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Preface
This thesis is the result of my Ph.D. studies under supervision of Assoc. Prof.
Kasper Klitgaard Berthelsen and Assoc. Prof. Esben Høg at the department
of Mathematical Sciences, Aalborg University, Denmark. The topic of this
thesis is studying baggage handling in the aviation industry. The study is
based on data from some airports in the Scandinavian area provided by Lyn-
gsoe Systems.

My Ph.D. research is a statistical part of a project called BagTrack funded
by the Danish National Advance Technology Foundation. The main statistical
achievements are developing strategies for bag tagging by using a stochastic
optimization problem and analyzing the handling quality by using a statisti-
cal model.

With regard to my past background in statistics, I needed to make myself
more educated with a number of basic concepts, definitions and methods in
optimization theory. These concepts, definitions and methods are presented
in the first chapter of the thesis and provide a path to fully understand the
stochastic optimization programming.

The thesis is a collection of two papers with an introductory chapter de-
scribing the relevant background for reading the papers. Accordingly, chap-
ter 1 is divided into two main parts each relevant to one of these papers, and
chapter 2 contains the papers with the following titles:

• Optimizing RFID Tagging in the Aviation Industry

• Review of Statistical Models for Analyzing RFID Data in the Aviation
Industry

The papers have been submitted to SIAM Journal on Optimization and Jour-
nal of Applied Statistics respectively.

I wish to express my sincere thanks to my supervisor, Assoc. Prof. Kasper
Klitgaard Berthelsen, for sharing his expertise and being generous with his
time all through my study. I am also greatly grateful to my co-supervisor,
Assoc. Prof. Esben Høg, for his useful comments and valuable guidance and
encouragement extended to me. I consider myself very fortunate for having a
chance to work with a group of nice colleagues including senior researchers,
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post-docs, PhD students and secretaries in the department of Mathematical
Sciences and I appreciate the positive work environment they made for me.

Shima
Aalborg University, September 2, 2015
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Summary

Every year, baggage mishandling costs a considerable amount of money for
the aviation industry. This problem has led some airports and airlines to
use more updated technologies in their handling system to improve baggage
handling and possibly cut down on mishandled bags. Regarding this issue,
some airports and airlines in the Scandinavian area have started using Radio
Frequency Identification (RFID) technology to tag and track the bags.

The following thesis mainly deals with two research questions arising
before and after using RFID technology. The first one is determining RFID
tagging rates in the airports under the study based on a limited amount
of budget, and the second one is determining a probability model which
describes the quality of baggage handling based on the data obtained from
RFID technology.

Since the airports under study have a limited budget to tag the bags,
and tagging with RFID is more expensive than the other common types of
tagging, we consider tagging a (random) subset of the bags by RFID. Accord-
ingly, we define RFID tagging rates at each of these airports in a way to attain
the best desired outcome. This leads to an optimization problem.

The defined optimization problem involves parameters which vary from
one time period to another time period. Therefore, we need to study differ-
ent approaches to deal with the randomness corresponding to the problem-
specific parameters. The final proposed problem is a stochastic optimization
problem including both a stochastic objective function and a chance con-
straint. These two together are uncommon as well as challenging.

One method for solving the defined stochastic optimization problem is the
method of sample average approximation. This method leads to an interval
that contains the optimal value of the problem. Further, we suggest a method
based on an extension of the majorization definition. This method also leads
to an interval for the optimal value of the problem. The results of the two
methods are presented and compared with each other in paper A.

The second challenge that we deal with in this thesis is the analysis of the
quality of baggage handling based on the data obtained from RFID technol-
ogy. Regarding this issue, the mishandling problem in one specific airport is
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Summary

studied. The study is limited to the transfer bags which are left-behind in this
airport. A transfer bag has a statue of either left-behind or not left-behind.
Accordingly, a binary random variable is defined which represents the trans-
fer bags’ statuses in the airport. This leads us to study statistical models for
analyzing binary random variables.

Inspired by the data, we introduce a logit-nonlinear relationship between
the probability of being left-behind and the corresponding connection time
of the transfer bags. The logistic-nonlinear regression model is fitted to the
observed data through a Bayesian approach. We suggest an informal visual
test to check the validity of this model. The test is based on the linearized
form of Ripley’s K-function. This function let us see the clustering pattern of
the bags’ statuses.

The high clustering pattern suggests that there is a source of depen-
dency, other than connection times, between the bags’ statuses. That means
the assumptions of the logistic-nonlinear regression model are violated. It
is well-known that the correlation between binary data and invalidity of
the assumptions of the logistic regression model cause overdispersion phe-
nomenon. Therefore, we need to study statistical models appropriate for
modeling overdispersed data. Finally, a beta-binomial logistic-nonlinear re-
gression model is fitted to the observed data through a Bayesian approach.
The results are presented in paper B.
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Sammendrag

Hvert år påføres luftfartsindustrien en betragtelig udgift som følge af fejl-
håndtering af bagage. Dette problem har fået nogle lufthavne og flyselskaber
til at indføre ny teknologi til håndtering af bagage for at forbedre procedur-
erne og nedbringe antallet af fejlhåndteringer. I denne forbindelse har nogle
af de skandinaviske lufthavne og flyselskaber introduceret Radio Frequency
Identification (RFID) – teknologien til mærkning og sporing af bagage.

I nærværende afhandling arbejdes der primært med to spørgsmål af vi-
denskabelig interesse, som opstår før og efter brugen af RFID. Det første
spørgsmål omhandler fastsættelse af de andele af bagage der skal mærkes
med RFID under hensyntagen til et begrænset budget. Det andet omhandler
opstilling af en sandsynlighedsteoretisk model, som kan beskrive kvaliteten
af bagagehåndteringen, baseret på de data, som RFID teknologien giver.

Da de involverede lufthavne råder over et begrænset budget til mærkning
af bagage – og da RFID teknologiens bagagemærkning er dyrere end andre
anvendte typer mærkning, så vil vi med hensyn til det første spørgsmål oven-
for betragte en (tilfældig) delmængde af bagagen, som mærkes med RFID. Vi
angiver en RFID mærknings-rate for hver af de involverede lufthavne for
at opnå det bedst mulige resultat. Dette leder efterfølgende til et optimer-
ingsproblem.

Optimeringsproblemet involverer parametre som varierer over tid. Det
opstillede problem bliver et stokastisk optimeringsproblem, som indeholder
både en stokastisk objektfunktion og stokastiske restriktioner.

Vi beskriver to metoder til at løse det stokastiske optimeringsproblem:
Den første er baseret på den såkaldte method of sample average approxima-
tion, og den anden er baseret på en udvidelse af definitionen af såkaldt ma-
jorisering. Begge metoder fører til beregning af et interval, som indeholder
det stokastiske optimeringsproblems optimale værdi. Resultaterne af de to
metoder præsenteres og sammenlignes i artikel A.

Med henblik på besvarelse af det andet spørgsmål ovenfor, som vedrører
kvaliteten af bagagehåndteringen, fokuseres der på resultaterne i én specifik
lufthavn. Studiet er afgrænset til at omhandle transfer-bagage, som fejlagtigt
ikke kommer med på flyet. Transfer-bagage har status som enten efterladt
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Sammendrag

(left-behind) eller ikke-efterladt not left-behind. I overensstemmelse hermed
defineres en binær stokastisk variabel, som repræsenterer transfer-bagagens
status.

Inspireret af data fra lufthavnen introducerer vi en logistisk-ikke-lineær
model for relationen mellem sandsynligheden for at en bagage-enhed er left-
behind og transfer tid for bagage.

Modellen tilpasses data via en Bayesiansk analyse. Vi foreslår en uformel
visuel test som modelkontrol. Testen er baseret på en lineariseret udgave af
Ripley’s K-funktion. Testen antyder at transfer tid ikke er tilstrækkelig til
at forklare transfer-bagages status, således at antagelserne om den logistisk-
ikke-lineære model er brudte. Modellen forbedres så den kan tage højde for
overspredning, hvorved en beta-binomial logistisk-ikke-lineær model tilpasses
data, igen via en Bayesiansk analyse. Resultaterne præsenteres i artikel B.

x



Contents

Preface v

Summary vii

Sammendrag ix

I Introduction and Overview of methods 1

Introduction 3
1 Mathematical optimization . . . . . . . . . . . . . . . . . . . . . 3

1.1 Introduction to optimization . . . . . . . . . . . . . . . . 4
1.1.1 Convexity (Concavity) . . . . . . . . . . . . . . 5
1.1.2 Linear programming (LP) . . . . . . . . . . . . 6
1.1.3 Nonlinear programming and convex analysis . 7
1.1.4 The branch and bound algorithm . . . . . . . . 11

1.2 Stochastic programming (modeling) . . . . . . . . . . . . 13
1.2.1 Examples of stochastic optimization problems 14
1.2.2 Chance constraint problems . . . . . . . . . . . 15

1.3 Stochastic programming (algorithms) . . . . . . . . . . . 19
1.3.1 Stochastic projected sub-gradient method . . . 21
1.3.2 The sample average approximation method . . 25
1.3.3 Majorization . . . . . . . . . . . . . . . . . . . . 33

2 Statistical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 Short introduction to the logistic regression model . . . 38
2.2 Correlated binary data and Overdispersion problem . . 39

2.2.1 Beta-binomial model . . . . . . . . . . . . . . . 41
2.2.2 Mixed-effects model . . . . . . . . . . . . . . . . 43
2.2.3 Mixture model . . . . . . . . . . . . . . . . . . . 46

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Papers 53

A Optimizing RFID Tagging in the Aviation Industry 55

xi



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2 Modeling the problem . . . . . . . . . . . . . . . . . . . . . . . . 59

2.1 Explaining the problem . . . . . . . . . . . . . . . . . . . 59
2.2 The stochastic problem . . . . . . . . . . . . . . . . . . . 61
2.3 The discrete set of tagging rates . . . . . . . . . . . . . . 64

3 Finding the optimal solutions . . . . . . . . . . . . . . . . . . . . 64
3.1 Solving the deterministic, (A.2), the wait-and-see, (A.3),

the EV, (A.4), and its modification, (A.5), problems . . . 65
3.2 Solving the chance constraint problem (A.6) . . . . . . . 66

3.2.1 The SAA counterpart of problem (A.6) . . . . . 67
3.2.2 A linear mixed-integer problem equivalent to

the SAA problem . . . . . . . . . . . . . . . . . 69
3.2.3 Finite sample properties . . . . . . . . . . . . . 70
3.2.4 γ-Majorization . . . . . . . . . . . . . . . . . . . 76

3.3 Solving the discrete problems . . . . . . . . . . . . . . . . 80
4 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B Review of Statistical Models for Analyzing RFID Data in the Avi-
ation Industry 89
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2 Data exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.1 Looking into likely explanatory variables . . . . . . . . . 93
3 Statistical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.1 Logistic-nonlinear regression model . . . . . . . . . . . . 94
3.1.1 The model . . . . . . . . . . . . . . . . . . . . . 95
3.1.2 Parameters estimation . . . . . . . . . . . . . . 96
3.1.3 Goodness of fit for a logistic-nonlinear regres-

sion model . . . . . . . . . . . . . . . . . . . . . 98
3.1.4 Model checking . . . . . . . . . . . . . . . . . . 102
3.1.5 Omitting the days with relatively high propor-

tion of left-behind bags . . . . . . . . . . . . . . 102
3.2 Beta-binomial logistic-nonlinear regression model . . . . 104

3.2.1 The model . . . . . . . . . . . . . . . . . . . . . 105
3.2.2 Parameters estimation . . . . . . . . . . . . . . 106
3.2.3 Goodness of fit for a beta-binomial logistic-

nonlinear regression model . . . . . . . . . . . 108
3.2.4 Model checking . . . . . . . . . . . . . . . . . . 109

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xii



Part I

Introduction and Overview
of methods

1





Introduction

The topic of this thesis is studying baggage handling in the aviation industry.
Today, the problem of mishandling is an important issue in this industry. This
problem has led some airports and airlines to use more updated technologies
in their handling system. Regarding this issue, some airports and airlines
in the Scandinavian area have started using Radio Frequency Identification
(RFID) technology to track the bags. Particularly, in this thesis, we study
two things. One is determining RFID tagging rates in the airports under the
study based on a limited amount of budget. This is done by solving a proper
optimization problem. The other is determining a probability model which
describes the quality of baggage handling in one of these airports. This is
done by using a beta-binomial logistic-nonlinear regression model.

This introductory chapter is divided in two main parts. In the first part,
we study mathematical optimization problems in general. Specifically, we
study modeling a stochastic optimization problem and the methods to solve
them. These methods have been used in paper A for finding RFID tagging
rates. In the second part, we study binary correlated random variables and
the methods to deal with them. A beta-binomial logistic-nonlinear regression
model is used in paper B to describe these types of data.

1 Mathematical optimization

A mathematical optimization problem (also known as a mathematical program-
ming problem) is the problem of maximizing or minimizing a real function
regarding a set of data. To solve an optimization problem, there are some
calculus based (analytic) methods which lead to closed form formulas for
solving a problem e.g., the method of Lagrange multipliers and some nu-
merical methods which use an iterative algorithm to attain the optimal value,
e.g., the interior point methods. Some well-known categories of optimiza-
tion problems are constrained or unconstrained, linear or nonlinear, convex
or non-convex, and finally deterministic or stochastic problems. The main
topic of this chapter is reviewing the stochastic optimization problems. These

3



types of optimization problems have been developed in recent years rapidly
and can be solved by some advanced methods.

Stochastic optimization is a class of optimization problems involving some
uncertain parameters1 while it is assumed that the parameters’ statistical dis-
tributions are known or at least can be estimated. The theory behind this
is a combination of optimization theory and statistical theory. Due to the
existence of random parameters in the stochastic problems, these types of
problems are very practicable, and they arise in many applications, see, e.g.,
Wallace and Ziemba (2005).

This chapter is divided into three parts. First, some basic concepts and
methods in optimization problems are studied. Then, some types of stochas-
tic problems are introduced. Finally, methods to solve the introduced stochas-
tic problems are explained.

