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English summary 

Insufficient analgesia after surgery increases the risk of developing chronic 

postoperative pain, affecting the quality of life and is associated with large 

economic losses. Opioids are the drugs of choice for moderate to severe pain and 

are used by many chronic pain patients in Denmark. However, the analgesic effect 

varies widely between individuals, resulting in inadequate response for 

approximately one-third of patients. Biomarkers of opioid analgesia are therefore 

needed in order to personalize and optimize the treatment. 

The objective of this PhD thesis was to investigate electroencephalography (EEG) 

as a biomarker for analgesic response to opioids. This included establishing changes 

in the biomarker during pain, the reliability of the biomarker and investigating if the 

signal contains information which could help determine if a given patient will 

respond to treatment. 

Data from one experimental study and one clinical observational study formed the 

basis for this PhD thesis. The first study was a placebo-controlled experiment in 

healthy volunteers. EEG during rest and cold pain (hand immersed in 2°C water for 

two minutes) was recorded prior and 60 minutes after administration of 30 mg oral 

morphine. Paper I explored reliability and dynamics of spectral indices during rest 

and cold pain. Paper II investigated whether EEG could be used to predict the 

analgesic response to morphine. The second study was an observational survey of 

patients undergoing total hip replacement surgery and formed the basis for paper 

III. Patients were examined prior to surgery where EEG was also recorded. Pain 

was assessed in the first 24 hours after surgery to determine analgesic response 

from combined oxycodone and piritramide treatment. 

The main finding from paper I was that the spectral indices derived from EEG are 

reliable over time, which is essential for a biomarker to be clinically viable. 

Furthermore, the theta (4 – 8 Hz) band correlated both overall and dynamically with 

pain ratings, suggesting close involvement in the pain experience. In paper II it was 

possible to predict which subjects would respond to morphine with an accuracy of 

72% using EEG spectral indices during cold pain as baseline measurement. Resting 

EEG on the other hand, could not predict the morphine response. Paper III further 

confirmed these results by predicting response to oxycodone and piritramide after 

surgery with an accuracy of 65%, again this was only possible using EEG during 

cold pain.  

In conclusion, EEG appears suitable as an objective biomarker for analgesic 

response to opioids. It is both reliable over time and contains information which can 

assist in determining if a given opioid is suitable for a patient. This represents the 
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first step towards a personalized medicine algorithm based on EEG.  Future clinical 

studies should investigate the EEG further in more clinical studies. Another venue 

of interest would be to combine the EEG with other biomarkers, such as genetics, 

quantitative sensory testing and psychological questionnaires.  
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Dansk resumé 

Utilstrækkelig smertebehandling efter operationer øger risikoen for udvikling af 

kronisk smerte, nedsætter livskvaliteten for patienten og er forbundet med store 

økonomiske omkostninger for samfundet. Opioider er den foretrukne medicin til at 

behandle moderat til svære smerter og bliver brugt at mange patienter med kronisk 

smerte i Danmark.  Der er imidlertidig stor forskel mellem individer på den 

smertestillende effekt af  opioider, hvilket resulterer i utilstrækkelig 

smertebehandling i omkring en tredjedel af patienterne. Derfor er der behov for 

biomarkører for opioiders effekt for at målrette behandlingen mod den enkelte 

patient. 

Formålet med dette ph.d.-projekt var at undersøge elektroencefalografi (EEG) som 

en biomarkør for smertestillende effekt af opioider. Dette inkluderede etablering af 

biomarkørens ændringer under smerte, dens pålidelighed samt undersøgelse af om 

signalet indeholder information som kan bruges til at forudsige om en patient vil 

respondere på behandlingen. 

Data fra et eksperimentelt og et klinisk studie danner basis for  ph.d.-projektet. Det 

første studie var et placebo-kontrolleret eksperiment på raske frivillige. Der blev 

optaget EEG i hvile og under kuldesmerter (hånden nedsunket i 2˚C vand i 2 

minutter) før og 60 minutter efter oral indtagelse af 30 mg morfin. Arbejde I 

undersøgte pålidelighed og dynamik af de spektrale indeks under hvile og 

kuldesmerter. Arbejde II forsøgte at forudsige responset på morfinbehandling ud fra 

EEG. Arbejde III er baseret på det andet studie som var et klinisk observations 

studie af patienter der skulle opereres for slidgigt i hoften med en hofteprotese. 

Patienterne blev undersøgt før operationen, hvor bl.a. EEG blev optaget. 

Patienternes smerte blev vurderet de første 24 timer efter operationen for at 

bestemme  responset på kombinationsbehandling med oxycodon og piritramid.  

Hovedresultaterne  fra arbejde I var at de spektrale indeks fra EEG er pålidelige, 

hvilket er en essentiel kvalitet for en biomarkør til klinisk brug. Der blev også 

påvist en både overordnet og dynamisk sammenhæng mellem theta båndet og 

forsøgspersonernes smerte, hvilket indikerer en tæt forbindelse mellem theta (4 – 8 

Hz) båndet og oplevelsen af smerte. I arbejde II var det muligt at forudsige  hvilke 

patienter der ville respondere til morfin med 72% nøjagtighed på baggrund af EEG 

under kuldesmerter optaget før morfinindgift. EEG i hvile var derimod ikke i stand 

til at forudsige effekten af morfin. Arbejde III bekræftede disse resultater yderligere 

ved at forudsige effekten af behandling med oxycodon og piritramid med 65% 

nøjagtighed og dette var igen kun muligt ved brug af EEG under kuldesmerter. 
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EEG virker således brugbar som en biomarkør for smertestillende effekt af 

opioider. Målingen er både pålidelig og indeholder information som kan  bestemme 

sandsynligheden for at et givet opioid har effekt ved den enkelte patient. Dette er 

det første skridt på vejen mod en algoritme til personlig smertebehandling på basis 

af EEG. EEG bør undersøges i nærmere i flere kliniske studier. En yderligere 

mulighed kunne være at kombinere EEG med andre biomarkører som genetik, 

kvantitativ sensorisk undersøgelse af smertesystemet og psykologiske 

spørgeskemaer. 
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Chapter 1. Introduction 

Proper control of pain still remains a problem in treatment of postoperative pain1,2. 

Inadequate pain treatment adversely affects patients immediately following 

surgery3. Acute pain felt immediately after surgery also increases the likelihood of 

developing persistent long-term chronic pain, more than the procedure itself3,4. This 

is connected to a loss of function and quality of life5 as well as large direct and 

indirect economic costs for society6.  

Opioids are widely used as treatment for moderate-to-severe pain7, with up to 13% 

of Danish chronic pain patients in treatment8,9. Despite it wide use, the response to 

opioid analgesia is heterogeneous with approximately 30% of patients not 

responding to the treatment10. The exact mechanism that determines opioid 

responsiveness still remains elusive, but gender, age and genetic variation are 

known factors10–13. Switching to another opioid can be effective in treatment of 

patients who initially do not respond. Thus, pain control was improved from 74% to 

96% when switching non-responding patients from morphine to another opioid14. 

Personalized treatment of pain therefore shows great in optimizing treatment, by 

enabling the initial choice of the correct opioid. However, to date there is no 

accurate method for identification of opioid responders15. Several attempts have 

been made to predict the analgesic efficacy using quantitative sensory models 

(QST), but results have been conflicting between QST modalities and study 

populations16,17. Thus, there is a need for further investigations before personalized 

pain treatment is a reality15,18. 

Pain is a conscious perception arising in the brain19. Therefore, individual 

differences in brain function can also influence analgesic efficacy for the individual 

and a better understanding of these differences is needed to pave the road for 

personalized pain treatment18. Magnetic resonance imaging and positron emission 

tomography can assess brain function, but require specialized personnel and incur 

high costs both in acquisition and maintenance. Electroencephalography (EEG) is a 

more clinically feasible method due to lower costs and simplicity of the required 

equipment. EEG has previously been used to assess individual differences in brain 

function to predict the experience of pain for the individual20. However, it is 

possible that a single predictor will not enable personalized treatment, and instead 

several factors will have to be assessed simultaneously18. Machine learning enables 

such assessments and it has been shown previously to enable otherwise obscured 

findings when assessing the EEG by looking at several features at once21.  
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1.1. Hypothesis 

The hypothesizes for the PhD research project were: 1) EEG is a reliable 

measurement which is stable over time, 2) EEG contains information which can be 

used to accurately predict the outcome of opioid treatment and 3) the use of 

machine learning will improve prediction by taking into account several predictors 

at once on an invidualized level.  

1.2. Aims 

This PhD thesis took the following three-step approach for investigating 

personalized pain medicine using EEG and machine learning: 

 To investigate reliability and dynamics of the EEG during rest and cold 

pain in healthy volunteers to assess robustness of the biomarker. 

 Investigate if prediction of morphine analgesia is possible in healthy 

volunteers. 

 Predict postoperative opioid analgesia in patients undergoing total hip 

replacement surgery. 

This resulted in the following aims:  

I. To investigate the reliability of EEG over time in order to establish if the 

measurements would be sufficiently robust to use in personalized medicine 

(Paper I). 

II. Analyze dynamics of the EEG and pain ratings during cold pain to gain 

further insight into pain processing during cold pain. 

III. To establish whether the EEG during rest or tonic cold pain is the most 

suited for prediction of opioid analgesia (Paper I, II and III). 

IV. To compare a machine learning analysis approach to conventional group-

based statistics in order to investigate if more sensitive prediction can be 

achieved (Paper II and III). 

V. To explore if combination of several features in machine learning enables 

separation of responders and non-responders to morphine in healthy 

volunteers (Paper II). 

VI. To investigate if machine learning can be used to predict the analgesic 

efficacy in patients with postoperative pain (Paper III). 
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Chapter 2. The Pain System 

The international association for the study of pain defines pain as “an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, 

or described in terms of such damage”. Thus, pain serves as a warning signal for the 

brain to act or risk harm to the body. Pain is most commonly triggered by activation 

of peripheral nociceptors which relay information about the noxious stimuli to the 

central nervous system (CNS)22. However, pain can also be felt in the absence of 

noxious stimuli23.  

 

2.1. Primary afferents 

Primary afferents are free nerve endings which respond to noxious stimuli and relay 

information to the CNS regarding the intensity and location of the stimulus24.  

