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PREFACE 

This thesis: Adipose-derived stem cells for treatment of chronic wounds has been 

submitted to the Faculty of Medicine, Aalborg University, Denmark. The 

experimental work in this thesis has been carried out at the Laboratory for Stem Cell 

Research, the Biomedicine Group, Department of Health Science and Technology, 

Aalborg University, Denmark, at the Laboratory for Medical Mass Spectrometry, 

the Biomedicine Group, Department of Health Science and Technology, Aalborg 

University, Denmark and in the research facilities at Life Technologies, Frederick, 

MD, USA from September 2012 to February 2016.  

In the autumn 2013 I spend 6 weeks in the research facilities of the Primary and 

Stem Cell Systems group of Life Technologies, Thermo Fischer Scientific Inc., 

Frederick, MD, USA. Here I worked with human primary keratinocytes in the 

attempt to establish a 3D wound healing model. 

During my PhD study I have been teaching, coordinating teaching, supervising and 

examining students attached to the two specializations Medicine with Industrial 

Specialization and Medicine, and I have completed PhD courses corresponding to 30 

ECTS points. Together these activities correspond to more than a full year of my 

PhD study. 

The thesis is based on four experimental studies and a review. One is in press, two 

has been submitted and one is in preparation for submission. Additionally, the 

review has been published. The thesis is composed of a general introduction 

encompassing the topics being explored in the manuscripts, the aim and objectives 

of the thesis, selected methods are presented, the results are presented as a summary 

of the four manuscripts, a general discussion and finally conclusions and 

perspectives. The original research articles and the review are attached as appendix. 
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ABSTRACT 

The aim of this thesis is to aid the translation of adipose-derived stem cells (ASCs) 

into clinical use in wound healing.  

To achieve this, two central objectives was determined: 1) to identify the mode of 

action of ASCs in wound healing and how this is affected by hypoxic culture, and 2) 

to identify how in vitro procedures of isolation and expansion affect ASC properties.  

To achieve the first objective, ASCs were cultured in 20% or 1% O2 and their pro-

re-epithelialization properties analyzed. As a measure for this, a primary 

keratinocyte based scratch assay was implemented. Additionally, the influence of 

hypoxic culture on the secretome and proteome of ASCs was analyzed using LC-

MS/MS. To achieve the second objective, ASCs were isolated and cultured in a 

variety of basal media and supplements, and the effect of these was analyzed in 

terms of cell attachment, proliferation, CFU, and surface marker profile. 

Additionally, the subpopulations of the heterogeneous ASCs were analyzed in terms 

of differentiation capacity, proportion of CFUs, and ability to promote endothelial 

migration.  

This showed that conditioned media from ASCs promoted the in vitro wound 

healing of keratinocytes, and this was also increased when using conditioned media 

from hypoxically preconditioned cells. When investigating the effect of hypoxic 

preconditioning on the ASC proteome, it was found that ECM relevant proteins 

were upregulated. When investigating the effect of in vitro culture on the ASCs, it 

was found that choice of media affects the properties of the ASCs. Furthermore, the 

different subpopulations within ASCs do have different pro-angiogenic 

characteristics. However, by passaging the subpopulations, the surface marker 

profile returns back to that of the original mixed population.  

In conclusion, ASCs were shown to promote wound healing through the promotion 

of re-epithelialization and ECM remodeling, and hypoxic preconditioning of ASCs 

showed to enhance both. The establishment of the ASCs showed to be affected by 

the choice of basal medium and supplement, and the distinct subpopulations of the 

ASCs showed to have differences in the functional properties. Hopefully, these 

findings can aid the translation of ASCs into clinical use in wound healing. 
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DANSK RESUMÉ 

(Abstract in Danish) 

Formålet med denne afhandling er at fremme den kliniske brug af adipøse stamceller 

til heling af kroniske sår.  

For at opfylde dette blev to målsætninger opsat: 1) at identificere virkemåden af 

adipøse stamceller under sårheling og undersøge hvordan denne påvirkes af hypoksi 

og 2) at identificere, hvordan isolerings- og ekspanderingsprocedurer påvirker 

stamcellernes egenskaber.  

For at opnå den første målsætning blev adipøse stamceller først dyrket under enten 

20% eller 1% ilt. Herefter blev deres evne til at støtte re-epitheliasering analyseret 

gennem brugen af et forsøg baseret på humane primære keratinocytters evne til at 

lukke en rift. Herudover blev effekten af hypoksi på stamcellernes proteiner 

analyseret ved hjælp af massespektrometri.  

For at opnå den anden målsætning blev adipøse stamceller isoleret og dyrket i en 

række kombinationer af forskelige basale vækstmedier og mediesuplementer. Disse 

medie kombinationer blev undersøgt for deres indflydelse på cellernes adheration til 

plastik, proliferation, evne til at danne kolonier samt sammensætningen af 

overflademarkører. Herudover blev forskellige subpopulationer af stamcellerne 

undersøgt, og disses evne til at differentiere, danne kolonier og støtte endothelceller 

bestemt.  

Vores undersøgerlser viste, at adipøse stamceller påvirker sårheling positivt ved at 

øge re-epithelialiseringen og at hypoksi fremmer stamcellernes effekt. Ved at kigge 

nærmere på stamcellernes proteiner blev det fundet, at hypoksi øger tilstedeværelsen 

af proteiner involveret i moduleringen af den ekstracellulære matrix. Ydermere fandt 

vi, at dyrkning af adipøse stamceller påvirker deres egenskaber afhængigt af det 

brugte vækstmedie. De forskellige subpopulationer viste sig at have forskellige pro-

angiogene egenskaber, dog returnerede sammensætningen af overflademarkørerne 

for de forskellige subpopulationer til den oprindelige blandede sammensætning når 

disse var ekspanderet.     

Det kan derfor konkluderes, at adipøse stamceller fremmer sårhelig gennem en øget 

re-epithelialisering, som kan øges yderligere ved brug af hypoksi. Hypoksi påvirker 

stamcellernes proteiner på en måde, der medfører en øget sårhelende effekt. 

Isoleringen og ekspanderingen af adipøse stamceller viste sig at være påvirket af 

valg af vækstmedie, og stamcellernes subpopulationer havde forskellige funktionelle 

egenskaber. Disse fund kan forhåbentligt støtte op om den kliniske brug af adipøse 

stamceller til heling af kroniske sår og fremme deres anvendelse. 
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CHAPTER 1. INTRODUCTION 

1.1. CHRONIC WOUNDS 

Chronic wounds are defined as non-healing wounds or ulcers that persist for more 

than 6 weeks (Markova and Mostow, 2012). Commonly they develop after minor 

injuries accompanied by advanced age and medical comorbidities such as diabetes 

(Demidova-Rice et al., 2012).  

Chronic wounds affect millions of people around the world (Demidova-Rice et al., 

2012) and as the general population advances in age and the prevalence of lifestyle 

diseases as obesity, diabetes and venous insufficiency increases, chronic wounds are 

becoming an increasing health burden especially in the industrialized countries 

(Zielins et al., 2014). During a lifetime, 1 - 2% of the population in the industrialized 

countries will experience a chronic wound (Sen et al., 2009). To the patient, having 

a chronic wound diminishes quality of life due to significant functional impairment, 

psychosocial morbidity and an increased risk of limp amputation (Zielins et al., 

2014). The economic costs of wound care are estimated to constitute around 2 - 4% 

of the total health-care budget within the EU (Hjort and Gottrup, 2010), and in the 

US alone, wound care is estimated to be a >25 billion dollar business (Brem et al., 

2007). However, on top of this should be added loss of productivity for both patients 

and relatives, which also constitute a significant sum.  

In normal acute wounds, healing begins directly after an injury occur in three 

sequential, highly integrated and spatially overlapping phases; inflammation, 

proliferation and remodeling (Baum and Arpey, 2005)(Figure 1). During the 

inflammation phase, a fibrin cloth is formed, neutrophils are recruited, mast cells 

mature, other immune cells, fibroblasts and keratinocytes are activated and arriving 

monocytes differentiate into macrophages (Ng, 2010). The purpose of this phase is 

to stop the bleeding, clean out infectious agents, and initiate tissue re-generation. 

During the proliferation phase, fibroblasts are attracted into the wound synthesizing 

extracellular matrix (ECM) components and myofibroblasts contract, decreasing the 

wound size. Additionally, endothelial cells migrate into the wound beginning to 

form new blood vessels by the process of angiogenesis (Bao et al., 2009) and 

keratinocytes, residing in the wound edges and hair follicles, proliferate, begin to 

migrate into the wound and finally differentiate to re-epithelialize the wound (Baum 

and Arpey, 2005). During the remodeling phase, the cellular content of the scar 

tissue is decreased due to migration and apoptosis of the residing cells and the type 

III:type I collagen ratio decreases changing the composition and the properties of the 

ECM (Baum and Arpey, 2005). The remodeling phase begins in average three 

weeks after injury and can last for years depending on the severity of the wound. If 

any of these events is disturbed, the healing will pause, and the wound can become 

chronic (Hassan et al., 2014).  



ADIPOSE-DERIVED STEM CELLS FOR TREATMENT OF CHRONIC WOUNDS 

20 

 

Figure 1. Phases of wound healing and the cellular events. ECM: extracellular matrix. 

Modified from (Falanga, 2005). 

Chronic wounds encompass several categories of non-healing wounds with a variety 

of etiologies, but most commonly they are categorized as vascular, diabetic or 

pressure ulcers. Vascular ulcers occur secondarily to decreased blood-dermis oxygen 

exchange either caused by venous valvular ineffectiveness or arterial insufficiency 

(Demidova-Rice et al., 2012). Diabetic ulcers occur as a result of the combination of 

neuropathy, vascular impairment, muscle metabolic deficiencies, and microvascular 

pathologies caused by hyperglycemia (Falanga, 2005; Leung, 2007). Pressure ulcers 

develop due to prolonged unrelieved pressure and shearing forces on the tissue, 

leading to decreased oxygen tension, ischemia reperfusion injury and necrosis 

(Demidova-Rice et al., 2012). A common feature of the different types of chronic 

wounds is a lack of cellular response to the environmental cues (Demidova-Rice et 

al., 2012). This includes a lack of conversion from the pro-inflammatory M1 

macrophages to the anti-inflammatory M2 macrophages (Manning et al., 2015) and 

overactive mast cells (Yun et al., 2012) both resulting in persistent inflammation. 