1.1 Introduction to optimization

Optimization is an old branch of mathematics. Mathematical optimization
is the science of determining the best (maximum or minimum) solution to a
mathematical formulation. One example is the problem of finding a solution
to the following formulation:

min
x

F (x) (1)

subject to:{
gj (x) ≤ 0, j = 1, 2, . . . , m,
hj (x) = 0, j = 1, 2, . . . , p,

where F : Rn → R and gj (x) , j = 1, 2, . . . , m and hj (x) , j = 1, 2, . . . , p are
all scalar functions of the vector x. The above problem is a minimization
problem, and it can simply be reformulated as a maximization one.

The components x = (x1, x2, . . . , xn) are called the decision variables, and
the function F (x) is called the objective function. The functions gj (x) and
hj (x) denote the inequality and equality constraints respectively. Any x
which satisfy all of the constraints is a feasible point, and the set of all these
points is called the feasible set.

If some variables in problem (1) are restricted to be integer, it is called a
mixed-integer optimization problem.

There are a wide range of algorithms for solving an optimization prob-
lem. For example, the simplex algorithm, interior point methods and sub-
gradient methods which are used to solve linear and nonlinear convex pro-
gramming problems and the branch and bound algorithm designed to solve

1The word "parameter" is not used in its common meaning in the context of probability and
statistics but as its common meaning in the optimization theory.
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1. Mathematical optimization

mixed-integer programming problems. These methods are briefly discussed
in sections 1.1.2, 1.1.3 and 1.1.4. Earlier, the definition of convexity is given in
section 1.1.1.

1.1.1 Convexity (Concavity)

The convexity (concavity) of the objective function and the convexity (non-
convexity) of the feasible set play an important role in a minimization (max-
imization) problem. A convex (concave) function has at most one minimum
(maximum) point. This property simplify the optimization problem. On the
other hand, the powerful tool of convex analysis can be used for an opti-
mization problem with a convex feasible set. In this section, the definitions
of convex (concave) functions and convex (non-convex) sets are given. Also,
a useful theorem to investigate the convexity of a function is presented. We
use these definitions in the next sections specifically in section 1.2.2, where
we discuss the convexity of a chance constraint problem.

The definitions of convex set and function are well known in the literature,
and the definition of an α-convex function was first introduced by Avriel
(1972).

Definition 1. A set C ⊂ Rn is said to be convex if for all x1, x2 ∈ C and 0 ≤ λ ≤ 1,
we have λx1 + (1− λ) x2 ∈ C. Otherwise, it is called a non-convex set.

Definition 2. Fix −∞ ≤ α ≤ ∞, a function, f (x), defined on a convex set C ⊂ Rn

is said to be α-convex if for all x1, x2 ∈ C and 0 ≤ λ ≤ 1, the following holds:

f (λx1 + (1− λ) x2) ≤ mα ( f (x1) , f (x2) , λ) ,

where,

mα ( f (x1) , f (x2) , λ) =


f (x1)

λ f (x2)
(1−λ) if α = 0,

min { f (x1) , f (x2)} if α = ∞,
max { f (x1) , f (x2)} if α = −∞,(
λ f (x1)

α + (1− λ) f (x2)
α)1/α otherwise.

In the case of α = 0, the function is also assumed to be non-negative.
For α = 1, 0,−∞, this is simply called a convex, a log-convex and a quasi-convex

function respectively.

In a similar way, an α-concave function is defined, see, e.g., Shapiro et al.
(2009, p. 94).

Definition 3. For −∞ ≤ α ≤ ∞, α 6= 0, a function is called α-concave if the
negative of the function is α-convex. When α = 1 and α = −∞, this is simply called
a concave and a quasi-concave function respectively.

5



In the case of α = 0, a non-negative function is 0-concave (also known as log-
concave) if log ( f (.)) is a concave function.

Every non-negative concave function is log-concave. In general, it can
be shown that for a non-negative function, α-concavity entails β-concavity if
β ≤ α, see, e.g., Shapiro et al. (2009, p. 96). Therefore, a non-negative concave
function is also quasi-concave, but the reverse is not necessarily true.

The next theorem helps us to recognize convex functions by their closure
properties. The proof can be found in Lange (2004, Chap. 5).

Theorem 1. Convex functions satisfy the following:

(a) The sum of non-negative convex functions is convex.

(b) If f (x) and g (x) are convex functions, then max { f (x) , g (x)} is also con-
vex.

(c) An affine function f (x) = Ax + b for fixed values of A and b is convex.

(d) If f (x) is convex, then the composition of f (x) and an affine function g (x) =
Ax + b for fixed values of A and b is convex.

1.1.2 Linear programming (LP)

A standard linear optimization problem in matrix form is written as

min
x

{
cTx |Ax = b, x ≥ 0

}
,

where A is an m× n matrix and x, c are n× 1 vectors and b is an m× 1 vector.
Any linear inequality constraint can simply be reformulated as an equality
by using slack variables or surplus variables. So, there is no loss of generality
in only considering equality constraints.

Since Ax = b is a system of linear equations, it has a solution if and only
if the number of linearly independent columns in the matrix A is not less
than the number of independent columns in the matrix A|b. Assume that
there is at least one feasible solution and n ≥ m. If we set (n−m) variables
to zero and solve m equations with m independent variables, the solution is
called a basis solution. The variables that are chosen to be non-zero are called
basis variables, and the rest are called non-basis. Two basis feasible solutions
are adjacent, if they have (n − 1) common basis variables. It can be shown
that with a finite number of linear inequality constraints, there can only be
a finite number of basis feasible solutions, see, e.g., Bertsimas and Tsitsiklis
(1997, p. 52). In geometric terms, basis solutions correspond to extreme points
of the polyhedron P = {x |Ax = b, x ≥ 0}.

6



1. Mathematical optimization

It can be shown that the optimal value in a LP problem of min
x

cTx over

a polyhedron P, is either an extreme point or infinity. Based on this fact,
Dantzig’s simplex algorithm is introduced as follows:

1 Start with a basis solution.

2 Move to an unobserved adjacent basis feasible solution.

3 If all the basis feasible solutions are observed, then determine the opti-
mal value. Otherwise, go to the second step.

There are many computer solvers able to solve a simple linear optimization
problem. For more details, see, e.g., Dantzig and Thapa (1997).

1.1.3 Nonlinear programming and convex analysis

When the objective function and/or constraints in problem (1) are nonlin-
ear, the problem is called a nonlinear programming problem. Furthermore, if
the feasible set and the objective function in this problem are convex, the
nonlinear programming problem would be a convex problem. A convex func-
tion can be differentiable or non-differentiable. In each case, there are some
well-known methods to solve the problem. In this section, two methods for
solving such problems are explained. One is the interior point method and
the other is the projected sub-gradient method. The first one is used when
the objective function and the constraints are differentiable, and the second
one can be used for non-differentiable functions.

An example of a convex nonlinear optimization problem with differen-
tiable functions is second-order cone programming (or convex quadratically
constrained linear programming) problem. Problems (A.5), (A.16) and (A.17)
in paper A (pages 62, 79 and 62) are examples of second-order cone program-
ming problems. Thus, after explaining the interior point methods in general,
the method is explained in particular for the second-order cone programming
problems.

Interior point methods Assume that the objective function and the con-
straints in problem (1) are convex and twice continuously differentiable.
Then, it is possible to define the necessary and sufficient conditions that an
optimal solution x∗ and some multipliers, λ∗, ν∗, called Lagrangian multipli-
ers, must satisfy. These conditions require a regularity condition called the
Slater condition. The Slater condition is that there exist one point, say x̂, such
that gj (x̂) < 0, j = 1, 2, . . . , m, and the constraints hj (x) = 0, j = 1, 2, . . . , p, are
linear constraints.

According to the above point, we assume that the constraints hj (x) = 0
for j = 1, 2, . . . , p, in problem (1), are affine and reformulate them as Ax = b,
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where A is a p × n matrix and b is a p × 1 vector. This assumption does
not introduce any restriction to the problem since a nonlinear equality can be
reformulated as an inequality by using surplus variables.

Given the Slater condition, the x∗ is an optimal solution to the convex
problem (1) with linear equality constraints, if and only if the Karush-Kuhn-
Tucker (KKT) conditions, introduced by Kuhn and Tucker (1951), hold as
follows:

∇F (x∗) +
m

∑
j=1

λ∗j∇gj (x∗) + ATν∗j = 0, (2)

gj (x∗) ≤ 0, j = 1, 2, . . . , m, (3)

Ax∗ = b, (4)

λ∗i gj (x∗) = 0, j = 1, 2, . . . , m, (5)

λ∗i ≥ 0. (6)

In the above, ∇ is the gradient operator.
To solve the above Karush-Kuhn-Tucker conditions, we can use interior

point methods as described below.
The interior point methods are kind of hierarchical methods to solve an

optimization problem. In this method, first, a linear equality and nonlinear
inequality constrained problem is reduced to a linear equality constrained
problem with twice differentiable objective function and then, it is efficiently
solved by using the well-known Newton’s methods (Boyd and Vandenberghe,
2004, p. 561). Therefore, problem (1) should be formulated as an equality
constrained problem.

Let us reformulate problem (1) to the equivalent problem

min
x

{
F (x) +

m

∑
j=1

I−
(

gj (x)
)
|Ax = b

}
,

where I− (.) is defined as follows:

I− (u) =

{
0 if u ≤ 0,
∞ if u > 0.

Now, problem (1) has been converted to an equality constrained problem,
but the objective function is not twice differentiable. So, we approximate this

8
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problem with the following differentiable problem:

min
x

F (x)−
m

∑
j=1

1
t

log
(
−gj (x)

)
(7)

subject to: Ax = b.

The objective function here is convex and differentiable, and Newton’s method
can be used to solve it. The KKT conditions for problem (7) are as follows:

∇F (x∗)−
m

∑
j=1

1
tgj (x∗)

∇gj (x∗) + ATν∗ = 0,

Ax∗ = b,

gj (x∗) < 0, j = 1, 2, . . . , m.

Let λ∗j = −1/tgj (x∗), then the above KKT conditions are the same as the KKT
conditions in equations (2)-(6) apart from the condition λ∗j gj (x∗) = 0 which
has been replaced with λ∗j gj (x∗) = 1/t. Thus, for large t, the obtained optimal
solution to problem (7), x∗, almost satisfy the KKT conditions of problem (1).

We now show that the optimal value of problem (7) is a lower bound
for the optimal value of problem (1). To do so, in the Lagrangian function
L (x, λ, ν) = F (x) + ∑m

j=1 λjgj (x) + νT (Ax− b) , set x = x∗, λ = λ∗ and ν = ν∗,
then we have

L (x∗, λ∗, ν∗) = F (x∗) +
m

∑
j=1

λ∗j gj (x∗) + ν∗T (Ax∗ − b)

= F (x∗)− m
t

It means the optimal value of problem (7) is no more than m/t less than the
optimal value of problem (1). This confirms that x∗ converges to an optimal
solution as t → ∞. Based on this fact, the barrier algorithm is introduced as
follows:

1 Choose the starting points x0, t0 > 0 and µ > 1.

2 Solve problem (7) with Newton’s method, start at x0.

3 Update x0 = x∗.

4 If m/t is small enough, terminate the algorithm. Otherwise, update
t0 = t0µ and go to the second step.

There are several studies on the convergence rate of interior point methods
and how to choose good primary values x0, t0 and µ, see, e.g., Boyd and
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Vandenberghe (2004, Chap. 11). For a review on recent developments of
interior point methods, see, e.g., Potra and Wright (2000) and Wright (2004).

Example: As mentioned previously, problems (A.5) and (A.16) and (A.17)
in paper A (pages 62, 79 and 62) are examples of second-order cone program-
ming problems. A nonlinear convex optimization problem in the form

min uTx (8)

subject to:

‖Ajx + bj‖2 ≤ cjx + dj, j = 1, 2, . . . , m.

is a second-order cone programming problem (SOCP). The Euclidean norm,
‖Ajx + bj‖2, for j = 1, 2, . . . , m, are not differentiable at

{
x
∣∣Ajx = bj

}
. There-

fore, it seems that the interior point methods are not appropriate for solving
a SOCP problem. However, we can square the two sides of the constraint
functions in the SOCP problem and reformulate it to the following problem:

min uTx (9)

subject to:{
‖Ajx + bj‖2

2/
(
cjx + dj

)
≤ cjx + dj, j = 1, 2, . . . , m,

cjx + dj ≥ 0, j = 1, 2, . . . , m.

Now, the constraint functions of problem (9) are convex and twice differen-
tiable. Therefore, it can be solved with interior point methods.

Note that the two problems (8) and (9) are not exactly equivalent. If for
an optimal solution to problem (8), x∗, there exist a j such that cjx∗ + dj = 0,
then we can not obtain the optimal solution from problem (9) since x∗ is not
in its domain. In spite of that, it can be shown that the interior point method,
applied to problem (9), produces an accurate solution to problem (8), see,
e.g., Boyd and Vandenberghe (2004, p. 624).

Projected sub-gradient method The sub-gradient method is an iterative al-
gorithm to find an optimal value of a convex function. The advantage of this
method is that it can be applied even to a non-differentiable function. The
projected sub-gradient method is an extension of the sub-gradient method to
find the optimal value of a convex function when it is restricted to a convex
set of constraints (Shor, 1998, Chap. 2.1).

In the following, some useful definitions are given and subsequently, the
projected sub-gradient algorithm is explained.

Definition 4. Suppose that F : Rn → R is a real valued convex function on a
convex set C in the Euclidean space Rn, a vector h (x0) ∈ C is called a sub-gradient
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of F at x0 ∈ C if for all x ∈ C,

F (x) ≥ F (x0) + h (x0)
T (x− x0) .

The set of all sub-gradients at x0 is called the sub-differential set at x0 and
is denoted by ∂F (x0). Clearly, if the function F is differentiable, the sub-
differential set at x0 only contains the gradient of F at x0.

The sub-gradient algorithm for solving problem (1) with convex functions
is as follows:

1 Choose a feasible initial value x(1) and let F(1)
best = F

(
x(1)

)
.

2 For l = 1, 2, . . . , L, do the following steps:

2-1 let x(l+1) = x(l) − βlh
(

x(l)
)

, where x(l) is the lth iterate value, βl is
the lth step size (e.g., it can be assumed to be a square summable
but not summable step size like 1/l) and h

(
x(l)
)

is a sub-gradient

of F (x) at x(l).

