.

Following this brief introduction, Section 2 contains the govern-
ing coupled u� P equations of the saturated soil and its FEM dis-
cretization process. The recovery-based ZZ error estimation and
the SPR, WSPR, and L2-projection stress recovery procedures are
addressed in Section 3. The time discretization of the coupled
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equations using the generalized Newmark integration method is
described in Section 4. In Section 5, two benchmark examples are
solved, and the numerical solution is validated by comparison to
the exact analytical solution. A monopile foundation is analyzed
while considering four meshing configurations. The convergence
rate of the problem is calculated, and the error estimation pro-
cesses are compared. Some concluding remarks are discussed in
Section 6.

2. Governing equations of saturated soil

The total moment balance of porous media is [67]:

rij;j þ qbi ¼ q€ui þ qf €wi ð1Þ
where rij is the total stress tensor and rij ¼ r0

ij � aPdij. Here r0
ij is

the effective stress tensor. For isotropic materials, a ¼ 1� KT
KS
, where

KT is the total bulk modulus of the solid matrix, and KS is the bulk
modulus of the solid particles. For most soil mechanics problems,
because KS of the solid particle is much larger than the bulk modu-
lus of the whole material, a � 1 can be assumed. dij is Kronecker
delta: dij ¼ 1 when i ¼ j, and dij ¼ 0 when i – j. The tensile compo-
nent of stress and compressive component of pressure,are assumed
to be positive. The density of the mixture is q ¼ 1� np

� �
qs þ npqf

where np, qs and qf are the porosity and the densities of the solid
phase and fluid, respectively. bi is the body force per unit mass, ui

and €ui are the displacement and acceleration of the solid skeleton,
respectively; and wi, _wi and €wi are the pseudo-displacement,
pseudo-velocity and pseudo-acceleration, respectively, of the fluid
phase relative to the skeleton of solid. The equation of the total cou-
pled system can be written as:

�P;i �
_wi

k
þ qf bi ¼ qf €ui þ

€wi

np

� �
ð2Þ

where k ¼ k
gqf

, and k0 is the permeability in Darcy’s law, which has

the same unit as velocity. P and g are pore pressure and gravity
acceleration respectively. The final equation is supplied by the mass
conservation of the fluid flow [67]:

_wi;j þ a _�ii þ
_p
Q

¼ 0 ð3Þ

where Q ¼ Qsf ¼ KsKf

KsþKf
is the total compression modulus. KS and Kf

are the solid and fluid compression moduli, respectively. _P and _�ii
are the time derivative of the pore pressure and strain respectively.

2.1. Governing equation (u� P formulation)

For lower frequencies, the relative acceleration ð€wiÞ of the fluid
with respect to the solid skeleton is ignored. Then, Eq. (1) reduces to:

rij;j þ qbi ¼ q€ui ð4Þ
By combining Eqs. (2) and (3) and ignoring the relative acceleration
of the fluid with respect to the solid skeleton, the governing equa-
tion of the fluid mass balance becomes:

k �P;i þ qf bi � qf €ui

� �� �
;i
þ a _�ii þ

_P
Q

¼ 0 ð5Þ

2.1.1. Boundary conditions
The boundary conditions are ðC ¼ Ct [ CuÞ; ðC ¼ Cw [ CPÞ:

rijnj ¼ �ti on C ¼ Ct

ui ¼ �ui on C ¼ Cu

ni _wi ¼ nikð�p;i þ qf biÞ ¼ _�w ¼ ��q on C ¼ Cw

P ¼ P on C ¼ CP

ð6Þ

where �ti, �ui, �q and P are boundary traction, displacement, flow and
pore pressure, respectively.

2.2. Discretization process of governing equations

By neglecting the acceleration term in Eq. (5) and discretizing,
the FE system of equations for the u� P formulation, which is
based on earlier work by Zienkiewicz and Shiomi [68], can be writ-
ten in tensor index form:

MKijL 0
0 0

� 	 €�uLj

€PN

" #
þ 0 0

QLjM SMN

� 	 _�uLj

_PN

" #
þ Kep

KijL �QKiN

0 HMN

� 	 �uLj

PN

" #
¼ f uKi

f PM

" #

ð7Þ
and

M 0
0 0

� 	 €u
€P

" #
þ 0 0

QT S

� 	 _u
_P

" #
þ Kep �Q

0 H

" #
�u
P

� 	
¼ f u

f P

� 	
ð8Þ

where

fu : f uKi ¼ f u1
� �

Ki þ f u2
� �

Ki; fP : f PM ¼ � f P1
� �

M
þ f P2
� �

M

and

fu1 $ f u1
� �

Ki ¼
R
Ct
Nu

K
�tidC; fu2 $ f u2

� �
Ki ¼

R
X Nu

KqbidX

fP1 $ f P1
� �

M
¼ R

Cw
NP

M �wdC; fP2 $ f P2
� �

M
¼ R

X NP
M;ikqf bidX

M $ MKijL ¼ dij
R
X Nu

KqN
u
LdX

� �
; Q $ QLjM ¼ R

X aN
u
L;jN

P
MdX

S $ SMN ¼ R
X NP

M
1
Q N

P
NdX; H $ HMN ¼ R

X NP
M;ikN

P
N;idX

Kep $ Kep
KijL ¼

R
X Nu

K;mDimjqN
u
L;qdX

ð9Þ

In these equations, the solid displacement ui and pore water pres-
sure P can be approximated by using the shape functions and nodal
values:

Fig. 1. Configuration of a monopile foundation.
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ui ¼ Nu
K
�und
ki ð10Þ

P ¼ NP
l P

nd
l ð11Þ

Similar approximations are applied to _ui and _P. For more details,
please see the note by Jeremic [28].