Additionally, a general tendency of impaired cell proliferation and migration is 

observed in terms of both endothelial cells leading to insufficient angiogenesis and 

keratinocytes disturbing the process of re-epithelialization (Demidova-Rice et al., 
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2012; Raja et al., 2007). Furthermore, the microenvironment of the chronic wounds 

is dominated by an increased presence of matrix matalloproteinases (MMPs) which 

degrade ECM and other proteases that degrade extracellular growth factors 

(Saarialho-Kere, 1998) as hepatocyte growth factor (HGF), platelet-derived growth 

factor (PDGF), transforming growth factor-β (TGF-β), and vascular endothelial 

growth factor (VEGF) which all are important wound healing factors (Greaves et al., 

2013; Hassan et al., 2014). 

The goal of the treatment strategies for chronic wounds is to return the wound to the 

progression of normal wound healing. The conventional treatments are based on an 

element of wound bed preparation using tissue debridement, a treatment of infection 

using topically administered antibiotics, maintaining a properly moist environment 

by applying ointment or using negative pressure therapy, and in severe cases also 

surgical repair (Frykberg and Banks, 2015; Werdin et al., 2009). Nonetheless, a 

large percentage of patients do not respond to these treatments or their wounds 

reoccur. To overcome this and to obtain a satisfactory treatment outcome, it is 

believed that the residing cells need to be stimulated (You and Han, 2014). Many 

approaches towards this have been attempted as supplement to the conventional 

wound management, though, without evidence of the effects of these (Frykberg and 

Banks, 2015; Sundhedsstyrelsen, 2011; Werdin et al., 2009; You and Han, 2014). 

1.2. ADIPOSE-DERIVED STEM CELLS 

A new and interesting alternative therapeutic strategy for repairing damaged tissue is 

regenerative medicine, which is based on the process of regenerating human cells, 

tissues or organs to restore normal function by stimulating the body’s own repair 

mechanism to heal tissue or organ defects. Within regenerative medicine stem cells 

have shown great promise. Stem cells are believed to be part of the internal repair 

system of the body, where they replace cells that are lost due to normal turn-over or 

pathological conditions. They are unspecialized cells capable of dividing 

asymmetrical, thereby continuously renewing themselves and giving rise to 

specialized cell types (Ding et al., 2011; Hassan et al., 2014; Zuk, 2013).  

A variety of stem cells can be found during the life time of the human body. In the 

stages of development, embryonic stem cells from the blastocyst give rise to all cell 

types of the body and later somatic stem cells maintain the integrity of the organism 

and can be found in nearly all tissues. The use of embryonic stem cells in research is 

decreasing due to high risk of teratoma development and the moral and ethical 

concerns around their origin. Somatic stem cells are multipotent, and are able to 

differentiate into a limited number of cell types; often those originating from the 

same germ layer as the stem cell itself originate. A type of somatic stem cells is 

mesenchymal stem cells (MSCs), which are derived from the mesodermal 

embryonic tissue. The MSCs can be found in connective tissues and the most used 

MSCs have been bone marrow mesenchymal stem cells (BM-MSCs). However, due 
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to the clinical limitations of bone marrow biopsies alternative sources have been 

sought. This led to the discovery of related MSCs in adipose tissue, termed adipose-

derived stem cells (ASCs), which in large have shown same biological capabilities 

as the BM-MSCs (Zuk et al., 2002). The advantages of ASCs over BM-MSCs and 

other stem cell types are that ASCs are relatively easy to obtain from liposuctions 

performed in local anesthesia, they can be obtained in a large numbers, they are 

capable of maintaining their phenotype and plasticity after long term in vitro culture 

and they comprise a low immunogenicity (Cherubino et al., 2011; Zuk, 2013). Based 

on this ASCs have generated great interest and is by some perceived as the most 

preferred cell type for regeneration and wound repair. 

ASCs are found in adipose tissue amongst adipocytes, endothelial cells, fibroblasts 

and immune cells (Ye and Gimble, 2011). They are located in the perivascular 

space, where they seem to function in the repair of injured tissue and in interaction 

with other cells according to the stimuli they receive (Lee et al., 2009). ASCs are a 

heterogeneous population of cells with an overall fibroblastic morphology, large 

endoplasmatic reticulum and large nuclei (Gimble and Guilak, 2003). Originally, 

they were defined by the trilineage differentiation potential along with plastic 

adherence, and a narrow surface marker profile (Zuk et al., 2001). As more and 

more research have been carried out, other more clinically relevant parameters have 

been identified and today a broader panel of surface markers have been suggested 

and also the paracrine properties are of special interest (Bourin et al., 2013). 

1.3. ASCS IN WOUND HEALING 

In pre-clinical studies, ASCs have shown great promise as a treatment modality for 

healing of cutaneous wounds (Isakson et al., 2015; Zamora et al., 2013; Zografou et 

al., 2013).  

The mechanism of action by which ASCs and other mesenchymal stem cells 

accelerate skin regeneration and wound healing is not fully understood. Initially, 

stem cells were assumed to home the injured tissue and repair defects by 

differentiating into the specific cells needed for tissue regeneration and therefore the 

initial clinical translation focused on the differentiation potential (Chung et al., 

2009). However, the validity of this theory has been questioned due to a limited 

survival of engrafted stem cells and the limited differentiation potential of ASCs not 

encompassing neither dermal fibroblast nor keratinocyte lineage differentiation, 

which would be required for complete wound healing by differentiation (Song et al., 

2010). Consequently, it has been hypothesized, that ASCs exert their wound healing 

properties through the stimulation and modulation of the residing tissue cells 

through the secretion of soluble factors (Rehman et al., 2004). Supporting this 

theory, ASCs have been found to secrete several growth factors and cytokines 

involved in wound healing including epidermal growth factor (EGF), basic 

fibroblast growth factor (bFGF), HGF, insulin-like growth factor (IGF), PDGF, 
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TGF-β, and VEGF (Zhao et al., 2013). These observations have shifted the focus for 

clinical use of ASCs.  

Different studies have tried to explain the wound healing properties of ASCs more 

in depth by examining their effect on single aspects in each of the different phases of 

wound healing. Relevant to the inflammation phase, ASCs have been shown to have 

immunomodulatory effects (Cui et al., 2007; Gonzalez-Rey et al., 2010; Kuo et al., 

2011; Melief et al., 2013) which are mediated through secretion of both pro- and 

anti-inflammatory cytokines as IL-6, IL-8, and tumor necrosis factor α (TNF-α) and 

IL-10, HGF, and TGF-β respectively (Lee et al., 2010; Melief et al., 2013; Strong et 

al., 2015; Zhao et al., 2013). Additionally, ASCs are capable of promoting the 

transition of macrophages from a pro-inflammatory M1 phenotype associated with 

chronic wounds to the anti-inflammatory M2 phenotype normally present in later 

stages of normal wound healing (Manning et al., 2015). The effect on the 

macrophages is probably mediated through the secretion of IL-4, IL-10 and IL-13 

(Cho et al., 2014; Zhao et al., 2013). Moreover, they have been shown to decreases 

the activity of mast cells (Yun et al., 2012). Thus it is conceivable, that ASCs may 

promote the transition of the wound healing from the inflammation phase into later 

stages of the healing process. 

During the proliferation phase, positive effects of ASCs have been found in terms of 

supporting the formation of granulation tissue. They have been shown to be pro-

angiogenic, as conditioned medium from ASCs resulted in enhanced endothelial 

sprouting, migration rate, cell viability, and endothelial tube formation (Nakagami et 

al., 2005; Rasmussen et al., 2011; van der Meer et al., 2010). Additionally, ASCs 

have been shown to increase fibroblast migration and proliferation through the 

secretion of bFGF and EGF (Zhao et al., 2013). Finally, the re-epithelialization has 

been shown to be promoted by ASCs (Alexaki et al., 2012; Lee et al., 2012) possibly 

through the secretion of cytokines as EGF, bFGF, HGF, IGF-1, keratinocyte growth 

factor (KGF) and PDGF, which stimulates keratinocyte proliferation and migration 

(Barrandon and Green, 1987; Tsuboi et al., 1993, 1992).  

Relevant to the remodeling phase, ASCs have been shown to have a positive effect 

on scaring, by decreasing size and color and increasing pliability, possible due to a 

timely controlled increase in the expression of MMPs (Yun et al., 2012). 

Additionally, ASCs have shown to decrease the ratio of type III:type I collagen by 

increasing the secretion of type I collagen into the wound ECM (Cho et al., 2010; 

Lee et al., 2009). This might been augmented by their secretion of  IL-10, which 

have been shown to increase the expression of MMPs in fibroblasts the preventing 

and reducing skin scarring through inhibiting excessive ECM deposition (Shi et al., 

2013). 
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Figure 2. The effect of ASCs on the phases of wound healing. IL, interleukin; TNF-α, tumor 

necrosis factor α; MMP, matrix metalloproteinase; ECM, extracellular matrix. 

The indications of ASCs being responsive to their environment and that they exhibit 

a multi action pro-wound healing response supports the use of ASCs as a treatment 

modality for the healing of chronic wounds, especially with the mixed etiology of 

these. 

1.4. CLINICAL USE 

Today, ASCs are used in a row of early clinical trials where their safety and efficacy 

have been tested and shown great promise (Cho et al., 2013; De La Portilla et al., 

2013; Garcia-Olmo et al., 2009; García-Olmo et al., 2005; Herreros et al., 2012; Lee 

et al., 2012, 2013). These trials investigate the use of ASCs as a treatment of 

ischemic heart disease, limb ischemia, and fistulas amongst others. 

To translate the pre-clinical findings of ASCs promoting wound healing into clinical 

trials several practical aspects are to be considered and the influence of these on the 

ASCs are to be investigated. A full review of these aspects can be found in (Riis et 

al., 2015). 

Autologous vs. allogenic donors 

When choosing stating material for obtaining ASCs, a number of aspects have to be 

taken into consideration. One of these is the use of autologous vs. allogenic ASCs. 

Previously, concerns of using allogenic stem cells have been raised due to safety 

issues and the risk of immune rejection, and thereby lack of therapeutic effect. The 

majority of research has therefore been based on autologous ASCs by which the risk 

of immune rejection could be reduced (Ra et al., 2011). These studies have shown 

the use of autologous ASC to be safe and effective (Marino et al., 2013; Ra et al., 

2011). However, to use autologous ASCs it is necessary for the patient to undergo 

the liposuction and the reinjection procedures at two different time points increasing 
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the time frame as well as the costs of the treatment. Additionally, patients with 

chronic wounds often suffer from comorbidities affecting the quality of the stem 

cells, reducing the regenerative properties of these (Cianfarani et al., 2013). 