2-2 Project the point x(l+1) onto the feasible set. This projection is the
solution of the following problem:

min
x

∥∥∥x(l+1) − x
∥∥∥2

2
subject to:{

gj (x) ≤ 0, j = 1, 2, . . . , m,
hj (x) = 0, j = 1, 2, . . . , p,

where ‖.‖2 is the Euclidean norm.

2-3 Let F(l+1)
best = min

{
F
(

x(l+1)
)

, F(l)
best

}
.

It can be shown that if, for all l, ‖h
(

x(l)
)
‖

2
are bounded, then the obtained

F(l)
best converges in probability to the optimal value of problem (1) when L →

∞, see, e.g., Boyd and Park (2007).
In section 1.3.1, the definition of a sub-gradient is extended to a noisy sub-

gradient, and a similar algorithm is used to solve a stochastic optimization
problem with an expected value objective function.

1.1.4 The branch and bound algorithm

The Branch and Bound algorithm is one of the most common algorithms used
to solve mixed-integer problems. In this method, we first find the optimal
solution for the desired optimization problem while ignoring the integer con-
straints (This is called relaxation). If the solution is integer, the problem has
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been solved. Otherwise, we divide the problem into sub-problems by decom-
posing the set of all possible integer alternatives. Now, we find the integer
optimal solution in each sub-problem and compare them to find the best.
The point in this algorithm is that we do not need to enumerate all possible
integer alternatives since we use some rules to prune some sub-problems. In
addition, if solving a sub-problem is not straightforward, we can divide it
into sub-problems which are easy to solve.

For example, consider a linear optimization problem with some integer
decision variables, such as

min
x

cTx (10)

subject to:
Ax = b,
xj ∈ Z+, j = 1, 2, . . . , k,
xj ∈ R+, j = k + 1, k + 2, . . . , n,

where A is an m × n matrix and x, c are n × 1 vectors and b is an m × 1
vector. A simple example of the branch and bound algorithm to solve such a
problem is as follows:

1 Find the optimal solution to problem (10) while ignoring the integer
constraints (relaxed problem) and call it x∗.

2 If the obtained values x∗1 , x∗2 , . . . , x∗k are integer, the algorithm is termi-
nated. Otherwise, let U = ∞ and Ω = ∅, and do the following steps:

3 Choose one of the variables x1, x2, . . . , xk, e.g., x2, and divide the prob-
lem into two sub-problems by adding the constraints x2 ≤ [x∗2] and
x2 ≥ [x∗2] + 1, where [u] is the largest integer not greater than u.

4 Call the two sub-problems Probi , Prob.Ti and let Ω = Ω∪{Probi , Prob.Ti}.

5 If Ω 6= ∅, do the following steps:

6 Choose one of the sub-problems in Ω and subtract it from the set Ω.

7 Solve the chosen sub-problem and find its optimal solution while ig-
noring the integer constraints (relaxed problem) and call it x∗. If the
problem is not solvable, ignore the next step and go to step 5.

8 If the obtained values x∗1 , x∗2 , . . . , x∗k are integer, let U = min {U, F (x∗)}
and go to step 5. Otherwise, go back to step 3.

Initializing U = ∞ in the above algorithm is valid but not efficient. Accord-
ingly, some methods have been introduced to select a better upper bound, U.
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Likewise, more advanced strategies to branch the problem to sub-problems
can make the algorithm faster, see, e.g., Achterberg et al. (2005).

There is also another algorithm called branch and cut which has been de-
signed to solve mixed-integer linear programming problems. This is a com-
bination of the branch and bound algorithm and a so called cutting plane
strategy to tighten the linear relaxed problem. For example in step 8 of the
above algorithm, if the obtained optimal solution is not integer, we add an
extra inequality to the relaxed problem in step 7 and solve it again. This in-
equality is chosen in a way to cut the optimum from the true feasible set. We
hope that resolving the problem attain an integer solution (Mitchell, 2002).

Problem (A.13) (page 70) is an example of a mixed-integer programming
problem which we solve in paper A. There are plenty of computer solvers
which can solve such a problem with branch and bound or branch and cut
algorithms. We use the Rmosek package in R and obtain the optimal solutions.

1.2 Stochastic programming (modeling)

In many areas of applications of optimization theory, one encounters a prob-
lem that involves parameters which are random variables. There are differ-
ent approaches to deal with the randomness corresponding to the problem-
specific parameters, see, e.g., King and Wallace (2012, Chap. 1). When the
parameters are within certain bounds, one may use robust analysis. That is
formulating and solving an optimization problem, where the optimum solu-
tion is feasible for all random values (Ben-Tal et al., 2009, p. 26). When the
probability distributions of the random parameters are known or at least can
be estimated, one may use stochastic programming. That is formulating and
solving an optimization problem, where the objective function and/or some
of its constraints are expressed in terms of probabilistic statements (Birge and
Louveaux, 2011, p. 71).

To explain the above further, consider the following problem:

min
x

F (x, ξ) (11)

subject to:{
gj (x, ξ) ≤ 0, j = 1, 2, . . . , m,
x ∈ X ,

where F : Rn ×Rs → R, gj : Rn ×Rs → R, X ⊂ Rn.
When ξ is an s dimensional specific known vector, the problem is just

a deterministic optimization problem. When ξ is a random vector, there are
various approaches to consider such randomness. For example, the following
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problem is a robust optimization problem:

min
x

max
ξ∈Ξ

F (x, ξ)

subject to:{
gj (x, ξ) ≤ 0, j = 1, 2, . . . , m, ∀ξ ∈ Ξ,
x ∈ X ,

where Ξ is a bounded set.
The optimum solution to the above problem is feasible for all possible

values of ξ ∈ Ξ. Now, consider the following problem which is an example
of stochastic programming problems:

min
x

E (F (x, ξ))

subject to:{
E
(

gj (x, ξ)
)
≤ 0, j = 1, 2, . . . , m,

x ∈ X ,

where the expectations are taken with respect to the probability distribution
of ξ which is assumed to be known. Roughly speaking, the optimum solution
to the above problem is feasible for almost all possible values of ξ ∈ Ξ.

When the sensitivity of the optimum solution regarding the existent ran-
domness is very important, a robust analysis seems appropriate. However,
this analysis is very conservative since it contemplates all possible values,
including those that are extremely unlikely to happen. When the decisions
are made repeatedly over time, it seems appropriate to find a solution which
works well on average and use a stochastic optimization problem. However,
these types of problems are mostly computationally complex. Therefore,
there is a fundamental trade-off between these two approaches (Giuseppe
and Fabrizio, 2006, Preface).

Wald (1945) introduced a minimax problem which is an example of a ro-
bust optimization analysis. The origin of the stochastic approach dates back
to the work of Dantzig (1955). In this thesis, the main focus is on stochastic
optimization problems, specifically the ones which include a chance con-
straint and initialed with Charnes and Cooper (1959).

In the next two sections, some standard models for formulating a stochas-
tic optimization problem are presented. Section 1.2.2 is devoted to one of
these standard forms which includes a chance constraint.

1.2.1 Examples of stochastic optimization problems

Consider an optimization problem in the form of problem (11). Assume that
ξ is a random vector and E (ξ) and Var (ξ) are known and well defined. One
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simple method for incorporating the randomness of ξ into the optimization
problem is to replace all random variables with their corresponding mean
values. For example, problem (11) is reformulated as follows:

min
x

F (x, E (ξ)) (12)

subject to:{
gj (x, E (ξ)) ≤ 0, j = 1, 2, . . . , m,
x ∈ X .

This is called the expected value (EV) problem or mean value problem. Problem
(A.4) in paper A (page 62) is an example of an EV problem. In practice, we
can not trust in the solution to an EV problem unless there is no or little
dependency between the optimal value of this problem and the random vari-
ables ξ (Birge and Louveaux, 2011, p. 165). One simple modification is to
incorporate the dispersion of the random variables into the model, such as

min
x

F (x, E (ξ) + h0 (x, Var (ξ))) (13)

subject to:{
gj (x, E (ξ)) + hj (x, Var (ξ)) ≤ 0, j = 1, 2, . . . , m,
x ∈ X ,

where hj : Rn × Rs×s → R, ∀j. Problem (A.5) in paper A (page 62) is an
example of the modification of the EV problem.

Another simple approach is when the decision variables are chosen based
on the expectation of the objective function. The formulation is

min
x

E (F (x, ξ)) (14)

subject to:{
gj (x, E (ξ)) ≤ 0, j = 1, 2, . . . , m,
x ∈ X ,

where ξ has a known distribution function and the expected value functions
are well defined.

If the optimization problem is convex, using Jensen’s inequality, it is easy
to show that F (x, E (ξ)) ≤ E (F (x, ξ)). Therefore, the optimal value of prob-
lem (14) is always larger than the optimal value of the EV problem.

Problem (14) minimizes the expectation of the objective function and re-
quires the satisfaction of the constraints on average, when ξ is a random vec-
tor. This kind of formulating a stochastic problem is also not suitable when
some of the constraint functions, gj (x, ξ), j = 1, 2, . . . , m, have high variabil-
ity (Dentcheva, 2006, p. 50). Finally, another standard way of incorporating
the randomness into an optimization problem is formulating a problem with
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chance constraints. This is discussed in detail in the next section.

1.2.2 Chance constraint problems

As mentioned above, problem (14) is also not suitable when some of the
constraint functions have high variability. In fact, this kind of formulating a
stochastic problem is not satisfactory in incorporating the dispersion of the
random vectors into the optimization problem. A solution, which was intro-
duced by Charnes and Cooper (1959), is to define constraints with probability
functions instead. One can define a stochastic problem, such as

min
x

E (F (x, ξ)) (15)

subject to:{
P
(

gj (x, ξ) ≤ 0, j = 1, 2, . . . , m
)
≥ 1− α0,

x ∈ X ,

where 0 < α0 < 1 is a fixed value. This means that for a given decision
variable, x, we do not reject the statistical hypothesis that the constraints
gj (x, ξ) ≤ 0, j = 1, 2, . . . , m, are satisfied (Shapiro et al., 2009, p. 87). This is
certainly a weaker condition than satisfying the constraints gj (x, ξ) ≤ 0 for
all possible realizations of ξ, as we seek in the robust optimization analysis.

Constraints defined with probability functions are called chance constraints
(or probabilistic constraints). The constraint

P
(

gj (x, ξ) ≤ 0, j = 1, 2, . . . , m
)
≥ 1− α0,

is called a joint chance constraint. One can also define individual chance con-
straints as below:

P
(

gj (x, ξ) ≤ 0
)
≥ 1− α0j, j = 1, 2, . . . , m,

where 0 < α0j < 1, j = 1, 2, . . . , m, are m fixed values. The latter is studied in
the context of stochastic ordering/dominance constraint problems.

A chance constraint which can be written as P (gi (x) ≥ ξi , i = 1, 2, . . . , s) ≥
1− α0, where gi : Rn → R, is called a separable chance constraint. Otherwise,
it is called a non-separable constraint. A separable chance constraint prob-
lem may lead to a simpler problem, since this constraint is equivalent to
F (g1 (x) , g2 (x) , . . . , gs (x)) ≥ 1− α0, where F : Rs → R is the joint cumula-
tive distribution function of the vector (ξ1, ξ2, . . . , ξs). Problem (A.6) in paper
A (page 63) is an example of non-separable chance constraint problems.

In recent years, chance constraint problems have been applied in different
fields for example wind power, see, e.g., Elshahed et al. (2013) and Wang
et al. (2012), production planning, see, e.g., Lejeune and Ruszczynski (2007)
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and chemical processing, see, e.g., Henrion and Moller (2003).
In general, solving a chance constraint problem numerically is a difficult

task since

1 It is usually difficult to compute the exact value of P (g (x, ξ) ≤ 0) at
x ∈ X , even for a simple function g (x, ξ), e.g., linear function. Thus, it
is difficult to check the feasibility of a solution and in fact, sometimes
the only way to check this is by using Monte Carlo sampling.

2 The feasible set defined by a chance constraint can be non-convex even
if X is a convex set and g (x, ξ) is a convex function of x for every
possible realization of ξ.

Accordingly, in the following section, we study the conditions that may
lead to the convexity of the feasible set in the chance constraint problems.

Convexity of the feasible set in a chance constraint optimization problem
When a mathematical optimization problem is formulated with a chance con-
straint, it is very important to clarify whether the problem is convex. If the
convexity is satisfied, a numerical solution for the problem is possible.

Regarding this issue, in the past 50 years, some new mathematical con-
cepts and the proof of some basic theorems have been released. For example,
Prekopa (1971) introduced and studied the concept of logarithmic concave
measures. Borell (1974); Rinott (1976) and Brascamp and Lieb (1976) gener-
alized this definition to the definition of α-concavity of the measures. We
review some of these concepts and theorems in the following.

In section 1.1.1, a convex (non-convex) set and an α-convex (α-concave)
function were defined. The definition of α-concavity can be extended for a
probability measure function in the following way:

Definition 5. Fix −∞ ≤ α ≤ ∞, a probability measure function, P, defined on the
Borel subsets of a convex set Ω ⊂ Rs is said to be α-concave if for all sets A, B ⊂ Ω
and 0 ≤ λ ≤ 1, the following inequality holds true:

P (λA + (1− λ) B) ≥ mα (P (A) , P (B) , λ) ,

where λA + (1− λ) B = {λa + (1− λ) b |a ∈ A, b ∈ B} and

mα (P (A) , P (B) , λ) =


P (A)λP (B)(1−λ) if α = 0,
max {P (A) , P (B)} if α = ∞,
min {P (A) , P (B)} if α = −∞,(
λP (A)α + (1− λ) P (B)α)1/α otherwise.

With this definition of the α-concavity for the probability measures, it is
only possible to define an α-concave distribution function on a continuous
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set. This is because, the set Ω ⊂ Rs is assumed to be convex. This definition
is extended to the discrete distribution functions as follows:

Definition 6. Fix −∞ ≤ α ≤ ∞, a distribution function, F (ξ), defined on the set
A ⊂ Rs is said to be α-concave if for all z, ξ1, ξ2 ∈ A and 0 ≤ λ ≤ 1, the following
inequality holds true:

F (z) ≥ mα (F (ξ1) , F (ξ2) , λ) ,

where z ≥ λξ1 + (1− λ) ξ2
2. This is an α-concave continuous distribution function

if A = Rs.