3. Error estimation

To check the accuracy of numerical solutions based on the clas-
sical energy norm, error estimation methods are used. These meth-
ods can be categorized into two classes: residuals-based and
recovery-based. In residual-based methods, the residuals of a dif-
ferential equation and its boundary conditions are considered as
error criteria. In recovery-based methods, the gradient of the solu-
tion is used.

The ZZ error estimator [69–71] is a recovery-based method that
is used in conjunction with the SPR technique at each patch to
improve the accuracy of the error estimate. The error of the FE
approximation �u with respect to the exact solution uex is:

e ¼ uex � �u ð12Þ
and the error of the flux (proportional to the gradient of u) is:

er ¼ rex � �r ð13Þ
The stresses r ¼ DB�u are obtained from FEM procedure at the
Gauss points where D is the material constitutive matrix and B is
the strain-interpolation matrix that contains first-order partial
derivatives of shape functions with respect to the physical coordi-
nates. The stresses at the Gauss points are extrapolated to nodes
by using shape functions.

The energy error norm kek is defined as follows [70–72]:

keZ92k ¼
Z
X
ðrex � �rÞT ðrex � �rÞdX


 �1=2

ð14aÞ

keZ95k ¼
Z
X
ðrex � �rÞT D�1ðrex � �rÞdX


 �1=2

ð14bÞ

where rex and �r are the exact and FEM stresses, respectively.
However, these definitions are nearly useless because the exact
solutions for u and r are almost always unknown.

To use the above equations for error estimation, the recovered
stresses r� must be calculated. The ZZ error estimator is effective
and economical for evaluating errors and driving adaptive mesh
refinement. Field derivatives and fluxes computed from FE solu-
tions do not possess inter-element continuity, and they have low
accuracy at nodes and element boundaries. It is well known that
the calculated FE stresses at the Gauss points based on nodal dis-
placement do not have continuity between elements [70,71]. The
main objective of the recovery process is to overcome this diffi-
culty and make a smoothed continuous stress field between ele-
ments. Derivatives and fluxes are more accurate at
super-convergent (Gauss) points compared to other points within
the element. Moreover, as the element size decreases, the values
at super-convergent points converge more quickly to the true
stress values. Thus, an accurate value r� of the stress r at the nodes
can be recovered by interpolating between the stresses at the gauss
points in a patch around the node.

Therefore, the global error keesk can be estimated as,

keZ92es k ¼
Z
X
ðr� � �rÞT ðr� � �rÞdX


 �1=2

ð15aÞ

keZ95es k ¼
Z
X
ðr� � �rÞT D�1ðr� � �rÞdX


 �1=2

ð15bÞ

If the exact solution is available, the error of recovery procedure
keRk can be defined as [70–72]:

keZ92R k ¼
Z
X
rex � r�ð ÞT rex � r�ð ÞdX


 �1=2

ð16aÞ

keZ95R k ¼
Z
X
rex � r�ð ÞT D�1 rex � r�ð ÞdX


 �1=2

ð16bÞ

The global energy norm Enorm can be defined as:

EZ92
norm ¼

Z
X
rT rdX


 �1=2

ð17aÞ

EZ95
norm ¼

Z
X
rT D�1rdX


 �1=2

ð17bÞ

The relative error is estimated as follows:

erel ¼ kekffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kek2 þ E2

norm

q � 100 ð18Þ

3.1. Super-convergence path recovery

The theory of super-convergence is that to have more accurate
results in Gauss points to recover the results at nodal points and
the rate of convergence has a maximum value. The technique
states that if the gradients at some points are super-convergent,
then any gradient field resulting from a polynomial fit to these val-
ues will be super-convergent. To use the SPR technique for
post-processing FE derivatives, the mesh is partitioned into
sub-domains (or ‘‘patches’’), and a continuous polynomial expan-
sion is assumed over these patches [70,71]. An element patch is
selected as a group of elements surrounding a typical vertex node.
In constructing a patch, it is possible that the boundary vertex will
lead to patches of insufficient size. An approach is to choose only
patches on internal nodes and to evaluate the boundary nodal val-
ues from the adjacent interior patches. The advantage of SPR is that
the number of smoothing equations to be solved for each patch is
modest, and the recovery is only performed for each vertex node.

After analysis, a patch is defined for each vertex of a node inside
the domain as the union of elements sharing the node. The recov-
ered solution can be obtained for each component by r� ¼ Pa,
where P are polynomials defined as follows:

P ¼ 1 x y½ �; m ¼ 3; first order
P ¼ 1 x y x2 xy y2

 �
; m ¼ 6; second order

P ¼ 1 x y x2 xy y2 x3 x2y xy2 y3
 �

; m ¼ 10;
third order

ð19Þ

and a ¼ a1 . . . am½ � is an unknown vector. Using least squares fit-
ting, polynomial expansion to the set of super-convergent (gauss)
points can be written as:

I ¼
Xng
i¼1

ðr� � �rÞ2 ¼
Xng
i¼1

ðPa� �rÞ2 ð20Þ

where ng is the number of gauss points in the patch. Minimization
of the error function I with respect to the unknown parameters a
leads to:

Xng
i¼1

PTPa ¼
Xng
i¼1

PT �r ð21Þ

Evaluating the unknown vector a from the above equations
with respect to the global coordinates for higher order elements
often leads to singularities in left-hand side (LHS) of the equation.
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To alleviate the ill-conditioning issue, it is convenient to normalize
the coordinates to the local coordinates of the patch. When the
unknown parameters a are obtained, the smoothed values at any
particular node inside the patch can easily be found by inserting
the coordinates into Eq. (20).