Recently, the use of allogenic ASCs have been more accepted as studies have shown 

autologous and allogenic mesenchymal stem cells to be comparable in terms of 

immunomodulatory properties and their ability to evade or suppress the immune 

system (Cui et al., 2007; De Miguel et al., 2012; Gonzalez-Rey et al., 2010). 

Additionally, allogenic ASCs have shown clinical effects within the area of 

autoimmune diseases (Fang et al., 2007a, 2007b, 2007c; Voswinkel et al., 2013). 

Using allogenic ASCs also makes a large scale production possible, thereby 

reducing patient waiting time, running costs and enables the treatment of a large 

number of patients with the same product enabling comparison of treatment efficacy 

and decreasing variability herein. However, more research is needed using allogenic 

ASCs before these can be used as a standard option and one should keep in mind 

that inter-recipient variation still might complicate the direct comparison of the 

outcome due to the disease heterogeneity.  

Isolation procedure 

Through the years, different approaches have been used for the collection of adipose 

tissue. These are including and combining manual or pump assisted liposuction, 

resection, narrow or wide cannulas, and different types of local anesthesia. Only the 

choice of anesthesia showed to have an effect where lidocaine was to prefer. 

Otherwise no significant effect of any of the parameters in the tissue collection 

process on the biological properties of ASCs has been found (Aguena et al., 2012; 

Buschmann et al., 2013; Fraser et al., 2007; Muscari et al., 2012; Schreml et al., 

2009). Thereby, liposuction seems to be the most widely used as it is both relatively 

simple, less invasive and the risk of complications is relatively low compared to 

tissue resection.  

After the adipose tissue has been collected, the stem cells are to be isolated. The 

principle for this was first described by Zuk et al. (Zuk et al., 2001), and during the 

years many modifications have been used by different laboratories. Basically, the 

adipose tissue is first washed to remove erythrocytes, digested with a protease to 

disrupt the ECM, centrifuged to separate and remove adipocytes and tissue 

remnants, lysed to remove remaining erythrocytes and lastly seeded on a plastic 

surface to select ASCs from the rest of the stromal vascular fraction (SVF) being 

erythrocytes, leukocytes, immature adipocytes, and endothelial cells. After a few 

passages the adherent non-proliferative cells are outgrown by the ASCs which then 

are defined as pure. However the ASC culture is nonetheless still a pretty 

heterogeneous population. No changes to the original isolation protocol giving a 

significant better cell yield have been suggested, but different laboratories have their 

standards and preferred practices. However, emphasized is the necessity of using 

reagents of a good quality and controlled procedures to meet the standards of good 

manufacturing practice (GMP). 
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Figure 3. Overview of the isolation process. Adipose tissue is harvested by liposuction and 

washed in phosphate buffered saline to remove blood remnants. The resulting adipose tissue 

is enzymatically digested and separated by centrifugation into a layer of lipids from disrupted 

mature adipocytes, a layer of mature adipocytes a liquid layer and in the bottom the stromal 

vascular fraction. To collect the SVF all layers above are removed. The SVF can then be re-

suspended in culture medium and seeded on a plastic surface to select ASCs from the SVF. 

Expansion process 

After isolation and selection of ASCs, these are often to be expanded in vitro to 

obtain a clinically relevant number of ASCs. For expansion of ASCs different 

aspects are to be considered as an optimal cell growth depends on factors as oxygen 

tension (Fink et al., 2008; L. Pilgaard et al., 2009; Prasad et al., 2014; Rasmussen et 

al., 2012, 2011), culture surface (Foldberg et al., 2012; Pennisi et al., 2013), and the 

culture media compositions (Lund et al., 2009; Riis et al., 2015; Yang et al., 2012). 

The culture media is often composed of a basal medium and some kind of 

supplement. A variety of choices and combinations have been tested in the hope of 

finding one that supports the stem cell characteristics, avoid senescence and allows 

for a high proliferative rate (Parker et al., 2007; L. Pilgaard et al., 2009). Besides 

supporting stem cell maintenance, the media must also comply with GMP-standards 

and be approved for clinical application. To meet all of these requirements, an 

increasing number of alternatives to the use of fetal calf serum (FCS), which were 

originally suggested and have primarily been used for expansion of ASCs (Zuk et 

al., 2001), are being developed and commercialized. These include supplements as 

human platelet lysate (Hemeda et al., 2014; Naaijkens et al., 2012; Trojahn Kølle et 

al., 2013) and xeno- and serum-free medium solutions as MesenCult™-XF from 

STEMCELL Technologies (Al-Saqi et al., 2014), StemPro MSC SFM XenoFree 

from Life Technologies now Thermo Fisher (Chase et al., 2012; Lindroos et al., 

2009; Patrikoski et al., 2013; Yang et al., 2012). However the very complex 

composition of FCS including essential nutrients and bioactive molecules is very 

difficult to reproduce and good replacement products are therefore difficult to make 

and a lot of attention and effort is put into this.  
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Hypoxic preconditioning 

Different approaches to activate or stimulate the ASCs to increase their regenerative 

potential have been attempted including hypoxic preconditioning. Hypoxic 

preconditioning is defined by short term exposure to hypoxia being 0.5-5% O2 

(Kang et al., 2014).  

Normally, cultivation of cells including ASCs are carried out under atmospheric 

oxygen tension (20% O2) (Kang et al., 2014). However, it is widely known that 

atmospheric oxygen tension is not even close to the oxygen tension within the stem 

cell niche, where a low oxygen environment is physiological to adult somatic stem 

cells (Yamamoto et al., 2013). The exact oxygen tension physiological to different 

stem cells might vary, depending on the distance between  the cells and the oxygen-

supplying vessel and also the metabolic rate of the cells in the tissue (Taylor, 2008). 

Biological hypoxia is defined by an oxygen demand exceeding the oxygen supply, 

and the cellular demand of oxygen can vary depending on tissue requirements at a 

given time point (Taylor, 2008). However, it has been suggested that an oxygen 

level of 2-8% is a key aspect of the mesenchymal stem cell niche and thereby 

physiological to the stem cells (Mohyeldin et al., 2010). 

The in vitro effects of hypoxic preconditioning of ASCs have shown to be increased 

proliferation of ASCs (Kakudo et al., 2015; Lee et al., 2009; L. Liu et al., 2013; L 

Pilgaard et al., 2009; Rasmussen et al., 2011; Thangarajah et al., 2009), increased 

potency to form colonies (L Pilgaard et al., 2009), and enhanced survival of the 

ASCs by reducing the apoptotic rate (L. Liu et al., 2013; Stubbs et al., 2012). 

Additionally, hypoxic culture have shown to maintain ASCs in an undifferentiated 

state without decreasing their differentiation potential (Lin et al., 2006). 

Additionally, conditioned media from hypoxic cultured ASCs have shown to 

increase endothelial proliferation, sprouting and tube formation and decreasing the 

apoptotic rate in vitro (Hollenbeck et al., 2012; L. Liu et al., 2013; Rasmussen et al., 

2011; Rehman et al., 2004). It has also shown to increase fibroblast migration and 

collagen I secretion (Lee et al., 2009), and to increase the proliferation of 

keratinocytes (Park et al., 2010).  

The in vivo effects of hypoxic preconditioning of ASCs have, amongst others, been 

found to be increased wound healing (Lee et al., 2009) and increased skin flap 

survival due to increased angiogenesis (Hollenbeck et al., 2012). Furthermore, 

hypoxic preconditioned ASCs was found to migrate deep into the tissue in a diffuse 

pattern, whereas non-conditioned ASCs localized around already existing larger 

vessels (Hollenbeck et al., 2012). 

It is thought, that hypoxia might increase the regenerative potential of ASCs by 

increasing the secretion of different known pro-regenerative growth factors such as 

VEGF and bFGF (Hollenbeck et al., 2012; Kakudo et al., 2015; Lee et al., 2009; L. 

Liu et al., 2013; Rasmussen et al., 2011; Stubbs et al., 2012; Thangarajah et al., 
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2009). By secreting these factors, the cells try to restore the oxygen supply by 

increasing the rate of angiogenesis (Ebbesen et al., 2004; Stubbs et al., 2012). The 

exact molecular mechanism behind hypoxia increasing the regenerative potential of 

ASCs is still not fully understood, but the major regulator is believed to be hypoxia-

inducible factor 1 (HIF-1) which has been shown to be  involved in the regulation of 

a plethora of genes and later proteins in ASCs (Kakudo et al., 2015; Kang et al., 

2014; Song et al., 2010).  

Characterization 

The International Federation for Adipose Therapeutics and Science (IFATS) and the 

International Society for Cellular Therapy (ISCT) have proposed a set of guidelines 

for the characterization of ASCs (Bourin et al., 2013). These include testing of the 

viability by either flow cytometry or microscopic inspection. More than 90% of the 

ASCs should be viable. The proliferation and frequency should be tested using a 

CFU-F assay showing a frequency of more than 5%. Additionally the trilineage 

potential should be tested using histochemestry, reverse transcription polymerase 

chain reaction (RT-PCR), Western blot or ELISA. For the testing of this they have 

suggested a row of markers and stains to use including oil red O for lipid inclusions 

during adipogenig differentiation, alcian blue for staining glycosaminoglycans in 

cartilage and alizarin red for staining of calcium depositions during osteogenic 

differentiation (Bourin et al., 2013). All these elements characterize the identity of 

ASCs but not their regenerative potential and potency which in a clinical perspective 

probably even more important.  

Potency testing 

The European Medicines Agency (EMA) have made a reflection paper on stem cell-

based medicinal products including terminally differentiated cells derived from stem 

cells, undifferentiated stem cells or a mixture of stem cells composing different 

differentiation profiles (Committee for Advanced Therapies, 2011). They suggest 

that the potency of the stem cells should be tested in relation to the scientific 

rationale for the medicinal product based on the biological or cellular mechanism of 

action. Additionally, this should be tested using one or more potency assays 

comprising functional tests and marker-based assay. These assays should show 

correlation with the intended therapeutic use and be at least semi-quantitative. As 

examples of such assays they mention the expression of relevant biological 

substances, cell interactions and migration capacity (Committee for Advanced 

Therapies, 2011). 
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CHAPTER 2. AIM, OBJECTIVES, AND 
HYPOTHESES 

 

The aim of this dissertation was to aid the translation of ASCs into clinical use in 

wound healing. 

In order to achieve this aim, this dissertation had two major objectives: 

1. To identify the mode of action of ASCs in wound healing and how this is 

affected by hypoxic culture.  