Although, many multivariate probability distribution functions are not con-
cave, there are a wide range of distributions which are quasi-concave or even
log-concave (Prekopa, 1971). The normal, the Wishart, the beta, the Dirichlet,
and the gamma distributions are some examples of continuous log-concave
multivariate distribution functions, see, e.g., Prekopa (1971) and Shapiro et al.
(2009, p. 102). Likewise, the binomial, the Poisson, the geometric, and the
negative binomial distributions are some examples of discrete log-concave
distributions, see, e.g., An (1995).

The main results in the convexity theory of optimization problems with
chance constraints are the following two theorems. The proofs can be found
in Shapiro et al. (2009, pp. 107-108).

Theorem 2. Let the functions gj : Rn ×Rs → R, j = 1, 2, . . . , m, be quasi-convex
jointly in both arguments3 and ξ ∈ Rs be a random vector with an α-concave prob-
ability distribution, then the function

G (x) = P
(

gj (x, ξ) ≤ 0, j = 1, 2, . . . , m
)

is α-concave on the set R =
{

x ∈ Rn
∣∣∃ξ ∈ Rssuch that gj (x, ξ) ≤ 0, ∀j

}
.

As a consequence of the above theorem, we conclude the convexity of the
feasible set in a chance constraint optimization problem in the following the-
orem.

Theorem 3. Let the functions gj : Rn ×Rs → R, j = 1, 2, . . . , m, be quasi-convex
jointly in both arguments and ξ ∈ Rs be a random vector with an α-concave proba-
bility distribution, then the following set is convex and closed:

C =
{

x ∈ Rn ∣∣P (gj (x, ξ) ≤ 0, j = 1, 2, . . . , m
)
≥ 1− α0

}
.

2The inequality relationship between two vectors x and y in Rs is defined as follows: x ≥ y if
xi ≥ yi , i = 1, 2, . . . , s.

3That means for all (x1 , ξ1) , (x2, ξ2) ∈ Ω ⊂ Rn ×Rs, we have

gj (λx1 + (1− λ) x2 , λξ1 + (1− λ) ξ2) ≤ max
{

gj (x1, ξ1) , gj (x2 , ξ2)
}
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Applying this theorem in a sophisticated chance constraint problem may lead
to a convex optimization problem which can be solved numerically. Shapiro
et al. (2009, Chap. 4) discussed the continuity and differentiability of an α-
concave function and based on that presented some numerical solutions for
chance constraint problems. However, it is generally difficult to obtain these
numerical solutions and other approaches, such as sample average approxi-
mation, are preferred.

Now, look again at problem (A.6) (page 63) which we solve in paper
A. Considering the definitions and theorems of section 1.1.1 and the cur-
rent section, we want to investigate the convexity of the problem. In this
problem, the decision variables are denoted by r = (r1, r2, . . . , rk) and the
parameters, which are random, are denoted by B = (B1, B2, . . . , Bk) and
D = (D11, D12, . . . , Dks). In addition, (nmin)j , j = 1, 2, . . . , s, and K are as-
sumed to be some non-negative constant values.

To investigate the convexity of the objective function in problem (A.6),
based on theorem 1, we know that the affine function (nmin)j −∑k

i=1 riDij for
a specific D is convex. In the same theorem, it is stated that the maximum of
two convex functions is convex. Thus, max

{
(nmin)j −∑k

i=1 riDij, 0
}

is convex
for each D. Clearly, the sum of some non-negative convex functions is con-

vex and consequently ∑s
j=1 max

{
(nmin)j −∑k

i=1 riDij, 0
}

is convex for each
D. Finally, since the expected value of a convex function is convex (Boyd and
Mutapcic, 2006), the objective function of problem (A.6) is convex.

To investigate the convexity of the feasible set, we look into theorem 3.
Sufficient conditions for the convexity of the feasible set in problem (A.6)
are that the random vector B has a log-concave probability distribution and
g (r, B) = ∑k

i=1 riBi − K is a quasi-convex function jointly in both arguments
r and B. Unfortunately, g (r, B) is not necessarily quasi-convex in both argu-
ments (Shapiro et al., 2009, p. 109), and we can not prove the convexity of the
feasible set.

To sum up, we could not prove the convexity of problem (A.6) to find a
numerical solution to this problem. Instead, we use a sample average approx-
imation algorithm to obtain the solution. In the next section, the algorithms
to solve stochastic optimization problems are discussed.

1.3 Stochastic programming (algorithms)

In section 1.2, different approaches for incorporating the randomness of the
parameters into an optimization problem were discussed. In this part, we ex-
plain some methods for solving such problems. In the following, we assume
that the set X is convex. In addition, we assume that the functions F (x, ξ)
and gj (x, ξ) , j = 1, 2, . . . , m, are convex functions of x for each ξ.

Problem (12) is simply equivalent to the deterministic problem (11) when
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the random variables are replaced with their corresponding mean values. In
fact, in the application, they are mostly replaced with the estimation of their
corresponding mean values. In any case, we need to solve a convex prob-
lem, and we can use the well-known methods of solving convex optimization
problems. As an example, problem (A.4) in paper A (page 62), which is in
the form of problem (12), is simply reformulated as a linear optimization
problem and can be solved with the simplex method.

In addition, if the functions hj, j = 1, 2, . . . , m, in problem (13) are convex
functions of x for each ξ, then this problem would also be convex. As an
example, problem (A.5) in paper A (page 62), which is in the form of problem
(13), is a convex problem and can be solved with the interior point methods
which were explained in section 1.1.3.

Likewise, it can be shown that with the assumption of convexity for the
functions F and gj, j = 1, 2, . . . , m, problem (14) is a convex problem (Boyd
and Mutapcic, 2006). Consider a case where the expected value function
E (F (x, ξ)) can not be written in a closed form even though the function
F (x, ξ) is easily computable in x for each ξ. For example, consider the fol-
lowing problem:

min
x

E

(
s

∑
j=1

max
{

nj − ξT
j x, 0

})
(16)

subject to:{
aTx ≤ b,
x ∈ X ,

where nj, j = 1, 2, . . . , s, a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are fixed
known values and ξ j =

(
ξ1j, ξ2j, . . . , ξnj

)
, j = 1, 2, . . . , s, are random vectors.

The objective function of this problem is called the expected total violation func-
tion (Boyd and Mutapcic, 2006). Note that the objective function of problem
(A.6) in paper A (page 63) is in the form of the objective function of problem
(16).

There are various methods to calculate the optimal value of such a prob-
lem. One way is to use a stochastic projected sub-gradient method, see, e.g.,
Boyd and Mutapcic (2006). This method is explained in section 1.3.1. We can
also approximate the objective function with Monte Carlo simulations. We
refer to this as the sample average approximation method, see, e.g., Kleywegt
et al. (2001). We explain this method in section 1.3.2.

Another stochastic problem which was discussed in section 1.2 is a chance
constraint problem. As mentioned in page 16, except in some very spe-
cial cases, solving a chance constraint problem numerically is a difficult
task. There are two reasons for that. First, for a given x ∈ X , the quan-
tity P (g (x, ξ) ≤ 0) may be hard to be computed, since it requires a multi-

20



1. Mathematical optimization

dimensional integration. Second, the feasible set defined by a chance con-
straint may be a non-convex set. For example, we explained that problem
(A.6) is not necessarily a convex problem. Accordingly, for solving a chance
constraint problem, some sampling approximation methods are developed.

Sampling approximation methods for chance constraint problems went
into two different directions. One is the scenario approximation method,
and the other is the sample average approximation method. In the scenario
approximation method, a finite number of observations are drawn from ei-
ther the exact distribution of the random vector or the estimated distribu-
tion. Then, the problem is discretized and solved as a deterministic prob-
lem, see, e.g., Dentcheva et al. (2000). In the sample average approximation
method, the original distribution of the random vector is replaced with an
empirical distribution. This method is also based on the Monte Carlo sam-
pling. This means that a finite number of observations are drawn from the
exact/estimated distribution of the random vector and then, the problem is
reformulated to be solved. In fact, the two methods are very similar except
that in the scenario approximation method, the constraint should be satisfied
for all drawn samples while in the sample average approximation method, it
is not necessary, see, e.g., Luedtke and Ahmed (2008) and Pagnoncelli et al.
(2009).

The scenario approximation method is very conservative, and it is simi-
lar to the robust optimization problems when the number of samples is in-
creased. The sample average approximation method is less conservative, and
it allows a few samples to violate the constraints. Instead, the sample av-
erage approximation method is usually computationally more complex than
the scenario approximation method. In this thesis, we use the sample average
approximation method.

The sample average approximation method for a chance constraint prob-
lem is a variation of the well-known sample average approximation method
for stochastic problems with expected value objective functions. As men-
tioned earlier, the sample average approximation method, for solving stochas-
tic problems with expected value objective functions, is explained in sec-
tion 1.3.2. In this section, we also explain the sample average approximation
method for solving chance constraint problems.

In paper A, we suggest another method to solve a chance constraint prob-
lem, namely the majorization method. Section (1.3.3) is devoted to explain
this method in more details.

1.3.1 Stochastic projected sub-gradient method

One way to calculate the optimal value of problem (16) is to use a stochastic
projected sub-gradient method. This method is almost the same as the sub-
gradient method, but it uses a noisy sub-gradient instead of an ordinary sub-
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gradient in each iteration. Hence also, the stochastic projected sub-gradient
method is an extended version of the projected sub-gradient method. This
method is used when the true sub-gradient can not be computed easily e.g.,
for an expected function (Shor, 1998, Chap. 2.4).

In the present section, the concept of a noisy sub-gradient is explained and
it is shown how one can obtain a noisy sub-gradient for an expected function.
Furthermore, the convergence analysis of the stochastic sub-gradient method
is explained, and based on that an algorithm for obtaining the optimal value
of problem (16) is presented as an example.

Definition 7. Suppose F : Rn → R is a real valued convex function on a convex
set C in the Euclidean space Rn. A random vector h̃ (x0) ∈ C is called a noisy
(unbiased) sub-gradient of F at x0 ∈ C if h (x0) = E

(
h̃ (x0)

)
∈ ∂F (x0).

Below, it is explained that how one can obtain a noisy sub-gradient for an
expected function like E (F (x, ξ)).

Noisy sub-gradient of an expected function value In the following, we
compute a noisy sub-gradient for the function f (x) = E (F (x, ξ)) at x, where
F : Rn ×Rs → R and for each ξ, F (x, ξ) is a convex function of x.

Let h̃ : Rn ×Rs → Rn be a sub-gradient of F (x, ξ) at x0 for each ξ, i.e.,
h̃ (x0, ξ) ∈ ∂xF (x0, ξ). We show that h (x0) = E

(
h̃ (x0, ξ)

)
is a sub-gradient

for the function f (x) = E (F (x, ξ)) at x0.
By definition, for any x and each ξ, the following inequality holds true:

F (x, ξ) ≥ F (x0, ξ) + h̃ (x0, ξ)T (x− x0) .

Multiplying this by the density of the random vector ξ, which is non-negative,
and integrating gives

E (F (x, ξ)) ≥ E (F (x0, ξ)) + E
(
h̃ (x0, ξ)

)T
(x− x0)

= f (x0) + h (x0)
T (x− x0) .

Therefore, h̃ (x0, ξ) is a noisy sub-gradient of the expected value function at
x0 for each ξ.

One can generate a sample from the distribution of the random vector ξ
and calculate the noisy sub-gradient of E (F (x, ξ)) at x0. Another solution
is to generate M samples from the distribution of the random vector ξ and
calculate the mean of the noisy sub-gradients at x0. This helps us to use a
sub-gradient method without computing the sub-gradients of a complicated
expected value function.

Convergence analysis Consider problem (14) with a convex objective func-
tion and a convex feasible set denoted by C, i.e, C =

{
x ∈ X

∣∣gj (x, E (ξ)) ≤ 0, ∀j
}

.
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Assume that the sub-gradient of the objective function can not be easily com-
puted but it is easy to compute the sub-gradient of F (x, ξ) for each ξ. We
can apply the projected sub-gradient algorithm when the sub-gradients have
been replaced with the noisy sub-gradients. This is called a stochastic pro-
jected sub-gradient method. In the following, we discuss the convergence of
a stochastic projected sub-gradient method.

Assume x∗ is the optimum value of problem (14). Given x(1), we generate
the sequence x(2), x(3), . . . , x(L) in a stochastic projected sub-gradient method
by the formula

x(l+1) = ΠC
(

x(l) − βl h̃
(

x(l), ξ
))

, l = 1, 2, . . . , L− 1,

where ΠC is the orthogonal projection of a point onto the feasible set C and

h̃
(

x(l), ξ
)

is a noisy sub-gradient of F at x(l).

Assuming E
∥∥h̃ (x, ξ)

∥∥
2 ≤ G, ∀x ∈ C and maxx

∥∥∥x(1) − x
∥∥∥

2
≤ B, where G

and B are some known constants, we have

min
l=1,...,L

E
(

f
(

x(l)
))
− f (x∗) ≤

B2 + G2 ∑L
l=1 β2

l

2 ∑L
l=1 βl

. (17)

The proof can be found in Boyd and Mutapcic (2006).
Based on the above inequality, for βl = 1/l, the right hand side converges

to zero, i.e., minl=1,...,L E
(

f
(

x(l)
))

converges to f (x∗). Subsequently, by
using Jensen’s inequality and the concavity of the minimum function, we can
show that E

(
minl=1,...,l f

(
x(l)
))

converges to f (x∗). Finally, by Chebyshev’s
inequality, we can show the convergence in probability.

If we fix the number of iterations and use the constant step size policy, i.e.,
βl = β, we can find the best constant step size which minimizes the convex
function f (β) =

(
B2 + G2Lβ2) /(2Lβ) with respect to β. By differentiating

f (β) and setting it equal to zero, we get

β =
B

G
√

L
.