3.2. Weighted super-convergence path recovery

The WSPR method is a modified version of the SPR for modeling
high-gradient regions, such as cracks, by implementing weighting
parameters to obtain more realistic values of error. In the standard
SPR technique, all sampling points have similar properties in the
patch, which may yield to significant errors, particularly at the
edges of a crack [29]. For elements located on high-gradient
regions with insufficient sampling points, the points of the nearest
patch must be used, with the definition of a weight function for the
SPR procedure. In this case, the error function I can be written as
follows:

I ¼
Xng
i¼1

wiðr� � �rÞ½ �2 ¼
Xng
i¼1

wiðPa� �rÞ½ �2 ð22Þ

One of the most common weighting factors that can be used in
solid mechanics problems is the distance between the recovered
nodal point and the sampling point. In this paper, the weighting
parameter is defined as wi ¼ 1=

ffiffiffiffi
ri

p
, where ri is the distance of each

sampling point from the vertex node that is being recovered.
Minimizing I with respect to the unknown vector a,

Xng
i¼1

w2
i P

TPa ¼
Xng
i¼1

w2
i P

T �ri ð23Þ

3.3. L2-projection recovery

The error function for the L2-projection recovery is defined as,

I ¼
Z
X
r� � �rð Þ2dX ¼

Z
X

Pa� �rð Þ2dX ð24Þ

As was done with the SPR technique, the above equation is mini-
mized and re-arranged to generate:Z
X
PTPadX ¼

Z
X
PT �rdX ð25aÞ

Then the unknown vector a can be found as

a ¼ A�1b; A ¼
Z
X
PTPdX; b ¼

Z
X
PT �rdX ð25bÞ

The matrix A has the same order as the number of the terms used in
the polynomial P. Using the numerical integration in Eq. (25b) is
similar to the Eq. (21) with the difference that each term is affected
by an element area and the weighting coefficient. Therefore, in the
L2-projection method, the recovered stresses, r�, are affected by the
size of the connected elements to the patch surrounding the partic-
ular assembly node. For example for nine node elements as shown
is Fig. 2, the nodal recovered stress r� belong to a polynomial
expansion ðPaÞ with the same order as P. A patch surrounding the
particular assembly node represents a union of elements containing
this vertex node.

In Fig. 2 the center of the figure represents the patch assembly
point. The interested reader can find more details in Zienkiewicz
and Zhu [70,71]. In the real world, most problems fail when they
reach the maximum tensile strengthnshear stress. The ZZ error
estimation is formulated based on the primary and recovered
stresses, using the FEM over the elements. The stresses are func-
tions of the displacements that, in turn, are affected by the PWP,
heat changes, etc. Hence, error estimation only over the stresses

can reveal the error when examining the material behavior under
the applied loading with the discretized mesh. Thus, it is possible
to achieve a desired accuracy by using the adaptive refinement
procedure.

4. Time integration procedure

For time discretization of the governing Eq. (8), the generalized
Newmark technique is employed with the Newton–Raphson itera-
tion. Accordingly, the problem variables and their temporal deriva-
tives in the time interval of [tn, tnþ1] are given as:

€uðkÞ
nþ1 ¼ €un þ D€un ) €uðk�1Þ

nþ1 þ D€uðkÞ ¼ €un þ D€un ) D€un ¼ €uðk�1Þ
nþ1

þD€uðkÞ � €un

_unþ1 ¼ _unþ1 þ Dt€un þ b1Dtð€uðk�1Þ
nþ1 þ D€uðkÞ � €unÞ

unþ1 ¼ un þ Dt _un þ 1
2Dt

2€un þ 1
2b2Dt

2ð€uðk�1Þ
nþ1 þ D€uðkÞ � €unÞ

8>>>><
>>>>:

ð26Þ
and

_pðkÞ
nþ1 ¼ _pðk�1Þ

nþ1 þ D _pðkÞ ¼ _pn þ _pn ) D _pn ¼ _pðk�1Þ
nþ1 þ D _pðkÞ � _pn

pnþ1 ¼ pn þ Dt _pn þ �b1Dtð _pðk�1Þ
nþ1 þ DpðkÞ � _pnÞ

(

ð27Þ
where Dt is the time step length. It should be noted that for
linear-elastic stress–strain behavior a single iteration solves the
problem exactly and the superscript k in Eqs. (26) and (27) is unnec-
essary [67]. The approximation is stable unconditionally when [67]:

b2 P b1 P
1
2

and �b1 P
1
2

ð28Þ

By considering the governing equation in tnþ1 and implementing the
variable at tnþ1 in terms of the variable at tn, as mentioned in Eq.
(27), the governing equation becomes:

M þ 1
2 b2Dt

2K ��b1DtQ

��b1DtQ
T �S � �b1DtH

" #
D€uðkÞ

D _pðkÞ

" #
¼ Fu

�FP

" #
ð29Þ

where the equivalent forces are:

Fu ¼ f unþ1 �M€uðk�1Þ
nþ1 þ Q pn þ Dt _pn þ �b1Dt _pðk�1Þ

nþ1 � _pn

� �� �
� K un þ Dt _un þ 1

2
Dt2€un þ 1

2
b2Dt

2 €uðk�1Þ
nþ1 � €un

� �� �
FP ¼ f pnþ1 � QT _unþ1 þ Dt€un þ b1Dt €uðk�1Þ

nþ1 � €un

� �� �
� S _pðk�1Þ

nþ1

� H pn þ Dt _pn þ �b1Dt _pðk�1Þ
nþ1 � _pn

� �� �
ð30Þ

Fig. 2. Computation of superconvergent values for 9 node elements, h Gauss point.
� Nodal values determined by the recovery procedure.
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5. Validation and numerical results