2. To identify how in vitro procedures of isolation and expansion affect ASC 

properties.  

 

The hypotheses were: 

1. ASCs play a role in wound healing through a paracrine stimulation of re-

epithelialization, and this effect is enhanced through hypoxic exposure. 

2. The establishment and expansion conditions are critical for developing 

clinically relevant ASC-based therapies. 

 

To address the study aims and test the hypotheses, four different studies were 

conducted: 

1. Hypoxia augments the wound healing effects of adipose-derived stem cells in 

primary human keratinocyte scratch assay. 

2. Proteome analysis of adipose-derived stem cells cultured under clinically relevant 

conditions in a wound healing perspective. 

3. Comparative Analysis of Media and Supplements on Initiation and Expansion of 

Adipose-derived Stem Cells.  

4. Comparative Analysis of Subpopulations of Adipose-derived Stem Cells.  
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CHAPTER 3. MATERIALS AND 
METHODS 

A description of all methods and materials used in the studies described in this thesis 

are given in the individual papers. In this section, choice of materials and methods 

will be elucidated more in depth, explained or discussed wherever found relevant.  

3.1. DONORS 

To obtain ASC for subsequent analysis, different approaches were used throughout 

the thesis depending on the aim of the individual studies. When studying the 

response of ASCs to different stimuli, previously isolated, well characterized ASCs 

from three donors were used (ASC 12, 21, 23). In contrast, when studying the effect 

of isolation and early expansion protocols on the ASCs, freshly isolated ASCs were 

used (ASC 1-5, 101). Unfortunately, these could not be obtained from the same 

donors as the above mentioned 3 cell populations (Table 1). 

Table 1. Donor information. 

Donor 
no. 

Sex Age Location BMI 
Fresh 

vs. 
Frozen 

Paper 

1 Male 46 Abdomen, hip, chest 26.2 Fresh 3 

2 Female 53 Abdomen, thigh 21.5 Fresh 3 

3 Female 62 Thigh 22.7 Fresh 3 

4 Female 52 Arm 25.4 Fresh 3 

5 Female 28 Knee, thigh 25.8 Fresh 3 

12 Female 58 Back, hip, loin 28.0 Frozen 2 

21 Male 52 Abdomen n.a.
1
 Frozen 1, 2 

23 Female 42 Abdomen, thigh 20.0 Frozen 2 

101 Male 44 Abdomen 25.4 Fresh 4 
1Information not available; BMI, body mass index 

The previously isolated ASCs were after isolation and selection through a few 

passages stored at -140 ⁰C until used for the studies in this thesis. The cells were 

washed and re-suspended in 37 ⁰C culture medium before being seeded for further 

expansion and subsequent experiments. All used cultures were utilized before 

passage 8. Studies have shown, that ASCs maintain their proliferative capacity and 

stemness even after long term storage (Devitt et al., 2015; Minonzio et al., 2014), 

and therefore, using frozen cells were not giving rise to concern in this context. 
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To obtain fresh ASCs, adipose tissue was received from Teres Hospitalet Aarhus 

donated by patients undergoing elective liposuctions. The adipose tissue was stored 

at room temperature until processed. To isolate the ASCs from the adipose tissue, 

this was washed in phosphate-buffered saline (PBS) until the amount of blood 

remnants was minimized. At this stage, the adipose tissue was enzymatically 

digested with 0.005 g/mL collagenase (Collagenase NB 4, SERVA electrophoresis 

GmbH, Heidelberg, Germany) in Hanks Balanced salt solution (Gibco™) for 45 min 

at 37 ⁰C under continuous vertical rotation. The digested adipose tissue was filtered 

through a 100 µm filter (Steriflip, Millipore) to remove non digested tissue lumps 

and centrifuged for 10 min at 400 g at room temperature. Afterwards the supernatant 

was discarded to remove adipocytes and the pellet was resuspended in PBS. This 

was then filtered through a 60 µm filter (Steriflip, Millipore) and centrifuged for 

additional 10 min at 400 g at room temperature. The supernatant was discarded and 

the pellet now constituted the SVF. The SVF was re-suspended in culture medium 

and the number of cells counted. If the cells were to be directly used for flow 

cytometric analysis the erythrocytes were lysed using distilled water. Otherwise, the 

SVF was seeded onto tissue culture polystyrene flasks (Greiner Bio-One) for 

selection of the plastic adherent ASCs. After incubation and washing, to remove 

non-adherent cells, the ASCs were used for subsequent analysis. 

3.2. CULTURE OPTIMIZATION 

The choice of culture medium varies between the studies in this thesis (Table 2). 

When ASCs were first discovered by Zuk (Zuk et al., 2001) Dulbecco's modified 

Eagle medium (DMEM) supplemented with FCS was recommended for culture. 

However, our laboratory tested alternatives and found that alpha-Minimum Essential 

medium (a-MEM) supplemented with FCS supported the growth of ASCs to a 

higher degree (Lund et al., 2009), and based on this, a-MEM has been used ever 

since in our laboratory as basal medium. In general, the majority of the studies of 

ASCs and their characteristics have been based on ASCs cultured in FCS 

supplemented media (Riis et al., 2015). However, when aiming for clinical use of 

the ASCs, the use of FCS has disadvantages. FCS is a complex mixture of known 

and unknown essential nutrients and bioactive molecules, it has high lot-to-lot 

variability due to its natural production method and the use it has given rise to 

concerns about the risk of contaminants and immunization due to the presence of 

xenogeneic components (Bal-Price and Coecke, 2011; Cholewa et al., 2011; 

Hemeda et al., 2014; Kølle et al., 2013; Shih et al., 2011). To overcome these 

limitations much attention has been and still is payed to the development of a fully 

defined serum-free alternative. In line with this, our laboratory started collaboration 

with LifeTechnologies to test a fully defined alternative, StemPro. Studies showed 

that this alternative was able to compete with the used of FCS in terms of supporting 

the ASC cultures and could be approved for clinical use under GMP regulations 

(Yang et al., 2012). Additionally, this choice of medium was if combined with the 

right supplement found compatible with subsequent mass spectrometry (MS) 
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analysis. However, later studies identified that StemPro did not support the initiation 

of ASC cultures (Study 3, Appendix 3), which also has been noted by others 

(Patrikoski et al., 2013). Another alternative to FCS is human platelet lysate (hPL), 

which contains a wide range of growth factors, proteins, enzymes supporting 

attachment, growth, and proliferation of cells, while still being poor in antibodies. It 

is isolated from common platelet units by a simple freeze-thaw procedure and has 

shown to be a safe alternative (Doucet et al., 2005; Rauch et al., 2011). When used 

as medium supplement, hPL has been shown to promote the growth of ASCs and 

maintain their differentiation potential (Doucet et al., 2005; Juhl et al., 2016; Li et 

al., 2015; Trojahn Kølle et al., 2013; Witzeneder et al., 2013). The disadvantages of 

using hPL are that it is not fully defined, lot-to-lot variations do exist, and there is a 

small risk of pathogen carryover. Until fully-defined serum- and xeno-free 

alternatives are available, hPL looks like a good alternative to FCS. Based on this 

the effects of hPL was investigated in study 3 (Appendix 3).  

Table 2. Media and supplement combinations used to culture ASCs. 

Media Suppl. Abb. Coat. Init. Exp. GMP MS 

alpha-Minimum 
Essential 

medium w. 
GlutaMAX 

FCS a-MEM
FCS 

- + ++ - - 

StemPro MSC 

StemPro
MSC SFM 
XenoFree 

Supp. 

StemPro or 
StemPro+ 

+ - +++ ++ - 

Dulbecco's 
modified Eagle 

medium w. 
GlutaMAX 

hPL DMEM
hPL 

- + +++ + - 

alpha-Minimum 
Essential 

medium w. 
GlutaMAX 

hPL 
5 or 10% 

a-MEM
hPL 

hPL5 
or 

hPL10
 

- + ++++ + - 

StemPro MSC - StemPro- +  - ++ + 

StemPro MSC 
Essential 

8 
StemPro 

E8 
+  - ++ + 

Abbreviations: Suppl., supplement; Abb.: abbreviation used in studies; Coat., coating; Init.: 

ability to support initiation of ASC culture; Exp.: ability to support expansion of ASC culture; 

GMP: compatibility with good manufacturing practice regulations; MS, compatibility with 

mass spectrometric analysis, FCS, fetal calf serum, hPL, human platelet lysate. 
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3.3. HYPOXIC PRECONDITIONING 

To study the effect of hypoxic preconditioning on ASCs, their paracrine response, 

and their wound healing properties a BioSpherix glove box (Xvivo, BioSpherix, 

Redfield, NY, USA) was used. This glove box consists of a buffer chamber, 

integrated incubators, and a work area (Figure 4A). The buffer chamber ensures 

maintenance of temperature and a constant gaseous environment inside the system. 

The integrated incubators enable long term culture within the system in a humidified 

environment corresponding to that of a standard incubator (Figure 4B). The work 

area enables manipulation of cells without removing them from the hypoxic 

conditions. 

 

Figure 4. Incubator systems used for preconditioning. A: BioSpherix glove box with separate 

incubators and a working area for hypoxic preconditioning. B: Standard incubator and 

laminar air flow (LAF) bench for standard culture and normoxic preconditioning. Modified 

from (Riis, 2012). 

The advantage of using the BioSpherix clove box compared to other hypoxic 

incubators is especially the work area by which the cells avoid being exposed to 

atmospheric air at any time point and thereby re-oxygenation. Re-oxygenation has 

shown to increase the intracellular levels of cellular oxidants including reactive 

oxygen species (Kim et al., 2007). Additionally cyclic hypoxia and re-oxygenation 

has shown to induce functional changes in cells including the resistance towards 

apoptotic triggers (Weinmann et al., 2004). This might be due to dysregulation of 

the cell cycle G2/M checkpoint, which has been shown to delay cell-cycle 

progression and promote the repair of DNA damage after re-oxygenation (Kim et 

al., 2007). 

The choice of oxygen tension for the hypoxic preconditioning has been widely 

investigated by our laboratory, and 1% O2 showed to give rise to the largest degree 

of secretion of proangiogenic factors (Rasmussen et al., 2011). Other oxygen levels 

have been suggested to promote other aspects, for example 5% O2 have shown to 

promote the proliferation of ASCs to the largest extend. The choice of oxygen 

tension therefor depends of the aim of the preconditioning (Rasmussen et al., 2011). 
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3.4. CONDITIONED MEDIA 

To study the paracrine response of ASCs conditioned media were produced by 

washing the cells in PBS and culturing them in fresh culture medium for 24 hours 

under either normoxic or hypoxic conditions (Figure 4). Hereafter, the conditioned 

medium was harvested, centrifuged to pellet cell debris and frozen at -80 °C for 

storage until further analysis. 