Primary afferents are divided into three fiber categories depending on size and 

conduction velocity: 

 Aβ: Large, highly myelinated fibers which conduct signals quickly to the 

CNS. Mostly conducts signals regarding light touch and tactile information 

 Aδ: Thin, myelinated fibers, which conduct signals slower than Aβ-fibers. 

Responds to noxious chemical, mechanical and thermal stimulations 

 C: Non-myelinated fibers, responding to the same stimuli as Aδ-fibers, but 

with slower conducting velocity due to the lack of myelin sheets 

Thus pain signals are primarily conducted to the brain by Aδ- and C-fibers. Figure 1 

shows the perceived pain following noxious stimulation, where the signals 

conducted by the faster Aδ-fibers will arrive first to the brain and will subsequently 

be felt as a sharp, pricking pain (termed “first pain”). This sensation is followed 

shortly after by the second pain, when the signals from the slower conducting C-

fibers arrive. Second pain is felt as a more diffuse and dull pain.  
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Figure 1: Pain following a stimulus is experienced first as a sharp pain (signals carried by 
the fast, myelinated Aδ-fibers) followed by a more dull and burning sensation (signals 

carried by slow, non-myelinated C-fibers). 

 

2.2. Spinal cord processing 

The primary afferents terminate in the dorsal horn where the signal is relayed to the 

secondary neurons. The dorsal horn is organized in layers (laminae I-VI). The Aδ- 

and C-fibers mostly terminate in the superficial layers (I-II), but some travel to the 

deeper layers. The information is relayed from the primary afferents via 

neurotransmitters, which can either inhibit or facilitate the neuronal activity25. 

Various neurotransmitters exist one such is glutamate which is important 

throughout the nervous system26.  

Once the nociceptive signal has entered the spinal cord, it is relayed via ascending 

pathways to the thalamus and the brainstem which in turn activates the higher 

cortical centers26.   
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2.3. Cerebral processing 

Once the nociceptive signal reaches the brain, an array of cortical centers are 

activated to process the signal. The exact areas involved depends on the noxious 

stimulus26. The most commonly activated centers include: the primary 

somatosensory cortex (S1), the secondary somatosensory cortex (S2), insula, 

anterior cingulate cortex and the prefrontal cortex27. These structures have been 

observed consistently across studies, and elicit responses which are correlated to the 

intensity of pain, and have therefore been named the “pain matrix” for its apparent 

participation in generating the perception of pain28–30. 

However, never studies have cast doubt on the concept of the pain matrix as solely 

responsible for generating the perception of pain from nociception, by 

demonstrating that the activity in the pain matrix also was modulated by the 

saliency of the noxious stimulus rather than the perceived pain intensity as well as 

the stimulus intensity31. This indicates that even though the cortical centers 

represented in the pain matrix are activated by painful stimuli, their response is not 

specific to the perception of pain and stimulus saliency seem just as dominant for 

the brains response19.  
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Chapter 3. Pain treatment 

Pain decreases quality of life significantly for patients, and is a common reason for 

patients to seek medical care5. The World Health Organization therefore devised a 

three-step ladder (see figure 2) for treatment of cancer pain, which has since been 

adopted for all pain treatments32,33. The ladder serves as a guideline for analgesic 

therapy with the goal to achieve successful pain control using the least potent 

analgesic first. 

 

Figure 2: The WHO three-step ladder for pain treatment to guide physicians when 
prescribing analgesic therapy 

According to the ladder, pain patients first presenting with pain should be treated 

with non-opioid analgesics. If the pain persists, a weak opioid such as tramadol can 

be added to treatment at the second step of the ladder. Should the weak opioids still 

be insufficient to achieve adequate pain relief, the last step of the ladder allows for 

substituting the weak opioid with a strong opioid such as the current golden 

standard in opioid therapy which is morphine34.  

Despite the existence of guidelines large differences exists in the agents prescribed 

as well as the quantity, putting into question how the guidelines are interpreted or to 

what extent they are followed32. Furthermore, doctors in Northern Europe are much 

more likely to prescribe opioids than in Southern Europe, with close to 0% of pain 

patients in Italy being on strong opioids such as morphine, while the figure for the 

United Kingdom was 12%5. This discrepancy in treatment approach probably 

contributes to the unsatisfactory pain control for around 40% of patients5  
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3.1. Opioids 

Opioids is a group of analgesic drugs which binds to the opioid receptors found 

throughout the nervous system35. More specifically, four receptor types exist; µ 

(mu), δ (delta) and κ (kappa) receptors as well as the opioid-like receptor 135. 

Opioids exert their effect on the receptors with either an agonistic or antagonistic 

effect. For example are both morphine and oxycodone thought to exert their 

analgesic effect by binding to the µ-receptor as an agonist, in CNS and to some 

degree in the peripheral nervous system36.  

Opioids exert large parts of their effect in the brain, and therefore the electrical 

activity recorded as EEG is affected37,38. However there is not complete agreement 

in the literature, as different methods for analysis complicate comparison of results 

and results on the EEG vary even for a single opioid39. The most common effect is a 

slowing of the EEG seen as an increase in the delta (1 – 4 Hz) band40–42. However, 

stronger opioids with higher receptor-affinity have been shown to affect the EEG in 

a more widespread way. Buprenorphine and fentanyl are both strong opioids with 

an affinity 25-10043 and 75-10036 times greater than morphine. These were studied 

to investigate the spectral EEG activity in response to painful electrical stimulation 

when administered through a transdermal patch44. Buprenorphine increased activity 

more, and in a more widespread frequency range than fentanyl (See figure 3), 

indicating a large difference in the EEG following treatment with the two opioids, 

despite being administered in equipotent doses. Therefore, impact on the EEG 

seems not defined by the opioid potency alone, but possibly by the receptors and 

mechanisms by which the opioids exerts their effect44. 
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Figure 3: Relative changes in frequency bands over time in evoked brain potentials following 
electrical stimulation of the median nerve (wrist) after administration of a) buprenorphine 

and b) fentanyl. Both doses were equipotent in terms of morphine equivalent units and 
delivered via a transdermal patch. 

 

3.2. Opioid responsiveness 

The opioid response is heterogeneous with large parts of the population not 

responding. For morphine around 30% of patients are not non-responsive to 

morphine treatment10. There is no difference between opioids in response rate, but 

there seem to be large variation for the individual as to what opioid provide a 

satisfactory analgesic effect34,45. Currently, opioid selection is done based on the 

doctors experience on a trial-and-error basis, where non-responding patients can be 

switched to another opioid if the first choice is ineffective46. This approach to 

treatment does not account for the individual patient and often leads to 

unsatisfactory results46, which is further reflected in 40% patients experiencing 

unsatisfactory pain management5. For example, one study raised the response rate 

from 74% to 96%, when patients not responding to morphine treatment was 

switched to another opioid14. This indicates that there is a large potential within 

pain treatment to select the right opioid for each individual patient15,18.  

 

 



 Chapter 3. Pain treatment  
 

23 

3.3. Personalized medicine 

Personalized medicine is the concept of using biomarkers to optimize medication 

type and dosage for the individual patient15. The concept of personalized medicine 

is explained in figure 4 together with the current method based on trial and error. 

Using the personalized medicine model it is more likely that patients will receive 

the right treatment initially and subsequently attain pain relief, as opposed to the 

current model where non-responders have to go through more treatments to achieve 

response. As a consequence suffering in these patients is prolonged, they 

experience more adverse effects and risks of development of chronic pain and drug 

abuse is increased.  

 

Figure 4: Schematic illustration of the current method for pain treatment and the principle 
behind personalized medicine. The current method has patients all treated with the same 
drug, of which some will respond and some will not. After it has been established that the 

non-responders are not properly treated they will be switched to an alternative analgesic to 
properly manage their pain. The personalized medicine approach will start out by classifying 

patients into different treatments depending on the appropriate drug of treatment, thus 
minimizing suffering and possible development of abuse. 
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The challenge with personalized pain medicine is to find reliable biomarkers for 

opioid responders and non-responders in order to identify potentially problematic 

patients. Several studies have attempted to identify simple parameters to distinguish 

between responders and non-responders using methods such as QST and different 

questionnaires such as pain catastrophizing, but results have been conflicting16,17. 

This indicates that there is still a need for additional parameters and/or new 

methods to combine parameters in order to achieve a reliable prediction of 

response16. Response to opioids is also affected by e.g., genetics, gender and age11–

13. Since pain is a perception generated in the brain19, differences in brain function 

could also reveal who will respond to different analgesics. EEG can assess 

individual changes in brain function and could therefore be a valuable tool for 

discovering biomarkers20. This study attempts to investigate if EEG can be used as 

a new biomarker for opioid analgesic response (Paper II and III). EEG is an 

objective method, which is also economically feasible and can be performed at 

bedside. The next chapter will explain EEG in further detail. 
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Chapter 4. Clinical parameters 

Clinical data is usually connected to a degree of variability since the condition of 

individual patients are always different. To assess these differences and whether the 

patient cohort is representative, clinical parameters are collected. Some clinical 

parameters are common in most studies, such as age, gender and body-mass index, 

while others are entirely specific to the condition of interest. Paper III focuses on 

patients undergoing total hip replacement surgery, and in this chapter the clinical 

parameters specific to this patient group will be briefly explained. 

4.1. Chronic Pain Assessments 

Two assessments of chronic pain were used in paper III; one assessment by the 

clinician and one by the patient. The chronic pain grade was developed for patients 

to assess the severity of their chronic pain both in terms of pain intensity and how 

limiting the pain was for everyday life47. Chronic pain was divided into four pain 

grades which briefly can be explained as: 

 Grade I:  low pain intensity, low disability 

 Grade II:  high pain intensity, low disability 

 Grade III: high disability – moderately limiting 

 Grade IV: high disability – severely limiting 

Patients who only experience low disability from their chronic pain belong in grade 

I and II as it is based on purely on pain intensity. Grade III and IV are based on the 

disability the patient is experiencing and is therefore only assessing how limiting 

the pain is47. 

The Mainz Pain Staging System (MPSS) was also used and is an assessment for 

clinicians for pain48,49. The clinician used the score to divide patients into three 

stages of pain chronicity. 