5.1. Validation

The results of this paper are verified with the exact solution
reported by Olson [40] for one-dimensional consolidation under
time-dependent loading, with Young’s modulus E = 104 kPa,
Poisson’s ratio v = 0.2, and permeability ¼ 5� 10�7 m/s, and step
loading = 1 kPa on the top surface. The load is applied during a time
period of 1 day and remains constant thereafter (Fig. 3). Olson [40]
expressed the excess pore pressure in terms of the vertical posi-
tion. All boundaries are considered impermeable, except for the
upper surface that is free draining (for further information, see
Das [16]). According to this solution, the excess pore pressure of
consolidation is expressed as:

Tv 6 Tc : p ¼ P1
m¼0

2qc
M3Tc

1� e�M2Tv
� �

sin My
H

� �
Tv P Tc : p ¼ P1

m¼0
2qc
M3Tc

e�M2ðTc�Tv Þ � e�M2Tv
� �

sin My
H

� �
8><
>: ð31Þ

where Tc ¼ cv tc
H2 , Tv ¼ tcv

H2 , cv ¼ k
mvcw

, mv ¼ ð1þmÞð1�2mÞ
Eð1�tÞ , M ¼ ð2mþ 1Þ p2, E

is Young modulus, m is Poisson’s ratio, and H is drainage distance.
Fig. 4a and b shows the excess pore pressure plotted versus

depth as symbol points. The results of this study are very compa-
rable to those of Olson [40].

For further assessment, a saturated porous seabed of finite
thickness subjected to progressive wave loading is considered
and a comparison of the FE solution with an exact solution
reported by Hsu and Jeng [25] is made. The wavelength
ðLwlÞ = 324 (m), wave period ðTwlÞ = 15.0 s, shear modulus
ðGseabedÞ ¼ 107 N=m2 and permeability = 10�4 m=s are used (see
Fig. 5). The moving boundary conditions in time and space are
taken from the analytical solution to obtain the FE solution.
Interested readers may refer to Ulker and Rahman [56] and Ulker
et al. [57] for more details about the exact solution and required
boundary conditions.

Hsu and Jeng [25] presented the variation of dimensionless
stresses and pore pressure versus dimensionless seabed thickness
in Fig. 6 for saturated seabed when the surface subject to

p ¼ p0e
i 2p

Lwl
x� 2p

Twl
t

� �
, x and t are the horizontal coordinate and time

respectively. Based on normalizing the results based on p0, the
value of that is considered as unit (for more details refer to [56]
and [58]). Graphs of non-dimensionalized stresses and pore pres-
sure against thickness as obtained from FEM are given in Fig. 6.

Fig. 3. One-dimensional consolidation problem under time-dependent loading.

Fig. 4. Excess pore water pressure change along the depth for different times.
Symbols line is solution of the present study. Continuous lines are from Olson [40].
(a) t < tc. (b) t > tc.
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It can be seen that the results of this study are well- compatible
with those of Hsu and Jeng [25].

5.2. Numerical results

5.2.1. Response of the monopile foundation under dynamic cyclic
displacement

To illustrate the linear-elastic stress–strain behavior of the sat-
urated soil around the monopile numerically, a 2D model with the
plane strain condition is applied to the presented formulation for
an axisymmetric solid circular cylinder with radius R, as shown
in Fig. 7. The arc-boundary (or semi-circle boundary), which repre-
sents the common border between the solid cylinder and saturated
soil, is subject to harmonically varying forced displacement
ðu ¼ 0:1 sinðpt=2ÞÞ with cyclic frequency x and applied forced

displacement is in the horizontal (x) direction the same as consid-
ered by Damgaard et al. [15], as shown in Fig. 8.

The 2D analysis of each soil layer is performed based on the
material properties presented in Table 1.

Typically, offshore monopile wind turbines have diameters of
4–6 m [15]. However, recent research for water depths above
40 m has shown that monopiles with diameters up to 10 m might
be applicable and economically feasible [48]. A monopile with
diameter 6 m is considered in this study. The behavior of the
monopile foundation can change from flexible to rigid, depending
on the pile material properties and its geometry, embedded length,
the applied load and also soil material properties. The dimension-
less pile flexibility factor is therefore defined [44] and investigated
by many researchers such as Doherty and Gavin [18], Vonmarie
[59] and Haiderali and Madabhushi [22] just to mention a few.
This pile flexibility factor is [44]:

Fig. 5. Geometry of seabed with finite thickness under harmonic wave load.
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Fig. 7. Model description of the monopile with applied load and boundary conditions.

30 M. Bayat et al. / Computers and Geotechnics 70 (2015) 24–40



Pile flexibility factor

¼ Pile Young’s modulus� Pile moment of inertia

Soil Young’s modulus� Embedded monopile length4

Based on the value of the flexibility factor, the pile behavior can be
varied from flexible to stiff pile. Rigid pile defines for flexibility fac-
tor greater than 0.01. Based on current design practices, offshore
monopile wind foundations need to be cost-effective and provide
rigid piles with a safe, stable, and economical design (Vonmarie,
[59]). For monopile offshore foundations, rigid body motion is more
pronounced than the pile deformation especially when there is
large pile diameter [23]. Therefore, a rigid monopile is considered
in this study.

In this study, by considering plane strain conditions a rigid
monopile with radius R = 3 m is considered. According to design
regulations Det Nordske Veritas [17], normally a steel pile with
Modulus of elasticity, E = 210,000 N/mm2 and Poisson’s ratio,
m = 0.3 is considered for the monopile foundation in industry
[17]. Here, by considering the rigid arc-boundary for the monopile,
the pile properties do not affect the response of the saturated sur-
rounding soil. For small vibration amplitudes, considered in this
study, full contact between the soil and the pile is assumed.
Thus, the interface is not modeled explicitly. Instead the boundary
of the soil towards the pile is subject to forced cyclic
displacements.