For such a constant step size, the inequality (17) is written as

E
(

min
l=1,...,l

(
f
(

x(l)
)))

− f (x∗) ≤ BG
2
√

L
.
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By Chebyshev inequality, for ε ≥ 0, we have

P
(

min
l=1,...,L

(
f
(

x(l)
))
− f (x∗) ≥ ε

)
≤ ε−1E

(
min

l=1,...,L

(
f
(

x(l)
))
− f (x∗)

)
≤ BG

2ε
√

L
.

If P
(

minl=1,...,l

(
f
(

x(l)
))
− f (x∗) ≥ ε

)
= 1− α, then for L ≥ B2G2/

(
4ε2 (1− α)2

)
,

the approximate solution, minl=1,...,L

(
f
(

x(l)
))

will converge in probability
to the solution f (x∗).

Now, as an example, we give the stochastic projected sub-gradient algo-
rithm to find an optimum solution to problem (16).

Solving problem (16) with stochastic projected sub-gradient method The
objective function and the feasible set in problem (16) are convex. In addi-
tion, the objective function is piece-wise linear, and it is not differentiable
everywhere. Thus, the sub-gradient method seems appropriate for this ex-
ample. In the following, we outline an algorithm to solve problem (16) via
the stochastic projected sub-gradient method.

1 Choose the initial value x(1). It is usually the value obtained by the
equivalent deterministic problem.

2 Let f (1)best = E
(

F
(

x(1), ξ
))

, this can be calculated for example by Monte
Carlo sampling.

3 Set L = B2G2/
(

4ε2 (1− α)2
)

, where G is a value such that E
∥∥h̃ (x, ξ)

∥∥
2 ≤

G, ∀x ∈ C and B is a value that satisfy maxx

∥∥∥x(1) − x
∥∥∥

2
≤ B, and ε, α

are arbitrary small values.

4 For l = 1, 2, . . . , L, do the following steps:

4-1 Generate one or more samples from the distribution of the random
vector ξ = (ξ11, ξ12, . . . , ξns).

4-2 Suppose h̃
(

x(l), ξ
)

is a noisy sub-gradient of the function

E (F (x, ξ)) = E

(
s

∑
j=1

max

{
nj −

n

∑
i=1

riξij, 0

})
,

at x(l). This means that

h̃
(

x(l), ξ
)

=
s

∑
j=1

M

∑
t=1

h̃j

(
x(l), ξ(t)

)
/M,
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where h̃j

(
x(l), ξ(t)

)
for t = 1, 2, . . . , M and j = 1, 2, . . . , s equals

h̃j

(
x(l), ξ(t)

)
=

 0 if nj ≤ ∑n
i=1 r(l)i ξ

(t)
ij ,

−
(

ξ
(t)
1j , ξ

(t)
2j , . . . , ξ

(t)
nj

)
otherwise,

and ξ(1), ξ(2), . . . , ξ(M) are M generated values obtained from the
previous step.

Note that, if h̃
(

x(l), ξ
)

equals zero, we should not stop the algo-
rithm since it may happen because of the randomness of the vector
ξ.

4-3 Let
x(l+1) = x(l) − B

G
√

L
h̃
(

x(l), ξ
)

,

where L, G and B are defined as before.

4-4 Project the point x(l+1) onto the set C =
{

x ∈ X
∣∣aTx ≤ b

}
. This

projection is arg minx∈C

∥∥∥x(l+1) − x
∥∥∥2

2
, where ‖.‖2 is the Euclidean

norm. Since C is convex and closed, this minimizer exists and it is
unique.

4-5 Calculate the value f
(

x(l+1)
)

= E
(

F
(

x(l+1), ξ
))

, using the gener-
ated samples in step 4-1.

4-6 Let f (l+1)
best = min

{
f
(

x(l+1)
)

, f (l)best

}
.

As stated previously, the objective function of problem (16) is similar to
the objective function of problem (A.6) in paper A (page 63). However, the
existence of a chance constraint in problem (A.6) makes it impossible to use
the stochastic sub-gradient method for solving this problem.

1.3.2 The sample average approximation method

In the previous section, we explained the stochastic projected sub-gradient
method to solve an optimization problem with an expected value objective
function. Another method for solving such a problem is the sample average
approximation (SAA) method. The SAA method can also be used in chance
constraint problems. Therefore, we divide this section into two parts. In
the first part, the SAA method for solving an optimization problem with the
objective function in the form of an expectation is explained, and in the sec-
ond part, the SAA method for solving an optimization problem with chance
constraints is explained.
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An optimization problem with an expected value objective function Con-
sider problem (14) with a convex objective function and a closed convex fea-
sible set C =

{
x ∈ X

∣∣gj (x, E (ξ)) ≤ 0, ∀j
}

. Assume that the expected value
function f (x) = E (F (x, ξ)) can not be written in a closed form and it is also
difficult to be computed while the function F (x, ξ) is easily computable for
given x and ξ. Let us call this problem the true problem.

Suppose that we can generate independent samples ξ(1), ξ(2), . . . , ξ(N)

from the distribution of the random vector ξ. Using these samples, the sam-
ple average approximation problem associated with the true problem is writ-
ten as min

x∈C
f̂N (x), where

f̂N (x) =
1
N

N

∑
t=1

F
(

x, ξ(t)
)

.

Convergence analysis It is clear that for each x, the function f̂N (x) is
an unbiased estimator of f (x) and based on the law of large numbers (LLN),
for every fixed x, f̂N (x) converges to f (x), w.p.1 as N → ∞. However,
the optimal value of the sample average approximation problem does not
necessarily converge to the optimal value of the true problem. To ensure
such a convergence, we need a uniform convergence of f̂N (x) to f (x) as it is
defined below.

Definition 8. f̂N uniformly converges to f if, for any x, the following two condi-
tions hold true:

1 For any sequence xN converging to x one has lim inf
N→∞

f̂N (xN) ≥ f (x).

2 There exists a sequence xN converging to x such that lim sup
N→∞

f̂N (xN) ≤

f (x).

The following theorem implies the conditions that satisfy the uniform conver-
gence of f̂N (x) to f (x). The proof can be found in Ruszczynski and Shapiro
(2003, pp. 363-364).

Theorem 4. Suppose that (i) the LLN conditions hold (ii) C is compact and non-
empty, (iii) the function F (x, ξ) is continuous on C for every ξ, and (iv) F (x, ξ),
x ∈ C, is dominated by an integrable function. Then, the function f (x) is finite-
valued and continuous on C and f̂N (x) converges uniformly to f (x) as N → ∞.

Let u∗ and S∗ denote the optimal value and the set of optimal solutions of
the true problem respectively. Likewise, let û and Ŝ denote their counterpart
SAA estimators, i.e, û and Ŝ are the optimal value and the set of optimal solu-
tions of the SAA problem. The following theorem discusses the convergence
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property of the SAA estimators. The proof can be found in Ruszczynski and
Shapiro (2003, p. 362).

Theorem 5. Suppose that (i) C is compact, (ii) the sets of optimal solutions to the
true problem, S∗, and to the SAA problem, Ŝ, are non-empty and contained in C, (iii)
the function f (x) is finite-valued and continuous on C, and (iv) the function f̂N (x)
converges uniformly to f (x). Then, as N → ∞, the optimal value, û, converges to
u∗ and the deviation between the sets S∗ and Ŝ converges to zero, where the deviation
between two sets S∗ and Ŝ is defined as

D
(
S∗, Ŝ

)
= sup

x∈S∗

(
inf

x′∈Ŝ

∥∥x− x′
∥∥) .

The above theorem implies that the SAA estimator, û, is a consistent estimator
for u∗ since it converges w.p.1 to u∗ as the Monte Carlo sample size N, goes
to infinity.

Convergence rate and sample size estimation So far, the SAA problem
associated with the true problem was defined, and a theorem was given that
clarified the sufficient conditions for the convergence of the SAA estimators.
In practice, we need to choose a finite N value rather than an infinite number
of samples. So, a value N is estimated such that the SAA estimators provide a
given accuracy. For example, the estimate of the sample size can be obtained
based on the convergence rate. The convergence rate of the SAA estimators
has been studied extensively, see, e.g., Ruszczynski and Shapiro (2003, pp.
371-382). We explain this subject briefly in the following.

First let us define sets of ε-optimal solutions. A feasible point x̄ is said
to be an ε-optimal solution for ε ≥ 0, if f (x̄) ≤ u∗ + ε. The set of ε-optimal
solutions of the SAA problem and the true problem are denoted by Ŝε and
Sε respectively. Clearly, when ε = 0 then Ŝε = Ŝ and Sε = S∗.

Consider δ and ε such that 0 ≤ δ ≤ ε. It can be shown that P
(
Ŝδ ⊂ Sε

)
≥

1− α, if the sample size, N, holds the following inequality, see, e.g., Kleywegt
et al. (2001):

N ≥ 3σ2
max

(ε− δ)2 log
(
|C|
α

)
,

where C is a finite set and |C| is the number of elements in the set C and

σ2
max = max

x∈C−Sε
Var(F (u (x) , ξ)− F (x, ξ)).

This suggests an estimate of the sample size required to find an ε-optimal
solution with probability at least 1 − α. However, this estimation has two
shortcomings. First, it is not easy to compute σ2

max and/or |C|. Second,
the obtained estimates of N are typically too conservative for a practical use
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(Kleywegt et al., 2001). In practice, it has been suggested to use a relatively
smaller sample size and investigate the validity of the SAA estimators later.

Validation analysis Suppose x̂ is an optimal solution to the SAA prob-
lem with a finite sample size. We define u∗− f (x̂) as the optimality gap. In the
following, we describe a technique to estimate the optimality gap of a candi-
date solution, x̂. This technique is based on the construction of an upper and
a lower bound for the true optimal value, u∗. The distance between the upper
and lower bounds is estimated and used as an estimate of the optimality gap.
This method was suggested by Mak et al. (1999).

Clearly for all x′ ∈ C, min
x∈C

{
f̂N (x)

}
≤ f̂N (x′). By taking the expectation

on both sides and minimizing the right hand side over all x′ ∈ C, we have

E
(

min
x∈C

{
f̂N (x)

})
≤ min

x′∈C

{
E
(

f̂N
(
x′
))}

, or

E (û) ≤ u∗.

So, û is a negative biased estimator for u∗. On the other hand, since u∗ is the
minimum value of E (F (x, ξ)) for all x ∈ C, then u∗ ≤ E (F (x̂, ξ)). Therefore,

E (û) ≤ u∗ ≤ E (F (x̂, ξ)) . (18)

To estimate the lower bound, we generate M independent samples of the
random vector ξ each of size N and solve the SAA counterpart problem M
times. Assume ûl , l = 1, 2, . . . , M, denote the obtained optimal values. Then
the quantity

ū =
1
M

M

∑
l=1

ûl

is an unbiased estimator of E (û). In addition, an estimate of the variance of
the above estimator can be computed as

S2
M =

1
M− 1

M

∑
l=1

(ûl − ū)2.

For the upper bound, we generate a sample of the random vector ξ with
size N′, say, and estimate the true objective value f (x̂) = E (F (x̂, ξ)). Since
computing f at specific points is usually easy, we can choose N′ much larger
than N. The quantity

F̄N′ (x̂) =
1

N′
N′

∑
t=1

F
(

x̂, ξ(t)
)

,
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is an unbiased estimator of f (x̂). In addition, an estimate of the variance of
the above estimator can be computed as

S2
N′ (x̂) =

1
N′ − 1

N′

∑
t=1

(
F
(

x̂, ξ(t)
)
− F̄N′ (x̂)

)2
.

Finally, an estimate of the interval (18) is as follows:

ū− ψ−1 (1− α)
SM√

M
≤ u∗ ≤ F̄N′ (x̂) + φ−1 (1− α)

SN′ (x̂)√
N′

,

where ψ is the cumulative distribution function of the t-distribution with M−
1 degrees of freedom and φ is the standard normal cumulative distribution
function.

If the estimated optimality gap is not larger than some pre-specified thresh-
old value, it means that the sample size N has given a sufficiently good op-
timal solution. Otherwise, we need to solve the SAA problem with a larger
sample size.

Algorithm We state the following algorithm to solve an optimization
problem with an expected value objective function. As an example, this al-
gorithm can be used to solve problem (16). Before running the algorithm,
we choose the values M, N and N′ for the number of replications of the
algorithm and the sizes of the Monte Carlo sampling. If the value

(UpperBound− LowerBound)
LowerBound

× 100%

is not sufficiently small, e.g., less than 5%, we would repeat the algorithm for
another value of N.

1 For l = 1, 2, . . . , M, do the following steps:

1-1 Generate i.i.d. samples: Generate ξ(1), ξ(2), . . . , ξ(N) from the dis-
tribution of the random vectors ξ.

1-2 Solve the SAA problem: Solve the SAA problem associated with
the true problem using the generated samples in step 1-1. Let x̂l
and ûl be the optimal solution and the optimal value obtained in
iteration l.

1-3 Calculate F̄N′ (x̂l): Generate ξ(1), ξ(2), . . . , ξ(N′) and calculate the
value F̄N′ (x̂l).
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2 Calculate ū = 1
M ∑M

l=1 ûl and S2
M = 1

M−1 ∑M
l=1 (ûl − ū)2. Let

LowerBound = ū− ψ−1 (1− α)
SM√

M
.

3 Find min
l

F̄N′ (x̂l) and let x̂Optimal be its relevant optimal solution.

4 Generate ξ(1), ξ(2), . . . , ξ(N′) and recalculate F̄N′
(

x̂Optimal

)
and evaluate

S2
N′

(
x̂Optimal

)
=

1
N′ − 1

N′

∑
t=1

(
F
(

x̂Optimal , ξ(t)
)
− F̄N′

(
x̂Optimal

))2
.

Finally, let

UpperBound = F̄N′
(

x̂Optimal

)
+ φ−1 (1− α)

SN′
(

x̂Optimal

)
√

N′
.

5 Compute the gap between the upper and lower bounds.

In the above, we studied a stochastic problem with an expected value
objective function while the feasible set is independent of the sample. The
feasible set in problem (A.6), which we solve in paper A, is not independent
of the sample. In fact, problem (A.6) (page 63) is a chance constraint problem
with an expected value objective function. The SAA method for solving a
chance constraint problem is explained in the following section.