4.2. Passive Hip Rotation 

A simple test was developed to assess magnitude of evoked pain during passive 

rotation of the hip. The leg and knee was brought into a flexed position and rotated 

until the patient experienced pain. The leg was then brought into this position and 

held for 30 seconds. Then patients were asked to rate their overall pain on an 11-

point numerical rating scale (NRS). 
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4.3. Response score 

Since there is no validated definition for opioid response in a postoperative setting, 

we developed a “response score” in paper III to stratify patients into opioid 

responders and non-responders. The response score was determined based on the 

“Quality Improvement in Postoperative Pain Management” Questionnaire (QUIPS). 

QUIPS is a validated outcome measurement for postoperative quality control. A 

point-based response score was developed in order to stratify patients into opioid 

responders and non-responders. Points could be awarded up to a maximum of 10, 

and questions and instructions for awarding points can be found in Table 1. Cut-offs 

were based on typical intervention thresholds for postoperative pain management 

(e.g. pain on movement or maximal pain of 5)50,51. Patients with a response score of 

5 or greater were considered opioid responders, a score of 4 or lower would indicate 

a non-responder. 

 

Table 1: Explanation of the questions in the response score, and how points are distributed 
depending on the answers given for each question. Some questions are rated on an 11-point 

numerical rating scale, while others are simple yes or no questions.  

Questionnaire entry Answer Points awarded 

Maximal pain 0 – 4 

5 - 10 

2 

0 

Pain on movement 0 – 4 

5 - 10 

2 

0 

Minimum pain 0 – 2 

3 - 10 

2 

0 

Pain on mobilization Yes 

No 

1 

0 

Pain when coughing Yes 

No 

1 

0 

Pain when waking up Yes 

No 

1 

0 

Pain affecting mood Yes 

No 

1 

0 
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Chapter 5. Quantitative Sensory 

Testing 

Clinical pain are often associated with other factors such as anxiety, cognitive and 

autonomic responses and fear52. Perception of pain is also influenced by gender and 

cultural background making evaluation difficult53. QST uses experimental pain 

models to assess the pain system by invoking pain under controlled circumstances 

and are advantageous since they can eliminate many of the aforementioned 

problems to some degree dependent on experimental setup54,55. QST models consist 

of a stimulus which is assessed with subjective methods such as a NRS or by 

objective measurements such as EEG55. The information which can be derived from 

the QST tests are largely dependent on the evoking stimulus, of which a large 

selection is available55. This chapter will describe the QST models utilized within 

papers I, II and III. 

 

5.1. Cold Pain 

Cold stimulations are carried to the brain primarily by the Aδ- (cold sensation) and 

C-fibers (cold pain)56. The most common modality for cold pain stimulation is the 

cold pressor test, which is also used in papers I, II and III. The test is performed by 

submerging the hand in cold water (temperature range 1 – 7 ˚C) and maintaining it 

there for a specified amount of time (e.g. two minutes)57. Patient will then rate their 

overall pain on a NRS or another pain rating scale, or in some cases rating will be 

continuous during the stimulation such as in paper I. The stimulation constitutes a 

tonic stimuli which has been shown to better mimic clinical pain due to the length 

of stimulus and the intense unpleasantness felt during stimulation58. Furthermore, 

tonic cold pain stimulation has been shown to be rather sensitive towards detecting 

opioid analgesia55. However, the cold pressor test has been shown to be somewhat 

variable depending on the individual and experimental methods59. The introduction 

of new specialized equipment for maintaining water temperature and circulation in 

the water is thought to mitigate some of this variability57, but some inter-individual 

variability is still present.  

Papers I and II used cold pain stimulation for determination of opioid response, 

since it sensitive to opioid analgesia55. Papers I, II and III included the method as a 

QST measure and recorded EEG during the evoked pain. Papers I and II used 

specialized temperature-controlled equipment with continuous circulation of the 

water. However, this equipment was not available for paper III which used a 

thermal container with cold water inside for the test. To ensure a consistent 
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temperature of the water was used, temperature was measured before pain 

stimulation each time. 

 

5.2. Pressure Pain 

Pressure can induce pain in the skin by use of pressure algometry60. This painful 

sensation is mediated to the brain through Aδ- and C-fibers60. An algometer is 

usually operated by the examiner, who increase pressure at a constant rate until the 

patient indicates that their pain threshold has been reached and the pressure required 

is the quantifiable pressure pain threshold or predefined suprathreshold levels. 

However, it can be difficult to increase the rate at a constant pace, and it is therefore 

recommended that the same examiner always perform the test in order to reduce 

variability61. Paper III included the pressure pain in order to assess the pain system 

of patients preoperatively. 

 

5.3. Heat Pain 

Heat pain is another kind of thermal stimulation which is also mediated by Aδ- and 

C-fibers. Heat can be applied both rapidly and slowly, depending on which kind of 

stimulation is of interest. Rapid stimulation will quickly activate Aδ-fibers which 

will mediate the sharp feeling of “first pain” within less than 0.5 seconds. “Second 

pain” is felt slower as it is mediated by the C-fibers. As such, the fibers that are 

activated can to some degree be controlled with the rate of temperature increase55. 

Paper III included slowly increasing (1˚C/s) heat pain stimulation as a QST measure 

to assess the preoperative state of the pain system in order to activate both Aδ- and 

C-fibers. 

 

5.4. Conditioned Pain Modulation 

Pain is modulated by inhibitory and facilitatory mechanisms which are influenced 

by a number of factors. Conditioned pain modulation (CPM) represents the 

relationship between the descending inhibition and facilitation. CPM is assessed by 

application of a conditioning noxious stimulus which will inhibit the pain induced 

by another test stimulus. CPM can be performed using a wide range of conditioning 

stimulation modalities62, most common among them is the cold pressor test63.  
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In paper III the CPM effect was measured since it has been shown to be decreased 

in patients with experimental and clinical pain64–66. CPM was assessed using the 

cold pressor test as a conditioning stimulus, and the slowly increasing heat 

stimulation as a test stimulus. 
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Chapter 6. Electroencephalography 

EEG records the summation of electrical activity of the brain which is generated by 

the simultaneous firing of neurons and is well-known within pain and 

pharmacology research27. EEG can be recorded both locally (as local field 

potentials), on the surface of the cortex or on the surface of the scalp67. Due to the 

invasive nature of the first two methods, surface EEG is most commonly used as it 

is more clinically feasible to record and is therefore also chosen for this PhD 

thesis67,68.  

The primary advantage of EEG is the high temporal resolution and hence EEG 

allows for analysis of sequential brain activation, frequency information and 

direction of information flow due to pain or analgesics. The major disadvantage of 

surface EEG is the relatively poor spatial resolution due to all measurements being 

made at the scalp surface as brain signals recorded on the scalp are distorted due to 

volume conduction. Compared to imaging methods, the poor spatial resolution 

limits the ability of EEG in pinpointing the exact brain centers involved. On the 

other hand, the temporal resolution of imaging solutions is very poor (on second 

time-scale) and thus it is impossible to study sequential brain activity and ultimately 

separate pain specific from nonspecific activity as the pain stimulus reaches the 

brain within milliseconds of being presented. Furthermore, the costs and logistics 

involved in imaging solutions are severe limitations, making EEG a more suitable 

choice for developing a clinical bed-side system for prediction of opioid analgesic 

effect69.  

 

6.1. Generation of the EEG 

The main contributor of the surface EEG is the summation of excitatory and 

inhibitory neurons in larger populations of neurons, which transmit to the surface 

via volume conduction68. The signal decays over distance, and therefore the largest 

potentials measured at the scalp surface is generated by the cortex, although deeper 

sources can also be identified67,68  Since the generated electric field for the 

individual neuron is small, both the structure in which neurons are organized67 as 

well as the synchronization of neuron firing is of great importance in order to 

generate a measurable potential at the scalp surface39,67. In the cortex, neurons are 

arranged perpendicular to the surface of the cortex, forming layers of neurons in 

palisade67. Activation can occur in synchrony and within defined layers, enabling 

generation of quite large potentials67. 
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EEG can be recorded in two main categories: spontaneous EEG such as during rest 

or a prolonged stimulus and event-related potentials which are the direct response 

to a phasic and external stimulus68. This PhD thesis focuses on the spontaneous 

EEG during rest and cold pain. 

6.2. Recording Surface EEG 

Surface EEG has amplitudes in the order of microvolts (μV) and therefore needs to 

be amplified in order to be accurately measured67. Since the potentials are 

miniscale, differential amplification between two electrodes (an active electrode 

and the reference electrode) is necessary. This amplifies the difference in voltage 

between the two electrodes and has the advantage of cancelling out common signals 

between electrodes67.  

The frequency bandwidth of interest for EEG signals ranges from around 0.1 -100 

Hz67. Filtering is often necessary due to noise such as: 

 Slow voltage drift (slowly changing voltages). 

 Muscle artifacts. 

 Mains noise (50 or 60 Hz depending on country). 

 Artifact from cables and other sources, 

The voltage drift noise is caused by slowly changing properties of the electrode gel, 

electrodes or skin resistance67. These signals can be removed using a high-pass 

filter with a cut-off frequency of around 0.1 – 1 Hz67. Papers I, II and III all used 1 

Hz as the cut-off frequency. 

Muscle artifacts are generally high-frequency signals outside the frequency 

spectrum of the EEG, and is commonly removed using a low-pass filter set as low 

as possible depending on the spectrum of interest67. 30 Hz is a common cut-off, or 

70/80 Hz if the gamma band is of interest. Papers I and II used 70 Hz as a cut-off 

while paper III used 32 Hz since the gamma band was excluded. 

Mains noise can arise from the electrical net if the desired spectrum arises above 50 

or 60 Hz (i.e. if the gamma band is of interest)67. To combat this problem a notch 

filter at the specified frequency is utilized. Since papers I and II included the 

gamma band, a notch filter designed for 50 Hz was employed. 

Electrodes can be contaminated with noise which cannot be removed with filters. 

Signals from such electrodes are then rejected and an average signal is interpolated 

from neighboring electrodes to replace it. This is done manually and to preserve 

integrity of the recording it is essential that a limited number of channels is 

interpolated. If too many channels are affected by noise the recording will have to 

be rejected.  