Simulations are done for 12 s, which represents three periods of
harmonic forced displacement. The monopile model is solved using
four different rectangular meshes, with 96, 144, 272, and 480 ele-
ments. To satisfy the LBB condition, the second-order rectangular
mesh (Q9) is selected for the displacement field and the
first-order rectangular mesh (Q4) for the pressure field. Nodes for
the pressure field are selected on the nodes constructed for the dis-
placement field [67]. Varying time steps are considered for pore
pressure propagation; a small time step is considered for the pri-
mary steps, and the time step is then increased.

In the following sections, the results are presented for a mesh
configuration with 480 elements. In order to have the desired
boundaries and passing the outgoing wave motions through the

boundary in FEM simulation, the bounded domain problems
should be such that the energy crosses them without reflection
from model boundaries towards the structure. To treat this, large
model size, artificial or transmitting boundaries and damping sol-
vent stepwise extraction methods and boundary element method
based on applied load and desired outputs can be applied and
employed Andersen [3], Li et al. [32], Andersen et al. [4], and
Xunqiang et al. [61]. Many different methods have been reported
in the literature to present and model absorbing boundary condi-
tions such as Lysmer and Kuhlemeyer [36], Bamberger et al. [5]
and Krenk and Kirkegaard [31]. In this study based on the applied
load and medium load frequency, desired outputs and considered
pile geometry a large model size is employed. The problem is dis-
cretized with fine mesh close to the pile and the dimensions of the
whole model are 200 m � 200 m. Time steps for plotting are
selected based on the cyclic displacement applied to the problem.
The dynamic results are mainly presented for the second and third
simulation periods, which provide more stable results compared to
the first period.

The chosen mesh consists of 9-noded biquadratic and 4-noded
bilinear elements for displacement and pore pressure fields,
respectively. Fine meshes are generated close to the pile while
coarse meshes are used far from the pile as shown in Fig. 9. The
pore pressure, lateral flow and displacements are considered zero
at the exterior boundary and the sinusoidal periodic displacement
in the horizontal direction is applied for the semi-circular bound-
ary at the soil–pile interface. An illustration of the boundary condi-
tions is provided in Fig. 7.

As shown in Fig. 7, the symmetry of the problem has been
exploited by introducing appropriate boundary conditions at the
plane of symmetry.

Fig. 10 illustrates the shear stress in the plane of symmetry for
different time simulations in the second cycle of forced displace-
ment (4 < time < 6 s).

Imposing prescribed displacement in presence of symmetry
boundary conditions with respect to the center line of the pile
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Fig. 8. Applied forced displacement versus time.

Table 1
Material properties of soil and pile.

Young’s modulus (N/m2) 1 � 108

Poisson’s ratio 0.25
Void ratio 0.50
Bulk modulus of grain (N/m2) 3.6 � 1010

Bulk modulus of fluid (N/m2) 2 � 109

Density of grain (kg/m2) 2000
Density of fluid (kg/m2) 1000
Permeability (m/s) 10�7

Pile radius (m) 3

Fig. 9. Model description.
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(Y-axis) and moving boundary conditions (as shown in Fig. 7) jus-
tify the symmetric shear stress distribution with respect to the
Y-axis. At the times 4 and 6 s, the direction of shear stress is chan-
ged based on changing the direction of imposed displacement (see
Fig. 8), and the absolute value of the difference between the mini-
mum and maximum shear stresses is almost the same. The abso-
lute amount of shear stress increases with time as the pile moves
in a positive direction (4 < time < 5 s) along the horizontal axis.

For the reverse direction, the shear stress decreases until the pile
is relocated to the center (5 < time < 6 s). According to the numer-
ical analysis, the same behavior can be seen as the pile moves to
LHS and arrives at the origin (6 < time < 8 s). As expected, the
results for times of 4, 4.5, 5, and 5.5 s are very similar to those
for 6, 6.5, 7, and 7.5 s, respectively.

The absolute value of maximum shear stress always occurs at
the middle of semi-circle boundary (point C), with a small differ-
ence in the results. In other words, the absolute values of the max-
imum shear stress at the corresponding times are not exactly the
same. These values are obtained by the time integration of the gen-
eralized Newmark method. Moreover, the use of a non-uniform
mesh may introduce small numerical errors in the results, leading
to small differences in the results at each time step. The shear
stress at the center line (Y-axis) has both positive and negative
shear stress values at all times. This phenomenon can be justified
and explained by the presence of applied imposed displacement
and soil movement. Close to the pile, the soil follows the direction
of the pile’s movement; far from the pile, the soil moves in the
opposite direction.

Fig. 11 shows the PWP distribution for different time
simulations.

By indicating the positive compression pore pressure the
anti-symmetry pore pressure distribution with respect to the
Y-axis is seen in Fig. 11. Plane stress, symmetry and moving bound-
ary conditions indicate the zero normal stresses at point C; only
shear stress exists at this point, without any normal stress, which
leads to a value of zero pressure for every time step. These con-
tours suggest that the pore pressure distribution is more concen-
trated close to the pile when it is located at the origin, whereas
it is dispersed in a large area when the pile reaches the maximum
distance from the origin (Fig. 11a and b).

Two interesting observations in Figs. 8 and 9 are the significant
shearing and excess pore pressure generation adjacent to the pile.

t = 4 sec

t = 4.5 sec 

t = 5 sec

t = 5.5 sec 
Fig. 10. Time sequence contours of the shear stress (N/m2) in four time simulations
for the symmetry plane of a soil system.

t = 4 sec

t = 5 sec

Fig. 11. Time sequence contours of the pore pressure (N/m2) in two different time
simulations for the symmetry plane of a soil system.
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Fig. 12 shows the pore pressure generation during the dynamic
simulation.