For production of conditioned media different preconditioning periods are used 

throughout the literature (Hsiao et al., 2013). The length of the period might depend 

on the subsequent use of the conditioned media. If this is to be tested on another cell 

culture, the ratio between the secretory rate of the ASC and the ASC consumption of 

nutrients in the medium should be as large as possible. This is to ensure detectability 

of the effect of the secreted proteins, while still supporting cell maintenance of the 

target cells e.g. keratinocytes or endothelial cells.  

3.5. CHARACTERIZATION 

ASCs are recommended to be characterized by their immunophenotype, colony 

forming potential and differentiation potential (Bourin et al., 2013). However as 

more functional tests are recommended by EMA, these were added to our 

characterization (Committee for Advanced Therapies, 2011).  

Immunophenotypic analysis 

It is recommended by the IFATS and ISCT guidelines to test the immunophenotype 

of the ASCs by flow cytometry. More than 80% of the culture should be positive for 

CD13, CD29, CD44, CD73, CD90, and CD105. Furthermore, CD34 should be 

positive, but the levels may vary between donors. Additionally less than 2% should 

be positive for CD31, CD45 and CD235a (Bourin et al., 2013). To include all of 

these markers, simultaneously staining and analysis is not possible due to technical 

limitations of the flow cytometers available on the market today. To circumvent this, 

people normally analyses the presence of the markers one at a time and can therefore 

not predict the complete co-expression patterns. As we wanted to analyze the 

subpopulations of the ASCs as defined by their co-expression of surface markers, 

we found it necessary to choose a subset of the markers based on the interesting 

observations reported in the literature. This was well knowing that we did not 

include all of them.  

To investigate the immunophenotype of the ASCs flow cytometric analysis was 

used applying a MOFLO Astrios EQ (Beckman Coulter). The analysis was based on 

a six color stain setup including anti-CD73 FITC on channel 488-513/26, anti-CD90 

PerCP-Cy5.5 on channel 488-710/45, anti-CD105 APC on channel 640-664/22, anti-

CD146 PE-CF594 on channel 561-614/20 and anti-CD271 PE-Cy7 on channel 561-

795/70. Additionally, cell viability was assessed using a Live/Dead Fixable Aqua 

Dead Cell Stain (Molecular Probes, Taastrup, Denmark) on channel 355-448/59. 
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Fluorescence Minus One (FMO) controls were included for each fluorochrome, 

donor, and passage. Data were analyzed using Kaluza version 1.3 (Beckman 

Coulter). First, cells were gated on a forward scatter (FSC) / side scatter (SSC) 

contour plot to remove signals from noise and debris. For doublet discrimination a 

FSC (Width) / FSC (Height) contour plot was used. The non-viable cells were gated 

out based on the viability stain. The resulting cells were plotted in histograms 

corresponding to the above described markers, and overlays between FMOs and the 

stained sample were created. Positivity was defined by an overlay-marker, with a 

lower boundary set to include the top 2.5% of the FMO.  

Transcriptomic analysis 

To assess the transcriptional level of differentiation markers in ASCs real time RT-

PCR was used. ASCs were lysed and total RNA extracted using an Aurum™ Total 

RNA Mini Kit (Bio-Rad). cDNA was generated using an iScript cDNA Synthesis 

Kit (Bio Rad). To quantitate the original number of mRNA copies coding for the 

distinct markers real time RT-PCR was performed using primers for peroxisome 

proliferator activated receptor gamma (PPARG), osteocalcin (OCN) and SRY-box 9 

(SOX9)(DNA Technology A/S)(Table 3), iQ SYBR Green Supermix (Bio-Rad), and 

a CFX Connect™ Real-Time PCR Detection System (Bio-Rad). The relative 

expression of each gene was calculated using a serial dilution of cDNA and 

subsequently normalized to the geometric mean of the expression of the two 

reference genes cyclophilin A (PPIA) and 3-/tryptophan 5-monooxygenase 

activation protein (YWHAZ) (DNA Technology A/S). These two reference genes 

have previously been shown to be relatively stable expressed in human ASCs during 

hypoxic culture (Fink et al., 2008). Same method has previously been used to 

investigate the transcription of the pro-angiogenic growth factor VEGF after 

hypoxic preconditioning of ASCs (Rasmussen et al., 2012). 

Table 3. Primer sequences. 

Target Forward Primer Sequence Reverse Primer Sequence 

PPARG 5’- TCA GGT TTG GGC GGA TGC -3’ 
5’- TCA GCG GGA AGG ACT TTA TGT 

ATG -3’ 

OCN 5’- GAG CCC CAG TCC CCT ACC C -3’ 5’- GCC TCC TGA AAG CCG ATG TG-3’ 

SOX9 
5’- TTC GGT TAT TTT TAG GAT CAT 

CTC G -3’ 

5’- CAC ACA GCT CAC TCG ACG ACC 

TTG -3’ 

PPIA 5’- TCC TGG CAT CTT GTC CAT G  -3’ 5’- CCA TCC AAC CAC TCA GTC TTG -3’ 

YWHAZ 
5’- ACT TTT GGT ACA TTG TGG CTT 

CAA -3’ 
5’- CCG CCA GGA CAA ACC AGT AT -3’ 

PPARG, peroxisome proliferator activated receptor gamma; OCN, osteocalcin; SOX9, SRY-

box 9; PPIA, cyclophilin A; YWHAZ, 3-/tryptophan 5-monooxygenase activation protein 
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Proteomic analysis 

In contrast to transcriptomics of ASCs which has been widely analyzed throughout 

the literature, the extent and complexity of proteomic analysis is increasing as the 

technology develops. Proteomics is the study of proteins in biological systems 

during specific biological events. Protein expression is very dynamic and most 

proteins undergo post-translational modifications (PTM), which drastically increase 

the complexity of the proteome. To identify the presence and the concentration of a 

single or a narrow range of proteins an enzyme-linked immunosorbent assay 

(ELISA) can be applied as for VEGF or HIF-1a (Rasmussen et al., 2012). However, 

to identify new proteins in a broader perspective or look deeper into the plethora of 

proteins synthesized and secreted by ASCs a more discovery based strategy must be 

used as for example MS. This technology is based on the detection of mass-to-

charge ratio (m/z) of ionized molecules in simple or complex mixtures. It can be 

used to study proteomics in terms of detection, identification and quantification of 

peptides and proteins by matching the masses and charges of these to different 

databases. This approach allow for the identification and relative quantification of 

almost all expressed proteins of complex organisms.  

To assess the effect of hypoxic preconditioning on the proteome and secretome of 

ASCs, samples for MS analysis was prepared (Figure 5). For this, ASCs from the 

three well characterized donors were cultured and preconditioned under normoxic 

and hypoxic conditions as described above. The only difference was that the cells 

were conditioned in StemPro basal media supplemented with E8 supplement due to 

technical limitations of using the original StemPro supplement for MS analysis. 

After being expanded for 72 hours and preconditioned for 24 hours, the conditioned 

media were harvested and protease inhibitors were applied to avoid excessive 

degradation of proteins by naturally occurring proteases. After this the conditioned 

media were spun down to remove cellular debris. Additionally, the ASCs were 

harvested using a RIPA buffer for proteome analysis. All samples were stored at -80 

°C until further analysis. 

To analyze the proteins secreted by the ASCs into the medium the conditioned 

media were fractioned into two fractions by using cut of spin filters, one fraction 

above 30 kDa and one below 30 kDa. The proteins of the two fractions were 

extracted using a sodium deoxycholate based protein extraction protocol, reduced 

and alkylated followed by an in solution trypsin digestion. 

To analyze the content of the proteome fraction, this was reduced and run on a 

polyacrylamide gel in one dimension according to molecular weight for subsequent 

in-gel digestion by trypsin.  
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Figure 5. Sample preparation for mass spectrometric analysis. ASCs from three donors were 

expanded, preconditioned, and the conditioned media and cellular fractions harvested. The 

conditioned media were fractionated into two fractions; one above 30 kDa and one below 30 

kDA. The secretome, peptidome and proteome were subsequently analyzed by mass 

spectrometry. Abbreviations: ASC, adipose-derived stem cell; h, hours; kDa, kilo Dalton. 

The digested samples from al fractions were loaded onto a liquid chromatography 

column and sequentially eluted to ensure separation of the peptides and increase the 

peptide concentration. The peptides were continuously ionized by electrospray 

ionization (ESI) to form gas-phase ionized peptides. These where then introduced to 

the MS by vacuum. The ionized peptides were manipulated in the mass analyzer 

using electrostatic fields which deflect the paths of individual ions based on their 

mass and charge (m/z) to separate and filter the peptides. The peptides were detected 

by an iondetector measuring mass-to-charge ratio (m/z) of the deflected ionized 

peptides. The data from the ion detector were subsequently analyzed by MaxQuant 

and Perseus software. The proteins were identified by matching the peptide intact 

masses and measured fragment m/z’s against a database. To quantitate the proteins a 

label-free quantification approach based on the correlation of signal intensity and 

peptide abundance was used. See Figure 6 for an overview of the MS process 

 

Figure 6. Principle of the protein analysis by mass spectrometry (MS).The proteins in the 

sample are digested into peptides. These are loaded onto a liquid chromatography (LC) 

column using an auto sampler. As the peptides are sequentially eluted they are ionized by 

electrospray ionization (ESI) and injected into the mass spectrometer (MS). Subsequently the 

peptides are analyzed for time of injection, mass and charge (m/z) and the data processed to 

identify the original proteins. 
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3.6. FUNCTIONAL ASSAYS 

For clinical use, one aspect is the identity of the ASCs, another important aspect is 

their mechanism of action and potency towards relevant aspects of the intended use 

(Committee for Advanced Therapies, 2011). In our case, we intend to use the ASCs 

for wound healing and based on that we were looking into the effect of ASCs on 

different aspects of this. 

Re-epithelialization 

To mimic the re-epithelialization during wound healing different models were 

investigated. 

A 3D-model was of special interest as this mimicked the in vivo situation the most 

compared to other alternarives. This model is based on the seeding of primary 

keratinocytes on filter inserts, on which the cells are exposed to differentiation 

medium while being air-lifted. This model is widely used in other research areas and 

has been shown to histologically be representable for the epidermis of the skin 

(Poumay et al., 2004). However several practical issues did, that the final choice 

became a keratinocyte based monolayer scratch assay.  