Since there are activity differences between brain structures, it is often desirable to 

record EEG from multiple locations spread over the scalp, to give a full 
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representation of the neuronal activity67,68. These electrodes are placed according to 

the 10-20 system which is universally accepted67. Number of electrodes can vary 

widely (up to 512 electrodes or more) depending on the application. A high number 

of electrodes is desirable for full representation of neuronal activity. However, as 

the number of electrodes increases more time is required for mounting, problems 

with high impedance between scalp and electrode increases and general expense of 

the system is also increased. Therefore a trade-off in the number of electrodes is 

required and depends entirely on the application. Papers I and II used a 62-electrode 

recording cap, as the study was experimental and included relatively few subjects. 

Paper III was a clinical study and therefore a 34-electrode cap was used to decrease 

mounting times. A clinical algorithm for personalized pain medicine will likely 

need to reduce this number even further, when the electrodes of interest have been 

established. 

 

6.3. Evoked Brain Potentials 

Evoked brain potentials is the time-locked response to an external stimulus 39,68. 

Since the response to is highly dependent on the sequential activation of various 

brain centers, the evoked brain potentials have a specific morphology, as can be 

observed in figure 5 as the average potential39. In order to obtain the time-locked 

properties of the evoked brain potentials it is necessary for the evoking stimulus to 

be short and rise rapidly in intensity67. The potential is characterized by negative 

and positive peaks which is commonly quantified by their peaks (estimates amount 

of synchronously activated neurons) and latency (estimates delay conduction from 

the periphery and in activation caused by delayed cortico-cortical connections)39. 

The most common peaks are described in Table 2. 
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Table 2: The different peaks of evoked brain potentials, their latency and from which areas 
of the brain they originate. 

Peaks Latency [ms] Typical brain area General interpretation 

Early70  20 - 60 Primary somato-

sensory cortex 

Non-pain specific 

somatosensory input from 

touch. 

Intermediary40  60 – 120 

 

Operculum 

Limbic system 

Reflects nociceptive 

activation of supraspinal 

structures. 

Late71 120 - 350 Operculum 

Limbic system 

Reflects discomfort or 

Emotional aspects of 

pain. 

 

Due to low signal-to-noise ratio of recorded evoked brain potentials, stimulation is 

normally repeated a number of times while recording the EEG and subsequently 

averaging all trials to get the average response to the stimuli72. When the technique 

was first developed EEG would often suffer from poor signal to noise ratio. 

Although much has been improved since in the recording techniques, post-

processing and filtering, the averaging method is still widely used since the 

averaging procedure makes the evoked potential stand out from the background 

EEG in the signal44. However, there are many drawbacks to averaging, since it only 

preserves components which are time-locked to the stimulus73. Since this is not the 

case for all nociceptive input, averaging effectively removes useful information 

from the signal along with noise73. The reduction in variability by use of averaging 

is shown in figure 5. Use of more advanced time-frequency analysis on each EEG 

signal from each repeated stimulation (termed single-sweep analysis) has been 

shown to increase reliability74, sensitivity to analgesics44 and neuronal changes due 

to disease75. 
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Figure 5: Single-sweep evoked brain potentials (green) and the resulting average potential 
(black). The loss of variation from the underlying single-sweeps by applying the averaging 

procedure is apparent. 

The emergence of fast and affordable computing has enabled analysis of each 

individual trial, also termed single-sweep analysis. This analyses the signal 

including non-time locked components, and has been shown to be superior in 

detecting the effect of analgesic drugs44, and in detecting differences in cerebral 

activity in patients with fecal incontinence75. 

 

6.4. Continuous EEG 

Continuous EEG is not time-locked to a specific stimulus like evoked brain 

potentials. It is rather a recording of EEG over a specified time period. Continuous 

EEG lacks the easily discernible peaks of evoked brain potentials and as such it is 

usually divided into frequency bands to describe different processes in the brain. 

The exact limits of the frequency bands differ, but they are roughly defined as: 

 Delta (δ): 1 – 4 Hz 

 Theta (θ): 4 – 8 Hz 

 Alpha (α): 8 – 12 Hz 
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 Beta (β): 12 – 32 Hz 

 Gamma (γ): 32 – 80 Hz 

Figure 6 illustrates an EEG signal and the division of the signal into frequency 

bands. 

 

 

Figure 6: Illustration of how the spectrum of the EEG signal can be divided into the 
predefined frequency bands; delta (1 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (12 – 

32 Hz) and gamma (32 – 80 Hz). 

Continuous EEG is susceptible to artifacts from eye blinking, eye movements and 

muscle artifacts, which occur at amplitudes more than ten times that of the EEG 

signal76. Therefore, various methods have been developed to remove these artifacts 

using independent component analysis which can separate the signal into 

components that appear to be independent76.  

 

6.4.1. Resting state EEG 

The most common recording of continuous EEG is made with the subject in a 

resting state. In this state subjects are instructed to be calm while either lying or 

sitting with little or no verbal communication. Resting EEG has been used 

extensively in combination with pharmacological agents to detect differences in the 

cortical activity following drug administration39. 

Resting EEG has a certain variability over time. To account for this variability it is 

recommended to used recordings of at least 120 seconds to get a steady recording77. 

Resting EEG has also been shown to drift gradually over time possibly due to shifts 

in attention state78,79. To maintain a constant attention level, special protocols have 

been developed to maintain vigilance, for example through simple arithmetic 
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tasks80,81. However, it has not been investigated if a similar drift occurs during these 

vigilance-controlled conditions. 

 

6.4.2. Tonic Pain EEG 

Tonic pain EEG is a variation of continuous EEG where the subject is undergoing a 

painful tonic stimulation. Tonic pain is thought to be a more physiologically 

meaningful stimulation that better mimics the perception of chronic pain due to the 

unpleasantness and time available for the brain to adopt to the painful event58. 

Furthermore, tonic pain models such as the cold pressor test are more sensitive to 

opioid analgesia possibly due to the deep pain evoked by the stimulation and higher 

level of unpleasantness55. Feeling of unpleasantness is connected to the limbic 

network which is an area where opioids are known to modulate pain response27.  

Thermal pain is a common tonic pain model, both heat82,83 and cold79,84,85 have been 

extensively used. Therefore, papers I, II and III employed the cold pressor test as a 

tonic pain stimulus. Tonic ischemic pain can also be induced by limiting the blood 

supply by use of a blood pressure cuff and has been used in clinical studies86 and in 

combination with EEG before87. In addition, the relationship between ischemic pain 

and time is largely linear as opposed to the cold pressor test which experiences a 

ceiling effect58. 
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Chapter 7. Feature extraction 

EEG signals consist of millions of data points which in itself is impractical to 

assess. Feature extraction is the process of extracting overall characteristics from 

the many data points, in order to describe the signal with fewer numbers. A myriad 

of feature extraction methods exist, such as spectral analysis, mean dominant 

frequency, 95% spectral edge, sample entropy and connectivity81,88–91. For this 

thesis spectral analysis was used since it is well tested and has been proven useful 

in many studies. Also it does not discard any part of the spectrum and should 

therefore provide a more complete assessment of the signal.  

 

7.1. Spectral analysis 

Spectral analysis investigates the energy of the signal within the standard frequency 

bands. The Fourier transform has for many years been the golden standard for 

frequency analysis within EEG since the first introduction in 193292 although the 

method has several limitations93. Fourier analysis requires relatively long signal 

segments for detailed frequency resolution, and makes assumptions about the signal 

stationarity which is not fulfilled for EEG data94,95. Even so it is a commonly used 

method, and the variability of EEG measures derived using the Fourier transform is 

heavily dependent on the recording length96. Thus, longer recordings are more 

robust, and commonly a recording length of at least 20 seconds have been 

recommended97. However, newer evidence suggests that much longer recording 

lengths of at least 120 seconds should be used in clinical and pharmacological 

studies, to reduce influence from noise96. Several other methods exist for spectral 

analysis, the most common are listed in Table 3.  
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Table 3: Overview of common time-frequency algorithms for analysis 

Name Description Advantages Drawbacks 

Fourier 

transform98 

Classic frequency 

analysis.  

Low computational 

cost 

Time-frequency 

resolution 

Wigner-Ville 

distribution99 

Simple instance 

of Cohen’s class 

High temporal 

resolution. 

Well-suited for 

non-stationary 

signals such as 

EEG 

Influenced by 

cross-term 

interference. 

Density estimate 

can result in 

negative values. 

Matching 

pursuit100–102 

Uses a redundant 

dictionary of 

atoms for 

decomposing the 

signal into a 

sparse 

representation  

Time-frequency 

resolution adapted 

to the signal 

Does not 

represent all 

frequencies, 

making 

comparisons to 

other studies 

difficult. 

Computationally 

costly 

Wavelet 

analysis103,104 

Multi-resolution 

analysis. Higher 

temporal 

resolution for 

high frequencies 

and higher 

spectral 

resolution for 

low frequencies 

EEG signals have 

properties suitable 

for multi-resolution 

analysis. 

Requires a 

mother wavelet 

function, which is 

an a priori 

assumption that 

can affect 

outcome 

 

 

An alternative is the wavelet transform which takes a different approach to spectral 

analysis, by decomposing the signal into coefficients through use of a mother 

wavelet function103. Mother wavelet functions can be selected from a library or 

developed independently to satisfy the mother wavelet criteria; zero mean value, 

finite energy and relatively little low frequency content compared to high frequency 

content95. During analysis the mother wavelet is scaled, changing its center 

frequency and thus achieving affinity for different frequencies. The process also 
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illustrated in figure 7 is repeated for scales matching the frequency range of 

interest103.  

 

Figure 7: Decomposition of a signal using a mother wavelet function at different scales. The 
mother wavelet is scaled to a certain length, and compared to the signal, moving the wavelet 

along the signal to result in a continuous comparison. The mother wavelet is then scaled 
again and the process is repeated until all desired scales have been used.  

The wavelet coefficients are then used to establish the frequency content within 

each band. Two variants exist to measure the content; power and amplitude. The 

only difference being that the amplitude uses the absolute of the wavelet 

coefficients, while the power uses the square of the absolute values. The two 

measures are more or less equivalent, however power tends to put over-emphasis on 

short-high amplitude bursts which is characteristic for eye movement artifacts and 

other sources of noise. For this reason, the amplitude was chosen as the measure of 

frequency content for this thesis (Papers I, II and III).  