The behaviors of the time-varying pressure and the
forced-displacement load are similar, but the period of the pres-
sure is smaller than that of the applied load, Tpressure < 4 s, for the
first period. The first maximum (or minimum) at point A (or point
E) is smaller than that for the rest of the time simulation because
the dynamic simulation is not yet stabilized. Accordingly, the con-
tours shown in Figs. 8 and 9 are taken for time >4 s. The results for
the second period are much more stable than those for the first
period. Although the results for the third period are better com-
pared to the second period, the second and third period results
have almost the same maximum and minimum values, just with
decreased oscillations in the third period. Results for points A
and E clearly have the same trend, but in opposite directions.
Moreover, the maximum (or minimum) pore pressure does not
occur at the maximum (or minimum) displacement time.

Fig. 13 shows the normal effective stresses at points A and E (in
Fig. 7) during the time simulation.

The normal effective stress at nodes A and E display opposing
behaviors. The absence of external loads in Y direction justify that
the normal stress in the horizontal direction should be higher than
the normal stress in the Y direction. The normal stresses in the hor-
izontal and in plane perpendicular directions at point A (or E) are in
tension or compression at each time. In addition, the maximum (or
minimum) normal stress is achieved when the pile has the maxi-
mum (or minimum) displacement. Importantly, the period of effec-
tive stress in first time period is the same as the applied load, in
contrast with the pore pressure behavior shown in Fig. 12.

Fig. 14 shows the shear stress at point C as a function of time.
The shear stress at point C changes with time in the same man-

ner as the applied forced-displacement load. The maximum (or
minimum) shear stress occurs when the displacement is maximum
(or minimum). The shear stress is zero when the pile is located at
the origin based on disappearing of the displacement.

Fig. 12. Variation of the pore pressures (N/m2) at the corner of the pile (points A
and E) versus time.

Fig. 13. Variation of the effective stresses (N/m2) at the corner of the pile (points A
and E) versus time.

Fig. 14. Variation of the shear stress (N/m2) at the middle of semi-circle boundary
(point C) versus time.

Fig. 15. Variation of the strains at the corner and middle of the semi-circle
boundary (point A and C) versus time.
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Fig. 15 shows the normal and shear strains as a function of time
for points A and C.

The pile undergoes the maximum normal and shear strains (at
points A and C) when it reaches to the absolute maximum dis-
placement. Moreover, the general observations for the effective
stress at point A and shear stress at point C are valid for normal
and shear strains and points A and C. These results are indicated
by Figs. 12 and 11 for corresponding points. At the time with zero
shear strain at point C in Fig. 15 indicates the zero shear stress in
Fig. 14. And also, the time for zero normal strain at point A in
Fig. 15 corresponds to maximum distance of pile from center
which indicates maximum pore pressure and subsequently the
effective stress for the corresponding time should be zero. This
observation is indicated by Fig. 13 by indicating effective stress
at point A.

Fig. 16 shows the pore pressures on a semi-circular boundary
(where is interaction between soil and pile) for different time
simulations.

The point C in Fig. 7 indicates X = 0 in Fig. 15, the point C has
zero pore pressure for all simulation times which is vindicated
by presented results in Fig. 11. The horizontal coordinate of
semi-circle nodes (X) are changing between �3 and 3 (m). It is
found that the pressures along the semi-circular line have zero
value when time is about 5.35 and 7.35 s. An anti-symmetric
behavior is seen when the pile rocks to the LHS or RHS. The varia-
tion in PWP on the semi-circular line changes linearly with time.
For the second period of simulation, the maximum pore pressure
occurs around 4.5 or 6.5 s. Accounting for the behavior of the pore
pressure, this phenomenon can be explained by the presence of the
porous media movement. Fig. 12 may be referred to for more
details. The period of time-variant pore pressure is reduced in
the first period.

Fig. 17 depicts the normal stress in the horizontal direction on a
semi-circular curve for different time simulations.

The normal stress is zero at point C and is anti-symmetric with
respect to the Y axis, which is confirmed by results in Fig. 16, for
the whole simulation time. At 4 s, the normal stress changes from
compression to tensile stress at the semi-circular boundary where
X = 2.6 (or �2.6) m. This phenomenon can be explained by the
presence of interactive effects between the movement of grain par-
ticles and the fluid phase. This effect can also be seen at other
times, when the behavior of the normal stress appears sinusoidal.

As expected, when the pile moves in a positive horizontal direc-
tion (4 < time < 5 s), the normal stress in front of the pile is nega-
tive. As the time increases, the absolute value of the normal
stress increases to a maximum value. For the reverse direction
(5 < time < 6 s), it decreases. The same behavior can be seen for
the other side of the pile. The maximum (minimum) effective nor-
mal stress in the horizontal direction is obtained at the maximum
(minimum) displacement of the pile. Comparing Figs. 14 and 15
while also considering Fig. 12, it can be observed that because
the time in the first cycle changes with respect to the other pore
pressure cycles, the maximum effective stress and minimum pore
pressure do not coincide at the same time.

Fig. 18 shows the shear stresses along the semi-circular line of
the pile for different time steps.

The maximum shear stress occurs at point C, where the pore
pressure and effective stresses are zero (refer to Figs. 14 and 15).
By considering the couple equation of motion which represented
the effect of pore pressure on stress field and considering the

Fig. 16. Variation of the pore pressure (N/m2) on a semi-circular pile line for
different time simulations.

Fig. 17. Variation of the normal stress (N/m2) in the horizontal direction on a semi-
circular pile line for different time simulations.