Before the re-epithelialization model could be established different aspects had to be 

optimized. Among the simpler were choice of coating, seeding density of cells, time 

of wounding, and wounding method. The wounding method should be simple and 

reproducible. The most used method is the use of a pipet tip to scratch a monolayer 

of cells (Liang et al., 2007). This method is the most inexpensive, however it is not 

easy to handle and not very reproducible. A variety of “scratching pins” have been 

developed in an attempt to make the scratching more handleable, however it is still 

time consuming to manually scratch each well and the placement of the scratch 

within the well is still difficult to reproduce. The Wounding Pin Tool (V&P 

Scientific, INC.) circumvents this by scratching up to 96-wells simultaneously with 

matching placements of each scratch. The WoundMaker™ (Essen BioScience) has 

the same advantages, but on top of this, it also controls the force by which the 

scratches are created and makes this reproducible between experiments. Based on 

this the two latter were used in Study 1 for keratinocytes and in Study 4 for 

endothelial cells. 

A more challenging aspect of the assay was the preceding production of conditioned 

media for testing on the assay. The goal was to investigate the effect of hypoxic 

preconditioning on the secretome of the ASCs. However, directly testing of ASC 

conditioned media on primary keratinocytes showed impossible due to the fact that 

the calcium levels in StemPro used for production of conditioned media were 

incompatible with the maintainance of primary keratinocytes. Different strategies to 

overcome this were tested and the most successful approach was dialysis of the 

conditioned media into EpiLife medium normally used for keratinocytes before 

testing it on the assay. This ensured normal keratinocyte morphology and wound 
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closure of the scratch when compared to standard culturing conditions for primary 

keratinocytes.  

For the testing of the conditioned media primary keratinocytes were seeded at a 

density forming a confluent monolayer. After overnight incubation, the monolayer 

was scratched using one of the above mentioned scratching tools and washed in PBS 

to remove cell debris from the wound edges. Media were added to the cells and 

wound closure monitored. Closure of the scratch was monitored by time-lapse 

microscopy taking phase contrast pictures every hour. Finally, wound size at each 

time point was compared to the size of the initial scratch, and the wound closure 

calculated. 

The biggest limitation of using this assay is the simplicity. It is to mimic the 

epidermis, but the epidermis in situ is a multilayer structure, with interlayer 

differences in cellular organization and function. This could be optimized using the 

3D skin model. 

 



 

41 

CHAPTER 4. SUMMARY OF THE 
RESULTS 

Detailed results are described in each manuscript (Appendix 1-4). In this section a 

brief overview of the main findings will be given. 

4.1. FIRST HYPOTHESIS 

ASCs promote re-epithelialization and hypoxic preconditioning 

enhances this effect  

To investigate the effect of ASCs on re-epithelialization and whether hypoxic 

preconditioning of ASCs has a positive effect on this, a keratinocyte based scratch 

assay was established and the conditioned media derived from either normoxic or 

hypoxic conditioned ASCs were applied. When assessing cell morphology of the 

keratinocytes exposed to either the normoxic or the hypoxic conditioned media, no 

differences were observed. When assessing wound closure it appeared that the 

keratinocytes supplied with hypoxic conditioned media closed the scratch at a faster 

rate than the keratinocytes supplied with normoxic conditioned media (Appendix 1, 

figure 5A). When measuring wound size, it was evident that the keratinocytes 

supplied with normoxic conditioned media from ASCs closed the wound area at 

faster rate than the keratinocytes in control media, and that keratinocytes supplied 

with media from hypoxic conditioned ASCs closed the wound area even faster. This 

difference was statistically significant 24 hours after the scratch was made 

(Appendix 1, figure 5B). 

Hypoxic preconditioning affects the proteome of ASCs 

To investigate the effect of hypoxic preconditioning on the overall proteome of 

ASCs MS analysis was applied (Appendix 2). To assess the effect of hypoxic 

preconditioning on the content of the conditioned media, the secretome of ASCs was 

analyzed and no difference was found between the proteins identified in normoxic 

and the hypoxic conditioned media. 

To assess the effect of hypoxic preconditioning on the intracellular proteins of 

ASCs, the proteome of the normoxic and hypoxic preconditioned ASCs was 

analyzed. When looking into the identified proteins in the normoxic and hypoxic 

preconditioned samples and the reoccurrence between the three donors, it was found 

that the majority of the proteins were identified in all samples (Appendix 2, Figure 

3A). When analyzing the differences between the samples, it was by a principal 

component analysis (PCA) found that the inter donor variation gave rise to a bigger 

degree of difference in the data than the effect of hypoxic preconditioning 

(Appendix 2, Figure 3B). Furthermore, the biological processes in which the effect 
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of hypoxic preconditioning was significant were analyzed. When mapping the 

genes, coding for the proteins found statistically significant upregulated by hypoxic 

preconditioning several enriched biological processes were identified including 

anaerobe metabolic processes and ECM remodeling relevant processes (Appendix 2, 

Figure 4 and Table 1). The latter included proteins involved in tensile strength, 

three-dimensional folding, and mechanical stability of collagen fibrils in the dermis 

ensuring skin integrity and stability.   

When looking at the proteins that were down-regulated by the hypoxic 

preconditioning, the enriched biological processes were mainly related to gene 

expression and protein synthesis and aerobic metabolism indicating a switch in 

metabolism relevant proteins demonstrating a change from aerobic to anaerobic 

metabolism (Appendix 2, Figure 5 and Table 2). 

4.2. SECOND HYPOTHESIS 

The composition of culture medium influences the establishment of 

ASC cultures 

To assess how the composition of culture medium influences the establishment of 

ASC cultures, a variety of widely used medium compositions were tested on culture 

initiation (Study 3, appendix 3). The media were tested in terms of how they initially 

supported the plastic adherence of ASCs, the growth of ASCs in the expansion 

phase and during this also the selection of specific subpopulations within the ASCs 

(Figure 7).  

To evaluate the ability of the different media compositions to support the plastic 

adherence of ASC, freshly isolated SVF and early passage ASCs were used. After 

the isolation and seeding of the SVF and overnight culture, the non-adherent cells 

were removed and attached to the plastic surface were, for all media types, a 

morphological mixed population of mostly spheric and a few slightly elongated cells 

(Figure 7A). After passaging the SVF to obtain ASCs a more homogenously looking 

population began to arise with larger looking and more spindle shaped cells. When 

counting the number of cells attached to the surface it was evident that StemPro 

supported cell attachment to a larger degree than the other medium compositions 

and especially the hPL supplemented solutions. In contrast, DMEM supplemented 

with hPL did not support attachment to the same degree as any of the other medium 

compositions (Figure 7B). 
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Figure 7.  Attachment and proliferation of Adipose-derived Stem Cells. A: Differences in the 

degree of cell attachment was observed after seeding and overnight incubation. Additionally 

morphological differences were seen between passages. B: Quantification of cell attachment 

revealed significant differences between media compositions. † statistically different from all 

other media types with p < 0.05, * StemPro statistically different from all other media types 

with p < 0.05, # StemPro statistically different from all other media types expect A-MEMFCS  

with p < 0.05. C: Accumulative cell number after a series of passages, where a clear effect of 
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the media is shown. * A-MEMhPL10 statistically different from all other media types with p < 

0.05, ** p < 0.01, *** p < 0.001, ## A-MEMhPL10 statistically different from all other media 

types except DMEM with p < 0.007. D: ASC cultures reached different cell densities during 

expansion depending on the media type, as evident at passage 1 after four days of culture. 

The results are presented as mean ± SEM. The cell number is normalized to the cell number 

of each individual donor for A-MEMhPL10 at passage 1. The scale bar depicts 500 µm. 

Abbreviations: A-MEM, alpha-Minimum Essential Medium; DMEM, Dulbecco’s modified 

Eagle’s medium; FCS, fetal calf serum; hPL; human platelet lysate; SVF, stromal vascular 

fraction; P, passage. Reprinted with permission from (Study 3). 

To study the effect of medium composition on cell growth, freshly isolated SVF 

were cultured for up to three passages in the different medium compositions. When 

assessing the cultures under a microscope it appeared that the hPL supplemented 

media supported the growth of ASCs to a larger degree than both StemPro and 

medium supplemented with FCS (Figure 7D). This was confirmed by counting the 

cells, where a significant higher cumulative cell number was found in all media 

supplemented with hPL than in the other media (Figure 7C). Interestingly, StemPro 

did not consistently support cell growth, and for some donors, the cell cultures in 

StemPro could not be satisfactorily maintained for more than three passages. 

To study the effect of the different medium compositions on the selection of specific 

subpopulations within the heterogeneous ASC population, the cells cultured in the 

different media were analyzed by flow cytometry and the co-expression of surface 

markers at three time points during the expansion phase determined (Figure 8). After 

isolation the SVF consisted of a very heterogeneous composition of nearly all 

combinations of the surface markers investigated. However, the majority of the cells 

were CD90
+
, CD105

-
, CD146

-
, CD271

-
, and then either CD73

+
 or CD73

-
. After the 

SVF had been passaged once, differences in the cell composition of the populations 

cultured in the different media began to appear with the StemPro cultures retaining 

their heterogeneity and the FCS/hPL supplemented cultures becoming more 

homogenous. The majority of the cells cultured in these media were now CD90
+
, 

CD105
+
 and either CD73 positive or negative, and the CD105

-
 subpopulation had 

disappeared (Figure 8).  

After seven passages the surface marker profile of the populations in the different 

media compositions was analyzed once more. However, none of the StemPro 

cultures made it for seven passages and could therefore not be analyzed. On the 

other hand, in the remaining cultures the CD73 negative subpopulations were no 

longer found, making the cultures even more homogenous than after the first 

passage. For all donors, the majority of the cells in the different media were now 

found to be CD73
+
, CD90

+
, CD105

+
, CD271

-
 and either CD146

+
 or CD146

-
. 

Summarizing, no major difference between A-MEM and DMEM as choice of basal 

media or FCS or hPL as choice of supplement was identified when assessing the 

composition of the subpopulations (Figure 8). However, inter-donor variations were 

found in the relative size of the CD146 positive and negative populations. 
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Figure 8. Co-expression of surface markers on SVF and ASCs. SVF shoved very 

heterogeneous. After 1 passage, ASCs became more homogenous despite media composition. 