The average frequency content within each frequency band is calculated, and the 

values are termed as the absolute EEG indices. However, due to the high inter-

individual variability introduced due to factors such as scalp thickness, electrode-

gel conductance etc., the relative EEG indices have also been utilized as a feature in 

EEG research105. Relative indices are expressed as the percentual contribution of 

each band to the total EEG amplitude, calculated by dividing each absolute EEG 

index by the sum of all absolute indices. Relative EEG indices accounts for more 

inter-individual differences and is shown to show a higher correlation with brain 

perfusion as measured using positron emission topography106. However, relative 

EEG indices suffer from interactions between frequency bands since it is a relative 

measure. Thus, if one frequency band increases in amplitude, other frequency bands 

must decrease accordingly. This can complicate studies which compare conditions, 

such as drug studies and many pain studies. When several frequency bands are 



Personalized Pain Medicine 

40 

changing at the same time, this can make an increase in a frequency band appear as 

a decrease simply because the other bands are counterbalancing these changes79. 

Both measures provide complimentary information, and neither is more correct than 

the other106,107. The measures are best used in unison, where full advantage can be 

taken of the information (Paper I). This is especially true for studies which compare 

EEG under different conditions for the same subject. Paper II and III only used the 

relative spectral content since it is less susceptible to inter-individual differences. 

 

7.2. Functional connectivity 

Another way to assess EEG is through functional connectivity which has been used 

extensively with structural and functional magnetic resonance imaging108,109. The 

common spectral analysis will assess EEG amplitude in different frequency bands, 

and is as such a measure of brain rhythmicity110. Functional connectivity tries to 

assess the flow of information between electrodes by considering the brain as a 

complex network of inter-connected nodes (electrodes)108. Many different methods 

exist for assessing functional connectivity, but most rely on the phase differences 

between electrodes to assess which electrodes are communicating and which 

direction information is flowing as exemplified on figure 8111,112. This is typically 

achieved by calculating the phase-relationships between signals. Electrodes with 

similar phase-relationships are considered to be exchanging information111–113. 

The methods have been used to show decreased cortical connectivity after 

remifentanil110, distinguishing between levels of consciousness in comatose 

patients114 and detection of decreased information flow in diabetes patients115. 



 Chapter 7. Feature extraction  
 

41 

 

Figure 8: Illustration the principle behind functional connectivity. The signal from the 
receiving electrode (blue) is phase-shifted compared to the signal from the driving electrode 

(red). This indicates a strong connection between the two electrodes. The driving and 
receiving electrode can be distinguished by which signal occurs earlier if directionality is 

investigated.    

This PhD thesis included functional connectivity in paper III to attempt assessment 

using a slightly more advanced parameter. The phase-lag index (PLI) is quite 

resistant to volume conduction since it discards most phase-relations between 

electrodes with no differences in phase (likely caused by volume conduction) and 

was therefore chosen for analysis111. Furthermore, PLI has already been shown to 

be reliable108. 

 

 



Personalized Pain Medicine 

42 

Chapter 8. Machine learning 

Machine learning derives from pattern recognition and is a common term for 

methods which learn from and make predictions based on learning data. Machine 

learning methods work by constructing a model based on a set of training data 

belonging to two or more discrete groups, which can subsequently be used for 

predicting outcomes for future samples. It enables simultaneous assessment of 

multiple variables on an individualized basis. This is in contrast to conventional 

statistical methods, which often analyze single variables between groups of patients 

and rely on a priori assumptions. 

Within machine learning there are three main branches of methods; supervised, 

non-supervised and reinforced learning;  

 Supervised learning methods require information regarding the groups in 

order to construct a model optimized for a specific problem. Suitable for 

problems where a general rule is needed to determine an outcome based on 

a given data sample 

 Non-supervised learning does not require any information regarding which 

samples belong to each group. Non-supervised learning will instead try to 

find structure in the training data and is thus able to find hidden patterns in 

data. 

 Reinforced learning takes place when the model must perform a certain 

task and repeatedly learn to do the task better based on feedback it 

receives. An example of this could be a computer learning to play a 

computer game against an opponent. 

Since the object of this project is to differentiate between two pre-defined groups, 

supervised learning was chosen as the appropriate method. Several different 

methods exist within supervised learning, among others; linear discriminant 

analysis, artificial neural networks, support vector machine and Bayesian 

classifiers.  

8.1. Feature selection 

Until little more than a decade ago, few areas of research investigated more than 40 

features116. This has changed dramatically in recent years, where some studies 

investigate numbers of features in the range of tens of thousands117. Now all 

possibly relevant features are collected and subsequently subjected to a statistical 

feature selection process to establish which features are relevant to the classification 

problem. Feature selection is the process of selecting a subset of relevant features 

from a larger pool of variables. This is done for several reasons, among others; 
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 Making results easier to interpret 

 Decrease training time for the machine learning models 

 Increasing generalization by reducing over-fitting 

The main goal of feature selection is to identify and remove features which are 

either redundant or irrelevant as they can be removed without significant loss of 

information118. 

Feature selection methods can be either wrappers or filters117. Wrappers are 

specific to the chosen machine learning classifier and work by searching through all 

features using the accuracy of this classifier. This however can be very expensive 

computationally (especially with large numbers of features), and might result in 

solutions which are overly specific to the classifier117. Filter methods work 

independently of the classifier and instead define a measure of relevance to 

approximate the value of a feature within the current classification problem117. This 

makes feature selection possible using only few assumptions. Filter methods are 

relatively computationally inexpensive while generally being less susceptible to 

over-fitting than wrappers117. As such filter methods were chosen as the feature 

selection approach for this study. 

Filter methods are all defined primarily by their measure of relevance which tries to 

describe the utility of including a given feature in the reduced feature set 117. 

However, there are countless ways to define relevance, and as a result a large array 

of different feature selection methods exist117. The question then becomes which 

method to choose over the other available methods. A recent study reviewed 17 

methods for feature selection under three criteria117: 

 Inclusion of a conditional redundancy term 

 Balancing the relevance and redundancy terms 

 Use of low dimensional approximation, important for small sample sizes 

Only three out of 17 methods were found to fulfill all criteria; joint mutual 

information (JMI), mutual information maximization and conditional mutual 

information maximization117. JMI was recommended as giving the best tradeoff 

between accuracy and stability and thus was selected for this study119.  
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8.2. Support vector machine 

Support vector machines (SVM) were first introduced in 1963 by Vapnik and 

Lerner seeking a method to find the optimal (defined by the largest margin) 

hyperplane to separate two distinct classes of data120. The basic principle is 

explained in figure 9. Here it is illustrated that the data can be separated by a 

number of hyperplanes. However, to find the hyperplane with the largest margin, 

the SVM identifies points closest to the border (support vectors), and uses them in 

the calculation as shown in figure 9. 

 

Figure 9: Illustration of the basic working principle of the SVM to separate two classes of 
data. A) The classes can be separated by a number of hyperplanes. B) The hyperplane with 

the largest margin (arrow) is shown with the support vectors used to calculate it 

 

8.2.1. Soft margin SVM 

The first implementation of the SVM assumed that data would be perfectly 

separable120. However, real world data and especially human biometric data as used 

in this study is rarely perfectly separable and will include a certain amount of 

overlap between classes. To accommodate this, the soft-margin SVM was proposed 

which allowed for misclassifications and which has since been the most common 

implementation121. The soft-margin SVM assigns a penalty for misclassified 

samples. The optimization of the hyperplane then becomes a compromise between a 

large margin and a small error penalty. The cost variable C was introduced to 

control the tradeoff between margin and error penalty and also serves as a 

regularization parameter for the SVM, which can be adjusted to increase 

generalization of the classifier122. This type of classifier has now widely replaced 

the original classifier, and is also used in papers I, II and III. 
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8.2.2. Kernel functions 

The original SVM was developed as a linear classifier120. However, not all real-life 

problems will present with data that is linearly separable. To allow for non-linear 

classification, kernels were introduced123. This is an interesting implementation 

because the hyperplane is still linear, but instead the data is transformed into a high-

dimensional feature-space where a linear hyperplane can separate the data, even 

though the separation might be non-linear in the original feature-space123. Figure 10 

shows how the transformation into a different features space can make a non-

linearly separable dataset become linearly separable.  

 

Figure 10: Transformation of a feature-set into a different feature space enables linear 
separation using a support vector machine. A) The features in the normal feature-space, 

where the decision boundary appears non-linear. B) The features in the transformed feature-
space where the decision boundary is linear. 

However, kernel functions can present with the problem of over-fitting and 

subsequent loss of generalization124. This is unfortunate since the results of the 

SVM are pointless unless the results are generalizable to the general population. 

The problem is demonstrated in figure 11, where an overly complicated decision 

hyperplane makes the performance poor when new data is introduced. For this 

reason it is recommended to use caution when using non-linear kernels to avoid 

over-fitting, as many times the generalization becomes inferior compared to SVMs 

with linear kernels124. Therefore, this project utilized a linear kernel to avoid over-

fitting (Paper II and III). 



Personalized Pain Medicine 

46 

 

Figure 11: Over-fitting of the support vector machine using an overly complicated decision 
rule which will provide poor generalization and sub-optimal results when applied to new 

data. 

8.2.3. Cross-validation 

The idea behind machine learning is to train a model based on a set of training data 

which can then correctly classify new samples of the same type. This poses 

challenges for studies trying to validate a classifier when the number of samples is 

limited. Firstly, the classifier’s ability to generalize new data also depends on the 

number of samples available for training, meaning that as many samples as possible 

should be included for training. Secondly, samples included for training cannot be 

used simultaneously for validating the classifier, as this can result in over-fitting to 

the data and subsequent poor ability to generalize to new data. The optimal solution 

is to build the model using training data from one study, and subsequently testing 

the model using completely separate data. However, this poses requires high 

numbers of samples which is not always possible or ethical to include in clinical 

studies.  