An optimization problem with chance constraints Consider problem (15)
with a convex objective function and a closed set X . Let us call this problem
the true problem. We restrict our discussion to the case where m = 1. In fact,
there is no loss of generality in using m = 1, since the joint chance constraint
in problem (15) can be written as

P
(

gj (x, ξ) ≤ 0, j = 1, 2, . . . , m
)

= P (g (x, ξ) ≤ 0) ≥ 1− α0,

where g (x, ξ) = max
j

gj (x, ξ). For the sake of simplicity, we first assume that

the expected value function f (x) = E (F (x, ξ)) is given explicitly and only the
chance constraint should be approximated. However, in problem (A.6), the
objective function can not be simply computed and we need to approximate
the objective function and the chance constraint together. In this case, as it is
explained in paper A, we combine the two SAA algorithms.

Suppose that we can generate independent samples ξ(1), ξ(2), . . . , ξ(N)

from the distribution of the random vector ξ. Clearly, we can write a proba-
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bility function as an expectation function, e.g., P (x ∈ A) = E (1A (x)), where
1A(.) is the indicator function such that 1A (x) = 1 when x ∈ A and equals
zero otherwise. Therefore, the sample average approximation problem asso-
ciated with the true problem is written as min

x∈X
{ f (x) | p̂N(x) ≥ 1− α}, where

p̂N(x) =
1
N

N

∑
t=1

1(−∞,0)

(
g
(

x, ξ(t)
))

.

In this definition, we let the SAA problem have a risk level α ∈ (0, 1] which
may be different from α0 in problem (15).

Convergence analysis The function p̂N (x) is the proportion of times
that g

(
x, ξ(t)

)
≤ 0, t = 1, 2, . . . , N. p̂N (x) is clearly an unbiased estimator of

p (x) = P (g (x, ξ) ≤ 0). In addition, based on the LLN, p̂N (x) converges to
p (x), w.p.1 as N → ∞ for every fixed x. To ensure the convergence of the
optimal value of the SAA problem to the optimal value of the true problem,
we need a uniform convergence of p̂N (x) to p (x).

The following theorem implies the conditions that satisfy the uniform
convergence of p̂N (x) to p (x). The proof can be found in Shapiro et al.
(2009, p. 211).

Theorem 6. Suppose that (i) the LLN conditions hold (ii) g (x, ξ) is Caratheodory,
i.e., measurable for every x ∈ X and continuous for a.e. ξ, and (iii) for every x ∈ X ,
it holds that

P {ξ ∈ Ξ |g (x, ξ) = 0} = 0.

Then, the function p (x) is continuous on X and p̂N (x) converges uniformly to
p (x) as N → ∞.

Let u∗ and S∗ denote the optimal value and the set of optimal solutions of
the true problem respectively. Likewise, let û and Ŝ denote their counterpart
SAA estimators. The following theorem discusses the convergence property
of the SAA estimators, where α = α0. The proof can be found in Shapiro et al.
(2009, p. 211).

Theorem 7. Suppose that (i) the LLN conditions hold (ii) X is compact, (iii) the
function f (x) is continuous, (iv) g (x, ξ) is Caratheodory, and (v) there exist an
optimal solution x̄ such that for any ε > 0, there is a solution x ∈ X with ‖x− x̄‖ ≤
ε and P (g (x, ξ) ≤ 0) ≥ 1− α0. Then, as N → ∞, the optimal value, û, converges
to u∗ and the deviation between the sets S∗ and Ŝ converges to zero.

Theorem 7 clarifies the sufficient conditions for the convergence of the SAA
estimators as the sample size, N, goes to infinity. In practice, we need to
choose a finite N value rather than an infinite number of samples. Thus, we
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use an arbitrary sample size and investigate the validity of the SAA estima-
tors later.

Validation analysis Suppose x̂ is an optimal solution to the SAA prob-
lem with a finite sample size. There are two issues about this point that we
need to verify. First, we need to define whether it is a feasible solution for
the true problem. Second, we need to estimate the optimality gap u∗ − f (x̂).
In the following, we describe a technique to investigate the feasibility of a
candidate solution, x̂, and estimate the optimality gap.

To verify the feasibility of a candidate point, x̂, we generate samples
ξ(1), ξ(2), . . . , ξ(N′) and compute p̂N′ (x̂) which is the proportion of times
that g

(
x̂, ξ(t)

)
≤ 0, t = 1, 2, . . . , N′. If the sample size, N′, is sufficiently

large, then p̂N′ (x̂) is asymptotically normal with mean p (x̂) and variance
p̂N′ (x̂) (1− p̂N′ (x̂)) /N′. Therefore, an approximate upper bound, with 1− β
confidence, for the probability p (x̂) is given by

p̂N′ (x̂) + φ−1(1− β)

√
p̂N′ (x̂) (1− p̂N′ (x̂))

N′
,

where φ is the standard normal cumulative distribution function.
The point x̂ is considered as a feasible point for the true problem if the

above value is larger than 1− α0.
Now, we find an estimate of the optimality gap by constructing an upper

and a lower bound on u∗. To estimate the lower bound, we generate M
independent samples of the random vector ξ each of size N and solve the
SAA counterpart problem M times. Assume ûl , l = 1, 2, . . . , M, denote the
obtained optimal values. Rearrange the values ûl in a non-decreasing order
to obtain the order statistics û[l] for l = 1, 2, . . . , M. It can be shown that for
any M ≥M, l ≤M and β ≥ ∑Mi=0 (

M
i )(1/2)M, we have

P
(
û[l] ≤ u∗

)
≥ 1− β.

For example, for M = 10 and l = 2, we have P
(
û[2] ≤ u∗

)
≥ 0.989. The

proof can be found in Shapiro et al. (2009, pp. 218-220). Therefore, û[l] is a
100 (1− β)% confidence lower bound for the true optimal value, u∗.

To obtain an upper bound on u∗, we solve the SAA problem with α ≤ α0,
M times. Let ûl and x̂l denote the optimal value and one optimal solution of
iteration l. An upper bound on u∗ is given by the smallest ûl which corre-
sponds to a feasible solution.

Algorithm We state the following algorithm to solve a chance constraint
problem. Before running the algorithm, we choose the values M, N and N′
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for the number of replications of the algorithm and the sizes of the Monte
Carlo sampling. If the value

(UpperBound− LowerBound)
LowerBound

× 100%

is not sufficiently small, e.g., less than 5%, we would repeat the algorithm for
another value of N.

1 For l = 1, 2, . . . , M, do the following steps:

1-1 Generate i.i.d. samples: Generate ξ(1), ξ(2), . . . , ξ(N) from the dis-
tribution of the random vectors ξ.

1-2 Solve SAA (for lower bound): Solve the SAA problem associated
with the true problem, with α = α0, using the generated samples
in step 1-1. Let x̂1l and û1l be the optimal solution and the optimal
value obtained in iteration l.

1-3 Solve SAA (for upper bound): Solve the SAA problem associated
with the true problem, with α ≤ α0, using the generated samples
in step 1-1. Let x̂2l and û2l be the optimal solution and the optimal
value obtained in iteration l.

1-4 Posteriori check: Generate ξ(1), ξ(2), . . . , ξ(N′) and estimate pN
(
x̂2l

)
to verify whether x̂2l is feasible or non-feasible.

2 Rearrange f
(
x̂11

)
, f
(
x̂12

)
, . . . , f

(
x̂1M

)
in a non-decreasing order as fol-

lows:
f
(

x̂1[1]

)
≤ f

(
x̂1[2]

)
≤ . . . ≤ f

(
x̂1[M]

)
,

where f
(

x̂1[1]

)
is the smallest achieved optimal value and x̂1[1] is its

relevant optimal solution, f
(

x̂1[2]

)
is the second smallest optimal value

and x̂1[2] is its relevant optimal solution, and so on.

3 Pick for example the second smallest optimal value and let it be the
lower bound.

4 Find min
{

f
(
x̂2l

) ∣∣x̂2l is f easible
}

and let it be the upper bound. Also,
let x̂Optimal be its relevant optimal solution.

5 Compute the gap between the upper and lower bounds.

In the above algorithm, we assumed that the objective function has been
given explicitly. As stated before, problem (A.6) in paper A includes an ex-
pected value objective function and a chance constraint together. Hence, the
algorithm which is explained in section 3.2.3 of paper A, combines the two
SAA algorithms which are discussed above.
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1.3.3 Majorization

The SAA problem associated with a chance constraint problem is usually a
combinatorial problem which is difficult to be solved. Sometimes the chance
constraint is simplified as a non-probabilistic constraint. Of course, when
there is no chance constraint, the stochastic problem could be solved much
easier. For example, assume a stochastic problem with a chance constraint
defined by a linear inequality as

min
x

f (x) (19)

subject to:{
P
(
xTξ ≤ b

)
≥ 1− α0,

x ∈ X ,

where b is a fixed value. In addition, assume that the random vector ξ has a
multivariate normal distribution with mean µ and variance-covariance matrix
Σ. In this setting, the chance constraint defines a convex set, and it can be
transformed to the following constraint:

µTx + φ−1 (1− α0)
√

xTΣx ≤ b. (20)

Thus, under the assumption of normality, the stochastic problem (19) is sim-
plified and solved easier.

Now, consider a situation where ξi for any i = 1, 2, . . . , n is not nor-
mally distributed, but there is another variable, say ζi, which is normally
distributed and majorizes ξi as it is defined below.

Definition 9. A random variable X majorizes (dominates) another random variable
Y, denoted X � Y if

P (X ≤ y) ≤ P (Y ≤ y) , ∀y ∈ R.

It is common to say that the random variable X is "more diffused" than the
random variable Y, if X � Y.

One way to bound the optimal value of problem (19) from above is to
replace the ξi’s with more diffused normally distributed random variables,
ζi’s. Clearly, this leads to a stochastic problem with a constraint similar to
inequality (20) which is easier to handle. The majorization theorem, which
implies this method for finding an upper bound on the optimal value, is as
follows:

Theorem 8. Let x1, x2, . . . , xn and b be some (deterministic) known values. Assume
that the random variables ξi , i = 1, 2, . . . , n, are independent and ζi’s be a similar
collection of random variables which majorize the variables ξi’s, i.e., ζi � ξi for every
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i. Then,

P

(
n

∑
i=1

xiζi ≤ b

)
≤ P

(
n

∑
i=1

xiξi ≤ b

)
.

Proof. This is proved by induction. Assume that ζ1 � ξ1. Based on the
definition of majorization, we have P (x1ζ1 ≤ b) ≤ P (x1ξ1 ≤ b). Assume that

P
(

∑n−1
i=1 xiζi ≤ b

)
≤ P

(
∑n−1

i=1 xiξi ≤ b
)

. We need to show that P (∑n
i=1 xiζi ≤ b) ≤

P (∑n
i=1 xiξi ≤ b). To do so, we have

P

(
n

∑
i=1

xiξi ≤ b

)
=

∫
P

(
xnξn ≤ b−

n−1

∑
i=1

xiyi

)
dFξ1 ,...,ξn(y1, . . . , yk−1)

≥
∫

P

(
xnζn ≤ b−

n−1

∑
i=1

xiyi

)
dFξ1 ,...,ξn(y1, . . . , yk−1)

= P

(
xnζn +

n−1

∑
i=1

xiξi ≤ b

)

=
∫

P

(
n−1

∑
i=1

xiξi ≤ b− xnyn

)
dFζn(yn)

≥
∫

P

(
n−1

∑
i=1

xiζi ≤ b− xnyn

)
dFζn(yn)

= P

(
n

∑
i=1

xiζi ≤ b

)
. �

According to the above theorem, the set C1 = {x ∈ X |P (∑n
i=1 xiζi ≤ b) ≥ 1− α0 }

is contained in the set C2 = {x ∈ X |P (∑n
i=1 xiξi ≤ b) ≥ 1− α0 }. Therefore,

the optimal value of problem min
x∈C1

f (x) is an upper bound for the optimal

value of problem min
x∈C2

f (x). Since we have assumed that the ζi’s are normally

distributed random variables, it is not difficult to obtain the upper bound. A
similar discussion on bounding a chance constraint problem from above has
been given by Ben-Tal et al. (2009, pp. 105-109).

Likewise, we can bound the optimal value of problem (19) from below by
replacing the ξi’s with less diffused normally distributed random variables.
This leads to an algorithm which defines an upper and a lower bound for the
optimal value of the stochastic problem (19).

Finally, consider a situation where ξi for any i = 1, 2, . . . , n is not nor-
mally distributed and neither is there a normally distributed random variable
which majorizes ξi, but there is a normally distributed random variable, say
ζi, which γ-majorizes ξi as it is defined below.
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Definition 10. Fix 0 ≤ γ ≤ 1, a random variable X γ-majorizes (γ-dominates)
another random variable Y, denoted X �γ Y if

P (X ≤ y) ≤ P (Y ≤ y) + γ, ∀y ∈ R.

Using the above definition, our γ-majorization theorem is as follows:

Theorem 9. Let x1, x2, . . . , xn and b be some (deterministic) known values. Assume
that the random variables ξi , i = 1, 2, . . . , n, are independent random variables and
ζi’s be similar collection of random variables which γi-majorize the variables ξi’s, i.e.,
ζi �γi ξi for every i. Then,

P

(
n

∑
i=1

xiζi ≤ b

)
≤ P

(
n

∑
i=1

xiξi ≤ b

)
+

n

∑
i=1

γi .

The proof is similar to the proof of theorem 8, and it is also given in section
3.2.4 of paper A. According to the above theorem, the set

C1 =

{
x ∈ X

∣∣∣∣∣P
(

n

∑
i=1

xiζi ≤ b

)
≥ 1− α0 +

n

∑
i=1

γi

}

is contained in the set

C2 =

{
x ∈ X

∣∣∣∣∣P
(

n

∑
i=1

xiξi ≤ b

)
≥ 1− α0

}
.

Therefore, the optimal value of the problem min
x∈C1

f (x) is an upper bound

for the optimal value of problem (19). If ∑n
i=1 γi is close to zero such that

∑n
i=1 γi � α0, we can be hopeful to attain a good upper bound for the prob-

lem.
Likewise, a lower bound on the optimal value of problem (19) is obtained

by replacing the ξi’s with some normally distributed random variables, ζi’s,
where ξi �γi ζi for every i.