Homogeneity was even larger after 7 passages. Overall, subpopulations had the same 

characteristics, but differences were found in the relative size of the different subpopulations. 

Representative data are compiled from two donors. ■ the surface marker is expressed, □ the 

surface marker is not expressed. Abbreviations: SVF, stromal vascular fraction; FMO, 

fluorescence minus one; A-MEM, alpha-Minimum Essential Medium; DMEM, Dulbecco’s 

modified Eagle’s medium; FCS, fetal calf serum; hPL, human platelet lysate. Modified and 

reprinted with permission from (Study 3). 
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The distinct subpopulations within the ASC population have different 

properties 

To assess whether the different subpopulations within the heterogeneous 

composition of ASCs have different characteristics, SVF was sorted into four 

subpopulations based on their surface marker profile using flow assisted cell sorting. 

Subsequently, the crude ASC population and the subpopulations were characterized 

in terms of stem cell characteristics and their regenerative potential (Appendix 4).  

To study the maintenance of the subpopulations during in vitro expansion each 

subpopulation was seeded into culture flasks and expanded for 3 passages. After 2 

and 3 passages the surface marker profile of each population was analyzed. The 

analysis revealed that just two passages after sorting, the surface marker profile of 

all four subpopulations had mowed towards the composition of the crude ASCs by 

regaining the profiles originally discarded by sorting. The same pattern was found 

after 3 passages. However, subpopulation 2, originally CD34
-
, CD146

+
, CD271

-
, 

maintained a higher fraction of the originally sorted marker profile for all analyzed 

passages. Additionally, this subpopulation had a higher fraction of CD34
+
, CD146

+
, 

CD271
-
 cells compared to all the other populations (Appendix 4, Figure 4).  

To evaluate the differentiation potential of the subpopulations these were induced 

towards adipogenic, chondrogenic and osteogenic differentiation. When assessing 

the subpopulations under a microscope all showed capable of differentiating into the 

three lineages as did the crude ASCs. This finding was confirmed by real-time q-

PCR where no difference between the subpopulations was found (Appendix 4, 

Figure 5). To measure the proportion of clonogenic cells in each population of either 

the crude ASCs or the subpopulations, these were analyzed after two passages using 

a limiting dilution based CFU assay (Appendix 4, Figure 5). No difference was 

found between any of the populations.  

To evaluate the regenerative potential of the crude ASCs and the different 

subpopulations, the ability of each population to support an endothelial-based 

scratch assay was investigated by transferring conditioned media from the distinct 

populations to the assay. This showed that the crude ASC population and the 

subpopulations in general supported endothelial-based wound closure and moreover, 

that subpopulation number 2 increased the speed of closure significantly more than 

any of the other subpopulations (Appendix 4, Figure 6). 
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CHAPTER 5. GENERAL DISCUSSION 

ASCs have been shown to have wound healing properties, but as wound healing is a 

complex process of cellular, microenviromental and molecular events, the exact 

mechanism of how the ASCs conduct their wound healing effect is difficult to 

clarify. Several attempts to map the mechanism of action have been made and many 

elements of the wound healing effect have been identified. However, the full 

explanation is still not clear. 

First hypothesis  

ASCs play a role in wound healing through paracrine stimulation of re-

epithelialization and this effect is enhanced through hypoxic exposure. 

In Study 1 it was shown that ASCs stimulates re-epithelialization. In an earlier study 

it was shown that ASCs stimulate angiogenesis through the secretion of VEGF and 

that this effect is enhanced by hypoxic preconditioning and trypsin treatment 

(Rasmussen et al., 2012). The indication of ASCs being a multi-target approach not 

only stimulating angiogenesis but also re-epithelialization seems highly valuable as 

chronic wounds per say encompasses a broad range of etiologies, and by targeting 

multiple facets of wound healing with the same intervention the probability of 

treatment success increases. Earlier, different strategies targeting single aspects of 

wound healing have been attempted without clear evidence of the general effect 

talking for the use of a multi-target approach (Mustoe, 2004; Sundhedsstyrelsen, 

2011).  

In Study 1 it was also found that the effect of ASCs on re-epithelialization was 

enhanced by hypoxic preconditioning of the ASCs and the same applies for 

angiogenesis where the effect of ASCs also was increased by hypoxic 

preconditioning (Rasmussen et al., 2012). Furthermore, that study showed that the 

effect of preconditioning could be even larger when combining hypoxia with trypsin 

treatment. The synergistic effect of hypoxia and chemical factors as trypsin on the 

transcription and secretion of e.g. VEGF may form the basis for a novel paradigm of 

preconditioning of ASCs prior to their clinical application. By not only using 

hypoxia but also other stimulating approaches to precondition the ASCs, a highly 

efficient stem cell based product could be obtained. Other laboratories have used 

other pre-conditioning strategies than hypoxia or trypsin to increase the regenerative 

potential of ASCs. These strategies include chemical stimulation using for example 

vitamin C (Kim et al., 2014), physical stimulation using culture surfaces with 

different geometry (Amos et al., 2010; J. Seo et al., 2014; Xia et al., 2014), ultra 

violet light (Jeong et al., 2013) or many other physical and biochemical strategies 

(Cavallari et al., 2012; Dongó et al., 2014; Hoke et al., 2012; Lee et al., 2015; G.-S. 
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Liu et al., 2013; Lu et al., 2013; Mehrabani et al., 2015). Additionally, it has been 

suggested that other gaseous messengers than oxygen might regulate stem cells in 

their natural niche, suggesting the investigation of the effect of other gases on the 

properties of stem cells (Mohyeldin et al., 2010). The significant effect of combining 

preconditioning factors must be investigated and evaluated against the gain in 

clinical effect, as adding another level of complexity to the production of a stem cell 

based product increases the level of GMP regulatory work.  

In our studies both angiogenesis and re-epithelialization were stimulated through 

paracrine factors secreted by ASC into the conditioned media. Attempts to clarify 

the content of the conditioned media have been made and the factors identified so 

far have been tested on wound healing, nonetheless, no single factor or simple 

combination of factors have yet been found solely responsible for the wound healing 

effect of ASCs (Hassan et al., 2014; Rasmussen et al., 2011). This should be seen in 

the light of wound healing being a complex process involving a plethora of 

cytokines, chemokines and growth factors (Barrientos et al., 2008; Behm et al., 

2012; Werner and Grose, 2003). Despite this, knowing the exact content of the 

media conditioned by ASCs would enable a large scale production of a treatment 

modality based of a mixture on growth factors, cytokines and other soluble factors 

making the mapping of the secretome very desirable.  

In study 2 it was attempted to clarify the effect of hypoxic preconditioning on the 

composition of the secretome and the proteome of ASCs. The study showed that 

great donor variation in the secretome and proteome existed. This has also been 

identified by others (Kalinina et al., 2015). Additionally, it was shown that hypoxic 

preconditioning of ASCs affects their proteome by shifting from aerob metabolism 

processes to an anaerob metabolism. Moreover, proteins involved in ECM 

remodeling acting through regulation of the composition, alignment and mechanical 

properties of the ECM components were found upregulated. Furthermore, it was 

attempted to clarify the effect of hypoxic preconditioning on the content of the 

conditioned media. Even though it has been shown by us and others that ASCs do 

increase wound healing through a paracrine mechanism, we were not able to identify 

the factors responsible for this by the use of MS analysis. Others have tried to use 

the same strategy to clarify the effect of hypoxic preconditioning on the secretome 

of ASCs, however they did not find a measurable effect by this (Kalinina et al., 

2015). Nevertheless, even though the content of the conditioned media was mapped 

and a full explanation of the wound healing effect identified, a chemically defined 

replacement of an ASC based therapy is unlikely to meet the need for a stem cell 

based product. Studies have shown, that ASC conditioned media alone cannot match 

the effect size of the ASCs, possibly explained by the ASCs responding to the 

environment around them and thereby changing their paracrine response (Kim et al., 

2012; Mishra et al., 2012; Rehman et al., 2004; B. F. Seo et al., 2014). This dynamic 

mechanism will not be possible to replace with a commercial off-the-shelf product 

with a defined content of soluble factors. The use of such instead of injecting ASCs 
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into the wound bed will possibly decrease the general effectiveness towards the 

application of chronic wounds with its board and complex etiology. 

 

Figure 9. Overview of the critical steps in the harvest, isolation and expansion of adipose-

derived stem cells (ASCs). For isolation and expansion of ASCs for translational therapy 

there are a lot of aspects to consider all affecting the end product. The process can be divided 

into three parts with each their aspects. First part is the harvest of the adipose tissue from 

which the ASCs shall be isolated. Here it is important to consider donor aspects such as auto- 

or allogenic, age and diseases and harvest aspects as technique and site to harvest from. For 

the next part, the isolation, the critical considerations are how to storage the tissue prior to 

isolation regarding time and temperature, selection of digestion enzymes for digestion of the 

adipose tissue effectively without affecting the cell integrity, centrifugal forces for effectively 

pelleting the stromal vascular fraction (SVF) without destroying the cells, erythrocyte lysis 

method to get a cleaner SVF and culture vessel for selection of ASC from the SVF. The third 

part is the expansion part where ASCs selected from the SVF are expanded to reach the 

therapeutic dose for the therapy of interest. For this part it is critical to choose the right 

culture media inc. supplements, seeding density and culture method, this being one layer, 

multi-layerd or bioreactor again depending on the therapeutic dose needed. Modified and 

reprinted with permission from (Riis et al., 2015). 
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Second hypothesis 

The establishment and expansion conditions are critical for developing clinically 

relevant ASC-based therapies. 

To clarify the effect of establishment and expansion of ASCs on their cellular 

properties a review was compiled to identify the critical steps in the isolation and 

expansion process of ASCs when targeting regenerative therapies as for example the 

healing of chronic wounds (Riis et al., 2015). From this it was evident, that many 

practical aspects regarding the isolation and expansion of ASCs are to be taken into 

consideration when designing an ASC based study and later on an ASC based 

treatment modality. In the review, the recommendations, based on studies 

investigating different aspects of the process, was gathered to give the reader an 

overview of which aspects has already been studied and which need further 

examination to increase the level of evidence. The main conclusions of the review 

are summarized below. For references please refer to the review (Riis et al., 2015). 