Cross-validation attempts to handle this problem by dividing the data into training 

and test subsets which can be validated without possibility for over-fitting. This is 

repeated multiple times with different training and test subsets, and the accuracy of 

the classifier is finally calculated as the average accuracy for all iterations125. This 

has the advantage of maximizing the number of samples that can be used for both 

training and testing. Several types of cross-validation exist, most common among 

them are: 
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Leave-one-out: This type of cross-validation uses a single sample for testing, while 

the rest of the dataset is left for training. This has the advantage of maximizing the 

amount of samples for training in each iteration while still using all samples for 

testing in one iteration. This makes it well suited for small datasets, where the 

number of training samples is crucial. Furthermore, the method is exhaustive, 

meaning that all possible combinations of training and datasets are included and 

thus the result will always be the same. However, the method requires additional 

computer processing power due to the high number of iterations when using this 

method. 

K-fold cross-validation: This version of cross-validation divides the data into k 

equally-sized subsets. Each iteration is then made by using one subset for testing 

while the other subsets are used for training the classifier. A common value for k is 

10, but it can be set to any value of 2 or above. When 𝑘 = 𝑁, it is equivalent to the 

leave-one-out method. K-fold cross-validation generally uses less computing power 

due to the less number of classifications (if 𝑘 < 𝑁), but is also non-exhaustive, 

meaning that results will differ depending on how the data is split. 

Since the number of samples in this study was limited and the amount of computer 

processing power was not, leave-one-out cross-validation was chosen as the 

preferred method to avoid over-fitting (Paper II and III).  

 

8.2.4. Dealing with imbalanced datasets 

Part of the calculation for the soft-margin SVM (current golden standard) is to 

assign a penalty for incorrectly classified samples121. However, when datasets are 

overlapping significantly and group sizes are uneven it can result in inaccurate 

results126–128. More specifically, the classifier will become biased towards the 

majority class. This phenomenon is caused by the sheer number of overlapping 

samples from the majority class and will cause a greater penalty for the decision 

rule than the penalty for most or all of the samples from the minority class. In this 

case it is more optimal (incurring less penalty) for the classifier to simply classify 

all or most samples as belonging to the majority class128. This will result in higher 

accuracies than a classifier which will pay equal attention to both classes, but the 

heightened accuracy is essentially meaningless for prediction. The problem with 

imbalanced datasets is quite common within genetic profiling and medical 

diagnosis126 and usually it is the few samples minority class which holds the 

greatest importance for correct classification129. Figure 12 illustrates the problem 

for two classes with skewed group sizes. A typical SVM would strive for the 

solution shown in figure 12A because it yields fewer overall misclassified samples. 

However, the classifier would simply classify all samples as belonging to the same 

class, making the solution useless. A solution more similar to the one shown in 
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figure 12B would be more desirable since it correctly classifies the minority class, 

despite the lower overall accuracy. 

 

Figure 12: Skewed group sizes in overlapping data can have adverse effects on a machine 
learning classifiers ability to properly separate data. A) The more useful classification, 

which will have a lower overall accuracy due to the large number of misclassified samples in 
the majority class. B) The optimal solution for minimizing misclassified samples, but useless 

in practical terms since it always returns the same result. 

This problem, which is universal in machine learning, and not just restricted to 

support vector machines, has been addressed in two different ways: 

1. Balancing the original dataset 

2. Adapting the classifier to the dataset 

Balancing the dataset involves either under-sampling the majority class or 

oversampling the minority class until the classes are balanced126,128. Both methods 

have drawbacks, under-sampling being reported to perform sub-optimally126 for the 

SVM, but in other cases reported as performing successfully when combined with 

specialized data elimination techniques128. Although it must be noted that 

information is removed using this method. Over-sampling on contrary does not 

remove information, but has instead been reported to shift bias towards the minority 

class128. 

Adapting the classifier completely depends on the classifier but is most commonly 

accomplished by assigning different costs for misclassifying the different 

samples127,128. Studies show that SVMs in particular have the ability to deal with 

imbalanced dataset without introducing noise, however there is a chance for the 

resulting classifier to over-fit the data128. This was implemented in paper III due to 

the slight imbalance in group sizes. 
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Chapter 9. Results 

The key results from the paper I, II and III are found in this chapter. More detailed 

results can be found in the papers. 

9.1. Key results Study I 

 Recording of EEG (62 electrodes) during rest and cold pain was performed 

on healthy volunteers (N = 39) on two separate days and reliability 

between days were investigated. 

 Spectral indices of EEG during cold pain and resting is reliable with 

coefficients of variation at 10% or below. 

 Tonic cold pain induces widespread changes in the EEG over all frequency 

bands. 

 The EEG activity in the theta, beta3 and gamma bands were correlated to 

the average pain intensity. 

 Analysis of the EEG dynamics revealed that only theta was dynamically 

reflecting the pain response and therefore the more directly related to the 

perceived pain. 

 

9.2. Key results Study II 

 Healthy volunteers (N = 39) were included in a placebo-controlled 

morphine study. 

 EEG was recorded (62 channels) during rest and cold pain before and 60 

minutes after morphine administration where analgesic response was 

determined based on the reduction in pain ratings during cold pain. 

 Tonic painful EEG combined with support vector machine classification 

enabled reliable classification of opioid responders at a rate of 72% in 

healthy volunteers. 

 Conventional statistical methods could not differentiate between 

responders and non-responders. 

 Resting state EEG did not provide equally high classification accuracy.  
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9.3. Key results study III 

 Eighty-one patients undergoing total hip replacement surgery completed a 

clinical observational study. 

 Prior to surgery QST (heat, pressure pain), clinical parameters and EEG 

during rest and cold pain was recorded. 

 Patients were stratified into responders (N = 51) and non-responders (N = 

30) to oxycodone and piritramide based on their pain ratings the first 24 

hours after surgery. 

 Conventional analysis showed that there was connection between pre-

surgical pain state (chronic pain grade) and response to postoperative 

analgesic opioid treatment. 

 Support vector machine classification on tonic painful EEG predicted 

response to postoperative opioid pain treatment in 65% of cases in patients 

undergoing full hip replacement.   

 Resting EEG proved inferior to tonic painful EEG for prediction of 

analgesic effect.  
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Chapter 10. Discussion 

This PhD thesis investigated EEG as a biomarker for personalized pain medicine in 

the following steps: 

 To investigate reliability and dynamics of the EEG during rest and cold 

pain in healthy volunteers to assess robustness of the biomarker (Paper I). 

 Investigate if prediction of morphine analgesia is possible in healthy 

volunteers (Paper II). 

 Predict postoperative opioid analgesia in patients undergoing total hip 

replacement surgery (Paper III). 

The first part of the discussion focuses on the methodological considerations for the 

three studies while the rest focuses on the findings and challenges regarding EEG as 

a biomarker and the current state of the art within personalized medicine for opioid 

analgesia.  

 

10.1. Methodological considerations 

Papers I, II and III investigated the delta, theta alpha and beta frequency bands 

while the gamma band was only included in papers I and II. The delta band was 

shown to increase during tonic pain in paper I which is in line with earlier 

studies130. Furthermore, it was the primarily selected feature for classification in 

paper II as well as paper III, demonstrating the relevance of this low-frequency 

band. Alpha and beta were both also part of the classification in paper II and are 

both important for the perception of pain82,84,131 and opioids analgesic effects44. 

Furthermore, in paper I theta band activity seemed to be connected closer to 

perceived pain than any other frequency band.  

Recently, large parts of evoked brain potentials previously thought to be directly 

connected to the experience of pain has been shown instead to be closely related to 

the saliency of the stimulus31. However, newer and more advanced analyses have 

revealed features in the gamma band to be more specifically associated the 

perception of pain132,133. This makes the gamma band interesting for pain research 

and was therefore included in paper I to study the reliability of the frequency bands 

as well that the connection to tonic pain. However, even though the gamma band 

was shown to be reliable and the average gamma activity correlated to the pain 

rating the gamma band activity was not dynamic during the cold pressor test. Since 

the pain ratings during the cold pressor test are highly dynamic, it is unlikely the 

gamma band was directly reflecting the painful experience. This contrasts other 

findings, but could be due to the nature of the stimulus which in previous studies 
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have focused on short, transient stimulations such as delivered by lasers compared 

to the tonic cold pain in paper I. When used for prediction in paper II, no gamma 

band features were selected for prediction of analgesic effect, indicating that the 

gamma band is of less importance for prediction of opioid analgesia. Due to the 

findings in papers I and II, and previous studies which suggest electromyographic 

artifacts are introduced into the EEG during the cold pressor test81, the gamma band 

was not included in paper III, so as to avoid influence from the gamma on other 

frequency bands (due to the relative spectral activity). 

Papers II and III attempted to predict opioid analgesia based on both resting EEG 

and EEG during tonic cold pain. Both studies showed that the EEG during cold pain 

was useful for prediction, while resting EEG was not. Paper I also revealed that 

resting EEG has slightly lower reliability than EEG during cold pain, possibly due 

to suppression of conscious and non-conscious processes during pain. Paper I 

additionally revealed unexpected drifting of the resting EEG during the 2 minute 

recording which could indicate drowsiness in the subject. Overall, it seems the 

painful stimuli bring out activity related to how the brain processes pain, which in 

turn is associated with the response to a given opioid. These findings indicate that 

EEG during pain is more suitable for prediction. However, only one stimulus (cold 

pain) was investigated so future studies could aim to investigate if other stimuli 

would yield better results.  

Papers I, II and III all utilized the cold pressor test for the evocation of tonic pain. 