With the above discussion, to be able to find an upper bound and a lower
bound on the optimal value of problem (19), we should first find

- normally distributed random variables, e.g., ζ1i ∼ N
(

µ1i , σ2
1i

)
, i =

1, 2, . . . , n, that are γ-majorized by the random variables of the prob-
lem, i.e., ξi �γi ζ1i , ∀i, and

- normally distributed random variables, e.g., ζ2i ∼ N
(

µ2i , σ2
2i

)
, i =

1, 2, . . . , n, that γ-majorize the random variables of the problem, i.e.,
ζ2i �γi ξi , ∀i.
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One way to find such random variables with small fixed γi values is to solve
the following two optimization problems for i = 1, 2, . . . , n:

max
µ1i

,σ1i

µ1i

subject to:{
P (ξi ≤ y) ≤ P

(
ζ1i
−µ1i
σ1i

≤ y−µ1i
σ1i

)
+ γi , ∀y ∈ R,

σ1i ≥ 0,

and

min
µ2i ,σ2i

µ2i

subject to:{
P
(

ζ2i−µ2i
σ2i

≤ y−µ2i
σ2i

)
≤ P (ξi ≤ y) + γi , ∀y ∈ R,

σ2i ≥ 0.

In the application, we use a finite subset of R that has been observed or
generated from the known specific distribution of ξi. This reduces the above
two optimization problems to simple LP problems.

The constraint in problem (A.6) can also be simplified as inequality (20)
by substituting the random variables with normally distributed random vari-
ables that γ-majorize and are γ-majorized by the random variables of the
problem. Note that in problem (A.6), there is also an expected value objec-
tive function. Hence, the algorithm which is explained in section 3.2.4 of
paper A, combines the γ-majorization trick with the SAA algorithm.

To sum up, in paper A, we present two different algorithms. One com-
bines the SAA algorithm for solving a stochastic problem with an expected
value objective function and the SAA algorithm for solving a chance con-
straint problem. The other combines the SAA algorithm for solving a stochas-
tic problem with an expected value objective function and the γ-majorization
trick. We compare the results of both methods with respect to two things.
One is the estimated optimality gap, and the other is the time of solving the
problem. We will see that the γ-majorization algorithm gives a larger gap but
runs faster than the SAA algorithm.

2 Statistical modeling

Consider a dataset consisting of a binary response random variable and per-
haps some other variables. A possible approach to analyze a binary response
variable is to construct a statistical model. A statistical model is a mathe-
matical representation of the relationship between the response variable and
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some other variables, together with a measure of uncertainty. The aim of this
section is explaining different statistical models which are used in analyzing
such data with an emphasis on the correlated (in the sense explained later)
binary response data.

The statistical models for correlated binary data are divided into two some-
what different categories including cluster-specific models, such as mixed-
effects models and population-averaged models, such as beta-binomial mod-
els. We explain some examples of these models in sections 2.2.1-2.2.3. Cor-
related data may exhibit overdispersion. Hence, we also explain this phe-
nomenon and its potential causes in this section.

This chapter is divided into two parts. First, some basic models for ana-
lyzing binary data are studied. Then, some models for analyzing correlated
binary data are discussed.

2.1 Short introduction to the logistic regression model

Assume that Z1, Z2, . . . , ZN are N binary random variables such that Zi ∈
{0, 1} , ∀i. Let xi = (x1i , x2i , . . . , xci) denote c explanatory variables observed
for i = 1, 2, . . . , N. Assume that the Zis depend on the values of c explana-
tory variables. An appropriate distribution for Zi is the Bernoulli distribu-
tion with probability of success equal pi = P (Zi = 1 |xi ). It is clear that the
response variables, Zis, are not identically distributed since the pis differ
from one data point, xi, to another, but they are assumed to be independent
conditional on the values of the explanatory variables. A statistical model
can be defined by a logistic transformation or logit of a success probability,
logit (pi) = log (pi/(1− pi)), linearly related to the c explanatory variables.
This is called a logistic regression model. A more general model than a lin-
ear logistic regression model allows a nonlinear predictor expression and is
called logistic-nonlinear regression model and is formulated as

log
(

pi
1− pi

)
= g (xi , θ) ,

where θ is a vector of unknown parameters of the model.
A logistic-nonlinear regression model can also be defined with grouped

binary data (also called clustered binary data). To do so, suppose that there
are k groups of binary data each having a common value of x, labeled with
xj, j = 1, 2, . . . , k. Let Yj denote the number of successes out of nj independent
trials, for j = 1, 2, . . . , k, where the logistic transform of the corresponding
probability of success, pj, is to be modeled as a combination of the values
of c explanatory variables, i.e., logit

(
pj
)

= g
(
xj, θ

)
. The appropriate dis-

tribution for the response variables in this case is the binomial distribution,
and Y1, Y2, . . . , Yk, conditional on the values of the explanatory variables, are
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assumed to be independent.
A logistic-nonlinear regression model is a member of a class of models

called generalized nonlinear models. Nonlinear models have been studied by
many authors, see, e.g., Jennrich (1969); Seber and Wild (1989) and Zhanga
et al. (2005).

The parameters of the model can be estimated with standard methods,
such as maximum likelihood method and Markov Chain Monte Carlo method
through a Bayesian analysis. There are also standard R packages to fit some
well-known generalized nonlinear models, see, e.g., the gnm package in R by
Turner and Firth (2005). In paper B, section 3.1, we define a logistic-nonlinear
regression model on data of one specific airport and use a Bayesian approach
to estimate the parameters of the model.

As mentioned above, one vital assumption in a logistic regression model
is that Z1, Z2, . . . , ZN are assumed to be independent conditional on the val-
ues of the explanatory variables, or in other words Yj for j = 1, 2, . . . , k is
the number of successes out of nj independent trials. Sometimes the binary
observations in the same group tend to exhibit intracluster correlation. In
this case, standard models such as logistic-nonlinear regression models, that
ignore this dependence, are inadequate to represent the observed data.

For example, in paper B, an informal graphical test assesses the lack of
fit of the defined logistic-nonlinear regression model. This graphical test
represents the clustering pattern of the data which suggests the existence of
such an intracluster correlation.

Since the logistic-nonlinear regression model is inadequate for modeling
the correlated binary data, we need to consider other statistical models for
analyzing such data. Some statistical models, which are appropriate for ana-
lyzing the correlated binary data, are studied in the next section.

2.2 Correlated binary data and Overdispersion problem

In a logistic regression model, it is assumed that the logistic transformation
of the response probability of success depends only on the values of the
explanatory variables, and the number of successes are assumed to have a
binomial distribution. Sometimes, the assumptions of the logistic regression
model are not valid. Therefore, the logistic regression model is not appropri-
ate and probably causes some problems.

To explain the above, let the individual binary random variables that make
up Yj, which was defined in section 2.1, be denoted with Zj1, Zj2, . . . , Zjnj .

Hence Yj = ∑
nj
l=1 Zjl , for j = 1, 2, . . . , k. Now, assume that Zjl may not be

independent of Zjl′ when l 6= l′. In this case, the assumption of the binomial
distribution for Yj is not valid and a standard logistic regression model seems
inappropriate. Suppose that the correlation between Zjl and Zjl′ equals ρ. The
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mean and variance of Yj conditional on nj and xj are

E
(
Yj
∣∣nj, xj

)
=

nj

∑
l=1

E
(

Zjl

)
= nj pj,

Var
(
Yj
∣∣nj, xj

)
=

nj

∑
l=1

Var
(

Zjl

)
+ 2 ∑

1≤l<l′≤nj

Cov
(

Zjl , Zjl′
)

= nj pj
(
1− pj

) (
1 +
(
nj − 1

)
ρ
)

.

It is clear that if ρ = 0, there is no correlation between the binary random
variables conditional on xj and Yj has a binomial distribution, but when there
is a positive correlation, the variance of Yj exceeds the variance of a binomial
random variable. This phenomenon is called overdispersion or extra binomial
variation. In general, overdispersion means that the observed variation in a
variable is greater than what is expected from a model.

Above, we explained how the invalidity of the assumption of indepen-
dence, conditional on the values of the explanatory variables, between the
binary responses causes the overdispersion problem. The problem of overdis-
persion may also happen due to some other reasons (Collett, 2002, p. 196).
One reason may be misspecification of the predictor expression, e.g., when
a linear predictor is assumed while it should be nonlinear. It may also be
caused by the existence of outliers. Modification or omission of these data
points may help to alleviate this problem. In paper B, section 3.1.5, we con-
sider this potential reason and find that although the model fit is improved by
omission of a few data points, the observed lack of fit still persist and is an-
noying. Finally, the overdispersion problem may happen when the response
probabilities of successes vary over groups of binary random variables with
similar values of the explanatory variables.

In fact, the last mentioned reason above is related to the correlation be-
tween the binary random variables. This means that the existence of positive
correlation, conditional on the values of the explanatory variables, leads to
the variation of the probabilities of successes over groups of binary random
variables with similar values of the explanatory variables, and vice versa.
Since the two reasons are explaining the same thing, it is expected that they
lead to the same statistical model (Collett, 2002, pp. 197-199).

To face the problem of overdispersion, we may look for some other ex-
planatory variables which can explain the observed extra binomial variation.
However, it is more realistic to define a model which postulate a source of
extra binomial variation (Williams, 1982).

The problem of overdispersion for the binomial data has been extensively
studied so far, see, e.g., Hinde and Demetrio (1998) and Collett (2002). The
models which are suggested for these types of data are classified in two large
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categories of conditional (also known as cluster-specific) versus marginal (also
known as population-averaged) models. In the first one, a cluster effect is in-
cluded in the model and in the second one, it is not included. When the
research interest focuses on the changes between clusters, a model with clus-
ter effect is more appropriate, see Neuhaus et al.’s discussion (Neuhaus et al.,
1991) for comparing the two types of models. Beta-binomial, mixed-effects,
mixture and hidden Markov models are some examples of models which are
used for solving the overdispersion problem. In the following, we discuss
some of these models.

2.2.1 Beta-binomial model

As mentioned previously, one reason for the occurrence of overdispersion is
that the probabilities of successes vary over groups of binary random vari-
ables with similar values of the explanatory variables. In the following, we
make some assumptions about this variation which lead to a general model
for overdispersed data. This general model has been suggested by Williams
(1982). Afterward, we explain the beta-binomial model which is a special
case of Williams’s general model.

Suppose that xj, nj and Yj for j = 1, 2, . . . , k are defined as before. Now,
assume that the corresponding probability of success, pj, varies around µj
with variance δµj

(
1− µj

)
, where the logistic transform of µj is a function of

the explanatory variables, i.e., logit
(
µj
)

= g
(
xj, θ

)
. In this case, the mean

and variance of Yj conditional on nj and xj are

E
(
Yj|nj, xj

)
= E

[
E
(
Yj|nj, pj

)]
= njµj,

Var
(
Yj|nj, xj

)
= Var

(
E
[
Yj|nj, pj

])
+ E

[
Var

(
Yj|nj, pj

)]
= Var

(
nj pj

)
+ E

[
nj pj

(
1− pj

)]
= njµj

(
1− µj

) (
1 +
(
nj − 1

)
δ
)

. (21)

It is clear that if δ = 0, the probability of success, conditional on xj, does not
vary and Yj has a binomial distribution, but when δ is greater than zero, the
variance of Yj exceeds the variance of a binomial random variable and that is
why the overdispersion happens. So, an appropriate statistical model for the
overdispersed data is defined as follows:(

Yj
∣∣nj, pj

)
∼ Bin

(
nj, pj

)
,

E
(

pj
∣∣xj
)

= µj,

Var
(

pj
∣∣xj
)

= δµj
(
1− µj

)
,

log

(
µj

1− µj

)
= g

(
xj, θ

)
.
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We call this model Williams’s general model. In particular, we can assume pj
as a random variable with a specific distribution function, e.g., a beta distri-
bution. This model was first introduced by Williams (1975) and is called the
beta-binomial model. The beta-binomial model as a special case of Williams’s
general model is defined as follows:(

Yj
∣∣nj, pj

)
∼ Bin

(
nj, pj

)
,(

pj
∣∣xj
)
∼ Beta

(
µjτ,

(
1− µj

)
τ
)

,

log

(
µj

1− µj

)
= g

(
xj, θ

)
,

where Beta denotes the beta distribution, and the density function of pj given
xj is

f
(

pj
∣∣xj
)

=
1

B
(
µjτ,

(
1− µj

)
τ
) p

µjτ−1
j

(
1− pj

)(1−µj)τ−1 ,

where B is the Beta function.
Note that in this model, pj given xj follows a beta distribution with mean

µj and variance µj
(
1− µj

)
/(τ + 1). Thus, the mean and variance of Yj condi-

tional on nj and xj are the same as (21), where δ is substituted with 1/(τ + 1).
To estimate the parameters of the model, we need to obtain the likelihood

function of the parameters θ and τ. With the assumption of independence
between Y1, Y2, . . . , Yk, conditional on the values of the explanatory variables,
the likelihood function of the observations equals

L (θ, τ |y1, y2, . . . , yk ) =
k

∏
j=1

∫ 1

0

(
nj
yj

) (
exp

(
g
(
xj, θ

)))yj(
1 + exp

(
g
(
xj, θ

)))nj
f
(

pj
∣∣xj
)
dpj,

where f
(

pj
∣∣xj
)

is defined as before.
Since the beta distribution is the conjugate distribution of the binomial,

the likelihood function is simplified as

L (θ, τ |y1, y2, . . . , yk ) =
k

∏
j=1

(
nj
yj

)B
(
µjτ + yj,

(
1− µj

)
τ + nj − yj

)
B
(
µjτ,

(
1− µj

)
τ
) . (22)

Clearly, this likelihood function is computationally convenient.
In section 3.2 of paper B, we define a beta-binomial logistic-nonlinear re-

gression model. Since this is a nonlinear model, we could not use the stan-
dard R packages for obtaining the maximum likelihood estimates. Instead,
we have made an R code to estimate the parameters of the model through a
Bayesian approach.