Fig. 18. Variation of the shear stress (N/m2) on a semi-circular pile line for different
time simulations.
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results for pore pressure (Fig. 14), these effects justify that the
shear stress changes around the monopile as shown in Fig. 18.
The shear stress behavior for 4 < time < 5 s is comparable with that
for 6 < time < 7 s and larger than those for 5 < time < 6 s and
7 < time < 8 s. As a result of the time history of shear stress, the
absolute value of the shear stress duration at 4 < time < 5 s is
greater than at 5 < time < 6 s. The zero-value shear stress point
moves to RHS (LHS) when the pile moves to the RHS (LHS).
Accounting for the boundary condition, this phenomenon can be
explained by the high resistance of the saturated soil when the pile
is located at the center compared to when the pile is moving to the
LHS or RHS of the origin.

5.2.2. ZZ error estimation of the monopile foundation and saturated
isotropic seabed of finite thickness

Fig. 19a and b illustrates the variation of the energy norm ðEnormÞ
using FE nodal and Gauss point stresses ð�rÞ respectively for the
whole system by using the ZZ formulation over time (see Fig. 19).

The behavior of the energy norm is periodic in the time domain,
as is the case with the normal and shear stresses. The energy norm

starts at a zero value when the displacement is zero. During move-
ment, it does not return to the zero value because of the interaction
between the grain particles and fluid. In the following equation, the
time period of the energy norm is half that of the displacement.
The energy norm reaches its maximum (or minimum) at maximum
(or minimum) displacement. The Eq. (17b) is numerically imple-
mented to plot Fig. 17b as:
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where ng is the number of gauss points per element and nel is the
total number of elements.

Fig. 20 shows the error norm ðkeeskÞ based on Eq. (15) obtained
using different recovery procedures.

In order to investigate the behavior of energy norm the model
with 96 elements is considered. The trend for the error norm based
on difference between FEM and recovery stresses is approximately
the same as the trend for the pile displacement. In first period, the

Fig. 19. Variation of the energy norm ðEnormÞ using finite element nodal and gauss
point stresses versus time for the monopile model.

Fig. 20. Variation of the global error norm ðkeeskÞ by the SPR, WSPR, and
L2-projection methods versus time for the monopile model.
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global error is not stabilized numerically based on the way of time
integration, time step and applied oscillating boundary conditions;
for second and subsequent periods, the maximum and minimum
global error values are nearly the same. The error norm in
Fig. 18b based on Eq. (15b) is calculated as follows:

keZ95es k� �
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It is observed from Fig. 18b that the difference between FEM and
L2-projection recovery Gauss point stresses is smaller than differ-
ence between FEM and other recoveries results. Fig. 18a demon-
strates that the SPR recovery nodal stresses take smaller global
error in comparison to other methods. The result from Fig. 18a is
similar to the one reported in Zienkiewicz and Zhu [70–72].

Fig. 21 compares the relative errors with the four configurations
using the L2-projection method.

The Eqs. (15b) and (17b) are implemented to calculate the rel-
ative errors by using Gauss point stresses. It shows that the numer-
ical error decreases as the number of elements increases.

To quantify the efficiency and accuracy of the recovery proce-
dures for analyzing a monopile foundation under cyclic displace-
ment, the convergence rate and convergence curve in the time
domain are calculated using the ZZ error, based on the SPR,
WSPR and L2-projection recovery procedures using the four mesh
configurations (see Fig. 22).

The convergence rate is close to 0.5 however it takes greater
value for SPR in comparison to that for L2-projection recovery tech-
nique. For an FE the optimal convergence can be obtained with

CN�p=d, where C is a positive constant number, N is the number
of degrees of freedom, and d is the dimension of the problem
[12]. In this paper, p ¼ 2 and p = 1 for the displacement and pore
pressure fields, respectively. It can be noticed that it is compatible
with the theoretical convergence rate which depends on the
applied polynomial degree in the FE approximation for the linear
element (in this case p = 1) as it was mentioned by Tang and Sato
[53] and Nadal et al. [38].

The second benchmark as shown in validation section is imple-
mented to present the error estimation using SPR, WSPR and
L2-projection techniques. The developed FE mesh is generated
and visualized using the open source mesh generator Gmsh [21]
in order to introduce irregular mesh. Simulations are performed
for 15 s which is the wave period of harmonic surface wave pres-
sure. Fig. 23 compares the global error norm ðkeeskÞ with the three
different stress recovery techniques by using Eq. (15b).

Here again the difference between the FEM and recovered gauss
point stresses by L2-projection is smaller than other recovery
methods.

By using Eq. (16a) the global recovery error norm eR for nodal
stresses based on SPR, WSPR and L2-projection techniques is pre-
sented in Fig. 24.

It shows that the calculated energy norm by considering SPR
recovered stresses takes smaller values compared to those with

Fig. 21. Variation of the relative errors ðerelÞ by four different meshes (96, 144, 272,
and 480 elements) versus time for the monopile model.

Fig. 22. Rate of Convergence of different stresses recovery procedures for monopile
model.

Fig. 23. Variation of the global error norm ðkeeskÞ by the SPR, WSPR, and
L2-projection methods versus time for the seabed model with regular mesh.
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L2-projection. This result is similar to the one reported in
Zienkiewicz and Zhu [70–72].

By considering the Fig. 24, the related error ðkeRkÞ contours
within the geometry has been illustrated in Fig. 25.

It is seen that the maximum error occurs on the surface of the
model. Based on the dynamic load on the surface this contour
changes with time.

Fig. 24a and b shows the global error norm ðkeeskÞ and the global
recovery error norm keRk for the model with irregular mesh by
considering Eqs. (15b) and (16a), respectively.

The effect of using regular and irregular meshing can be shown
by comparing the difference between recovered and exact stresses
as shown in Figs. 21 and 24a (and also Figs. 22 and 24b). It is seen
that the irregular mesh has greater difference between the exact
and recovered stresses at nodal/Gauss point compared to that with
regular mesh.