To provide a better overview of the process, we categorized the critical steps into 

either harvest, isolation, or expansion. To summarize the findings, the critical steps 

and the recommendations hereon are here presented in short (Figure 9). For the 

harvest, the critical steps include donor selection, the anatomical location of harvest 

and the actual harvest procedure. The ideal choice of donor is still widely discussed, 

and might be dependent on the application. In this context the big question is 

whether to use autologous or allogenic ASCs (See Chapter 1.4.). The site of harvest 

and harvest procedure has been thoroughly investigated and the recommendations 

are to use subcutaneous abdominal adipose tissue harvested by tumescent 

liposuction. For the isolation process it was clear that the protocol first suggested by 

Zuk (Zuk et al., 2001) is still the foundation of the protocols used worldwide, 

however with a wide range of optimizations, adjustments and clarifications based on 

different subsequent studies. Storage of tissue, selection of enzymes for enzymatic 

treatment and choice of culture vessel are among those aspects widely investigated. 

Last, gathering information about the expansion process made it clear that this is the 

part of the overall process towards which most attention has been payed. A wide 

variety of studies was found aiming towards identifying the best protocol for 

expansion of ASCs ensuring a high cell number while maintaining the stem cell 

characteristics. Additionally, an increasing interest in ensuring good manufacturing 

practice (GMP) was observed, making the protocols clinically relevant and retaining 

the application specific regenerative properties of the ASCs. In this context can be 

mentioned considerations about the choice of culture media, large scale productions 

based on bioreactor systems and also the gaseous environment. The latter have been 

shown to affect and possibly increase the stem cell characteristics when used 

properly. 

Choice of culture medium was identified as an aspect still giving rise to a large 

amount of research and experimenting product development, where serum- and 

xeno-free candidates are making their entry onto the market. Studies have shown big 
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difference in the ability of different media compositions to support proliferation, 

maintenance of multipotency and immunological properties (Patrikoski et al., 2014). 

Thus, much attention has been payed to the effect on the stem cell characteristics as 

defined in IFATS and ISCT guidelines (Bourin et al., 2013; Dominici et al., 2006), 

and less on other, potentially more, clinically relevant aspects such as surface 

marker co-expression, cellular sub-type destiny, and clinical application specific 

potency assays.  

In study 3 it was shown that the medium composition affects the isolation and 

expansion of ASCs both in terms of cell doubling time and the composition of 

subpopulations. The true significance of these findings is still unclear. The aspects 

as population doubling time have a direct practical value as shorter doubling time 

decreases production time and the expenses of a stem cell based product. However, 

the regenerative value of a faster proliferating population is still uncertain. On the 

other hand, the composition of subpopulations is difficult to rank as long as the 

function of each subpopulation is not fully understood as indicated through literature 

review by others (Baer, 2014). We found subpopulations defined by both the 

presence of specific surface markers and by the intensity of the markers. The 

question about function of subpopulations based on the presence/absence of specific 

markers has given rise to speculation (Blocki et al., 2013; Pierantozzi et al., 2015; 

Russell et al., 2010), but difference in intensity seems still sparsely studied. 

Differences in subpopulations, have broadly been suggested to give rise to 

differences in for example content of the secretome and thereby give rise to different 

efficiencies and side effects of ASCs (Kalinina et al., 2015).  

In study 4 the characteristics and properties of four subpopulations were studied. It 

was shown that the subpopulations composing the heterogeneous ASCs did not 

differ in terms of stem cell characteristics indicating that no superior stem cell exist 

within the ASCs based on cell division and characterization. Nonetheless, one 

subpopulation seemed to be superior in the stimulation of endothelial cells. In line 

with this, others have shown differences in the immunomodulatory properties of 

ASC subpopulations (Sempere et al., 2014). However, even though we sorted a 

specific subpopulation for further analysis, the composition of surface markers 

returned to that of the crude ASCs by passaging. This indicates that one 

subpopulation cannot exist on its own but need the presence of the others whatever 

functions they contribute with. In this heterogeneous constellation each 

subpopulation might contribute with distinct functions giving crude ASCs it board 

panel of potential applications. In this light, the in study 3 found donor variations 

regarding the relative size of each subpopulation which also have been found by 

others (Baer et al., 2012), might indicate, that some donors poses a larger 

regenerative potential towards some applications than others, depending on their 

subpopulation composition. If a correlation once is identified between the presence 

and relative size of a certain subpopulation and a good clinical effect, this could be 

used as a screening tool to identify an ideal donor for that certain clinical 
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application. However it should be kept in mind that elements critical for the clinical 

use in towards condition might not be of same importance in another clinical 

application. 

5.1. LIMITATIONS OF THE STUDIES 

First hypothesis 

The choice of wound model in our study was very simplified. When using in vitro 

models, the cells, forming the basis for the model, are taken from their natural niche 

and exposed to conditions very far from the physiological ones. Evaluating the 

wound healing properties of the ASCs on such a model under these conditions might 

be misleading, as the cells normally residing in a wound might behave differently in 

vitro than they do in situ. Keratinocytes normally form a multilayered structure with 

basal proliferating keratinocytes and apically a cornified layer of keratinocytes 

which is far from our monolayer. Using a 3D model resembling the natural stratified 

structure would have increased the power of the findings. Another aspect could be to 

use keratinocytes isolated from chronic wounds as keratinocytes in and around 

chronic wounds reside in an impaired state and are not able to fully participate in the 

healing process as they have been shown to produce a decreased level of growth 

factors (Demidova-Rice et al., 2012). The effect of ASCs on this would be valuable 

to take into consideration. However, using in vivo models instead of in vitro ones 

might give a more accurate picture of the process and the effect of the intervention. 

Attempts to find a good animal model have been made, however major obstacles of 

investigating the healing of chronic wounds is the fact that animals do not naturally 

get chronic wounds but acute wounds must be inflicted and infection induced 

(Mustoe, 2004), and that rodents often used heal by other mechanisms than humans 

(Toyserkani et al., 2015). A full review of this has been made by Nunan et al. 

(Nunan et al., 2014). The best option is of course to use human patients suffering 

from naturally occurring chronic wounds with the vicious chronic wound 

environment (Thamm et al., 2013), but here ethical considerations and safety issues 

are to be dealt with to a much larger extend than when using animal models.  

The choice of using MS analysis to investigate the content of the conditioned media 

had some disadvantages. First a culture medium both compatible with ASC 

maintenance and MS technology had to be identified. Normally cells are grown in a 

culture medium with a high abundance of albumin from serum or medium 

supplements (Francis, 2010), but this is not compatible with the MS technique as 

high abundant peptides can dominate the mass spectrum limiting the detection and 

subsequent analysis of lower abundant peptides (Hawkridge, 2014). To circumvent 

this, ASCs are normally serum starved for 24-72 hours before the conditioned media 

is to be harvested. However, serum starving the ASCs will induce stress to the cells  

that might obscure the effect of hypoxic preconditioning (Follin et al., 2013; Tratwal 

et al., 2015). To avoid this, we sought an alternative supplement not containing high 

abundant proteins as albumin but still supporting ASC maintenance. This was 
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partially found, but as it did not support expansion of the ASCs a switch in medium 

type before conditioning was still necessary, possibly affecting the cells in some 

way. To overcome this, a culture medium fully compatible with ASC maintenance 

and MS technology must be identified before the secretome can be fully explored. 

Second, the sensitivity of the data analysis of the MS data towards very slight 

increases in cytokine concentration is unknown. By using ELISA we have found 

that by hypoxic preconditioning VEGF secretion into the medium was increased 

two-fold (Rasmussen et al., 2012). This was enough to cause a measurable 

biological difference on endothelial cells, but we could not detect this increase in 

VEGF by MS analysis. This might explain some of the reason why we could not 

measure any effect of hypoxic preconditioning on the secretome, and thereby our 

findings should not be used as an indication of no effect of hypoxic preconditioning 

on the ASC secreted proteins. 

Second hypothesis 

When studying the effect of establishment and expansion of ASCs on their cellular 

properties inclusion of more donors would have added more power to the statistical 

analysis because of the big inter-donor variation, which would have been decreased 

by a larger sample size. Additionally, harvesting a larger amount of SVF would have 

enabled the full comparison of all donors for all medium compositions which also 

would have increased the power of the analysis. 

When studying the properties of the subpopulations of ASCs only one donor was 

used. As above, increasing the number of donors would have increased the power of 

the findings. However, others have characterized 10 donors with similar 

anthropometric characteristics and found great donor variations anyway, which 

despite the large sample size still enabled a general characterization of ASC 

subpopulations (Kalinina et al., 2015). 
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CHAPTER 6. CONCLUSIONS 

We found that ASCs increased keratinocyte-based wound healing, and that this was 

promoted by hypoxic preconditioning. Investigating the effect of hypoxic 

preconditioning on the proteome of ASCs, we found that proteins involved in the 

remodeling of ECM were significantly increased. When exploring the steps in the 

isolation and expansion process of ASC, it was identified that the choice of culture 

medium was essential. The use of hPL as culture medium supplement proved to be 

good alternative to FCS, especially with regards to increasing ASC proliferation. 

Additionally, the distribution of various subpopulations within the ASCs was 

affected by the choice of culture medium. When further characterizing the 

subpopulations of the ASCs, no difference in the stem cell characteristics was 

identified. However, differences in their proangiogenic potential were found. 

Interestingly, after a period of expansion the surface marker profile of the 

subpopulations was found to return back to that of the original mixed population. 

6.1. PERSPECTIVES 

To fully understand the ASC wound healing properties, appropriate wound healing 

models are necessary. In the absence of a comprehensive chronic wound model, 

effort has been made to mimic the different stages of wound healing in simplified in 

vitro models. However, the experimental systems are still not able to mimic the in 

vivo situation (Toyserkani et al., 2015). Further developing these models would be 

of great value of the scientific progress in this research area.  

To relate the findings from the in vitro models to the healing of chronic cutaneous 

wounds in patients, it is necessary to study the actual therapeutic effect of ASCs in a 

clinical setting. Additionally, to know the clinical effect of hypoxic preconditioning 

of ASCs on the healing of chronic wounds, the method of hypoxic preconditioning 

should be included in the protocol for such a study.  

Moreover, to further understand the effect of hypoxic preconditioning on ASCs, it 

would be advantageous to investigate the effect of this on the distribution of various 

subpopulations and the characteristics thereof. Additionally, characterizing the 

content of the conditioned media from the subpopulations would be interesting. This 

could reveal hitherto unknown aspects of distinct subpopulations. 

Furthermore, to understand the predictive value of the ASC characteristics, and of 

the distribution of subpopulations within, it is necessary to correlate quantitative 

measurements of these to quantitative measurements of the clinical outcome. In this 

way the in vitro observations could be used as a biomarker to identify a good 

universal donor which could reduce the risk of engraftment failure and lack of 

clinical effect. 
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