In this section, we explained how the variation of the probabilities of
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2. Statistical modeling

successes, over groups of binary random variables with similar values of
the explanatory variables, leads to the overdispersion. Since the probabilities
of successes vary, the assumptions of the binomial distribution are not met.
One way to deal with this issue is to use a beta-binomial distribution instead
of a binomial distribution. Another way to deal with this issue is to use
models with random effects or hidden random variables. The reason is that
the observed extra variation may be caused by some explanatory variables
that are not recorded, and therefore a model with random effects or hidden
random variables, which considers the unrecorded variables as well, seems
appropriate. In the following, we explain these types of models to modeling
overdispersed data.

2.2.2 Mixed-effects model

The overdispersion problem reveals the fact that a relatively large part of the
existent variation in the binary data is not explained by the model. Such a
variation may happen due to a certain number of explanatory variables which
are not recorded. A random effect can be employed to alleviate this problem.
That means, mixed-effects models can be used to model overdispersed data.

As before, suppose that there are k groups of binary data each having a
common explanatory variable labeled with xj, j = 1, 2, . . . , k. Likewise, let Yj
be the number of successes out of nj trials in the jth group. Now, assume
that the logistic transform of the probability of success, pj, is a function of c
explanatory variables and some other variables which are not recorded. Lets
assume that U1j, U2j, . . . , Uc′ j are these unknown random variables and the
correct model for pj is

log

(
pj

1− pj

)
= g

(
xj, θ

)
+ β1u1j + β2u2j + . . . + βc′uc′ j,

where u1j, u2j, . . . , uc′ j are the realizations of the unrecorded random vari-
ables and β1, β2, . . . , βc′ , beside θ, are the unknown parameters of the model.
There are therefore two sources of variability between the groups. One is
the variability which is explained by the values of the explanatory variables,
x1, x2, . . . , xk, and the other is the variability caused by some unknown ran-
dom variables. Such an unknown variation is interpreted as overdispersion.
We can combine the effect of these variables in a single variable and con-
sider it as a random effect with common mean and variance in our logistic
regression model.

The use of random effects for modeling overdispersion was first consid-
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ered by Pierce and Sands (1975). The suggested model is defined as follows:(
Yj
∣∣nj, pj

)
∼ Bin

(
nj, pj

)
,

log

(
pj

1− pj

)
= g

(
xj, θ

)
+ γj,

where γj is a random effect corresponding to the jth group.
We need to assume a probability distribution for the random effects. For

example, we assume that γ1, γ2, . . . , γk are the realizations of k independent
normally distributed random variables with mean zero and variance σ2

γ. Note
that since g

(
xj, θ

)
usually involves an intercept part, it is appropriate to as-

sume that the mean of γj equals zero. In this case, the parameter which has
to be estimated is σγ. We can also substitute γj = σγzj in this model, where
zj is a realization of the standard normal distribution.

To estimate the parameters of the model, we can use the maximum likeli-
hood method. With the assumption of independence between Y1, Y2, . . . , Yk,
conditional on the values of the explanatory variables, the likelihood function
of the observations equals

L (θ, σγ, z1, z2, . . . , zk |y1, y2, . . . , yk ) =
k

∏
j=1

(
nj
yj

) (
exp

(
g
(
xj, θ

)
+ σγzj

))yj(
1 + exp

(
g
(
xj, θ

)
+ σγzj

))nj
.

To obtain the marginal likelihood of the parameters θ and σγ, we integrate
the above likelihood function with respect to the distribution of the standard
normal random variables which is

L (θ, σγ |y1, y2, . . . , yk ) =
k

∏
j=1

∫ ∞

−∞

(
nj
yj

) (
exp

(
g
(
xj, θ

)
+ σγzj

))yj(
1 + exp

(
g
(
xj, θ

)
+ σγzj

))nj
σφ
(
σγzj

)
dzj, (23)

where φ is the standard normal density.
The likelihood function (23) does not have a closed form expression as the

likelihood function of the beta-binomial model, (22). Hence, maximizing the
likelihood function is a bit complicated, and it should be approximated with
numerical methods. For example, we can approximate the above integral by
using the Gauss-Hermite formula as follows:

∫ ∞

−∞
f (s)e−s2

ds ≈
m

∑
r=1

wr f (sr)

where the wr and sr values are given in standard tables, see, e.g., Abramowitz
and Stegun (1972).
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2. Statistical modeling

Therefore, the marginal likelihood of the parameters is

L (θ, σγ |y1, y2, . . . , yk ) ≈ π−k/2
k

∏
j=1

(
nj
yj

) m

∑
r=1

wr

(
exp

(
g
(
xj, θ

)
+ σγsr

√
2
))yj(

1 + exp
(

g
(
xj, θ

)
+ σγsr

√
2
))nj

.

As mentioned above, the likelihood function (23) is more complicated to be
computed than the likelihood function (22). However, the approaches for
dealing with the overdispersion issue relate to one another. In the following,
we discuss how both of the above defined models consider a distribution
function for the logistic transformation of the success probabilities.

A comparison between the mixed-effects model and the beta-binomial
model In the above defined mixed-effects model, it is assumed that γ1, γ2, . . . , γk
are k independent normally distributed random variables with mean zero
and variance σ2

γ. Clearly, logit
(

pj
)

for j = 1, 2, . . . , k can be considered as
normally distributed random variables with mean g

(
xj, θ

)
and variance σ2

γ.
Now, lets look at the beta-binomial model which was explained in section

2.2.1. Also in this model, logit
(

pj
)

for j = 1, 2, . . . , k can be considered as
a random variable since pj is assumed to be a random variable. In the fol-
lowing, we show what the distribution of logit

(
pj
)

in a beta-binomial model
looks like, and we compare it with the assumed distribution of logit

(
pj
)

in
the defined mixed-effects model.

In a beta-binomial model, pj given xj has a beta distribution with param-
eters aj and bj, where

aj =
exp

(
g
(
xj, θ

))
τ

1 + exp
(

g
(
xj, θ

)) ,

bj =
τ

1 + exp
(

g
(
xj, θ

)) .

It can be shown that if X ∼ Beta (d1, d2), then d2X/(d1 (1− X)) ∼ F (2d1, 2d2),
where F is representing an F-distribution. Therefore,

1
exp

(
g
(
xj, θ

)) .
pj

1− pj

∣∣xj ∼ F
(
2aj, 2bj

)
.

It is also known that if X ∼ F (n, m), then 1/2 log (X) ∼ FisherZ (n, m), where
FisherZ is representing a Fisher’s z-distribution. Therefore,

−1
2

g
(
xj, θ

)
+

1
2

log

(
pj

1− pj

) ∣∣xj ∼ FisherZ
(
2aj, 2bj

)
.
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Consequently, the mean of logit
(

pj
)

is g
(
xj, θ

)
plus twice the mean of a

Fisher’s z-distribution with parameters 2aj and 2bj. Also, the variance of
logit

(
pj
)

is four times the variance of a Fisher’s z-distribution with parame-
ters 2aj and 2bj. Hence, the mean and variance of logit

(
pj
)

depends on the
explanatory variables.

In the mixed-effects model, logit
(

pj
)

for j = 1, 2, . . . , k had a common
variance, σ2

γ, while in a beta-binomial model, it is seen that the variance of
logit

(
pj
)

for j = 1, 2, . . . , k differ according to the values of the explanatory
variables.

Summed up briefly, both the beta-binomial and the mixed-effects models
define a distribution function for the logistic transformation of the proba-
bilities. With the difference that in a beta-binomial model the variances of
logit

(
pj
)
, for j = 1, 2, . . . , k differ according to the values of the explanatory

variables rather than being the same.
In paper B, we prefer the beta-binomial model to modeling the overdis-

persed data. However, in section 4 of this paper, it is suggested to use a
mixed-effects beta-binomial logistic regression model to prevent removing
some identified outliers. These outliers make the variation of the observed
data much larger than what is expected from a beta-binomial model. There-
fore, it is suggested to employ a random effect to prevent the omission of the
outliers.

2.2.3 Mixture model

As discussed previously, overdispersion may be explained with the variation
of the probabilities of successes given the explanatory variables, where such
variation is due to a certain number of variables not having been recorded.
Since these variables are not recorded, they are called hidden or latent vari-
ables. It can be assumed that the number of successes, conditional on the
values of the latent variables and the explanatory variables, have the bino-
mial distribution. This leads to a mixture model.

Suppose that xj, nj and Yj for j = 1, 2, . . . , k are all defined as before. Now,
assume that there is a latent variable, denoted Uj, for each j which is categor-
ically distributed withM categories. The random variable Yj, conditional on
the values of the explanatory variables, xj, and the value of the latent vari-
able, Uj = m, has a binomial distribution with probability of success equal to
pjm. So, the mixture model is defined as follows:(

Yj
∣∣Uj = m

)
∼ Bin

(
nj, pjm

)
,

Uj ∼ Cat(M, α),

log

(
pjm

1− pjm

)
= g

(
xj, θm

)
,
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2. Statistical modeling

where Cat is the categorical distribution with parameters α = (α1, α2, . . . , αM)
and ∑Mi=1 αi = 1.

Above, we have formulated a finite-mixture model for modeling overdis-
persed data. This means that the distribution function of Yj given nj and xj
is the sum of a finite mixture of components as follows:

f
(
yj
∣∣nj, xj

)
=
M
∑
i=1

αi

(
nj
yj

) (
exp

(
g
(
xj, θm

)))yj(
1 + exp

(
g
(
xj, θm

)))nj
.

We can also define an infinite-mixture model, where there is an infinite set
of component distributions. The beta-binomial model, which was defined in
section 2.2.1, is an example of infinite-mixture models, where the distribution
function of Yj given nj and xj is

f
(
yj
∣∣nj, xj

)
=
∫ 1

0

(
nj
yj

) (
exp

(
g
(
xj, θ

)))yj(
1 + exp

(
g
(
xj, θ

)))nj
f
(

pj
∣∣xj
)
dpj,

where f
(

pj
∣∣xj
)

is the density function of a beta distribution.
One well-known finite-mixture model for modeling overdispersion is the

zero-inflated model. This model is handling zero-inflated data, where an ex-
cess of zeros is present in the data. In this model, the zeros and positive data
are modeled as separate populations. Vieira et al. (2000) first applied such a
model to a dataset to modeling extra binomial variation.

To define a zero-inflated model, let the latent variable be a binary vari-
able. When the latent variable is one, the random variable Yj, conditional on
the values of the explanatory variables, follows a binomial distribution, and
otherwise it equals zero. So, the zero-inflated model is defined as follows:(

Yj
∣∣Uj = 1

)
∼ Bin

(
nj, pj

)
,(

Yj
∣∣Uj = 0

)
= 0,

Uj ∼ Bernoulli(α),

log

(
pj

1− pj

)
= g

(
xj, θ

)
.

In this case, the distribution of Yj, conditional on the latent variable, uj, is
given by

f
(
yj
∣∣uj
)

=

((
nj
yj

) (
exp

(
g
(
xj, θ

)))yj(
1 + exp

(
g
(
xj, θ

)))nj

)uj

I
(
yj = 0

)(1−uj) .

With the assumption of independence between Y1, Y2, . . . , Yk, conditional on
the values of the explanatory variables, and independence between U1, U2, . . . , Uk,
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the likelihood function of the observations equals

L (θ, α |y1, y2, . . . , yk , u1, u2 . . . , uk ) =
k

∏
j=1

f
(
yj
∣∣uj
)

αuj (1− α)(1−uj)

=
k

∏
j=1

((
nj
yj

) (
exp

(
g
(
xj, θ

)))yj(
1 + exp

(
g
(
xj, θ

)))nj
α

)uj

×

(
I
(
yj = 0

)
(1− α)

)(1−uj) . (24)

If we sum over the values of Uj, then the marginal likelihood of the parame-
ters θ and α based on the observed data equals

L (θ, α |y1, y2, . . . , yk ) =
k

∏
j=1

[(
nj
yj

) (
exp

(
g
(
xj, θ

)))yj(
1 + exp

(
g
(
xj, θ

)))nj
α + I

(
yj = 0

)
(1− α)

]
. (25)

The maximum likelihood estimates of the parameters, θ and α, can be
obtained by using the Expectation-Maximization (EM) algorithm. This algo-
rithm is suited to problems including missing or hidden values. Since the uj
values are hidden, it seems appropriate to use this algorithm. The goal is to
estimate the unknown parameters, θ and α, by maximizing the likelihood of
the incomplete data (including only observed values), i.e., (25). While in the
EM algorithm, the likelihood of the complete data (including observed and
hidden values) is maximized, i.e., (24). This is because maximizing the like-
lihood of the complete data is easier than the incomplete data. The obtained
maximum likelihood parameter estimates, by the EM algorithm, typically
converge to the true maximum likelihood estimates.

The algorithm is started with some initial values for the parameters, θ(0)

and α(0), and calculates

k

∑
j=1

E
[
log
(

L
(
θ, α

∣∣yj, uj
)) ∣∣∣θ(0), α(0), yj

]
.

To do so, we need to calculate

E
[
Uj

∣∣∣θ(0), α(0), yj

]
= P

(
Uj = 1

∣∣∣θ(0), α(0), yj

)
=

L
(

θ(0), Uj = 1
∣∣yj

)
P
(

Uj = 1
∣∣∣α(0)

)
L
(

θ(0), α(0)
∣∣yj

)
=

α(0)

α(0) +
(
1− α(0)

) (
1 + exp

(
g
(

xj, θ(0)
)))nj

I
(
yj = 0

)
+
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I
(
yj 6= 0

)
.

The above gives estimates for the uj values. In the next step, the loglikeli-
hood of the complete data is maximized, where the uj values are substituted
with the obtained estimates from the previous step. The above two steps
are repeated several times until a stopping rule criterion is satisfied. The
EM algorithm is robust with respect to the choice of starting values and will
generally always converge.

As mentioned before, in paper B, we use a beta-binomial model to model-
ing the overdispersed data. However, in section 4 of this paper, a zero-inflated
beta-binomial logistic-nonlinear regression model is suggested to modeling
the overdispersion without removing the outliers.

We stated that the statistical models for modeling overdispersion belong
to two large categories of marginal and conditional models. The beta-binomial
model is a marginal model since it does not define any cluster effect. On the
contrary, the other discussed models are all conditional models since they in-
clude a cluster effect. For example, in a mixed-effects model, random effects
corresponding to each cluster are defined, and in mixture models, categori-
cal/binary latent variables corresponding to each cluster are defined.
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