The test was as standardized as possible, however some discrepancies in 

methodology still remained. The water temperature in paper I and II was controlled 

with a specialized equipment, keeping the temperature at 2˚C while constantly 

circulating the water. This type of equipment is preferable for cold pressor studies, 

where the temperature of the water and lack of circulation can reduce reliability of 

the pain model57. However, for paper III this equipment was not available on-site 

and instead relied on cold water from the tap in a thermal container. To account for 

the added uncertainties from this approach, temperature of the water was measured, 

and was found to be consistent between groups. The primary confounder due to the 

cold pressor equipment in paper III seems to be the temperature (around 8˚C) which 

is comparatively higher than the 2˚C used in papers I and II, but also the normal 

range of the cold pressor test (1˚C to 7˚C) 57. This also could contribute to explain 

why the overall accuracy in paper III was lower than in paper II. Comparison of 

resting EEG and EEG during cold pain revealed that the painful stimulation seemed 

to bring out the predictive features in the EEG. It therefore stands to reason that the 

lower stimulation intensity in paper III could fail to accentuate the predictive 

features sufficiently, thus resulting in a lower accuracy. This is supported by the 

comparison between resting EEG and EEG during cold pain revealed widespread 

differences in paper I, while the same differences were much lesser pronounced in 

paper III. This points to the need for an intense painful stimulus to properly 

individual differences in brain function related to opioid analgesic efficacy. 
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Paper II attempted to predict the analgesic effect of morphine on an experimental 

pain model (the cold pressor test) while paper III investigated the analgesia attained 

after total hip replacement surgery. Experimental pain models are advantageous 

since they are standardized with regards to the stimulus (nature, stimulation site, 

stimulus frequency and intensity)134. It also allows to exclude known confounding 

factors in clinical studies such as related symptoms, anxiety, immobility and pre-

existing medication55. Paper II therefore avoided these confounders, and found an 

algorithm which could predict morphine analgesia in 72% of cases, indicating that 

the EEG can be utilized for prediction. However, personalized medicine needs to be 

able to deal with the real-life confounders which might impede classification 

accuracy. Therefore, paper III investigated patients undergoing total hip 

replacement surgery in order to predict their post-operative analgesics response 

using pre-operative EEG. The clinical aspect introduced several confounders into 

the study, firstly patients were already suffering from chronic pain which can affect 

the EEG135,136. Additionally, the patients were already using medication to treat 

their pain condition, which also has a known effect on the EEG39. Lastly, there is a 

source of variability introduced by the surgery in itself. Though all patients 

underwent the same surgical procedure, variations in complexity and duration of 

surgery will always vary, which could affect pain post-operatively. All these factors 

likely contribute to the relatively lower classification accuracy in paper III. More 

knowledge is needed about the confounders and their interaction with the EEG in 

relation to features which might predict analgesic efficacy. As more studies emerge 

on the subject, new algorithms will be able to account for these confounders in a 

more satisfying way. 

Papers I and II analyzed the EEG by investigating the spectral content in predefined 

frequency bands. Paper III also included functional connectivity in the analysis to 

assess the communication between electrodes. Functional connectivity is a rapidly 

expanding field within EEG research, and is being heralded as the next step in 

analysis methods as it investigates the interactions between functional networks in 

the EEG activity109. More detailed information can be extracted by extending 

analysis from simple rhythmicity of individual electrodes to assessment of the flow 

of information between electrodes as well as direction111. Despite this, the feature 

reduction method did not result in selection of features from the functional 

connectivity features, but instead only selected a single feature from the spectral 

indices. Thus inclusion of these more advances features did not end up improving 

classification accuracy in paper III. Still, future studies should continue to 

investigate this method as it has proved promising in many studies110,115,137. 

Furthermore, functional connectivity parameters can be analyzed using graph 

theory, to describe overall characteristics of the network, which could be an 

interesting addition to the analysis138,139. Another interesting method could be 

source analysis to properly investigate the activity in specific brain centers related 

to analgesic response140. Such an analysis would not only help in developing the 
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personalized medicine algorithm, but also assist in understanding the underlying 

cause for heterogeneity in opioid response. 

 

10.2. EEG as a biomarker for opioid response 

Biomarkers are characteristics that can be objectively measured as an indicator for 

normal or pathological processes as well as pharmacological response to 

treatment15. Identification of opioid response phenotypes aim to identify sub-groups 

of patients, and tailor treatment for each sub-type15. Reliability of the biomarker is 

equally important as accuracy within personalized medicine but is unfortunately an 

area which is often overlooked within many areas of science141,142. EEG during cold 

pain appears more suitable for prediction of analgesic treatment outcome both in 

experimental pain models and in post-operative pain due to the higher prediction 

accuracy (Paper II and III). Furthermore, the spectral EEG content cold pain is 

reliable between days (Paper I) and provides similar results using the machine 

learning algorithm between days, both in terms of classification performance and in 

terms of the channels selected (Paper II).  

EEG assesses the neuronal activity at the scalp and has a relatively poor spatial 

accuracy compared to imaging methods143. Neuroimaging has been suggested as an 

important approach on the way to personalizing pain treatment18.  However, 

imaging methods would introduce substantial economic costs and logistical 

challenges, making it problematic to include as part of a personalized medicine 

approach. Though the spatial resolution limits the EEG in identifying the exact 

brain regions involved in a response, it is a low-cost method that could easily be 

brought to a patient bed-side. Furthermore, it has previously been shown to predict 

pain experience within individuals20, proving its utility for investigations at the 

individual level. 

Advances in the technical field is further improving the utility of EEG by moving 

away from the practice of establishing connection between electrode and scalp by 

electrode gel144. This practice requires scalp preparation and can introduce several 

problems, such as 1) loss of connection due to drying of electrode gel, 2) short-

circuiting of electrodes due to excessive use of gel, 3) pain/discomfort in patients as 

scalp preparation usually involves abrasion of the outer skin layer145. Furthermore, 

the main time in EEG recordings is consumed in these preparations145. However, in 

recent years dry electrodes have been developed with no requirement for electrode 

gel or skin preparation145,146. Such equipment would greatly reduce mounting times, 

further making EEG more attractive for fast, clinical measurements.  
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10.3. Response stratification 

When developing methods for personalized medicine it is important to have a gold 

standard for response in order to assess accuracy of the method and separate the 

opioid response from other factors that might influence analgesic effect. The most 

common threshold for clinical response to analgesic treatment is reduction of pain 

intensity by 30%. For QST models this threshold can be problematic as analgesic 

effect is generally lower55. This was also the case in paper II where the application 

of the traditional threshold for analgesic response to a clinically relevant dose 

(30mg) of morphine would have resulted in just one responder out of 39 subjects.  

Due to these limitations, the standard 30% threshold was not applied and a 

threshold was instead set at 5%. Since there is not definition of response for 

experimental pain models this was mostly based on methodological concerns to 

achieve balance between response groups, which is beneficial for machine learning 

methods when analyzing small data samples. Paper III investigated postoperative 

pain, for which the 30% threshold is not valid since there is no baseline pain 

measurement to compute pain reduction from. Therefore a response score based on 

several clinical pain measures which was employed in order to account for fact that 

both postoperative pain ratings and analgesic consumption will vary due to the 

postoperative patient controlled anesthesia (PCA)147. Ethical issues require that 

PCA is made available to patients after surgery in order to avoid insufficient 

analgesia147. This problem is one of the primary focus points for analgesic research, 

as it affects many analgesic studies148,149. A score integrating both analgesic 

consumption and perceived pain has been attempted150, but has failed to achieve 

widespread acceptance and as such validity of the method remains unknown16. 

Thus, a score based on pain ratings was developed to assess the level of response 

for each patient, resulting in a response rate of 65% which is in line with this type 

of procedure. The lack of opioid consumption as a factor in the response score 

could be a confounder in paper III, however since stratification based on opioid 

consumption did not result in higher accuracies it is likely not a major confounder. 

However, methods for establishing robust criteria for analgesic response are 

severely lacking within not just postoperative analgesia, but also experimental pain 

models and should be of continued focus within analgesic research. 

Paper III revealed a connection between preoperative pain severity and efficacy of 

postoperative pain management. Hence, higher severity of chronic pain grade, 

MPSS and higher levels of perceived pain during hip rotation was observed in non-

responders to postoperative opioid analgesia. This is in line with previous literature 

which indicates that preoperative pain strongly predicts acute postoperative 

pain2,151,152. However, since the response score in paper III was determined by the 

postoperative pain ratings, it will by extension also be related to the preoperative 

pain condition. Although this is an important factor in postoperative pain treatment, 

it also complicates identification of correct algorithm for prediction of analgesia, 

since the preoperative pain condition affects both the EEG as well as the 
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postoperative pain experience. This makes it hard to discern if the features found in 

the EEG represents the preoperative pain condition or a specific phenotype for 

opioid response. There are indications that the findings could be connected to an 

opioid response phenotype, since the discriminative features found in paper II 

(where subjects had no prior pain) where somewhat similar to the patient population 

in paper III. However, it is not possible to establish if this is the case in paper III, 

but would instead require a clinical study on a patient population with no chronic 

pain condition. 

Paper I and II investigated morphine while paper III investigated a combination 

treatment of oxycodone and piritramide. Different opioids may have different 

effects in the individual patients34, and even equi-potent opioid doses of different 

opioids can have widely different effects on the EEG activity44. Therefore, results 

using different opioids cannot be directly compared. Furthermore, paper III is 

further complicated by the inclusion of two opioids for analgesic treatment, as this 

introduces several sub-groups (responders to both opioids, non-responders to both 

and responders to just one opioid) into the analysis, which are impossible uncover 

in the analysis. However as III was an observational study with no possibility for 

altering analgesic treatment this could not be avoided. Since this could act as a 

major confound in the study, future studies should try and perform clinical 

investigations using just one opioid at a time, to avoid similar issues. 

 

10.4. Prediction of analgesic efficacy 

Prediction of analgesic effect holds great potential to improve pain treatment by 

individualizing treatment for each patient18. Beyond the increased suffering, 

inadequate pain treatment after surgery increases the chance of developing chronic 

pain153. Furthermore, opioid use is associated with serious safety concerns 

regarding abuse and addiction which is resulting in an increasing number of 

deaths154. Personalized treatment is therefore equally about identifying the right 

treatment as well as sparing patients from risks associated with inadequate 

treatment15,18.  

To date studies have focused on the use of QST models for prediction of analgesic 

effect and some results have been promising16. However, no single QST method has 

so far emerged as a golden standard and results have been variable16. Paper III 

investigated QST measures (heat, cold and pressure pain) performed before surgery 

for predictive capability, but found no connection to the post-operative analgesic 

effect. This could be connected to central sensitization due to the pre-existing 

painful condition, which opioids have limited efficacy against155.  
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Due to the pre-existing chronic pain condition patients in paper III were already on 

analgesic treatment prior to surgery. It is well know that analgesics affect the EEG39 

and therefore the preoperative medicine could have interfered with EEG recordings. 

However, as preoperative analgesic usage was relatively low the effect were likely 

minor. Even so, avoiding preoperative analgesic usage if possible is desirable for 

future studies.  