In the seabed model with finite thickness, another irregular
mesh that is based on formulations presented by Xuan et al. [60]
is considered. The coordinates of interior nodes ðx0; y0Þ are:

x0 ¼ xþ 2rc � 1ð ÞairDx

y0 ¼ yþ 2rc � 1ð ÞairDy



ð34Þ

where x and Dx (y and Dy) are initial regular node coordinates and
element sizes in the x-direction (and y-direction), respectively.
Further, rc is a random number between 0 and 1.0, and

Fig. 24. Variation of the global recovery error norm keRk by the SPR, WSPR, and
L2-projection methods versus time for the seabed model with regular mesh.

(i)

(ii)

(iii) (i) SPR, (ii) WSPR, (iii) L2-projection

Fig. 25. The error norm ðkeRkÞ contours within the geometry.

Fig. 26. Variation of the global error norm by the SPR, WSPR, and L2-projection
methods versus time for the seabed model with irregular mesh (b) based on ðkeeskÞ
(b) based on keRk.
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air 2 0;0:5½ � is an irregularity factor controlling the shape of the
elements.

By using Eqs. (15b) and (16a), the global error norm ðkeeskÞ and
the global recovery error norm keRk for the model with irregular
mesh when air ¼ 0:2 are shown in Fig. 25a and b, respectively
(see Fig. 27).

Here again, the seabed model with irregular mesh has greater
global error norm and global recovery error norm in comparison
to the correspond results in Fig. 23 for the model with regular
mesh which is compatible with the results by Xuan et al. [60].
Furthermore, the global recovery error takes smaller values when
the SPR recovered stresses are implemented, which is similar to
the results given by Zienkiewicz and Zhu [70–72].

The convergence curve and convergence rate in the time
domain are presented and calculated using the ZZ error, based on
the SPR, WSPR and L2-projection recovery procedures as shown
in Fig. 28 by considering regular and irregular meshes for the
seabed model.

A convergence rate is close to 1. These results follow the for-
mula by Craig et al. [12] and compatible by earlier results reported

by Tang and Sato [53] and Nadal et al. [38]. It can be mentioned
that the absolute value of displacement and stresses are just func-
tion of the vertical variable as it was mentioned by Ulker and
Rahman [56] and Hsu and Jeng [25]. It is seen from Fig. 26b that
for the model with irregular mesh (when air ¼ 0:2) the conver-
gence rate is slightly smaller than those for model with regular
mesh as shown in Fig. 26a. This result is similar to the one reported
by Xuan et al. [60].

6. Conclusions

This paper explores numerical results for 2D coupled dynamic
equations for an offshore monopile foundation in a saturated soil
with linear-elastic stress–strain behavior, using the u� P formula-
tion under cyclic load with conditions of axis-symmetry and plane
strain. Three recovery procedures, SPR, WSPR, and L2-projection,
are implemented to recover the stresses on nodes and to capture
the ZZ error estimate. Results in the time domain are quantified
and compared. For these analyses, the FEM is used with appropri-
ate elements for the displacement and pore pressure fields, the
generalized Newmark time integration is applied with the
Newton–Raphson procedure.

Fig. 27. Variation of the global error norm by the SPR, WSPR, and L2-projection
methods versus time for the seabed model with irregular mesh when air ¼ 0:2 (b)
based on ðkeeskÞ (b) based on keRk.

Fig. 28. Rate of Convergence of different stresses recovery procedures for the
seabed model (a) with regular mesh (b) with irregular mesh when air ¼ 0:2.
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Some specific observations of this study can be summarized as
follows:

� The distributions of the pore pressure and stresses have an
important role in the behavior of the saturated soil. Close to
the monopile, the soil follows the direction of movement of
the pile; however, far from the pile, the soil moves in an oppo-
site direction (Figs. 8 and 9).

� For a given simulation time, the difference between the mini-
mum and maximum shear stress values is constant. The maxi-
mum (or minimum) shear stress occurs at the center line of
the model (the in plane perpendicular line at point C) and varies
harmonically with the corresponding behavior of the load
(Fig. 14). The direction of the shear stress at the center line
(Y-axis) is independent of the direction of movement; it always
takes both positive and negative values (Figs. 12 and 8).

� The time periods for all effective quantities (for points A, and E)
are the same as those for the applied load (Fig. 13), whereas the
time for the first cycle of periodic pressure is smaller than that
for the applied load (Fig. 12).

� The convergence rate is 0.5 for all presented recovery proce-
dures applied for solving the coupled dynamic equations for
the monopile model. This result is compatible with that
reported by Tang and Sato [53] reported for saturated porous
soil.

� The global error norm ðkeRkÞ takes smaller value for SPR recov-
ery stresses in comparison to L2-projection technique (Figs. 22,
24b and 25b). This result is similar to the presented result by
Zienkiewicz and Zhu [70,71].
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The present thesis concerns soil–structure interaction affecting the dynamic struc-
tural response of offshore wind turbines with focus on soil stiffness and seepage 
damping due to pore water flow generated by cyclic motion of a monopile. The 
thesis aims to improve modelling of the dynamic interaction between the foun-
dation and the soil and illustrates the dynamic response of offshore wind turbines 
at different load frequencies based on mathematical and numerical approaches.  
 
The stiffness and seepage damping has been investigated using the concept of a 
Kelvin model which combines springs and dashpots. An appropriate model based 
on considering the effect of dynamic behaviour of soil–structure interaction has been 
explored. In this regard, the coupled equations for porous media have been em-
ployed in order to account for soil deformation as well as pore pressure. The effects 
of drained versus undrained behaviour of the soil and the impact of this behav-
iour on the stiffness and damping related to soil–structure interaction at different 
load frequencies have been illustrated. Based on the poroelastic and Kelvin models, 
more realistic dynamic properties have been presented by considering the effect 
of load frequency for the lateral loading of monopiles subjected to cyclic loads.  
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