Chronic pain is known to be associated with impaired descending inhibition 

(assessed by CPM paradigms), an effect which could possibly imply that the system 

is already maximally engaged64,66. Lowered CPM response is also associated with 

opioid consumption after surgery156 and development of chronic pain157,158. This 

notion is supported by studies investigating the descending inhibition after the 

chronic pain has been relieved shows a return of function65. Paper III observed 

impaired descending inhibition in the osteoarthritis patients, meaning that their 

ability to regulate pain was compromised due to their pain condition. However, this 

was not a predictor of response to postoperative analgesia, but rather an overall 

condition for all patients. 

Conventional group-wise statistics have limitation in use for personalized medicine 

since they focus on detecting differences between groups rather than assessing the 

individual subject which is of major clinical interest, making machine learning 

more suitable159. Furthermore, machine learning method are able to assess multiple 

features simultaneously which is important for high-dimensional data such as EEG. 

This has been seen before in studies on analgesic effect, which found the effect 

reflected in the EEG based on a SVM classifier which assessed all EEG frequency 

bands simultaneously21. The previous findings are further confirmed in paper II and 

III which both showed that traditional group-wise statistics were unable to assess 

the differences between responders and non-responders to opioid analgesia, 

whereas machine learning methods enabled prediction of analgesic effect. 

The over-all accuracies for the predictions were 72% (paper II) and 65% (paper III). 

Positive predictive values were 70/75% (paper II) and 75% (paper III). Thus, if 

patients had been treated according to the machine learning results based on EEG 

prior to treatment, response rates would have been higher. In a personalized 

medicine scenario the remaining patients would then be treated with an alternative 

treatment although there was a higher degree of false negatives in paper III.  

However, in a personalized medicine scenario using EEG and machine learning to 

switch patients to an alternative treatment, the patients falsely classified as non-

responders could still respond to the alternative treatment. Unfortunately the 

response rate of an alternative treatment could not be determined due to study 

design limitations. Future work could attempt such studies, but only after consensus 

has been made on a model for predicting analgesic opioid response. 
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The features selected in paper II were predominantly frontal and central electrodes 

of the delta band while only one frontal electrode from the delta band was selected 

in paper III. There is a level of similarity between the two studies in that they both 

selected features from frontal delta electrodes. Some differences are present like the 

number of selected electrodes, but given the differences between the studies (e.g. 

population, experimental pain vs. clinical pain, etc.) and the fact that the drugs were 

not consistent makes differences in the selected features very likely. This could 

potentially be an advantage as the number of needed electrodes would decrease 

which would reduce time required for making a measurement.  

 

10.5. Clinical implications 

Personalized treatment targeting the individual patient and identifying optimal 

treatment strategies holds great promise for improving current analgesic treatments 

and reducing the rising abuse of opioids seen worldwide15,18. Most studies 

investigating prediction of opioid analgesic effect has utilized subjective QST 

models. However, no single QST model has been discovered which can be 

recommended for prediction of analgesia and large variations exist application of 

the QST models16. Neuroimaging has previously proved useful with regards to 

understanding pain processing and could therefore also prove valuable for 

personalized medicine18. However, neuroimaging methods are infeasible 

logistically and economically in a clinical algorithm. EEG is an objective 

measurement and has lower costs than neuroimaging methods but can still assess 

neurological activity in the brain and has been shown in papers II and III to contain 

information which could help predict response to opioid treatment. Although 

accuracy is likely still too low for clinical application, this poses an important first 

step for personalized pain medicine with EEG. Furthermore, the machine learning 

approach also opens up the possibility for including other features for prediction in 

the same analysis, such as QST measures, clinical parameters or genetic profiling.   
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Chapter 11. Conclusions 

This study marks the first investigations into objective biomarkers for prediction of 

opioid analgesia. We demonstrated the robustness of EEG as a biomarker and the 

ability to separate responders from non-responders in both healthy volunteers and 

patients scheduled to undergo total hip replacement surgery. The conclusions 

corresponding to each of the aims I-VI are presented below: 

 

11.1. Aim I 

To investigate the reliability of EEG over time to establish if the measurements 

would be sufficiently robust to use in personalized medicine (Paper I). 

For any use of EEG in personalized medicine, it is imperative that the derived EEG 

parameters remain relatively stable over time. This was achieved by investigating 

the reliability of EEG parameters in paper I. Overall EEG parameters had good 

reliability and therefore seems appropriate for use in a personalized medicine 

algorithm. This was also underlined in paper II where the results were repeated 

when using EEG recorded on two separate days from the same subjects. 

 

11.2. Aim II 

Analyze dynamics of the EEG and pain ratings during cold pain to gain further 

insight into pain processing during cold pain (Paper I). 

The analysis of the EEG revealed that the overall EEG activity was correlated to 

overall pain intensity from both the theta, beta3 and gamma bands. However, the 

dynamic analysis revealed that only the theta band was dynamic, and therefore 

likely to be more closely linked to the pain ratings, which during the cold pain are 

highly dynamic. Thus, dynamic analysis allowed for more specific information on 

pain processing during cold pain, and could be utilized in the future within pain 

research. 
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11.3. Aim III 

To establish if the EEG during rest or tonic cold pain is more suited for prediction 

of opioid analgesia (Paper I, II and III). 

EEG during tonic cold pain showed to be consistently superior to resting EEG, both 

in reliability and ability to discriminate between responders and non-responders. 

Thus tonic pain models seem to be more appropriate for future work using EEG in 

personalized medicine. 

11.4. Aim IV 

To compare a machine learning analysis approach to conventional group-based 

statistics in order to investigate if more sensitive prediction can be achieved (Paper 

II and III). 

A relatively new analysis method within clinical research was introduced based on 

machine learning and advanced feature selection in order to assess the individual 

subject without a priori assumptions about the data. This method proved to be 

superior to group-based statistics for separating responders to opioid analgesia from 

non-responders both in paper II and III.  

11.5. Aim V 

To explore if combination of several features in machine learning enables 

separation of responders and non-responders to morphine in healthy volunteers 

(Paper II). 

Machine learning enabled prediction of morphine analgesia based on EEG during 

cold pain recorded prior to drug administration. This prediction could be repeated 

using EEG during cold pain recorded on another day. The features selected for 

prediction suggest primarily the delta band contains information regarding the 

response to morphine. 

11.6. Aim VI 

To investigate if machine learning can be used to predict the analgesic efficacy in 

patients with postoperative pain (Paper III). 

The machine learning approach enabled prediction of postoperative analgesic effect 

from oxycodone and piritramide in patients undergoing total hip replacement. The 

delta band was again selected as the most predictive feature.   
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Chapter 12. Future perspectives 

The search for biomarkers associated with analgesic response is still ongoing and 

hold great potential for improving treatment of patients. This study has uncovered 

some interesting findings, but many questions still remain unanswered. In order to 

move the field forward, some areas of interest should be investigated: 

Clinical studies should be conducted to further determine consistency of the results 

presented in this thesis. Additionally, many of the confounding factors should as 

well as possible be avoided. This could include investigations into a patient 

population undergoing surgery much like in this thesis, but with minor alterations. 

Firstly, treatment should be attempted using only one opioid. This should preferably 

be a widely used and well-known opioid (such as morphine) to increase the clinical 

utility of investigations. Secondly, chronic pain introduces variability into the EEG 

which can interfere with measurements. To combat this problem clinical studies 

could be performed on patient populations undergoing surgery, but without pain 

prior to surgery. Therefore we are currently investigating ~60 patients undergoing 

surgical funnel chest repair. The patients undergoing this surgery are generally 

healthy, pain-free and opioid naïve males. Since there is no pre-existing pain 

condition and medication, many of confounders can be avoided and hopefully a 

clearer signal can be found. This would help in determining which features in the 

EEG are connected purely to the analgesic response to opioids.  

Of course personalized treatment should in the end also target chronic pain 

populations and therefore have to deal with these issues, and therefore we have 

conducted a multi-center study (ClinicalTrials.gov identifier: NCT02308306) on 

chronic pain patients at five centers throughout Europe and included 60 patients. 

The patients were all opioid naïve at the time of EEG recording, and follow-up was 

performed after 14 days to determine response to treatment. This study will 

investigate if any patterns can be found in the EEG and QST to predict analgesic 

effect in a chronic pain population. 

This thesis focused purely on the analgesic effect of opioids as an outcome of 

treatment. However, adverse effect is also an interesting aspect in opioid treatment 

and can in some cases be so severe that patients deem the treatment worse that pain 

and discontinue treatment. This was not investigated in the current thesis in order to 

limit the scope of investigations, but should be considered for future studies. It is 

possible that the methods presented in this thesis could be used for this same 

purpose and would help cast light on a different but important aspect of treatment. 

When properly investigated results from prediction of analgesic response could be 

combined with prediction of adverse effects to present clinicians with a more 

complete view of the consequences of a given treatment. 
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The methods presented in this PhD thesis are relatively new within clinical research 

which mostly relies on conventional statistics. The prospective usefulness of these 

methods are not confined to pain research, but could in theory be used in many 

applications as a tool for decision support. We have started one such study for 

grading the severity of hepatic encephalopathy. As the severity of the disease 

increases, patients brains start to be affected to a degree which could make them a 

danger e.g. in traffic. However, it is difficult for clinicians to detect when the 

patient is impaired and special precautions should be taken. EEG has shown some 

promise in detecting severity of disease, but more accurate detection is needed. Our 

analysis will incorporate EEG (226 patients with different grades of hepatic 

encephalography and 137 healthy volunteers) into machine learning to allow for 

simultaneous assessment of several EEG parameters, and hopefully increasing 

sensitivity. 

Machine learning can also be used for more simple measures than EEG, such as 

QST or clinical parameters. To illustrate this we analyzed 88 patients undergoing 

mastectomy for treatment of breast cancer for preoperative risk factors to develop 

postoperative chronic pain. Prior to surgery QST and clinical parameters were 

recorded and follow-up was made 6 months after surgery to establish who would go 

on to develop postoperative chronic pain. We analyzed the two groups and found 

simple two QST measures to be predict the development of chronic pain with a 

sensitivity and specificity of around 70 and 80%. These results, which are still 

under preparation for publishing, could pave the way for a simple test to establish 

which patients should be take special care of after surgery to prevent chronic pain 

developing. Furthermore, it shows the potential of machine learning within clinical 

research with simultaneous assessment of multiple parameters without any a priori 

assumptions. 
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